blkio: Dynamic cfq group creation based on cgroup tasks belongs to
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
1da177e4
LT
17
18/*
19 * tunables
20 */
fe094d98
JA
21/* max queue in one round of service */
22static const int cfq_quantum = 4;
64100099 23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
64100099 28static const int cfq_slice_sync = HZ / 10;
3b18152c 29static int cfq_slice_async = HZ / 25;
64100099 30static const int cfq_slice_async_rq = 2;
caaa5f9f 31static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
22e2c507 34
d9e7620e 35/*
0871714e 36 * offset from end of service tree
d9e7620e 37 */
0871714e 38#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
e6c5bc73
JM
45/*
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
48 */
49#define CFQQ_COOP_TOUT (HZ)
50
22e2c507 51#define CFQ_SLICE_SCALE (5)
45333d5a 52#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 53#define CFQ_SERVICE_SHIFT 12
22e2c507 54
fe094d98
JA
55#define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 57#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 58
e18b890b
CL
59static struct kmem_cache *cfq_pool;
60static struct kmem_cache *cfq_ioc_pool;
1da177e4 61
245b2e70 62static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 63static struct completion *ioc_gone;
9a11b4ed 64static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 65
22e2c507
JA
66#define CFQ_PRIO_LISTS IOPRIO_BE_NR
67#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
68#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
206dc69b 70#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 71#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 72
cc09e299
JA
73/*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
aa6f6a3d 82 unsigned count;
1fa8f6d6 83 u64 min_vdisktime;
25bc6b07 84 struct rb_node *active;
58ff82f3 85 unsigned total_weight;
cc09e299 86};
1fa8f6d6 87#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
cc09e299 88
6118b70b
JA
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
dae739eb
VG
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 /* time when first request from queue completed and slice started. */
121 unsigned long slice_start;
6118b70b
JA
122 unsigned long slice_end;
123 long slice_resid;
124 unsigned int slice_dispatch;
125
126 /* pending metadata requests */
127 int meta_pending;
128 /* number of requests that are on the dispatch list or inside driver */
129 int dispatched;
130
131 /* io prio of this group */
132 unsigned short ioprio, org_ioprio;
133 unsigned short ioprio_class, org_ioprio_class;
134
b2c18e1e
JM
135 unsigned int seek_samples;
136 u64 seek_total;
137 sector_t seek_mean;
138 sector_t last_request_pos;
e6c5bc73 139 unsigned long seeky_start;
b2c18e1e 140
6118b70b 141 pid_t pid;
df5fe3e8 142
aa6f6a3d 143 struct cfq_rb_root *service_tree;
df5fe3e8 144 struct cfq_queue *new_cfqq;
cdb16e8f 145 struct cfq_group *cfqg;
6118b70b
JA
146};
147
c0324a02 148/*
718eee05 149 * First index in the service_trees.
c0324a02
CZ
150 * IDLE is handled separately, so it has negative index
151 */
152enum wl_prio_t {
c0324a02 153 BE_WORKLOAD = 0,
615f0259
VG
154 RT_WORKLOAD = 1,
155 IDLE_WORKLOAD = 2,
c0324a02
CZ
156};
157
718eee05
CZ
158/*
159 * Second index in the service_trees.
160 */
161enum wl_type_t {
162 ASYNC_WORKLOAD = 0,
163 SYNC_NOIDLE_WORKLOAD = 1,
164 SYNC_WORKLOAD = 2
165};
166
cdb16e8f
VG
167/* This is per cgroup per device grouping structure */
168struct cfq_group {
1fa8f6d6
VG
169 /* group service_tree member */
170 struct rb_node rb_node;
171
172 /* group service_tree key */
173 u64 vdisktime;
25bc6b07 174 unsigned int weight;
1fa8f6d6
VG
175 bool on_st;
176
177 /* number of cfqq currently on this group */
178 int nr_cfqq;
179
58ff82f3
VG
180 /* Per group busy queus average. Useful for workload slice calc. */
181 unsigned int busy_queues_avg[2];
cdb16e8f
VG
182 /*
183 * rr lists of queues with requests, onle rr for each priority class.
184 * Counts are embedded in the cfq_rb_root
185 */
186 struct cfq_rb_root service_trees[2][3];
187 struct cfq_rb_root service_tree_idle;
dae739eb
VG
188
189 unsigned long saved_workload_slice;
190 enum wl_type_t saved_workload;
191 enum wl_prio_t saved_serving_prio;
25fb5169
VG
192 struct blkio_group blkg;
193#ifdef CONFIG_CFQ_GROUP_IOSCHED
194 struct hlist_node cfqd_node;
195#endif
cdb16e8f 196};
718eee05 197
22e2c507
JA
198/*
199 * Per block device queue structure
200 */
1da177e4 201struct cfq_data {
165125e1 202 struct request_queue *queue;
1fa8f6d6
VG
203 /* Root service tree for cfq_groups */
204 struct cfq_rb_root grp_service_tree;
cdb16e8f 205 struct cfq_group root_group;
58ff82f3
VG
206 /* Number of active cfq groups on group service tree */
207 int nr_groups;
22e2c507 208
c0324a02
CZ
209 /*
210 * The priority currently being served
22e2c507 211 */
c0324a02 212 enum wl_prio_t serving_prio;
718eee05
CZ
213 enum wl_type_t serving_type;
214 unsigned long workload_expires;
cdb16e8f 215 struct cfq_group *serving_group;
8e550632 216 bool noidle_tree_requires_idle;
a36e71f9
JA
217
218 /*
219 * Each priority tree is sorted by next_request position. These
220 * trees are used when determining if two or more queues are
221 * interleaving requests (see cfq_close_cooperator).
222 */
223 struct rb_root prio_trees[CFQ_PRIO_LISTS];
224
22e2c507
JA
225 unsigned int busy_queues;
226
5ad531db 227 int rq_in_driver[2];
3ed9a296 228 int sync_flight;
45333d5a
AC
229
230 /*
231 * queue-depth detection
232 */
233 int rq_queued;
25776e35 234 int hw_tag;
e459dd08
CZ
235 /*
236 * hw_tag can be
237 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
238 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
239 * 0 => no NCQ
240 */
241 int hw_tag_est_depth;
242 unsigned int hw_tag_samples;
1da177e4 243
22e2c507
JA
244 /*
245 * idle window management
246 */
247 struct timer_list idle_slice_timer;
23e018a1 248 struct work_struct unplug_work;
1da177e4 249
22e2c507
JA
250 struct cfq_queue *active_queue;
251 struct cfq_io_context *active_cic;
22e2c507 252
c2dea2d1
VT
253 /*
254 * async queue for each priority case
255 */
256 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
257 struct cfq_queue *async_idle_cfqq;
15c31be4 258
6d048f53 259 sector_t last_position;
1da177e4 260
1da177e4
LT
261 /*
262 * tunables, see top of file
263 */
264 unsigned int cfq_quantum;
22e2c507 265 unsigned int cfq_fifo_expire[2];
1da177e4
LT
266 unsigned int cfq_back_penalty;
267 unsigned int cfq_back_max;
22e2c507
JA
268 unsigned int cfq_slice[2];
269 unsigned int cfq_slice_async_rq;
270 unsigned int cfq_slice_idle;
963b72fc 271 unsigned int cfq_latency;
d9ff4187
AV
272
273 struct list_head cic_list;
1da177e4 274
6118b70b
JA
275 /*
276 * Fallback dummy cfqq for extreme OOM conditions
277 */
278 struct cfq_queue oom_cfqq;
365722bb
VG
279
280 unsigned long last_end_sync_rq;
25fb5169
VG
281
282 /* List of cfq groups being managed on this device*/
283 struct hlist_head cfqg_list;
1da177e4
LT
284};
285
25fb5169
VG
286static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
287
cdb16e8f
VG
288static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
289 enum wl_prio_t prio,
718eee05 290 enum wl_type_t type,
c0324a02
CZ
291 struct cfq_data *cfqd)
292{
1fa8f6d6
VG
293 if (!cfqg)
294 return NULL;
295
c0324a02 296 if (prio == IDLE_WORKLOAD)
cdb16e8f 297 return &cfqg->service_tree_idle;
c0324a02 298
cdb16e8f 299 return &cfqg->service_trees[prio][type];
c0324a02
CZ
300}
301
3b18152c 302enum cfqq_state_flags {
b0b8d749
JA
303 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
304 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 305 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 306 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
307 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
308 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
309 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 310 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 311 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 312 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
76280aff 313 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
3b18152c
JA
314};
315
316#define CFQ_CFQQ_FNS(name) \
317static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
318{ \
fe094d98 319 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
320} \
321static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
322{ \
fe094d98 323 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
324} \
325static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
326{ \
fe094d98 327 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
328}
329
330CFQ_CFQQ_FNS(on_rr);
331CFQ_CFQQ_FNS(wait_request);
b029195d 332CFQ_CFQQ_FNS(must_dispatch);
3b18152c 333CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
334CFQ_CFQQ_FNS(fifo_expire);
335CFQ_CFQQ_FNS(idle_window);
336CFQ_CFQQ_FNS(prio_changed);
44f7c160 337CFQ_CFQQ_FNS(slice_new);
91fac317 338CFQ_CFQQ_FNS(sync);
a36e71f9 339CFQ_CFQQ_FNS(coop);
76280aff 340CFQ_CFQQ_FNS(deep);
3b18152c
JA
341#undef CFQ_CFQQ_FNS
342
7b679138
JA
343#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
344 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
345#define cfq_log(cfqd, fmt, args...) \
346 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
347
615f0259
VG
348/* Traverses through cfq group service trees */
349#define for_each_cfqg_st(cfqg, i, j, st) \
350 for (i = 0; i <= IDLE_WORKLOAD; i++) \
351 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
352 : &cfqg->service_tree_idle; \
353 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
354 (i == IDLE_WORKLOAD && j == 0); \
355 j++, st = i < IDLE_WORKLOAD ? \
356 &cfqg->service_trees[i][j]: NULL) \
357
358
c0324a02
CZ
359static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
360{
361 if (cfq_class_idle(cfqq))
362 return IDLE_WORKLOAD;
363 if (cfq_class_rt(cfqq))
364 return RT_WORKLOAD;
365 return BE_WORKLOAD;
366}
367
718eee05
CZ
368
369static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
370{
371 if (!cfq_cfqq_sync(cfqq))
372 return ASYNC_WORKLOAD;
373 if (!cfq_cfqq_idle_window(cfqq))
374 return SYNC_NOIDLE_WORKLOAD;
375 return SYNC_WORKLOAD;
376}
377
58ff82f3
VG
378static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
379 struct cfq_data *cfqd,
380 struct cfq_group *cfqg)
c0324a02
CZ
381{
382 if (wl == IDLE_WORKLOAD)
cdb16e8f 383 return cfqg->service_tree_idle.count;
c0324a02 384
cdb16e8f
VG
385 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
386 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
387 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
388}
389
165125e1 390static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 391static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 392 struct io_context *, gfp_t);
4ac845a2 393static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
394 struct io_context *);
395
5ad531db
JA
396static inline int rq_in_driver(struct cfq_data *cfqd)
397{
398 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
399}
400
91fac317 401static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 402 bool is_sync)
91fac317 403{
a6151c3a 404 return cic->cfqq[is_sync];
91fac317
VT
405}
406
407static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 408 struct cfq_queue *cfqq, bool is_sync)
91fac317 409{
a6151c3a 410 cic->cfqq[is_sync] = cfqq;
91fac317
VT
411}
412
413/*
414 * We regard a request as SYNC, if it's either a read or has the SYNC bit
415 * set (in which case it could also be direct WRITE).
416 */
a6151c3a 417static inline bool cfq_bio_sync(struct bio *bio)
91fac317 418{
a6151c3a 419 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 420}
1da177e4 421
99f95e52
AM
422/*
423 * scheduler run of queue, if there are requests pending and no one in the
424 * driver that will restart queueing
425 */
23e018a1 426static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 427{
7b679138
JA
428 if (cfqd->busy_queues) {
429 cfq_log(cfqd, "schedule dispatch");
23e018a1 430 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 431 }
99f95e52
AM
432}
433
165125e1 434static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
435{
436 struct cfq_data *cfqd = q->elevator->elevator_data;
437
f04a6424 438 return !cfqd->rq_queued;
99f95e52
AM
439}
440
44f7c160
JA
441/*
442 * Scale schedule slice based on io priority. Use the sync time slice only
443 * if a queue is marked sync and has sync io queued. A sync queue with async
444 * io only, should not get full sync slice length.
445 */
a6151c3a 446static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 447 unsigned short prio)
44f7c160 448{
d9e7620e 449 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 450
d9e7620e
JA
451 WARN_ON(prio >= IOPRIO_BE_NR);
452
453 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
454}
44f7c160 455
d9e7620e
JA
456static inline int
457cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
458{
459 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
460}
461
25bc6b07
VG
462static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
463{
464 u64 d = delta << CFQ_SERVICE_SHIFT;
465
466 d = d * BLKIO_WEIGHT_DEFAULT;
467 do_div(d, cfqg->weight);
468 return d;
469}
470
471static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
472{
473 s64 delta = (s64)(vdisktime - min_vdisktime);
474 if (delta > 0)
475 min_vdisktime = vdisktime;
476
477 return min_vdisktime;
478}
479
480static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
481{
482 s64 delta = (s64)(vdisktime - min_vdisktime);
483 if (delta < 0)
484 min_vdisktime = vdisktime;
485
486 return min_vdisktime;
487}
488
489static void update_min_vdisktime(struct cfq_rb_root *st)
490{
491 u64 vdisktime = st->min_vdisktime;
492 struct cfq_group *cfqg;
493
494 if (st->active) {
495 cfqg = rb_entry_cfqg(st->active);
496 vdisktime = cfqg->vdisktime;
497 }
498
499 if (st->left) {
500 cfqg = rb_entry_cfqg(st->left);
501 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
502 }
503
504 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
505}
506
5db5d642
CZ
507/*
508 * get averaged number of queues of RT/BE priority.
