block: remove wrappers for request type/flags
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
e98ef89b 17#include "cfq.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
33static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34static const int cfq_hist_divisor = 4;
22e2c507 35
d9e7620e 36/*
0871714e 37 * offset from end of service tree
d9e7620e 38 */
0871714e 39#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
40
41/*
42 * below this threshold, we consider thinktime immediate
43 */
44#define CFQ_MIN_TT (2)
45
22e2c507 46#define CFQ_SLICE_SCALE (5)
45333d5a 47#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 48#define CFQ_SERVICE_SHIFT 12
22e2c507 49
3dde36dd 50#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 51#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 52#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 53#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 54
fe094d98
JA
55#define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 57#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
7f1dc8a2 58#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
1da177e4 59
e18b890b
CL
60static struct kmem_cache *cfq_pool;
61static struct kmem_cache *cfq_ioc_pool;
1da177e4 62
245b2e70 63static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 64static struct completion *ioc_gone;
9a11b4ed 65static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 66
80b15c73
KK
67static DEFINE_SPINLOCK(cic_index_lock);
68static DEFINE_IDA(cic_index_ida);
69
22e2c507
JA
70#define CFQ_PRIO_LISTS IOPRIO_BE_NR
71#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
72#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
73
206dc69b 74#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 75#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 76
cc09e299
JA
77/*
78 * Most of our rbtree usage is for sorting with min extraction, so
79 * if we cache the leftmost node we don't have to walk down the tree
80 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
81 * move this into the elevator for the rq sorting as well.
82 */
83struct cfq_rb_root {
84 struct rb_root rb;
85 struct rb_node *left;
aa6f6a3d 86 unsigned count;
73e9ffdd 87 unsigned total_weight;
1fa8f6d6 88 u64 min_vdisktime;
25bc6b07 89 struct rb_node *active;
cc09e299 90};
73e9ffdd
RK
91#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
cc09e299 93
6118b70b
JA
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98 /* reference count */
99 atomic_t ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
dae739eb
VG
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
f75edf2d 125 unsigned int allocated_slice;
c4081ba5 126 unsigned int slice_dispatch;
dae739eb
VG
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
6118b70b
JA
129 unsigned long slice_end;
130 long slice_resid;
6118b70b
JA
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
c4081ba5
RK
141 pid_t pid;
142
3dde36dd 143 u32 seek_history;
b2c18e1e
JM
144 sector_t last_request_pos;
145
aa6f6a3d 146 struct cfq_rb_root *service_tree;
df5fe3e8 147 struct cfq_queue *new_cfqq;
cdb16e8f 148 struct cfq_group *cfqg;
ae30c286 149 struct cfq_group *orig_cfqg;
6118b70b
JA
150};
151
c0324a02 152/*
718eee05 153 * First index in the service_trees.
c0324a02
CZ
154 * IDLE is handled separately, so it has negative index
155 */
156enum wl_prio_t {
c0324a02 157 BE_WORKLOAD = 0,
615f0259
VG
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
c0324a02
CZ
160};
161
718eee05
CZ
162/*
163 * Second index in the service_trees.
164 */
165enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
169};
170
cdb16e8f
VG
171/* This is per cgroup per device grouping structure */
172struct cfq_group {
1fa8f6d6
VG
173 /* group service_tree member */
174 struct rb_node rb_node;
175
176 /* group service_tree key */
177 u64 vdisktime;
25bc6b07 178 unsigned int weight;
1fa8f6d6
VG
179 bool on_st;
180
181 /* number of cfqq currently on this group */
182 int nr_cfqq;
183
58ff82f3
VG
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg[2];
cdb16e8f
VG
186 /*
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
189 */
190 struct cfq_rb_root service_trees[2][3];
191 struct cfq_rb_root service_tree_idle;
dae739eb
VG
192
193 unsigned long saved_workload_slice;
194 enum wl_type_t saved_workload;
195 enum wl_prio_t saved_serving_prio;
25fb5169
VG
196 struct blkio_group blkg;
197#ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node;
b1c35769 199 atomic_t ref;
25fb5169 200#endif
cdb16e8f 201};
718eee05 202
22e2c507
JA
203/*
204 * Per block device queue structure
205 */
1da177e4 206struct cfq_data {
165125e1 207 struct request_queue *queue;
1fa8f6d6
VG
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree;
cdb16e8f 210 struct cfq_group root_group;
22e2c507 211
c0324a02
CZ
212 /*
213 * The priority currently being served
22e2c507 214 */
c0324a02 215 enum wl_prio_t serving_prio;
718eee05
CZ
216 enum wl_type_t serving_type;
217 unsigned long workload_expires;
cdb16e8f 218 struct cfq_group *serving_group;
8e550632 219 bool noidle_tree_requires_idle;
a36e71f9
JA
220
221 /*
222 * Each priority tree is sorted by next_request position. These
223 * trees are used when determining if two or more queues are
224 * interleaving requests (see cfq_close_cooperator).
225 */
226 struct rb_root prio_trees[CFQ_PRIO_LISTS];
227
22e2c507
JA
228 unsigned int busy_queues;
229
53c583d2
CZ
230 int rq_in_driver;
231 int rq_in_flight[2];
45333d5a
AC
232
233 /*
234 * queue-depth detection
235 */
236 int rq_queued;
25776e35 237 int hw_tag;
e459dd08
CZ
238 /*
239 * hw_tag can be
240 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
241 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
242 * 0 => no NCQ
243 */
244 int hw_tag_est_depth;
245 unsigned int hw_tag_samples;
1da177e4 246
22e2c507
JA
247 /*
248 * idle window management
249 */
250 struct timer_list idle_slice_timer;
23e018a1 251 struct work_struct unplug_work;
1da177e4 252
22e2c507
JA
253 struct cfq_queue *active_queue;
254 struct cfq_io_context *active_cic;
22e2c507 255
c2dea2d1
VT
256 /*
257 * async queue for each priority case
258 */
259 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
260 struct cfq_queue *async_idle_cfqq;
15c31be4 261
6d048f53 262 sector_t last_position;
1da177e4 263
1da177e4
LT
264 /*
265 * tunables, see top of file
266 */
267 unsigned int cfq_quantum;
22e2c507 268 unsigned int cfq_fifo_expire[2];
1da177e4
LT
269 unsigned int cfq_back_penalty;
270 unsigned int cfq_back_max;
22e2c507
JA
271 unsigned int cfq_slice[2];
272 unsigned int cfq_slice_async_rq;
273 unsigned int cfq_slice_idle;
963b72fc 274 unsigned int cfq_latency;
ae30c286 275 unsigned int cfq_group_isolation;
d9ff4187 276
80b15c73 277 unsigned int cic_index;
d9ff4187 278 struct list_head cic_list;
1da177e4 279
6118b70b
JA
280 /*
281 * Fallback dummy cfqq for extreme OOM conditions
282 */
283 struct cfq_queue oom_cfqq;
365722bb 284
573412b2 285 unsigned long last_delayed_sync;
25fb5169
VG
286
287 /* List of cfq groups being managed on this device*/
288 struct hlist_head cfqg_list;
bb729bc9 289 struct rcu_head rcu;
1da177e4
LT
290};
291
25fb5169
VG
292static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
293
cdb16e8f
VG
294static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
295 enum wl_prio_t prio,
65b32a57 296 enum wl_type_t type)
c0324a02 297{
1fa8f6d6
VG
298 if (!cfqg)
299 return NULL;
300
c0324a02 301 if (prio == IDLE_WORKLOAD)
cdb16e8f 302 return &cfqg->service_tree_idle;
c0324a02 303
cdb16e8f 304 return &cfqg->service_trees[prio][type];
c0324a02
CZ
305}
306
3b18152c 307enum cfqq_state_flags {
b0b8d749
JA
308 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
309 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 310 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 311 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
312 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
313 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
314 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 315 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 316 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 317 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 318 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 319 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 320 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
321};
322
323#define CFQ_CFQQ_FNS(name) \
324static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
325{ \
fe094d98 326 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
327} \
328static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
329{ \
fe094d98 330 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
331} \
332static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
333{ \
fe094d98 334 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
335}
336
337CFQ_CFQQ_FNS(on_rr);
338CFQ_CFQQ_FNS(wait_request);
b029195d 339CFQ_CFQQ_FNS(must_dispatch);
3b18152c 340CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
341CFQ_CFQQ_FNS(fifo_expire);
342CFQ_CFQQ_FNS(idle_window);
343CFQ_CFQQ_FNS(prio_changed);
44f7c160 344CFQ_CFQQ_FNS(slice_new);
91fac317 345CFQ_CFQQ_FNS(sync);
a36e71f9 346CFQ_CFQQ_FNS(coop);
ae54abed 347CFQ_CFQQ_FNS(split_coop);
76280aff 348CFQ_CFQQ_FNS(deep);
f75edf2d 349CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
350#undef CFQ_CFQQ_FNS
351
afc24d49 352#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
353#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
355 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
356 blkg_path(&(cfqq)->cfqg->blkg), ##args);
357
358#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
360 blkg_path(&(cfqg)->blkg), ##args); \
361
362#else
7b679138
JA
363#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
364 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
365#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
366#endif
7b679138
JA
367#define cfq_log(cfqd, fmt, args...) \
368 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
369
615f0259
VG
370/* Traverses through cfq group service trees */
371#define for_each_cfqg_st(cfqg, i, j, st) \
372 for (i = 0; i <= IDLE_WORKLOAD; i++) \
373 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
374 : &cfqg->service_tree_idle; \
375 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
376 (i == IDLE_WORKLOAD && j == 0); \
377 j++, st = i < IDLE_WORKLOAD ? \
378 &cfqg->service_trees[i][j]: NULL) \
379
380
c0324a02
CZ
381static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
382{
383 if (cfq_class_idle(cfqq))
384 return IDLE_WORKLOAD;
385 if (cfq_class_rt(cfqq))
386 return RT_WORKLOAD;
387 return BE_WORKLOAD;
388}
389
718eee05
CZ
390
391static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
392{
393 if (!cfq_cfqq_sync(cfqq))
394 return ASYNC_WORKLOAD;
395 if (!cfq_cfqq_idle_window(cfqq))
396 return SYNC_NOIDLE_WORKLOAD;
397 return SYNC_WORKLOAD;
398}
399
58ff82f3
VG
400static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
401 struct cfq_data *cfqd,
402 struct cfq_group *cfqg)
c0324a02
CZ
403{
404 if (wl == IDLE_WORKLOAD)
cdb16e8f 405 return cfqg->service_tree_idle.count;
c0324a02 406
cdb16e8f
VG
407 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
408 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
409 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
410}
411
f26bd1f0
VG
412static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
413 struct cfq_group *cfqg)
414{
415 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
416 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
417}
418
165125e1 419static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 420static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 421 struct io_context *, gfp_t);
4ac845a2 422static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
423 struct io_context *);
424
425static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 426 bool is_sync)
91fac317 427{
a6151c3a 428 return cic->cfqq[is_sync];
91fac317
VT
429}
430
431static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 432 struct cfq_queue *cfqq, bool is_sync)
91fac317 433{
a6151c3a 434 cic->cfqq[is_sync] = cfqq;
91fac317
VT
435}
436
bca4b914 437#define CIC_DEAD_KEY 1ul
80b15c73 438#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
439
440static inline void *cfqd_dead_key(struct cfq_data *cfqd)
441{
80b15c73 442 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
443}
444
445static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
446{
447 struct cfq_data *cfqd = cic->key;
448
449 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
450 return NULL;
451
452 return cfqd;
453}
454
91fac317
VT
455/*
456 * We regard a request as SYNC, if it's either a read or has the SYNC bit
457 * set (in which case it could also be direct WRITE).
458 */
a6151c3a 459static inline bool cfq_bio_sync(struct bio *bio)
91fac317 460{
a6151c3a 461 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 462}
1da177e4 463
99f95e52
AM
464/*
465 * scheduler run of queue, if there are requests pending and no one in the
466 * driver that will restart queueing
467 */
23e018a1 468static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 469{
7b679138
JA
470 if (cfqd->busy_queues) {
471 cfq_log(cfqd, "schedule dispatch");
23e018a1 472 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 473 }
99f95e52
AM
474}
475
165125e1 476static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
477{
478 struct cfq_data *cfqd = q->elevator->elevator_data;
479
f04a6424 480 return !cfqd->rq_queued;
99f95e52
AM
481}
482
44f7c160
JA
483/*
484 * Scale schedule slice based on io priority. Use the sync time slice only
485 * if a queue is marked sync and has sync io queued. A sync queue with async
486 * io only, should not get full sync slice length.
487 */
a6151c3a 488static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 489 unsigned short prio)
44f7c160 490{
d9e7620e 491 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 492
d9e7620e
JA
493 WARN_ON(prio >= IOPRIO_BE_NR);
494
495 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
496}
44f7c160 497
d9e7620e
JA
498static inline int
499cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
500{
501 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
502}
503
25bc6b07
VG
504static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
505{
506 u64 d = delta << CFQ_SERVICE_SHIFT;
507
508 d = d * BLKIO_WEIGHT_DEFAULT;
509 do_div(d, cfqg->weight);
510 return d;
511}
512
513static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
514{
515 s64 delta = (s64)(vdisktime - min_vdisktime);
516 if (delta > 0)
517 min_vdisktime = vdisktime;
518
519 return min_vdisktime;
520}
521
522static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
523{
524 s64 delta = (s64)(vdisktime - min_vdisktime);
525 if (delta < 0)
526 min_vdisktime = vdisktime;
527
528 return min_vdisktime;
529}
530
531static void update_min_vdisktime(struct cfq_rb_root *st)
532{
533 u64 vdisktime = st->min_vdisktime;
534 struct cfq_group *cfqg;
535
536 if (st->active) {
537 cfqg = rb_entry_cfqg(st->active);
538 vdisktime = cfqg->vdisktime;
539 }
540
541 if (st->left) {
542 cfqg = rb_entry_cfqg(st->left);
543 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
544 }
545
546 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
547}
548
5db5d642
CZ
549/*
550 * get averaged number of queues of RT/BE priority.
