ubifs: register backing_dev_info
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
1da177e4 12#include <linux/rbtree.h>
22e2c507 13#include <linux/ioprio.h>
7b679138 14#include <linux/blktrace_api.h>
1da177e4
LT
15
16/*
17 * tunables
18 */
fe094d98
JA
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
64100099 21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
64100099 26static const int cfq_slice_sync = HZ / 10;
3b18152c 27static int cfq_slice_async = HZ / 25;
64100099 28static const int cfq_slice_async_rq = 2;
caaa5f9f 29static int cfq_slice_idle = HZ / 125;
22e2c507 30
d9e7620e 31/*
0871714e 32 * offset from end of service tree
d9e7620e 33 */
0871714e 34#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT (2)
40
22e2c507 41#define CFQ_SLICE_SCALE (5)
45333d5a 42#define CFQ_HW_QUEUE_MIN (5)
22e2c507 43
fe094d98
JA
44#define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 46#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 47
e18b890b
CL
48static struct kmem_cache *cfq_pool;
49static struct kmem_cache *cfq_ioc_pool;
1da177e4 50
4050cf16 51static DEFINE_PER_CPU(unsigned long, ioc_count);
334e94de 52static struct completion *ioc_gone;
9a11b4ed 53static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 54
22e2c507
JA
55#define CFQ_PRIO_LISTS IOPRIO_BE_NR
56#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
57#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
206dc69b
JA
59#define sample_valid(samples) ((samples) > 80)
60
cc09e299
JA
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
70};
71#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
72
22e2c507
JA
73/*
74 * Per block device queue structure
75 */
1da177e4 76struct cfq_data {
165125e1 77 struct request_queue *queue;
22e2c507
JA
78
79 /*
80 * rr list of queues with requests and the count of them
81 */
cc09e299 82 struct cfq_rb_root service_tree;
a36e71f9
JA
83
84 /*
85 * Each priority tree is sorted by next_request position. These
86 * trees are used when determining if two or more queues are
87 * interleaving requests (see cfq_close_cooperator).
88 */
89 struct rb_root prio_trees[CFQ_PRIO_LISTS];
90
22e2c507 91 unsigned int busy_queues;
3a9a3f6c
DS
92 /*
93 * Used to track any pending rt requests so we can pre-empt current
94 * non-RT cfqq in service when this value is non-zero.
95 */
96 unsigned int busy_rt_queues;
22e2c507 97
22e2c507 98 int rq_in_driver;
3ed9a296 99 int sync_flight;
45333d5a
AC
100
101 /*
102 * queue-depth detection
103 */
104 int rq_queued;
25776e35 105 int hw_tag;
45333d5a
AC
106 int hw_tag_samples;
107 int rq_in_driver_peak;
1da177e4 108
22e2c507
JA
109 /*
110 * idle window management
111 */
112 struct timer_list idle_slice_timer;
113 struct work_struct unplug_work;
1da177e4 114
22e2c507
JA
115 struct cfq_queue *active_queue;
116 struct cfq_io_context *active_cic;
22e2c507 117
c2dea2d1
VT
118 /*
119 * async queue for each priority case
120 */
121 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
122 struct cfq_queue *async_idle_cfqq;
15c31be4 123
6d048f53 124 sector_t last_position;
1da177e4 125
1da177e4
LT
126 /*
127 * tunables, see top of file
128 */
129 unsigned int cfq_quantum;
22e2c507 130 unsigned int cfq_fifo_expire[2];
1da177e4
LT
131 unsigned int cfq_back_penalty;
132 unsigned int cfq_back_max;
22e2c507
JA
133 unsigned int cfq_slice[2];
134 unsigned int cfq_slice_async_rq;
135 unsigned int cfq_slice_idle;
d9ff4187
AV
136
137 struct list_head cic_list;
1da177e4
LT
138};
139
22e2c507
JA
140/*
141 * Per process-grouping structure
142 */
1da177e4
LT
143struct cfq_queue {
144 /* reference count */
145 atomic_t ref;
be754d2c
RK
146 /* various state flags, see below */
147 unsigned int flags;
1da177e4
LT
148 /* parent cfq_data */
149 struct cfq_data *cfqd;
d9e7620e
JA
150 /* service_tree member */
151 struct rb_node rb_node;
152 /* service_tree key */
153 unsigned long rb_key;
a36e71f9
JA
154 /* prio tree member */
155 struct rb_node p_node;
f2d1f0ae
JA
156 /* prio tree root we belong to, if any */
157 struct rb_root *p_root;
1da177e4
LT
158 /* sorted list of pending requests */
159 struct rb_root sort_list;
160 /* if fifo isn't expired, next request to serve */
5e705374 161 struct request *next_rq;
1da177e4
LT
162 /* requests queued in sort_list */
163 int queued[2];
164 /* currently allocated requests */
165 int allocated[2];
166 /* fifo list of requests in sort_list */
22e2c507 167 struct list_head fifo;
1da177e4 168
22e2c507 169 unsigned long slice_end;
c5b680f3 170 long slice_resid;
2f5cb738 171 unsigned int slice_dispatch;
1da177e4 172
be754d2c
RK
173 /* pending metadata requests */
174 int meta_pending;
6d048f53
JA
175 /* number of requests that are on the dispatch list or inside driver */
176 int dispatched;
22e2c507
JA
177
178 /* io prio of this group */
179 unsigned short ioprio, org_ioprio;
180 unsigned short ioprio_class, org_ioprio_class;
181
7b679138 182 pid_t pid;
1da177e4
LT
183};
184
3b18152c 185enum cfqq_state_flags {
b0b8d749
JA
186 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
187 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 188 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749
JA
189 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
190 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
191 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
192 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
193 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 194 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 195 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
a36e71f9 196 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
3b18152c
JA
197};
198
199#define CFQ_CFQQ_FNS(name) \
200static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
201{ \
fe094d98 202 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
203} \
204static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
205{ \
fe094d98 206 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
207} \
208static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
209{ \
fe094d98 210 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
211}
212
213CFQ_CFQQ_FNS(on_rr);
214CFQ_CFQQ_FNS(wait_request);
b029195d 215CFQ_CFQQ_FNS(must_dispatch);
3b18152c
JA
216CFQ_CFQQ_FNS(must_alloc);
217CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
218CFQ_CFQQ_FNS(fifo_expire);
219CFQ_CFQQ_FNS(idle_window);
220CFQ_CFQQ_FNS(prio_changed);
44f7c160 221CFQ_CFQQ_FNS(slice_new);
91fac317 222CFQ_CFQQ_FNS(sync);
a36e71f9 223CFQ_CFQQ_FNS(coop);
3b18152c
JA
224#undef CFQ_CFQQ_FNS
225
7b679138
JA
226#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
227 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
228#define cfq_log(cfqd, fmt, args...) \
229 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
230
165125e1 231static void cfq_dispatch_insert(struct request_queue *, struct request *);
91fac317 232static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
fd0928df 233 struct io_context *, gfp_t);
4ac845a2 234static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
235 struct io_context *);
236
237static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
238 int is_sync)
239{
240 return cic->cfqq[!!is_sync];
241}
242
243static inline void cic_set_cfqq(struct cfq_io_context *cic,
244 struct cfq_queue *cfqq, int is_sync)
245{
246 cic->cfqq[!!is_sync] = cfqq;
247}
248
249/*
250 * We regard a request as SYNC, if it's either a read or has the SYNC bit
251 * set (in which case it could also be direct WRITE).
252 */
253static inline int cfq_bio_sync(struct bio *bio)
254{
255 if (bio_data_dir(bio) == READ || bio_sync(bio))
256 return 1;
257
258 return 0;
259}
1da177e4 260
99f95e52
AM
261/*
262 * scheduler run of queue, if there are requests pending and no one in the
263 * driver that will restart queueing
264 */
265static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
266{
7b679138
JA
267 if (cfqd->busy_queues) {
268 cfq_log(cfqd, "schedule dispatch");
18887ad9 269 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 270 }
99f95e52
AM
271}
272
165125e1 273static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
274{
275 struct cfq_data *cfqd = q->elevator->elevator_data;
276
b4878f24 277 return !cfqd->busy_queues;
99f95e52
AM
278}
279
44f7c160
JA
280/*
281 * Scale schedule slice based on io priority. Use the sync time slice only
282 * if a queue is marked sync and has sync io queued. A sync queue with async
283 * io only, should not get full sync slice length.
284 */
d9e7620e
JA
285static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
286 unsigned short prio)
44f7c160 287{
d9e7620e 288 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 289
d9e7620e
JA
290 WARN_ON(prio >= IOPRIO_BE_NR);
291
292 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
293}
44f7c160 294
d9e7620e
JA
295static inline int
296cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
297{
298 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
299}
300
301static inline void
302cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
303{
304 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
7b679138 305 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
306}
307
308/*
309 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
310 * isn't valid until the first request from the dispatch is activated
311 * and the slice time set.
312 */
313static inline int cfq_slice_used(struct cfq_queue *cfqq)
314{
315 if (cfq_cfqq_slice_new(cfqq))
316 return 0;
317 if (time_before(jiffies, cfqq->slice_end))
318 return 0;
319
320 return 1;
321}
322
1da177e4 323/*
5e705374 324 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 325 * We choose the request that is closest to the head right now. Distance
e8a99053 326 * behind the head is penalized and only allowed to a certain extent.
1da177e4 327 */
5e705374
JA
328static struct request *
329cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
1da177e4
LT
330{
331 sector_t last, s1, s2, d1 = 0, d2 = 0;
1da177e4 332 unsigned long back_max;
e8a99053
AM
333#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
334#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
335 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 336
5e705374
JA
337 if (rq1 == NULL || rq1 == rq2)
338 return rq2;
339 if (rq2 == NULL)
340 return rq1;
9c2c38a1 341
5e705374
JA
342 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
343 return rq1;
344 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
345 return rq2;
374f84ac
JA
346 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
347 return rq1;
348 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
349 return rq2;
1da177e4 350
83096ebf
TH
351 s1 = blk_rq_pos(rq1);
352 s2 = blk_rq_pos(rq2);
1da177e4 353
6d048f53 354 last = cfqd->last_position;
1da177e4 355
1da177e4
LT
356 /*
357 * by definition, 1KiB is 2 sectors
358 */
359 back_max = cfqd->cfq_back_max * 2;
360
361 /*
362 * Strict one way elevator _except_ in the case where we allow
363 * short backward seeks which are biased as twice the cost of a
364 * similar forward seek.
