loop: Update mtime when writing using aops
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
1da177e4
LT
17
18/*
19 * tunables
20 */
fe094d98 21/* max queue in one round of service */
abc3c744 22static const int cfq_quantum = 8;
64100099 23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
64100099 28static const int cfq_slice_sync = HZ / 10;
3b18152c 29static int cfq_slice_async = HZ / 25;
64100099 30static const int cfq_slice_async_rq = 2;
caaa5f9f 31static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
22e2c507 34
d9e7620e 35/*
0871714e 36 * offset from end of service tree
d9e7620e 37 */
0871714e 38#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
22e2c507 45#define CFQ_SLICE_SCALE (5)
45333d5a 46#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 47#define CFQ_SERVICE_SHIFT 12
22e2c507 48
3dde36dd 49#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 50#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 51#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 52#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 53
fe094d98
JA
54#define RQ_CIC(rq) \
55 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 56#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 57
e18b890b
CL
58static struct kmem_cache *cfq_pool;
59static struct kmem_cache *cfq_ioc_pool;
1da177e4 60
245b2e70 61static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 62static struct completion *ioc_gone;
9a11b4ed 63static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 64
22e2c507
JA
65#define CFQ_PRIO_LISTS IOPRIO_BE_NR
66#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
67#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
206dc69b 69#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 70#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 71
cc09e299
JA
72/*
73 * Most of our rbtree usage is for sorting with min extraction, so
74 * if we cache the leftmost node we don't have to walk down the tree
75 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76 * move this into the elevator for the rq sorting as well.
77 */
78struct cfq_rb_root {
79 struct rb_root rb;
80 struct rb_node *left;
aa6f6a3d 81 unsigned count;
73e9ffdd 82 unsigned total_weight;
1fa8f6d6 83 u64 min_vdisktime;
25bc6b07 84 struct rb_node *active;
cc09e299 85};
73e9ffdd
RK
86#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
87 .count = 0, .min_vdisktime = 0, }
cc09e299 88
6118b70b
JA
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
dae739eb
VG
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
f75edf2d 120 unsigned int allocated_slice;
c4081ba5 121 unsigned int slice_dispatch;
dae739eb
VG
122 /* time when first request from queue completed and slice started. */
123 unsigned long slice_start;
6118b70b
JA
124 unsigned long slice_end;
125 long slice_resid;
6118b70b
JA
126
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
135
c4081ba5
RK
136 pid_t pid;
137
3dde36dd 138 u32 seek_history;
b2c18e1e
JM
139 sector_t last_request_pos;
140
aa6f6a3d 141 struct cfq_rb_root *service_tree;
df5fe3e8 142 struct cfq_queue *new_cfqq;
cdb16e8f 143 struct cfq_group *cfqg;
ae30c286 144 struct cfq_group *orig_cfqg;
22084190
VG
145 /* Sectors dispatched in current dispatch round */
146 unsigned long nr_sectors;
6118b70b
JA
147};
148
c0324a02 149/*
718eee05 150 * First index in the service_trees.
c0324a02
CZ
151 * IDLE is handled separately, so it has negative index
152 */
153enum wl_prio_t {
c0324a02 154 BE_WORKLOAD = 0,
615f0259
VG
155 RT_WORKLOAD = 1,
156 IDLE_WORKLOAD = 2,
c0324a02
CZ
157};
158
718eee05
CZ
159/*
160 * Second index in the service_trees.
161 */
162enum wl_type_t {
163 ASYNC_WORKLOAD = 0,
164 SYNC_NOIDLE_WORKLOAD = 1,
165 SYNC_WORKLOAD = 2
166};
167
cdb16e8f
VG
168/* This is per cgroup per device grouping structure */
169struct cfq_group {
1fa8f6d6
VG
170 /* group service_tree member */
171 struct rb_node rb_node;
172
173 /* group service_tree key */
174 u64 vdisktime;
25bc6b07 175 unsigned int weight;
1fa8f6d6
VG
176 bool on_st;
177
178 /* number of cfqq currently on this group */
179 int nr_cfqq;
180
58ff82f3
VG
181 /* Per group busy queus average. Useful for workload slice calc. */
182 unsigned int busy_queues_avg[2];
cdb16e8f
VG
183 /*
184 * rr lists of queues with requests, onle rr for each priority class.
