blkio: Propagate cgroup weight updation to cfq groups
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
1da177e4
LT
17
18/*
19 * tunables
20 */
fe094d98
JA
21/* max queue in one round of service */
22static const int cfq_quantum = 4;
64100099 23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
64100099 28static const int cfq_slice_sync = HZ / 10;
3b18152c 29static int cfq_slice_async = HZ / 25;
64100099 30static const int cfq_slice_async_rq = 2;
caaa5f9f 31static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
22e2c507 34
d9e7620e 35/*
0871714e 36 * offset from end of service tree
d9e7620e 37 */
0871714e 38#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
e6c5bc73
JM
45/*
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
48 */
49#define CFQQ_COOP_TOUT (HZ)
50
22e2c507 51#define CFQ_SLICE_SCALE (5)
45333d5a 52#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 53#define CFQ_SERVICE_SHIFT 12
22e2c507 54
fe094d98
JA
55#define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 57#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 58
e18b890b
CL
59static struct kmem_cache *cfq_pool;
60static struct kmem_cache *cfq_ioc_pool;
1da177e4 61
245b2e70 62static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 63static struct completion *ioc_gone;
9a11b4ed 64static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 65
22e2c507
JA
66#define CFQ_PRIO_LISTS IOPRIO_BE_NR
67#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
68#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
206dc69b 70#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 71#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 72
cc09e299
JA
73/*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
aa6f6a3d 82 unsigned count;
1fa8f6d6 83 u64 min_vdisktime;
25bc6b07 84 struct rb_node *active;
58ff82f3 85 unsigned total_weight;
cc09e299 86};
1fa8f6d6 87#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
cc09e299 88
6118b70b
JA
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
dae739eb
VG
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 /* time when first request from queue completed and slice started. */
121 unsigned long slice_start;
6118b70b
JA
122 unsigned long slice_end;
123 long slice_resid;
124 unsigned int slice_dispatch;
125
126 /* pending metadata requests */
127 int meta_pending;
128 /* number of requests that are on the dispatch list or inside driver */
129 int dispatched;
130
131 /* io prio of this group */
132 unsigned short ioprio, org_ioprio;
133 unsigned short ioprio_class, org_ioprio_class;
134
b2c18e1e
JM
135 unsigned int seek_samples;
136 u64 seek_total;
137 sector_t seek_mean;
138 sector_t last_request_pos;
e6c5bc73 139 unsigned long seeky_start;
b2c18e1e 140
6118b70b 141 pid_t pid;
df5fe3e8 142
aa6f6a3d 143 struct cfq_rb_root *service_tree;
df5fe3e8 144 struct cfq_queue *new_cfqq;
cdb16e8f 145 struct cfq_group *cfqg;
22084190
VG
146 /* Sectors dispatched in current dispatch round */
147 unsigned long nr_sectors;
6118b70b
JA
148};
149
c0324a02 150/*
718eee05 151 * First index in the service_trees.
c0324a02
CZ
152 * IDLE is handled separately, so it has negative index
153 */
154enum wl_prio_t {
c0324a02 155 BE_WORKLOAD = 0,
615f0259
VG
156 RT_WORKLOAD = 1,
157 IDLE_WORKLOAD = 2,
c0324a02
CZ
158};
159
718eee05
CZ
160/*
161 * Second index in the service_trees.
162 */
163enum wl_type_t {
164 ASYNC_WORKLOAD = 0,
165 SYNC_NOIDLE_WORKLOAD = 1,
166 SYNC_WORKLOAD = 2
167};
168
cdb16e8f
VG
169/* This is per cgroup per device grouping structure */
170struct cfq_group {
1fa8f6d6
VG
171 /* group service_tree member */
172 struct rb_node rb_node;
173
174 /* group service_tree key */
175 u64 vdisktime;
25bc6b07 176 unsigned int weight;
1fa8f6d6
VG
177 bool on_st;
178
179 /* number of cfqq currently on this group */
180 int nr_cfqq;
181
58ff82f3
VG
182 /* Per group busy queus average. Useful for workload slice calc. */
183 unsigned int busy_queues_avg[2];
cdb16e8f
VG
184 /*
185 * rr lists of queues with requests, onle rr for each priority class.
186 * Counts are embedded in the cfq_rb_root
187 */
188 struct cfq_rb_root service_trees[2][3];
189 struct cfq_rb_root service_tree_idle;
dae739eb
VG
190
191 unsigned long saved_workload_slice;
192 enum wl_type_t saved_workload;
193 enum wl_prio_t saved_serving_prio;
25fb5169
VG
194 struct blkio_group blkg;
195#ifdef CONFIG_CFQ_GROUP_IOSCHED
196 struct hlist_node cfqd_node;
b1c35769 197 atomic_t ref;
25fb5169 198#endif
cdb16e8f 199};
718eee05 200
22e2c507
JA
201/*
202 * Per block device queue structure
203 */
1da177e4 204struct cfq_data {
165125e1 205 struct request_queue *queue;
1fa8f6d6
VG
206 /* Root service tree for cfq_groups */
207 struct cfq_rb_root grp_service_tree;
cdb16e8f 208 struct cfq_group root_group;
58ff82f3
VG
209 /* Number of active cfq groups on group service tree */
210 int nr_groups;
22e2c507 211
c0324a02
CZ
212 /*
213 * The priority currently being served
22e2c507 214 */
c0324a02 215 enum wl_prio_t serving_prio;
718eee05
CZ
216 enum wl_type_t serving_type;
217 unsigned long workload_expires;
cdb16e8f 218 struct cfq_group *serving_group;
8e550632 219 bool noidle_tree_requires_idle;
a36e71f9
JA
220
221 /*
222 * Each priority tree is sorted by next_request position. These
223 * trees are used when determining if two or more queues are
224 * interleaving requests (see cfq_close_cooperator).
225 */
226 struct rb_root prio_trees[CFQ_PRIO_LISTS];
227
22e2c507
JA
228 unsigned int busy_queues;
229
5ad531db 230 int rq_in_driver[2];
3ed9a296 231 int sync_flight;
45333d5a
AC
232
233 /*
234 * queue-depth detection
235 */
236 int rq_queued;
25776e35 237 int hw_tag;
e459dd08
CZ
238 /*
239 * hw_tag can be
240 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
241 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
242 * 0 => no NCQ
243 */
244 int hw_tag_est_depth;
245 unsigned int hw_tag_samples;
1da177e4 246
22e2c507
JA
247 /*
248 * idle window management
249 */
250 struct timer_list idle_slice_timer;
23e018a1 251 struct work_struct unplug_work;
1da177e4 252
22e2c507
JA
253 struct cfq_queue *active_queue;
254 struct cfq_io_context *active_cic;
22e2c507 255
c2dea2d1
VT
256 /*
257 * async queue for each priority case
258 */
259 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
260 struct cfq_queue *async_idle_cfqq;
15c31be4 261
6d048f53 262 sector_t last_position;
1da177e4 263
1da177e4
LT
264 /*
265 * tunables, see top of file
266 */
267 unsigned int cfq_quantum;
22e2c507 268 unsigned int cfq_fifo_expire[2];
1da177e4
LT
269 unsigned int cfq_back_penalty;
270 unsigned int cfq_back_max;
22e2c507
JA
271 unsigned int cfq_slice[2];
272 unsigned int cfq_slice_async_rq;
273 unsigned int cfq_slice_idle;
963b72fc 274 unsigned int cfq_latency;
d9ff4187
AV
275
276 struct list_head cic_list;
1da177e4 277
6118b70b
JA
278 /*
279 * Fallback dummy cfqq for extreme OOM conditions
280 */
281 struct cfq_queue oom_cfqq;
365722bb
VG
282
283 unsigned long last_end_sync_rq;
25fb5169
VG
284
285 /* List of cfq groups being managed on this device*/
286 struct hlist_head cfqg_list;
1da177e4
LT
287};
288
25fb5169
VG
289static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
290
cdb16e8f
VG
291static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
292 enum wl_prio_t prio,
718eee05 293 enum wl_type_t type,
c0324a02
CZ
294 struct cfq_data *cfqd)
295{
1fa8f6d6
VG
296 if (!cfqg)
297 return NULL;
298
c0324a02 299 if (prio == IDLE_WORKLOAD)
cdb16e8f 300 return &cfqg->service_tree_idle;
c0324a02 301
cdb16e8f 302 return &cfqg->service_trees[prio][type];
c0324a02
CZ
303}
304
3b18152c 305enum cfqq_state_flags {
b0b8d749
JA
306 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
307 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 308 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 309 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
310 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
311 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
312 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 313 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 314 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 315 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
76280aff 316 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
3b18152c
JA
317};
318
319#define CFQ_CFQQ_FNS(name) \
320static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
321{ \
fe094d98 322 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
323} \
324static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
325{ \
fe094d98 326 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
327} \
328static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
329{ \
fe094d98 330 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
331}
332
333CFQ_CFQQ_FNS(on_rr);
334CFQ_CFQQ_FNS(wait_request);
b029195d 335CFQ_CFQQ_FNS(must_dispatch);
3b18152c 336CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
337CFQ_CFQQ_FNS(fifo_expire);
338CFQ_CFQQ_FNS(idle_window);
339CFQ_CFQQ_FNS(prio_changed);
44f7c160 340CFQ_CFQQ_FNS(slice_new);
91fac317 341CFQ_CFQQ_FNS(sync);
a36e71f9 342CFQ_CFQQ_FNS(coop);
76280aff 343CFQ_CFQQ_FNS(deep);
3b18152c
JA
344#undef CFQ_CFQQ_FNS
345
2868ef7b
VG
346#ifdef CONFIG_DEBUG_CFQ_IOSCHED
347#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
348 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350 blkg_path(&(cfqq)->cfqg->blkg), ##args);
351
352#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
353 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
354 blkg_path(&(cfqg)->blkg), ##args); \
355
356#else
7b679138
JA
357#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
358 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
359#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
360#endif
7b679138
JA
361#define cfq_log(cfqd, fmt, args...) \
362 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
363
615f0259
VG
364/* Traverses through cfq group service trees */
365#define for_each_cfqg_st(cfqg, i, j, st) \
366 for (i = 0; i <= IDLE_WORKLOAD; i++) \
367 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368 : &cfqg->service_tree_idle; \
369 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370 (i == IDLE_WORKLOAD && j == 0); \
371 j++, st = i < IDLE_WORKLOAD ? \
372 &cfqg->service_trees[i][j]: NULL) \
373
374
c0324a02
CZ
375static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
376{
377 if (cfq_class_idle(cfqq))
378 return IDLE_WORKLOAD;
379 if (cfq_class_rt(cfqq))
380 return RT_WORKLOAD;
381 return BE_WORKLOAD;
382}
383
718eee05
CZ
384
385static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
386{
387 if (!cfq_cfqq_sync(cfqq))
388 return ASYNC_WORKLOAD;
389 if (!cfq_cfqq_idle_window(cfqq))
390 return SYNC_NOIDLE_WORKLOAD;
391 return SYNC_WORKLOAD;
392}
393
58ff82f3
VG
394static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
395 struct cfq_data *cfqd,
396 struct cfq_group *cfqg)
c0324a02
CZ
397{
398 if (wl == IDLE_WORKLOAD)
cdb16e8f 399 return cfqg->service_tree_idle.count;
c0324a02 400
cdb16e8f
VG
401 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
402 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
403 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
404}
405
165125e1 406static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 407static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 408 struct io_context *, gfp_t);
4ac845a2 409static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
410 struct io_context *);
411
5ad531db
JA
412static inline int rq_in_driver(struct cfq_data *cfqd)
413{
414 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
415}
416
91fac317 417static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 418 bool is_sync)
91fac317 419{
a6151c3a 420 return cic->cfqq[is_sync];
91fac317
VT
421}
422
423static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 424 struct cfq_queue *cfqq, bool is_sync)
91fac317 425{
a6151c3a 426 cic->cfqq[is_sync] = cfqq;
91fac317
VT
427}
428
429/*
430 * We regard a request as SYNC, if it's either a read or has the SYNC bit
431 * set (in which case it could also be direct WRITE).
432 */
a6151c3a 433static inline bool cfq_bio_sync(struct bio *bio)
91fac317 434{
a6151c3a 435 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 436}
1da177e4 437
99f95e52
AM
438/*
439 * scheduler run of queue, if there are requests pending and no one in the
440 * driver that will restart queueing
441 */
23e018a1 442static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 443{
7b679138
JA
444 if (cfqd->busy_queues) {
445 cfq_log(cfqd, "schedule dispatch");
23e018a1 446 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 447 }
99f95e52
AM
448}
449
165125e1 450static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
451{
452 struct cfq_data *cfqd = q->elevator->elevator_data;
453
f04a6424 454 return !cfqd->rq_queued;
99f95e52
AM
455}
456
44f7c160
JA
457/*
458 * Scale schedule slice based on io priority. Use the sync time slice only
459 * if a queue is marked sync and has sync io queued. A sync queue with async
460 * io only, should not get full sync slice length.
461 */
a6151c3a 462static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 463 unsigned short prio)
44f7c160 464{
d9e7620e 465 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 466
d9e7620e
JA
467 WARN_ON(prio >= IOPRIO_BE_NR);
468
469 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
470}
44f7c160 471
d9e7620e
JA
472static inline int
473cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
474{
475 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
476}
477
25bc6b07
VG
478static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
479{
480 u64 d = delta << CFQ_SERVICE_SHIFT;
481
482 d = d * BLKIO_WEIGHT_DEFAULT;
483 do_div(d, cfqg->weight);
484 return d;
485}
486
487static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
488{
489 s64 delta = (s64)(vdisktime - min_vdisktime);
490 if (delta > 0)
491 min_vdisktime = vdisktime;
492
493 return min_vdisktime;
494}
495
496static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
497{
498 s64 delta = (s64)(vdisktime - min_vdisktime);
499 if (delta < 0)
500 min_vdisktime = vdisktime;
501
502 return min_vdisktime;
503}
504
505static void update_min_vdisktime(struct cfq_rb_root *st)
506{
507 u64 vdisktime = st->min_vdisktime;
508 struct cfq_group *cfqg;
509
510 if (st->active) {
511 cfqg = rb_entry_cfqg(st->active);
512 vdisktime = cfqg->vdisktime;
513 }
514
515 if (st->left) {
516 cfqg = rb_entry_cfqg(st->left);
517 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
518 }
519
520 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
521}
522
5db5d642
CZ
523/*
524 * get averaged number of queues of RT/BE priority.