509 * average is updated, with a formula that gives more weight to higher numbers,
510 * to quickly follows sudden increases and decrease slowly
511 */
512
58ff82f3
VG
513static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
514 struct cfq_group *cfqg, bool rt)
5869619c 515{
5db5d642
CZ
516 unsigned min_q, max_q;
517 unsigned mult = cfq_hist_divisor - 1;
518 unsigned round = cfq_hist_divisor / 2;
58ff82f3 519 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 520
58ff82f3
VG
521 min_q = min(cfqg->busy_queues_avg[rt], busy);
522 max_q = max(cfqg->busy_queues_avg[rt], busy);
523 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 524 cfq_hist_divisor;
58ff82f3
VG
525 return cfqg->busy_queues_avg[rt];
526}
527
528static inline unsigned
529cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
530{
531 struct cfq_rb_root *st = &cfqd->grp_service_tree;
532
533 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
534}
535
44f7c160
JA
536static inline void
537cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
538{
5db5d642
CZ
539 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
540 if (cfqd->cfq_latency) {
58ff82f3
VG
541 /*
542 * interested queues (we consider only the ones with the same
543 * priority class in the cfq group)
544 */
545 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
546 cfq_class_rt(cfqq));
5db5d642
CZ
547 unsigned sync_slice = cfqd->cfq_slice[1];
548 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
549 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
550
551 if (expect_latency > group_slice) {
5db5d642
CZ
552 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
553 /* scale low_slice according to IO priority
554 * and sync vs async */
555 unsigned low_slice =
556 min(slice, base_low_slice * slice / sync_slice);
557 /* the adapted slice value is scaled to fit all iqs
558 * into the target latency */
58ff82f3 559 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
560 low_slice);
561 }
562 }
dae739eb 563 cfqq->slice_start = jiffies;
5db5d642 564 cfqq->slice_end = jiffies + slice;
7b679138 565 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
566}
567
568/*
569 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
570 * isn't valid until the first request from the dispatch is activated
571 * and the slice time set.
572 */
a6151c3a 573static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
574{
575 if (cfq_cfqq_slice_new(cfqq))
576 return 0;
577 if (time_before(jiffies, cfqq->slice_end))
578 return 0;
579
580 return 1;
581}
582
1da177e4 583/*
5e705374 584 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 585 * We choose the request that is closest to the head right now. Distance
e8a99053 586 * behind the head is penalized and only allowed to a certain extent.
1da177e4 587 */
5e705374 588static struct request *
cf7c25cf 589cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 590{
cf7c25cf 591 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 592 unsigned long back_max;
e8a99053
AM
593#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
594#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
595 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 596
5e705374
JA
597 if (rq1 == NULL || rq1 == rq2)
598 return rq2;
599 if (rq2 == NULL)
600 return rq1;
9c2c38a1 601
5e705374
JA
602 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
603 return rq1;
604 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
605 return rq2;
374f84ac
JA
606 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
607 return rq1;
608 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
609 return rq2;
1da177e4 610
83096ebf
TH
611 s1 = blk_rq_pos(rq1);
612 s2 = blk_rq_pos(rq2);
1da177e4 613
1da177e4
LT
614 /*
615 * by definition, 1KiB is 2 sectors
616 */
617 back_max = cfqd->cfq_back_max * 2;
618
619 /*
620 * Strict one way elevator _except_ in the case where we allow
621 * short backward seeks which are biased as twice the cost of a
622 * similar forward seek.
623 */
624 if (s1 >= last)
625 d1 = s1 - last;
626 else if (s1 + back_max >= last)
627 d1 = (last - s1) * cfqd->cfq_back_penalty;
628 else
e8a99053 629 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
630
631 if (s2 >= last)
632 d2 = s2 - last;
633 else if (s2 + back_max >= last)
634 d2 = (last - s2) * cfqd->cfq_back_penalty;
635 else
e8a99053 636 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
637
638 /* Found required data */
e8a99053
AM
639
640 /*
641 * By doing switch() on the bit mask "wrap" we avoid having to
642 * check two variables for all permutations: --> faster!
643 */
644 switch (wrap) {
5e705374 645 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 646 if (d1 < d2)
5e705374 647 return rq1;
e8a99053 648 else if (d2 < d1)
5e705374 649 return rq2;
e8a99053
AM
650 else {
651 if (s1 >= s2)
5e705374 652 return rq1;
e8a99053 653 else
5e705374 654 return rq2;
e8a99053 655 }
1da177e4 656
e8a99053 657 case CFQ_RQ2_WRAP:
5e705374 658 return rq1;
e8a99053 659 case CFQ_RQ1_WRAP:
5e705374
JA
660 return rq2;
661 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
662 default:
663 /*
664 * Since both rqs are wrapped,
665 * start with the one that's further behind head
666 * (--> only *one* back seek required),
667 * since back seek takes more time than forward.
668 */
669 if (s1 <= s2)
5e705374 670 return rq1;
1da177e4 671 else
5e705374 672 return rq2;
1da177e4
LT
673 }
674}
675
498d3aa2
JA
676/*
677 * The below is leftmost cache rbtree addon
678 */
0871714e 679static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 680{
615f0259
VG
681 /* Service tree is empty */
682 if (!root->count)
683 return NULL;
684
cc09e299
JA
685 if (!root->left)
686 root->left = rb_first(&root->rb);
687
0871714e
JA
688 if (root->left)
689 return rb_entry(root->left, struct cfq_queue, rb_node);
690
691 return NULL;
cc09e299
JA
692}
693
1fa8f6d6
VG
694static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
695{
696 if (!root->left)
697 root->left = rb_first(&root->rb);
698
699 if (root->left)
700 return rb_entry_cfqg(root->left);
701
702 return NULL;
703}
704
a36e71f9
JA
705static void rb_erase_init(struct rb_node *n, struct rb_root *root)
706{
707 rb_erase(n, root);
708 RB_CLEAR_NODE(n);
709}
710
cc09e299
JA
711static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
712{
713 if (root->left == n)
714 root->left = NULL;
a36e71f9 715 rb_erase_init(n, &root->rb);
aa6f6a3d 716 --root->count;
cc09e299
JA
717}
718
1da177e4
LT
719/*
720 * would be nice to take fifo expire time into account as well
721 */
5e705374
JA
722static struct request *
723cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
724 struct request *last)
1da177e4 725{
21183b07
JA
726 struct rb_node *rbnext = rb_next(&last->rb_node);
727 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 728 struct request *next = NULL, *prev = NULL;
1da177e4 729
21183b07 730 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
731
732 if (rbprev)
5e705374 733 prev = rb_entry_rq(rbprev);
1da177e4 734
21183b07 735 if (rbnext)
5e705374 736 next = rb_entry_rq(rbnext);
21183b07
JA
737 else {
738 rbnext = rb_first(&cfqq->sort_list);
739 if (rbnext && rbnext != &last->rb_node)
5e705374 740 next = rb_entry_rq(rbnext);
21183b07 741 }
1da177e4 742
cf7c25cf 743 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
744}
745
d9e7620e
JA
746static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
747 struct cfq_queue *cfqq)
1da177e4 748{
d9e7620e
JA
749 /*
750 * just an approximation, should be ok.
751 */
cdb16e8f 752 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 753 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
754}
755
1fa8f6d6
VG
756static inline s64
757cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
758{
759 return cfqg->vdisktime - st->min_vdisktime;
760}
761
762static void
763__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
764{
765 struct rb_node **node = &st->rb.rb_node;
766 struct rb_node *parent = NULL;
767 struct cfq_group *__cfqg;
768 s64 key = cfqg_key(st, cfqg);
769 int left = 1;
770
771 while (*node != NULL) {
772 parent = *node;
773 __cfqg = rb_entry_cfqg(parent);
774
775 if (key < cfqg_key(st, __cfqg))
776 node = &parent->rb_left;
777 else {
778 node = &parent->rb_right;
779 left = 0;
780 }
781 }
782
783 if (left)
784 st->left = &cfqg->rb_node;
785
786 rb_link_node(&cfqg->rb_node, parent, node);
787 rb_insert_color(&cfqg->rb_node, &st->rb);
788}
789
790static void
791cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
792{
793 struct cfq_rb_root *st = &cfqd->grp_service_tree;
794 struct cfq_group *__cfqg;
795 struct rb_node *n;
796
797 cfqg->nr_cfqq++;
798 if (cfqg->on_st)
799 return;
800
801 /*
802 * Currently put the group at the end. Later implement something
803 * so that groups get lesser vtime based on their weights, so that
804 * if group does not loose all if it was not continously backlogged.
805 */
806 n = rb_last(&st->rb);
807 if (n) {
808 __cfqg = rb_entry_cfqg(n);
809 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
810 } else
811 cfqg->vdisktime = st->min_vdisktime;
812
813 __cfq_group_service_tree_add(st, cfqg);
814 cfqg->on_st = true;
58ff82f3
VG
815 cfqd->nr_groups++;
816 st->total_weight += cfqg->weight;
1fa8f6d6
VG
817}
818
819static void
820cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
821{
822 struct cfq_rb_root *st = &cfqd->grp_service_tree;
823
25bc6b07
VG
824 if (st->active == &cfqg->rb_node)
825 st->active = NULL;
826
1fa8f6d6
VG
827 BUG_ON(cfqg->nr_cfqq < 1);
828 cfqg->nr_cfqq--;
25bc6b07 829
1fa8f6d6
VG
830 /* If there are other cfq queues under this group, don't delete it */
831 if (cfqg->nr_cfqq)
832 return;
833
834 cfqg->on_st = false;
58ff82f3
VG
835 cfqd->nr_groups--;
836 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
837 if (!RB_EMPTY_NODE(&cfqg->rb_node))
838 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb
VG
839 cfqg->saved_workload_slice = 0;
840}
841
842static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
843{
844 unsigned int slice_used, allocated_slice;
845
846 /*
847 * Queue got expired before even a single request completed or
848 * got expired immediately after first request completion.
849 */
850 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
851 /*
852 * Also charge the seek time incurred to the group, otherwise
853 * if there are mutiple queues in the group, each can dispatch
854 * a single request on seeky media and cause lots of seek time
855 * and group will never know it.
856 */
857 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
858 1);
859 } else {
860 slice_used = jiffies - cfqq->slice_start;
861 allocated_slice = cfqq->slice_end - cfqq->slice_start;
862 if (slice_used > allocated_slice)
863 slice_used = allocated_slice;
864 }
865
866 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
867 return slice_used;
868}
869
870static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
871 struct cfq_queue *cfqq)
872{
873 struct cfq_rb_root *st = &cfqd->grp_service_tree;
874 unsigned int used_sl;
875
876 used_sl = cfq_cfqq_slice_usage(cfqq);
877
878 /* Can't update vdisktime while group is on service tree */
879 cfq_rb_erase(&cfqg->rb_node, st);
880 cfqg->vdisktime += cfq_scale_slice(used_sl, cfqg);
881 __cfq_group_service_tree_add(st, cfqg);
882
883 /* This group is being expired. Save the context */
884 if (time_after(cfqd->workload_expires, jiffies)) {
885 cfqg->saved_workload_slice = cfqd->workload_expires
886 - jiffies;
887 cfqg->saved_workload = cfqd->serving_type;
888 cfqg->saved_serving_prio = cfqd->serving_prio;
889 } else
890 cfqg->saved_workload_slice = 0;
1fa8f6d6
VG
891}
892
25fb5169
VG
893#ifdef CONFIG_CFQ_GROUP_IOSCHED
894static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
895{
896 if (blkg)
897 return container_of(blkg, struct cfq_group, blkg);
898 return NULL;
899}
900
901static struct cfq_group *
902cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
903{
904 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
905 struct cfq_group *cfqg = NULL;
906 void *key = cfqd;
907 int i, j;
908 struct cfq_rb_root *st;
909
910 /* Do we need to take this reference */
911 if (!css_tryget(&blkcg->css))
912 return NULL;;
913
914 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
915 if (cfqg || !create)
916 goto done;
917
918 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
919 if (!cfqg)
920 goto done;
921
922 cfqg->weight = blkcg->weight;
923 for_each_cfqg_st(cfqg, i, j, st)
924 *st = CFQ_RB_ROOT;
925 RB_CLEAR_NODE(&cfqg->rb_node);
926
927 /* Add group onto cgroup list */
928 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd);
929
930 /* Add group on cfqd list */
931 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
932
933done:
934 css_put(&blkcg->css);
935 return cfqg;
936}
937
938/*
939 * Search for the cfq group current task belongs to. If create = 1, then also
940 * create the cfq group if it does not exist. request_queue lock must be held.
941 */
942static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
943{
944 struct cgroup *cgroup;
945 struct cfq_group *cfqg = NULL;
946
947 rcu_read_lock();
948 cgroup = task_cgroup(current, blkio_subsys_id);
949 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
950 if (!cfqg && create)
951 cfqg = &cfqd->root_group;
952 rcu_read_unlock();
953 return cfqg;
954}
955
956static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
957{
958 /* Currently, all async queues are mapped to root group */
959 if (!cfq_cfqq_sync(cfqq))
960 cfqg = &cfqq->cfqd->root_group;
961
962 cfqq->cfqg = cfqg;
963}
964#else /* GROUP_IOSCHED */
965static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
966{
967 return &cfqd->root_group;
968}
969static inline void
970cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
971 cfqq->cfqg = cfqg;
972}
973
974#endif /* GROUP_IOSCHED */
975
498d3aa2 976/*
c0324a02 977 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
978 * requests waiting to be processed. It is sorted in the order that
979 * we will service the queues.