365 */
366 if (s1 >= last)
367 d1 = s1 - last;
368 else if (s1 + back_max >= last)
369 d1 = (last - s1) * cfqd->cfq_back_penalty;
370 else
e8a99053 371 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
372
373 if (s2 >= last)
374 d2 = s2 - last;
375 else if (s2 + back_max >= last)
376 d2 = (last - s2) * cfqd->cfq_back_penalty;
377 else
e8a99053 378 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
379
380 /* Found required data */
e8a99053
AM
381
382 /*
383 * By doing switch() on the bit mask "wrap" we avoid having to
384 * check two variables for all permutations: --> faster!
385 */
386 switch (wrap) {
5e705374 387 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 388 if (d1 < d2)
5e705374 389 return rq1;
e8a99053 390 else if (d2 < d1)
5e705374 391 return rq2;
e8a99053
AM
392 else {
393 if (s1 >= s2)
5e705374 394 return rq1;
e8a99053 395 else
5e705374 396 return rq2;
e8a99053 397 }
1da177e4 398
e8a99053 399 case CFQ_RQ2_WRAP:
5e705374 400 return rq1;
e8a99053 401 case CFQ_RQ1_WRAP:
5e705374
JA
402 return rq2;
403 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
404 default:
405 /*
406 * Since both rqs are wrapped,
407 * start with the one that's further behind head
408 * (--> only *one* back seek required),
409 * since back seek takes more time than forward.
410 */
411 if (s1 <= s2)
5e705374 412 return rq1;
1da177e4 413 else
5e705374 414 return rq2;
1da177e4
LT
415 }
416}
417
498d3aa2
JA
418/*
419 * The below is leftmost cache rbtree addon
420 */
0871714e 421static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
422{
423 if (!root->left)
424 root->left = rb_first(&root->rb);
425
0871714e
JA
426 if (root->left)
427 return rb_entry(root->left, struct cfq_queue, rb_node);
428
429 return NULL;
cc09e299
JA
430}
431
a36e71f9
JA
432static void rb_erase_init(struct rb_node *n, struct rb_root *root)
433{
434 rb_erase(n, root);
435 RB_CLEAR_NODE(n);
436}
437
cc09e299
JA
438static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
439{
440 if (root->left == n)
441 root->left = NULL;
a36e71f9 442 rb_erase_init(n, &root->rb);
cc09e299
JA
443}
444
1da177e4
LT
445/*
446 * would be nice to take fifo expire time into account as well
447 */
5e705374
JA
448static struct request *
449cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
450 struct request *last)
1da177e4 451{
21183b07
JA
452 struct rb_node *rbnext = rb_next(&last->rb_node);
453 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 454 struct request *next = NULL, *prev = NULL;
1da177e4 455
21183b07 456 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
457
458 if (rbprev)
5e705374 459 prev = rb_entry_rq(rbprev);
1da177e4 460
21183b07 461 if (rbnext)
5e705374 462 next = rb_entry_rq(rbnext);
21183b07
JA
463 else {
464 rbnext = rb_first(&cfqq->sort_list);
465 if (rbnext && rbnext != &last->rb_node)
5e705374 466 next = rb_entry_rq(rbnext);
21183b07 467 }
1da177e4 468
21183b07 469 return cfq_choose_req(cfqd, next, prev);
1da177e4
LT
470}
471
d9e7620e
JA
472static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
473 struct cfq_queue *cfqq)
1da177e4 474{
d9e7620e
JA
475 /*
476 * just an approximation, should be ok.
477 */
67e6b49e
JA
478 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
479 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
480}
481
498d3aa2
JA
482/*
483 * The cfqd->service_tree holds all pending cfq_queue's that have
484 * requests waiting to be processed. It is sorted in the order that
485 * we will service the queues.
486 */
a36e71f9
JA
487static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
488 int add_front)
d9e7620e 489{
0871714e
JA
490 struct rb_node **p, *parent;
491 struct cfq_queue *__cfqq;
d9e7620e 492 unsigned long rb_key;
498d3aa2 493 int left;
d9e7620e 494
0871714e
JA
495 if (cfq_class_idle(cfqq)) {
496 rb_key = CFQ_IDLE_DELAY;
497 parent = rb_last(&cfqd->service_tree.rb);
498 if (parent && parent != &cfqq->rb_node) {
499 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
500 rb_key += __cfqq->rb_key;
501 } else
502 rb_key += jiffies;
503 } else if (!add_front) {
edd75ffd
JA
504 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
505 rb_key += cfqq->slice_resid;
506 cfqq->slice_resid = 0;
507 } else
508 rb_key = 0;
1da177e4 509
d9e7620e 510 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 511 /*
d9e7620e 512 * same position, nothing more to do
99f9628a 513 */
d9e7620e
JA
514 if (rb_key == cfqq->rb_key)
515 return;
1da177e4 516
cc09e299 517 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
1da177e4 518 }
d9e7620e 519
498d3aa2 520 left = 1;
0871714e
JA
521 parent = NULL;
522 p = &cfqd->service_tree.rb.rb_node;
d9e7620e 523 while (*p) {
67060e37 524 struct rb_node **n;
cc09e299 525
d9e7620e
JA
526 parent = *p;
527 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
528
0c534e0a
JA
529 /*
530 * sort RT queues first, we always want to give
67060e37
JA
531 * preference to them. IDLE queues goes to the back.
532 * after that, sort on the next service time.
0c534e0a
JA
533 */
534 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
67060e37 535 n = &(*p)->rb_left;
0c534e0a 536 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
67060e37
JA
537 n = &(*p)->rb_right;
538 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
539 n = &(*p)->rb_left;
540 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
541 n = &(*p)->rb_right;
0c534e0a 542 else if (rb_key < __cfqq->rb_key)
67060e37
JA
543 n = &(*p)->rb_left;
544 else
545 n = &(*p)->rb_right;
546
547 if (n == &(*p)->rb_right)
cc09e299 548 left = 0;
67060e37
JA
549
550 p = n;
d9e7620e
JA
551 }
552
cc09e299
JA
553 if (left)
554 cfqd->service_tree.left = &cfqq->rb_node;
555
d9e7620e
JA
556 cfqq->rb_key = rb_key;
557 rb_link_node(&cfqq->rb_node, parent, p);
cc09e299 558 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
1da177e4
LT
559}
560
a36e71f9 561static struct cfq_queue *
f2d1f0ae
JA
562cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
563 sector_t sector, struct rb_node **ret_parent,
564 struct rb_node ***rb_link)
a36e71f9 565{
a36e71f9
JA
566 struct rb_node **p, *parent;
567 struct cfq_queue *cfqq = NULL;
568
569 parent = NULL;
570 p = &root->rb_node;
571 while (*p) {
572 struct rb_node **n;
573
574 parent = *p;
575 cfqq = rb_entry(parent, struct cfq_queue, p_node);
576
577 /*
578 * Sort strictly based on sector. Smallest to the left,
579 * largest to the right.
580 */
2e46e8b2 581 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 582 n = &(*p)->rb_right;
2e46e8b2 583 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
584 n = &(*p)->rb_left;
585 else
586 break;
587 p = n;
3ac6c9f8 588 cfqq = NULL;
a36e71f9
JA
589 }
590
591 *ret_parent = parent;
592 if (rb_link)
593 *rb_link = p;
3ac6c9f8 594 return cfqq;
a36e71f9
JA
595}
596
597static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
598{
a36e71f9
JA
599 struct rb_node **p, *parent;
600 struct cfq_queue *__cfqq;
601
f2d1f0ae
JA
602 if (cfqq->p_root) {
603 rb_erase(&cfqq->p_node, cfqq->p_root);
604 cfqq->p_root = NULL;
605 }
a36e71f9
JA
606
607 if (cfq_class_idle(cfqq))
608 return;
609 if (!cfqq->next_rq)
610 return;
611
f2d1f0ae 612 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
613 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
614 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
615 if (!__cfqq) {
616 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
617 rb_insert_color(&cfqq->p_node, cfqq->p_root);
618 } else
619 cfqq->p_root = NULL;
a36e71f9
JA
620}
621
498d3aa2
JA
622/*
623 * Update cfqq's position in the service tree.
624 */
edd75ffd 625static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 626{
6d048f53
JA
627 /*
628 * Resorting requires the cfqq to be on the RR list already.
629 */
a36e71f9 630 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 631 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
632 cfq_prio_tree_add(cfqd, cfqq);
633 }
6d048f53
JA
634}
635
1da177e4
LT
636/*
637 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 638 * the pending list according to last request service
1da177e4 639 */
febffd61 640static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 641{
7b679138 642 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
643 BUG_ON(cfq_cfqq_on_rr(cfqq));
644 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 645 cfqd->busy_queues++;
3a9a3f6c
DS
646 if (cfq_class_rt(cfqq))
647 cfqd->busy_rt_queues++;
1da177e4 648
edd75ffd 649 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
650}
651
498d3aa2
JA
652/*
653 * Called when the cfqq no longer has requests pending, remove it from
654 * the service tree.
655 */
febffd61 656static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 657{
7b679138 658 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
659 BUG_ON(!cfq_cfqq_on_rr(cfqq));
660 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 661
cc09e299
JA
662 if (!RB_EMPTY_NODE(&cfqq->rb_node))
663 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
f2d1f0ae
JA
664 if (cfqq->p_root) {
665 rb_erase(&cfqq->p_node, cfqq->p_root);
666 cfqq->p_root = NULL;
667 }
d9e7620e 668
1da177e4
LT
669 BUG_ON(!cfqd->busy_queues);
670 cfqd->busy_queues--;
3a9a3f6c
DS
671 if (cfq_class_rt(cfqq))
672 cfqd->busy_rt_queues--;
1da177e4
LT
673}
674
675/*
676 * rb tree support functions
677 */
febffd61 678static void cfq_del_rq_rb(struct request *rq)
1da177e4 679{
5e705374 680 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 681 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 682 const int sync = rq_is_sync(rq);
1da177e4 683
b4878f24
JA
684 BUG_ON(!cfqq->queued[sync]);
685 cfqq->queued[sync]--;
1da177e4 686
5e705374 687 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 688
dd67d051 689 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 690 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
691}
692
5e705374 693static void cfq_add_rq_rb(struct request *rq)
1da177e4 694{
5e705374 695 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 696 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 697 struct request *__alias, *prev;
1da177e4 698
5380a101 699 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
700
701 /*
702 * looks a little odd, but the first insert might return an alias.