551 * average is updated, with a formula that gives more weight to higher numbers,
552 * to quickly follows sudden increases and decrease slowly
553 */
554
58ff82f3
VG
555static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
556 struct cfq_group *cfqg, bool rt)
5869619c 557{
5db5d642
CZ
558 unsigned min_q, max_q;
559 unsigned mult = cfq_hist_divisor - 1;
560 unsigned round = cfq_hist_divisor / 2;
58ff82f3 561 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 562
58ff82f3
VG
563 min_q = min(cfqg->busy_queues_avg[rt], busy);
564 max_q = max(cfqg->busy_queues_avg[rt], busy);
565 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 566 cfq_hist_divisor;
58ff82f3
VG
567 return cfqg->busy_queues_avg[rt];
568}
569
570static inline unsigned
571cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
572{
573 struct cfq_rb_root *st = &cfqd->grp_service_tree;
574
575 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
576}
577
44f7c160
JA
578static inline void
579cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
580{
5db5d642
CZ
581 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
582 if (cfqd->cfq_latency) {
58ff82f3
VG
583 /*
584 * interested queues (we consider only the ones with the same
585 * priority class in the cfq group)
586 */
587 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
588 cfq_class_rt(cfqq));
5db5d642
CZ
589 unsigned sync_slice = cfqd->cfq_slice[1];
590 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
591 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
592
593 if (expect_latency > group_slice) {
5db5d642
CZ
594 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
595 /* scale low_slice according to IO priority
596 * and sync vs async */
597 unsigned low_slice =
598 min(slice, base_low_slice * slice / sync_slice);
599 /* the adapted slice value is scaled to fit all iqs
600 * into the target latency */
58ff82f3 601 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
602 low_slice);
603 }
604 }
dae739eb 605 cfqq->slice_start = jiffies;
5db5d642 606 cfqq->slice_end = jiffies + slice;
f75edf2d 607 cfqq->allocated_slice = slice;
7b679138 608 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
609}
610
611/*
612 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
613 * isn't valid until the first request from the dispatch is activated
614 * and the slice time set.
615 */
a6151c3a 616static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
617{
618 if (cfq_cfqq_slice_new(cfqq))
619 return 0;
620 if (time_before(jiffies, cfqq->slice_end))
621 return 0;
622
623 return 1;
624}
625
1da177e4 626/*
5e705374 627 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 628 * We choose the request that is closest to the head right now. Distance
e8a99053 629 * behind the head is penalized and only allowed to a certain extent.
1da177e4 630 */
5e705374 631static struct request *
cf7c25cf 632cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 633{
cf7c25cf 634 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 635 unsigned long back_max;
e8a99053
AM
636#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
637#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
638 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 639
5e705374
JA
640 if (rq1 == NULL || rq1 == rq2)
641 return rq2;
642 if (rq2 == NULL)
643 return rq1;
9c2c38a1 644
5e705374
JA
645 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
646 return rq1;
647 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
648 return rq2;
33659ebb 649 if ((rq1->cmd_flags & REQ_RW_META) && !(rq2->cmd_flags & REQ_RW_META))
374f84ac 650 return rq1;
33659ebb
CH
651 else if ((rq2->cmd_flags & REQ_RW_META) &&
652 !(rq1->cmd_flags & REQ_RW_META))
374f84ac 653 return rq2;
1da177e4 654
83096ebf
TH
655 s1 = blk_rq_pos(rq1);
656 s2 = blk_rq_pos(rq2);
1da177e4 657
1da177e4
LT
658 /*
659 * by definition, 1KiB is 2 sectors
660 */
661 back_max = cfqd->cfq_back_max * 2;
662
663 /*
664 * Strict one way elevator _except_ in the case where we allow
665 * short backward seeks which are biased as twice the cost of a
666 * similar forward seek.
667 */
668 if (s1 >= last)
669 d1 = s1 - last;
670 else if (s1 + back_max >= last)
671 d1 = (last - s1) * cfqd->cfq_back_penalty;
672 else
e8a99053 673 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
674
675 if (s2 >= last)
676 d2 = s2 - last;
677 else if (s2 + back_max >= last)
678 d2 = (last - s2) * cfqd->cfq_back_penalty;
679 else
e8a99053 680 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
681
682 /* Found required data */
e8a99053
AM
683
684 /*
685 * By doing switch() on the bit mask "wrap" we avoid having to
686 * check two variables for all permutations: --> faster!
687 */
688 switch (wrap) {
5e705374 689 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 690 if (d1 < d2)
5e705374 691 return rq1;
e8a99053 692 else if (d2 < d1)
5e705374 693 return rq2;
e8a99053
AM
694 else {
695 if (s1 >= s2)
5e705374 696 return rq1;
e8a99053 697 else
5e705374 698 return rq2;
e8a99053 699 }
1da177e4 700
e8a99053 701 case CFQ_RQ2_WRAP:
5e705374 702 return rq1;
e8a99053 703 case CFQ_RQ1_WRAP:
5e705374
JA
704 return rq2;
705 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
706 default:
707 /*
708 * Since both rqs are wrapped,
709 * start with the one that's further behind head
710 * (--> only *one* back seek required),
711 * since back seek takes more time than forward.
712 */
713 if (s1 <= s2)
5e705374 714 return rq1;
1da177e4 715 else
5e705374 716 return rq2;
1da177e4
LT
717 }
718}
719
498d3aa2
JA
720/*
721 * The below is leftmost cache rbtree addon
722 */
0871714e 723static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 724{
615f0259
VG
725 /* Service tree is empty */
726 if (!root->count)
727 return NULL;
728
cc09e299
JA
729 if (!root->left)
730 root->left = rb_first(&root->rb);
731
0871714e
JA
732 if (root->left)
733 return rb_entry(root->left, struct cfq_queue, rb_node);
734
735 return NULL;
cc09e299
JA
736}
737
1fa8f6d6
VG
738static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
739{
740 if (!root->left)
741 root->left = rb_first(&root->rb);
742
743 if (root->left)
744 return rb_entry_cfqg(root->left);
745
746 return NULL;
747}
748
a36e71f9
JA
749static void rb_erase_init(struct rb_node *n, struct rb_root *root)
750{
751 rb_erase(n, root);
752 RB_CLEAR_NODE(n);
753}
754
cc09e299
JA
755static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
756{
757 if (root->left == n)
758 root->left = NULL;
a36e71f9 759 rb_erase_init(n, &root->rb);
aa6f6a3d 760 --root->count;
cc09e299
JA
761}
762
1da177e4
LT
763/*
764 * would be nice to take fifo expire time into account as well
765 */
5e705374
JA
766static struct request *
767cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
768 struct request *last)
1da177e4 769{
21183b07
JA
770 struct rb_node *rbnext = rb_next(&last->rb_node);
771 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 772 struct request *next = NULL, *prev = NULL;
1da177e4 773
21183b07 774 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
775
776 if (rbprev)
5e705374 777 prev = rb_entry_rq(rbprev);
1da177e4 778
21183b07 779 if (rbnext)
5e705374 780 next = rb_entry_rq(rbnext);
21183b07
JA
781 else {
782 rbnext = rb_first(&cfqq->sort_list);
783 if (rbnext && rbnext != &last->rb_node)
5e705374 784 next = rb_entry_rq(rbnext);
21183b07 785 }
1da177e4 786
cf7c25cf 787 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
788}
789
d9e7620e
JA
790static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
791 struct cfq_queue *cfqq)
1da177e4 792{
d9e7620e
JA
793 /*
794 * just an approximation, should be ok.
795 */
cdb16e8f 796 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 797 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
798}
799
1fa8f6d6
VG
800static inline s64
801cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
802{
803 return cfqg->vdisktime - st->min_vdisktime;
804}
805
806static void
807__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
808{
809 struct rb_node **node = &st->rb.rb_node;
810 struct rb_node *parent = NULL;
811 struct cfq_group *__cfqg;
812 s64 key = cfqg_key(st, cfqg);
813 int left = 1;
814
815 while (*node != NULL) {
816 parent = *node;
817 __cfqg = rb_entry_cfqg(parent);
818
819 if (key < cfqg_key(st, __cfqg))
820 node = &parent->rb_left;
821 else {
822 node = &parent->rb_right;
823 left = 0;
824 }
825 }
826
827 if (left)
828 st->left = &cfqg->rb_node;
829
830 rb_link_node(&cfqg->rb_node, parent, node);
831 rb_insert_color(&cfqg->rb_node, &st->rb);
832}
833
834static void
835cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
836{
837 struct cfq_rb_root *st = &cfqd->grp_service_tree;
838 struct cfq_group *__cfqg;
839 struct rb_node *n;
840
841 cfqg->nr_cfqq++;
842 if (cfqg->on_st)
843 return;
844
845 /*
846 * Currently put the group at the end. Later implement something
847 * so that groups get lesser vtime based on their weights, so that
848 * if group does not loose all if it was not continously backlogged.
849 */
850 n = rb_last(&st->rb);
851 if (n) {
852 __cfqg = rb_entry_cfqg(n);
853 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
854 } else
855 cfqg->vdisktime = st->min_vdisktime;
856
857 __cfq_group_service_tree_add(st, cfqg);
858 cfqg->on_st = true;
58ff82f3 859 st->total_weight += cfqg->weight;
1fa8f6d6
VG
860}
861
862static void
863cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
864{
865 struct cfq_rb_root *st = &cfqd->grp_service_tree;
866
25bc6b07
VG
867 if (st->active == &cfqg->rb_node)
868 st->active = NULL;
869
1fa8f6d6
VG
870 BUG_ON(cfqg->nr_cfqq < 1);
871 cfqg->nr_cfqq--;
25bc6b07 872
1fa8f6d6
VG
873 /* If there are other cfq queues under this group, don't delete it */
874 if (cfqg->nr_cfqq)
875 return;
876
2868ef7b 877 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 878 cfqg->on_st = false;
58ff82f3 879 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
880 if (!RB_EMPTY_NODE(&cfqg->rb_node))
881 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 882 cfqg->saved_workload_slice = 0;
e98ef89b 883 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
884}
885
886static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
887{
f75edf2d 888 unsigned int slice_used;
dae739eb
VG
889
890 /*
891 * Queue got expired before even a single request completed or
892 * got expired immediately after first request completion.
893 */
894 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
895 /*
896 * Also charge the seek time incurred to the group, otherwise
897 * if there are mutiple queues in the group, each can dispatch
898 * a single request on seeky media and cause lots of seek time
899 * and group will never know it.
900 */
901 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
902 1);
903 } else {
904 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
905 if (slice_used > cfqq->allocated_slice)
906 slice_used = cfqq->allocated_slice;
dae739eb
VG
907 }
908
9a0785b0 909 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
dae739eb
VG
910 return slice_used;
911}
912
913static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 914 struct cfq_queue *cfqq)
dae739eb
VG
915{
916 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
917 unsigned int used_sl, charge_sl;
918 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
919 - cfqg->service_tree_idle.count;
920
921 BUG_ON(nr_sync < 0);
922 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 923
f26bd1f0
VG
924 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
925 charge_sl = cfqq->allocated_slice;
dae739eb
VG
926
927 /* Can't update vdisktime while group is on service tree */
928 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 929 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
930 __cfq_group_service_tree_add(st, cfqg);
931
932 /* This group is being expired. Save the context */
933 if (time_after(cfqd->workload_expires, jiffies)) {
934 cfqg->saved_workload_slice = cfqd->workload_expires
935 - jiffies;
936 cfqg->saved_workload = cfqd->serving_type;
937 cfqg->saved_serving_prio = cfqd->serving_prio;
938 } else
939 cfqg->saved_workload_slice = 0;
2868ef7b
VG
940
941 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
942 st->min_vdisktime);
e98ef89b
VG
943 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
944 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
945}
946
25fb5169
VG
947#ifdef CONFIG_CFQ_GROUP_IOSCHED
948static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
949{
950 if (blkg)
951 return container_of(blkg, struct cfq_group, blkg);
952 return NULL;
953}
954
f8d461d6
VG
955void
956cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
957{
958 cfqg_of_blkg(blkg)->weight = weight;
959}
960
25fb5169
VG
961static struct cfq_group *
962cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
963{
964 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
965 struct cfq_group *cfqg = NULL;
966 void *key = cfqd;
967 int i, j;
968 struct cfq_rb_root *st;
22084190
VG
969 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
970 unsigned int major, minor;
25fb5169 971
25fb5169 972 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
a74b2ada
RB
973 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
974 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
975 cfqg->blkg.dev = MKDEV(major, minor);
976 goto done;
977 }
25fb5169
VG
978 if (cfqg || !create)
979 goto done;
980
981 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
982 if (!cfqg)
983 goto done;
984
25fb5169
VG
985 for_each_cfqg_st(cfqg, i, j, st)
986 *st = CFQ_RB_ROOT;
987 RB_CLEAR_NODE(&cfqg->rb_node);
988
b1c35769
VG
989 /*
990 * Take the initial reference that will be released on destroy
991 * This can be thought of a joint reference by cgroup and
992 * elevator which will be dropped by either elevator exit
993 * or cgroup deletion path depending on who is exiting first.
994 */
995 atomic_set(&cfqg->ref, 1);
996
25fb5169 997 /* Add group onto cgroup list */
22084190 998 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
e98ef89b 999 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
22084190 1000 MKDEV(major, minor));
34d0f179 1001 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
25fb5169
VG
1002
1003 /* Add group on cfqd list */
1004 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1005
1006done:
25fb5169
VG
1007 return cfqg;
1008}
1009
1010/*
1011 * Search for the cfq group current task belongs to. If create = 1, then also
1012 * create the cfq group if it does not exist. request_queue lock must be held.
1013 */
1014static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1015{
1016 struct cgroup *cgroup;
1017 struct cfq_group *cfqg = NULL;
1018
1019 rcu_read_lock();
1020 cgroup = task_cgroup(current, blkio_subsys_id);
1021 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1022 if (!cfqg && create)
1023 cfqg = &cfqd->root_group;
1024 rcu_read_unlock();
1025 return cfqg;
1026}
1027
7f1dc8a2
VG
1028static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1029{
1030 atomic_inc(&cfqg->ref);
1031 return cfqg;
1032}
1033
25fb5169
VG
1034static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1035{
1036 /* Currently, all async queues are mapped to root group */
1037 if (!cfq_cfqq_sync(cfqq))
1038 cfqg = &cfqq->cfqd->root_group;
1039
1040 cfqq->cfqg = cfqg;
b1c35769
VG
1041 /* cfqq reference on cfqg */
1042 atomic_inc(&cfqq->cfqg->ref);
1043}
1044
1045static void cfq_put_cfqg(struct cfq_group *cfqg)
1046{
1047 struct cfq_rb_root *st;
1048 int i, j;
1049
1050 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1051 if (!atomic_dec_and_test(&cfqg->ref))
1052 return;
1053 for_each_cfqg_st(cfqg, i, j, st)
1054 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1055 kfree(cfqg);
1056}
1057
1058static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1059{
1060 /* Something wrong if we are trying to remove same group twice */
1061 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1062
1063 hlist_del_init(&cfqg->cfqd_node);
1064
1065 /*
1066 * Put the reference taken at the time of creation so that when all
1067 * queues are gone, group can be destroyed.
1068 */
1069 cfq_put_cfqg(cfqg);
1070}
1071
1072static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1073{
1074 struct hlist_node *pos, *n;
1075 struct cfq_group *cfqg;
1076
1077 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1078 /*
1079 * If cgroup removal path got to blk_group first and removed
1080 * it from cgroup list, then it will take care of destroying
1081 * cfqg also.
1082 */
e98ef89b 1083 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1084 cfq_destroy_cfqg(cfqd, cfqg);
1085 }
25fb5169 1086}
b1c35769
VG
1087
1088/*
1089 * Blk cgroup controller notification saying that blkio_group object is being
1090 * delinked as associated cgroup object is going away. That also means that
1091 * no new IO will come in this group. So get rid of this group as soon as
1092 * any pending IO in the group is finished.