185 * Counts are embedded in the cfq_rb_root
186 */
187 struct cfq_rb_root service_trees[2][3];
188 struct cfq_rb_root service_tree_idle;
dae739eb
VG
189
190 unsigned long saved_workload_slice;
191 enum wl_type_t saved_workload;
192 enum wl_prio_t saved_serving_prio;
25fb5169
VG
193 struct blkio_group blkg;
194#ifdef CONFIG_CFQ_GROUP_IOSCHED
195 struct hlist_node cfqd_node;
b1c35769 196 atomic_t ref;
25fb5169 197#endif
cdb16e8f 198};
718eee05 199
22e2c507
JA
200/*
201 * Per block device queue structure
202 */
1da177e4 203struct cfq_data {
165125e1 204 struct request_queue *queue;
1fa8f6d6
VG
205 /* Root service tree for cfq_groups */
206 struct cfq_rb_root grp_service_tree;
cdb16e8f 207 struct cfq_group root_group;
22e2c507 208
c0324a02
CZ
209 /*
210 * The priority currently being served
22e2c507 211 */
c0324a02 212 enum wl_prio_t serving_prio;
718eee05
CZ
213 enum wl_type_t serving_type;
214 unsigned long workload_expires;
cdb16e8f 215 struct cfq_group *serving_group;
8e550632 216 bool noidle_tree_requires_idle;
a36e71f9
JA
217
218 /*
219 * Each priority tree is sorted by next_request position. These
220 * trees are used when determining if two or more queues are
221 * interleaving requests (see cfq_close_cooperator).
222 */
223 struct rb_root prio_trees[CFQ_PRIO_LISTS];
224
22e2c507
JA
225 unsigned int busy_queues;
226
53c583d2
CZ
227 int rq_in_driver;
228 int rq_in_flight[2];
45333d5a
AC
229
230 /*
231 * queue-depth detection
232 */
233 int rq_queued;
25776e35 234 int hw_tag;
e459dd08
CZ
235 /*
236 * hw_tag can be
237 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
238 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
239 * 0 => no NCQ
240 */
241 int hw_tag_est_depth;
242 unsigned int hw_tag_samples;
1da177e4 243
22e2c507
JA
244 /*
245 * idle window management
246 */
247 struct timer_list idle_slice_timer;
23e018a1 248 struct work_struct unplug_work;
1da177e4 249
22e2c507
JA
250 struct cfq_queue *active_queue;
251 struct cfq_io_context *active_cic;
22e2c507 252
c2dea2d1
VT
253 /*
254 * async queue for each priority case
255 */
256 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
257 struct cfq_queue *async_idle_cfqq;
15c31be4 258
6d048f53 259 sector_t last_position;
1da177e4 260
1da177e4
LT
261 /*
262 * tunables, see top of file
263 */
264 unsigned int cfq_quantum;
22e2c507 265 unsigned int cfq_fifo_expire[2];
1da177e4
LT
266 unsigned int cfq_back_penalty;
267 unsigned int cfq_back_max;
22e2c507
JA
268 unsigned int cfq_slice[2];
269 unsigned int cfq_slice_async_rq;
270 unsigned int cfq_slice_idle;
963b72fc 271 unsigned int cfq_latency;
ae30c286 272 unsigned int cfq_group_isolation;
d9ff4187
AV
273
274 struct list_head cic_list;
1da177e4 275
6118b70b
JA
276 /*
277 * Fallback dummy cfqq for extreme OOM conditions
278 */
279 struct cfq_queue oom_cfqq;
365722bb 280
573412b2 281 unsigned long last_delayed_sync;
25fb5169
VG
282
283 /* List of cfq groups being managed on this device*/
284 struct hlist_head cfqg_list;
bb729bc9 285 struct rcu_head rcu;
1da177e4
LT
286};
287
25fb5169
VG
288static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
289
cdb16e8f
VG
290static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
291 enum wl_prio_t prio,
65b32a57 292 enum wl_type_t type)
c0324a02 293{
1fa8f6d6
VG
294 if (!cfqg)
295 return NULL;
296
c0324a02 297 if (prio == IDLE_WORKLOAD)
cdb16e8f 298 return &cfqg->service_tree_idle;
c0324a02 299
cdb16e8f 300 return &cfqg->service_trees[prio][type];
c0324a02
CZ
301}
302
3b18152c 303enum cfqq_state_flags {
b0b8d749
JA
304 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
305 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 306 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 307 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
308 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
309 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
310 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 311 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 312 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 313 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 314 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 315 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 316 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