525 * average is updated, with a formula that gives more weight to higher numbers,
526 * to quickly follows sudden increases and decrease slowly
527 */
528
58ff82f3
VG
529static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
530 struct cfq_group *cfqg, bool rt)
5869619c 531{
5db5d642
CZ
532 unsigned min_q, max_q;
533 unsigned mult = cfq_hist_divisor - 1;
534 unsigned round = cfq_hist_divisor / 2;
58ff82f3 535 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 536
58ff82f3
VG
537 min_q = min(cfqg->busy_queues_avg[rt], busy);
538 max_q = max(cfqg->busy_queues_avg[rt], busy);
539 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 540 cfq_hist_divisor;
58ff82f3
VG
541 return cfqg->busy_queues_avg[rt];
542}
543
544static inline unsigned
545cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
546{
547 struct cfq_rb_root *st = &cfqd->grp_service_tree;
548
549 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
550}
551
44f7c160
JA
552static inline void
553cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
554{
5db5d642
CZ
555 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
556 if (cfqd->cfq_latency) {
58ff82f3
VG
557 /*
558 * interested queues (we consider only the ones with the same
559 * priority class in the cfq group)
560 */
561 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
562 cfq_class_rt(cfqq));
5db5d642
CZ
563 unsigned sync_slice = cfqd->cfq_slice[1];
564 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
565 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
566
567 if (expect_latency > group_slice) {
5db5d642
CZ
568 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
569 /* scale low_slice according to IO priority
570 * and sync vs async */
571 unsigned low_slice =
572 min(slice, base_low_slice * slice / sync_slice);
573 /* the adapted slice value is scaled to fit all iqs
574 * into the target latency */
58ff82f3 575 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
576 low_slice);
577 }
578 }
dae739eb 579 cfqq->slice_start = jiffies;
5db5d642 580 cfqq->slice_end = jiffies + slice;
7b679138 581 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
582}
583
584/*
585 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
586 * isn't valid until the first request from the dispatch is activated
587 * and the slice time set.
588 */
a6151c3a 589static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
590{
591 if (cfq_cfqq_slice_new(cfqq))
592 return 0;
593 if (time_before(jiffies, cfqq->slice_end))
594 return 0;
595
596 return 1;
597}
598
1da177e4 599/*
5e705374 600 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 601 * We choose the request that is closest to the head right now. Distance
e8a99053 602 * behind the head is penalized and only allowed to a certain extent.
1da177e4 603 */
5e705374 604static struct request *
cf7c25cf 605cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 606{
cf7c25cf 607 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 608 unsigned long back_max;
e8a99053
AM
609#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
610#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
611 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 612
5e705374
JA
613 if (rq1 == NULL || rq1 == rq2)
614 return rq2;
615 if (rq2 == NULL)
616 return rq1;
9c2c38a1 617
5e705374
JA
618 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
619 return rq1;
620 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
621 return rq2;
374f84ac
JA
622 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
623 return rq1;
624 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
625 return rq2;
1da177e4 626
83096ebf
TH
627 s1 = blk_rq_pos(rq1);
628 s2 = blk_rq_pos(rq2);
1da177e4 629
1da177e4
LT
630 /*
631 * by definition, 1KiB is 2 sectors
632 */
633 back_max = cfqd->cfq_back_max * 2;
634
635 /*
636 * Strict one way elevator _except_ in the case where we allow
637 * short backward seeks which are biased as twice the cost of a
638 * similar forward seek.
639 */
640 if (s1 >= last)
641 d1 = s1 - last;
642 else if (s1 + back_max >= last)
643 d1 = (last - s1) * cfqd->cfq_back_penalty;
644 else
e8a99053 645 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
646
647 if (s2 >= last)
648 d2 = s2 - last;
649 else if (s2 + back_max >= last)
650 d2 = (last - s2) * cfqd->cfq_back_penalty;
651 else
e8a99053 652 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
653
654 /* Found required data */
e8a99053
AM
655
656 /*
657 * By doing switch() on the bit mask "wrap" we avoid having to
658 * check two variables for all permutations: --> faster!
659 */
660 switch (wrap) {
5e705374 661 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 662 if (d1 < d2)
5e705374 663 return rq1;
e8a99053 664 else if (d2 < d1)
5e705374 665 return rq2;
e8a99053
AM
666 else {
667 if (s1 >= s2)
5e705374 668 return rq1;
e8a99053 669 else
5e705374 670 return rq2;
e8a99053 671 }
1da177e4 672
e8a99053 673 case CFQ_RQ2_WRAP:
5e705374 674 return rq1;
e8a99053 675 case CFQ_RQ1_WRAP:
5e705374
JA
676 return rq2;
677 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
678 default:
679 /*
680 * Since both rqs are wrapped,
681 * start with the one that's further behind head
682 * (--> only *one* back seek required),
683 * since back seek takes more time than forward.
684 */
685 if (s1 <= s2)
5e705374 686 return rq1;
1da177e4 687 else
5e705374 688 return rq2;
1da177e4
LT
689 }
690}
691
498d3aa2
JA
692/*
693 * The below is leftmost cache rbtree addon
694 */
0871714e 695static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 696{
615f0259
VG
697 /* Service tree is empty */
698 if (!root->count)
699 return NULL;
700
cc09e299
JA
701 if (!root->left)
702 root->left = rb_first(&root->rb);
703
0871714e
JA
704 if (root->left)
705 return rb_entry(root->left, struct cfq_queue, rb_node);
706
707 return NULL;
cc09e299
JA
708}
709
1fa8f6d6
VG
710static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
711{
712 if (!root->left)
713 root->left = rb_first(&root->rb);
714
715 if (root->left)
716 return rb_entry_cfqg(root->left);
717
718 return NULL;
719}
720
a36e71f9
JA
721static void rb_erase_init(struct rb_node *n, struct rb_root *root)
722{
723 rb_erase(n, root);
724 RB_CLEAR_NODE(n);
725}
726
cc09e299
JA
727static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
728{
729 if (root->left == n)
730 root->left = NULL;
a36e71f9 731 rb_erase_init(n, &root->rb);
aa6f6a3d 732 --root->count;
cc09e299
JA
733}
734
1da177e4
LT
735/*
736 * would be nice to take fifo expire time into account as well
737 */
5e705374
JA
738static struct request *
739cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
740 struct request *last)
1da177e4 741{
21183b07
JA
742 struct rb_node *rbnext = rb_next(&last->rb_node);
743 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 744 struct request *next = NULL, *prev = NULL;
1da177e4 745
21183b07 746 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
747
748 if (rbprev)
5e705374 749 prev = rb_entry_rq(rbprev);
1da177e4 750
21183b07 751 if (rbnext)
5e705374 752 next = rb_entry_rq(rbnext);
21183b07
JA
753 else {
754 rbnext = rb_first(&cfqq->sort_list);
755 if (rbnext && rbnext != &last->rb_node)
5e705374 756 next = rb_entry_rq(rbnext);
21183b07 757 }
1da177e4 758
cf7c25cf 759 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
760}
761
d9e7620e
JA
762static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
763 struct cfq_queue *cfqq)
1da177e4 764{
d9e7620e
JA
765 /*
766 * just an approximation, should be ok.
767 */
cdb16e8f 768 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 769 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
770}
771
1fa8f6d6
VG
772static inline s64
773cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
774{
775 return cfqg->vdisktime - st->min_vdisktime;
776}
777
778static void
779__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
780{
781 struct rb_node **node = &st->rb.rb_node;
782 struct rb_node *parent = NULL;
783 struct cfq_group *__cfqg;
784 s64 key = cfqg_key(st, cfqg);
785 int left = 1;
786
787 while (*node != NULL) {
788 parent = *node;
789 __cfqg = rb_entry_cfqg(parent);
790
791 if (key < cfqg_key(st, __cfqg))
792 node = &parent->rb_left;
793 else {
794 node = &parent->rb_right;
795 left = 0;
796 }
797 }
798
799 if (left)
800 st->left = &cfqg->rb_node;
801
802 rb_link_node(&cfqg->rb_node, parent, node);
803 rb_insert_color(&cfqg->rb_node, &st->rb);
804}
805
806static void
807cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
808{
809 struct cfq_rb_root *st = &cfqd->grp_service_tree;
810 struct cfq_group *__cfqg;
811 struct rb_node *n;
812
813 cfqg->nr_cfqq++;
814 if (cfqg->on_st)
815 return;
816
817 /*
818 * Currently put the group at the end. Later implement something
819 * so that groups get lesser vtime based on their weights, so that
820 * if group does not loose all if it was not continously backlogged.
821 */
822 n = rb_last(&st->rb);
823 if (n) {
824 __cfqg = rb_entry_cfqg(n);
825 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
826 } else
827 cfqg->vdisktime = st->min_vdisktime;
828
829 __cfq_group_service_tree_add(st, cfqg);
830 cfqg->on_st = true;
58ff82f3
VG
831 cfqd->nr_groups++;
832 st->total_weight += cfqg->weight;
1fa8f6d6
VG
833}
834
835static void
836cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
837{
838 struct cfq_rb_root *st = &cfqd->grp_service_tree;
839
25bc6b07
VG
840 if (st->active == &cfqg->rb_node)
841 st->active = NULL;
842
1fa8f6d6
VG
843 BUG_ON(cfqg->nr_cfqq < 1);
844 cfqg->nr_cfqq--;
25bc6b07 845
1fa8f6d6
VG
846 /* If there are other cfq queues under this group, don't delete it */
847 if (cfqg->nr_cfqq)
848 return;
849
2868ef7b 850 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 851 cfqg->on_st = false;
58ff82f3
VG
852 cfqd->nr_groups--;
853 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
854 if (!RB_EMPTY_NODE(&cfqg->rb_node))
855 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 856 cfqg->saved_workload_slice = 0;
22084190 857 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
858}
859
860static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
861{
862 unsigned int slice_used, allocated_slice;
863
864 /*
865 * Queue got expired before even a single request completed or
866 * got expired immediately after first request completion.
867 */
868 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
869 /*
870 * Also charge the seek time incurred to the group, otherwise
871 * if there are mutiple queues in the group, each can dispatch
872 * a single request on seeky media and cause lots of seek time
873 * and group will never know it.
874 */
875 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
876 1);
877 } else {
878 slice_used = jiffies - cfqq->slice_start;
879 allocated_slice = cfqq->slice_end - cfqq->slice_start;
880 if (slice_used > allocated_slice)
881 slice_used = allocated_slice;
882 }
883
22084190
VG
884 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
885 cfqq->nr_sectors);
dae739eb
VG
886 return slice_used;
887}
888
889static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
890 struct cfq_queue *cfqq)
891{
892 struct cfq_rb_root *st = &cfqd->grp_service_tree;
893 unsigned int used_sl;
894
895 used_sl = cfq_cfqq_slice_usage(cfqq);
896
897 /* Can't update vdisktime while group is on service tree */
898 cfq_rb_erase(&cfqg->rb_node, st);
899 cfqg->vdisktime += cfq_scale_slice(used_sl, cfqg);
900 __cfq_group_service_tree_add(st, cfqg);
901
902 /* This group is being expired. Save the context */
903 if (time_after(cfqd->workload_expires, jiffies)) {
904 cfqg->saved_workload_slice = cfqd->workload_expires
905 - jiffies;
906 cfqg->saved_workload = cfqd->serving_type;
907 cfqg->saved_serving_prio = cfqd->serving_prio;
908 } else
909 cfqg->saved_workload_slice = 0;
2868ef7b
VG
910
911 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
912 st->min_vdisktime);
22084190
VG
913 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
914 cfqq->nr_sectors);
1fa8f6d6
VG
915}
916
25fb5169
VG
917#ifdef CONFIG_CFQ_GROUP_IOSCHED
918static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
919{
920 if (blkg)
921 return container_of(blkg, struct cfq_group, blkg);
922 return NULL;
923}
924
f8d461d6
VG
925void
926cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
927{
928 cfqg_of_blkg(blkg)->weight = weight;
929}
930
25fb5169
VG
931static struct cfq_group *
932cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
933{
934 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
935 struct cfq_group *cfqg = NULL;
936 void *key = cfqd;
937 int i, j;
938 struct cfq_rb_root *st;
22084190
VG
939 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
940 unsigned int major, minor;
25fb5169
VG
941
942 /* Do we need to take this reference */
943 if (!css_tryget(&blkcg->css))
944 return NULL;;
945
946 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
947 if (cfqg || !create)
948 goto done;
949
950 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
951 if (!cfqg)
952 goto done;
953
954 cfqg->weight = blkcg->weight;
955 for_each_cfqg_st(cfqg, i, j, st)
956 *st = CFQ_RB_ROOT;
957 RB_CLEAR_NODE(&cfqg->rb_node);
958
b1c35769
VG
959 /*
960 * Take the initial reference that will be released on destroy
961 * This can be thought of a joint reference by cgroup and
962 * elevator which will be dropped by either elevator exit
963 * or cgroup deletion path depending on who is exiting first.
964 */
965 atomic_set(&cfqg->ref, 1);
966
25fb5169 967 /* Add group onto cgroup list */
22084190
VG
968 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
969 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
970 MKDEV(major, minor));
25fb5169
VG
971
972 /* Add group on cfqd list */
973 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
974
975done:
976 css_put(&blkcg->css);
977 return cfqg;
978}
979
980/*
981 * Search for the cfq group current task belongs to. If create = 1, then also
982 * create the cfq group if it does not exist. request_queue lock must be held.
983 */
984static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
985{
986 struct cgroup *cgroup;
987 struct cfq_group *cfqg = NULL;
988
989 rcu_read_lock();
990 cgroup = task_cgroup(current, blkio_subsys_id);
991 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
992 if (!cfqg && create)
993 cfqg = &cfqd->root_group;
994 rcu_read_unlock();
995 return cfqg;
996}
997
998static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
999{
1000 /* Currently, all async queues are mapped to root group */
1001 if (!cfq_cfqq_sync(cfqq))
1002 cfqg = &cfqq->cfqd->root_group;
1003
1004 cfqq->cfqg = cfqg;
b1c35769
VG
1005 /* cfqq reference on cfqg */
1006 atomic_inc(&cfqq->cfqg->ref);
1007}
1008
1009static void cfq_put_cfqg(struct cfq_group *cfqg)
1010{
1011 struct cfq_rb_root *st;
1012 int i, j;
1013
1014 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1015 if (!atomic_dec_and_test(&cfqg->ref))
1016 return;
1017 for_each_cfqg_st(cfqg, i, j, st)
1018 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1019 kfree(cfqg);
1020}
1021
1022static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1023{
1024 /* Something wrong if we are trying to remove same group twice */
1025 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1026
1027 hlist_del_init(&cfqg->cfqd_node);
1028
1029 /*
1030 * Put the reference taken at the time of creation so that when all
1031 * queues are gone, group can be destroyed.