1093 *
1094 * This function is called under rcu_read_lock(). key is the rcu protected
1095 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1096 * read lock.
1097 *
1098 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1099 * it should not be NULL as even if elevator was exiting, cgroup deltion
1100 * path got to it first.
1101 */
1102void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1103{
1104 unsigned long flags;
1105 struct cfq_data *cfqd = key;
1106
1107 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1108 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1109 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1110}
1111
25fb5169
VG
1112#else /* GROUP_IOSCHED */
1113static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1114{
1115 return &cfqd->root_group;
1116}
7f1dc8a2
VG
1117
1118static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1119{
50eaeb32 1120 return cfqg;
7f1dc8a2
VG
1121}
1122
25fb5169
VG
1123static inline void
1124cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1125 cfqq->cfqg = cfqg;
1126}
1127
b1c35769
VG
1128static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1129static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1130
25fb5169
VG
1131#endif /* GROUP_IOSCHED */
1132
498d3aa2 1133/*
c0324a02 1134 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1135 * requests waiting to be processed. It is sorted in the order that
1136 * we will service the queues.
1137 */
a36e71f9 1138static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1139 bool add_front)
d9e7620e 1140{
0871714e
JA
1141 struct rb_node **p, *parent;
1142 struct cfq_queue *__cfqq;
d9e7620e 1143 unsigned long rb_key;
c0324a02 1144 struct cfq_rb_root *service_tree;
498d3aa2 1145 int left;
dae739eb 1146 int new_cfqq = 1;
ae30c286
VG
1147 int group_changed = 0;
1148
1149#ifdef CONFIG_CFQ_GROUP_IOSCHED
1150 if (!cfqd->cfq_group_isolation
1151 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1152 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1153 /* Move this cfq to root group */
1154 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1155 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1156 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1157 cfqq->orig_cfqg = cfqq->cfqg;
1158 cfqq->cfqg = &cfqd->root_group;
1159 atomic_inc(&cfqd->root_group.ref);
1160 group_changed = 1;
1161 } else if (!cfqd->cfq_group_isolation
1162 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1163 /* cfqq is sequential now needs to go to its original group */
1164 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1165 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1166 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1167 cfq_put_cfqg(cfqq->cfqg);
1168 cfqq->cfqg = cfqq->orig_cfqg;
1169 cfqq->orig_cfqg = NULL;
1170 group_changed = 1;
1171 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1172 }
1173#endif
d9e7620e 1174
cdb16e8f 1175 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1176 cfqq_type(cfqq));
0871714e
JA
1177 if (cfq_class_idle(cfqq)) {
1178 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1179 parent = rb_last(&service_tree->rb);
0871714e
JA
1180 if (parent && parent != &cfqq->rb_node) {
1181 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1182 rb_key += __cfqq->rb_key;
1183 } else
1184 rb_key += jiffies;
1185 } else if (!add_front) {
b9c8946b
JA
1186 /*
1187 * Get our rb key offset. Subtract any residual slice
1188 * value carried from last service. A negative resid
1189 * count indicates slice overrun, and this should position
1190 * the next service time further away in the tree.
1191 */
edd75ffd 1192 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1193 rb_key -= cfqq->slice_resid;
edd75ffd 1194 cfqq->slice_resid = 0;
48e025e6
CZ
1195 } else {
1196 rb_key = -HZ;
aa6f6a3d 1197 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1198 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1199 }
1da177e4 1200
d9e7620e 1201 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1202 new_cfqq = 0;
99f9628a 1203 /*
d9e7620e 1204 * same position, nothing more to do
99f9628a 1205 */
c0324a02
CZ
1206 if (rb_key == cfqq->rb_key &&
1207 cfqq->service_tree == service_tree)
d9e7620e 1208 return;
1da177e4 1209
aa6f6a3d
CZ
1210 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1211 cfqq->service_tree = NULL;
1da177e4 1212 }
d9e7620e 1213
498d3aa2 1214 left = 1;
0871714e 1215 parent = NULL;
aa6f6a3d
CZ
1216 cfqq->service_tree = service_tree;
1217 p = &service_tree->rb.rb_node;
d9e7620e 1218 while (*p) {
67060e37 1219 struct rb_node **n;
cc09e299 1220
d9e7620e
JA
1221 parent = *p;
1222 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1223
0c534e0a 1224 /*
c0324a02 1225 * sort by key, that represents service time.
0c534e0a 1226 */
c0324a02 1227 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1228 n = &(*p)->rb_left;
c0324a02 1229 else {
67060e37 1230 n = &(*p)->rb_right;
cc09e299 1231 left = 0;
c0324a02 1232 }
67060e37
JA
1233
1234 p = n;
d9e7620e
JA
1235 }
1236
cc09e299 1237 if (left)
aa6f6a3d 1238 service_tree->left = &cfqq->rb_node;
cc09e299 1239
d9e7620e
JA
1240 cfqq->rb_key = rb_key;
1241 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1242 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1243 service_tree->count++;
ae30c286 1244 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1245 return;
1fa8f6d6 1246 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1247}
1248
a36e71f9 1249static struct cfq_queue *
f2d1f0ae
JA
1250cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1251 sector_t sector, struct rb_node **ret_parent,
1252 struct rb_node ***rb_link)
a36e71f9 1253{
a36e71f9
JA
1254 struct rb_node **p, *parent;
1255 struct cfq_queue *cfqq = NULL;
1256
1257 parent = NULL;
1258 p = &root->rb_node;
1259 while (*p) {
1260 struct rb_node **n;
1261
1262 parent = *p;
1263 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1264
1265 /*
1266 * Sort strictly based on sector. Smallest to the left,
1267 * largest to the right.
1268 */
2e46e8b2 1269 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1270 n = &(*p)->rb_right;
2e46e8b2 1271 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1272 n = &(*p)->rb_left;
1273 else
1274 break;
1275 p = n;
3ac6c9f8 1276 cfqq = NULL;
a36e71f9
JA
1277 }
1278
1279 *ret_parent = parent;
1280 if (rb_link)
1281 *rb_link = p;
3ac6c9f8 1282 return cfqq;
a36e71f9
JA
1283}
1284
1285static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1286{
a36e71f9
JA
1287 struct rb_node **p, *parent;
1288 struct cfq_queue *__cfqq;
1289
f2d1f0ae
JA
1290 if (cfqq->p_root) {
1291 rb_erase(&cfqq->p_node, cfqq->p_root);
1292 cfqq->p_root = NULL;
1293 }
a36e71f9
JA
1294
1295 if (cfq_class_idle(cfqq))
1296 return;
1297 if (!cfqq->next_rq)
1298 return;
1299
f2d1f0ae 1300 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1301 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1302 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1303 if (!__cfqq) {
1304 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1305 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1306 } else
1307 cfqq->p_root = NULL;
a36e71f9
JA
1308}
1309
498d3aa2
JA
1310/*
1311 * Update cfqq's position in the service tree.
1312 */
edd75ffd 1313static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1314{
6d048f53
JA
1315 /*
1316 * Resorting requires the cfqq to be on the RR list already.
1317 */
a36e71f9 1318 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1319 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1320 cfq_prio_tree_add(cfqd, cfqq);
1321 }
6d048f53
JA
1322}
1323
1da177e4
LT
1324/*
1325 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1326 * the pending list according to last request service
1da177e4 1327 */
febffd61 1328static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1329{
7b679138 1330 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1331 BUG_ON(cfq_cfqq_on_rr(cfqq));
1332 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1333 cfqd->busy_queues++;
1334
edd75ffd 1335 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1336}
1337
498d3aa2
JA
1338/*
1339 * Called when the cfqq no longer has requests pending, remove it from
1340 * the service tree.
1341 */
febffd61 1342static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1343{
7b679138 1344 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1345 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1346 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1347
aa6f6a3d
CZ
1348 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1349 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1350 cfqq->service_tree = NULL;
1351 }
f2d1f0ae
JA
1352 if (cfqq->p_root) {
1353 rb_erase(&cfqq->p_node, cfqq->p_root);
1354 cfqq->p_root = NULL;
1355 }
d9e7620e 1356
1fa8f6d6 1357 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1358 BUG_ON(!cfqd->busy_queues);
1359 cfqd->busy_queues--;
1360}
1361
1362/*
1363 * rb tree support functions
1364 */
febffd61 1365static void cfq_del_rq_rb(struct request *rq)
1da177e4 1366{
5e705374 1367 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1368 const int sync = rq_is_sync(rq);
1da177e4 1369
b4878f24
JA
1370 BUG_ON(!cfqq->queued[sync]);
1371 cfqq->queued[sync]--;
1da177e4 1372
5e705374 1373 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1374
f04a6424
VG
1375 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1376 /*
1377 * Queue will be deleted from service tree when we actually
1378 * expire it later. Right now just remove it from prio tree
1379 * as it is empty.
1380 */
1381 if (cfqq->p_root) {
1382 rb_erase(&cfqq->p_node, cfqq->p_root);
1383 cfqq->p_root = NULL;
1384 }
1385 }
1da177e4
LT
1386}
1387
5e705374 1388static void cfq_add_rq_rb(struct request *rq)
1da177e4 1389{
5e705374 1390 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1391 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1392 struct request *__alias, *prev;
1da177e4 1393
5380a101 1394 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1395
1396 /*
1397 * looks a little odd, but the first insert might return an alias.
1398 * if that happens, put the alias on the dispatch list
1399 */
21183b07 1400 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1401 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1402
1403 if (!cfq_cfqq_on_rr(cfqq))
1404 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1405
1406 /*
1407 * check if this request is a better next-serve candidate
1408 */
a36e71f9 1409 prev = cfqq->next_rq;
cf7c25cf 1410 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1411
1412 /*
1413 * adjust priority tree position, if ->next_rq changes
1414 */
1415 if (prev != cfqq->next_rq)
1416 cfq_prio_tree_add(cfqd, cfqq);
1417
5044eed4 1418 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1419}
1420
febffd61 1421static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1422{
5380a101
JA
1423 elv_rb_del(&cfqq->sort_list, rq);
1424 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1425 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1426 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1427 cfq_add_rq_rb(rq);
e98ef89b 1428 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1429 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1430 rq_is_sync(rq));
1da177e4
LT
1431}
1432
206dc69b
JA
1433static struct request *
1434cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1435{
206dc69b 1436 struct task_struct *tsk = current;
91fac317 1437 struct cfq_io_context *cic;
206dc69b 1438 struct cfq_queue *cfqq;
1da177e4 1439
4ac845a2 1440 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1441 if (!cic)
1442 return NULL;
1443
1444 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1445 if (cfqq) {
1446 sector_t sector = bio->bi_sector + bio_sectors(bio);
1447
21183b07 1448 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1449 }
1da177e4 1450
1da177e4
LT
1451 return NULL;
1452}
1453
165125e1 1454static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1455{
22e2c507 1456 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1457
53c583d2 1458 cfqd->rq_in_driver++;
7b679138 1459 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1460 cfqd->rq_in_driver);
25776e35 1461
5b93629b 1462 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1463}
1464
165125e1 1465static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1466{
b4878f24
JA
1467 struct cfq_data *cfqd = q->elevator->elevator_data;
1468
53c583d2
CZ
1469 WARN_ON(!cfqd->rq_in_driver);
1470 cfqd->rq_in_driver--;
7b679138 1471 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1472 cfqd->rq_in_driver);
1da177e4
LT
1473}
1474
b4878f24 1475static void cfq_remove_request(struct request *rq)
1da177e4 1476{
5e705374 1477 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1478
5e705374
JA
1479 if (cfqq->next_rq == rq)
1480 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1481
b4878f24 1482 list_del_init(&rq->queuelist);
5e705374 1483 cfq_del_rq_rb(rq);
374f84ac 1484
45333d5a 1485 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1486 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1487 rq_data_dir(rq), rq_is_sync(rq));
33659ebb 1488 if (rq->cmd_flags & REQ_RW_META) {
374f84ac
JA
1489 WARN_ON(!cfqq->meta_pending);
1490 cfqq->meta_pending--;
1491 }
1da177e4
LT
1492}
1493
165125e1
JA
1494static int cfq_merge(struct request_queue *q, struct request **req,
1495 struct bio *bio)
1da177e4
LT
1496{
1497 struct cfq_data *cfqd = q->elevator->elevator_data;
1498 struct request *__rq;
1da177e4 1499
206dc69b 1500 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1501 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1502 *req = __rq;
1503 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1504 }
1505
1506 return ELEVATOR_NO_MERGE;
1da177e4
LT
1507}
1508
165125e1 1509static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1510 int type)
1da177e4 1511{
21183b07 1512 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1513 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1514
5e705374 1515 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1516 }
1da177e4
LT
1517}
1518
812d4026
DS
1519static void cfq_bio_merged(struct request_queue *q, struct request *req,
1520 struct bio *bio)
1521{
e98ef89b
VG
1522 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1523 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1524}
1525
1da177e4 1526static void
165125e1 1527cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1528 struct request *next)
1529{
cf7c25cf 1530 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1531 /*
1532 * reposition in fifo if next is older than rq
1533 */
1534 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1535 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1536 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1537 rq_set_fifo_time(rq, rq_fifo_time(next));
1538 }
22e2c507 1539
cf7c25cf
CZ
1540 if (cfqq->next_rq == next)
1541 cfqq->next_rq = rq;
b4878f24 1542 cfq_remove_request(next);
e98ef89b
VG
1543 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1544 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1545}
1546
165125e1 1547static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1548 struct bio *bio)
1549{
1550 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1551 struct cfq_io_context *cic;
da775265 1552 struct cfq_queue *cfqq;
da775265
JA
1553
1554 /*
ec8acb69 1555 * Disallow merge of a sync bio into an async request.
da775265 1556 */
91fac317 1557 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1558 return false;
da775265
JA
1559
1560 /*
719d3402
JA
1561 * Lookup the cfqq that this bio will be queued with. Allow
1562 * merge only if rq is queued there.
da775265 1563 */
4ac845a2 1564 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1565 if (!cic)
a6151c3a 1566 return false;
719d3402 1567
91fac317 1568 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1569 return cfqq == RQ_CFQQ(rq);
da775265
JA
1570}
1571
812df48d
DS
1572static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1573{
1574 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1575 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1576}
1577
febffd61
JA
1578static void __cfq_set_active_queue(struct cfq_data *cfqd,
1579 struct cfq_queue *cfqq)
22e2c507
JA
1580{
1581 if (cfqq) {
b1ffe737
DS
1582 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1583 cfqd->serving_prio, cfqd->serving_type);
e98ef89b 1584 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
dae739eb
VG
1585 cfqq->slice_start = 0;
1586 cfqq->dispatch_start = jiffies;
f75edf2d 1587 cfqq->allocated_slice = 0;
22e2c507 1588 cfqq->slice_end = 0;
2f5cb738
JA
1589 cfqq->slice_dispatch = 0;
1590
2f5cb738 1591 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1592 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1593 cfq_clear_cfqq_must_alloc_slice(cfqq);
1594 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1595 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738 1596
812df48d 1597 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1598 }
1599
1600 cfqd->active_queue = cfqq;
1601}
1602
7b14e3b5
JA
1603/*
1604 * current cfqq expired its slice (or was too idle), select new one
1605 */
1606static void
1607__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1608 bool timed_out)
7b14e3b5 1609{
7b679138
JA
1610 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1611
7b14e3b5 1612 if (cfq_cfqq_wait_request(cfqq))
812df48d 1613 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1614
7b14e3b5 1615 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1616 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1617
ae54abed
SL
1618 /*
1619 * If this cfqq is shared between multiple processes, check to
1620 * make sure that those processes are still issuing I/Os within
1621 * the mean seek distance. If not, it may be time to break the
1622 * queues apart again.