317};
318
319#define CFQ_CFQQ_FNS(name) \
320static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
321{ \
fe094d98 322 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
323} \
324static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
325{ \
fe094d98 326 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
327} \
328static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
329{ \
fe094d98 330 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
331}
332
333CFQ_CFQQ_FNS(on_rr);
334CFQ_CFQQ_FNS(wait_request);
b029195d 335CFQ_CFQQ_FNS(must_dispatch);
3b18152c 336CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
337CFQ_CFQQ_FNS(fifo_expire);
338CFQ_CFQQ_FNS(idle_window);
339CFQ_CFQQ_FNS(prio_changed);
44f7c160 340CFQ_CFQQ_FNS(slice_new);
91fac317 341CFQ_CFQQ_FNS(sync);
a36e71f9 342CFQ_CFQQ_FNS(coop);
ae54abed 343CFQ_CFQQ_FNS(split_coop);
76280aff 344CFQ_CFQQ_FNS(deep);
f75edf2d 345CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
346#undef CFQ_CFQQ_FNS
347
2868ef7b
VG
348#ifdef CONFIG_DEBUG_CFQ_IOSCHED
349#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
350 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
351 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
352 blkg_path(&(cfqq)->cfqg->blkg), ##args);
353
354#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
355 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
356 blkg_path(&(cfqg)->blkg), ##args); \
357
358#else
7b679138
JA
359#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
360 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
361#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
362#endif
7b679138
JA
363#define cfq_log(cfqd, fmt, args...) \
364 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
365
615f0259
VG
366/* Traverses through cfq group service trees */
367#define for_each_cfqg_st(cfqg, i, j, st) \
368 for (i = 0; i <= IDLE_WORKLOAD; i++) \
369 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
370 : &cfqg->service_tree_idle; \
371 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
372 (i == IDLE_WORKLOAD && j == 0); \
373 j++, st = i < IDLE_WORKLOAD ? \
374 &cfqg->service_trees[i][j]: NULL) \
375
376
c0324a02
CZ
377static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
378{
379 if (cfq_class_idle(cfqq))
380 return IDLE_WORKLOAD;
381 if (cfq_class_rt(cfqq))
382 return RT_WORKLOAD;
383 return BE_WORKLOAD;
384}
385
718eee05
CZ
386
387static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
388{
389 if (!cfq_cfqq_sync(cfqq))
390 return ASYNC_WORKLOAD;
391 if (!cfq_cfqq_idle_window(cfqq))
392 return SYNC_NOIDLE_WORKLOAD;
393 return SYNC_WORKLOAD;
394}
395
58ff82f3
VG
396static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
397 struct cfq_data *cfqd,
398 struct cfq_group *cfqg)
c0324a02
CZ
399{
400 if (wl == IDLE_WORKLOAD)
cdb16e8f 401 return cfqg->service_tree_idle.count;
c0324a02 402
cdb16e8f
VG
403 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
404 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
405 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
406}
407
f26bd1f0
VG
408static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
409 struct cfq_group *cfqg)
410{
411 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
412 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
413}
414
165125e1 415static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 416static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 417 struct io_context *, gfp_t);
4ac845a2 418static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
419 struct io_context *);
420
421static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 422 bool is_sync)
91fac317 423{
a6151c3a 424 return cic->cfqq[is_sync];
91fac317
VT
425}
426
427static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 428 struct cfq_queue *cfqq, bool is_sync)
91fac317 429{
a6151c3a 430 cic->cfqq[is_sync] = cfqq;
91fac317
VT
431}
432
433/*
434 * We regard a request as SYNC, if it's either a read or has the SYNC bit
435 * set (in which case it could also be direct WRITE).