703 * if that happens, put the alias on the dispatch list
704 */
21183b07 705 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 706 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
707
708 if (!cfq_cfqq_on_rr(cfqq))
709 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
710
711 /*
712 * check if this request is a better next-serve candidate
713 */
a36e71f9 714 prev = cfqq->next_rq;
5044eed4 715 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
a36e71f9
JA
716
717 /*
718 * adjust priority tree position, if ->next_rq changes
719 */
720 if (prev != cfqq->next_rq)
721 cfq_prio_tree_add(cfqd, cfqq);
722
5044eed4 723 BUG_ON(!cfqq->next_rq);
1da177e4
LT
724}
725
febffd61 726static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 727{
5380a101
JA
728 elv_rb_del(&cfqq->sort_list, rq);
729 cfqq->queued[rq_is_sync(rq)]--;
5e705374 730 cfq_add_rq_rb(rq);
1da177e4
LT
731}
732
206dc69b
JA
733static struct request *
734cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 735{
206dc69b 736 struct task_struct *tsk = current;
91fac317 737 struct cfq_io_context *cic;
206dc69b 738 struct cfq_queue *cfqq;
1da177e4 739
4ac845a2 740 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
741 if (!cic)
742 return NULL;
743
744 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
745 if (cfqq) {
746 sector_t sector = bio->bi_sector + bio_sectors(bio);
747
21183b07 748 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 749 }
1da177e4 750
1da177e4
LT
751 return NULL;
752}
753
165125e1 754static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 755{
22e2c507 756 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 757
b4878f24 758 cfqd->rq_in_driver++;
7b679138
JA
759 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
760 cfqd->rq_in_driver);
25776e35 761
5b93629b 762 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
763}
764
165125e1 765static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 766{
b4878f24
JA
767 struct cfq_data *cfqd = q->elevator->elevator_data;
768
769 WARN_ON(!cfqd->rq_in_driver);
770 cfqd->rq_in_driver--;
7b679138
JA
771 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
772 cfqd->rq_in_driver);
1da177e4
LT
773}
774
b4878f24 775static void cfq_remove_request(struct request *rq)
1da177e4 776{
5e705374 777 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 778
5e705374
JA
779 if (cfqq->next_rq == rq)
780 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 781
b4878f24 782 list_del_init(&rq->queuelist);
5e705374 783 cfq_del_rq_rb(rq);
374f84ac 784
45333d5a 785 cfqq->cfqd->rq_queued--;
374f84ac
JA
786 if (rq_is_meta(rq)) {
787 WARN_ON(!cfqq->meta_pending);
788 cfqq->meta_pending--;
789 }
1da177e4
LT
790}
791
165125e1
JA
792static int cfq_merge(struct request_queue *q, struct request **req,
793 struct bio *bio)
1da177e4
LT
794{
795 struct cfq_data *cfqd = q->elevator->elevator_data;
796 struct request *__rq;
1da177e4 797
206dc69b 798 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 799 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
800 *req = __rq;
801 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
802 }
803
804 return ELEVATOR_NO_MERGE;
1da177e4
LT
805}
806
165125e1 807static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 808 int type)
1da177e4 809{
21183b07 810 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 811 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 812
5e705374 813 cfq_reposition_rq_rb(cfqq, req);
1da177e4 814 }
1da177e4
LT
815}
816
817static void
165125e1 818cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
819 struct request *next)
820{
22e2c507
JA
821 /*
822 * reposition in fifo if next is older than rq
823 */
824 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
825 time_before(next->start_time, rq->start_time))
826 list_move(&rq->queuelist, &next->queuelist);
827
b4878f24 828 cfq_remove_request(next);
22e2c507
JA
829}
830
165125e1 831static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
832 struct bio *bio)
833{
834 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 835 struct cfq_io_context *cic;
da775265 836 struct cfq_queue *cfqq;
da775265
JA
837
838 /*
ec8acb69 839 * Disallow merge of a sync bio into an async request.
da775265 840 */
91fac317 841 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
da775265
JA
842 return 0;
843
844 /*
719d3402
JA
845 * Lookup the cfqq that this bio will be queued with. Allow
846 * merge only if rq is queued there.
da775265 847 */
4ac845a2 848 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317
VT
849 if (!cic)
850 return 0;
719d3402 851
91fac317 852 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
719d3402
JA
853 if (cfqq == RQ_CFQQ(rq))
854 return 1;
da775265 855
ec8acb69 856 return 0;
da775265
JA
857}
858
febffd61
JA
859static void __cfq_set_active_queue(struct cfq_data *cfqd,
860 struct cfq_queue *cfqq)
22e2c507
JA
861{
862 if (cfqq) {
7b679138 863 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 864 cfqq->slice_end = 0;
2f5cb738
JA
865 cfqq->slice_dispatch = 0;
866
2f5cb738 867 cfq_clear_cfqq_wait_request(cfqq);
b029195d 868 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
869 cfq_clear_cfqq_must_alloc_slice(cfqq);
870 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 871 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
872
873 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
874 }
875
876 cfqd->active_queue = cfqq;
877}
878
7b14e3b5
JA
879/*
880 * current cfqq expired its slice (or was too idle), select new one
881 */
882static void
883__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6084cdda 884 int timed_out)
7b14e3b5 885{
7b679138
JA
886 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
887
7b14e3b5
JA
888 if (cfq_cfqq_wait_request(cfqq))
889 del_timer(&cfqd->idle_slice_timer);
890
7b14e3b5
JA
891 cfq_clear_cfqq_wait_request(cfqq);
892
893 /*
6084cdda 894 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 895 */
7b679138 896 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 897 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
898 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
899 }
7b14e3b5 900
edd75ffd 901 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
902
903 if (cfqq == cfqd->active_queue)
904 cfqd->active_queue = NULL;
905
906 if (cfqd->active_cic) {
907 put_io_context(cfqd->active_cic->ioc);
908 cfqd->active_cic = NULL;
909 }
7b14e3b5
JA
910}
911
6084cdda 912static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
7b14e3b5
JA
913{
914 struct cfq_queue *cfqq = cfqd->active_queue;
915
916 if (cfqq)
6084cdda 917 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
918}
919
498d3aa2
JA
920/*
921 * Get next queue for service. Unless we have a queue preemption,
922 * we'll simply select the first cfqq in the service tree.
923 */
6d048f53 924static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 925{
edd75ffd
JA
926 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
927 return NULL;
d9e7620e 928
0871714e 929 return cfq_rb_first(&cfqd->service_tree);
6d048f53
JA
930}
931
498d3aa2
JA
932/*
933 * Get and set a new active queue for service.
934 */
a36e71f9
JA
935static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
936 struct cfq_queue *cfqq)
6d048f53 937{
a36e71f9
JA
938 if (!cfqq) {
939 cfqq = cfq_get_next_queue(cfqd);
940 if (cfqq)
941 cfq_clear_cfqq_coop(cfqq);
942 }
6d048f53 943
22e2c507 944 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 945 return cfqq;
22e2c507
JA
946}
947
d9e7620e
JA
948static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
949 struct request *rq)
950{
83096ebf
TH
951 if (blk_rq_pos(rq) >= cfqd->last_position)
952 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 953 else
83096ebf 954 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
955}
956
04dc6e71
JM
957#define CIC_SEEK_THR 8 * 1024
958#define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
959
6d048f53
JA
960static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
961{
962 struct cfq_io_context *cic = cfqd->active_cic;
04dc6e71 963 sector_t sdist = cic->seek_mean;
6d048f53
JA
964
965 if (!sample_valid(cic->seek_samples))
04dc6e71 966 sdist = CIC_SEEK_THR;
6d048f53 967
04dc6e71 968 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
969}
970
a36e71f9
JA
971static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
972 struct cfq_queue *cur_cfqq)
973{
f2d1f0ae 974 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
975 struct rb_node *parent, *node;
976 struct cfq_queue *__cfqq;
977 sector_t sector = cfqd->last_position;
978
979 if (RB_EMPTY_ROOT(root))
980 return NULL;
981
982 /*
983 * First, if we find a request starting at the end of the last
984 * request, choose it.
985 */
f2d1f0ae 986 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
987 if (__cfqq)
988 return __cfqq;
989
990 /*
991 * If the exact sector wasn't found, the parent of the NULL leaf
992 * will contain the closest sector.
993 */
994 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
995 if (cfq_rq_close(cfqd, __cfqq->next_rq))
996 return __cfqq;
997
2e46e8b2 998 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
999 node = rb_next(&__cfqq->p_node);
1000 else
1001 node = rb_prev(&__cfqq->p_node);
1002 if (!node)
1003 return NULL;
1004
1005 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1006 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1007 return __cfqq;
1008
1009 return NULL;
1010}
1011
1012/*
1013 * cfqd - obvious
1014 * cur_cfqq - passed in so that we don't decide that the current queue is
1015 * closely cooperating with itself.
1016 *
1017 * So, basically we're assuming that that cur_cfqq has dispatched at least
1018 * one request, and that cfqd->last_position reflects a position on the disk
1019 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1020 * assumption.
1021 */
1022static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1023 struct cfq_queue *cur_cfqq,
1024 int probe)
6d048f53 1025{
a36e71f9
JA
1026 struct cfq_queue *cfqq;
1027
1028 /*
1029 * A valid cfq_io_context is necessary to compare requests against
1030 * the seek_mean of the current cfqq.
1031 */
1032 if (!cfqd->active_cic)
1033 return NULL;
1034
6d048f53 1035 /*
d9e7620e
JA
1036 * We should notice if some of the queues are cooperating, eg
1037 * working closely on the same area of the disk. In that case,
1038 * we can group them together and don't waste time idling.