980 */
a36e71f9 981static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 982 bool add_front)
d9e7620e 983{
0871714e
JA
984 struct rb_node **p, *parent;
985 struct cfq_queue *__cfqq;
d9e7620e 986 unsigned long rb_key;
c0324a02 987 struct cfq_rb_root *service_tree;
498d3aa2 988 int left;
dae739eb 989 int new_cfqq = 1;
d9e7620e 990
cdb16e8f
VG
991 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
992 cfqq_type(cfqq), cfqd);
0871714e
JA
993 if (cfq_class_idle(cfqq)) {
994 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 995 parent = rb_last(&service_tree->rb);
0871714e
JA
996 if (parent && parent != &cfqq->rb_node) {
997 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
998 rb_key += __cfqq->rb_key;
999 } else
1000 rb_key += jiffies;
1001 } else if (!add_front) {
b9c8946b
JA
1002 /*
1003 * Get our rb key offset. Subtract any residual slice
1004 * value carried from last service. A negative resid
1005 * count indicates slice overrun, and this should position
1006 * the next service time further away in the tree.
1007 */
edd75ffd 1008 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1009 rb_key -= cfqq->slice_resid;
edd75ffd 1010 cfqq->slice_resid = 0;
48e025e6
CZ
1011 } else {
1012 rb_key = -HZ;
aa6f6a3d 1013 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1014 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1015 }
1da177e4 1016
d9e7620e 1017 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1018 new_cfqq = 0;
99f9628a 1019 /*
d9e7620e 1020 * same position, nothing more to do
99f9628a 1021 */
c0324a02
CZ
1022 if (rb_key == cfqq->rb_key &&
1023 cfqq->service_tree == service_tree)
d9e7620e 1024 return;
1da177e4 1025
aa6f6a3d
CZ
1026 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1027 cfqq->service_tree = NULL;
1da177e4 1028 }
d9e7620e 1029
498d3aa2 1030 left = 1;
0871714e 1031 parent = NULL;
aa6f6a3d
CZ
1032 cfqq->service_tree = service_tree;
1033 p = &service_tree->rb.rb_node;
d9e7620e 1034 while (*p) {
67060e37 1035 struct rb_node **n;
cc09e299 1036
d9e7620e
JA
1037 parent = *p;
1038 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1039
0c534e0a 1040 /*
c0324a02 1041 * sort by key, that represents service time.
0c534e0a 1042 */
c0324a02 1043 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1044 n = &(*p)->rb_left;
c0324a02 1045 else {
67060e37 1046 n = &(*p)->rb_right;
cc09e299 1047 left = 0;
c0324a02 1048 }
67060e37
JA
1049
1050 p = n;
d9e7620e
JA
1051 }
1052
cc09e299 1053 if (left)
aa6f6a3d 1054 service_tree->left = &cfqq->rb_node;
cc09e299 1055
d9e7620e
JA
1056 cfqq->rb_key = rb_key;
1057 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1058 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1059 service_tree->count++;
dae739eb
VG
1060 if (add_front || !new_cfqq)
1061 return;
1fa8f6d6 1062 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1063}
1064
a36e71f9 1065static struct cfq_queue *
f2d1f0ae
JA
1066cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1067 sector_t sector, struct rb_node **ret_parent,
1068 struct rb_node ***rb_link)
a36e71f9 1069{
a36e71f9
JA
1070 struct rb_node **p, *parent;
1071 struct cfq_queue *cfqq = NULL;
1072
1073 parent = NULL;
1074 p = &root->rb_node;
1075 while (*p) {
1076 struct rb_node **n;
1077
1078 parent = *p;
1079 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1080
1081 /*
1082 * Sort strictly based on sector. Smallest to the left,
1083 * largest to the right.
1084 */
2e46e8b2 1085 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1086 n = &(*p)->rb_right;
2e46e8b2 1087 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1088 n = &(*p)->rb_left;
1089 else
1090 break;
1091 p = n;
3ac6c9f8 1092 cfqq = NULL;
a36e71f9
JA
1093 }
1094
1095 *ret_parent = parent;
1096 if (rb_link)
1097 *rb_link = p;
3ac6c9f8 1098 return cfqq;
a36e71f9
JA
1099}
1100
1101static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1102{
a36e71f9
JA
1103 struct rb_node **p, *parent;
1104 struct cfq_queue *__cfqq;
1105
f2d1f0ae
JA
1106 if (cfqq->p_root) {
1107 rb_erase(&cfqq->p_node, cfqq->p_root);
1108 cfqq->p_root = NULL;
1109 }
a36e71f9
JA
1110
1111 if (cfq_class_idle(cfqq))
1112 return;
1113 if (!cfqq->next_rq)
1114 return;
1115
f2d1f0ae 1116 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1117 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1118 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1119 if (!__cfqq) {
1120 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1121 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1122 } else
1123 cfqq->p_root = NULL;
a36e71f9
JA
1124}
1125
498d3aa2
JA
1126/*
1127 * Update cfqq's position in the service tree.
1128 */
edd75ffd 1129static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1130{
6d048f53
JA
1131 /*
1132 * Resorting requires the cfqq to be on the RR list already.
1133 */
a36e71f9 1134 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1135 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1136 cfq_prio_tree_add(cfqd, cfqq);
1137 }
6d048f53
JA
1138}
1139
1da177e4
LT
1140/*
1141 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1142 * the pending list according to last request service
1da177e4 1143 */
febffd61 1144static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1145{
7b679138 1146 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1147 BUG_ON(cfq_cfqq_on_rr(cfqq));
1148 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1149 cfqd->busy_queues++;
1150
edd75ffd 1151 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1152}
1153
498d3aa2
JA
1154/*
1155 * Called when the cfqq no longer has requests pending, remove it from
1156 * the service tree.
1157 */
febffd61 1158static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1159{
7b679138 1160 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1161 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1162 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1163
aa6f6a3d
CZ
1164 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1165 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1166 cfqq->service_tree = NULL;
1167 }
f2d1f0ae
JA
1168 if (cfqq->p_root) {
1169 rb_erase(&cfqq->p_node, cfqq->p_root);
1170 cfqq->p_root = NULL;
1171 }
d9e7620e 1172
1fa8f6d6 1173 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1174 BUG_ON(!cfqd->busy_queues);
1175 cfqd->busy_queues--;
1176}
1177
1178/*
1179 * rb tree support functions
1180 */
febffd61 1181static void cfq_del_rq_rb(struct request *rq)
1da177e4 1182{
5e705374 1183 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1184 const int sync = rq_is_sync(rq);
1da177e4 1185
b4878f24
JA
1186 BUG_ON(!cfqq->queued[sync]);
1187 cfqq->queued[sync]--;
1da177e4 1188
5e705374 1189 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1190
f04a6424
VG
1191 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1192 /*
1193 * Queue will be deleted from service tree when we actually
1194 * expire it later. Right now just remove it from prio tree
1195 * as it is empty.
1196 */
1197 if (cfqq->p_root) {
1198 rb_erase(&cfqq->p_node, cfqq->p_root);
1199 cfqq->p_root = NULL;
1200 }
1201 }
1da177e4
LT
1202}
1203
5e705374 1204static void cfq_add_rq_rb(struct request *rq)
1da177e4 1205{
5e705374 1206 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1207 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1208 struct request *__alias, *prev;
1da177e4 1209
5380a101 1210 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1211
1212 /*
1213 * looks a little odd, but the first insert might return an alias.
1214 * if that happens, put the alias on the dispatch list
1215 */
21183b07 1216 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1217 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1218
1219 if (!cfq_cfqq_on_rr(cfqq))
1220 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1221
1222 /*
1223 * check if this request is a better next-serve candidate
1224 */
a36e71f9 1225 prev = cfqq->next_rq;
cf7c25cf 1226 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1227
1228 /*
1229 * adjust priority tree position, if ->next_rq changes
1230 */
1231 if (prev != cfqq->next_rq)
1232 cfq_prio_tree_add(cfqd, cfqq);
1233
5044eed4 1234 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1235}
1236
febffd61 1237static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1238{
5380a101
JA
1239 elv_rb_del(&cfqq->sort_list, rq);
1240 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1241 cfq_add_rq_rb(rq);
1da177e4
LT
1242}
1243
206dc69b
JA
1244static struct request *
1245cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1246{
206dc69b 1247 struct task_struct *tsk = current;
91fac317 1248 struct cfq_io_context *cic;
206dc69b 1249 struct cfq_queue *cfqq;
1da177e4 1250
4ac845a2 1251 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1252 if (!cic)
1253 return NULL;
1254
1255 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1256 if (cfqq) {
1257 sector_t sector = bio->bi_sector + bio_sectors(bio);
1258
21183b07 1259 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1260 }
1da177e4 1261
1da177e4
LT
1262 return NULL;
1263}
1264
165125e1 1265static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1266{
22e2c507 1267 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1268
5ad531db 1269 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 1270 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 1271 rq_in_driver(cfqd));
25776e35 1272
5b93629b 1273 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1274}
1275
165125e1 1276static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1277{
b4878f24 1278 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 1279 const int sync = rq_is_sync(rq);
b4878f24 1280
5ad531db
JA
1281 WARN_ON(!cfqd->rq_in_driver[sync]);
1282 cfqd->rq_in_driver[sync]--;
7b679138 1283 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 1284 rq_in_driver(cfqd));
1da177e4
LT
1285}
1286
b4878f24 1287static void cfq_remove_request(struct request *rq)
1da177e4 1288{
5e705374 1289 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1290
5e705374
JA
1291 if (cfqq->next_rq == rq)
1292 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1293
b4878f24 1294 list_del_init(&rq->queuelist);
5e705374 1295 cfq_del_rq_rb(rq);
374f84ac 1296
45333d5a 1297 cfqq->cfqd->rq_queued--;
374f84ac
JA
1298 if (rq_is_meta(rq)) {
1299 WARN_ON(!cfqq->meta_pending);
1300 cfqq->meta_pending--;
1301 }
1da177e4
LT
1302}
1303
165125e1
JA
1304static int cfq_merge(struct request_queue *q, struct request **req,
1305 struct bio *bio)
1da177e4
LT
1306{
1307 struct cfq_data *cfqd = q->elevator->elevator_data;
1308 struct request *__rq;
1da177e4 1309
206dc69b 1310 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1311 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1312 *req = __rq;
1313 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1314 }
1315
1316 return ELEVATOR_NO_MERGE;
1da177e4
LT
1317}
1318
165125e1 1319static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1320 int type)
1da177e4 1321{
21183b07 1322 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1323 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1324
5e705374 1325 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1326 }
1da177e4
LT
1327}
1328
1329static void
165125e1 1330cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1331 struct request *next)
1332{
cf7c25cf 1333 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1334 /*
1335 * reposition in fifo if next is older than rq
1336 */
1337 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1338 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1339 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1340 rq_set_fifo_time(rq, rq_fifo_time(next));
1341 }
22e2c507 1342
cf7c25cf
CZ
1343 if (cfqq->next_rq == next)
1344 cfqq->next_rq = rq;
b4878f24 1345 cfq_remove_request(next);
22e2c507
JA
1346}
1347
165125e1 1348static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1349 struct bio *bio)
1350{
1351 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1352 struct cfq_io_context *cic;
da775265 1353 struct cfq_queue *cfqq;
da775265
JA
1354
1355 /*
ec8acb69 1356 * Disallow merge of a sync bio into an async request.
da775265 1357 */
91fac317 1358 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1359 return false;
da775265
JA
1360
1361 /*
719d3402
JA
1362 * Lookup the cfqq that this bio will be queued with. Allow
1363 * merge only if rq is queued there.
da775265 1364 */
4ac845a2 1365 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1366 if (!cic)
a6151c3a 1367 return false;
719d3402 1368
91fac317 1369 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1370 return cfqq == RQ_CFQQ(rq);
da775265
JA
1371}
1372
febffd61
JA
1373static void __cfq_set_active_queue(struct cfq_data *cfqd,
1374 struct cfq_queue *cfqq)
22e2c507
JA
1375{
1376 if (cfqq) {
7b679138 1377 cfq_log_cfqq(cfqd, cfqq, "set_active");
dae739eb
VG
1378 cfqq->slice_start = 0;
1379 cfqq->dispatch_start = jiffies;
22e2c507 1380 cfqq->slice_end = 0;
2f5cb738
JA
1381 cfqq->slice_dispatch = 0;
1382
2f5cb738 1383 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1384 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1385 cfq_clear_cfqq_must_alloc_slice(cfqq);
1386 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1387 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1388
1389 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1390 }
1391
1392 cfqd->active_queue = cfqq;
1393}
1394
7b14e3b5
JA
1395/*
1396 * current cfqq expired its slice (or was too idle), select new one
1397 */
1398static void
1399__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1400 bool timed_out)
7b14e3b5 1401{
7b679138
JA
1402 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1403
7b14e3b5
JA
1404 if (cfq_cfqq_wait_request(cfqq))
1405 del_timer(&cfqd->idle_slice_timer);
1406
7b14e3b5
JA
1407 cfq_clear_cfqq_wait_request(cfqq);
1408
1409 /*
6084cdda 1410 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1411 */
7b679138 1412 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1413 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1414 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1415 }
7b14e3b5 1416
dae739eb
VG
1417 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1418
f04a6424
VG
1419 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1420 cfq_del_cfqq_rr(cfqd, cfqq);
1421
edd75ffd 1422 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1423
1424 if (cfqq == cfqd->active_queue)
1425 cfqd->active_queue = NULL;
1426
dae739eb
VG
1427 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1428 cfqd->grp_service_tree.active = NULL;
1429
7b14e3b5
JA
1430 if (cfqd->active_cic) {
1431 put_io_context(cfqd->active_cic->ioc);
1432 cfqd->active_cic = NULL;
1433 }
7b14e3b5
JA
1434}
1435
a6151c3a 1436static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1437{
1438 struct cfq_queue *cfqq = cfqd->active_queue;
1439
1440 if (cfqq)
6084cdda 1441 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1442}
1443
498d3aa2
JA
1444/*
1445 * Get next queue for service. Unless we have a queue preemption,
1446 * we'll simply select the first cfqq in the service tree.