436 */
a6151c3a 437static inline bool cfq_bio_sync(struct bio *bio)
91fac317 438{
a6151c3a 439 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 440}
1da177e4 441
99f95e52
AM
442/*
443 * scheduler run of queue, if there are requests pending and no one in the
444 * driver that will restart queueing
445 */
23e018a1 446static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 447{
7b679138
JA
448 if (cfqd->busy_queues) {
449 cfq_log(cfqd, "schedule dispatch");
23e018a1 450 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 451 }
99f95e52
AM
452}
453
165125e1 454static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
455{
456 struct cfq_data *cfqd = q->elevator->elevator_data;
457
f04a6424 458 return !cfqd->rq_queued;
99f95e52
AM
459}
460
44f7c160
JA
461/*
462 * Scale schedule slice based on io priority. Use the sync time slice only
463 * if a queue is marked sync and has sync io queued. A sync queue with async
464 * io only, should not get full sync slice length.
465 */
a6151c3a 466static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 467 unsigned short prio)
44f7c160 468{
d9e7620e 469 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 470
d9e7620e
JA
471 WARN_ON(prio >= IOPRIO_BE_NR);
472
473 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
474}
44f7c160 475
d9e7620e
JA
476static inline int
477cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
478{
479 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
480}
481
25bc6b07
VG
482static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
483{
484 u64 d = delta << CFQ_SERVICE_SHIFT;
485
486 d = d * BLKIO_WEIGHT_DEFAULT;
487 do_div(d, cfqg->weight);
488 return d;
489}
490
491static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
492{
493 s64 delta = (s64)(vdisktime - min_vdisktime);
494 if (delta > 0)
495 min_vdisktime = vdisktime;
496
497 return min_vdisktime;
498}
499
500static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
501{
502 s64 delta = (s64)(vdisktime - min_vdisktime);
503 if (delta < 0)
504 min_vdisktime = vdisktime;
505
506 return min_vdisktime;
507}
508
509static void update_min_vdisktime(struct cfq_rb_root *st)
510{
511 u64 vdisktime = st->min_vdisktime;
512 struct cfq_group *cfqg;
513
514 if (st->active) {
515 cfqg = rb_entry_cfqg(st->active);
516 vdisktime = cfqg->vdisktime;
517 }
518
519 if (st->left) {
520 cfqg = rb_entry_cfqg(st->left);
521 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
522 }
523
524 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
525}
526
5db5d642
CZ
527/*
528 * get averaged number of queues of RT/BE priority.
529 * average is updated, with a formula that gives more weight to higher numbers,
530 * to quickly follows sudden increases and decrease slowly
531 */
532
58ff82f3
VG
533static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
534 struct cfq_group *cfqg, bool rt)
5869619c 535{
5db5d642
CZ
536 unsigned min_q, max_q;
537 unsigned mult = cfq_hist_divisor - 1;
538 unsigned round = cfq_hist_divisor / 2;
58ff82f3 539 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 540
58ff82f3
VG
541 min_q = min(cfqg->busy_queues_avg[rt], busy);
542 max_q = max(cfqg->busy_queues_avg[rt], busy);
543 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 544 cfq_hist_divisor;
58ff82f3
VG
545 return cfqg->busy_queues_avg[rt];
546}
547
548static inline unsigned
549cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
550{
551 struct cfq_rb_root *st = &cfqd->grp_service_tree;
552
553 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
554}
555
44f7c160
JA
556static inline void
557cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
558{
5db5d642
CZ
559 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
560 if (cfqd->cfq_latency) {
58ff82f3
VG
561 /*
562 * interested queues (we consider only the ones with the same
563 * priority class in the cfq group)
564 */
565 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
566 cfq_class_rt(cfqq));
5db5d642
CZ
567 unsigned sync_slice = cfqd->cfq_slice[1];
568 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
569 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
570
571 if (expect_latency > group_slice) {
5db5d642
CZ
572 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
573 /* scale low_slice according to IO priority
574 * and sync vs async */
575 unsigned low_slice =
576 min(slice, base_low_slice * slice / sync_slice);
577 /* the adapted slice value is scaled to fit all iqs
578 * into the target latency */
58ff82f3 579 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
580 low_slice);
581 }
582 }
dae739eb 583 cfqq->slice_start = jiffies;
5db5d642 584 cfqq->slice_end = jiffies + slice;
f75edf2d 585 cfqq->allocated_slice = slice;
7b679138 586 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
587}
588
589/*
590 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
591 * isn't valid until the first request from the dispatch is activated
592 * and the slice time set.