6d048f53 1039 */
a36e71f9
JA
1040 cfqq = cfqq_close(cfqd, cur_cfqq);
1041 if (!cfqq)
1042 return NULL;
1043
1044 if (cfq_cfqq_coop(cfqq))
1045 return NULL;
1046
1047 if (!probe)
1048 cfq_mark_cfqq_coop(cfqq);
1049 return cfqq;
6d048f53
JA
1050}
1051
6d048f53 1052static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1053{
1792669c 1054 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1055 struct cfq_io_context *cic;
7b14e3b5
JA
1056 unsigned long sl;
1057
a68bbddb 1058 /*
f7d7b7a7
JA
1059 * SSD device without seek penalty, disable idling. But only do so
1060 * for devices that support queuing, otherwise we still have a problem
1061 * with sync vs async workloads.
a68bbddb 1062 */
f7d7b7a7 1063 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1064 return;
1065
dd67d051 1066 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1067 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1068
1069 /*
1070 * idle is disabled, either manually or by past process history
1071 */
6d048f53
JA
1072 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1073 return;
1074
7b679138
JA
1075 /*
1076 * still requests with the driver, don't idle
1077 */
1078 if (cfqd->rq_in_driver)
1079 return;
1080
22e2c507
JA
1081 /*
1082 * task has exited, don't wait
1083 */
206dc69b 1084 cic = cfqd->active_cic;
66dac98e 1085 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1086 return;
1087
3b18152c 1088 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1089
206dc69b
JA
1090 /*
1091 * we don't want to idle for seeks, but we do want to allow
1092 * fair distribution of slice time for a process doing back-to-back
1093 * seeks. so allow a little bit of time for him to submit a new rq
1094 */
6d048f53 1095 sl = cfqd->cfq_slice_idle;
caaa5f9f 1096 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
d9e7620e 1097 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
206dc69b 1098
7b14e3b5 1099 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1100 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1101}
1102
498d3aa2
JA
1103/*
1104 * Move request from internal lists to the request queue dispatch list.
1105 */
165125e1 1106static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1107{
3ed9a296 1108 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1109 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1110
7b679138
JA
1111 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1112
5380a101 1113 cfq_remove_request(rq);
6d048f53 1114 cfqq->dispatched++;
5380a101 1115 elv_dispatch_sort(q, rq);
3ed9a296
JA
1116
1117 if (cfq_cfqq_sync(cfqq))
1118 cfqd->sync_flight++;
1da177e4
LT
1119}
1120
1121/*
1122 * return expired entry, or NULL to just start from scratch in rbtree
1123 */
febffd61 1124static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4
LT
1125{
1126 struct cfq_data *cfqd = cfqq->cfqd;
22e2c507 1127 struct request *rq;
89850f7e 1128 int fifo;
1da177e4 1129
3b18152c 1130 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1131 return NULL;
cb887411
JA
1132
1133 cfq_mark_cfqq_fifo_expire(cfqq);
1134
89850f7e
JA
1135 if (list_empty(&cfqq->fifo))
1136 return NULL;
1da177e4 1137
6d048f53 1138 fifo = cfq_cfqq_sync(cfqq);
89850f7e 1139 rq = rq_entry_fifo(cfqq->fifo.next);
1da177e4 1140
6d048f53 1141 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
7b679138 1142 rq = NULL;
1da177e4 1143
7b679138 1144 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
6d048f53 1145 return rq;
1da177e4
LT
1146}
1147
22e2c507
JA
1148static inline int
1149cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1150{
1151 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1152
22e2c507 1153 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1154
22e2c507 1155 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1156}
1157
22e2c507 1158/*
498d3aa2
JA
1159 * Select a queue for service. If we have a current active queue,
1160 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1161 */
1b5ed5e1 1162static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1163{
a36e71f9 1164 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1165
22e2c507
JA
1166 cfqq = cfqd->active_queue;
1167 if (!cfqq)
1168 goto new_queue;
1da177e4 1169
22e2c507 1170 /*
6d048f53 1171 * The active queue has run out of time, expire it and select new.
22e2c507 1172 */
b029195d 1173 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1174 goto expire;
1da177e4 1175
3a9a3f6c
DS
1176 /*
1177 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1178 * cfqq.
1179 */
1180 if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1181 /*
1182 * We simulate this as cfqq timed out so that it gets to bank
1183 * the remaining of its time slice.
1184 */
1185 cfq_log_cfqq(cfqd, cfqq, "preempt");
1186 cfq_slice_expired(cfqd, 1);
1187 goto new_queue;
1188 }
1189
22e2c507 1190 /*
6d048f53
JA
1191 * The active queue has requests and isn't expired, allow it to
1192 * dispatch.
22e2c507 1193 */
dd67d051 1194 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1195 goto keep_queue;
6d048f53 1196
a36e71f9
JA
1197 /*
1198 * If another queue has a request waiting within our mean seek
1199 * distance, let it run. The expire code will check for close
1200 * cooperators and put the close queue at the front of the service
1201 * tree.
1202 */
1203 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1204 if (new_cfqq)
1205 goto expire;
1206
6d048f53
JA
1207 /*
1208 * No requests pending. If the active queue still has requests in
1209 * flight or is idling for a new request, allow either of these
1210 * conditions to happen (or time out) before selecting a new queue.
1211 */
cc197479
JA
1212 if (timer_pending(&cfqd->idle_slice_timer) ||
1213 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
caaa5f9f
JA
1214 cfqq = NULL;
1215 goto keep_queue;
22e2c507
JA
1216 }
1217
3b18152c 1218expire:
6084cdda 1219 cfq_slice_expired(cfqd, 0);
3b18152c 1220new_queue:
a36e71f9 1221 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1222keep_queue:
3b18152c 1223 return cfqq;
22e2c507
JA
1224}
1225
febffd61 1226static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1227{
1228 int dispatched = 0;
1229
1230 while (cfqq->next_rq) {
1231 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1232 dispatched++;
1233 }
1234
1235 BUG_ON(!list_empty(&cfqq->fifo));
1236 return dispatched;
1237}
1238
498d3aa2
JA
1239/*
1240 * Drain our current requests. Used for barriers and when switching
1241 * io schedulers on-the-fly.
1242 */
d9e7620e 1243static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1244{
0871714e 1245 struct cfq_queue *cfqq;
d9e7620e 1246 int dispatched = 0;
1b5ed5e1 1247
0871714e 1248 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
d9e7620e 1249 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1250
6084cdda 1251 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1252
1253 BUG_ON(cfqd->busy_queues);
1254
7b679138 1255 cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1b5ed5e1
TH
1256 return dispatched;
1257}
1258
2f5cb738
JA
1259/*
1260 * Dispatch a request from cfqq, moving them to the request queue
1261 * dispatch list.
1262 */
1263static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1264{
1265 struct request *rq;
1266
1267 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1268
1269 /*
1270 * follow expired path, else get first next available
1271 */
1272 rq = cfq_check_fifo(cfqq);
1273 if (!rq)
1274 rq = cfqq->next_rq;
1275
1276 /*
1277 * insert request into driver dispatch list
1278 */
1279 cfq_dispatch_insert(cfqd->queue, rq);
1280
1281 if (!cfqd->active_cic) {
1282 struct cfq_io_context *cic = RQ_CIC(rq);
1283
d9c7d394 1284 atomic_long_inc(&cic->ioc->refcount);
2f5cb738
JA
1285 cfqd->active_cic = cic;
1286 }
1287}
1288
1289/*
1290 * Find the cfqq that we need to service and move a request from that to the
1291 * dispatch list
1292 */
165125e1 1293static int cfq_dispatch_requests(struct request_queue *q, int force)
22e2c507
JA
1294{
1295 struct cfq_data *cfqd = q->elevator->elevator_data;
6d048f53 1296 struct cfq_queue *cfqq;
2f5cb738 1297 unsigned int max_dispatch;
22e2c507
JA
1298
1299 if (!cfqd->busy_queues)
1300 return 0;
1301
1b5ed5e1
TH
1302 if (unlikely(force))
1303 return cfq_forced_dispatch(cfqd);
1304
2f5cb738
JA
1305 cfqq = cfq_select_queue(cfqd);
1306 if (!cfqq)
1307 return 0;
1308
1309 /*
1310 * If this is an async queue and we have sync IO in flight, let it wait
1311 */
1312 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1313 return 0;
1314
1315 max_dispatch = cfqd->cfq_quantum;
1316 if (cfq_class_idle(cfqq))
1317 max_dispatch = 1;
b4878f24 1318
2f5cb738
JA
1319 /*
1320 * Does this cfqq already have too much IO in flight?
1321 */
1322 if (cfqq->dispatched >= max_dispatch) {
1323 /*
1324 * idle queue must always only have a single IO in flight
1325 */
3ed9a296 1326 if (cfq_class_idle(cfqq))
2f5cb738 1327 return 0;
3ed9a296 1328
2f5cb738
JA
1329 /*
1330 * We have other queues, don't allow more IO from this one
1331 */
1332 if (cfqd->busy_queues > 1)
1333 return 0;
9ede209e 1334
2f5cb738
JA
1335 /*
1336 * we are the only queue, allow up to 4 times of 'quantum'
1337 */
1338 if (cfqq->dispatched >= 4 * max_dispatch)
1339 return 0;
1340 }
3ed9a296 1341
2f5cb738
JA
1342 /*
1343 * Dispatch a request from this cfqq
1344 */
1345 cfq_dispatch_request(cfqd, cfqq);
1346 cfqq->slice_dispatch++;
b029195d 1347 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1348
2f5cb738
JA
1349 /*
1350 * expire an async queue immediately if it has used up its slice. idle
1351 * queue always expire after 1 dispatch round.
1352 */
1353 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1354 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1355 cfq_class_idle(cfqq))) {
1356 cfqq->slice_end = jiffies + 1;
1357 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1358 }
1359
2f5cb738
JA
1360 cfq_log(cfqd, "dispatched a request");
1361 return 1;
1da177e4
LT
1362}
1363
1da177e4 1364/*
5e705374
JA
1365 * task holds one reference to the queue, dropped when task exits. each rq
1366 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1367 *
1368 * queue lock must be held here.
1369 */
1370static void cfq_put_queue(struct cfq_queue *cfqq)
1371{
22e2c507
JA
1372 struct cfq_data *cfqd = cfqq->cfqd;
1373
1374 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1375
1376 if (!atomic_dec_and_test(&cfqq->ref))
1377 return;
1378
7b679138 1379 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1380 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1381 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1382 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1383
28f95cbc 1384 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1385 __cfq_slice_expired(cfqd, cfqq, 0);
28f95cbc
JA
1386 cfq_schedule_dispatch(cfqd);
1387 }
22e2c507 1388
1da177e4
LT
1389 kmem_cache_free(cfq_pool, cfqq);
1390}
1391
d6de8be7
JA
1392/*
1393 * Must always be called with the rcu_read_lock() held
1394 */
07416d29
JA
1395static void
1396__call_for_each_cic(struct io_context *ioc,
1397 void (*func)(struct io_context *, struct cfq_io_context *))
1398{
1399 struct cfq_io_context *cic;
1400 struct hlist_node *n;
1401
1402 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1403 func(ioc, cic);
1404}
1405
4ac845a2 1406/*
34e6bbf2 1407 * Call func for each cic attached to this ioc.