1447 */
6d048f53 1448static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1449{
c0324a02 1450 struct cfq_rb_root *service_tree =
cdb16e8f
VG
1451 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1452 cfqd->serving_type, cfqd);
d9e7620e 1453
f04a6424
VG
1454 if (!cfqd->rq_queued)
1455 return NULL;
1456
1fa8f6d6
VG
1457 /* There is nothing to dispatch */
1458 if (!service_tree)
1459 return NULL;
c0324a02
CZ
1460 if (RB_EMPTY_ROOT(&service_tree->rb))
1461 return NULL;
1462 return cfq_rb_first(service_tree);
6d048f53
JA
1463}
1464
f04a6424
VG
1465static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1466{
25fb5169 1467 struct cfq_group *cfqg;
f04a6424
VG
1468 struct cfq_queue *cfqq;
1469 int i, j;
1470 struct cfq_rb_root *st;
1471
1472 if (!cfqd->rq_queued)
1473 return NULL;
1474
25fb5169
VG
1475 cfqg = cfq_get_next_cfqg(cfqd);
1476 if (!cfqg)
1477 return NULL;
1478
f04a6424
VG
1479 for_each_cfqg_st(cfqg, i, j, st)
1480 if ((cfqq = cfq_rb_first(st)) != NULL)
1481 return cfqq;
1482 return NULL;
1483}
1484
498d3aa2
JA
1485/*
1486 * Get and set a new active queue for service.
1487 */
a36e71f9
JA
1488static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1489 struct cfq_queue *cfqq)
6d048f53 1490{
e00ef799 1491 if (!cfqq)
a36e71f9 1492 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1493
22e2c507 1494 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1495 return cfqq;
22e2c507
JA
1496}
1497
d9e7620e
JA
1498static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1499 struct request *rq)
1500{
83096ebf
TH
1501 if (blk_rq_pos(rq) >= cfqd->last_position)
1502 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1503 else
83096ebf 1504 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1505}
1506
b2c18e1e
JM
1507#define CFQQ_SEEK_THR 8 * 1024
1508#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1509
b2c18e1e
JM
1510static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1511 struct request *rq)
6d048f53 1512{
b2c18e1e 1513 sector_t sdist = cfqq->seek_mean;
6d048f53 1514
b2c18e1e
JM
1515 if (!sample_valid(cfqq->seek_samples))
1516 sdist = CFQQ_SEEK_THR;
6d048f53 1517
04dc6e71 1518 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1519}
1520
a36e71f9
JA
1521static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1522 struct cfq_queue *cur_cfqq)
1523{
f2d1f0ae 1524 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1525 struct rb_node *parent, *node;
1526 struct cfq_queue *__cfqq;
1527 sector_t sector = cfqd->last_position;
1528
1529 if (RB_EMPTY_ROOT(root))
1530 return NULL;
1531
1532 /*
1533 * First, if we find a request starting at the end of the last
1534 * request, choose it.
1535 */
f2d1f0ae 1536 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1537 if (__cfqq)
1538 return __cfqq;
1539
1540 /*
1541 * If the exact sector wasn't found, the parent of the NULL leaf
1542 * will contain the closest sector.
1543 */
1544 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1545 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1546 return __cfqq;
1547
2e46e8b2 1548 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1549 node = rb_next(&__cfqq->p_node);
1550 else
1551 node = rb_prev(&__cfqq->p_node);
1552 if (!node)
1553 return NULL;
1554
1555 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1556 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1557 return __cfqq;
1558
1559 return NULL;
1560}
1561
1562/*
1563 * cfqd - obvious
1564 * cur_cfqq - passed in so that we don't decide that the current queue is
1565 * closely cooperating with itself.
1566 *
1567 * So, basically we're assuming that that cur_cfqq has dispatched at least
1568 * one request, and that cfqd->last_position reflects a position on the disk
1569 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1570 * assumption.
1571 */
1572static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1573 struct cfq_queue *cur_cfqq)
6d048f53 1574{
a36e71f9
JA
1575 struct cfq_queue *cfqq;
1576
e6c5bc73
JM
1577 if (!cfq_cfqq_sync(cur_cfqq))
1578 return NULL;
1579 if (CFQQ_SEEKY(cur_cfqq))
1580 return NULL;
1581
6d048f53 1582 /*
d9e7620e
JA
1583 * We should notice if some of the queues are cooperating, eg
1584 * working closely on the same area of the disk. In that case,
1585 * we can group them together and don't waste time idling.
6d048f53 1586 */
a36e71f9
JA
1587 cfqq = cfqq_close(cfqd, cur_cfqq);
1588 if (!cfqq)
1589 return NULL;
1590
df5fe3e8
JM
1591 /*
1592 * It only makes sense to merge sync queues.
1593 */
1594 if (!cfq_cfqq_sync(cfqq))
1595 return NULL;
e6c5bc73
JM
1596 if (CFQQ_SEEKY(cfqq))
1597 return NULL;
df5fe3e8 1598
c0324a02
CZ
1599 /*
1600 * Do not merge queues of different priority classes
1601 */
1602 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1603 return NULL;
1604
a36e71f9 1605 return cfqq;
6d048f53
JA
1606}
1607
a6d44e98
CZ
1608/*
1609 * Determine whether we should enforce idle window for this queue.
1610 */
1611
1612static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1613{
1614 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1615 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1616
f04a6424
VG
1617 BUG_ON(!service_tree);
1618 BUG_ON(!service_tree->count);
1619
a6d44e98
CZ
1620 /* We never do for idle class queues. */
1621 if (prio == IDLE_WORKLOAD)
1622 return false;
1623
1624 /* We do for queues that were marked with idle window flag. */
1625 if (cfq_cfqq_idle_window(cfqq))
1626 return true;
1627
1628 /*
1629 * Otherwise, we do only if they are the last ones
1630 * in their service tree.
1631 */
f04a6424 1632 return service_tree->count == 1;
a6d44e98
CZ
1633}
1634
6d048f53 1635static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1636{
1792669c 1637 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1638 struct cfq_io_context *cic;
7b14e3b5
JA
1639 unsigned long sl;
1640
a68bbddb 1641 /*
f7d7b7a7
JA
1642 * SSD device without seek penalty, disable idling. But only do so
1643 * for devices that support queuing, otherwise we still have a problem
1644 * with sync vs async workloads.
a68bbddb 1645 */
f7d7b7a7 1646 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1647 return;
1648
dd67d051 1649 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1650 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1651
1652 /*
1653 * idle is disabled, either manually or by past process history
1654 */
a6d44e98 1655 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1656 return;
1657
7b679138 1658 /*
8e550632 1659 * still active requests from this queue, don't idle
7b679138 1660 */
8e550632 1661 if (cfqq->dispatched)
7b679138
JA
1662 return;
1663
22e2c507
JA
1664 /*
1665 * task has exited, don't wait
1666 */
206dc69b 1667 cic = cfqd->active_cic;
66dac98e 1668 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1669 return;
1670
355b659c
CZ
1671 /*
1672 * If our average think time is larger than the remaining time
1673 * slice, then don't idle. This avoids overrunning the allotted
1674 * time slice.
1675 */
1676 if (sample_valid(cic->ttime_samples) &&
1677 (cfqq->slice_end - jiffies < cic->ttime_mean))
1678 return;
1679
3b18152c 1680 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1681
6d048f53 1682 sl = cfqd->cfq_slice_idle;
206dc69b 1683
7b14e3b5 1684 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1685 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1686}
1687
498d3aa2
JA
1688/*
1689 * Move request from internal lists to the request queue dispatch list.
1690 */
165125e1 1691static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1692{
3ed9a296 1693 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1694 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1695
7b679138
JA
1696 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1697
06d21886 1698 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1699 cfq_remove_request(rq);
6d048f53 1700 cfqq->dispatched++;
5380a101 1701 elv_dispatch_sort(q, rq);
3ed9a296
JA
1702
1703 if (cfq_cfqq_sync(cfqq))
1704 cfqd->sync_flight++;
1da177e4
LT
1705}
1706
1707/*
1708 * return expired entry, or NULL to just start from scratch in rbtree
1709 */
febffd61 1710static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1711{
30996f40 1712 struct request *rq = NULL;
1da177e4 1713
3b18152c 1714 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1715 return NULL;
cb887411
JA
1716
1717 cfq_mark_cfqq_fifo_expire(cfqq);
1718
89850f7e
JA
1719 if (list_empty(&cfqq->fifo))
1720 return NULL;
1da177e4 1721
89850f7e 1722 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1723 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1724 rq = NULL;
1da177e4 1725
30996f40 1726 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1727 return rq;
1da177e4
LT
1728}
1729
22e2c507
JA
1730static inline int
1731cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1732{
1733 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1734
22e2c507 1735 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1736
22e2c507 1737 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1738}
1739
df5fe3e8
JM
1740/*
1741 * Must be called with the queue_lock held.
1742 */
1743static int cfqq_process_refs(struct cfq_queue *cfqq)
1744{
1745 int process_refs, io_refs;
1746
1747 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1748 process_refs = atomic_read(&cfqq->ref) - io_refs;
1749 BUG_ON(process_refs < 0);
1750 return process_refs;
1751}
1752
1753static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1754{
e6c5bc73 1755 int process_refs, new_process_refs;
df5fe3e8
JM
1756 struct cfq_queue *__cfqq;
1757
1758 /* Avoid a circular list and skip interim queue merges */
1759 while ((__cfqq = new_cfqq->new_cfqq)) {
1760 if (__cfqq == cfqq)
1761 return;
1762 new_cfqq = __cfqq;
1763 }
1764
1765 process_refs = cfqq_process_refs(cfqq);
1766 /*
1767 * If the process for the cfqq has gone away, there is no
1768 * sense in merging the queues.
1769 */
1770 if (process_refs == 0)
1771 return;
1772
e6c5bc73
JM
1773 /*
1774 * Merge in the direction of the lesser amount of work.
1775 */
1776 new_process_refs = cfqq_process_refs(new_cfqq);
1777 if (new_process_refs >= process_refs) {
1778 cfqq->new_cfqq = new_cfqq;
1779 atomic_add(process_refs, &new_cfqq->ref);
1780 } else {
1781 new_cfqq->new_cfqq = cfqq;
1782 atomic_add(new_process_refs, &cfqq->ref);
1783 }
df5fe3e8
JM
1784}
1785
cdb16e8f
VG
1786static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1787 struct cfq_group *cfqg, enum wl_prio_t prio,
1788 bool prio_changed)
718eee05
CZ
1789{
1790 struct cfq_queue *queue;
1791 int i;
1792 bool key_valid = false;
1793 unsigned long lowest_key = 0;
1794 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1795
1796 if (prio_changed) {
1797 /*
1798 * When priorities switched, we prefer starting
1799 * from SYNC_NOIDLE (first choice), or just SYNC
1800 * over ASYNC
1801 */
cdb16e8f 1802 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1803 return cur_best;
1804 cur_best = SYNC_WORKLOAD;
cdb16e8f 1805 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1806 return cur_best;
1807
1808 return ASYNC_WORKLOAD;
1809 }
1810
1811 for (i = 0; i < 3; ++i) {
1812 /* otherwise, select the one with lowest rb_key */
cdb16e8f 1813 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
718eee05
CZ
1814 if (queue &&
1815 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1816 lowest_key = queue->rb_key;
1817 cur_best = i;
1818 key_valid = true;
1819 }
1820 }
1821
1822 return cur_best;
1823}
1824
cdb16e8f 1825static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05
CZ
1826{
1827 enum wl_prio_t previous_prio = cfqd->serving_prio;
1828 bool prio_changed;
1829 unsigned slice;
1830 unsigned count;
cdb16e8f 1831 struct cfq_rb_root *st;
58ff82f3 1832 unsigned group_slice;
718eee05 1833
1fa8f6d6
VG
1834 if (!cfqg) {
1835 cfqd->serving_prio = IDLE_WORKLOAD;
1836 cfqd->workload_expires = jiffies + 1;
1837 return;
1838 }
1839
718eee05 1840 /* Choose next priority. RT > BE > IDLE */
58ff82f3 1841 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 1842 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 1843 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
1844 cfqd->serving_prio = BE_WORKLOAD;
1845 else {
1846 cfqd->serving_prio = IDLE_WORKLOAD;
1847 cfqd->workload_expires = jiffies + 1;
1848 return;
1849 }
1850
1851 /*
1852 * For RT and BE, we have to choose also the type
1853 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1854 * expiration time
1855 */
1856 prio_changed = (cfqd->serving_prio != previous_prio);
cdb16e8f
VG
1857 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1858 cfqd);
1859 count = st->count;
718eee05
CZ
1860
1861 /*
1862 * If priority didn't change, check workload expiration,
1863 * and that we still have other queues ready
1864 */
1865 if (!prio_changed && count &&
1866 !time_after(jiffies, cfqd->workload_expires))
1867 return;
1868
1869 /* otherwise select new workload type */
1870 cfqd->serving_type =
cdb16e8f
VG
1871 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1872 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1873 cfqd);
1874 count = st->count;
718eee05
CZ
1875
1876 /*
1877 * the workload slice is computed as a fraction of target latency
1878 * proportional to the number of queues in that workload, over
1879 * all the queues in the same priority class
1880 */
58ff82f3
VG
1881 group_slice = cfq_group_slice(cfqd, cfqg);
1882
1883 slice = group_slice * count /
1884 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
1885 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05
CZ
1886
1887 if (cfqd->serving_type == ASYNC_WORKLOAD)
1888 /* async workload slice is scaled down according to
1889 * the sync/async slice ratio. */
1890 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1891 else
1892 /* sync workload slice is at least 2 * cfq_slice_idle */
1893 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1894
1895 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1896 cfqd->workload_expires = jiffies + slice;
8e550632 1897 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
1898}
1899
1fa8f6d6
VG
1900static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
1901{
1902 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 1903 struct cfq_group *cfqg;
1fa8f6d6
VG
1904
1905 if (RB_EMPTY_ROOT(&st->rb))
1906 return NULL;
25bc6b07
VG
1907 cfqg = cfq_rb_first_group(st);
1908 st->active = &cfqg->rb_node;
1909 update_min_vdisktime(st);
1910 return cfqg;
1fa8f6d6
VG
1911}
1912
cdb16e8f
VG
1913static void cfq_choose_cfqg(struct cfq_data *cfqd)
1914{
1fa8f6d6
VG
1915 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
1916
1917 cfqd->serving_group = cfqg;
dae739eb
VG
1918
1919 /* Restore the workload type data */
1920 if (cfqg->saved_workload_slice) {
1921 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
1922 cfqd->serving_type = cfqg->saved_workload;
1923 cfqd->serving_prio = cfqg->saved_serving_prio;
1924 }
1fa8f6d6 1925 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
1926}
1927
22e2c507 1928/*
498d3aa2
JA
1929 * Select a queue for service. If we have a current active queue,
1930 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1931 */
1b5ed5e1 1932static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1933{
a36e71f9 1934 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1935
22e2c507
JA
1936 cfqq = cfqd->active_queue;
1937 if (!cfqq)
1938 goto new_queue;
1da177e4 1939
f04a6424
VG
1940 if (!cfqd->rq_queued)
1941 return NULL;
22e2c507 1942 /*
6d048f53 1943 * The active queue has run out of time, expire it and select new.