1032 */
1033 cfq_put_cfqg(cfqg);
1034}
1035
1036static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1037{
1038 struct hlist_node *pos, *n;
1039 struct cfq_group *cfqg;
1040
1041 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1042 /*
1043 * If cgroup removal path got to blk_group first and removed
1044 * it from cgroup list, then it will take care of destroying
1045 * cfqg also.
1046 */
1047 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1048 cfq_destroy_cfqg(cfqd, cfqg);
1049 }
25fb5169 1050}
b1c35769
VG
1051
1052/*
1053 * Blk cgroup controller notification saying that blkio_group object is being
1054 * delinked as associated cgroup object is going away. That also means that
1055 * no new IO will come in this group. So get rid of this group as soon as
1056 * any pending IO in the group is finished.
1057 *
1058 * This function is called under rcu_read_lock(). key is the rcu protected
1059 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1060 * read lock.
1061 *
1062 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1063 * it should not be NULL as even if elevator was exiting, cgroup deltion
1064 * path got to it first.
1065 */
1066void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1067{
1068 unsigned long flags;
1069 struct cfq_data *cfqd = key;
1070
1071 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1072 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1073 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1074}
1075
25fb5169
VG
1076#else /* GROUP_IOSCHED */
1077static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1078{
1079 return &cfqd->root_group;
1080}
1081static inline void
1082cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1083 cfqq->cfqg = cfqg;
1084}
1085
b1c35769
VG
1086static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1087static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1088
25fb5169
VG
1089#endif /* GROUP_IOSCHED */
1090
498d3aa2 1091/*
c0324a02 1092 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1093 * requests waiting to be processed. It is sorted in the order that
1094 * we will service the queues.
1095 */
a36e71f9 1096static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1097 bool add_front)
d9e7620e 1098{
0871714e
JA
1099 struct rb_node **p, *parent;
1100 struct cfq_queue *__cfqq;
d9e7620e 1101 unsigned long rb_key;
c0324a02 1102 struct cfq_rb_root *service_tree;
498d3aa2 1103 int left;
dae739eb 1104 int new_cfqq = 1;
d9e7620e 1105
cdb16e8f
VG
1106 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1107 cfqq_type(cfqq), cfqd);
0871714e
JA
1108 if (cfq_class_idle(cfqq)) {
1109 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1110 parent = rb_last(&service_tree->rb);
0871714e
JA
1111 if (parent && parent != &cfqq->rb_node) {
1112 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1113 rb_key += __cfqq->rb_key;
1114 } else
1115 rb_key += jiffies;
1116 } else if (!add_front) {
b9c8946b
JA
1117 /*
1118 * Get our rb key offset. Subtract any residual slice
1119 * value carried from last service. A negative resid
1120 * count indicates slice overrun, and this should position
1121 * the next service time further away in the tree.
1122 */
edd75ffd 1123 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1124 rb_key -= cfqq->slice_resid;
edd75ffd 1125 cfqq->slice_resid = 0;
48e025e6
CZ
1126 } else {
1127 rb_key = -HZ;
aa6f6a3d 1128 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1129 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1130 }
1da177e4 1131
d9e7620e 1132 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1133 new_cfqq = 0;
99f9628a 1134 /*
d9e7620e 1135 * same position, nothing more to do
99f9628a 1136 */
c0324a02
CZ
1137 if (rb_key == cfqq->rb_key &&
1138 cfqq->service_tree == service_tree)
d9e7620e 1139 return;
1da177e4 1140
aa6f6a3d
CZ
1141 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1142 cfqq->service_tree = NULL;
1da177e4 1143 }
d9e7620e 1144
498d3aa2 1145 left = 1;
0871714e 1146 parent = NULL;
aa6f6a3d
CZ
1147 cfqq->service_tree = service_tree;
1148 p = &service_tree->rb.rb_node;
d9e7620e 1149 while (*p) {
67060e37 1150 struct rb_node **n;
cc09e299 1151
d9e7620e
JA
1152 parent = *p;
1153 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1154
0c534e0a 1155 /*
c0324a02 1156 * sort by key, that represents service time.
0c534e0a 1157 */
c0324a02 1158 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1159 n = &(*p)->rb_left;
c0324a02 1160 else {
67060e37 1161 n = &(*p)->rb_right;
cc09e299 1162 left = 0;
c0324a02 1163 }
67060e37
JA
1164
1165 p = n;
d9e7620e
JA
1166 }
1167
cc09e299 1168 if (left)
aa6f6a3d 1169 service_tree->left = &cfqq->rb_node;
cc09e299 1170
d9e7620e
JA
1171 cfqq->rb_key = rb_key;
1172 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1173 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1174 service_tree->count++;
dae739eb
VG
1175 if (add_front || !new_cfqq)
1176 return;
1fa8f6d6 1177 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1178}
1179
a36e71f9 1180static struct cfq_queue *
f2d1f0ae
JA
1181cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1182 sector_t sector, struct rb_node **ret_parent,
1183 struct rb_node ***rb_link)
a36e71f9 1184{
a36e71f9
JA
1185 struct rb_node **p, *parent;
1186 struct cfq_queue *cfqq = NULL;
1187
1188 parent = NULL;
1189 p = &root->rb_node;
1190 while (*p) {
1191 struct rb_node **n;
1192
1193 parent = *p;
1194 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1195
1196 /*
1197 * Sort strictly based on sector. Smallest to the left,
1198 * largest to the right.
1199 */
2e46e8b2 1200 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1201 n = &(*p)->rb_right;
2e46e8b2 1202 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1203 n = &(*p)->rb_left;
1204 else
1205 break;
1206 p = n;
3ac6c9f8 1207 cfqq = NULL;
a36e71f9
JA
1208 }
1209
1210 *ret_parent = parent;
1211 if (rb_link)
1212 *rb_link = p;
3ac6c9f8 1213 return cfqq;
a36e71f9
JA
1214}
1215
1216static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1217{
a36e71f9
JA
1218 struct rb_node **p, *parent;
1219 struct cfq_queue *__cfqq;
1220
f2d1f0ae
JA
1221 if (cfqq->p_root) {
1222 rb_erase(&cfqq->p_node, cfqq->p_root);
1223 cfqq->p_root = NULL;
1224 }
a36e71f9
JA
1225
1226 if (cfq_class_idle(cfqq))
1227 return;
1228 if (!cfqq->next_rq)
1229 return;
1230
f2d1f0ae 1231 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1232 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1233 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1234 if (!__cfqq) {
1235 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1236 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1237 } else
1238 cfqq->p_root = NULL;
a36e71f9
JA
1239}
1240
498d3aa2
JA
1241/*
1242 * Update cfqq's position in the service tree.
1243 */
edd75ffd 1244static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1245{
6d048f53
JA
1246 /*
1247 * Resorting requires the cfqq to be on the RR list already.
1248 */
a36e71f9 1249 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1250 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1251 cfq_prio_tree_add(cfqd, cfqq);
1252 }
6d048f53
JA
1253}
1254
1da177e4
LT
1255/*
1256 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1257 * the pending list according to last request service
1da177e4 1258 */
febffd61 1259static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1260{
7b679138 1261 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1262 BUG_ON(cfq_cfqq_on_rr(cfqq));
1263 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1264 cfqd->busy_queues++;
1265
edd75ffd 1266 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1267}
1268
498d3aa2
JA
1269/*
1270 * Called when the cfqq no longer has requests pending, remove it from
1271 * the service tree.
1272 */
febffd61 1273static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1274{
7b679138 1275 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1276 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1277 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1278
aa6f6a3d
CZ
1279 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1280 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1281 cfqq->service_tree = NULL;
1282 }
f2d1f0ae
JA
1283 if (cfqq->p_root) {
1284 rb_erase(&cfqq->p_node, cfqq->p_root);
1285 cfqq->p_root = NULL;
1286 }
d9e7620e 1287
1fa8f6d6 1288 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1289 BUG_ON(!cfqd->busy_queues);
1290 cfqd->busy_queues--;
1291}
1292
1293/*
1294 * rb tree support functions
1295 */
febffd61 1296static void cfq_del_rq_rb(struct request *rq)
1da177e4 1297{
5e705374 1298 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1299 const int sync = rq_is_sync(rq);
1da177e4 1300
b4878f24
JA
1301 BUG_ON(!cfqq->queued[sync]);
1302 cfqq->queued[sync]--;
1da177e4 1303
5e705374 1304 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1305
f04a6424
VG
1306 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1307 /*
1308 * Queue will be deleted from service tree when we actually
1309 * expire it later. Right now just remove it from prio tree
1310 * as it is empty.
1311 */
1312 if (cfqq->p_root) {
1313 rb_erase(&cfqq->p_node, cfqq->p_root);
1314 cfqq->p_root = NULL;
1315 }
1316 }
1da177e4
LT
1317}
1318
5e705374 1319static void cfq_add_rq_rb(struct request *rq)
1da177e4 1320{
5e705374 1321 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1322 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1323 struct request *__alias, *prev;
1da177e4 1324
5380a101 1325 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1326
1327 /*
1328 * looks a little odd, but the first insert might return an alias.
1329 * if that happens, put the alias on the dispatch list
1330 */
21183b07 1331 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1332 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1333
1334 if (!cfq_cfqq_on_rr(cfqq))
1335 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1336
1337 /*
1338 * check if this request is a better next-serve candidate
1339 */
a36e71f9 1340 prev = cfqq->next_rq;
cf7c25cf 1341 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1342
1343 /*
1344 * adjust priority tree position, if ->next_rq changes
1345 */
1346 if (prev != cfqq->next_rq)
1347 cfq_prio_tree_add(cfqd, cfqq);
1348
5044eed4 1349 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1350}
1351
febffd61 1352static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1353{
5380a101
JA
1354 elv_rb_del(&cfqq->sort_list, rq);
1355 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1356 cfq_add_rq_rb(rq);
1da177e4
LT
1357}
1358
206dc69b
JA
1359static struct request *
1360cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1361{
206dc69b 1362 struct task_struct *tsk = current;
91fac317 1363 struct cfq_io_context *cic;
206dc69b 1364 struct cfq_queue *cfqq;
1da177e4 1365
4ac845a2 1366 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1367 if (!cic)
1368 return NULL;
1369
1370 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1371 if (cfqq) {
1372 sector_t sector = bio->bi_sector + bio_sectors(bio);
1373
21183b07 1374 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1375 }
1da177e4 1376
1da177e4
LT
1377 return NULL;
1378}
1379
165125e1 1380static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1381{
22e2c507 1382 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1383
5ad531db 1384 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 1385 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 1386 rq_in_driver(cfqd));
25776e35 1387
5b93629b 1388 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1389}
1390
165125e1 1391static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1392{
b4878f24 1393 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 1394 const int sync = rq_is_sync(rq);
b4878f24 1395
5ad531db
JA
1396 WARN_ON(!cfqd->rq_in_driver[sync]);
1397 cfqd->rq_in_driver[sync]--;
7b679138 1398 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 1399 rq_in_driver(cfqd));
1da177e4
LT
1400}
1401
b4878f24 1402static void cfq_remove_request(struct request *rq)
1da177e4 1403{
5e705374 1404 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1405
5e705374
JA
1406 if (cfqq->next_rq == rq)
1407 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1408
b4878f24 1409 list_del_init(&rq->queuelist);
5e705374 1410 cfq_del_rq_rb(rq);
374f84ac 1411
45333d5a 1412 cfqq->cfqd->rq_queued--;
374f84ac
JA
1413 if (rq_is_meta(rq)) {
1414 WARN_ON(!cfqq->meta_pending);
1415 cfqq->meta_pending--;
1416 }
1da177e4
LT
1417}
1418
165125e1
JA
1419static int cfq_merge(struct request_queue *q, struct request **req,
1420 struct bio *bio)
1da177e4
LT
1421{
1422 struct cfq_data *cfqd = q->elevator->elevator_data;
1423 struct request *__rq;
1da177e4 1424
206dc69b 1425 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1426 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1427 *req = __rq;
1428 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1429 }
1430
1431 return ELEVATOR_NO_MERGE;
1da177e4
LT
1432}
1433
165125e1 1434static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1435 int type)
1da177e4 1436{
21183b07 1437 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1438 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1439
5e705374 1440 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1441 }
1da177e4
LT
1442}
1443
1444static void
165125e1 1445cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1446 struct request *next)
1447{
cf7c25cf 1448 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1449 /*
1450 * reposition in fifo if next is older than rq
1451 */
1452 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1453 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1454 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1455 rq_set_fifo_time(rq, rq_fifo_time(next));
1456 }
22e2c507 1457
cf7c25cf
CZ
1458 if (cfqq->next_rq == next)
1459 cfqq->next_rq = rq;
b4878f24 1460 cfq_remove_request(next);
22e2c507
JA
1461}
1462
165125e1 1463static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1464 struct bio *bio)
1465{
1466 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1467 struct cfq_io_context *cic;
da775265 1468 struct cfq_queue *cfqq;
da775265 1469
8682e1f1
VG
1470 /* Deny merge if bio and rq don't belong to same cfq group */
1471 if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1472 return false;
da775265 1473 /*
ec8acb69 1474 * Disallow merge of a sync bio into an async request.
da775265 1475 */
91fac317 1476 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1477 return false;
da775265
JA
1478
1479 /*
719d3402
JA
1480 * Lookup the cfqq that this bio will be queued with. Allow
1481 * merge only if rq is queued there.