593 */
a6151c3a 594static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
595{
596 if (cfq_cfqq_slice_new(cfqq))
597 return 0;
598 if (time_before(jiffies, cfqq->slice_end))
599 return 0;
600
601 return 1;
602}
603
1da177e4 604/*
5e705374 605 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 606 * We choose the request that is closest to the head right now. Distance
e8a99053 607 * behind the head is penalized and only allowed to a certain extent.
1da177e4 608 */
5e705374 609static struct request *
cf7c25cf 610cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 611{
cf7c25cf 612 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 613 unsigned long back_max;
e8a99053
AM
614#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
615#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
616 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 617
5e705374
JA
618 if (rq1 == NULL || rq1 == rq2)
619 return rq2;
620 if (rq2 == NULL)
621 return rq1;
9c2c38a1 622
5e705374
JA
623 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
624 return rq1;
625 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
626 return rq2;
374f84ac
JA
627 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
628 return rq1;
629 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
630 return rq2;
1da177e4 631
83096ebf
TH
632 s1 = blk_rq_pos(rq1);
633 s2 = blk_rq_pos(rq2);
1da177e4 634
1da177e4
LT
635 /*
636 * by definition, 1KiB is 2 sectors
637 */
638 back_max = cfqd->cfq_back_max * 2;
639
640 /*
641 * Strict one way elevator _except_ in the case where we allow
642 * short backward seeks which are biased as twice the cost of a
643 * similar forward seek.
644 */
645 if (s1 >= last)
646 d1 = s1 - last;
647 else if (s1 + back_max >= last)
648 d1 = (last - s1) * cfqd->cfq_back_penalty;
649 else
e8a99053 650 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
651
652 if (s2 >= last)
653 d2 = s2 - last;
654 else if (s2 + back_max >= last)
655 d2 = (last - s2) * cfqd->cfq_back_penalty;
656 else
e8a99053 657 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
658
659 /* Found required data */
e8a99053
AM
660
661 /*
662 * By doing switch() on the bit mask "wrap" we avoid having to
663 * check two variables for all permutations: --> faster!
664 */
665 switch (wrap) {
5e705374 666 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 667 if (d1 < d2)
5e705374 668 return rq1;
e8a99053 669 else if (d2 < d1)
5e705374 670 return rq2;
e8a99053
AM
671 else {
672 if (s1 >= s2)
5e705374 673 return rq1;
e8a99053 674 else
5e705374 675 return rq2;
e8a99053 676 }
1da177e4 677
e8a99053 678 case CFQ_RQ2_WRAP:
5e705374 679 return rq1;
e8a99053 680 case CFQ_RQ1_WRAP:
5e705374
JA
681 return rq2;
682 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
683 default:
684 /*
685 * Since both rqs are wrapped,
686 * start with the one that's further behind head
687 * (--> only *one* back seek required),
688 * since back seek takes more time than forward.