1623 */
1624 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1625 cfq_mark_cfqq_split_coop(cfqq);
1626
7b14e3b5 1627 /*
6084cdda 1628 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1629 */
7b679138 1630 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1631 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1632 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1633 }
7b14e3b5 1634
e5ff082e 1635 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1636
f04a6424
VG
1637 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1638 cfq_del_cfqq_rr(cfqd, cfqq);
1639
edd75ffd 1640 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1641
1642 if (cfqq == cfqd->active_queue)
1643 cfqd->active_queue = NULL;
1644
dae739eb
VG
1645 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1646 cfqd->grp_service_tree.active = NULL;
1647
7b14e3b5
JA
1648 if (cfqd->active_cic) {
1649 put_io_context(cfqd->active_cic->ioc);
1650 cfqd->active_cic = NULL;
1651 }
7b14e3b5
JA
1652}
1653
e5ff082e 1654static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1655{
1656 struct cfq_queue *cfqq = cfqd->active_queue;
1657
1658 if (cfqq)
e5ff082e 1659 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1660}
1661
498d3aa2
JA
1662/*
1663 * Get next queue for service. Unless we have a queue preemption,
1664 * we'll simply select the first cfqq in the service tree.
1665 */
6d048f53 1666static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1667{
c0324a02 1668 struct cfq_rb_root *service_tree =
cdb16e8f 1669 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1670 cfqd->serving_type);
d9e7620e 1671
f04a6424
VG
1672 if (!cfqd->rq_queued)
1673 return NULL;
1674
1fa8f6d6
VG
1675 /* There is nothing to dispatch */
1676 if (!service_tree)
1677 return NULL;
c0324a02
CZ
1678 if (RB_EMPTY_ROOT(&service_tree->rb))
1679 return NULL;
1680 return cfq_rb_first(service_tree);
6d048f53
JA
1681}
1682
f04a6424
VG
1683static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1684{
25fb5169 1685 struct cfq_group *cfqg;
f04a6424
VG
1686 struct cfq_queue *cfqq;
1687 int i, j;
1688 struct cfq_rb_root *st;
1689
1690 if (!cfqd->rq_queued)
1691 return NULL;
1692
25fb5169
VG
1693 cfqg = cfq_get_next_cfqg(cfqd);
1694 if (!cfqg)
1695 return NULL;
1696
f04a6424
VG
1697 for_each_cfqg_st(cfqg, i, j, st)
1698 if ((cfqq = cfq_rb_first(st)) != NULL)
1699 return cfqq;
1700 return NULL;
1701}
1702
498d3aa2
JA
1703/*
1704 * Get and set a new active queue for service.
1705 */
a36e71f9
JA
1706static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1707 struct cfq_queue *cfqq)
6d048f53 1708{
e00ef799 1709 if (!cfqq)
a36e71f9 1710 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1711
22e2c507 1712 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1713 return cfqq;
22e2c507
JA
1714}
1715
d9e7620e
JA
1716static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1717 struct request *rq)
1718{
83096ebf
TH
1719 if (blk_rq_pos(rq) >= cfqd->last_position)
1720 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1721 else
83096ebf 1722 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1723}
1724
b2c18e1e 1725static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1726 struct request *rq)
6d048f53 1727{
e9ce335d 1728 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1729}
1730
a36e71f9
JA
1731static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1732 struct cfq_queue *cur_cfqq)
1733{
f2d1f0ae 1734 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1735 struct rb_node *parent, *node;
1736 struct cfq_queue *__cfqq;
1737 sector_t sector = cfqd->last_position;
1738
1739 if (RB_EMPTY_ROOT(root))
1740 return NULL;
1741
1742 /*
1743 * First, if we find a request starting at the end of the last
1744 * request, choose it.
1745 */
f2d1f0ae 1746 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1747 if (__cfqq)
1748 return __cfqq;
1749
1750 /*
1751 * If the exact sector wasn't found, the parent of the NULL leaf
1752 * will contain the closest sector.
1753 */
1754 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1755 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1756 return __cfqq;
1757
2e46e8b2 1758 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1759 node = rb_next(&__cfqq->p_node);
1760 else
1761 node = rb_prev(&__cfqq->p_node);
1762 if (!node)
1763 return NULL;
1764
1765 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1766 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1767 return __cfqq;
1768
1769 return NULL;
1770}
1771
1772/*
1773 * cfqd - obvious
1774 * cur_cfqq - passed in so that we don't decide that the current queue is
1775 * closely cooperating with itself.
1776 *
1777 * So, basically we're assuming that that cur_cfqq has dispatched at least
1778 * one request, and that cfqd->last_position reflects a position on the disk
1779 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1780 * assumption.
1781 */
1782static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1783 struct cfq_queue *cur_cfqq)
6d048f53 1784{
a36e71f9
JA
1785 struct cfq_queue *cfqq;
1786
39c01b21
DS
1787 if (cfq_class_idle(cur_cfqq))
1788 return NULL;
e6c5bc73
JM
1789 if (!cfq_cfqq_sync(cur_cfqq))
1790 return NULL;
1791 if (CFQQ_SEEKY(cur_cfqq))
1792 return NULL;
1793
b9d8f4c7
GJ
1794 /*
1795 * Don't search priority tree if it's the only queue in the group.
1796 */
1797 if (cur_cfqq->cfqg->nr_cfqq == 1)
1798 return NULL;
1799
6d048f53 1800 /*
d9e7620e
JA
1801 * We should notice if some of the queues are cooperating, eg
1802 * working closely on the same area of the disk. In that case,
1803 * we can group them together and don't waste time idling.
6d048f53 1804 */
a36e71f9
JA
1805 cfqq = cfqq_close(cfqd, cur_cfqq);
1806 if (!cfqq)
1807 return NULL;
1808
8682e1f1
VG
1809 /* If new queue belongs to different cfq_group, don't choose it */
1810 if (cur_cfqq->cfqg != cfqq->cfqg)
1811 return NULL;
1812
df5fe3e8
JM
1813 /*
1814 * It only makes sense to merge sync queues.
1815 */
1816 if (!cfq_cfqq_sync(cfqq))
1817 return NULL;
e6c5bc73
JM
1818 if (CFQQ_SEEKY(cfqq))
1819 return NULL;
df5fe3e8 1820
c0324a02
CZ
1821 /*
1822 * Do not merge queues of different priority classes
1823 */
1824 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1825 return NULL;
1826
a36e71f9 1827 return cfqq;
6d048f53
JA
1828}
1829
a6d44e98
CZ
1830/*
1831 * Determine whether we should enforce idle window for this queue.
1832 */
1833
1834static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1835{
1836 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1837 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1838
f04a6424
VG
1839 BUG_ON(!service_tree);
1840 BUG_ON(!service_tree->count);
1841
a6d44e98
CZ
1842 /* We never do for idle class queues. */
1843 if (prio == IDLE_WORKLOAD)
1844 return false;
1845
1846 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1847 if (cfq_cfqq_idle_window(cfqq) &&
1848 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1849 return true;
1850
1851 /*
1852 * Otherwise, we do only if they are the last ones
1853 * in their service tree.
1854 */
b1ffe737
DS
1855 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1856 return 1;
1857 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1858 service_tree->count);
1859 return 0;
a6d44e98
CZ
1860}
1861
6d048f53 1862static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1863{
1792669c 1864 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1865 struct cfq_io_context *cic;
7b14e3b5
JA
1866 unsigned long sl;
1867
a68bbddb 1868 /*
f7d7b7a7
JA
1869 * SSD device without seek penalty, disable idling. But only do so
1870 * for devices that support queuing, otherwise we still have a problem
1871 * with sync vs async workloads.
a68bbddb 1872 */
f7d7b7a7 1873 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1874 return;
1875
dd67d051 1876 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1877 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1878
1879 /*
1880 * idle is disabled, either manually or by past process history
1881 */
a6d44e98 1882 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1883 return;
1884
7b679138 1885 /*
8e550632 1886 * still active requests from this queue, don't idle
7b679138 1887 */
8e550632 1888 if (cfqq->dispatched)
7b679138
JA
1889 return;
1890
22e2c507
JA
1891 /*
1892 * task has exited, don't wait
1893 */
206dc69b 1894 cic = cfqd->active_cic;
66dac98e 1895 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1896 return;
1897
355b659c
CZ
1898 /*
1899 * If our average think time is larger than the remaining time
1900 * slice, then don't idle. This avoids overrunning the allotted
1901 * time slice.
1902 */
1903 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
1904 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1905 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1906 cic->ttime_mean);
355b659c 1907 return;
b1ffe737 1908 }
355b659c 1909
3b18152c 1910 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1911
6d048f53 1912 sl = cfqd->cfq_slice_idle;
206dc69b 1913
7b14e3b5 1914 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 1915 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
9481ffdc 1916 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1917}
1918
498d3aa2
JA
1919/*
1920 * Move request from internal lists to the request queue dispatch list.
1921 */
165125e1 1922static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1923{
3ed9a296 1924 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1925 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1926
7b679138
JA
1927 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1928
06d21886 1929 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1930 cfq_remove_request(rq);
6d048f53 1931 cfqq->dispatched++;
5380a101 1932 elv_dispatch_sort(q, rq);
3ed9a296 1933
53c583d2 1934 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
e98ef89b 1935 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 1936 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
1937}
1938
1939/*
1940 * return expired entry, or NULL to just start from scratch in rbtree
1941 */
febffd61 1942static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1943{
30996f40 1944 struct request *rq = NULL;
1da177e4 1945
3b18152c 1946 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1947 return NULL;
cb887411
JA
1948
1949 cfq_mark_cfqq_fifo_expire(cfqq);
1950
89850f7e
JA
1951 if (list_empty(&cfqq->fifo))
1952 return NULL;
1da177e4 1953
89850f7e 1954 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1955 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1956 rq = NULL;
1da177e4 1957
30996f40 1958 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1959 return rq;
1da177e4
LT
1960}
1961
22e2c507
JA
1962static inline int
1963cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1964{
1965 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1966
22e2c507 1967 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1968
22e2c507 1969 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1970}
1971
df5fe3e8
JM
1972/*
1973 * Must be called with the queue_lock held.
1974 */
1975static int cfqq_process_refs(struct cfq_queue *cfqq)
1976{
1977 int process_refs, io_refs;
1978
1979 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1980 process_refs = atomic_read(&cfqq->ref) - io_refs;
1981 BUG_ON(process_refs < 0);
1982 return process_refs;
1983}
1984
1985static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1986{
e6c5bc73 1987 int process_refs, new_process_refs;
df5fe3e8
JM
1988 struct cfq_queue *__cfqq;
1989
c10b61f0
JM
1990 /*
1991 * If there are no process references on the new_cfqq, then it is
1992 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
1993 * chain may have dropped their last reference (not just their
1994 * last process reference).
1995 */
1996 if (!cfqq_process_refs(new_cfqq))
1997 return;
1998
df5fe3e8
JM
1999 /* Avoid a circular list and skip interim queue merges */
2000 while ((__cfqq = new_cfqq->new_cfqq)) {
2001 if (__cfqq == cfqq)
2002 return;
2003 new_cfqq = __cfqq;
2004 }
2005
2006 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2007 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2008 /*
2009 * If the process for the cfqq has gone away, there is no
2010 * sense in merging the queues.
2011 */
c10b61f0 2012 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2013 return;
2014
e6c5bc73
JM
2015 /*
2016 * Merge in the direction of the lesser amount of work.
2017 */
e6c5bc73
JM
2018 if (new_process_refs >= process_refs) {
2019 cfqq->new_cfqq = new_cfqq;
2020 atomic_add(process_refs, &new_cfqq->ref);
2021 } else {
2022 new_cfqq->new_cfqq = cfqq;
2023 atomic_add(new_process_refs, &cfqq->ref);
2024 }
df5fe3e8
JM
2025}
2026
cdb16e8f 2027static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2028 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2029{
2030 struct cfq_queue *queue;
2031 int i;
2032 bool key_valid = false;
2033 unsigned long lowest_key = 0;
2034 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2035
65b32a57
VG
2036 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2037 /* select the one with lowest rb_key */
2038 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2039 if (queue &&
2040 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2041 lowest_key = queue->rb_key;
2042 cur_best = i;
2043 key_valid = true;
2044 }
2045 }
2046
2047 return cur_best;
2048}
2049
cdb16e8f 2050static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2051{
718eee05
CZ
2052 unsigned slice;
2053 unsigned count;
cdb16e8f 2054 struct cfq_rb_root *st;
58ff82f3 2055 unsigned group_slice;
718eee05 2056
1fa8f6d6
VG
2057 if (!cfqg) {
2058 cfqd->serving_prio = IDLE_WORKLOAD;
2059 cfqd->workload_expires = jiffies + 1;
2060 return;
2061 }
2062
718eee05 2063 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2064 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2065 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2066 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2067 cfqd->serving_prio = BE_WORKLOAD;
2068 else {
2069 cfqd->serving_prio = IDLE_WORKLOAD;
2070 cfqd->workload_expires = jiffies + 1;
2071 return;
2072 }
2073
2074 /*
2075 * For RT and BE, we have to choose also the type
2076 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2077 * expiration time
2078 */
65b32a57 2079 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2080 count = st->count;
718eee05
CZ
2081
2082 /*
65b32a57 2083 * check workload expiration, and that we still have other queues ready
718eee05 2084 */
65b32a57 2085 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2086 return;
2087
2088 /* otherwise select new workload type */
2089 cfqd->serving_type =
65b32a57
VG
2090 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2091 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2092 count = st->count;
718eee05
CZ
2093
2094 /*
2095 * the workload slice is computed as a fraction of target latency
2096 * proportional to the number of queues in that workload, over
2097 * all the queues in the same priority class
2098 */
58ff82f3
VG
2099 group_slice = cfq_group_slice(cfqd, cfqg);
2100
2101 slice = group_slice * count /
2102 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2103 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2104
f26bd1f0
VG
2105 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2106 unsigned int tmp;
2107
2108 /*
2109 * Async queues are currently system wide. Just taking
2110 * proportion of queues with-in same group will lead to higher
2111 * async ratio system wide as generally root group is going
2112 * to have higher weight. A more accurate thing would be to
2113 * calculate system wide asnc/sync ratio.