da775265 1482 */
4ac845a2 1483 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1484 if (!cic)
a6151c3a 1485 return false;
719d3402 1486
91fac317 1487 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1488 return cfqq == RQ_CFQQ(rq);
da775265
JA
1489}
1490
febffd61
JA
1491static void __cfq_set_active_queue(struct cfq_data *cfqd,
1492 struct cfq_queue *cfqq)
22e2c507
JA
1493{
1494 if (cfqq) {
7b679138 1495 cfq_log_cfqq(cfqd, cfqq, "set_active");
dae739eb
VG
1496 cfqq->slice_start = 0;
1497 cfqq->dispatch_start = jiffies;
22e2c507 1498 cfqq->slice_end = 0;
2f5cb738 1499 cfqq->slice_dispatch = 0;
22084190 1500 cfqq->nr_sectors = 0;
2f5cb738 1501
2f5cb738 1502 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1503 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1504 cfq_clear_cfqq_must_alloc_slice(cfqq);
1505 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1506 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1507
1508 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1509 }
1510
1511 cfqd->active_queue = cfqq;
1512}
1513
7b14e3b5
JA
1514/*
1515 * current cfqq expired its slice (or was too idle), select new one
1516 */
1517static void
1518__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1519 bool timed_out)
7b14e3b5 1520{
7b679138
JA
1521 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1522
7b14e3b5
JA
1523 if (cfq_cfqq_wait_request(cfqq))
1524 del_timer(&cfqd->idle_slice_timer);
1525
7b14e3b5
JA
1526 cfq_clear_cfqq_wait_request(cfqq);
1527
1528 /*
6084cdda 1529 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1530 */
7b679138 1531 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1532 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1533 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1534 }
7b14e3b5 1535
dae739eb
VG
1536 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1537
f04a6424
VG
1538 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1539 cfq_del_cfqq_rr(cfqd, cfqq);
1540
edd75ffd 1541 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1542
1543 if (cfqq == cfqd->active_queue)
1544 cfqd->active_queue = NULL;
1545
dae739eb
VG
1546 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1547 cfqd->grp_service_tree.active = NULL;
1548
7b14e3b5
JA
1549 if (cfqd->active_cic) {
1550 put_io_context(cfqd->active_cic->ioc);
1551 cfqd->active_cic = NULL;
1552 }
7b14e3b5
JA
1553}
1554
a6151c3a 1555static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1556{
1557 struct cfq_queue *cfqq = cfqd->active_queue;
1558
1559 if (cfqq)
6084cdda 1560 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1561}
1562
498d3aa2
JA
1563/*
1564 * Get next queue for service. Unless we have a queue preemption,
1565 * we'll simply select the first cfqq in the service tree.
1566 */
6d048f53 1567static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1568{
c0324a02 1569 struct cfq_rb_root *service_tree =
cdb16e8f
VG
1570 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1571 cfqd->serving_type, cfqd);
d9e7620e 1572
f04a6424
VG
1573 if (!cfqd->rq_queued)
1574 return NULL;
1575
1fa8f6d6
VG
1576 /* There is nothing to dispatch */
1577 if (!service_tree)
1578 return NULL;
c0324a02
CZ
1579 if (RB_EMPTY_ROOT(&service_tree->rb))
1580 return NULL;
1581 return cfq_rb_first(service_tree);
6d048f53
JA
1582}
1583
f04a6424
VG
1584static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1585{
25fb5169 1586 struct cfq_group *cfqg;
f04a6424
VG
1587 struct cfq_queue *cfqq;
1588 int i, j;
1589 struct cfq_rb_root *st;
1590
1591 if (!cfqd->rq_queued)
1592 return NULL;
1593
25fb5169
VG
1594 cfqg = cfq_get_next_cfqg(cfqd);
1595 if (!cfqg)
1596 return NULL;
1597
f04a6424
VG
1598 for_each_cfqg_st(cfqg, i, j, st)
1599 if ((cfqq = cfq_rb_first(st)) != NULL)
1600 return cfqq;
1601 return NULL;
1602}
1603
498d3aa2
JA
1604/*
1605 * Get and set a new active queue for service.
1606 */
a36e71f9
JA
1607static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1608 struct cfq_queue *cfqq)
6d048f53 1609{
e00ef799 1610 if (!cfqq)
a36e71f9 1611 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1612
22e2c507 1613 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1614 return cfqq;
22e2c507
JA
1615}
1616
d9e7620e
JA
1617static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1618 struct request *rq)
1619{
83096ebf
TH
1620 if (blk_rq_pos(rq) >= cfqd->last_position)
1621 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1622 else
83096ebf 1623 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1624}
1625
b2c18e1e
JM
1626#define CFQQ_SEEK_THR 8 * 1024
1627#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1628
b2c18e1e
JM
1629static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1630 struct request *rq)
6d048f53 1631{
b2c18e1e 1632 sector_t sdist = cfqq->seek_mean;
6d048f53 1633
b2c18e1e
JM
1634 if (!sample_valid(cfqq->seek_samples))
1635 sdist = CFQQ_SEEK_THR;
6d048f53 1636
04dc6e71 1637 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1638}
1639
a36e71f9
JA
1640static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1641 struct cfq_queue *cur_cfqq)
1642{
f2d1f0ae 1643 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1644 struct rb_node *parent, *node;
1645 struct cfq_queue *__cfqq;
1646 sector_t sector = cfqd->last_position;
1647
1648 if (RB_EMPTY_ROOT(root))
1649 return NULL;
1650
1651 /*
1652 * First, if we find a request starting at the end of the last
1653 * request, choose it.
1654 */
f2d1f0ae 1655 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1656 if (__cfqq)
1657 return __cfqq;
1658
1659 /*
1660 * If the exact sector wasn't found, the parent of the NULL leaf
1661 * will contain the closest sector.
1662 */
1663 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1664 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1665 return __cfqq;
1666
2e46e8b2 1667 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1668 node = rb_next(&__cfqq->p_node);
1669 else
1670 node = rb_prev(&__cfqq->p_node);
1671 if (!node)
1672 return NULL;
1673
1674 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1675 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1676 return __cfqq;
1677
1678 return NULL;
1679}
1680
1681/*
1682 * cfqd - obvious
1683 * cur_cfqq - passed in so that we don't decide that the current queue is
1684 * closely cooperating with itself.
1685 *
1686 * So, basically we're assuming that that cur_cfqq has dispatched at least
1687 * one request, and that cfqd->last_position reflects a position on the disk
1688 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1689 * assumption.
1690 */
1691static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1692 struct cfq_queue *cur_cfqq)
6d048f53 1693{
a36e71f9
JA
1694 struct cfq_queue *cfqq;
1695
e6c5bc73
JM
1696 if (!cfq_cfqq_sync(cur_cfqq))
1697 return NULL;
1698 if (CFQQ_SEEKY(cur_cfqq))
1699 return NULL;
1700
6d048f53 1701 /*
d9e7620e
JA
1702 * We should notice if some of the queues are cooperating, eg
1703 * working closely on the same area of the disk. In that case,
1704 * we can group them together and don't waste time idling.
6d048f53 1705 */
a36e71f9
JA
1706 cfqq = cfqq_close(cfqd, cur_cfqq);
1707 if (!cfqq)
1708 return NULL;
1709
8682e1f1
VG
1710 /* If new queue belongs to different cfq_group, don't choose it */
1711 if (cur_cfqq->cfqg != cfqq->cfqg)
1712 return NULL;
1713
df5fe3e8
JM
1714 /*
1715 * It only makes sense to merge sync queues.
1716 */
1717 if (!cfq_cfqq_sync(cfqq))
1718 return NULL;
e6c5bc73
JM
1719 if (CFQQ_SEEKY(cfqq))
1720 return NULL;
df5fe3e8 1721
c0324a02
CZ
1722 /*
1723 * Do not merge queues of different priority classes
1724 */
1725 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1726 return NULL;
1727
a36e71f9 1728 return cfqq;
6d048f53
JA
1729}
1730
a6d44e98
CZ
1731/*
1732 * Determine whether we should enforce idle window for this queue.
1733 */
1734
1735static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1736{
1737 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1738 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1739
f04a6424
VG
1740 BUG_ON(!service_tree);
1741 BUG_ON(!service_tree->count);
1742
a6d44e98
CZ
1743 /* We never do for idle class queues. */
1744 if (prio == IDLE_WORKLOAD)
1745 return false;
1746
1747 /* We do for queues that were marked with idle window flag. */
1748 if (cfq_cfqq_idle_window(cfqq))
1749 return true;
1750
1751 /*
1752 * Otherwise, we do only if they are the last ones
1753 * in their service tree.
1754 */
f04a6424 1755 return service_tree->count == 1;
a6d44e98
CZ
1756}
1757
6d048f53 1758static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1759{
1792669c 1760 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1761 struct cfq_io_context *cic;
7b14e3b5
JA
1762 unsigned long sl;
1763
a68bbddb 1764 /*
f7d7b7a7
JA
1765 * SSD device without seek penalty, disable idling. But only do so
1766 * for devices that support queuing, otherwise we still have a problem
1767 * with sync vs async workloads.
a68bbddb 1768 */
f7d7b7a7 1769 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1770 return;
1771
dd67d051 1772 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1773 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1774
1775 /*
1776 * idle is disabled, either manually or by past process history
1777 */
a6d44e98 1778 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1779 return;
1780
7b679138 1781 /*
8e550632 1782 * still active requests from this queue, don't idle
7b679138 1783 */
8e550632 1784 if (cfqq->dispatched)
7b679138
JA
1785 return;
1786
22e2c507
JA
1787 /*
1788 * task has exited, don't wait
1789 */
206dc69b 1790 cic = cfqd->active_cic;
66dac98e 1791 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1792 return;
1793
355b659c
CZ
1794 /*
1795 * If our average think time is larger than the remaining time
1796 * slice, then don't idle. This avoids overrunning the allotted
1797 * time slice.
1798 */
1799 if (sample_valid(cic->ttime_samples) &&
1800 (cfqq->slice_end - jiffies < cic->ttime_mean))
1801 return;
1802
3b18152c 1803 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1804
6d048f53 1805 sl = cfqd->cfq_slice_idle;
206dc69b 1806
7b14e3b5 1807 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1808 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1809}
1810
498d3aa2
JA
1811/*
1812 * Move request from internal lists to the request queue dispatch list.
1813 */
165125e1 1814static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1815{
3ed9a296 1816 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1817 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1818
7b679138
JA
1819 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1820
06d21886 1821 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1822 cfq_remove_request(rq);
6d048f53 1823 cfqq->dispatched++;
5380a101 1824 elv_dispatch_sort(q, rq);
3ed9a296
JA
1825
1826 if (cfq_cfqq_sync(cfqq))
1827 cfqd->sync_flight++;
22084190 1828 cfqq->nr_sectors += blk_rq_sectors(rq);
1da177e4
LT
1829}
1830
1831/*
1832 * return expired entry, or NULL to just start from scratch in rbtree
1833 */
febffd61 1834static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1835{
30996f40 1836 struct request *rq = NULL;
1da177e4 1837
3b18152c 1838 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1839 return NULL;
cb887411
JA
1840
1841 cfq_mark_cfqq_fifo_expire(cfqq);
1842
89850f7e
JA
1843 if (list_empty(&cfqq->fifo))
1844 return NULL;
1da177e4 1845
89850f7e 1846 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1847 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1848 rq = NULL;
1da177e4 1849
30996f40 1850 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1851 return rq;
1da177e4
LT
1852}
1853
22e2c507
JA
1854static inline int
1855cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1856{
1857 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1858
22e2c507 1859 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1860
22e2c507 1861 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1862}
1863
df5fe3e8
JM
1864/*
1865 * Must be called with the queue_lock held.
1866 */
1867static int cfqq_process_refs(struct cfq_queue *cfqq)
1868{
1869 int process_refs, io_refs;
1870
1871 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1872 process_refs = atomic_read(&cfqq->ref) - io_refs;
1873 BUG_ON(process_refs < 0);
1874 return process_refs;
1875}
1876
1877static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1878{
e6c5bc73 1879 int process_refs, new_process_refs;
df5fe3e8
JM
1880 struct cfq_queue *__cfqq;
1881
1882 /* Avoid a circular list and skip interim queue merges */
1883 while ((__cfqq = new_cfqq->new_cfqq)) {
1884 if (__cfqq == cfqq)
1885 return;
1886 new_cfqq = __cfqq;
1887 }
1888
1889 process_refs = cfqq_process_refs(cfqq);
1890 /*
1891 * If the process for the cfqq has gone away, there is no
1892 * sense in merging the queues.
1893 */
1894 if (process_refs == 0)
1895 return;
1896
e6c5bc73
JM
1897 /*
1898 * Merge in the direction of the lesser amount of work.