22e2c507 1944 */
b029195d 1945 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1946 goto expire;
1da177e4 1947
22e2c507 1948 /*
6d048f53
JA
1949 * The active queue has requests and isn't expired, allow it to
1950 * dispatch.
22e2c507 1951 */
dd67d051 1952 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1953 goto keep_queue;
6d048f53 1954
a36e71f9
JA
1955 /*
1956 * If another queue has a request waiting within our mean seek
1957 * distance, let it run. The expire code will check for close
1958 * cooperators and put the close queue at the front of the service
df5fe3e8 1959 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 1960 */
b3b6d040 1961 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
1962 if (new_cfqq) {
1963 if (!cfqq->new_cfqq)
1964 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 1965 goto expire;
df5fe3e8 1966 }
a36e71f9 1967
6d048f53
JA
1968 /*
1969 * No requests pending. If the active queue still has requests in
1970 * flight or is idling for a new request, allow either of these
1971 * conditions to happen (or time out) before selecting a new queue.
1972 */
cc197479 1973 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 1974 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
1975 cfqq = NULL;
1976 goto keep_queue;
22e2c507
JA
1977 }
1978
3b18152c 1979expire:
6084cdda 1980 cfq_slice_expired(cfqd, 0);
3b18152c 1981new_queue:
718eee05
CZ
1982 /*
1983 * Current queue expired. Check if we have to switch to a new
1984 * service tree
1985 */
1986 if (!new_cfqq)
cdb16e8f 1987 cfq_choose_cfqg(cfqd);
718eee05 1988
a36e71f9 1989 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1990keep_queue:
3b18152c 1991 return cfqq;
22e2c507
JA
1992}
1993
febffd61 1994static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1995{
1996 int dispatched = 0;
1997
1998 while (cfqq->next_rq) {
1999 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2000 dispatched++;
2001 }
2002
2003 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2004
2005 /* By default cfqq is not expired if it is empty. Do it explicitly */
2006 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2007 return dispatched;
2008}
2009
498d3aa2
JA
2010/*
2011 * Drain our current requests. Used for barriers and when switching
2012 * io schedulers on-the-fly.
2013 */
d9e7620e 2014static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2015{
0871714e 2016 struct cfq_queue *cfqq;
d9e7620e 2017 int dispatched = 0;
cdb16e8f 2018
f04a6424
VG
2019 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2020 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 2021
6084cdda 2022 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
2023 BUG_ON(cfqd->busy_queues);
2024
6923715a 2025 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2026 return dispatched;
2027}
2028
0b182d61 2029static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2030{
2f5cb738 2031 unsigned int max_dispatch;
22e2c507 2032
5ad531db
JA
2033 /*
2034 * Drain async requests before we start sync IO
2035 */
a6d44e98 2036 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 2037 return false;
5ad531db 2038
2f5cb738
JA
2039 /*
2040 * If this is an async queue and we have sync IO in flight, let it wait
2041 */
2042 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 2043 return false;
2f5cb738
JA
2044
2045 max_dispatch = cfqd->cfq_quantum;
2046 if (cfq_class_idle(cfqq))
2047 max_dispatch = 1;
b4878f24 2048
2f5cb738
JA
2049 /*
2050 * Does this cfqq already have too much IO in flight?
2051 */
2052 if (cfqq->dispatched >= max_dispatch) {
2053 /*
2054 * idle queue must always only have a single IO in flight
2055 */
3ed9a296 2056 if (cfq_class_idle(cfqq))
0b182d61 2057 return false;
3ed9a296 2058
2f5cb738
JA
2059 /*
2060 * We have other queues, don't allow more IO from this one
2061 */
2062 if (cfqd->busy_queues > 1)
0b182d61 2063 return false;
9ede209e 2064
365722bb 2065 /*
474b18cc 2066 * Sole queue user, no limit
365722bb 2067 */
474b18cc 2068 max_dispatch = -1;
8e296755
JA
2069 }
2070
2071 /*
2072 * Async queues must wait a bit before being allowed dispatch.
2073 * We also ramp up the dispatch depth gradually for async IO,
2074 * based on the last sync IO we serviced
2075 */
963b72fc 2076 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
2077 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2078 unsigned int depth;
365722bb 2079
61f0c1dc 2080 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2081 if (!depth && !cfqq->dispatched)
2082 depth = 1;
8e296755
JA
2083 if (depth < max_dispatch)
2084 max_dispatch = depth;
2f5cb738 2085 }
3ed9a296 2086
0b182d61
JA
2087 /*
2088 * If we're below the current max, allow a dispatch
2089 */
2090 return cfqq->dispatched < max_dispatch;
2091}
2092
2093/*
2094 * Dispatch a request from cfqq, moving them to the request queue
2095 * dispatch list.
2096 */
2097static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2098{
2099 struct request *rq;
2100
2101 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2102
2103 if (!cfq_may_dispatch(cfqd, cfqq))
2104 return false;
2105
2106 /*
2107 * follow expired path, else get first next available
2108 */
2109 rq = cfq_check_fifo(cfqq);
2110 if (!rq)
2111 rq = cfqq->next_rq;
2112
2113 /*
2114 * insert request into driver dispatch list
2115 */
2116 cfq_dispatch_insert(cfqd->queue, rq);
2117
2118 if (!cfqd->active_cic) {
2119 struct cfq_io_context *cic = RQ_CIC(rq);
2120
2121 atomic_long_inc(&cic->ioc->refcount);
2122 cfqd->active_cic = cic;
2123 }
2124
2125 return true;
2126}
2127
2128/*
2129 * Find the cfqq that we need to service and move a request from that to the
2130 * dispatch list
2131 */
2132static int cfq_dispatch_requests(struct request_queue *q, int force)
2133{
2134 struct cfq_data *cfqd = q->elevator->elevator_data;
2135 struct cfq_queue *cfqq;
2136
2137 if (!cfqd->busy_queues)
2138 return 0;
2139
2140 if (unlikely(force))
2141 return cfq_forced_dispatch(cfqd);
2142
2143 cfqq = cfq_select_queue(cfqd);
2144 if (!cfqq)
8e296755
JA
2145 return 0;
2146
2f5cb738 2147 /*
0b182d61 2148 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2149 */
0b182d61
JA
2150 if (!cfq_dispatch_request(cfqd, cfqq))
2151 return 0;
2152
2f5cb738 2153 cfqq->slice_dispatch++;
b029195d 2154 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2155
2f5cb738
JA
2156 /*
2157 * expire an async queue immediately if it has used up its slice. idle
2158 * queue always expire after 1 dispatch round.
2159 */
2160 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2161 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2162 cfq_class_idle(cfqq))) {
2163 cfqq->slice_end = jiffies + 1;
2164 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2165 }
2166
b217a903 2167 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2168 return 1;
1da177e4
LT
2169}
2170
1da177e4 2171/*
5e705374
JA
2172 * task holds one reference to the queue, dropped when task exits. each rq
2173 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
2174 *
2175 * queue lock must be held here.
2176 */
2177static void cfq_put_queue(struct cfq_queue *cfqq)
2178{
22e2c507
JA
2179 struct cfq_data *cfqd = cfqq->cfqd;
2180
2181 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2182
2183 if (!atomic_dec_and_test(&cfqq->ref))
2184 return;
2185
7b679138 2186 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2187 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2188 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1da177e4 2189
28f95cbc 2190 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2191 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2192 cfq_schedule_dispatch(cfqd);
28f95cbc 2193 }
22e2c507 2194
f04a6424 2195 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4
LT
2196 kmem_cache_free(cfq_pool, cfqq);
2197}
2198
d6de8be7
JA
2199/*
2200 * Must always be called with the rcu_read_lock() held
2201 */
07416d29
JA
2202static void
2203__call_for_each_cic(struct io_context *ioc,
2204 void (*func)(struct io_context *, struct cfq_io_context *))
2205{
2206 struct cfq_io_context *cic;
2207 struct hlist_node *n;
2208
2209 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2210 func(ioc, cic);
2211}
2212
4ac845a2 2213/*
34e6bbf2 2214 * Call func for each cic attached to this ioc.
4ac845a2 2215 */
34e6bbf2 2216static void
4ac845a2
JA
2217call_for_each_cic(struct io_context *ioc,
2218 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2219{
4ac845a2 2220 rcu_read_lock();
07416d29 2221 __call_for_each_cic(ioc, func);
4ac845a2 2222 rcu_read_unlock();
34e6bbf2
FC
2223}
2224
2225static void cfq_cic_free_rcu(struct rcu_head *head)
2226{
2227 struct cfq_io_context *cic;
2228
2229 cic = container_of(head, struct cfq_io_context, rcu_head);
2230
2231 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2232 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2233
9a11b4ed
JA
2234 if (ioc_gone) {
2235 /*
2236 * CFQ scheduler is exiting, grab exit lock and check
2237 * the pending io context count. If it hits zero,
2238 * complete ioc_gone and set it back to NULL
2239 */
2240 spin_lock(&ioc_gone_lock);
245b2e70 2241 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2242 complete(ioc_gone);
2243 ioc_gone = NULL;
2244 }
2245 spin_unlock(&ioc_gone_lock);
2246 }
34e6bbf2 2247}
4ac845a2 2248
34e6bbf2
FC
2249static void cfq_cic_free(struct cfq_io_context *cic)
2250{
2251 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2252}
2253
2254static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2255{
2256 unsigned long flags;
2257
2258 BUG_ON(!cic->dead_key);
2259
2260 spin_lock_irqsave(&ioc->lock, flags);
2261 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2262 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2263 spin_unlock_irqrestore(&ioc->lock, flags);
2264
34e6bbf2 2265 cfq_cic_free(cic);
4ac845a2
JA
2266}
2267
d6de8be7
JA
2268/*
2269 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2270 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2271 * and ->trim() which is called with the task lock held
2272 */
4ac845a2
JA
2273static void cfq_free_io_context(struct io_context *ioc)
2274{
4ac845a2 2275 /*
34e6bbf2
FC
2276 * ioc->refcount is zero here, or we are called from elv_unregister(),
2277 * so no more cic's are allowed to be linked into this ioc. So it
2278 * should be ok to iterate over the known list, we will see all cic's
2279 * since no new ones are added.