2114 */
2115 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2116 tmp = tmp/cfqd->busy_queues;
2117 slice = min_t(unsigned, slice, tmp);
2118
718eee05
CZ
2119 /* async workload slice is scaled down according to
2120 * the sync/async slice ratio. */
2121 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2122 } else
718eee05
CZ
2123 /* sync workload slice is at least 2 * cfq_slice_idle */
2124 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2125
2126 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2127 cfq_log(cfqd, "workload slice:%d", slice);
718eee05 2128 cfqd->workload_expires = jiffies + slice;
8e550632 2129 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2130}
2131
1fa8f6d6
VG
2132static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2133{
2134 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2135 struct cfq_group *cfqg;
1fa8f6d6
VG
2136
2137 if (RB_EMPTY_ROOT(&st->rb))
2138 return NULL;
25bc6b07
VG
2139 cfqg = cfq_rb_first_group(st);
2140 st->active = &cfqg->rb_node;
2141 update_min_vdisktime(st);
2142 return cfqg;
1fa8f6d6
VG
2143}
2144
cdb16e8f
VG
2145static void cfq_choose_cfqg(struct cfq_data *cfqd)
2146{
1fa8f6d6
VG
2147 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2148
2149 cfqd->serving_group = cfqg;
dae739eb
VG
2150
2151 /* Restore the workload type data */
2152 if (cfqg->saved_workload_slice) {
2153 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2154 cfqd->serving_type = cfqg->saved_workload;
2155 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2156 } else
2157 cfqd->workload_expires = jiffies - 1;
2158
1fa8f6d6 2159 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2160}
2161
22e2c507 2162/*
498d3aa2
JA
2163 * Select a queue for service. If we have a current active queue,
2164 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2165 */
1b5ed5e1 2166static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2167{
a36e71f9 2168 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2169
22e2c507
JA
2170 cfqq = cfqd->active_queue;
2171 if (!cfqq)
2172 goto new_queue;
1da177e4 2173
f04a6424
VG
2174 if (!cfqd->rq_queued)
2175 return NULL;
c244bb50
VG
2176
2177 /*
2178 * We were waiting for group to get backlogged. Expire the queue
2179 */
2180 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2181 goto expire;
2182
22e2c507 2183 /*
6d048f53 2184 * The active queue has run out of time, expire it and select new.
22e2c507 2185 */
7667aa06
VG
2186 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2187 /*
2188 * If slice had not expired at the completion of last request
2189 * we might not have turned on wait_busy flag. Don't expire
2190 * the queue yet. Allow the group to get backlogged.
2191 *
2192 * The very fact that we have used the slice, that means we
2193 * have been idling all along on this queue and it should be
2194 * ok to wait for this request to complete.
2195 */
82bbbf28
VG
2196 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2197 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2198 cfqq = NULL;
7667aa06 2199 goto keep_queue;
82bbbf28 2200 } else
7667aa06
VG
2201 goto expire;
2202 }
1da177e4 2203
22e2c507 2204 /*
6d048f53
JA
2205 * The active queue has requests and isn't expired, allow it to
2206 * dispatch.
22e2c507 2207 */
dd67d051 2208 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2209 goto keep_queue;
6d048f53 2210
a36e71f9
JA
2211 /*
2212 * If another queue has a request waiting within our mean seek
2213 * distance, let it run. The expire code will check for close
2214 * cooperators and put the close queue at the front of the service
df5fe3e8 2215 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2216 */
b3b6d040 2217 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2218 if (new_cfqq) {
2219 if (!cfqq->new_cfqq)
2220 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2221 goto expire;
df5fe3e8 2222 }
a36e71f9 2223
6d048f53
JA
2224 /*
2225 * No requests pending. If the active queue still has requests in
2226 * flight or is idling for a new request, allow either of these
2227 * conditions to happen (or time out) before selecting a new queue.
2228 */
cc197479 2229 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2230 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2231 cfqq = NULL;
2232 goto keep_queue;
22e2c507
JA
2233 }
2234
3b18152c 2235expire:
e5ff082e 2236 cfq_slice_expired(cfqd, 0);
3b18152c 2237new_queue:
718eee05
CZ
2238 /*
2239 * Current queue expired. Check if we have to switch to a new
2240 * service tree
2241 */
2242 if (!new_cfqq)
cdb16e8f 2243 cfq_choose_cfqg(cfqd);
718eee05 2244
a36e71f9 2245 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2246keep_queue:
3b18152c 2247 return cfqq;
22e2c507
JA
2248}
2249
febffd61 2250static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2251{
2252 int dispatched = 0;
2253
2254 while (cfqq->next_rq) {
2255 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2256 dispatched++;
2257 }
2258
2259 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2260
2261 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2262 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2263 return dispatched;
2264}
2265
498d3aa2
JA
2266/*
2267 * Drain our current requests. Used for barriers and when switching
2268 * io schedulers on-the-fly.
2269 */
d9e7620e 2270static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2271{
0871714e 2272 struct cfq_queue *cfqq;
d9e7620e 2273 int dispatched = 0;
cdb16e8f 2274
3440c49f 2275 /* Expire the timeslice of the current active queue first */
e5ff082e 2276 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2277 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2278 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2279 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2280 }
1b5ed5e1 2281
1b5ed5e1
TH
2282 BUG_ON(cfqd->busy_queues);
2283
6923715a 2284 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2285 return dispatched;
2286}
2287
abc3c744
SL
2288static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2289 struct cfq_queue *cfqq)
2290{
2291 /* the queue hasn't finished any request, can't estimate */
2292 if (cfq_cfqq_slice_new(cfqq))
2293 return 1;
2294 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2295 cfqq->slice_end))
2296 return 1;
2297
2298 return 0;
2299}
2300
0b182d61 2301static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2302{
2f5cb738 2303 unsigned int max_dispatch;
22e2c507 2304
5ad531db
JA
2305 /*
2306 * Drain async requests before we start sync IO
2307 */
53c583d2 2308 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2309 return false;
5ad531db 2310
2f5cb738
JA
2311 /*
2312 * If this is an async queue and we have sync IO in flight, let it wait
2313 */
53c583d2 2314 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2315 return false;
2f5cb738 2316
abc3c744 2317 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2318 if (cfq_class_idle(cfqq))
2319 max_dispatch = 1;
b4878f24 2320
2f5cb738
JA
2321 /*
2322 * Does this cfqq already have too much IO in flight?
2323 */
2324 if (cfqq->dispatched >= max_dispatch) {
2325 /*
2326 * idle queue must always only have a single IO in flight
2327 */
3ed9a296 2328 if (cfq_class_idle(cfqq))
0b182d61 2329 return false;
3ed9a296 2330
2f5cb738
JA
2331 /*
2332 * We have other queues, don't allow more IO from this one
2333 */
abc3c744 2334 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
0b182d61 2335 return false;
9ede209e 2336
365722bb 2337 /*
474b18cc 2338 * Sole queue user, no limit
365722bb 2339 */
abc3c744
SL
2340 if (cfqd->busy_queues == 1)
2341 max_dispatch = -1;
2342 else
2343 /*
2344 * Normally we start throttling cfqq when cfq_quantum/2
2345 * requests have been dispatched. But we can drive
2346 * deeper queue depths at the beginning of slice
2347 * subjected to upper limit of cfq_quantum.
2348 * */
2349 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2350 }
2351
2352 /*
2353 * Async queues must wait a bit before being allowed dispatch.
2354 * We also ramp up the dispatch depth gradually for async IO,
2355 * based on the last sync IO we serviced
2356 */
963b72fc 2357 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2358 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2359 unsigned int depth;
365722bb 2360
61f0c1dc 2361 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2362 if (!depth && !cfqq->dispatched)
2363 depth = 1;
8e296755
JA
2364 if (depth < max_dispatch)
2365 max_dispatch = depth;
2f5cb738 2366 }
3ed9a296 2367
0b182d61
JA
2368 /*
2369 * If we're below the current max, allow a dispatch
2370 */
2371 return cfqq->dispatched < max_dispatch;
2372}
2373
2374/*
2375 * Dispatch a request from cfqq, moving them to the request queue
2376 * dispatch list.
2377 */
2378static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2379{
2380 struct request *rq;
2381
2382 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2383
2384 if (!cfq_may_dispatch(cfqd, cfqq))
2385 return false;
2386
2387 /*
2388 * follow expired path, else get first next available
2389 */
2390 rq = cfq_check_fifo(cfqq);
2391 if (!rq)
2392 rq = cfqq->next_rq;
2393
2394 /*
2395 * insert request into driver dispatch list
2396 */
2397 cfq_dispatch_insert(cfqd->queue, rq);
2398
2399 if (!cfqd->active_cic) {
2400 struct cfq_io_context *cic = RQ_CIC(rq);
2401
2402 atomic_long_inc(&cic->ioc->refcount);
2403 cfqd->active_cic = cic;
2404 }
2405
2406 return true;
2407}
2408
2409/*
2410 * Find the cfqq that we need to service and move a request from that to the
2411 * dispatch list
2412 */
2413static int cfq_dispatch_requests(struct request_queue *q, int force)
2414{
2415 struct cfq_data *cfqd = q->elevator->elevator_data;
2416 struct cfq_queue *cfqq;
2417
2418 if (!cfqd->busy_queues)
2419 return 0;
2420
2421 if (unlikely(force))
2422 return cfq_forced_dispatch(cfqd);
2423
2424 cfqq = cfq_select_queue(cfqd);
2425 if (!cfqq)
8e296755
JA
2426 return 0;
2427
2f5cb738 2428 /*
0b182d61 2429 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2430 */
0b182d61
JA
2431 if (!cfq_dispatch_request(cfqd, cfqq))
2432 return 0;
2433
2f5cb738 2434 cfqq->slice_dispatch++;
b029195d 2435 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2436
2f5cb738
JA
2437 /*
2438 * expire an async queue immediately if it has used up its slice. idle
2439 * queue always expire after 1 dispatch round.
2440 */
2441 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2442 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2443 cfq_class_idle(cfqq))) {
2444 cfqq->slice_end = jiffies + 1;
e5ff082e 2445 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2446 }
2447
b217a903 2448 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2449 return 1;
1da177e4
LT
2450}
2451
1da177e4 2452/*
5e705374
JA
2453 * task holds one reference to the queue, dropped when task exits. each rq
2454 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2455 *
b1c35769 2456 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2457 * queue lock must be held here.
2458 */
2459static void cfq_put_queue(struct cfq_queue *cfqq)
2460{
22e2c507 2461 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2462 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2463
2464 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2465
2466 if (!atomic_dec_and_test(&cfqq->ref))
2467 return;
2468
7b679138 2469 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2470 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2471 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2472 cfqg = cfqq->cfqg;
878eaddd 2473 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2474
28f95cbc 2475 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2476 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2477 cfq_schedule_dispatch(cfqd);
28f95cbc 2478 }
22e2c507 2479
f04a6424 2480 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2481 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2482 cfq_put_cfqg(cfqg);
878eaddd
VG
2483 if (orig_cfqg)
2484 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2485}
2486
d6de8be7
JA
2487/*
2488 * Must always be called with the rcu_read_lock() held
2489 */
07416d29
JA
2490static void
2491__call_for_each_cic(struct io_context *ioc,
2492 void (*func)(struct io_context *, struct cfq_io_context *))
2493{
2494 struct cfq_io_context *cic;
2495 struct hlist_node *n;
2496
2497 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2498 func(ioc, cic);
2499}
2500
4ac845a2 2501/*
34e6bbf2 2502 * Call func for each cic attached to this ioc.
4ac845a2 2503 */
34e6bbf2 2504static void
4ac845a2
JA
2505call_for_each_cic(struct io_context *ioc,
2506 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2507{
4ac845a2 2508 rcu_read_lock();
07416d29 2509 __call_for_each_cic(ioc, func);
4ac845a2 2510 rcu_read_unlock();
34e6bbf2
FC
2511}
2512
2513static void cfq_cic_free_rcu(struct rcu_head *head)
2514{
2515 struct cfq_io_context *cic;
2516
2517 cic = container_of(head, struct cfq_io_context, rcu_head);
2518
2519 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2520 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2521
9a11b4ed
JA
2522 if (ioc_gone) {
2523 /*
2524 * CFQ scheduler is exiting, grab exit lock and check
2525 * the pending io context count. If it hits zero,
2526 * complete ioc_gone and set it back to NULL
2527 */
2528 spin_lock(&ioc_gone_lock);
245b2e70 2529 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2530 complete(ioc_gone);
2531 ioc_gone = NULL;
2532 }
2533 spin_unlock(&ioc_gone_lock);
2534 }
34e6bbf2 2535}
4ac845a2 2536
34e6bbf2
FC
2537static void cfq_cic_free(struct cfq_io_context *cic)
2538{
2539 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2540}
2541
2542static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2543{
2544 unsigned long flags;
bca4b914 2545 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2546
bca4b914 2547 BUG_ON(!(dead_key & CIC_DEAD_KEY));
4ac845a2
JA
2548
2549 spin_lock_irqsave(&ioc->lock, flags);
80b15c73 2550 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2551 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2552 spin_unlock_irqrestore(&ioc->lock, flags);
2553
34e6bbf2 2554 cfq_cic_free(cic);
4ac845a2
JA
2555}
2556
d6de8be7
JA
2557/*
2558 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2559 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2560 * and ->trim() which is called with the task lock held
2561 */
4ac845a2
JA
2562static void cfq_free_io_context(struct io_context *ioc)
2563{
4ac845a2 2564 /*
34e6bbf2
FC
2565 * ioc->refcount is zero here, or we are called from elv_unregister(),
2566 * so no more cic's are allowed to be linked into this ioc. So it
2567 * should be ok to iterate over the known list, we will see all cic's
2568 * since no new ones are added.