1899 */
1900 new_process_refs = cfqq_process_refs(new_cfqq);
1901 if (new_process_refs >= process_refs) {
1902 cfqq->new_cfqq = new_cfqq;
1903 atomic_add(process_refs, &new_cfqq->ref);
1904 } else {
1905 new_cfqq->new_cfqq = cfqq;
1906 atomic_add(new_process_refs, &cfqq->ref);
1907 }
df5fe3e8
JM
1908}
1909
cdb16e8f
VG
1910static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1911 struct cfq_group *cfqg, enum wl_prio_t prio,
1912 bool prio_changed)
718eee05
CZ
1913{
1914 struct cfq_queue *queue;
1915 int i;
1916 bool key_valid = false;
1917 unsigned long lowest_key = 0;
1918 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1919
1920 if (prio_changed) {
1921 /*
1922 * When priorities switched, we prefer starting
1923 * from SYNC_NOIDLE (first choice), or just SYNC
1924 * over ASYNC
1925 */
cdb16e8f 1926 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1927 return cur_best;
1928 cur_best = SYNC_WORKLOAD;
cdb16e8f 1929 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1930 return cur_best;
1931
1932 return ASYNC_WORKLOAD;
1933 }
1934
1935 for (i = 0; i < 3; ++i) {
1936 /* otherwise, select the one with lowest rb_key */
cdb16e8f 1937 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
718eee05
CZ
1938 if (queue &&
1939 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1940 lowest_key = queue->rb_key;
1941 cur_best = i;
1942 key_valid = true;
1943 }
1944 }
1945
1946 return cur_best;
1947}
1948
cdb16e8f 1949static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05
CZ
1950{
1951 enum wl_prio_t previous_prio = cfqd->serving_prio;
1952 bool prio_changed;
1953 unsigned slice;
1954 unsigned count;
cdb16e8f 1955 struct cfq_rb_root *st;
58ff82f3 1956 unsigned group_slice;
718eee05 1957
1fa8f6d6
VG
1958 if (!cfqg) {
1959 cfqd->serving_prio = IDLE_WORKLOAD;
1960 cfqd->workload_expires = jiffies + 1;
1961 return;
1962 }
1963
718eee05 1964 /* Choose next priority. RT > BE > IDLE */
58ff82f3 1965 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 1966 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 1967 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
1968 cfqd->serving_prio = BE_WORKLOAD;
1969 else {
1970 cfqd->serving_prio = IDLE_WORKLOAD;
1971 cfqd->workload_expires = jiffies + 1;
1972 return;
1973 }
1974
1975 /*
1976 * For RT and BE, we have to choose also the type
1977 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1978 * expiration time
1979 */
1980 prio_changed = (cfqd->serving_prio != previous_prio);
cdb16e8f
VG
1981 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1982 cfqd);
1983 count = st->count;
718eee05
CZ
1984
1985 /*
1986 * If priority didn't change, check workload expiration,
1987 * and that we still have other queues ready
1988 */
1989 if (!prio_changed && count &&
1990 !time_after(jiffies, cfqd->workload_expires))
1991 return;
1992
1993 /* otherwise select new workload type */
1994 cfqd->serving_type =
cdb16e8f
VG
1995 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1996 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1997 cfqd);
1998 count = st->count;
718eee05
CZ
1999
2000 /*
2001 * the workload slice is computed as a fraction of target latency
2002 * proportional to the number of queues in that workload, over
2003 * all the queues in the same priority class
2004 */
58ff82f3
VG
2005 group_slice = cfq_group_slice(cfqd, cfqg);
2006
2007 slice = group_slice * count /
2008 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2009 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05
CZ
2010
2011 if (cfqd->serving_type == ASYNC_WORKLOAD)
2012 /* async workload slice is scaled down according to
2013 * the sync/async slice ratio. */
2014 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2015 else
2016 /* sync workload slice is at least 2 * cfq_slice_idle */
2017 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2018
2019 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2020 cfqd->workload_expires = jiffies + slice;
8e550632 2021 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2022}
2023
1fa8f6d6
VG
2024static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2025{
2026 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2027 struct cfq_group *cfqg;
1fa8f6d6
VG
2028
2029 if (RB_EMPTY_ROOT(&st->rb))
2030 return NULL;
25bc6b07
VG
2031 cfqg = cfq_rb_first_group(st);
2032 st->active = &cfqg->rb_node;
2033 update_min_vdisktime(st);
2034 return cfqg;
1fa8f6d6
VG
2035}
2036
cdb16e8f
VG
2037static void cfq_choose_cfqg(struct cfq_data *cfqd)
2038{
1fa8f6d6
VG
2039 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2040
2041 cfqd->serving_group = cfqg;
dae739eb
VG
2042
2043 /* Restore the workload type data */
2044 if (cfqg->saved_workload_slice) {
2045 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2046 cfqd->serving_type = cfqg->saved_workload;
2047 cfqd->serving_prio = cfqg->saved_serving_prio;
2048 }
1fa8f6d6 2049 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2050}
2051
22e2c507 2052/*
498d3aa2
JA
2053 * Select a queue for service. If we have a current active queue,
2054 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2055 */
1b5ed5e1 2056static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2057{
a36e71f9 2058 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2059
22e2c507
JA
2060 cfqq = cfqd->active_queue;
2061 if (!cfqq)
2062 goto new_queue;
1da177e4 2063
f04a6424
VG
2064 if (!cfqd->rq_queued)
2065 return NULL;
22e2c507 2066 /*
6d048f53 2067 * The active queue has run out of time, expire it and select new.
22e2c507 2068 */
b029195d 2069 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 2070 goto expire;
1da177e4 2071
22e2c507 2072 /*
6d048f53
JA
2073 * The active queue has requests and isn't expired, allow it to
2074 * dispatch.
22e2c507 2075 */
dd67d051 2076 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2077 goto keep_queue;
6d048f53 2078
a36e71f9
JA
2079 /*
2080 * If another queue has a request waiting within our mean seek
2081 * distance, let it run. The expire code will check for close
2082 * cooperators and put the close queue at the front of the service
df5fe3e8 2083 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2084 */
b3b6d040 2085 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2086 if (new_cfqq) {
2087 if (!cfqq->new_cfqq)
2088 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2089 goto expire;
df5fe3e8 2090 }
a36e71f9 2091
6d048f53
JA
2092 /*
2093 * No requests pending. If the active queue still has requests in
2094 * flight or is idling for a new request, allow either of these
2095 * conditions to happen (or time out) before selecting a new queue.
2096 */
cc197479 2097 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2098 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2099 cfqq = NULL;
2100 goto keep_queue;
22e2c507
JA
2101 }
2102
3b18152c 2103expire:
6084cdda 2104 cfq_slice_expired(cfqd, 0);
3b18152c 2105new_queue:
718eee05
CZ
2106 /*
2107 * Current queue expired. Check if we have to switch to a new
2108 * service tree
2109 */
2110 if (!new_cfqq)
cdb16e8f 2111 cfq_choose_cfqg(cfqd);
718eee05 2112
a36e71f9 2113 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2114keep_queue:
3b18152c 2115 return cfqq;
22e2c507
JA
2116}
2117
febffd61 2118static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2119{
2120 int dispatched = 0;
2121
2122 while (cfqq->next_rq) {
2123 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2124 dispatched++;
2125 }
2126
2127 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2128
2129 /* By default cfqq is not expired if it is empty. Do it explicitly */
2130 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2131 return dispatched;
2132}
2133
498d3aa2
JA
2134/*
2135 * Drain our current requests. Used for barriers and when switching
2136 * io schedulers on-the-fly.
2137 */
d9e7620e 2138static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2139{
0871714e 2140 struct cfq_queue *cfqq;
d9e7620e 2141 int dispatched = 0;
cdb16e8f 2142
f04a6424
VG
2143 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2144 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 2145
6084cdda 2146 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
2147 BUG_ON(cfqd->busy_queues);
2148
6923715a 2149 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2150 return dispatched;
2151}
2152
0b182d61 2153static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2154{
2f5cb738 2155 unsigned int max_dispatch;
22e2c507 2156
5ad531db
JA
2157 /*
2158 * Drain async requests before we start sync IO
2159 */
a6d44e98 2160 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 2161 return false;
5ad531db 2162
2f5cb738
JA
2163 /*
2164 * If this is an async queue and we have sync IO in flight, let it wait
2165 */
2166 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 2167 return false;
2f5cb738
JA
2168
2169 max_dispatch = cfqd->cfq_quantum;
2170 if (cfq_class_idle(cfqq))
2171 max_dispatch = 1;
b4878f24 2172
2f5cb738
JA
2173 /*
2174 * Does this cfqq already have too much IO in flight?
2175 */
2176 if (cfqq->dispatched >= max_dispatch) {
2177 /*
2178 * idle queue must always only have a single IO in flight
2179 */
3ed9a296 2180 if (cfq_class_idle(cfqq))
0b182d61 2181 return false;
3ed9a296 2182
2f5cb738
JA
2183 /*
2184 * We have other queues, don't allow more IO from this one
2185 */
2186 if (cfqd->busy_queues > 1)
0b182d61 2187 return false;
9ede209e 2188
365722bb 2189 /*
474b18cc 2190 * Sole queue user, no limit
365722bb 2191 */
474b18cc 2192 max_dispatch = -1;
8e296755
JA
2193 }
2194
2195 /*
2196 * Async queues must wait a bit before being allowed dispatch.
2197 * We also ramp up the dispatch depth gradually for async IO,
2198 * based on the last sync IO we serviced
2199 */
963b72fc 2200 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
2201 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2202 unsigned int depth;
365722bb 2203
61f0c1dc 2204 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2205 if (!depth && !cfqq->dispatched)
2206 depth = 1;
8e296755
JA
2207 if (depth < max_dispatch)
2208 max_dispatch = depth;
2f5cb738 2209 }
3ed9a296 2210
0b182d61
JA
2211 /*
2212 * If we're below the current max, allow a dispatch
2213 */
2214 return cfqq->dispatched < max_dispatch;
2215}
2216
2217/*
2218 * Dispatch a request from cfqq, moving them to the request queue
2219 * dispatch list.
2220 */
2221static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2222{
2223 struct request *rq;
2224
2225 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2226
2227 if (!cfq_may_dispatch(cfqd, cfqq))
2228 return false;
2229
2230 /*
2231 * follow expired path, else get first next available
2232 */
2233 rq = cfq_check_fifo(cfqq);
2234 if (!rq)
2235 rq = cfqq->next_rq;
2236
2237 /*
2238 * insert request into driver dispatch list
2239 */
2240 cfq_dispatch_insert(cfqd->queue, rq);
2241
2242 if (!cfqd->active_cic) {
2243 struct cfq_io_context *cic = RQ_CIC(rq);
2244
2245 atomic_long_inc(&cic->ioc->refcount);
2246 cfqd->active_cic = cic;
2247 }
2248
2249 return true;
2250}
2251
2252/*
2253 * Find the cfqq that we need to service and move a request from that to the
2254 * dispatch list
2255 */
2256static int cfq_dispatch_requests(struct request_queue *q, int force)
2257{
2258 struct cfq_data *cfqd = q->elevator->elevator_data;
2259 struct cfq_queue *cfqq;
2260
2261 if (!cfqd->busy_queues)
2262 return 0;
2263
2264 if (unlikely(force))
2265 return cfq_forced_dispatch(cfqd);
2266
2267 cfqq = cfq_select_queue(cfqd);
2268 if (!cfqq)
8e296755
JA
2269 return 0;
2270
2f5cb738 2271 /*
0b182d61 2272 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2273 */
0b182d61
JA
2274 if (!cfq_dispatch_request(cfqd, cfqq))
2275 return 0;
2276
2f5cb738 2277 cfqq->slice_dispatch++;
b029195d 2278 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2279
2f5cb738
JA
2280 /*
2281 * expire an async queue immediately if it has used up its slice. idle
2282 * queue always expire after 1 dispatch round.
2283 */
2284 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2285 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2286 cfq_class_idle(cfqq))) {
2287 cfqq->slice_end = jiffies + 1;
2288 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2289 }
2290
b217a903 2291 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2292 return 1;
1da177e4
LT
2293}
2294
1da177e4 2295/*
5e705374
JA
2296 * task holds one reference to the queue, dropped when task exits. each rq
2297 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2298 *
b1c35769 2299 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2300 * queue lock must be held here.
2301 */
2302static void cfq_put_queue(struct cfq_queue *cfqq)
2303{
22e2c507 2304 struct cfq_data *cfqd = cfqq->cfqd;
b1c35769 2305 struct cfq_group *cfqg;
22e2c507
JA
2306
2307 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2308
2309 if (!atomic_dec_and_test(&cfqq->ref))
2310 return;
2311
7b679138 2312 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2313 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2314 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2315 cfqg = cfqq->cfqg;
1da177e4 2316
28f95cbc 2317 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2318 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2319 cfq_schedule_dispatch(cfqd);
28f95cbc 2320 }
22e2c507 2321
f04a6424 2322 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2323 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2324 cfq_put_cfqg(cfqg);
1da177e4
LT
2325}
2326
d6de8be7
JA
2327/*
2328 * Must always be called with the rcu_read_lock() held
2329 */
07416d29
JA
2330static void
2331__call_for_each_cic(struct io_context *ioc,
2332 void (*func)(struct io_context *, struct cfq_io_context *))
2333{
2334 struct cfq_io_context *cic;
2335 struct hlist_node *n;
2336
2337 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2338 func(ioc, cic);
2339}
2340
4ac845a2 2341/*
34e6bbf2 2342 * Call func for each cic attached to this ioc.
4ac845a2 2343 */
34e6bbf2 2344static void
4ac845a2
JA
2345call_for_each_cic(struct io_context *ioc,
2346 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2347{
4ac845a2 2348 rcu_read_lock();
07416d29 2349 __call_for_each_cic(ioc, func);
4ac845a2 2350 rcu_read_unlock();
34e6bbf2
FC
2351}
2352
2353static void cfq_cic_free_rcu(struct rcu_head *head)
2354{
2355 struct cfq_io_context *cic;
2356
2357 cic = container_of(head, struct cfq_io_context, rcu_head);
2358
2359 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2360 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2361
9a11b4ed
JA
2362 if (ioc_gone) {
2363 /*
2364 * CFQ scheduler is exiting, grab exit lock and check
2365 * the pending io context count. If it hits zero,
2366 * complete ioc_gone and set it back to NULL
2367 */
2368 spin_lock(&ioc_gone_lock);
245b2e70 2369 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2370 complete(ioc_gone);
2371 ioc_gone = NULL;
2372 }
2373 spin_unlock(&ioc_gone_lock);
2374 }
34e6bbf2 2375}
4ac845a2 2376
34e6bbf2
FC
2377static void cfq_cic_free(struct cfq_io_context *cic)
2378{
2379 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2380}
2381
2382static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2383{
2384 unsigned long flags;
2385
2386 BUG_ON(!cic->dead_key);
2387
2388 spin_lock_irqsave(&ioc->lock, flags);
2389 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2390 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2391 spin_unlock_irqrestore(&ioc->lock, flags);
2392
34e6bbf2 2393 cfq_cic_free(cic);
4ac845a2
JA
2394}
2395
d6de8be7
JA
2396/*
2397 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2398 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2399 * and ->trim() which is called with the task lock held
2400 */
4ac845a2
JA
2401static void cfq_free_io_context(struct io_context *ioc)
2402{
4ac845a2 2403 /*
34e6bbf2
FC
2404 * ioc->refcount is zero here, or we are called from elv_unregister(),
2405 * so no more cic's are allowed to be linked into this ioc. So it
2406 * should be ok to iterate over the known list, we will see all cic's
2407 * since no new ones are added.