4ac845a2 1408 */
34e6bbf2 1409static void
4ac845a2
JA
1410call_for_each_cic(struct io_context *ioc,
1411 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1412{
4ac845a2 1413 rcu_read_lock();
07416d29 1414 __call_for_each_cic(ioc, func);
4ac845a2 1415 rcu_read_unlock();
34e6bbf2
FC
1416}
1417
1418static void cfq_cic_free_rcu(struct rcu_head *head)
1419{
1420 struct cfq_io_context *cic;
1421
1422 cic = container_of(head, struct cfq_io_context, rcu_head);
1423
1424 kmem_cache_free(cfq_ioc_pool, cic);
1425 elv_ioc_count_dec(ioc_count);
1426
9a11b4ed
JA
1427 if (ioc_gone) {
1428 /*
1429 * CFQ scheduler is exiting, grab exit lock and check
1430 * the pending io context count. If it hits zero,
1431 * complete ioc_gone and set it back to NULL
1432 */
1433 spin_lock(&ioc_gone_lock);
1434 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1435 complete(ioc_gone);
1436 ioc_gone = NULL;
1437 }
1438 spin_unlock(&ioc_gone_lock);
1439 }
34e6bbf2 1440}
4ac845a2 1441
34e6bbf2
FC
1442static void cfq_cic_free(struct cfq_io_context *cic)
1443{
1444 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1445}
1446
1447static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1448{
1449 unsigned long flags;
1450
1451 BUG_ON(!cic->dead_key);
1452
1453 spin_lock_irqsave(&ioc->lock, flags);
1454 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1455 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1456 spin_unlock_irqrestore(&ioc->lock, flags);
1457
34e6bbf2 1458 cfq_cic_free(cic);
4ac845a2
JA
1459}
1460
d6de8be7
JA
1461/*
1462 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1463 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1464 * and ->trim() which is called with the task lock held
1465 */
4ac845a2
JA
1466static void cfq_free_io_context(struct io_context *ioc)
1467{
4ac845a2 1468 /*
34e6bbf2
FC
1469 * ioc->refcount is zero here, or we are called from elv_unregister(),
1470 * so no more cic's are allowed to be linked into this ioc. So it
1471 * should be ok to iterate over the known list, we will see all cic's
1472 * since no new ones are added.
4ac845a2 1473 */
07416d29 1474 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1475}
1476
89850f7e 1477static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1478{
28f95cbc 1479 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1480 __cfq_slice_expired(cfqd, cfqq, 0);
28f95cbc
JA
1481 cfq_schedule_dispatch(cfqd);
1482 }
22e2c507 1483
89850f7e
JA
1484 cfq_put_queue(cfqq);
1485}
22e2c507 1486
89850f7e
JA
1487static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1488 struct cfq_io_context *cic)
1489{
4faa3c81
FC
1490 struct io_context *ioc = cic->ioc;
1491
fc46379d 1492 list_del_init(&cic->queue_list);
4ac845a2
JA
1493
1494 /*
1495 * Make sure key == NULL is seen for dead queues
1496 */
fc46379d 1497 smp_wmb();
4ac845a2 1498 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1499 cic->key = NULL;
1500
4faa3c81
FC
1501 if (ioc->ioc_data == cic)
1502 rcu_assign_pointer(ioc->ioc_data, NULL);
1503
ff6657c6
JA
1504 if (cic->cfqq[BLK_RW_ASYNC]) {
1505 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1506 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1507 }
1508
ff6657c6
JA
1509 if (cic->cfqq[BLK_RW_SYNC]) {
1510 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1511 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1512 }
89850f7e
JA
1513}
1514
4ac845a2
JA
1515static void cfq_exit_single_io_context(struct io_context *ioc,
1516 struct cfq_io_context *cic)
89850f7e
JA
1517{
1518 struct cfq_data *cfqd = cic->key;
1519
89850f7e 1520 if (cfqd) {
165125e1 1521 struct request_queue *q = cfqd->queue;
4ac845a2 1522 unsigned long flags;
89850f7e 1523
4ac845a2 1524 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1525
1526 /*
1527 * Ensure we get a fresh copy of the ->key to prevent
1528 * race between exiting task and queue
1529 */
1530 smp_read_barrier_depends();
1531 if (cic->key)
1532 __cfq_exit_single_io_context(cfqd, cic);
1533
4ac845a2 1534 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1535 }
1da177e4
LT
1536}
1537
498d3aa2
JA
1538/*
1539 * The process that ioc belongs to has exited, we need to clean up
1540 * and put the internal structures we have that belongs to that process.
1541 */
e2d74ac0 1542static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1543{
4ac845a2 1544 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1545}
1546
22e2c507 1547static struct cfq_io_context *
8267e268 1548cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1549{
b5deef90 1550 struct cfq_io_context *cic;
1da177e4 1551
94f6030c
CL
1552 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1553 cfqd->queue->node);
1da177e4 1554 if (cic) {
22e2c507 1555 cic->last_end_request = jiffies;
553698f9 1556 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1557 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1558 cic->dtor = cfq_free_io_context;
1559 cic->exit = cfq_exit_io_context;
4050cf16 1560 elv_ioc_count_inc(ioc_count);
1da177e4
LT
1561 }
1562
1563 return cic;
1564}
1565
fd0928df 1566static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1567{
1568 struct task_struct *tsk = current;
1569 int ioprio_class;
1570
3b18152c 1571 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1572 return;
1573
fd0928df 1574 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1575 switch (ioprio_class) {
fe094d98
JA
1576 default:
1577 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1578 case IOPRIO_CLASS_NONE:
1579 /*
6d63c275 1580 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1581 */
1582 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1583 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1584 break;
1585 case IOPRIO_CLASS_RT:
1586 cfqq->ioprio = task_ioprio(ioc);
1587 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1588 break;
1589 case IOPRIO_CLASS_BE:
1590 cfqq->ioprio = task_ioprio(ioc);
1591 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1592 break;
1593 case IOPRIO_CLASS_IDLE:
1594 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1595 cfqq->ioprio = 7;
1596 cfq_clear_cfqq_idle_window(cfqq);
1597 break;
22e2c507
JA
1598 }
1599
1600 /*
1601 * keep track of original prio settings in case we have to temporarily
1602 * elevate the priority of this queue
1603 */
1604 cfqq->org_ioprio = cfqq->ioprio;
1605 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1606 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1607}
1608
febffd61 1609static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1610{
478a82b0
AV
1611 struct cfq_data *cfqd = cic->key;
1612 struct cfq_queue *cfqq;
c1b707d2 1613 unsigned long flags;
35e6077c 1614
caaa5f9f
JA
1615 if (unlikely(!cfqd))
1616 return;
1617
c1b707d2 1618 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 1619
ff6657c6 1620 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
1621 if (cfqq) {
1622 struct cfq_queue *new_cfqq;
ff6657c6
JA
1623 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1624 GFP_ATOMIC);
caaa5f9f 1625 if (new_cfqq) {
ff6657c6 1626 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
1627 cfq_put_queue(cfqq);
1628 }
22e2c507 1629 }
caaa5f9f 1630
ff6657c6 1631 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
1632 if (cfqq)
1633 cfq_mark_cfqq_prio_changed(cfqq);
1634
c1b707d2 1635 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
1636}
1637
fc46379d 1638static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 1639{
4ac845a2 1640 call_for_each_cic(ioc, changed_ioprio);
fc46379d 1641 ioc->ioprio_changed = 0;
22e2c507
JA
1642}
1643
1644static struct cfq_queue *
15c31be4 1645cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
fd0928df 1646 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 1647{
22e2c507 1648 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 1649 struct cfq_io_context *cic;
22e2c507
JA
1650
1651retry:
4ac845a2 1652 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
1653 /* cic always exists here */
1654 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507
JA
1655
1656 if (!cfqq) {
1657 if (new_cfqq) {
1658 cfqq = new_cfqq;
1659 new_cfqq = NULL;
1660 } else if (gfp_mask & __GFP_WAIT) {
89850f7e
JA
1661 /*
1662 * Inform the allocator of the fact that we will
1663 * just repeat this allocation if it fails, to allow
1664 * the allocator to do whatever it needs to attempt to
1665 * free memory.
1666 */
22e2c507 1667 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c
CL
1668 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1669 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1670 cfqd->queue->node);
22e2c507
JA
1671 spin_lock_irq(cfqd->queue->queue_lock);
1672 goto retry;
1673 } else {
94f6030c
CL
1674 cfqq = kmem_cache_alloc_node(cfq_pool,
1675 gfp_mask | __GFP_ZERO,
1676 cfqd->queue->node);
22e2c507
JA
1677 if (!cfqq)
1678 goto out;
1679 }
1680
d9e7620e 1681 RB_CLEAR_NODE(&cfqq->rb_node);
a36e71f9 1682 RB_CLEAR_NODE(&cfqq->p_node);
22e2c507
JA
1683 INIT_LIST_HEAD(&cfqq->fifo);
1684
22e2c507
JA
1685 atomic_set(&cfqq->ref, 0);
1686 cfqq->cfqd = cfqd;
c5b680f3 1687
3b18152c 1688 cfq_mark_cfqq_prio_changed(cfqq);
91fac317 1689
fd0928df 1690 cfq_init_prio_data(cfqq, ioc);
0871714e
JA
1691
1692 if (is_sync) {
1693 if (!cfq_class_idle(cfqq))
1694 cfq_mark_cfqq_idle_window(cfqq);
1695 cfq_mark_cfqq_sync(cfqq);
1696 }
7b679138
JA
1697 cfqq->pid = current->pid;
1698 cfq_log_cfqq(cfqd, cfqq, "alloced");
22e2c507
JA
1699 }
1700
1701 if (new_cfqq)
1702 kmem_cache_free(cfq_pool, new_cfqq);
1703
22e2c507
JA
1704out:
1705 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1706 return cfqq;
1707}
1708
c2dea2d1
VT
1709static struct cfq_queue **
1710cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1711{
fe094d98 1712 switch (ioprio_class) {
c2dea2d1
VT
1713 case IOPRIO_CLASS_RT:
1714 return &cfqd->async_cfqq[0][ioprio];
1715 case IOPRIO_CLASS_BE:
1716 return &cfqd->async_cfqq[1][ioprio];
1717 case IOPRIO_CLASS_IDLE:
1718 return &cfqd->async_idle_cfqq;
1719 default:
1720 BUG();
1721 }
1722}
1723
15c31be4 1724static struct cfq_queue *
fd0928df 1725cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
15c31be4
JA
1726 gfp_t gfp_mask)
1727{
fd0928df
JA
1728 const int ioprio = task_ioprio(ioc);
1729 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 1730 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
1731 struct cfq_queue *cfqq = NULL;
1732
c2dea2d1
VT
1733 if (!is_sync) {
1734 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1735 cfqq = *async_cfqq;
1736 }
1737
0a0836a0 1738 if (!cfqq) {
fd0928df 1739 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
0a0836a0
ON
1740 if (!cfqq)
1741 return NULL;
1742 }
15c31be4
JA
1743
1744 /*
1745 * pin the queue now that it's allocated, scheduler exit will prune it
1746 */
c2dea2d1 1747 if (!is_sync && !(*async_cfqq)) {
15c31be4 1748 atomic_inc(&cfqq->ref);
c2dea2d1 1749 *async_cfqq = cfqq;
15c31be4
JA
1750 }
1751
1752 atomic_inc(&cfqq->ref);
1753 return cfqq;
1754}
1755
498d3aa2
JA
1756/*
1757 * We drop cfq io contexts lazily, so we may find a dead one.