4ac845a2 2280 */
07416d29 2281 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2282}
2283
89850f7e 2284static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2285{
df5fe3e8
JM
2286 struct cfq_queue *__cfqq, *next;
2287
28f95cbc 2288 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2289 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2290 cfq_schedule_dispatch(cfqd);
28f95cbc 2291 }
22e2c507 2292
df5fe3e8
JM
2293 /*
2294 * If this queue was scheduled to merge with another queue, be
2295 * sure to drop the reference taken on that queue (and others in
2296 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2297 */
2298 __cfqq = cfqq->new_cfqq;
2299 while (__cfqq) {
2300 if (__cfqq == cfqq) {
2301 WARN(1, "cfqq->new_cfqq loop detected\n");
2302 break;
2303 }
2304 next = __cfqq->new_cfqq;
2305 cfq_put_queue(__cfqq);
2306 __cfqq = next;
2307 }
2308
89850f7e
JA
2309 cfq_put_queue(cfqq);
2310}
22e2c507 2311
89850f7e
JA
2312static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2313 struct cfq_io_context *cic)
2314{
4faa3c81
FC
2315 struct io_context *ioc = cic->ioc;
2316
fc46379d 2317 list_del_init(&cic->queue_list);
4ac845a2
JA
2318
2319 /*
2320 * Make sure key == NULL is seen for dead queues
2321 */
fc46379d 2322 smp_wmb();
4ac845a2 2323 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2324 cic->key = NULL;
2325
4faa3c81
FC
2326 if (ioc->ioc_data == cic)
2327 rcu_assign_pointer(ioc->ioc_data, NULL);
2328
ff6657c6
JA
2329 if (cic->cfqq[BLK_RW_ASYNC]) {
2330 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2331 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2332 }
2333
ff6657c6
JA
2334 if (cic->cfqq[BLK_RW_SYNC]) {
2335 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2336 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2337 }
89850f7e
JA
2338}
2339
4ac845a2
JA
2340static void cfq_exit_single_io_context(struct io_context *ioc,
2341 struct cfq_io_context *cic)
89850f7e
JA
2342{
2343 struct cfq_data *cfqd = cic->key;
2344
89850f7e 2345 if (cfqd) {
165125e1 2346 struct request_queue *q = cfqd->queue;
4ac845a2 2347 unsigned long flags;
89850f7e 2348
4ac845a2 2349 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2350
2351 /*
2352 * Ensure we get a fresh copy of the ->key to prevent
2353 * race between exiting task and queue
2354 */
2355 smp_read_barrier_depends();
2356 if (cic->key)
2357 __cfq_exit_single_io_context(cfqd, cic);
2358
4ac845a2 2359 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2360 }
1da177e4
LT
2361}
2362
498d3aa2
JA
2363/*
2364 * The process that ioc belongs to has exited, we need to clean up
2365 * and put the internal structures we have that belongs to that process.
2366 */
e2d74ac0 2367static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2368{
4ac845a2 2369 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2370}
2371
22e2c507 2372static struct cfq_io_context *
8267e268 2373cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2374{
b5deef90 2375 struct cfq_io_context *cic;
1da177e4 2376
94f6030c
CL
2377 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2378 cfqd->queue->node);
1da177e4 2379 if (cic) {
22e2c507 2380 cic->last_end_request = jiffies;
553698f9 2381 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2382 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2383 cic->dtor = cfq_free_io_context;
2384 cic->exit = cfq_exit_io_context;
245b2e70 2385 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2386 }
2387
2388 return cic;
2389}
2390
fd0928df 2391static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2392{
2393 struct task_struct *tsk = current;
2394 int ioprio_class;
2395
3b18152c 2396 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2397 return;
2398
fd0928df 2399 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2400 switch (ioprio_class) {
fe094d98
JA
2401 default:
2402 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2403 case IOPRIO_CLASS_NONE:
2404 /*
6d63c275 2405 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2406 */
2407 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2408 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2409 break;
2410 case IOPRIO_CLASS_RT:
2411 cfqq->ioprio = task_ioprio(ioc);
2412 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2413 break;
2414 case IOPRIO_CLASS_BE:
2415 cfqq->ioprio = task_ioprio(ioc);
2416 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2417 break;
2418 case IOPRIO_CLASS_IDLE:
2419 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2420 cfqq->ioprio = 7;
2421 cfq_clear_cfqq_idle_window(cfqq);
2422 break;
22e2c507
JA
2423 }
2424
2425 /*
2426 * keep track of original prio settings in case we have to temporarily
2427 * elevate the priority of this queue
2428 */
2429 cfqq->org_ioprio = cfqq->ioprio;
2430 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2431 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2432}
2433
febffd61 2434static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2435{
478a82b0
AV
2436 struct cfq_data *cfqd = cic->key;
2437 struct cfq_queue *cfqq;
c1b707d2 2438 unsigned long flags;
35e6077c 2439
caaa5f9f
JA
2440 if (unlikely(!cfqd))
2441 return;
2442
c1b707d2 2443 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2444
ff6657c6 2445 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2446 if (cfqq) {
2447 struct cfq_queue *new_cfqq;
ff6657c6
JA
2448 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2449 GFP_ATOMIC);
caaa5f9f 2450 if (new_cfqq) {
ff6657c6 2451 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2452 cfq_put_queue(cfqq);
2453 }
22e2c507 2454 }
caaa5f9f 2455
ff6657c6 2456 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2457 if (cfqq)
2458 cfq_mark_cfqq_prio_changed(cfqq);
2459
c1b707d2 2460 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2461}
2462
fc46379d 2463static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2464{
4ac845a2 2465 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2466 ioc->ioprio_changed = 0;
22e2c507
JA
2467}
2468
d5036d77 2469static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2470 pid_t pid, bool is_sync)
d5036d77
JA
2471{
2472 RB_CLEAR_NODE(&cfqq->rb_node);
2473 RB_CLEAR_NODE(&cfqq->p_node);
2474 INIT_LIST_HEAD(&cfqq->fifo);
2475
2476 atomic_set(&cfqq->ref, 0);
2477 cfqq->cfqd = cfqd;
2478
2479 cfq_mark_cfqq_prio_changed(cfqq);
2480
2481 if (is_sync) {
2482 if (!cfq_class_idle(cfqq))
2483 cfq_mark_cfqq_idle_window(cfqq);
2484 cfq_mark_cfqq_sync(cfqq);
2485 }
2486 cfqq->pid = pid;
2487}
2488
22e2c507 2489static struct cfq_queue *
a6151c3a 2490cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2491 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2492{
22e2c507 2493 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2494 struct cfq_io_context *cic;
cdb16e8f 2495 struct cfq_group *cfqg;
22e2c507
JA
2496
2497retry:
cdb16e8f 2498 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2499 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2500 /* cic always exists here */
2501 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2502
6118b70b
JA
2503 /*
2504 * Always try a new alloc if we fell back to the OOM cfqq
2505 * originally, since it should just be a temporary situation.
2506 */
2507 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2508 cfqq = NULL;
22e2c507
JA
2509 if (new_cfqq) {
2510 cfqq = new_cfqq;
2511 new_cfqq = NULL;
2512 } else if (gfp_mask & __GFP_WAIT) {
2513 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2514 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2515 gfp_mask | __GFP_ZERO,
94f6030c 2516 cfqd->queue->node);
22e2c507 2517 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2518 if (new_cfqq)
2519 goto retry;
22e2c507 2520 } else {
94f6030c
CL
2521 cfqq = kmem_cache_alloc_node(cfq_pool,
2522 gfp_mask | __GFP_ZERO,
2523 cfqd->queue->node);
22e2c507
JA
2524 }
2525
6118b70b
JA
2526 if (cfqq) {
2527 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2528 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2529 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2530 cfq_log_cfqq(cfqd, cfqq, "alloced");
2531 } else
2532 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2533 }
2534
2535 if (new_cfqq)
2536 kmem_cache_free(cfq_pool, new_cfqq);
2537
22e2c507
JA
2538 return cfqq;
2539}
2540
c2dea2d1
VT
2541static struct cfq_queue **
2542cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2543{
fe094d98 2544 switch (ioprio_class) {
c2dea2d1
VT
2545 case IOPRIO_CLASS_RT:
2546 return &cfqd->async_cfqq[0][ioprio];
2547 case IOPRIO_CLASS_BE:
2548 return &cfqd->async_cfqq[1][ioprio];
2549 case IOPRIO_CLASS_IDLE:
2550 return &cfqd->async_idle_cfqq;
2551 default:
2552 BUG();
2553 }
2554}
2555
15c31be4 2556static struct cfq_queue *
a6151c3a 2557cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2558 gfp_t gfp_mask)
2559{
fd0928df
JA
2560 const int ioprio = task_ioprio(ioc);
2561 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2562 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2563 struct cfq_queue *cfqq = NULL;
2564
c2dea2d1
VT
2565 if (!is_sync) {
2566 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2567 cfqq = *async_cfqq;
2568 }
2569
6118b70b 2570 if (!cfqq)
fd0928df 2571 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2572
2573 /*
2574 * pin the queue now that it's allocated, scheduler exit will prune it
2575 */
c2dea2d1 2576 if (!is_sync && !(*async_cfqq)) {
15c31be4 2577 atomic_inc(&cfqq->ref);
c2dea2d1 2578 *async_cfqq = cfqq;
15c31be4
JA
2579 }
2580
2581 atomic_inc(&cfqq->ref);
2582 return cfqq;
2583}
2584
498d3aa2
JA
2585/*
2586 * We drop cfq io contexts lazily, so we may find a dead one.
2587 */
dbecf3ab 2588static void
4ac845a2
JA
2589cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2590 struct cfq_io_context *cic)
dbecf3ab 2591{
4ac845a2
JA
2592 unsigned long flags;
2593
fc46379d 2594 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2595
4ac845a2
JA
2596 spin_lock_irqsave(&ioc->lock, flags);
2597
4faa3c81 2598 BUG_ON(ioc->ioc_data == cic);
597bc485 2599
4ac845a2 2600 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2601 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2602 spin_unlock_irqrestore(&ioc->lock, flags);
2603
2604 cfq_cic_free(cic);
dbecf3ab
OH
2605}
2606
e2d74ac0 2607static struct cfq_io_context *
4ac845a2 2608cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2609{
e2d74ac0 2610 struct cfq_io_context *cic;
d6de8be7 2611 unsigned long flags;
4ac845a2 2612 void *k;
e2d74ac0 2613
91fac317
VT
2614 if (unlikely(!ioc))
2615 return NULL;
2616
d6de8be7
JA
2617 rcu_read_lock();
2618
597bc485
JA
2619 /*
2620 * we maintain a last-hit cache, to avoid browsing over the tree
2621 */
4ac845a2 2622 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2623 if (cic && cic->key == cfqd) {
2624 rcu_read_unlock();
597bc485 2625 return cic;
d6de8be7 2626 }
597bc485 2627
4ac845a2 2628 do {
4ac845a2
JA
2629 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2630 rcu_read_unlock();
2631 if (!cic)
2632 break;
be3b0753
OH
2633 /* ->key must be copied to avoid race with cfq_exit_queue() */
2634 k = cic->key;
2635 if (unlikely(!k)) {
4ac845a2 2636 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2637 rcu_read_lock();
4ac845a2 2638 continue;
dbecf3ab 2639 }
e2d74ac0 2640
d6de8be7 2641 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2642 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2643 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2644 break;
2645 } while (1);
e2d74ac0 2646
4ac845a2 2647 return cic;
e2d74ac0
JA
2648}
2649
4ac845a2
JA
2650/*
2651 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2652 * the process specific cfq io context when entered from the block layer.
2653 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2654 */
febffd61
JA
2655static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2656 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2657{
0261d688 2658 unsigned long flags;
4ac845a2 2659 int ret;
e2d74ac0 2660
4ac845a2
JA
2661 ret = radix_tree_preload(gfp_mask);
2662 if (!ret) {
2663 cic->ioc = ioc;
2664 cic->key = cfqd;
e2d74ac0 2665
4ac845a2
JA
2666 spin_lock_irqsave(&ioc->lock, flags);
2667 ret = radix_tree_insert(&ioc->radix_root,
2668 (unsigned long) cfqd, cic);
ffc4e759
JA
2669 if (!ret)
2670 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2671 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2672
4ac845a2
JA
2673 radix_tree_preload_end();
2674
2675 if (!ret) {
2676 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2677 list_add(&cic->queue_list, &cfqd->cic_list);
2678 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2679 }
e2d74ac0
JA
2680 }
2681
4ac845a2
JA
2682 if (ret)
2683 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2684
4ac845a2 2685 return ret;
e2d74ac0
JA
2686}
2687
1da177e4
LT
2688/*
2689 * Setup general io context and cfq io context. There can be several cfq
2690 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2691 * than one device managed by cfq.
1da177e4
LT
2692 */
2693static struct cfq_io_context *
e2d74ac0 2694cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2695{
22e2c507 2696 struct io_context *ioc = NULL;
1da177e4 2697 struct cfq_io_context *cic;
1da177e4 2698
22e2c507 2699 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2700
b5deef90 2701 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2702 if (!ioc)
2703 return NULL;
2704
4ac845a2 2705 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2706 if (cic)
2707 goto out;
1da177e4 2708
e2d74ac0
JA
2709 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2710 if (cic == NULL)
2711 goto err;
1da177e4 2712
4ac845a2
JA
2713 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2714 goto err_free;
2715
1da177e4 2716out:
fc46379d
JA
2717 smp_read_barrier_depends();
2718 if (unlikely(ioc->ioprio_changed))
2719 cfq_ioc_set_ioprio(ioc);
2720
1da177e4 2721 return cic;
4ac845a2
JA
2722err_free:
2723 cfq_cic_free(cic);
1da177e4
LT
2724err:
2725 put_io_context(ioc);
2726 return NULL;
2727}
2728
22e2c507
JA
2729static void
2730cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2731{
aaf1228d
JA
2732 unsigned long elapsed = jiffies - cic->last_end_request;
2733 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2734
22e2c507
JA
2735 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2736 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2737 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2738}
1da177e4 2739
206dc69b 2740static void
b2c18e1e 2741cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2742 struct request *rq)
206dc69b
JA
2743{
2744 sector_t sdist;
2745 u64 total;
2746
b2c18e1e 2747 if (!cfqq->last_request_pos)
4d00aa47 2748 sdist = 0;
b2c18e1e
JM
2749 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2750 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2751 else
b2c18e1e 2752 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2753
2754 /*
2755 * Don't allow the seek distance to get too large from the
2756 * odd fragment, pagein, etc
2757 */
b2c18e1e
JM
2758 if (cfqq->seek_samples <= 60) /* second&third seek */
2759 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2760 else
b2c18e1e 2761 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2762
b2c18e1e
JM
2763 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2764 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2765 total = cfqq->seek_total + (cfqq->seek_samples/2);
2766 do_div(total, cfqq->seek_samples);
2767 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2768
2769 /*
2770 * If this cfqq is shared between multiple processes, check to
2771 * make sure that those processes are still issuing I/Os within
2772 * the mean seek distance. If not, it may be time to break the
2773 * queues apart again.