4ac845a2 2408 */
07416d29 2409 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2410}
2411
89850f7e 2412static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2413{
df5fe3e8
JM
2414 struct cfq_queue *__cfqq, *next;
2415
28f95cbc 2416 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2417 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2418 cfq_schedule_dispatch(cfqd);
28f95cbc 2419 }
22e2c507 2420
df5fe3e8
JM
2421 /*
2422 * If this queue was scheduled to merge with another queue, be
2423 * sure to drop the reference taken on that queue (and others in
2424 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2425 */
2426 __cfqq = cfqq->new_cfqq;
2427 while (__cfqq) {
2428 if (__cfqq == cfqq) {
2429 WARN(1, "cfqq->new_cfqq loop detected\n");
2430 break;
2431 }
2432 next = __cfqq->new_cfqq;
2433 cfq_put_queue(__cfqq);
2434 __cfqq = next;
2435 }
2436
89850f7e
JA
2437 cfq_put_queue(cfqq);
2438}
22e2c507 2439
89850f7e
JA
2440static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2441 struct cfq_io_context *cic)
2442{
4faa3c81
FC
2443 struct io_context *ioc = cic->ioc;
2444
fc46379d 2445 list_del_init(&cic->queue_list);
4ac845a2
JA
2446
2447 /*
2448 * Make sure key == NULL is seen for dead queues
2449 */
fc46379d 2450 smp_wmb();
4ac845a2 2451 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2452 cic->key = NULL;
2453
4faa3c81
FC
2454 if (ioc->ioc_data == cic)
2455 rcu_assign_pointer(ioc->ioc_data, NULL);
2456
ff6657c6
JA
2457 if (cic->cfqq[BLK_RW_ASYNC]) {
2458 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2459 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2460 }
2461
ff6657c6
JA
2462 if (cic->cfqq[BLK_RW_SYNC]) {
2463 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2464 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2465 }
89850f7e
JA
2466}
2467
4ac845a2
JA
2468static void cfq_exit_single_io_context(struct io_context *ioc,
2469 struct cfq_io_context *cic)
89850f7e
JA
2470{
2471 struct cfq_data *cfqd = cic->key;
2472
89850f7e 2473 if (cfqd) {
165125e1 2474 struct request_queue *q = cfqd->queue;
4ac845a2 2475 unsigned long flags;
89850f7e 2476
4ac845a2 2477 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2478
2479 /*
2480 * Ensure we get a fresh copy of the ->key to prevent
2481 * race between exiting task and queue
2482 */
2483 smp_read_barrier_depends();
2484 if (cic->key)
2485 __cfq_exit_single_io_context(cfqd, cic);
2486
4ac845a2 2487 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2488 }
1da177e4
LT
2489}
2490
498d3aa2
JA
2491/*
2492 * The process that ioc belongs to has exited, we need to clean up
2493 * and put the internal structures we have that belongs to that process.
2494 */
e2d74ac0 2495static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2496{
4ac845a2 2497 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2498}
2499
22e2c507 2500static struct cfq_io_context *
8267e268 2501cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2502{
b5deef90 2503 struct cfq_io_context *cic;
1da177e4 2504
94f6030c
CL
2505 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2506 cfqd->queue->node);
1da177e4 2507 if (cic) {
22e2c507 2508 cic->last_end_request = jiffies;
553698f9 2509 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2510 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2511 cic->dtor = cfq_free_io_context;
2512 cic->exit = cfq_exit_io_context;
245b2e70 2513 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2514 }
2515
2516 return cic;
2517}
2518
fd0928df 2519static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2520{
2521 struct task_struct *tsk = current;
2522 int ioprio_class;
2523
3b18152c 2524 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2525 return;
2526
fd0928df 2527 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2528 switch (ioprio_class) {
fe094d98
JA
2529 default:
2530 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2531 case IOPRIO_CLASS_NONE:
2532 /*
6d63c275 2533 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2534 */
2535 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2536 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2537 break;
2538 case IOPRIO_CLASS_RT:
2539 cfqq->ioprio = task_ioprio(ioc);
2540 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2541 break;
2542 case IOPRIO_CLASS_BE:
2543 cfqq->ioprio = task_ioprio(ioc);
2544 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2545 break;
2546 case IOPRIO_CLASS_IDLE:
2547 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2548 cfqq->ioprio = 7;
2549 cfq_clear_cfqq_idle_window(cfqq);
2550 break;
22e2c507
JA
2551 }
2552
2553 /*
2554 * keep track of original prio settings in case we have to temporarily
2555 * elevate the priority of this queue
2556 */
2557 cfqq->org_ioprio = cfqq->ioprio;
2558 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2559 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2560}
2561
febffd61 2562static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2563{
478a82b0
AV
2564 struct cfq_data *cfqd = cic->key;
2565 struct cfq_queue *cfqq;
c1b707d2 2566 unsigned long flags;
35e6077c 2567
caaa5f9f
JA
2568 if (unlikely(!cfqd))
2569 return;
2570
c1b707d2 2571 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2572
ff6657c6 2573 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2574 if (cfqq) {
2575 struct cfq_queue *new_cfqq;
ff6657c6
JA
2576 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2577 GFP_ATOMIC);
caaa5f9f 2578 if (new_cfqq) {
ff6657c6 2579 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2580 cfq_put_queue(cfqq);
2581 }
22e2c507 2582 }
caaa5f9f 2583
ff6657c6 2584 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2585 if (cfqq)
2586 cfq_mark_cfqq_prio_changed(cfqq);
2587
c1b707d2 2588 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2589}
2590
fc46379d 2591static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2592{
4ac845a2 2593 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2594 ioc->ioprio_changed = 0;
22e2c507
JA
2595}
2596
d5036d77 2597static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2598 pid_t pid, bool is_sync)
d5036d77
JA
2599{
2600 RB_CLEAR_NODE(&cfqq->rb_node);
2601 RB_CLEAR_NODE(&cfqq->p_node);
2602 INIT_LIST_HEAD(&cfqq->fifo);
2603
2604 atomic_set(&cfqq->ref, 0);
2605 cfqq->cfqd = cfqd;
2606
2607 cfq_mark_cfqq_prio_changed(cfqq);
2608
2609 if (is_sync) {
2610 if (!cfq_class_idle(cfqq))
2611 cfq_mark_cfqq_idle_window(cfqq);
2612 cfq_mark_cfqq_sync(cfqq);
2613 }
2614 cfqq->pid = pid;
2615}
2616
24610333
VG
2617#ifdef CONFIG_CFQ_GROUP_IOSCHED
2618static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2619{
2620 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2621 struct cfq_data *cfqd = cic->key;
2622 unsigned long flags;
2623 struct request_queue *q;
2624
2625 if (unlikely(!cfqd))
2626 return;
2627
2628 q = cfqd->queue;
2629
2630 spin_lock_irqsave(q->queue_lock, flags);
2631
2632 if (sync_cfqq) {
2633 /*
2634 * Drop reference to sync queue. A new sync queue will be
2635 * assigned in new group upon arrival of a fresh request.
2636 */
2637 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2638 cic_set_cfqq(cic, NULL, 1);
2639 cfq_put_queue(sync_cfqq);
2640 }
2641
2642 spin_unlock_irqrestore(q->queue_lock, flags);
2643}
2644
2645static void cfq_ioc_set_cgroup(struct io_context *ioc)
2646{
2647 call_for_each_cic(ioc, changed_cgroup);
2648 ioc->cgroup_changed = 0;
2649}
2650#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2651
22e2c507 2652static struct cfq_queue *
a6151c3a 2653cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2654 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2655{
22e2c507 2656 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2657 struct cfq_io_context *cic;
cdb16e8f 2658 struct cfq_group *cfqg;
22e2c507
JA
2659
2660retry:
cdb16e8f 2661 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2662 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2663 /* cic always exists here */
2664 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2665
6118b70b
JA
2666 /*
2667 * Always try a new alloc if we fell back to the OOM cfqq
2668 * originally, since it should just be a temporary situation.
2669 */
2670 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2671 cfqq = NULL;
22e2c507
JA
2672 if (new_cfqq) {
2673 cfqq = new_cfqq;
2674 new_cfqq = NULL;
2675 } else if (gfp_mask & __GFP_WAIT) {
2676 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2677 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2678 gfp_mask | __GFP_ZERO,
94f6030c 2679 cfqd->queue->node);
22e2c507 2680 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2681 if (new_cfqq)
2682 goto retry;
22e2c507 2683 } else {
94f6030c
CL
2684 cfqq = kmem_cache_alloc_node(cfq_pool,
2685 gfp_mask | __GFP_ZERO,
2686 cfqd->queue->node);
22e2c507
JA
2687 }
2688
6118b70b
JA
2689 if (cfqq) {
2690 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2691 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2692 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2693 cfq_log_cfqq(cfqd, cfqq, "alloced");
2694 } else
2695 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2696 }
2697
2698 if (new_cfqq)
2699 kmem_cache_free(cfq_pool, new_cfqq);
2700
22e2c507
JA
2701 return cfqq;
2702}
2703
c2dea2d1
VT
2704static struct cfq_queue **
2705cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2706{
fe094d98 2707 switch (ioprio_class) {
c2dea2d1
VT
2708 case IOPRIO_CLASS_RT:
2709 return &cfqd->async_cfqq[0][ioprio];
2710 case IOPRIO_CLASS_BE:
2711 return &cfqd->async_cfqq[1][ioprio];
2712 case IOPRIO_CLASS_IDLE:
2713 return &cfqd->async_idle_cfqq;
2714 default:
2715 BUG();
2716 }
2717}
2718
15c31be4 2719static struct cfq_queue *
a6151c3a 2720cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2721 gfp_t gfp_mask)
2722{
fd0928df
JA
2723 const int ioprio = task_ioprio(ioc);
2724 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2725 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2726 struct cfq_queue *cfqq = NULL;
2727
c2dea2d1
VT
2728 if (!is_sync) {
2729 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2730 cfqq = *async_cfqq;
2731 }
2732
6118b70b 2733 if (!cfqq)
fd0928df 2734 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2735
2736 /*
2737 * pin the queue now that it's allocated, scheduler exit will prune it
2738 */
c2dea2d1 2739 if (!is_sync && !(*async_cfqq)) {
15c31be4 2740 atomic_inc(&cfqq->ref);
c2dea2d1 2741 *async_cfqq = cfqq;
15c31be4
JA
2742 }
2743
2744 atomic_inc(&cfqq->ref);
2745 return cfqq;
2746}
2747
498d3aa2
JA
2748/*
2749 * We drop cfq io contexts lazily, so we may find a dead one.
2750 */
dbecf3ab 2751static void
4ac845a2
JA
2752cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2753 struct cfq_io_context *cic)
dbecf3ab 2754{
4ac845a2
JA
2755 unsigned long flags;
2756
fc46379d 2757 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2758
4ac845a2
JA
2759 spin_lock_irqsave(&ioc->lock, flags);
2760
4faa3c81 2761 BUG_ON(ioc->ioc_data == cic);
597bc485 2762
4ac845a2 2763 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2764 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2765 spin_unlock_irqrestore(&ioc->lock, flags);
2766
2767 cfq_cic_free(cic);
dbecf3ab
OH
2768}
2769
e2d74ac0 2770static struct cfq_io_context *
4ac845a2 2771cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2772{
e2d74ac0 2773 struct cfq_io_context *cic;
d6de8be7 2774 unsigned long flags;
4ac845a2 2775 void *k;
e2d74ac0 2776
91fac317
VT
2777 if (unlikely(!ioc))
2778 return NULL;
2779
d6de8be7
JA
2780 rcu_read_lock();
2781
597bc485
JA
2782 /*
2783 * we maintain a last-hit cache, to avoid browsing over the tree
2784 */
4ac845a2 2785 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2786 if (cic && cic->key == cfqd) {
2787 rcu_read_unlock();
597bc485 2788 return cic;
d6de8be7 2789 }
597bc485 2790
4ac845a2 2791 do {
4ac845a2
JA
2792 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2793 rcu_read_unlock();
2794 if (!cic)
2795 break;
be3b0753
OH
2796 /* ->key must be copied to avoid race with cfq_exit_queue() */
2797 k = cic->key;
2798 if (unlikely(!k)) {
4ac845a2 2799 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2800 rcu_read_lock();
4ac845a2 2801 continue;
dbecf3ab 2802 }
e2d74ac0 2803
d6de8be7 2804 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2805 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2806 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2807 break;
2808 } while (1);
e2d74ac0 2809
4ac845a2 2810 return cic;
e2d74ac0
JA
2811}
2812
4ac845a2
JA
2813/*
2814 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2815 * the process specific cfq io context when entered from the block layer.
2816 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2817 */
febffd61
JA
2818static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2819 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2820{
0261d688 2821 unsigned long flags;
4ac845a2 2822 int ret;
e2d74ac0 2823
4ac845a2
JA
2824 ret = radix_tree_preload(gfp_mask);
2825 if (!ret) {
2826 cic->ioc = ioc;
2827 cic->key = cfqd;
e2d74ac0 2828
4ac845a2
JA
2829 spin_lock_irqsave(&ioc->lock, flags);
2830 ret = radix_tree_insert(&ioc->radix_root,
2831 (unsigned long) cfqd, cic);
ffc4e759
JA
2832 if (!ret)
2833 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2834 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2835
4ac845a2
JA
2836 radix_tree_preload_end();
2837
2838 if (!ret) {
2839 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2840 list_add(&cic->queue_list, &cfqd->cic_list);
2841 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2842 }
e2d74ac0
JA
2843 }
2844
4ac845a2
JA
2845 if (ret)
2846 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2847
4ac845a2 2848 return ret;
e2d74ac0
JA
2849}
2850
1da177e4
LT
2851/*
2852 * Setup general io context and cfq io context. There can be several cfq
2853 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2854 * than one device managed by cfq.