1758 */
dbecf3ab 1759static void
4ac845a2
JA
1760cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1761 struct cfq_io_context *cic)
dbecf3ab 1762{
4ac845a2
JA
1763 unsigned long flags;
1764
fc46379d 1765 WARN_ON(!list_empty(&cic->queue_list));
597bc485 1766
4ac845a2
JA
1767 spin_lock_irqsave(&ioc->lock, flags);
1768
4faa3c81 1769 BUG_ON(ioc->ioc_data == cic);
597bc485 1770
4ac845a2 1771 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 1772 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1773 spin_unlock_irqrestore(&ioc->lock, flags);
1774
1775 cfq_cic_free(cic);
dbecf3ab
OH
1776}
1777
e2d74ac0 1778static struct cfq_io_context *
4ac845a2 1779cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 1780{
e2d74ac0 1781 struct cfq_io_context *cic;
d6de8be7 1782 unsigned long flags;
4ac845a2 1783 void *k;
e2d74ac0 1784
91fac317
VT
1785 if (unlikely(!ioc))
1786 return NULL;
1787
d6de8be7
JA
1788 rcu_read_lock();
1789
597bc485
JA
1790 /*
1791 * we maintain a last-hit cache, to avoid browsing over the tree
1792 */
4ac845a2 1793 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
1794 if (cic && cic->key == cfqd) {
1795 rcu_read_unlock();
597bc485 1796 return cic;
d6de8be7 1797 }
597bc485 1798
4ac845a2 1799 do {
4ac845a2
JA
1800 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1801 rcu_read_unlock();
1802 if (!cic)
1803 break;
be3b0753
OH
1804 /* ->key must be copied to avoid race with cfq_exit_queue() */
1805 k = cic->key;
1806 if (unlikely(!k)) {
4ac845a2 1807 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 1808 rcu_read_lock();
4ac845a2 1809 continue;
dbecf3ab 1810 }
e2d74ac0 1811
d6de8be7 1812 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 1813 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 1814 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
1815 break;
1816 } while (1);
e2d74ac0 1817
4ac845a2 1818 return cic;
e2d74ac0
JA
1819}
1820
4ac845a2
JA
1821/*
1822 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1823 * the process specific cfq io context when entered from the block layer.
1824 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1825 */
febffd61
JA
1826static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1827 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 1828{
0261d688 1829 unsigned long flags;
4ac845a2 1830 int ret;
e2d74ac0 1831
4ac845a2
JA
1832 ret = radix_tree_preload(gfp_mask);
1833 if (!ret) {
1834 cic->ioc = ioc;
1835 cic->key = cfqd;
e2d74ac0 1836
4ac845a2
JA
1837 spin_lock_irqsave(&ioc->lock, flags);
1838 ret = radix_tree_insert(&ioc->radix_root,
1839 (unsigned long) cfqd, cic);
ffc4e759
JA
1840 if (!ret)
1841 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 1842 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 1843
4ac845a2
JA
1844 radix_tree_preload_end();
1845
1846 if (!ret) {
1847 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1848 list_add(&cic->queue_list, &cfqd->cic_list);
1849 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1850 }
e2d74ac0
JA
1851 }
1852
4ac845a2
JA
1853 if (ret)
1854 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 1855
4ac845a2 1856 return ret;
e2d74ac0
JA
1857}
1858
1da177e4
LT
1859/*
1860 * Setup general io context and cfq io context. There can be several cfq
1861 * io contexts per general io context, if this process is doing io to more
e2d74ac0 1862 * than one device managed by cfq.
1da177e4
LT
1863 */
1864static struct cfq_io_context *
e2d74ac0 1865cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1866{
22e2c507 1867 struct io_context *ioc = NULL;
1da177e4 1868 struct cfq_io_context *cic;
1da177e4 1869
22e2c507 1870 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 1871
b5deef90 1872 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
1873 if (!ioc)
1874 return NULL;
1875
4ac845a2 1876 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
1877 if (cic)
1878 goto out;
1da177e4 1879
e2d74ac0
JA
1880 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1881 if (cic == NULL)
1882 goto err;
1da177e4 1883
4ac845a2
JA
1884 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1885 goto err_free;
1886
1da177e4 1887out:
fc46379d
JA
1888 smp_read_barrier_depends();
1889 if (unlikely(ioc->ioprio_changed))
1890 cfq_ioc_set_ioprio(ioc);
1891
1da177e4 1892 return cic;
4ac845a2
JA
1893err_free:
1894 cfq_cic_free(cic);
1da177e4
LT
1895err:
1896 put_io_context(ioc);
1897 return NULL;
1898}
1899
22e2c507
JA
1900static void
1901cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 1902{
aaf1228d
JA
1903 unsigned long elapsed = jiffies - cic->last_end_request;
1904 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 1905
22e2c507
JA
1906 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1907 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1908 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1909}
1da177e4 1910
206dc69b 1911static void
6d048f53
JA
1912cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1913 struct request *rq)
206dc69b
JA
1914{
1915 sector_t sdist;
1916 u64 total;
1917
4d00aa47
JM
1918 if (!cic->last_request_pos)
1919 sdist = 0;
83096ebf
TH
1920 else if (cic->last_request_pos < blk_rq_pos(rq))
1921 sdist = blk_rq_pos(rq) - cic->last_request_pos;
206dc69b 1922 else
83096ebf 1923 sdist = cic->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
1924
1925 /*
1926 * Don't allow the seek distance to get too large from the
1927 * odd fragment, pagein, etc
1928 */
1929 if (cic->seek_samples <= 60) /* second&third seek */
1930 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1931 else
1932 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1933
1934 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1935 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1936 total = cic->seek_total + (cic->seek_samples/2);
1937 do_div(total, cic->seek_samples);
1938 cic->seek_mean = (sector_t)total;
1939}
1da177e4 1940
22e2c507
JA
1941/*
1942 * Disable idle window if the process thinks too long or seeks so much that
1943 * it doesn't matter
1944 */
1945static void
1946cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1947 struct cfq_io_context *cic)
1948{
7b679138 1949 int old_idle, enable_idle;
1be92f2f 1950
0871714e
JA
1951 /*
1952 * Don't idle for async or idle io prio class
1953 */
1954 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
1955 return;
1956
c265a7f4 1957 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 1958
66dac98e 1959 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
caaa5f9f 1960 (cfqd->hw_tag && CIC_SEEKY(cic)))
22e2c507
JA
1961 enable_idle = 0;
1962 else if (sample_valid(cic->ttime_samples)) {
1963 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1964 enable_idle = 0;
1965 else
1966 enable_idle = 1;
1da177e4
LT
1967 }
1968
7b679138
JA
1969 if (old_idle != enable_idle) {
1970 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1971 if (enable_idle)
1972 cfq_mark_cfqq_idle_window(cfqq);
1973 else
1974 cfq_clear_cfqq_idle_window(cfqq);
1975 }
22e2c507 1976}
1da177e4 1977
22e2c507
JA
1978/*
1979 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1980 * no or if we aren't sure, a 1 will cause a preempt.
1981 */
1982static int
1983cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 1984 struct request *rq)
22e2c507 1985{
6d048f53 1986 struct cfq_queue *cfqq;
22e2c507 1987
6d048f53
JA
1988 cfqq = cfqd->active_queue;
1989 if (!cfqq)
22e2c507
JA
1990 return 0;
1991
6d048f53
JA
1992 if (cfq_slice_used(cfqq))
1993 return 1;
1994
1995 if (cfq_class_idle(new_cfqq))
caaa5f9f 1996 return 0;
22e2c507
JA
1997
1998 if (cfq_class_idle(cfqq))
1999 return 1;
1e3335de 2000
374f84ac
JA
2001 /*
2002 * if the new request is sync, but the currently running queue is
2003 * not, let the sync request have priority.
2004 */
5e705374 2005 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
22e2c507 2006 return 1;
1e3335de 2007
374f84ac
JA
2008 /*
2009 * So both queues are sync. Let the new request get disk time if
2010 * it's a metadata request and the current queue is doing regular IO.
2011 */
2012 if (rq_is_meta(rq) && !cfqq->meta_pending)
2013 return 1;
22e2c507 2014
3a9a3f6c
DS
2015 /*
2016 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2017 */
2018 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2019 return 1;
2020
1e3335de
JA
2021 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2022 return 0;
2023
2024 /*
2025 * if this request is as-good as one we would expect from the
2026 * current cfqq, let it preempt
2027 */
6d048f53 2028 if (cfq_rq_close(cfqd, rq))
1e3335de
JA
2029 return 1;
2030
22e2c507
JA
2031 return 0;
2032}
2033
2034/*
2035 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2036 * let it have half of its nominal slice.
2037 */
2038static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2039{
7b679138 2040 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2041 cfq_slice_expired(cfqd, 1);
22e2c507 2042
bf572256
JA
2043 /*
2044 * Put the new queue at the front of the of the current list,
2045 * so we know that it will be selected next.