2774 */
2775 if (cfq_cfqq_coop(cfqq)) {
2776 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2777 cfqq->seeky_start = jiffies;
2778 else if (!CFQQ_SEEKY(cfqq))
2779 cfqq->seeky_start = 0;
2780 }
206dc69b 2781}
1da177e4 2782
22e2c507
JA
2783/*
2784 * Disable idle window if the process thinks too long or seeks so much that
2785 * it doesn't matter
2786 */
2787static void
2788cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2789 struct cfq_io_context *cic)
2790{
7b679138 2791 int old_idle, enable_idle;
1be92f2f 2792
0871714e
JA
2793 /*
2794 * Don't idle for async or idle io prio class
2795 */
2796 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2797 return;
2798
c265a7f4 2799 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2800
76280aff
CZ
2801 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2802 cfq_mark_cfqq_deep(cfqq);
2803
66dac98e 2804 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
76280aff
CZ
2805 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2806 && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2807 enable_idle = 0;
2808 else if (sample_valid(cic->ttime_samples)) {
718eee05 2809 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
2810 enable_idle = 0;
2811 else
2812 enable_idle = 1;
1da177e4
LT
2813 }
2814
7b679138
JA
2815 if (old_idle != enable_idle) {
2816 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2817 if (enable_idle)
2818 cfq_mark_cfqq_idle_window(cfqq);
2819 else
2820 cfq_clear_cfqq_idle_window(cfqq);
2821 }
22e2c507 2822}
1da177e4 2823
22e2c507
JA
2824/*
2825 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2826 * no or if we aren't sure, a 1 will cause a preempt.
2827 */
a6151c3a 2828static bool
22e2c507 2829cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2830 struct request *rq)
22e2c507 2831{
6d048f53 2832 struct cfq_queue *cfqq;
22e2c507 2833
6d048f53
JA
2834 cfqq = cfqd->active_queue;
2835 if (!cfqq)
a6151c3a 2836 return false;
22e2c507 2837
6d048f53 2838 if (cfq_slice_used(cfqq))
a6151c3a 2839 return true;
6d048f53
JA
2840
2841 if (cfq_class_idle(new_cfqq))
a6151c3a 2842 return false;
22e2c507
JA
2843
2844 if (cfq_class_idle(cfqq))
a6151c3a 2845 return true;
1e3335de 2846
f04a6424 2847 /* Allow preemption only if we are idling on sync-noidle tree */
e4a22919
CZ
2848 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2849 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
f04a6424
VG
2850 new_cfqq->service_tree->count == 2 &&
2851 RB_EMPTY_ROOT(&cfqq->sort_list))
718eee05
CZ
2852 return true;
2853
374f84ac
JA
2854 /*
2855 * if the new request is sync, but the currently running queue is
2856 * not, let the sync request have priority.
2857 */
5e705374 2858 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2859 return true;
1e3335de 2860
374f84ac
JA
2861 /*
2862 * So both queues are sync. Let the new request get disk time if
2863 * it's a metadata request and the current queue is doing regular IO.
2864 */
2865 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 2866 return true;
22e2c507 2867
3a9a3f6c
DS
2868 /*
2869 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2870 */
2871 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2872 return true;
3a9a3f6c 2873
1e3335de 2874 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2875 return false;
1e3335de
JA
2876
2877 /*
2878 * if this request is as-good as one we would expect from the
2879 * current cfqq, let it preempt
2880 */
e00ef799 2881 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2882 return true;
1e3335de 2883
a6151c3a 2884 return false;
22e2c507
JA
2885}
2886
2887/*
2888 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2889 * let it have half of its nominal slice.
2890 */
2891static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2892{
7b679138 2893 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2894 cfq_slice_expired(cfqd, 1);
22e2c507 2895
bf572256
JA
2896 /*
2897 * Put the new queue at the front of the of the current list,
2898 * so we know that it will be selected next.
2899 */
2900 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2901
2902 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2903
44f7c160
JA
2904 cfqq->slice_end = 0;
2905 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2906}
2907
22e2c507 2908/*
5e705374 2909 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2910 * something we should do about it
2911 */
2912static void
5e705374
JA
2913cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2914 struct request *rq)
22e2c507 2915{
5e705374 2916 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2917
45333d5a 2918 cfqd->rq_queued++;
374f84ac
JA
2919 if (rq_is_meta(rq))
2920 cfqq->meta_pending++;
2921
9c2c38a1 2922 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2923 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2924 cfq_update_idle_window(cfqd, cfqq, cic);
2925
b2c18e1e 2926 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2927
2928 if (cfqq == cfqd->active_queue) {
2929 /*
b029195d
JA
2930 * Remember that we saw a request from this process, but
2931 * don't start queuing just yet. Otherwise we risk seeing lots
2932 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2933 * and merging. If the request is already larger than a single
2934 * page, let it rip immediately. For that case we assume that
2d870722
JA
2935 * merging is already done. Ditto for a busy system that
2936 * has other work pending, don't risk delaying until the
2937 * idle timer unplug to continue working.
22e2c507 2938 */
d6ceb25e 2939 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2940 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2941 cfqd->busy_queues > 1) {
d6ceb25e 2942 del_timer(&cfqd->idle_slice_timer);
bf791937
VG
2943 __blk_run_queue(cfqd->queue);
2944 } else
2945 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2946 }
5e705374 2947 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2948 /*
2949 * not the active queue - expire current slice if it is
2950 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2951 * has some old slice time left and is of higher priority or
2952 * this new queue is RT and the current one is BE
22e2c507
JA
2953 */
2954 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2955 __blk_run_queue(cfqd->queue);
22e2c507 2956 }
1da177e4
LT
2957}
2958
165125e1 2959static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2960{
b4878f24 2961 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2962 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2963
7b679138 2964 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2965 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2966
30996f40 2967 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 2968 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 2969 cfq_add_rq_rb(rq);
22e2c507 2970
5e705374 2971 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2972}
2973
45333d5a
AC
2974/*
2975 * Update hw_tag based on peak queue depth over 50 samples under
2976 * sufficient load.
2977 */
2978static void cfq_update_hw_tag(struct cfq_data *cfqd)
2979{
1a1238a7
SL
2980 struct cfq_queue *cfqq = cfqd->active_queue;
2981
e459dd08
CZ
2982 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2983 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2984
2985 if (cfqd->hw_tag == 1)
2986 return;
45333d5a
AC
2987
2988 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2989 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2990 return;
2991
1a1238a7
SL
2992 /*
2993 * If active queue hasn't enough requests and can idle, cfq might not
2994 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2995 * case
2996 */
2997 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2998 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2999 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3000 return;
3001
45333d5a
AC
3002 if (cfqd->hw_tag_samples++ < 50)
3003 return;
3004
e459dd08 3005 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3006 cfqd->hw_tag = 1;
3007 else
3008 cfqd->hw_tag = 0;
45333d5a
AC
3009}
3010
165125e1 3011static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3012{
5e705374 3013 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3014 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3015 const int sync = rq_is_sync(rq);
b4878f24 3016 unsigned long now;
1da177e4 3017
b4878f24 3018 now = jiffies;
7b679138 3019 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 3020
45333d5a
AC
3021 cfq_update_hw_tag(cfqd);
3022
5ad531db 3023 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 3024 WARN_ON(!cfqq->dispatched);
5ad531db 3025 cfqd->rq_in_driver[sync]--;
6d048f53 3026 cfqq->dispatched--;
1da177e4 3027
3ed9a296
JA
3028 if (cfq_cfqq_sync(cfqq))
3029 cfqd->sync_flight--;
3030
365722bb 3031 if (sync) {
5e705374 3032 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
3033 cfqd->last_end_sync_rq = now;
3034 }
caaa5f9f
JA
3035
3036 /*
3037 * If this is the active queue, check if it needs to be expired,
3038 * or if we want to idle in case it has no pending requests.
3039 */
3040 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3041 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3042
44f7c160
JA
3043 if (cfq_cfqq_slice_new(cfqq)) {
3044 cfq_set_prio_slice(cfqd, cfqq);
3045 cfq_clear_cfqq_slice_new(cfqq);
3046 }
a36e71f9 3047 /*
8e550632
CZ
3048 * Idling is not enabled on:
3049 * - expired queues
3050 * - idle-priority queues
3051 * - async queues
3052 * - queues with still some requests queued
3053 * - when there is a close cooperator
a36e71f9 3054 */
0871714e 3055 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 3056 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3057 else if (sync && cfqq_empty &&
3058 !cfq_close_cooperator(cfqd, cfqq)) {
3059 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3060 /*
3061 * Idling is enabled for SYNC_WORKLOAD.
3062 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3063 * only if we processed at least one !rq_noidle request
3064 */
3065 if (cfqd->serving_type == SYNC_WORKLOAD
3066 || cfqd->noidle_tree_requires_idle)
3067 cfq_arm_slice_timer(cfqd);
3068 }
caaa5f9f 3069 }
6d048f53 3070
5ad531db 3071 if (!rq_in_driver(cfqd))
23e018a1 3072 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3073}
3074
22e2c507
JA
3075/*
3076 * we temporarily boost lower priority queues if they are holding fs exclusive
3077 * resources. they are boosted to normal prio (CLASS_BE/4)
3078 */
3079static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3080{
22e2c507
JA
3081 if (has_fs_excl()) {
3082 /*
3083 * boost idle prio on transactions that would lock out other
3084 * users of the filesystem
3085 */
3086 if (cfq_class_idle(cfqq))
3087 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3088 if (cfqq->ioprio > IOPRIO_NORM)
3089 cfqq->ioprio = IOPRIO_NORM;
3090 } else {
3091 /*
dddb7451 3092 * unboost the queue (if needed)
22e2c507 3093 */
dddb7451
CZ
3094 cfqq->ioprio_class = cfqq->org_ioprio_class;
3095 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3096 }
22e2c507 3097}
1da177e4 3098
89850f7e 3099static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3100{
1b379d8d 3101 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3102 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3103 return ELV_MQUEUE_MUST;
3b18152c 3104 }
1da177e4 3105
22e2c507 3106 return ELV_MQUEUE_MAY;
22e2c507
JA
3107}
3108
165125e1 3109static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3110{
3111 struct cfq_data *cfqd = q->elevator->elevator_data;
3112 struct task_struct *tsk = current;
91fac317 3113 struct cfq_io_context *cic;
22e2c507
JA
3114 struct cfq_queue *cfqq;
3115
3116 /*
3117 * don't force setup of a queue from here, as a call to may_queue
3118 * does not necessarily imply that a request actually will be queued.
3119 * so just lookup a possibly existing queue, or return 'may queue'
3120 * if that fails
3121 */
4ac845a2 3122 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3123 if (!cic)
3124 return ELV_MQUEUE_MAY;
3125
b0b78f81 3126 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3127 if (cfqq) {
fd0928df 3128 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3129 cfq_prio_boost(cfqq);
3130
89850f7e 3131 return __cfq_may_queue(cfqq);
22e2c507
JA
3132 }
3133
3134 return ELV_MQUEUE_MAY;
1da177e4
LT
3135}
3136
1da177e4
LT
3137/*
3138 * queue lock held here
3139 */
bb37b94c 3140static void cfq_put_request(struct request *rq)
1da177e4 3141{
5e705374 3142 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3143
5e705374 3144 if (cfqq) {
22e2c507 3145 const int rw = rq_data_dir(rq);
1da177e4 3146
22e2c507
JA
3147 BUG_ON(!cfqq->allocated[rw]);
3148 cfqq->allocated[rw]--;
1da177e4 3149
5e705374 3150 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3151
1da177e4 3152 rq->elevator_private = NULL;
5e705374 3153 rq->elevator_private2 = NULL;
1da177e4 3154
1da177e4
LT
3155 cfq_put_queue(cfqq);
3156 }
3157}
3158
df5fe3e8
JM
3159static struct cfq_queue *
3160cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3161 struct cfq_queue *cfqq)
3162{
3163 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3164 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3165 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3166 cfq_put_queue(cfqq);
3167 return cic_to_cfqq(cic, 1);
3168}
3169
e6c5bc73
JM
3170static int should_split_cfqq(struct cfq_queue *cfqq)
3171{
3172 if (cfqq->seeky_start &&
3173 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3174 return 1;
3175 return 0;
3176}
3177
3178/*
3179 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3180 * was the last process referring to said cfqq.
3181 */
3182static struct cfq_queue *
3183split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3184{
3185 if (cfqq_process_refs(cfqq) == 1) {
3186 cfqq->seeky_start = 0;
3187 cfqq->pid = current->pid;
3188 cfq_clear_cfqq_coop(cfqq);
3189 return cfqq;
3190 }
3191
3192 cic_set_cfqq(cic, NULL, 1);
3193 cfq_put_queue(cfqq);
3194 return NULL;
3195}
1da177e4 3196/*
22e2c507 3197 * Allocate cfq data structures associated with this request.