1da177e4
LT
2855 */
2856static struct cfq_io_context *
e2d74ac0 2857cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2858{
22e2c507 2859 struct io_context *ioc = NULL;
1da177e4 2860 struct cfq_io_context *cic;
1da177e4 2861
22e2c507 2862 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2863
b5deef90 2864 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2865 if (!ioc)
2866 return NULL;
2867
4ac845a2 2868 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2869 if (cic)
2870 goto out;
1da177e4 2871
e2d74ac0
JA
2872 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2873 if (cic == NULL)
2874 goto err;
1da177e4 2875
4ac845a2
JA
2876 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2877 goto err_free;
2878
1da177e4 2879out:
fc46379d
JA
2880 smp_read_barrier_depends();
2881 if (unlikely(ioc->ioprio_changed))
2882 cfq_ioc_set_ioprio(ioc);
2883
24610333
VG
2884#ifdef CONFIG_CFQ_GROUP_IOSCHED
2885 if (unlikely(ioc->cgroup_changed))
2886 cfq_ioc_set_cgroup(ioc);
2887#endif
1da177e4 2888 return cic;
4ac845a2
JA
2889err_free:
2890 cfq_cic_free(cic);
1da177e4
LT
2891err:
2892 put_io_context(ioc);
2893 return NULL;
2894}
2895
22e2c507
JA
2896static void
2897cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2898{
aaf1228d
JA
2899 unsigned long elapsed = jiffies - cic->last_end_request;
2900 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2901
22e2c507
JA
2902 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2903 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2904 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2905}
1da177e4 2906
206dc69b 2907static void
b2c18e1e 2908cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2909 struct request *rq)
206dc69b
JA
2910{
2911 sector_t sdist;
2912 u64 total;
2913
b2c18e1e 2914 if (!cfqq->last_request_pos)
4d00aa47 2915 sdist = 0;
b2c18e1e
JM
2916 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2917 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2918 else
b2c18e1e 2919 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2920
2921 /*
2922 * Don't allow the seek distance to get too large from the
2923 * odd fragment, pagein, etc
2924 */
b2c18e1e
JM
2925 if (cfqq->seek_samples <= 60) /* second&third seek */
2926 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2927 else
b2c18e1e 2928 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2929
b2c18e1e
JM
2930 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2931 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2932 total = cfqq->seek_total + (cfqq->seek_samples/2);
2933 do_div(total, cfqq->seek_samples);
2934 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2935
2936 /*
2937 * If this cfqq is shared between multiple processes, check to
2938 * make sure that those processes are still issuing I/Os within
2939 * the mean seek distance. If not, it may be time to break the
2940 * queues apart again.
2941 */
2942 if (cfq_cfqq_coop(cfqq)) {
2943 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2944 cfqq->seeky_start = jiffies;
2945 else if (!CFQQ_SEEKY(cfqq))
2946 cfqq->seeky_start = 0;
2947 }
206dc69b 2948}
1da177e4 2949
22e2c507
JA
2950/*
2951 * Disable idle window if the process thinks too long or seeks so much that
2952 * it doesn't matter
2953 */
2954static void
2955cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2956 struct cfq_io_context *cic)
2957{
7b679138 2958 int old_idle, enable_idle;
1be92f2f 2959
0871714e
JA
2960 /*
2961 * Don't idle for async or idle io prio class
2962 */
2963 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2964 return;
2965
c265a7f4 2966 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2967
76280aff
CZ
2968 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2969 cfq_mark_cfqq_deep(cfqq);
2970
66dac98e 2971 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
76280aff
CZ
2972 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2973 && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2974 enable_idle = 0;
2975 else if (sample_valid(cic->ttime_samples)) {
718eee05 2976 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
2977 enable_idle = 0;
2978 else
2979 enable_idle = 1;
1da177e4
LT
2980 }
2981
7b679138
JA
2982 if (old_idle != enable_idle) {
2983 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2984 if (enable_idle)
2985 cfq_mark_cfqq_idle_window(cfqq);
2986 else
2987 cfq_clear_cfqq_idle_window(cfqq);
2988 }
22e2c507 2989}
1da177e4 2990
22e2c507
JA
2991/*
2992 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2993 * no or if we aren't sure, a 1 will cause a preempt.
2994 */
a6151c3a 2995static bool
22e2c507 2996cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2997 struct request *rq)
22e2c507 2998{
6d048f53 2999 struct cfq_queue *cfqq;
22e2c507 3000
6d048f53
JA
3001 cfqq = cfqd->active_queue;
3002 if (!cfqq)
a6151c3a 3003 return false;
22e2c507 3004
6d048f53 3005 if (cfq_class_idle(new_cfqq))
a6151c3a 3006 return false;
22e2c507
JA
3007
3008 if (cfq_class_idle(cfqq))
a6151c3a 3009 return true;
1e3335de 3010
374f84ac
JA
3011 /*
3012 * if the new request is sync, but the currently running queue is
3013 * not, let the sync request have priority.
3014 */
5e705374 3015 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3016 return true;
1e3335de 3017
8682e1f1
VG
3018 if (new_cfqq->cfqg != cfqq->cfqg)
3019 return false;
3020
3021 if (cfq_slice_used(cfqq))
3022 return true;
3023
3024 /* Allow preemption only if we are idling on sync-noidle tree */
3025 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3026 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3027 new_cfqq->service_tree->count == 2 &&
3028 RB_EMPTY_ROOT(&cfqq->sort_list))
3029 return true;
3030
374f84ac
JA
3031 /*
3032 * So both queues are sync. Let the new request get disk time if
3033 * it's a metadata request and the current queue is doing regular IO.
3034 */
3035 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 3036 return true;
22e2c507 3037
3a9a3f6c
DS
3038 /*
3039 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3040 */
3041 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3042 return true;
3a9a3f6c 3043
1e3335de 3044 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3045 return false;
1e3335de
JA
3046
3047 /*
3048 * if this request is as-good as one we would expect from the
3049 * current cfqq, let it preempt
3050 */
e00ef799 3051 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3052 return true;
1e3335de 3053
a6151c3a 3054 return false;
22e2c507
JA
3055}
3056
3057/*
3058 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3059 * let it have half of its nominal slice.
3060 */
3061static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3062{
7b679138 3063 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 3064 cfq_slice_expired(cfqd, 1);
22e2c507 3065
bf572256
JA
3066 /*
3067 * Put the new queue at the front of the of the current list,
3068 * so we know that it will be selected next.
3069 */
3070 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3071
3072 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3073
44f7c160
JA
3074 cfqq->slice_end = 0;
3075 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3076}
3077
22e2c507 3078/*
5e705374 3079 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3080 * something we should do about it
3081 */
3082static void
5e705374
JA
3083cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3084 struct request *rq)
22e2c507 3085{
5e705374 3086 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3087
45333d5a 3088 cfqd->rq_queued++;
374f84ac
JA
3089 if (rq_is_meta(rq))
3090 cfqq->meta_pending++;
3091
9c2c38a1 3092 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3093 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3094 cfq_update_idle_window(cfqd, cfqq, cic);
3095
b2c18e1e 3096 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3097
3098 if (cfqq == cfqd->active_queue) {
3099 /*
b029195d
JA
3100 * Remember that we saw a request from this process, but
3101 * don't start queuing just yet. Otherwise we risk seeing lots
3102 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3103 * and merging. If the request is already larger than a single
3104 * page, let it rip immediately. For that case we assume that
2d870722
JA
3105 * merging is already done. Ditto for a busy system that
3106 * has other work pending, don't risk delaying until the
3107 * idle timer unplug to continue working.
22e2c507 3108 */
d6ceb25e 3109 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3110 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3111 cfqd->busy_queues > 1) {
d6ceb25e 3112 del_timer(&cfqd->idle_slice_timer);
bf791937
VG
3113 __blk_run_queue(cfqd->queue);
3114 } else
3115 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 3116 }
5e705374 3117 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3118 /*
3119 * not the active queue - expire current slice if it is
3120 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3121 * has some old slice time left and is of higher priority or
3122 * this new queue is RT and the current one is BE
22e2c507
JA
3123 */
3124 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3125 __blk_run_queue(cfqd->queue);
22e2c507 3126 }
1da177e4
LT
3127}
3128
165125e1 3129static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3130{
b4878f24 3131 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3132 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3133
7b679138 3134 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3135 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3136
30996f40 3137 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3138 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3139 cfq_add_rq_rb(rq);
22e2c507 3140
5e705374 3141 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3142}
3143
45333d5a
AC
3144/*
3145 * Update hw_tag based on peak queue depth over 50 samples under
3146 * sufficient load.
3147 */
3148static void cfq_update_hw_tag(struct cfq_data *cfqd)
3149{
1a1238a7
SL
3150 struct cfq_queue *cfqq = cfqd->active_queue;
3151
e459dd08
CZ
3152 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3153 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3154
3155 if (cfqd->hw_tag == 1)
3156 return;
45333d5a
AC
3157
3158 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 3159 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3160 return;
3161
1a1238a7
SL
3162 /*
3163 * If active queue hasn't enough requests and can idle, cfq might not
3164 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3165 * case
3166 */
3167 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3168 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3169 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3170 return;
3171
45333d5a
AC
3172 if (cfqd->hw_tag_samples++ < 50)
3173 return;
3174
e459dd08 3175 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3176 cfqd->hw_tag = 1;
3177 else
3178 cfqd->hw_tag = 0;
45333d5a
AC
3179}
3180
165125e1 3181static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3182{
5e705374 3183 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3184 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3185 const int sync = rq_is_sync(rq);
b4878f24 3186 unsigned long now;
1da177e4 3187
b4878f24 3188 now = jiffies;
2868ef7b 3189 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
1da177e4 3190
45333d5a
AC
3191 cfq_update_hw_tag(cfqd);
3192
5ad531db 3193 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 3194 WARN_ON(!cfqq->dispatched);
5ad531db 3195 cfqd->rq_in_driver[sync]--;
6d048f53 3196 cfqq->dispatched--;
1da177e4 3197
3ed9a296
JA
3198 if (cfq_cfqq_sync(cfqq))
3199 cfqd->sync_flight--;
3200
365722bb 3201 if (sync) {
5e705374 3202 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
3203 cfqd->last_end_sync_rq = now;
3204 }
caaa5f9f
JA
3205
3206 /*
3207 * If this is the active queue, check if it needs to be expired,
3208 * or if we want to idle in case it has no pending requests.
3209 */
3210 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3211 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3212
44f7c160
JA
3213 if (cfq_cfqq_slice_new(cfqq)) {
3214 cfq_set_prio_slice(cfqd, cfqq);
3215 cfq_clear_cfqq_slice_new(cfqq);
3216 }
a36e71f9 3217 /*
8e550632
CZ
3218 * Idling is not enabled on:
3219 * - expired queues
3220 * - idle-priority queues
3221 * - async queues
3222 * - queues with still some requests queued
3223 * - when there is a close cooperator
a36e71f9 3224 */
0871714e 3225 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 3226 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3227 else if (sync && cfqq_empty &&
3228 !cfq_close_cooperator(cfqd, cfqq)) {
3229 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3230 /*
3231 * Idling is enabled for SYNC_WORKLOAD.
3232 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3233 * only if we processed at least one !rq_noidle request
3234 */
3235 if (cfqd->serving_type == SYNC_WORKLOAD
3236 || cfqd->noidle_tree_requires_idle)
3237 cfq_arm_slice_timer(cfqd);
3238 }
caaa5f9f 3239 }
6d048f53 3240
5ad531db 3241 if (!rq_in_driver(cfqd))
23e018a1 3242 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3243}
3244
22e2c507
JA
3245/*
3246 * we temporarily boost lower priority queues if they are holding fs exclusive
3247 * resources. they are boosted to normal prio (CLASS_BE/4)
3248 */
3249static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3250{
22e2c507
JA
3251 if (has_fs_excl()) {
3252 /*
3253 * boost idle prio on transactions that would lock out other
3254 * users of the filesystem
3255 */
3256 if (cfq_class_idle(cfqq))
3257 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3258 if (cfqq->ioprio > IOPRIO_NORM)
3259 cfqq->ioprio = IOPRIO_NORM;
3260 } else {
3261 /*
dddb7451 3262 * unboost the queue (if needed)
22e2c507 3263 */
dddb7451
CZ
3264 cfqq->ioprio_class = cfqq->org_ioprio_class;
3265 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3266 }
22e2c507 3267}
1da177e4 3268
89850f7e 3269static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3270{
1b379d8d 3271 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3272 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3273 return ELV_MQUEUE_MUST;
3b18152c 3274 }
1da177e4 3275
22e2c507 3276 return ELV_MQUEUE_MAY;
22e2c507
JA
3277}
3278
165125e1 3279static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3280{
3281 struct cfq_data *cfqd = q->elevator->elevator_data;
3282 struct task_struct *tsk = current;
91fac317 3283 struct cfq_io_context *cic;
22e2c507
JA
3284 struct cfq_queue *cfqq;
3285
3286 /*
3287 * don't force setup of a queue from here, as a call to may_queue
3288 * does not necessarily imply that a request actually will be queued.
3289 * so just lookup a possibly existing queue, or return 'may queue'
3290 * if that fails
3291 */
4ac845a2 3292 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3293 if (!cic)
3294 return ELV_MQUEUE_MAY;
3295
b0b78f81 3296 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3297 if (cfqq) {
fd0928df 3298 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3299 cfq_prio_boost(cfqq);
3300
89850f7e 3301 return __cfq_may_queue(cfqq);
22e2c507
JA
3302 }
3303
3304 return ELV_MQUEUE_MAY;
1da177e4
LT
3305}
3306
1da177e4
LT
3307/*
3308 * queue lock held here
3309 */
bb37b94c 3310static void cfq_put_request(struct request *rq)
1da177e4 3311{
5e705374 3312 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3313
5e705374 3314 if (cfqq) {
22e2c507 3315 const int rw = rq_data_dir(rq);
1da177e4 3316
22e2c507
JA
3317 BUG_ON(!cfqq->allocated[rw]);
3318 cfqq->allocated[rw]--;
1da177e4 3319
5e705374 3320 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3321
1da177e4 3322 rq->elevator_private = NULL;
5e705374 3323 rq->elevator_private2 = NULL;
1da177e4 3324
1da177e4
LT
3325 cfq_put_queue(cfqq);
3326 }
3327}
3328
df5fe3e8
JM
3329static struct cfq_queue *
3330cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3331 struct cfq_queue *cfqq)
3332{
3333 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3334 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3335 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3336 cfq_put_queue(cfqq);
3337 return cic_to_cfqq(cic, 1);
3338}
3339
e6c5bc73
JM
3340static int should_split_cfqq(struct cfq_queue *cfqq)
3341{
3342 if (cfqq->seeky_start &&
3343 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3344 return 1;
3345 return 0;
3346}
3347
3348/*
3349 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3350 * was the last process referring to said cfqq.
3351 */
3352static struct cfq_queue *
3353split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3354{
3355 if (cfqq_process_refs(cfqq) == 1) {
3356 cfqq->seeky_start = 0;
3357 cfqq->pid = current->pid;
3358 cfq_clear_cfqq_coop(cfqq);
3359 return cfqq;
3360 }
3361
3362 cic_set_cfqq(cic, NULL, 1);
3363 cfq_put_queue(cfqq);
3364 return NULL;
3365}
1da177e4 3366/*
22e2c507 3367 * Allocate cfq data structures associated with this request.