4ac845a2 2569 */
07416d29 2570 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2571}
2572
d02a2c07 2573static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2574{
df5fe3e8
JM
2575 struct cfq_queue *__cfqq, *next;
2576
df5fe3e8
JM
2577 /*
2578 * If this queue was scheduled to merge with another queue, be
2579 * sure to drop the reference taken on that queue (and others in
2580 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2581 */
2582 __cfqq = cfqq->new_cfqq;
2583 while (__cfqq) {
2584 if (__cfqq == cfqq) {
2585 WARN(1, "cfqq->new_cfqq loop detected\n");
2586 break;
2587 }
2588 next = __cfqq->new_cfqq;
2589 cfq_put_queue(__cfqq);
2590 __cfqq = next;
2591 }
d02a2c07
SL
2592}
2593
2594static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2595{
2596 if (unlikely(cfqq == cfqd->active_queue)) {
2597 __cfq_slice_expired(cfqd, cfqq, 0);
2598 cfq_schedule_dispatch(cfqd);
2599 }
2600
2601 cfq_put_cooperator(cfqq);
df5fe3e8 2602
89850f7e
JA
2603 cfq_put_queue(cfqq);
2604}
22e2c507 2605
89850f7e
JA
2606static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2607 struct cfq_io_context *cic)
2608{
4faa3c81
FC
2609 struct io_context *ioc = cic->ioc;
2610
fc46379d 2611 list_del_init(&cic->queue_list);
4ac845a2
JA
2612
2613 /*
bca4b914 2614 * Make sure dead mark is seen for dead queues
4ac845a2 2615 */
fc46379d 2616 smp_wmb();
bca4b914 2617 cic->key = cfqd_dead_key(cfqd);
fc46379d 2618
4faa3c81
FC
2619 if (ioc->ioc_data == cic)
2620 rcu_assign_pointer(ioc->ioc_data, NULL);
2621
ff6657c6
JA
2622 if (cic->cfqq[BLK_RW_ASYNC]) {
2623 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2624 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2625 }
2626
ff6657c6
JA
2627 if (cic->cfqq[BLK_RW_SYNC]) {
2628 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2629 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2630 }
89850f7e
JA
2631}
2632
4ac845a2
JA
2633static void cfq_exit_single_io_context(struct io_context *ioc,
2634 struct cfq_io_context *cic)
89850f7e 2635{
bca4b914 2636 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2637
89850f7e 2638 if (cfqd) {
165125e1 2639 struct request_queue *q = cfqd->queue;
4ac845a2 2640 unsigned long flags;
89850f7e 2641
4ac845a2 2642 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2643
2644 /*
2645 * Ensure we get a fresh copy of the ->key to prevent
2646 * race between exiting task and queue
2647 */
2648 smp_read_barrier_depends();
bca4b914 2649 if (cic->key == cfqd)
62c1fe9d
JA
2650 __cfq_exit_single_io_context(cfqd, cic);
2651
4ac845a2 2652 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2653 }
1da177e4
LT
2654}
2655
498d3aa2
JA
2656/*
2657 * The process that ioc belongs to has exited, we need to clean up
2658 * and put the internal structures we have that belongs to that process.
2659 */
e2d74ac0 2660static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2661{
4ac845a2 2662 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2663}
2664
22e2c507 2665static struct cfq_io_context *
8267e268 2666cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2667{
b5deef90 2668 struct cfq_io_context *cic;
1da177e4 2669
94f6030c
CL
2670 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2671 cfqd->queue->node);
1da177e4 2672 if (cic) {
22e2c507 2673 cic->last_end_request = jiffies;
553698f9 2674 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2675 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2676 cic->dtor = cfq_free_io_context;
2677 cic->exit = cfq_exit_io_context;
245b2e70 2678 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2679 }
2680
2681 return cic;
2682}
2683
fd0928df 2684static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2685{
2686 struct task_struct *tsk = current;
2687 int ioprio_class;
2688
3b18152c 2689 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2690 return;
2691
fd0928df 2692 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2693 switch (ioprio_class) {
fe094d98
JA
2694 default:
2695 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2696 case IOPRIO_CLASS_NONE:
2697 /*
6d63c275 2698 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2699 */
2700 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2701 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2702 break;
2703 case IOPRIO_CLASS_RT:
2704 cfqq->ioprio = task_ioprio(ioc);
2705 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2706 break;
2707 case IOPRIO_CLASS_BE:
2708 cfqq->ioprio = task_ioprio(ioc);
2709 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2710 break;
2711 case IOPRIO_CLASS_IDLE:
2712 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2713 cfqq->ioprio = 7;
2714 cfq_clear_cfqq_idle_window(cfqq);
2715 break;
22e2c507
JA
2716 }
2717
2718 /*
2719 * keep track of original prio settings in case we have to temporarily
2720 * elevate the priority of this queue
2721 */
2722 cfqq->org_ioprio = cfqq->ioprio;
2723 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2724 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2725}
2726
febffd61 2727static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2728{
bca4b914 2729 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2730 struct cfq_queue *cfqq;
c1b707d2 2731 unsigned long flags;
35e6077c 2732
caaa5f9f
JA
2733 if (unlikely(!cfqd))
2734 return;
2735
c1b707d2 2736 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2737
ff6657c6 2738 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2739 if (cfqq) {
2740 struct cfq_queue *new_cfqq;
ff6657c6
JA
2741 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2742 GFP_ATOMIC);
caaa5f9f 2743 if (new_cfqq) {
ff6657c6 2744 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2745 cfq_put_queue(cfqq);
2746 }
22e2c507 2747 }
caaa5f9f 2748
ff6657c6 2749 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2750 if (cfqq)
2751 cfq_mark_cfqq_prio_changed(cfqq);
2752
c1b707d2 2753 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2754}
2755
fc46379d 2756static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2757{
4ac845a2 2758 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2759 ioc->ioprio_changed = 0;
22e2c507
JA
2760}
2761
d5036d77 2762static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2763 pid_t pid, bool is_sync)
d5036d77
JA
2764{
2765 RB_CLEAR_NODE(&cfqq->rb_node);
2766 RB_CLEAR_NODE(&cfqq->p_node);
2767 INIT_LIST_HEAD(&cfqq->fifo);
2768
2769 atomic_set(&cfqq->ref, 0);
2770 cfqq->cfqd = cfqd;
2771
2772 cfq_mark_cfqq_prio_changed(cfqq);
2773
2774 if (is_sync) {
2775 if (!cfq_class_idle(cfqq))
2776 cfq_mark_cfqq_idle_window(cfqq);
2777 cfq_mark_cfqq_sync(cfqq);
2778 }
2779 cfqq->pid = pid;
2780}
2781
24610333
VG
2782#ifdef CONFIG_CFQ_GROUP_IOSCHED
2783static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2784{
2785 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2786 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2787 unsigned long flags;
2788 struct request_queue *q;
2789
2790 if (unlikely(!cfqd))
2791 return;
2792
2793 q = cfqd->queue;
2794
2795 spin_lock_irqsave(q->queue_lock, flags);
2796
2797 if (sync_cfqq) {
2798 /*
2799 * Drop reference to sync queue. A new sync queue will be
2800 * assigned in new group upon arrival of a fresh request.
2801 */
2802 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2803 cic_set_cfqq(cic, NULL, 1);
2804 cfq_put_queue(sync_cfqq);
2805 }
2806
2807 spin_unlock_irqrestore(q->queue_lock, flags);
2808}
2809
2810static void cfq_ioc_set_cgroup(struct io_context *ioc)
2811{
2812 call_for_each_cic(ioc, changed_cgroup);
2813 ioc->cgroup_changed = 0;
2814}
2815#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2816
22e2c507 2817static struct cfq_queue *
a6151c3a 2818cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2819 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2820{
22e2c507 2821 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2822 struct cfq_io_context *cic;
cdb16e8f 2823 struct cfq_group *cfqg;
22e2c507
JA
2824
2825retry:
cdb16e8f 2826 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2827 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2828 /* cic always exists here */
2829 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2830
6118b70b
JA
2831 /*
2832 * Always try a new alloc if we fell back to the OOM cfqq
2833 * originally, since it should just be a temporary situation.
2834 */
2835 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2836 cfqq = NULL;
22e2c507
JA
2837 if (new_cfqq) {
2838 cfqq = new_cfqq;
2839 new_cfqq = NULL;
2840 } else if (gfp_mask & __GFP_WAIT) {
2841 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2842 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2843 gfp_mask | __GFP_ZERO,
94f6030c 2844 cfqd->queue->node);
22e2c507 2845 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2846 if (new_cfqq)
2847 goto retry;
22e2c507 2848 } else {
94f6030c
CL
2849 cfqq = kmem_cache_alloc_node(cfq_pool,
2850 gfp_mask | __GFP_ZERO,
2851 cfqd->queue->node);
22e2c507
JA
2852 }
2853
6118b70b
JA
2854 if (cfqq) {
2855 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2856 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2857 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2858 cfq_log_cfqq(cfqd, cfqq, "alloced");
2859 } else
2860 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2861 }
2862
2863 if (new_cfqq)
2864 kmem_cache_free(cfq_pool, new_cfqq);
2865
22e2c507
JA
2866 return cfqq;
2867}
2868
c2dea2d1
VT
2869static struct cfq_queue **
2870cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2871{
fe094d98 2872 switch (ioprio_class) {
c2dea2d1
VT
2873 case IOPRIO_CLASS_RT:
2874 return &cfqd->async_cfqq[0][ioprio];
2875 case IOPRIO_CLASS_BE:
2876 return &cfqd->async_cfqq[1][ioprio];
2877 case IOPRIO_CLASS_IDLE:
2878 return &cfqd->async_idle_cfqq;
2879 default:
2880 BUG();
2881 }
2882}
2883
15c31be4 2884static struct cfq_queue *
a6151c3a 2885cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2886 gfp_t gfp_mask)
2887{
fd0928df
JA
2888 const int ioprio = task_ioprio(ioc);
2889 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2890 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2891 struct cfq_queue *cfqq = NULL;
2892
c2dea2d1
VT
2893 if (!is_sync) {
2894 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2895 cfqq = *async_cfqq;
2896 }
2897
6118b70b 2898 if (!cfqq)
fd0928df 2899 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2900
2901 /*
2902 * pin the queue now that it's allocated, scheduler exit will prune it
2903 */
c2dea2d1 2904 if (!is_sync && !(*async_cfqq)) {
15c31be4 2905 atomic_inc(&cfqq->ref);
c2dea2d1 2906 *async_cfqq = cfqq;
15c31be4
JA
2907 }
2908
2909 atomic_inc(&cfqq->ref);
2910 return cfqq;
2911}
2912
498d3aa2
JA
2913/*
2914 * We drop cfq io contexts lazily, so we may find a dead one.
2915 */
dbecf3ab 2916static void
4ac845a2
JA
2917cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2918 struct cfq_io_context *cic)
dbecf3ab 2919{
4ac845a2
JA
2920 unsigned long flags;
2921
fc46379d 2922 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 2923 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 2924
4ac845a2
JA
2925 spin_lock_irqsave(&ioc->lock, flags);
2926
4faa3c81 2927 BUG_ON(ioc->ioc_data == cic);
597bc485 2928
80b15c73 2929 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
ffc4e759 2930 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2931 spin_unlock_irqrestore(&ioc->lock, flags);
2932
2933 cfq_cic_free(cic);
dbecf3ab
OH
2934}
2935
e2d74ac0 2936static struct cfq_io_context *
4ac845a2 2937cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2938{
e2d74ac0 2939 struct cfq_io_context *cic;
d6de8be7 2940 unsigned long flags;
e2d74ac0 2941
91fac317
VT
2942 if (unlikely(!ioc))
2943 return NULL;
2944
d6de8be7
JA
2945 rcu_read_lock();
2946
597bc485
JA
2947 /*
2948 * we maintain a last-hit cache, to avoid browsing over the tree
2949 */
4ac845a2 2950 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2951 if (cic && cic->key == cfqd) {
2952 rcu_read_unlock();
597bc485 2953 return cic;
d6de8be7 2954 }
597bc485 2955
4ac845a2 2956 do {
80b15c73 2957 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
4ac845a2
JA
2958 rcu_read_unlock();
2959 if (!cic)
2960 break;
bca4b914 2961 if (unlikely(cic->key != cfqd)) {
4ac845a2 2962 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2963 rcu_read_lock();
4ac845a2 2964 continue;
dbecf3ab 2965 }
e2d74ac0 2966
d6de8be7 2967 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2968 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2969 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2970 break;
2971 } while (1);
e2d74ac0 2972
4ac845a2 2973 return cic;
e2d74ac0
JA
2974}
2975
4ac845a2
JA
2976/*
2977 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2978 * the process specific cfq io context when entered from the block layer.
2979 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2980 */
febffd61
JA
2981static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2982 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2983{
0261d688 2984 unsigned long flags;
4ac845a2 2985 int ret;
e2d74ac0 2986
4ac845a2
JA
2987 ret = radix_tree_preload(gfp_mask);
2988 if (!ret) {
2989 cic->ioc = ioc;
2990 cic->key = cfqd;
e2d74ac0 2991
4ac845a2
JA
2992 spin_lock_irqsave(&ioc->lock, flags);
2993 ret = radix_tree_insert(&ioc->radix_root,
80b15c73 2994 cfqd->cic_index, cic);
ffc4e759
JA
2995 if (!ret)
2996 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2997 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2998
4ac845a2
JA
2999 radix_tree_preload_end();
3000
3001 if (!ret) {
3002 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3003 list_add(&cic->queue_list, &cfqd->cic_list);
3004 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3005 }
e2d74ac0
JA
3006 }
3007
4ac845a2
JA
3008 if (ret)
3009 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 3010
4ac845a2 3011 return ret;
e2d74ac0
JA
3012}
3013
1da177e4
LT
3014/*
3015 * Setup general io context and cfq io context. There can be several cfq
3016 * io contexts per general io context, if this process is doing io to more
e2d74ac0 3017 * than one device managed by cfq.
1da177e4
LT
3018 */
3019static struct cfq_io_context *
e2d74ac0 3020cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3021{
22e2c507 3022 struct io_context *ioc = NULL;
1da177e4 3023 struct cfq_io_context *cic;
1da177e4 3024
22e2c507 3025 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 3026
b5deef90 3027 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
3028 if (!ioc)
3029 return NULL;
3030
4ac845a2 3031 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
3032 if (cic)
3033 goto out;
1da177e4 3034
e2d74ac0
JA
3035 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3036 if (cic == NULL)
3037 goto err;
1da177e4 3038
4ac845a2
JA
3039 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3040 goto err_free;
3041
1da177e4 3042out:
fc46379d
JA
3043 smp_read_barrier_depends();
3044 if (unlikely(ioc->ioprio_changed))
3045 cfq_ioc_set_ioprio(ioc);
3046
24610333
VG
3047#ifdef CONFIG_CFQ_GROUP_IOSCHED
3048 if (unlikely(ioc->cgroup_changed))
3049 cfq_ioc_set_cgroup(ioc);
3050#endif
1da177e4 3051 return cic;
4ac845a2
JA
3052err_free:
3053 cfq_cic_free(cic);
1da177e4
LT
3054err:
3055 put_io_context(ioc);
3056 return NULL;
3057}
3058
22e2c507
JA
3059static void
3060cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 3061{
aaf1228d
JA
3062 unsigned long elapsed = jiffies - cic->last_end_request;
3063 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 3064
22e2c507
JA
3065 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3066 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3067 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3068}
1da177e4 3069
206dc69b 3070static void
b2c18e1e 3071cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3072 struct request *rq)
206dc69b 3073{
3dde36dd 3074 sector_t sdist = 0;
41647e7a 3075 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3076 if (cfqq->last_request_pos) {
3077 if (cfqq->last_request_pos < blk_rq_pos(rq))
3078 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3079 else
3080 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3081 }
206dc69b 3082
3dde36dd 3083 cfqq->seek_history <<= 1;
41647e7a
CZ
3084 if (blk_queue_nonrot(cfqd->queue))
3085 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3086 else
3087 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3088}
1da177e4 3089
22e2c507
JA
3090/*
3091 * Disable idle window if the process thinks too long or seeks so much that
3092 * it doesn't matter
3093 */
3094static void
3095cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3096 struct cfq_io_context *cic)
3097{
7b679138 3098 int old_idle, enable_idle;
1be92f2f 3099
0871714e
JA
3100 /*
3101 * Don't idle for async or idle io prio class
3102 */
3103 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3104 return;
3105
c265a7f4 3106 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3107
76280aff
CZ
3108 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3109 cfq_mark_cfqq_deep(cfqq);
3110
66dac98e 3111 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3112 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3113 enable_idle = 0;
3114 else if (sample_valid(cic->ttime_samples)) {
718eee05 3115 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3116 enable_idle = 0;
3117 else
3118 enable_idle = 1;
1da177e4
LT
3119 }
3120
7b679138
JA
3121 if (old_idle != enable_idle) {
3122 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3123 if (enable_idle)
3124 cfq_mark_cfqq_idle_window(cfqq);
3125 else
3126 cfq_clear_cfqq_idle_window(cfqq);
3127 }
22e2c507 3128}
1da177e4 3129
22e2c507
JA
3130/*
3131 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3132 * no or if we aren't sure, a 1 will cause a preempt.