689 */
690 if (s1 <= s2)
5e705374 691 return rq1;
1da177e4 692 else
5e705374 693 return rq2;
1da177e4
LT
694 }
695}
696
498d3aa2
JA
697/*
698 * The below is leftmost cache rbtree addon
699 */
0871714e 700static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 701{
615f0259
VG
702 /* Service tree is empty */
703 if (!root->count)
704 return NULL;
705
cc09e299
JA
706 if (!root->left)
707 root->left = rb_first(&root->rb);
708
0871714e
JA
709 if (root->left)
710 return rb_entry(root->left, struct cfq_queue, rb_node);
711
712 return NULL;
cc09e299
JA
713}
714
1fa8f6d6
VG
715static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
716{
717 if (!root->left)
718 root->left = rb_first(&root->rb);
719
720 if (root->left)
721 return rb_entry_cfqg(root->left);
722
723 return NULL;
724}
725
a36e71f9
JA
726static void rb_erase_init(struct rb_node *n, struct rb_root *root)
727{
728 rb_erase(n, root);
729 RB_CLEAR_NODE(n);
730}
731
cc09e299
JA
732static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
733{
734 if (root->left == n)
735 root->left = NULL;
a36e71f9 736 rb_erase_init(n, &root->rb);
aa6f6a3d 737 --root->count;
cc09e299
JA
738}
739
1da177e4
LT
740/*
741 * would be nice to take fifo expire time into account as well
742 */
5e705374
JA
743static struct request *
744cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
745 struct request *last)
1da177e4 746{
21183b07
JA
747 struct rb_node *rbnext = rb_next(&last->rb_node);
748 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 749 struct request *next = NULL, *prev = NULL;
1da177e4 750
21183b07 751 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
752
753 if (rbprev)
5e705374 754 prev = rb_entry_rq(rbprev);
1da177e4 755
21183b07 756 if (rbnext)
5e705374 757 next = rb_entry_rq(rbnext);
21183b07
JA
758 else {
759 rbnext = rb_first(&cfqq->sort_list);
760 if (rbnext && rbnext != &last->rb_node)
5e705374 761 next = rb_entry_rq(rbnext);
21183b07 762 }
1da177e4 763
cf7c25cf 764 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
765}
766
d9e7620e
JA
767static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
768 struct cfq_queue *cfqq)
1da177e4 769{
d9e7620e
JA
770 /*
771 * just an approximation, should be ok.
772 */
cdb16e8f 773 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 774 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
775}
776
1fa8f6d6
VG
777static inline s64
778cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
779{
780 return cfqg->vdisktime - st->min_vdisktime;
781}
782
783static void
784__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
785{
786 struct rb_node **node = &st->rb.rb_node;
787 struct rb_node *parent = NULL;
788 struct cfq_group *__cfqg;
789 s64 key = cfqg_key(st, cfqg);
790 int left = 1;
791
792 while (*node != NULL) {
793 parent = *node;
794 __cfqg = rb_entry_cfqg(parent);
795
796 if (key < cfqg_key(st, __cfqg))
797 node = &parent->rb_left;
798 else {
799 node = &parent->rb_right;
800 left = 0;
801 }
802 }
803
804 if (left)
805 st->left = &cfqg->rb_node;
806
807 rb_link_node(&cfqg->rb_node, parent, node);
808 rb_insert_color(&cfqg->rb_node, &st->rb);
809}
810
811static void
812cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
813{
814 struct cfq_rb_root *st = &cfqd->grp_service_tree;
815 struct cfq_group *__cfqg;
816 struct rb_node *n;
817
818 cfqg->nr_cfqq++;
819 if (cfqg->on_st)
820 return;
821
822 /*
823 * Currently put the group at the end. Later implement something
824 * so that groups get lesser vtime based on their weights, so that
825 * if group does not loose all if it was not continously backlogged.
826 */
827 n = rb_last(&st->rb);
828 if (n) {
829 __cfqg = rb_entry_cfqg(n);
830 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
831 } else
832 cfqg->vdisktime = st->min_vdisktime;
833
834 __cfq_group_service_tree_add(st, cfqg);
835 cfqg->on_st = true;
58ff82f3 836 st->total_weight += cfqg->weight;
1fa8f6d6
VG
837}
838
839static void
840cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
841{
842 struct cfq_rb_root *st = &cfqd->grp_service_tree;
843
25bc6b07
VG
844 if (st->active == &cfqg->rb_node)
845 st->active = NULL;
846
1fa8f6d6
VG
847 BUG_ON(cfqg->nr_cfqq < 1);
848 cfqg->nr_cfqq--;
25bc6b07 849
1fa8f6d6
VG
850 /* If there are other cfq queues under this group, don't delete it */
851 if (cfqg->nr_cfqq)
852 return;
853
2868ef7b 854 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 855 cfqg->on_st = false;
58ff82f3 856 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
857 if (!RB_EMPTY_NODE(&cfqg->rb_node))
858 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 859 cfqg->saved_workload_slice = 0;
22084190 860 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
861}
862
863static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
864{
f75edf2d 865 unsigned int slice_used;
dae739eb
VG
866
867 /*
868 * Queue got expired before even a single request completed or
869 * got expired immediately after first request completion.