1da177e4 3198 */
22e2c507 3199static int
165125e1 3200cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3201{
3202 struct cfq_data *cfqd = q->elevator->elevator_data;
3203 struct cfq_io_context *cic;
3204 const int rw = rq_data_dir(rq);
a6151c3a 3205 const bool is_sync = rq_is_sync(rq);
22e2c507 3206 struct cfq_queue *cfqq;
1da177e4
LT
3207 unsigned long flags;
3208
3209 might_sleep_if(gfp_mask & __GFP_WAIT);
3210
e2d74ac0 3211 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3212
1da177e4
LT
3213 spin_lock_irqsave(q->queue_lock, flags);
3214
22e2c507
JA
3215 if (!cic)
3216 goto queue_fail;
3217
e6c5bc73 3218new_queue:
91fac317 3219 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3220 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3221 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3222 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3223 } else {
e6c5bc73
JM
3224 /*
3225 * If the queue was seeky for too long, break it apart.
3226 */
3227 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3228 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3229 cfqq = split_cfqq(cic, cfqq);
3230 if (!cfqq)
3231 goto new_queue;
3232 }
3233
df5fe3e8
JM
3234 /*
3235 * Check to see if this queue is scheduled to merge with
3236 * another, closely cooperating queue. The merging of
3237 * queues happens here as it must be done in process context.
3238 * The reference on new_cfqq was taken in merge_cfqqs.
3239 */
3240 if (cfqq->new_cfqq)
3241 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3242 }
1da177e4
LT
3243
3244 cfqq->allocated[rw]++;
22e2c507 3245 atomic_inc(&cfqq->ref);
1da177e4 3246
5e705374 3247 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3248
5e705374
JA
3249 rq->elevator_private = cic;
3250 rq->elevator_private2 = cfqq;
3251 return 0;
1da177e4 3252
22e2c507
JA
3253queue_fail:
3254 if (cic)
3255 put_io_context(cic->ioc);
89850f7e 3256
23e018a1 3257 cfq_schedule_dispatch(cfqd);
1da177e4 3258 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3259 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3260 return 1;
3261}
3262
65f27f38 3263static void cfq_kick_queue(struct work_struct *work)
22e2c507 3264{
65f27f38 3265 struct cfq_data *cfqd =
23e018a1 3266 container_of(work, struct cfq_data, unplug_work);
165125e1 3267 struct request_queue *q = cfqd->queue;
22e2c507 3268
40bb54d1 3269 spin_lock_irq(q->queue_lock);
a7f55792 3270 __blk_run_queue(cfqd->queue);
40bb54d1 3271 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3272}
3273
3274/*
3275 * Timer running if the active_queue is currently idling inside its time slice
3276 */
3277static void cfq_idle_slice_timer(unsigned long data)
3278{
3279 struct cfq_data *cfqd = (struct cfq_data *) data;
3280 struct cfq_queue *cfqq;
3281 unsigned long flags;
3c6bd2f8 3282 int timed_out = 1;
22e2c507 3283
7b679138
JA
3284 cfq_log(cfqd, "idle timer fired");
3285
22e2c507
JA
3286 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3287
fe094d98
JA
3288 cfqq = cfqd->active_queue;
3289 if (cfqq) {
3c6bd2f8
JA
3290 timed_out = 0;
3291
b029195d
JA
3292 /*
3293 * We saw a request before the queue expired, let it through
3294 */
3295 if (cfq_cfqq_must_dispatch(cfqq))
3296 goto out_kick;
3297
22e2c507
JA
3298 /*
3299 * expired
3300 */
44f7c160 3301 if (cfq_slice_used(cfqq))
22e2c507
JA
3302 goto expire;
3303
3304 /*
3305 * only expire and reinvoke request handler, if there are
3306 * other queues with pending requests
3307 */
caaa5f9f 3308 if (!cfqd->busy_queues)
22e2c507 3309 goto out_cont;
22e2c507
JA
3310
3311 /*
3312 * not expired and it has a request pending, let it dispatch
3313 */
75e50984 3314 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3315 goto out_kick;
76280aff
CZ
3316
3317 /*
3318 * Queue depth flag is reset only when the idle didn't succeed
3319 */
3320 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3321 }
3322expire:
6084cdda 3323 cfq_slice_expired(cfqd, timed_out);
22e2c507 3324out_kick:
23e018a1 3325 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3326out_cont:
3327 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3328}
3329
3b18152c
JA
3330static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3331{
3332 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3333 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3334}
22e2c507 3335
c2dea2d1
VT
3336static void cfq_put_async_queues(struct cfq_data *cfqd)
3337{
3338 int i;
3339
3340 for (i = 0; i < IOPRIO_BE_NR; i++) {
3341 if (cfqd->async_cfqq[0][i])
3342 cfq_put_queue(cfqd->async_cfqq[0][i]);
3343 if (cfqd->async_cfqq[1][i])
3344 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3345 }
2389d1ef
ON
3346
3347 if (cfqd->async_idle_cfqq)
3348 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3349}
3350
b374d18a 3351static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3352{
22e2c507 3353 struct cfq_data *cfqd = e->elevator_data;
165125e1 3354 struct request_queue *q = cfqd->queue;
22e2c507 3355
3b18152c 3356 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3357
d9ff4187 3358 spin_lock_irq(q->queue_lock);
e2d74ac0 3359
d9ff4187 3360 if (cfqd->active_queue)
6084cdda 3361 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3362
3363 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3364 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3365 struct cfq_io_context,
3366 queue_list);
89850f7e
JA
3367
3368 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3369 }
e2d74ac0 3370
c2dea2d1 3371 cfq_put_async_queues(cfqd);
15c31be4 3372
d9ff4187 3373 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3374
3375 cfq_shutdown_timer_wq(cfqd);
3376
a90d742e 3377 kfree(cfqd);
1da177e4
LT
3378}
3379
165125e1 3380static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3381{
3382 struct cfq_data *cfqd;
718eee05 3383 int i, j;
cdb16e8f 3384 struct cfq_group *cfqg;
615f0259 3385 struct cfq_rb_root *st;
1da177e4 3386
94f6030c 3387 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3388 if (!cfqd)
bc1c1169 3389 return NULL;
1da177e4 3390
1fa8f6d6
VG
3391 /* Init root service tree */
3392 cfqd->grp_service_tree = CFQ_RB_ROOT;
3393
cdb16e8f
VG
3394 /* Init root group */
3395 cfqg = &cfqd->root_group;
615f0259
VG
3396 for_each_cfqg_st(cfqg, i, j, st)
3397 *st = CFQ_RB_ROOT;
1fa8f6d6 3398 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3399
25bc6b07
VG
3400 /* Give preference to root group over other groups */
3401 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3402
25fb5169
VG
3403#ifdef CONFIG_CFQ_GROUP_IOSCHED
3404 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd);
3405#endif
26a2ac00
JA
3406 /*
3407 * Not strictly needed (since RB_ROOT just clears the node and we
3408 * zeroed cfqd on alloc), but better be safe in case someone decides
3409 * to add magic to the rb code
3410 */
3411 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3412 cfqd->prio_trees[i] = RB_ROOT;
3413
6118b70b
JA
3414 /*
3415 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3416 * Grab a permanent reference to it, so that the normal code flow
3417 * will not attempt to free it.
3418 */
3419 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3420 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3421 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3422
d9ff4187 3423 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3424
1da177e4 3425 cfqd->queue = q;
1da177e4 3426
22e2c507
JA
3427 init_timer(&cfqd->idle_slice_timer);
3428 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3429 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3430
23e018a1 3431 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3432
1da177e4 3433 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3434 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3435 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3436 cfqd->cfq_back_max = cfq_back_max;
3437 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3438 cfqd->cfq_slice[0] = cfq_slice_async;
3439 cfqd->cfq_slice[1] = cfq_slice_sync;
3440 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3441 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3442 cfqd->cfq_latency = 1;
e459dd08 3443 cfqd->hw_tag = -1;
365722bb 3444 cfqd->last_end_sync_rq = jiffies;
bc1c1169 3445 return cfqd;
1da177e4
LT
3446}
3447
3448static void cfq_slab_kill(void)
3449{
d6de8be7
JA
3450 /*
3451 * Caller already ensured that pending RCU callbacks are completed,
3452 * so we should have no busy allocations at this point.
3453 */
1da177e4
LT
3454 if (cfq_pool)
3455 kmem_cache_destroy(cfq_pool);
3456 if (cfq_ioc_pool)
3457 kmem_cache_destroy(cfq_ioc_pool);
3458}
3459
3460static int __init cfq_slab_setup(void)
3461{
0a31bd5f 3462 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3463 if (!cfq_pool)
3464 goto fail;
3465
34e6bbf2 3466 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3467 if (!cfq_ioc_pool)
3468 goto fail;
3469
3470 return 0;
3471fail:
3472 cfq_slab_kill();
3473 return -ENOMEM;
3474}
3475
1da177e4
LT
3476/*
3477 * sysfs parts below -->
3478 */
1da177e4
LT
3479static ssize_t
3480cfq_var_show(unsigned int var, char *page)
3481{
3482 return sprintf(page, "%d\n", var);
3483}
3484
3485static ssize_t
3486cfq_var_store(unsigned int *var, const char *page, size_t count)
3487{
3488 char *p = (char *) page;
3489
3490 *var = simple_strtoul(p, &p, 10);
3491 return count;
3492}
3493
1da177e4 3494#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3495static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3496{ \
3d1ab40f 3497 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3498 unsigned int __data = __VAR; \
3499 if (__CONV) \
3500 __data = jiffies_to_msecs(__data); \
3501 return cfq_var_show(__data, (page)); \
3502}
3503SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3504SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3505SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3506SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3507SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3508SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3509SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3510SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3511SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3512SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
3513#undef SHOW_FUNCTION
3514
3515#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3516static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3517{ \
3d1ab40f 3518 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3519 unsigned int __data; \
3520 int ret = cfq_var_store(&__data, (page), count); \
3521 if (__data < (MIN)) \
3522 __data = (MIN); \
3523 else if (__data > (MAX)) \
3524 __data = (MAX); \
3525 if (__CONV) \
3526 *(__PTR) = msecs_to_jiffies(__data); \
3527 else \
3528 *(__PTR) = __data; \
3529 return ret; \
3530}
3531STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3532STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3533 UINT_MAX, 1);
3534STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3535 UINT_MAX, 1);
e572ec7e 3536STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3537STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3538 UINT_MAX, 0);
22e2c507
JA
3539STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3540STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3541STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3542STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3543 UINT_MAX, 0);
963b72fc 3544STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
3545#undef STORE_FUNCTION
3546
e572ec7e
AV
3547#define CFQ_ATTR(name) \
3548 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3549
3550static struct elv_fs_entry cfq_attrs[] = {
3551 CFQ_ATTR(quantum),
e572ec7e
AV
3552 CFQ_ATTR(fifo_expire_sync),
3553 CFQ_ATTR(fifo_expire_async),
3554 CFQ_ATTR(back_seek_max),
3555 CFQ_ATTR(back_seek_penalty),
3556 CFQ_ATTR(slice_sync),
3557 CFQ_ATTR(slice_async),
3558 CFQ_ATTR(slice_async_rq),
3559 CFQ_ATTR(slice_idle),
963b72fc 3560 CFQ_ATTR(low_latency),
e572ec7e 3561 __ATTR_NULL
1da177e4
LT
3562};
3563
1da177e4
LT
3564static struct elevator_type iosched_cfq = {
3565 .ops = {
3566 .elevator_merge_fn = cfq_merge,
3567 .elevator_merged_fn = cfq_merged_request,
3568 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3569 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3570 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3571 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3572 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3573 .elevator_deactivate_req_fn = cfq_deactivate_request,
3574 .elevator_queue_empty_fn = cfq_queue_empty,
3575 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3576 .elevator_former_req_fn = elv_rb_former_request,
3577 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3578 .elevator_set_req_fn = cfq_set_request,
3579 .elevator_put_req_fn = cfq_put_request,
3580 .elevator_may_queue_fn = cfq_may_queue,
3581 .elevator_init_fn = cfq_init_queue,
3582 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3583 .trim = cfq_free_io_context,
1da177e4 3584 },
3d1ab40f 3585 .elevator_attrs = cfq_attrs,
1da177e4
LT
3586 .elevator_name = "cfq",
3587 .elevator_owner = THIS_MODULE,
3588};
3589
3590static int __init cfq_init(void)
3591{
22e2c507
JA
3592 /*
3593 * could be 0 on HZ < 1000 setups
3594 */
3595 if (!cfq_slice_async)
3596 cfq_slice_async = 1;
3597 if (!cfq_slice_idle)
3598 cfq_slice_idle = 1;
3599
1da177e4
LT
3600 if (cfq_slab_setup())
3601 return -ENOMEM;
3602
2fdd82bd 3603 elv_register(&iosched_cfq);
1da177e4 3604
2fdd82bd 3605 return 0;
1da177e4
LT
3606}
3607
3608static void __exit cfq_exit(void)
3609{
6e9a4738 3610 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 3611 elv_unregister(&iosched_cfq);
334e94de 3612 ioc_gone = &all_gone;
fba82272
OH
3613 /* ioc_gone's update must be visible before reading ioc_count */
3614 smp_wmb();
d6de8be7
JA
3615
3616 /*
3617 * this also protects us from entering cfq_slab_kill() with
3618 * pending RCU callbacks
3619 */
245b2e70 3620 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3621 wait_for_completion(&all_gone);
83521d3e 3622 cfq_slab_kill();
1da177e4
LT
3623}
3624
3625module_init(cfq_init);
3626module_exit(cfq_exit);
3627
3628MODULE_AUTHOR("Jens Axboe");
3629MODULE_LICENSE("GPL");
3630MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");