3133 */
a6151c3a 3134static bool
22e2c507 3135cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3136 struct request *rq)
22e2c507 3137{
6d048f53 3138 struct cfq_queue *cfqq;
22e2c507 3139
6d048f53
JA
3140 cfqq = cfqd->active_queue;
3141 if (!cfqq)
a6151c3a 3142 return false;
22e2c507 3143
6d048f53 3144 if (cfq_class_idle(new_cfqq))
a6151c3a 3145 return false;
22e2c507
JA
3146
3147 if (cfq_class_idle(cfqq))
a6151c3a 3148 return true;
1e3335de 3149
875feb63
DS
3150 /*
3151 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3152 */
3153 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3154 return false;
3155
374f84ac
JA
3156 /*
3157 * if the new request is sync, but the currently running queue is
3158 * not, let the sync request have priority.
3159 */
5e705374 3160 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3161 return true;
1e3335de 3162
8682e1f1
VG
3163 if (new_cfqq->cfqg != cfqq->cfqg)
3164 return false;
3165
3166 if (cfq_slice_used(cfqq))
3167 return true;
3168
3169 /* Allow preemption only if we are idling on sync-noidle tree */
3170 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3171 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3172 new_cfqq->service_tree->count == 2 &&
3173 RB_EMPTY_ROOT(&cfqq->sort_list))
3174 return true;
3175
374f84ac
JA
3176 /*
3177 * So both queues are sync. Let the new request get disk time if
3178 * it's a metadata request and the current queue is doing regular IO.
3179 */
33659ebb 3180 if ((rq->cmd_flags & REQ_RW_META) && !cfqq->meta_pending)
e6ec4fe2 3181 return true;
22e2c507 3182
3a9a3f6c
DS
3183 /*
3184 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3185 */
3186 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3187 return true;
3a9a3f6c 3188
1e3335de 3189 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3190 return false;
1e3335de
JA
3191
3192 /*
3193 * if this request is as-good as one we would expect from the
3194 * current cfqq, let it preempt
3195 */
e9ce335d 3196 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3197 return true;
1e3335de 3198
a6151c3a 3199 return false;
22e2c507
JA
3200}
3201
3202/*
3203 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3204 * let it have half of its nominal slice.
3205 */
3206static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3207{
7b679138 3208 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3209 cfq_slice_expired(cfqd, 1);
22e2c507 3210
bf572256
JA
3211 /*
3212 * Put the new queue at the front of the of the current list,
3213 * so we know that it will be selected next.
3214 */
3215 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3216
3217 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3218
44f7c160
JA
3219 cfqq->slice_end = 0;
3220 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3221}
3222
22e2c507 3223/*
5e705374 3224 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3225 * something we should do about it
3226 */
3227static void
5e705374
JA
3228cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3229 struct request *rq)
22e2c507 3230{
5e705374 3231 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3232
45333d5a 3233 cfqd->rq_queued++;
33659ebb 3234 if (rq->cmd_flags & REQ_RW_META)
374f84ac
JA
3235 cfqq->meta_pending++;
3236
9c2c38a1 3237 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3238 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3239 cfq_update_idle_window(cfqd, cfqq, cic);
3240
b2c18e1e 3241 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3242
3243 if (cfqq == cfqd->active_queue) {
3244 /*
b029195d
JA
3245 * Remember that we saw a request from this process, but
3246 * don't start queuing just yet. Otherwise we risk seeing lots
3247 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3248 * and merging. If the request is already larger than a single
3249 * page, let it rip immediately. For that case we assume that
2d870722
JA
3250 * merging is already done. Ditto for a busy system that
3251 * has other work pending, don't risk delaying until the
3252 * idle timer unplug to continue working.
22e2c507 3253 */
d6ceb25e 3254 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3255 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3256 cfqd->busy_queues > 1) {
812df48d 3257 cfq_del_timer(cfqd, cfqq);
554554f6 3258 cfq_clear_cfqq_wait_request(cfqq);
bf791937 3259 __blk_run_queue(cfqd->queue);
a11cdaa7 3260 } else {
e98ef89b 3261 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3262 &cfqq->cfqg->blkg);
bf791937 3263 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3264 }
d6ceb25e 3265 }
5e705374 3266 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3267 /*
3268 * not the active queue - expire current slice if it is
3269 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3270 * has some old slice time left and is of higher priority or
3271 * this new queue is RT and the current one is BE
22e2c507
JA
3272 */
3273 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3274 __blk_run_queue(cfqd->queue);
22e2c507 3275 }
1da177e4
LT
3276}
3277
165125e1 3278static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3279{
b4878f24 3280 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3281 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3282
7b679138 3283 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3284 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3285
30996f40 3286 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3287 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3288 cfq_add_rq_rb(rq);
e98ef89b 3289 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3290 &cfqd->serving_group->blkg, rq_data_dir(rq),
3291 rq_is_sync(rq));
5e705374 3292 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3293}
3294
45333d5a
AC
3295/*
3296 * Update hw_tag based on peak queue depth over 50 samples under
3297 * sufficient load.
3298 */
3299static void cfq_update_hw_tag(struct cfq_data *cfqd)
3300{
1a1238a7
SL
3301 struct cfq_queue *cfqq = cfqd->active_queue;
3302
53c583d2
CZ
3303 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3304 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3305
3306 if (cfqd->hw_tag == 1)
3307 return;
45333d5a
AC
3308
3309 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3310 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3311 return;
3312
1a1238a7
SL
3313 /*
3314 * If active queue hasn't enough requests and can idle, cfq might not
3315 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3316 * case
3317 */
3318 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3319 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3320 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3321 return;
3322
45333d5a
AC
3323 if (cfqd->hw_tag_samples++ < 50)
3324 return;
3325
e459dd08 3326 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3327 cfqd->hw_tag = 1;
3328 else
3329 cfqd->hw_tag = 0;
45333d5a
AC
3330}
3331
7667aa06
VG
3332static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3333{
3334 struct cfq_io_context *cic = cfqd->active_cic;
3335
3336 /* If there are other queues in the group, don't wait */
3337 if (cfqq->cfqg->nr_cfqq > 1)
3338 return false;
3339
3340 if (cfq_slice_used(cfqq))
3341 return true;
3342
3343 /* if slice left is less than think time, wait busy */
3344 if (cic && sample_valid(cic->ttime_samples)
3345 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3346 return true;
3347
3348 /*
3349 * If think times is less than a jiffy than ttime_mean=0 and above
3350 * will not be true. It might happen that slice has not expired yet
3351 * but will expire soon (4-5 ns) during select_queue(). To cover the
3352 * case where think time is less than a jiffy, mark the queue wait
3353 * busy if only 1 jiffy is left in the slice.
3354 */
3355 if (cfqq->slice_end - jiffies == 1)
3356 return true;
3357
3358 return false;
3359}
3360
165125e1 3361static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3362{
5e705374 3363 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3364 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3365 const int sync = rq_is_sync(rq);
b4878f24 3366 unsigned long now;
1da177e4 3367
b4878f24 3368 now = jiffies;
33659ebb
CH
3369 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3370 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3371
45333d5a
AC
3372 cfq_update_hw_tag(cfqd);
3373
53c583d2 3374 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3375 WARN_ON(!cfqq->dispatched);
53c583d2 3376 cfqd->rq_in_driver--;
6d048f53 3377 cfqq->dispatched--;
e98ef89b
VG
3378 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3379 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3380 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3381
53c583d2 3382 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3383
365722bb 3384 if (sync) {
5e705374 3385 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3386 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3387 cfqd->last_delayed_sync = now;
365722bb 3388 }
caaa5f9f
JA
3389
3390 /*
3391 * If this is the active queue, check if it needs to be expired,
3392 * or if we want to idle in case it has no pending requests.
3393 */
3394 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3395 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3396
44f7c160
JA
3397 if (cfq_cfqq_slice_new(cfqq)) {
3398 cfq_set_prio_slice(cfqd, cfqq);
3399 cfq_clear_cfqq_slice_new(cfqq);
3400 }
f75edf2d
VG
3401
3402 /*
7667aa06
VG
3403 * Should we wait for next request to come in before we expire
3404 * the queue.
f75edf2d 3405 */
7667aa06 3406 if (cfq_should_wait_busy(cfqd, cfqq)) {
f75edf2d
VG
3407 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3408 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3409 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3410 }
3411
a36e71f9 3412 /*
8e550632
CZ
3413 * Idling is not enabled on:
3414 * - expired queues
3415 * - idle-priority queues
3416 * - async queues
3417 * - queues with still some requests queued
3418 * - when there is a close cooperator
a36e71f9 3419 */
0871714e 3420 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3421 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3422 else if (sync && cfqq_empty &&
3423 !cfq_close_cooperator(cfqd, cfqq)) {
33659ebb
CH
3424 cfqd->noidle_tree_requires_idle |=
3425 !(rq->cmd_flags & REQ_NOIDLE);
8e550632
CZ
3426 /*
3427 * Idling is enabled for SYNC_WORKLOAD.
3428 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
33659ebb 3429 * only if we processed at least one !REQ_NOIDLE request
8e550632
CZ
3430 */
3431 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3432 || cfqd->noidle_tree_requires_idle
3433 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3434 cfq_arm_slice_timer(cfqd);
3435 }
caaa5f9f 3436 }
6d048f53 3437
53c583d2 3438 if (!cfqd->rq_in_driver)
23e018a1 3439 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3440}
3441
22e2c507
JA
3442/*
3443 * we temporarily boost lower priority queues if they are holding fs exclusive
3444 * resources. they are boosted to normal prio (CLASS_BE/4)
3445 */
3446static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3447{
22e2c507
JA
3448 if (has_fs_excl()) {
3449 /*
3450 * boost idle prio on transactions that would lock out other
3451 * users of the filesystem
3452 */
3453 if (cfq_class_idle(cfqq))
3454 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3455 if (cfqq->ioprio > IOPRIO_NORM)
3456 cfqq->ioprio = IOPRIO_NORM;
3457 } else {
3458 /*
dddb7451 3459 * unboost the queue (if needed)
22e2c507 3460 */
dddb7451
CZ
3461 cfqq->ioprio_class = cfqq->org_ioprio_class;
3462 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3463 }
22e2c507 3464}
1da177e4 3465
89850f7e 3466static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3467{
1b379d8d 3468 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3469 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3470 return ELV_MQUEUE_MUST;
3b18152c 3471 }
1da177e4 3472
22e2c507 3473 return ELV_MQUEUE_MAY;
22e2c507
JA
3474}
3475
165125e1 3476static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3477{
3478 struct cfq_data *cfqd = q->elevator->elevator_data;
3479 struct task_struct *tsk = current;
91fac317 3480 struct cfq_io_context *cic;
22e2c507
JA
3481 struct cfq_queue *cfqq;
3482
3483 /*
3484 * don't force setup of a queue from here, as a call to may_queue
3485 * does not necessarily imply that a request actually will be queued.
3486 * so just lookup a possibly existing queue, or return 'may queue'
3487 * if that fails
3488 */
4ac845a2 3489 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3490 if (!cic)
3491 return ELV_MQUEUE_MAY;
3492
b0b78f81 3493 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3494 if (cfqq) {
fd0928df 3495 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3496 cfq_prio_boost(cfqq);
3497
89850f7e 3498 return __cfq_may_queue(cfqq);
22e2c507
JA
3499 }
3500
3501 return ELV_MQUEUE_MAY;
1da177e4
LT
3502}
3503
1da177e4
LT
3504/*
3505 * queue lock held here
3506 */
bb37b94c 3507static void cfq_put_request(struct request *rq)
1da177e4 3508{
5e705374 3509 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3510
5e705374 3511 if (cfqq) {
22e2c507 3512 const int rw = rq_data_dir(rq);
1da177e4 3513
22e2c507
JA
3514 BUG_ON(!cfqq->allocated[rw]);
3515 cfqq->allocated[rw]--;
1da177e4 3516
5e705374 3517 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3518
1da177e4 3519 rq->elevator_private = NULL;
5e705374 3520 rq->elevator_private2 = NULL;
1da177e4 3521
7f1dc8a2
VG
3522 /* Put down rq reference on cfqg */
3523 cfq_put_cfqg(RQ_CFQG(rq));
3524 rq->elevator_private3 = NULL;
3525
1da177e4
LT
3526 cfq_put_queue(cfqq);
3527 }
3528}
3529
df5fe3e8
JM
3530static struct cfq_queue *
3531cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3532 struct cfq_queue *cfqq)
3533{
3534 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3535 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3536 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3537 cfq_put_queue(cfqq);
3538 return cic_to_cfqq(cic, 1);
3539}
3540
e6c5bc73
JM
3541/*
3542 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3543 * was the last process referring to said cfqq.
3544 */
3545static struct cfq_queue *
3546split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3547{
3548 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3549 cfqq->pid = current->pid;
3550 cfq_clear_cfqq_coop(cfqq);
ae54abed 3551 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3552 return cfqq;
3553 }
3554
3555 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3556
3557 cfq_put_cooperator(cfqq);
3558
e6c5bc73
JM
3559 cfq_put_queue(cfqq);
3560 return NULL;
3561}
1da177e4 3562/*
22e2c507 3563 * Allocate cfq data structures associated with this request.
1da177e4 3564 */
22e2c507 3565static int
165125e1 3566cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3567{
3568 struct cfq_data *cfqd = q->elevator->elevator_data;
3569 struct cfq_io_context *cic;
3570 const int rw = rq_data_dir(rq);
a6151c3a 3571 const bool is_sync = rq_is_sync(rq);
22e2c507 3572 struct cfq_queue *cfqq;
1da177e4
LT
3573 unsigned long flags;
3574
3575 might_sleep_if(gfp_mask & __GFP_WAIT);
3576
e2d74ac0 3577 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3578
1da177e4
LT
3579 spin_lock_irqsave(q->queue_lock, flags);
3580
22e2c507
JA
3581 if (!cic)
3582 goto queue_fail;
3583
e6c5bc73 3584new_queue:
91fac317 3585 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3586 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3587 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3588 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3589 } else {
e6c5bc73
JM
3590 /*
3591 * If the queue was seeky for too long, break it apart.