1da177e4 3368 */
22e2c507 3369static int
165125e1 3370cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3371{
3372 struct cfq_data *cfqd = q->elevator->elevator_data;
3373 struct cfq_io_context *cic;
3374 const int rw = rq_data_dir(rq);
a6151c3a 3375 const bool is_sync = rq_is_sync(rq);
22e2c507 3376 struct cfq_queue *cfqq;
1da177e4
LT
3377 unsigned long flags;
3378
3379 might_sleep_if(gfp_mask & __GFP_WAIT);
3380
e2d74ac0 3381 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3382
1da177e4
LT
3383 spin_lock_irqsave(q->queue_lock, flags);
3384
22e2c507
JA
3385 if (!cic)
3386 goto queue_fail;
3387
e6c5bc73 3388new_queue:
91fac317 3389 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3390 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3391 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3392 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3393 } else {
e6c5bc73
JM
3394 /*
3395 * If the queue was seeky for too long, break it apart.
3396 */
3397 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3398 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3399 cfqq = split_cfqq(cic, cfqq);
3400 if (!cfqq)
3401 goto new_queue;
3402 }
3403
df5fe3e8
JM
3404 /*
3405 * Check to see if this queue is scheduled to merge with
3406 * another, closely cooperating queue. The merging of
3407 * queues happens here as it must be done in process context.
3408 * The reference on new_cfqq was taken in merge_cfqqs.
3409 */
3410 if (cfqq->new_cfqq)
3411 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3412 }
1da177e4
LT
3413
3414 cfqq->allocated[rw]++;
22e2c507 3415 atomic_inc(&cfqq->ref);
1da177e4 3416
5e705374 3417 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3418
5e705374
JA
3419 rq->elevator_private = cic;
3420 rq->elevator_private2 = cfqq;
3421 return 0;
1da177e4 3422
22e2c507
JA
3423queue_fail:
3424 if (cic)
3425 put_io_context(cic->ioc);
89850f7e 3426
23e018a1 3427 cfq_schedule_dispatch(cfqd);
1da177e4 3428 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3429 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3430 return 1;
3431}
3432
65f27f38 3433static void cfq_kick_queue(struct work_struct *work)
22e2c507 3434{
65f27f38 3435 struct cfq_data *cfqd =
23e018a1 3436 container_of(work, struct cfq_data, unplug_work);
165125e1 3437 struct request_queue *q = cfqd->queue;
22e2c507 3438
40bb54d1 3439 spin_lock_irq(q->queue_lock);
a7f55792 3440 __blk_run_queue(cfqd->queue);
40bb54d1 3441 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3442}
3443
3444/*
3445 * Timer running if the active_queue is currently idling inside its time slice
3446 */
3447static void cfq_idle_slice_timer(unsigned long data)
3448{
3449 struct cfq_data *cfqd = (struct cfq_data *) data;
3450 struct cfq_queue *cfqq;
3451 unsigned long flags;
3c6bd2f8 3452 int timed_out = 1;
22e2c507 3453
7b679138
JA
3454 cfq_log(cfqd, "idle timer fired");
3455
22e2c507
JA
3456 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3457
fe094d98
JA
3458 cfqq = cfqd->active_queue;
3459 if (cfqq) {
3c6bd2f8
JA
3460 timed_out = 0;
3461
b029195d
JA
3462 /*
3463 * We saw a request before the queue expired, let it through
3464 */
3465 if (cfq_cfqq_must_dispatch(cfqq))
3466 goto out_kick;
3467
22e2c507
JA
3468 /*
3469 * expired
3470 */
44f7c160 3471 if (cfq_slice_used(cfqq))
22e2c507
JA
3472 goto expire;
3473
3474 /*
3475 * only expire and reinvoke request handler, if there are
3476 * other queues with pending requests
3477 */
caaa5f9f 3478 if (!cfqd->busy_queues)
22e2c507 3479 goto out_cont;
22e2c507
JA
3480
3481 /*
3482 * not expired and it has a request pending, let it dispatch
3483 */
75e50984 3484 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3485 goto out_kick;
76280aff
CZ
3486
3487 /*
3488 * Queue depth flag is reset only when the idle didn't succeed
3489 */
3490 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3491 }
3492expire:
6084cdda 3493 cfq_slice_expired(cfqd, timed_out);
22e2c507 3494out_kick:
23e018a1 3495 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3496out_cont:
3497 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3498}
3499
3b18152c
JA
3500static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3501{
3502 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3503 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3504}
22e2c507 3505
c2dea2d1
VT
3506static void cfq_put_async_queues(struct cfq_data *cfqd)
3507{
3508 int i;
3509
3510 for (i = 0; i < IOPRIO_BE_NR; i++) {
3511 if (cfqd->async_cfqq[0][i])
3512 cfq_put_queue(cfqd->async_cfqq[0][i]);
3513 if (cfqd->async_cfqq[1][i])
3514 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3515 }
2389d1ef
ON
3516
3517 if (cfqd->async_idle_cfqq)
3518 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3519}
3520
b374d18a 3521static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3522{
22e2c507 3523 struct cfq_data *cfqd = e->elevator_data;
165125e1 3524 struct request_queue *q = cfqd->queue;
22e2c507 3525
3b18152c 3526 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3527
d9ff4187 3528 spin_lock_irq(q->queue_lock);
e2d74ac0 3529
d9ff4187 3530 if (cfqd->active_queue)
6084cdda 3531 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3532
3533 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3534 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3535 struct cfq_io_context,
3536 queue_list);
89850f7e
JA
3537
3538 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3539 }
e2d74ac0 3540
c2dea2d1 3541 cfq_put_async_queues(cfqd);
b1c35769
VG
3542 cfq_release_cfq_groups(cfqd);
3543 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3544
d9ff4187 3545 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3546
3547 cfq_shutdown_timer_wq(cfqd);
3548
b1c35769
VG
3549 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3550 synchronize_rcu();
a90d742e 3551 kfree(cfqd);
1da177e4
LT
3552}
3553
165125e1 3554static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3555{
3556 struct cfq_data *cfqd;
718eee05 3557 int i, j;
cdb16e8f 3558 struct cfq_group *cfqg;
615f0259 3559 struct cfq_rb_root *st;
1da177e4 3560
94f6030c 3561 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3562 if (!cfqd)
bc1c1169 3563 return NULL;
1da177e4 3564
1fa8f6d6
VG
3565 /* Init root service tree */
3566 cfqd->grp_service_tree = CFQ_RB_ROOT;
3567
cdb16e8f
VG
3568 /* Init root group */
3569 cfqg = &cfqd->root_group;
615f0259
VG
3570 for_each_cfqg_st(cfqg, i, j, st)
3571 *st = CFQ_RB_ROOT;
1fa8f6d6 3572 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3573
25bc6b07
VG
3574 /* Give preference to root group over other groups */
3575 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3576
25fb5169 3577#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3578 /*
3579 * Take a reference to root group which we never drop. This is just
3580 * to make sure that cfq_put_cfqg() does not try to kfree root group
3581 */
3582 atomic_set(&cfqg->ref, 1);
22084190
VG
3583 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3584 0);
25fb5169 3585#endif
26a2ac00
JA
3586 /*
3587 * Not strictly needed (since RB_ROOT just clears the node and we
3588 * zeroed cfqd on alloc), but better be safe in case someone decides
3589 * to add magic to the rb code
3590 */
3591 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3592 cfqd->prio_trees[i] = RB_ROOT;
3593
6118b70b
JA
3594 /*
3595 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3596 * Grab a permanent reference to it, so that the normal code flow
3597 * will not attempt to free it.
3598 */
3599 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3600 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3601 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3602
d9ff4187 3603 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3604
1da177e4 3605 cfqd->queue = q;
1da177e4 3606
22e2c507
JA
3607 init_timer(&cfqd->idle_slice_timer);
3608 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3609 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3610
23e018a1 3611 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3612
1da177e4 3613 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3614 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3615 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3616 cfqd->cfq_back_max = cfq_back_max;
3617 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3618 cfqd->cfq_slice[0] = cfq_slice_async;
3619 cfqd->cfq_slice[1] = cfq_slice_sync;
3620 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3621 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3622 cfqd->cfq_latency = 1;
e459dd08 3623 cfqd->hw_tag = -1;
365722bb 3624 cfqd->last_end_sync_rq = jiffies;
bc1c1169 3625 return cfqd;
1da177e4
LT
3626}
3627
3628static void cfq_slab_kill(void)
3629{
d6de8be7
JA
3630 /*
3631 * Caller already ensured that pending RCU callbacks are completed,
3632 * so we should have no busy allocations at this point.
3633 */
1da177e4
LT
3634 if (cfq_pool)
3635 kmem_cache_destroy(cfq_pool);
3636 if (cfq_ioc_pool)
3637 kmem_cache_destroy(cfq_ioc_pool);
3638}
3639
3640static int __init cfq_slab_setup(void)
3641{
0a31bd5f 3642 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3643 if (!cfq_pool)
3644 goto fail;
3645
34e6bbf2 3646 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3647 if (!cfq_ioc_pool)
3648 goto fail;
3649
3650 return 0;
3651fail:
3652 cfq_slab_kill();
3653 return -ENOMEM;
3654}
3655
1da177e4
LT
3656/*
3657 * sysfs parts below -->
3658 */
1da177e4
LT
3659static ssize_t
3660cfq_var_show(unsigned int var, char *page)
3661{
3662 return sprintf(page, "%d\n", var);
3663}
3664
3665static ssize_t
3666cfq_var_store(unsigned int *var, const char *page, size_t count)
3667{
3668 char *p = (char *) page;
3669
3670 *var = simple_strtoul(p, &p, 10);
3671 return count;
3672}
3673
1da177e4 3674#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3675static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3676{ \
3d1ab40f 3677 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3678 unsigned int __data = __VAR; \
3679 if (__CONV) \
3680 __data = jiffies_to_msecs(__data); \
3681 return cfq_var_show(__data, (page)); \
3682}
3683SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3684SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3685SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3686SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3687SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3688SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3689SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3690SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3691SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3692SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
3693#undef SHOW_FUNCTION
3694
3695#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3696static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3697{ \
3d1ab40f 3698 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3699 unsigned int __data; \
3700 int ret = cfq_var_store(&__data, (page), count); \
3701 if (__data < (MIN)) \
3702 __data = (MIN); \
3703 else if (__data > (MAX)) \
3704 __data = (MAX); \
3705 if (__CONV) \
3706 *(__PTR) = msecs_to_jiffies(__data); \
3707 else \
3708 *(__PTR) = __data; \
3709 return ret; \
3710}
3711STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3712STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3713 UINT_MAX, 1);
3714STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3715 UINT_MAX, 1);
e572ec7e 3716STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3717STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3718 UINT_MAX, 0);
22e2c507
JA
3719STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3720STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3721STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3722STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3723 UINT_MAX, 0);
963b72fc 3724STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
3725#undef STORE_FUNCTION
3726
e572ec7e
AV
3727#define CFQ_ATTR(name) \
3728 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3729
3730static struct elv_fs_entry cfq_attrs[] = {
3731 CFQ_ATTR(quantum),
e572ec7e
AV
3732 CFQ_ATTR(fifo_expire_sync),
3733 CFQ_ATTR(fifo_expire_async),
3734 CFQ_ATTR(back_seek_max),
3735 CFQ_ATTR(back_seek_penalty),
3736 CFQ_ATTR(slice_sync),
3737 CFQ_ATTR(slice_async),
3738 CFQ_ATTR(slice_async_rq),
3739 CFQ_ATTR(slice_idle),
963b72fc 3740 CFQ_ATTR(low_latency),
e572ec7e 3741 __ATTR_NULL
1da177e4
LT
3742};
3743
1da177e4
LT
3744static struct elevator_type iosched_cfq = {
3745 .ops = {
3746 .elevator_merge_fn = cfq_merge,
3747 .elevator_merged_fn = cfq_merged_request,
3748 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3749 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3750 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3751 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3752 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3753 .elevator_deactivate_req_fn = cfq_deactivate_request,
3754 .elevator_queue_empty_fn = cfq_queue_empty,
3755 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3756 .elevator_former_req_fn = elv_rb_former_request,
3757 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3758 .elevator_set_req_fn = cfq_set_request,
3759 .elevator_put_req_fn = cfq_put_request,
3760 .elevator_may_queue_fn = cfq_may_queue,
3761 .elevator_init_fn = cfq_init_queue,
3762 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3763 .trim = cfq_free_io_context,
1da177e4 3764 },
3d1ab40f 3765 .elevator_attrs = cfq_attrs,
1da177e4
LT
3766 .elevator_name = "cfq",
3767 .elevator_owner = THIS_MODULE,
3768};
3769
3770static int __init cfq_init(void)
3771{
22e2c507
JA
3772 /*
3773 * could be 0 on HZ < 1000 setups
3774 */
3775 if (!cfq_slice_async)
3776 cfq_slice_async = 1;
3777 if (!cfq_slice_idle)
3778 cfq_slice_idle = 1;
3779
1da177e4
LT
3780 if (cfq_slab_setup())
3781 return -ENOMEM;
3782
2fdd82bd 3783 elv_register(&iosched_cfq);
1da177e4 3784
2fdd82bd 3785 return 0;
1da177e4
LT
3786}
3787
3788static void __exit cfq_exit(void)
3789{
6e9a4738 3790 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 3791 elv_unregister(&iosched_cfq);
334e94de 3792 ioc_gone = &all_gone;
fba82272
OH
3793 /* ioc_gone's update must be visible before reading ioc_count */
3794 smp_wmb();
d6de8be7
JA
3795
3796 /*
3797 * this also protects us from entering cfq_slab_kill() with
3798 * pending RCU callbacks
3799 */
245b2e70 3800 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3801 wait_for_completion(&all_gone);
83521d3e 3802 cfq_slab_kill();
1da177e4
LT
3803}
3804
3805module_init(cfq_init);
3806module_exit(cfq_exit);
3807
3808MODULE_AUTHOR("Jens Axboe");
3809MODULE_LICENSE("GPL");
3810MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");