2046 */
2047 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2048
2049 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2050
44f7c160
JA
2051 cfqq->slice_end = 0;
2052 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2053}
2054
22e2c507 2055/*
5e705374 2056 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2057 * something we should do about it
2058 */
2059static void
5e705374
JA
2060cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2061 struct request *rq)
22e2c507 2062{
5e705374 2063 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2064
45333d5a 2065 cfqd->rq_queued++;
374f84ac
JA
2066 if (rq_is_meta(rq))
2067 cfqq->meta_pending++;
2068
9c2c38a1 2069 cfq_update_io_thinktime(cfqd, cic);
6d048f53 2070 cfq_update_io_seektime(cfqd, cic, rq);
9c2c38a1
JA
2071 cfq_update_idle_window(cfqd, cfqq, cic);
2072
83096ebf 2073 cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2074
2075 if (cfqq == cfqd->active_queue) {
2076 /*
b029195d
JA
2077 * Remember that we saw a request from this process, but
2078 * don't start queuing just yet. Otherwise we risk seeing lots
2079 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2080 * and merging. If the request is already larger than a single
2081 * page, let it rip immediately. For that case we assume that
2d870722
JA
2082 * merging is already done. Ditto for a busy system that
2083 * has other work pending, don't risk delaying until the
2084 * idle timer unplug to continue working.
22e2c507 2085 */
d6ceb25e 2086 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2087 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2088 cfqd->busy_queues > 1) {
d6ceb25e 2089 del_timer(&cfqd->idle_slice_timer);
a7f55792 2090 __blk_run_queue(cfqd->queue);
d6ceb25e 2091 }
b029195d 2092 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2093 }
5e705374 2094 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2095 /*
2096 * not the active queue - expire current slice if it is
2097 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2098 * has some old slice time left and is of higher priority or
2099 * this new queue is RT and the current one is BE
22e2c507
JA
2100 */
2101 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2102 __blk_run_queue(cfqd->queue);
22e2c507 2103 }
1da177e4
LT
2104}
2105
165125e1 2106static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2107{
b4878f24 2108 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2109 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2110
7b679138 2111 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2112 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2113
5e705374 2114 cfq_add_rq_rb(rq);
1da177e4 2115
22e2c507
JA
2116 list_add_tail(&rq->queuelist, &cfqq->fifo);
2117
5e705374 2118 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2119}
2120
45333d5a
AC
2121/*
2122 * Update hw_tag based on peak queue depth over 50 samples under
2123 * sufficient load.
2124 */
2125static void cfq_update_hw_tag(struct cfq_data *cfqd)
2126{
2127 if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
2128 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
2129
2130 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2131 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
2132 return;
2133
2134 if (cfqd->hw_tag_samples++ < 50)
2135 return;
2136
2137 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2138 cfqd->hw_tag = 1;
2139 else
2140 cfqd->hw_tag = 0;
2141
2142 cfqd->hw_tag_samples = 0;
2143 cfqd->rq_in_driver_peak = 0;
2144}
2145
165125e1 2146static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2147{
5e705374 2148 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2149 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2150 const int sync = rq_is_sync(rq);
b4878f24 2151 unsigned long now;
1da177e4 2152
b4878f24 2153 now = jiffies;
7b679138 2154 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2155
45333d5a
AC
2156 cfq_update_hw_tag(cfqd);
2157
b4878f24 2158 WARN_ON(!cfqd->rq_in_driver);
6d048f53 2159 WARN_ON(!cfqq->dispatched);
b4878f24 2160 cfqd->rq_in_driver--;
6d048f53 2161 cfqq->dispatched--;
1da177e4 2162
3ed9a296
JA
2163 if (cfq_cfqq_sync(cfqq))
2164 cfqd->sync_flight--;
2165
caaa5f9f 2166 if (sync)
5e705374 2167 RQ_CIC(rq)->last_end_request = now;
caaa5f9f
JA
2168
2169 /*
2170 * If this is the active queue, check if it needs to be expired,
2171 * or if we want to idle in case it has no pending requests.
2172 */
2173 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2174 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2175
44f7c160
JA
2176 if (cfq_cfqq_slice_new(cfqq)) {
2177 cfq_set_prio_slice(cfqd, cfqq);
2178 cfq_clear_cfqq_slice_new(cfqq);
2179 }
a36e71f9
JA
2180 /*
2181 * If there are no requests waiting in this queue, and
2182 * there are other queues ready to issue requests, AND
2183 * those other queues are issuing requests within our
2184 * mean seek distance, give them a chance to run instead
2185 * of idling.
2186 */
0871714e 2187 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2188 cfq_slice_expired(cfqd, 1);
a36e71f9
JA
2189 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2190 sync && !rq_noidle(rq))
6d048f53 2191 cfq_arm_slice_timer(cfqd);
caaa5f9f 2192 }
6d048f53
JA
2193
2194 if (!cfqd->rq_in_driver)
2195 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2196}
2197
22e2c507
JA
2198/*
2199 * we temporarily boost lower priority queues if they are holding fs exclusive
2200 * resources. they are boosted to normal prio (CLASS_BE/4)
2201 */
2202static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2203{
22e2c507
JA
2204 if (has_fs_excl()) {
2205 /*
2206 * boost idle prio on transactions that would lock out other
2207 * users of the filesystem
2208 */
2209 if (cfq_class_idle(cfqq))
2210 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2211 if (cfqq->ioprio > IOPRIO_NORM)
2212 cfqq->ioprio = IOPRIO_NORM;
2213 } else {
2214 /*
2215 * check if we need to unboost the queue
2216 */
2217 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2218 cfqq->ioprio_class = cfqq->org_ioprio_class;
2219 if (cfqq->ioprio != cfqq->org_ioprio)
2220 cfqq->ioprio = cfqq->org_ioprio;
2221 }
22e2c507 2222}
1da177e4 2223
89850f7e 2224static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2225{
3b18152c 2226 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
99f95e52 2227 !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2228 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2229 return ELV_MQUEUE_MUST;
3b18152c 2230 }
1da177e4 2231
22e2c507 2232 return ELV_MQUEUE_MAY;
22e2c507
JA
2233}
2234
165125e1 2235static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2236{
2237 struct cfq_data *cfqd = q->elevator->elevator_data;
2238 struct task_struct *tsk = current;
91fac317 2239 struct cfq_io_context *cic;
22e2c507
JA
2240 struct cfq_queue *cfqq;
2241
2242 /*
2243 * don't force setup of a queue from here, as a call to may_queue
2244 * does not necessarily imply that a request actually will be queued.
2245 * so just lookup a possibly existing queue, or return 'may queue'
2246 * if that fails
2247 */
4ac845a2 2248 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2249 if (!cic)
2250 return ELV_MQUEUE_MAY;
2251
b0b78f81 2252 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2253 if (cfqq) {
fd0928df 2254 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2255 cfq_prio_boost(cfqq);
2256
89850f7e 2257 return __cfq_may_queue(cfqq);
22e2c507
JA
2258 }
2259
2260 return ELV_MQUEUE_MAY;
1da177e4
LT
2261}
2262
1da177e4
LT
2263/*
2264 * queue lock held here
2265 */
bb37b94c 2266static void cfq_put_request(struct request *rq)
1da177e4 2267{
5e705374 2268 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2269
5e705374 2270 if (cfqq) {
22e2c507 2271 const int rw = rq_data_dir(rq);
1da177e4 2272
22e2c507
JA
2273 BUG_ON(!cfqq->allocated[rw]);
2274 cfqq->allocated[rw]--;
1da177e4 2275
5e705374 2276 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2277
1da177e4 2278 rq->elevator_private = NULL;
5e705374 2279 rq->elevator_private2 = NULL;
1da177e4 2280
1da177e4
LT
2281 cfq_put_queue(cfqq);
2282 }
2283}
2284
2285/*
22e2c507 2286 * Allocate cfq data structures associated with this request.