3592 */
ae54abed 3593 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3594 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3595 cfqq = split_cfqq(cic, cfqq);
3596 if (!cfqq)
3597 goto new_queue;
3598 }
3599
df5fe3e8
JM
3600 /*
3601 * Check to see if this queue is scheduled to merge with
3602 * another, closely cooperating queue. The merging of
3603 * queues happens here as it must be done in process context.
3604 * The reference on new_cfqq was taken in merge_cfqqs.
3605 */
3606 if (cfqq->new_cfqq)
3607 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3608 }
1da177e4
LT
3609
3610 cfqq->allocated[rw]++;
22e2c507 3611 atomic_inc(&cfqq->ref);
1da177e4 3612
5e705374 3613 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3614
5e705374
JA
3615 rq->elevator_private = cic;
3616 rq->elevator_private2 = cfqq;
7f1dc8a2 3617 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
5e705374 3618 return 0;
1da177e4 3619
22e2c507
JA
3620queue_fail:
3621 if (cic)
3622 put_io_context(cic->ioc);
89850f7e 3623
23e018a1 3624 cfq_schedule_dispatch(cfqd);
1da177e4 3625 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3626 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3627 return 1;
3628}
3629
65f27f38 3630static void cfq_kick_queue(struct work_struct *work)
22e2c507 3631{
65f27f38 3632 struct cfq_data *cfqd =
23e018a1 3633 container_of(work, struct cfq_data, unplug_work);
165125e1 3634 struct request_queue *q = cfqd->queue;
22e2c507 3635
40bb54d1 3636 spin_lock_irq(q->queue_lock);
a7f55792 3637 __blk_run_queue(cfqd->queue);
40bb54d1 3638 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3639}
3640
3641/*
3642 * Timer running if the active_queue is currently idling inside its time slice
3643 */
3644static void cfq_idle_slice_timer(unsigned long data)
3645{
3646 struct cfq_data *cfqd = (struct cfq_data *) data;
3647 struct cfq_queue *cfqq;
3648 unsigned long flags;
3c6bd2f8 3649 int timed_out = 1;
22e2c507 3650
7b679138
JA
3651 cfq_log(cfqd, "idle timer fired");
3652
22e2c507
JA
3653 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3654
fe094d98
JA
3655 cfqq = cfqd->active_queue;
3656 if (cfqq) {
3c6bd2f8
JA
3657 timed_out = 0;
3658
b029195d
JA
3659 /*
3660 * We saw a request before the queue expired, let it through
3661 */
3662 if (cfq_cfqq_must_dispatch(cfqq))
3663 goto out_kick;
3664
22e2c507
JA
3665 /*
3666 * expired
3667 */
44f7c160 3668 if (cfq_slice_used(cfqq))
22e2c507
JA
3669 goto expire;
3670
3671 /*
3672 * only expire and reinvoke request handler, if there are
3673 * other queues with pending requests
3674 */
caaa5f9f 3675 if (!cfqd->busy_queues)
22e2c507 3676 goto out_cont;
22e2c507
JA
3677
3678 /*
3679 * not expired and it has a request pending, let it dispatch
3680 */
75e50984 3681 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3682 goto out_kick;
76280aff
CZ
3683
3684 /*
3685 * Queue depth flag is reset only when the idle didn't succeed
3686 */
3687 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3688 }
3689expire:
e5ff082e 3690 cfq_slice_expired(cfqd, timed_out);
22e2c507 3691out_kick:
23e018a1 3692 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3693out_cont:
3694 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3695}
3696
3b18152c
JA
3697static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3698{
3699 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3700 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3701}
22e2c507 3702
c2dea2d1
VT
3703static void cfq_put_async_queues(struct cfq_data *cfqd)
3704{
3705 int i;
3706
3707 for (i = 0; i < IOPRIO_BE_NR; i++) {
3708 if (cfqd->async_cfqq[0][i])
3709 cfq_put_queue(cfqd->async_cfqq[0][i]);
3710 if (cfqd->async_cfqq[1][i])
3711 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3712 }
2389d1ef
ON
3713
3714 if (cfqd->async_idle_cfqq)
3715 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3716}
3717
bb729bc9
JA
3718static void cfq_cfqd_free(struct rcu_head *head)
3719{
3720 kfree(container_of(head, struct cfq_data, rcu));
3721}
3722
b374d18a 3723static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3724{
22e2c507 3725 struct cfq_data *cfqd = e->elevator_data;
165125e1 3726 struct request_queue *q = cfqd->queue;
22e2c507 3727
3b18152c 3728 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3729
d9ff4187 3730 spin_lock_irq(q->queue_lock);
e2d74ac0 3731
d9ff4187 3732 if (cfqd->active_queue)
e5ff082e 3733 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3734
3735 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3736 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3737 struct cfq_io_context,
3738 queue_list);
89850f7e
JA
3739
3740 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3741 }
e2d74ac0 3742
c2dea2d1 3743 cfq_put_async_queues(cfqd);
b1c35769 3744 cfq_release_cfq_groups(cfqd);
e98ef89b 3745 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3746
d9ff4187 3747 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3748
3749 cfq_shutdown_timer_wq(cfqd);
3750
80b15c73
KK
3751 spin_lock(&cic_index_lock);
3752 ida_remove(&cic_index_ida, cfqd->cic_index);
3753 spin_unlock(&cic_index_lock);
3754
b1c35769 3755 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3756 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3757}
3758
80b15c73
KK
3759static int cfq_alloc_cic_index(void)
3760{
3761 int index, error;
3762
3763 do {
3764 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3765 return -ENOMEM;
3766
3767 spin_lock(&cic_index_lock);
3768 error = ida_get_new(&cic_index_ida, &index);
3769 spin_unlock(&cic_index_lock);
3770 if (error && error != -EAGAIN)
3771 return error;
3772 } while (error);
3773
3774 return index;
3775}
3776
165125e1 3777static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3778{
3779 struct cfq_data *cfqd;
718eee05 3780 int i, j;
cdb16e8f 3781 struct cfq_group *cfqg;
615f0259 3782 struct cfq_rb_root *st;
1da177e4 3783
80b15c73
KK
3784 i = cfq_alloc_cic_index();
3785 if (i < 0)
3786 return NULL;
3787
94f6030c 3788 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3789 if (!cfqd)
bc1c1169 3790 return NULL;
1da177e4 3791
80b15c73
KK
3792 cfqd->cic_index = i;
3793
1fa8f6d6
VG
3794 /* Init root service tree */
3795 cfqd->grp_service_tree = CFQ_RB_ROOT;
3796
cdb16e8f
VG
3797 /* Init root group */
3798 cfqg = &cfqd->root_group;
615f0259
VG
3799 for_each_cfqg_st(cfqg, i, j, st)
3800 *st = CFQ_RB_ROOT;
1fa8f6d6 3801 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3802
25bc6b07
VG
3803 /* Give preference to root group over other groups */
3804 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3805
25fb5169 3806#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3807 /*
3808 * Take a reference to root group which we never drop. This is just
3809 * to make sure that cfq_put_cfqg() does not try to kfree root group
3810 */
3811 atomic_set(&cfqg->ref, 1);
dcf097b2 3812 rcu_read_lock();
e98ef89b
VG
3813 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3814 (void *)cfqd, 0);
dcf097b2 3815 rcu_read_unlock();
25fb5169 3816#endif
26a2ac00
JA
3817 /*
3818 * Not strictly needed (since RB_ROOT just clears the node and we
3819 * zeroed cfqd on alloc), but better be safe in case someone decides
3820 * to add magic to the rb code
3821 */
3822 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3823 cfqd->prio_trees[i] = RB_ROOT;
3824
6118b70b
JA
3825 /*
3826 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3827 * Grab a permanent reference to it, so that the normal code flow
3828 * will not attempt to free it.
3829 */
3830 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3831 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3832 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3833
d9ff4187 3834 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3835
1da177e4 3836 cfqd->queue = q;
1da177e4 3837
22e2c507
JA
3838 init_timer(&cfqd->idle_slice_timer);
3839 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3840 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3841
23e018a1 3842 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3843
1da177e4 3844 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3845 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3846 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3847 cfqd->cfq_back_max = cfq_back_max;
3848 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3849 cfqd->cfq_slice[0] = cfq_slice_async;
3850 cfqd->cfq_slice[1] = cfq_slice_sync;
3851 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3852 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3853 cfqd->cfq_latency = 1;
ae30c286 3854 cfqd->cfq_group_isolation = 0;
e459dd08 3855 cfqd->hw_tag = -1;
edc71131
CZ
3856 /*
3857 * we optimistically start assuming sync ops weren't delayed in last
3858 * second, in order to have larger depth for async operations.
3859 */
573412b2 3860 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 3861 return cfqd;
1da177e4
LT
3862}
3863
3864static void cfq_slab_kill(void)
3865{
d6de8be7
JA
3866 /*
3867 * Caller already ensured that pending RCU callbacks are completed,
3868 * so we should have no busy allocations at this point.
3869 */
1da177e4
LT
3870 if (cfq_pool)
3871 kmem_cache_destroy(cfq_pool);
3872 if (cfq_ioc_pool)
3873 kmem_cache_destroy(cfq_ioc_pool);
3874}
3875
3876static int __init cfq_slab_setup(void)
3877{
0a31bd5f 3878 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3879 if (!cfq_pool)
3880 goto fail;
3881
34e6bbf2 3882 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3883 if (!cfq_ioc_pool)
3884 goto fail;
3885
3886 return 0;
3887fail:
3888 cfq_slab_kill();
3889 return -ENOMEM;
3890}
3891
1da177e4
LT
3892/*
3893 * sysfs parts below -->
3894 */
1da177e4
LT
3895static ssize_t
3896cfq_var_show(unsigned int var, char *page)
3897{
3898 return sprintf(page, "%d\n", var);
3899}
3900
3901static ssize_t
3902cfq_var_store(unsigned int *var, const char *page, size_t count)
3903{
3904 char *p = (char *) page;
3905
3906 *var = simple_strtoul(p, &p, 10);
3907 return count;
3908}
3909
1da177e4 3910#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3911static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3912{ \
3d1ab40f 3913 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3914 unsigned int __data = __VAR; \
3915 if (__CONV) \
3916 __data = jiffies_to_msecs(__data); \
3917 return cfq_var_show(__data, (page)); \
3918}
3919SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3920SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3921SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3922SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3923SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3924SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3925SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3926SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3927SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3928SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3929SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3930#undef SHOW_FUNCTION
3931
3932#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3933static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3934{ \
3d1ab40f 3935 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3936 unsigned int __data; \
3937 int ret = cfq_var_store(&__data, (page), count); \
3938 if (__data < (MIN)) \
3939 __data = (MIN); \
3940 else if (__data > (MAX)) \
3941 __data = (MAX); \
3942 if (__CONV) \
3943 *(__PTR) = msecs_to_jiffies(__data); \
3944 else \
3945 *(__PTR) = __data; \
3946 return ret; \
3947}
3948STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3949STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3950 UINT_MAX, 1);
3951STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3952 UINT_MAX, 1);
e572ec7e 3953STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3954STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3955 UINT_MAX, 0);
22e2c507
JA
3956STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3957STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3958STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3959STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3960 UINT_MAX, 0);
963b72fc 3961STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3962STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3963#undef STORE_FUNCTION
3964
e572ec7e
AV
3965#define CFQ_ATTR(name) \
3966 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3967
3968static struct elv_fs_entry cfq_attrs[] = {
3969 CFQ_ATTR(quantum),
e572ec7e
AV
3970 CFQ_ATTR(fifo_expire_sync),
3971 CFQ_ATTR(fifo_expire_async),
3972 CFQ_ATTR(back_seek_max),
3973 CFQ_ATTR(back_seek_penalty),
3974 CFQ_ATTR(slice_sync),
3975 CFQ_ATTR(slice_async),
3976 CFQ_ATTR(slice_async_rq),
3977 CFQ_ATTR(slice_idle),
963b72fc 3978 CFQ_ATTR(low_latency),
ae30c286 3979 CFQ_ATTR(group_isolation),
e572ec7e 3980 __ATTR_NULL
1da177e4
LT
3981};
3982
1da177e4
LT
3983static struct elevator_type iosched_cfq = {
3984 .ops = {
3985 .elevator_merge_fn = cfq_merge,
3986 .elevator_merged_fn = cfq_merged_request,
3987 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3988 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 3989 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 3990 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3991 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3992 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3993 .elevator_deactivate_req_fn = cfq_deactivate_request,
3994 .elevator_queue_empty_fn = cfq_queue_empty,
3995 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3996 .elevator_former_req_fn = elv_rb_former_request,
3997 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3998 .elevator_set_req_fn = cfq_set_request,
3999 .elevator_put_req_fn = cfq_put_request,
4000 .elevator_may_queue_fn = cfq_may_queue,
4001 .elevator_init_fn = cfq_init_queue,
4002 .elevator_exit_fn = cfq_exit_queue,
fc46379d 4003 .trim = cfq_free_io_context,
1da177e4 4004 },
3d1ab40f 4005 .elevator_attrs = cfq_attrs,
1da177e4
LT
4006 .elevator_name = "cfq",
4007 .elevator_owner = THIS_MODULE,
4008};
4009
3e252066
VG
4010#ifdef CONFIG_CFQ_GROUP_IOSCHED
4011static struct blkio_policy_type blkio_policy_cfq = {
4012 .ops = {
4013 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4014 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4015 },
4016};
4017#else
4018static struct blkio_policy_type blkio_policy_cfq;
4019#endif
4020
1da177e4
LT
4021static int __init cfq_init(void)
4022{
22e2c507
JA
4023 /*
4024 * could be 0 on HZ < 1000 setups
4025 */
4026 if (!cfq_slice_async)
4027 cfq_slice_async = 1;
4028 if (!cfq_slice_idle)
4029 cfq_slice_idle = 1;
4030
1da177e4
LT
4031 if (cfq_slab_setup())
4032 return -ENOMEM;
4033
2fdd82bd 4034 elv_register(&iosched_cfq);
3e252066 4035 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4036
2fdd82bd 4037 return 0;
1da177e4
LT
4038}
4039
4040static void __exit cfq_exit(void)
4041{
6e9a4738 4042 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4043 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4044 elv_unregister(&iosched_cfq);
334e94de 4045 ioc_gone = &all_gone;
fba82272
OH
4046 /* ioc_gone's update must be visible before reading ioc_count */
4047 smp_wmb();
d6de8be7
JA
4048
4049 /*
4050 * this also protects us from entering cfq_slab_kill() with
4051 * pending RCU callbacks
4052 */
245b2e70 4053 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4054 wait_for_completion(&all_gone);
80b15c73 4055 ida_destroy(&cic_index_ida);
83521d3e 4056 cfq_slab_kill();
1da177e4
LT
4057}
4058
4059module_init(cfq_init);
4060module_exit(cfq_exit);
4061
4062MODULE_AUTHOR("Jens Axboe");
4063MODULE_LICENSE("GPL");
4064MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");