1da177e4 2287 */
22e2c507 2288static int
165125e1 2289cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2290{
2291 struct cfq_data *cfqd = q->elevator->elevator_data;
2292 struct cfq_io_context *cic;
2293 const int rw = rq_data_dir(rq);
7749a8d4 2294 const int is_sync = rq_is_sync(rq);
22e2c507 2295 struct cfq_queue *cfqq;
1da177e4
LT
2296 unsigned long flags;
2297
2298 might_sleep_if(gfp_mask & __GFP_WAIT);
2299
e2d74ac0 2300 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2301
1da177e4
LT
2302 spin_lock_irqsave(q->queue_lock, flags);
2303
22e2c507
JA
2304 if (!cic)
2305 goto queue_fail;
2306
91fac317
VT
2307 cfqq = cic_to_cfqq(cic, is_sync);
2308 if (!cfqq) {
fd0928df 2309 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 2310
22e2c507
JA
2311 if (!cfqq)
2312 goto queue_fail;
1da177e4 2313
91fac317
VT
2314 cic_set_cfqq(cic, cfqq, is_sync);
2315 }
1da177e4
LT
2316
2317 cfqq->allocated[rw]++;
3b18152c 2318 cfq_clear_cfqq_must_alloc(cfqq);
22e2c507 2319 atomic_inc(&cfqq->ref);
1da177e4 2320
5e705374 2321 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2322
5e705374
JA
2323 rq->elevator_private = cic;
2324 rq->elevator_private2 = cfqq;
2325 return 0;
1da177e4 2326
22e2c507
JA
2327queue_fail:
2328 if (cic)
2329 put_io_context(cic->ioc);
89850f7e 2330
3b18152c 2331 cfq_schedule_dispatch(cfqd);
1da177e4 2332 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2333 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2334 return 1;
2335}
2336
65f27f38 2337static void cfq_kick_queue(struct work_struct *work)
22e2c507 2338{
65f27f38
DH
2339 struct cfq_data *cfqd =
2340 container_of(work, struct cfq_data, unplug_work);
165125e1 2341 struct request_queue *q = cfqd->queue;
22e2c507 2342
40bb54d1 2343 spin_lock_irq(q->queue_lock);
a7f55792 2344 __blk_run_queue(cfqd->queue);
40bb54d1 2345 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2346}
2347
2348/*
2349 * Timer running if the active_queue is currently idling inside its time slice
2350 */
2351static void cfq_idle_slice_timer(unsigned long data)
2352{
2353 struct cfq_data *cfqd = (struct cfq_data *) data;
2354 struct cfq_queue *cfqq;
2355 unsigned long flags;
3c6bd2f8 2356 int timed_out = 1;
22e2c507 2357
7b679138
JA
2358 cfq_log(cfqd, "idle timer fired");
2359
22e2c507
JA
2360 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2361
fe094d98
JA
2362 cfqq = cfqd->active_queue;
2363 if (cfqq) {
3c6bd2f8
JA
2364 timed_out = 0;
2365
b029195d
JA
2366 /*
2367 * We saw a request before the queue expired, let it through
2368 */
2369 if (cfq_cfqq_must_dispatch(cfqq))
2370 goto out_kick;
2371
22e2c507
JA
2372 /*
2373 * expired
2374 */
44f7c160 2375 if (cfq_slice_used(cfqq))
22e2c507
JA
2376 goto expire;
2377
2378 /*
2379 * only expire and reinvoke request handler, if there are
2380 * other queues with pending requests
2381 */
caaa5f9f 2382 if (!cfqd->busy_queues)
22e2c507 2383 goto out_cont;
22e2c507
JA
2384
2385 /*
2386 * not expired and it has a request pending, let it dispatch
2387 */
75e50984 2388 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2389 goto out_kick;
22e2c507
JA
2390 }
2391expire:
6084cdda 2392 cfq_slice_expired(cfqd, timed_out);
22e2c507 2393out_kick:
3b18152c 2394 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2395out_cont:
2396 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2397}
2398
3b18152c
JA
2399static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2400{
2401 del_timer_sync(&cfqd->idle_slice_timer);
64d01dc9 2402 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2403}
22e2c507 2404
c2dea2d1
VT
2405static void cfq_put_async_queues(struct cfq_data *cfqd)
2406{
2407 int i;
2408
2409 for (i = 0; i < IOPRIO_BE_NR; i++) {
2410 if (cfqd->async_cfqq[0][i])
2411 cfq_put_queue(cfqd->async_cfqq[0][i]);
2412 if (cfqd->async_cfqq[1][i])
2413 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2414 }
2389d1ef
ON
2415
2416 if (cfqd->async_idle_cfqq)
2417 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2418}
2419
b374d18a 2420static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2421{
22e2c507 2422 struct cfq_data *cfqd = e->elevator_data;
165125e1 2423 struct request_queue *q = cfqd->queue;
22e2c507 2424
3b18152c 2425 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2426
d9ff4187 2427 spin_lock_irq(q->queue_lock);
e2d74ac0 2428
d9ff4187 2429 if (cfqd->active_queue)
6084cdda 2430 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2431
2432 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2433 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2434 struct cfq_io_context,
2435 queue_list);
89850f7e
JA
2436
2437 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2438 }
e2d74ac0 2439
c2dea2d1 2440 cfq_put_async_queues(cfqd);
15c31be4 2441
d9ff4187 2442 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2443
2444 cfq_shutdown_timer_wq(cfqd);
2445
a90d742e 2446 kfree(cfqd);
1da177e4
LT
2447}
2448
165125e1 2449static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2450{
2451 struct cfq_data *cfqd;
26a2ac00 2452 int i;
1da177e4 2453
94f6030c 2454 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2455 if (!cfqd)
bc1c1169 2456 return NULL;
1da177e4 2457
cc09e299 2458 cfqd->service_tree = CFQ_RB_ROOT;
26a2ac00
JA
2459
2460 /*
2461 * Not strictly needed (since RB_ROOT just clears the node and we
2462 * zeroed cfqd on alloc), but better be safe in case someone decides
2463 * to add magic to the rb code
2464 */
2465 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2466 cfqd->prio_trees[i] = RB_ROOT;
2467
d9ff4187 2468 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2469
1da177e4 2470 cfqd->queue = q;
1da177e4 2471
22e2c507
JA
2472 init_timer(&cfqd->idle_slice_timer);
2473 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2474 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2475
65f27f38 2476 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2477
1da177e4 2478 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2479 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2480 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2481 cfqd->cfq_back_max = cfq_back_max;
2482 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2483 cfqd->cfq_slice[0] = cfq_slice_async;
2484 cfqd->cfq_slice[1] = cfq_slice_sync;
2485 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2486 cfqd->cfq_slice_idle = cfq_slice_idle;
45333d5a 2487 cfqd->hw_tag = 1;
3b18152c 2488
bc1c1169 2489 return cfqd;
1da177e4
LT
2490}
2491
2492static void cfq_slab_kill(void)
2493{
d6de8be7
JA
2494 /*
2495 * Caller already ensured that pending RCU callbacks are completed,
2496 * so we should have no busy allocations at this point.
2497 */
1da177e4
LT
2498 if (cfq_pool)
2499 kmem_cache_destroy(cfq_pool);
2500 if (cfq_ioc_pool)
2501 kmem_cache_destroy(cfq_ioc_pool);
2502}
2503
2504static int __init cfq_slab_setup(void)
2505{
0a31bd5f 2506 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2507 if (!cfq_pool)
2508 goto fail;
2509
34e6bbf2 2510 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2511 if (!cfq_ioc_pool)
2512 goto fail;
2513
2514 return 0;
2515fail:
2516 cfq_slab_kill();
2517 return -ENOMEM;
2518}
2519
1da177e4
LT
2520/*
2521 * sysfs parts below -->
2522 */
1da177e4
LT
2523static ssize_t
2524cfq_var_show(unsigned int var, char *page)
2525{
2526 return sprintf(page, "%d\n", var);
2527}
2528
2529static ssize_t
2530cfq_var_store(unsigned int *var, const char *page, size_t count)
2531{
2532 char *p = (char *) page;
2533
2534 *var = simple_strtoul(p, &p, 10);
2535 return count;
2536}
2537
1da177e4 2538#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 2539static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 2540{ \
3d1ab40f 2541 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2542 unsigned int __data = __VAR; \
2543 if (__CONV) \
2544 __data = jiffies_to_msecs(__data); \
2545 return cfq_var_show(__data, (page)); \
2546}
2547SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
2548SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2549SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
2550SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2551SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
2552SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2553SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2554SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2555SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
1da177e4
LT
2556#undef SHOW_FUNCTION
2557
2558#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 2559static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 2560{ \
3d1ab40f 2561 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2562 unsigned int __data; \
2563 int ret = cfq_var_store(&__data, (page), count); \
2564 if (__data < (MIN)) \
2565 __data = (MIN); \
2566 else if (__data > (MAX)) \
2567 __data = (MAX); \
2568 if (__CONV) \
2569 *(__PTR) = msecs_to_jiffies(__data); \
2570 else \
2571 *(__PTR) = __data; \
2572 return ret; \
2573}
2574STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
2575STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2576 UINT_MAX, 1);
2577STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2578 UINT_MAX, 1);
e572ec7e 2579STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
2580STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2581 UINT_MAX, 0);
22e2c507
JA
2582STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2583STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2584STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
2585STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2586 UINT_MAX, 0);
1da177e4
LT
2587#undef STORE_FUNCTION
2588
e572ec7e
AV
2589#define CFQ_ATTR(name) \
2590 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2591
2592static struct elv_fs_entry cfq_attrs[] = {
2593 CFQ_ATTR(quantum),
e572ec7e
AV
2594 CFQ_ATTR(fifo_expire_sync),
2595 CFQ_ATTR(fifo_expire_async),
2596 CFQ_ATTR(back_seek_max),
2597 CFQ_ATTR(back_seek_penalty),
2598 CFQ_ATTR(slice_sync),
2599 CFQ_ATTR(slice_async),
2600 CFQ_ATTR(slice_async_rq),
2601 CFQ_ATTR(slice_idle),
e572ec7e 2602 __ATTR_NULL
1da177e4
LT
2603};
2604
1da177e4
LT
2605static struct elevator_type iosched_cfq = {
2606 .ops = {
2607 .elevator_merge_fn = cfq_merge,
2608 .elevator_merged_fn = cfq_merged_request,
2609 .elevator_merge_req_fn = cfq_merged_requests,
da775265 2610 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 2611 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 2612 .elevator_add_req_fn = cfq_insert_request,
b4878f24 2613 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
2614 .elevator_deactivate_req_fn = cfq_deactivate_request,
2615 .elevator_queue_empty_fn = cfq_queue_empty,
2616 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
2617 .elevator_former_req_fn = elv_rb_former_request,
2618 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
2619 .elevator_set_req_fn = cfq_set_request,
2620 .elevator_put_req_fn = cfq_put_request,
2621 .elevator_may_queue_fn = cfq_may_queue,
2622 .elevator_init_fn = cfq_init_queue,
2623 .elevator_exit_fn = cfq_exit_queue,
fc46379d 2624 .trim = cfq_free_io_context,
1da177e4 2625 },
3d1ab40f 2626 .elevator_attrs = cfq_attrs,
1da177e4
LT
2627 .elevator_name = "cfq",
2628 .elevator_owner = THIS_MODULE,
2629};
2630
2631static int __init cfq_init(void)
2632{
22e2c507
JA
2633 /*
2634 * could be 0 on HZ < 1000 setups
2635 */
2636 if (!cfq_slice_async)
2637 cfq_slice_async = 1;
2638 if (!cfq_slice_idle)
2639 cfq_slice_idle = 1;
2640
1da177e4
LT
2641 if (cfq_slab_setup())
2642 return -ENOMEM;
2643
2fdd82bd 2644 elv_register(&iosched_cfq);
1da177e4 2645
2fdd82bd 2646 return 0;
1da177e4
LT
2647}
2648
2649static void __exit cfq_exit(void)
2650{
6e9a4738 2651 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 2652 elv_unregister(&iosched_cfq);
334e94de 2653 ioc_gone = &all_gone;
fba82272
OH
2654 /* ioc_gone's update must be visible before reading ioc_count */
2655 smp_wmb();
d6de8be7
JA
2656
2657 /*
2658 * this also protects us from entering cfq_slab_kill() with
2659 * pending RCU callbacks
2660 */
4050cf16 2661 if (elv_ioc_count_read(ioc_count))
9a11b4ed 2662 wait_for_completion(&all_gone);
83521d3e 2663 cfq_slab_kill();
1da177e4
LT
2664}
2665
2666module_init(cfq_init);
2667module_exit(cfq_exit);
2668
2669MODULE_AUTHOR("Jens Axboe");
2670MODULE_LICENSE("GPL");
2671MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");