870 */
871 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
872 /*
873 * Also charge the seek time incurred to the group, otherwise
874 * if there are mutiple queues in the group, each can dispatch
875 * a single request on seeky media and cause lots of seek time
876 * and group will never know it.
877 */
878 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
879 1);
880 } else {
881 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
882 if (slice_used > cfqq->allocated_slice)
883 slice_used = cfqq->allocated_slice;
dae739eb
VG
884 }
885
22084190
VG
886 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
887 cfqq->nr_sectors);
dae739eb
VG
888 return slice_used;
889}
890
891static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
892 struct cfq_queue *cfqq)
893{
894 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
895 unsigned int used_sl, charge_sl;
896 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
897 - cfqg->service_tree_idle.count;
898
899 BUG_ON(nr_sync < 0);
900 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 901
f26bd1f0
VG
902 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
903 charge_sl = cfqq->allocated_slice;
dae739eb
VG
904
905 /* Can't update vdisktime while group is on service tree */
906 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 907 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
908 __cfq_group_service_tree_add(st, cfqg);
909
910 /* This group is being expired. Save the context */
911 if (time_after(cfqd->workload_expires, jiffies)) {
912 cfqg->saved_workload_slice = cfqd->workload_expires
913 - jiffies;
914 cfqg->saved_workload = cfqd->serving_type;
915 cfqg->saved_serving_prio = cfqd->serving_prio;
916 } else
917 cfqg->saved_workload_slice = 0;
2868ef7b
VG
918
919 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
920 st->min_vdisktime);
22084190
VG
921 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
922 cfqq->nr_sectors);
1fa8f6d6
VG
923}
924
25fb5169
VG
925#ifdef CONFIG_CFQ_GROUP_IOSCHED
926static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
927{
928 if (blkg)
929 return container_of(blkg, struct cfq_group, blkg);
930 return NULL;
931}
932
f8d461d6
VG
933void
934cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
935{
936 cfqg_of_blkg(blkg)->weight = weight;
937}
938
25fb5169
VG
939static struct cfq_group *
940cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
941{
942 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
943 struct cfq_group *cfqg = NULL;
944 void *key = cfqd;
945 int i, j;
946 struct cfq_rb_root *st;
22084190
VG
947 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
948 unsigned int major, minor;
25fb5169 949
25fb5169 950 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
a74b2ada
RB
951 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
952 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
953 cfqg->blkg.dev = MKDEV(major, minor);
954 goto done;
955 }
25fb5169
VG
956 if (cfqg || !create)
957 goto done;
958
959 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
960 if (!cfqg)
961 goto done;
962
963 cfqg->weight = blkcg->weight;
964 for_each_cfqg_st(cfqg, i, j, st)
965 *st = CFQ_RB_ROOT;
966 RB_CLEAR_NODE(&cfqg->rb_node);
967
b1c35769
VG
968 /*
969 * Take the initial reference that will be released on destroy
970 * This can be thought of a joint reference by cgroup and
971 * elevator which will be dropped by either elevator exit
972 * or cgroup deletion path depending on who is exiting first.
973 */
974 atomic_set(&cfqg->ref, 1);
975
25fb5169 976 /* Add group onto cgroup list */
22084190
VG
977 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
978 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
979 MKDEV(major, minor));
25fb5169
VG
980
981 /* Add group on cfqd list */
982 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
983
984done:
25fb5169
VG
985 return cfqg;
986}
987
988/*
989 * Search for the cfq group current task belongs to. If create = 1, then also
990 * create the cfq group if it does not exist. request_queue lock must be held.
991 */
992static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
993{
994 struct cgroup *cgroup;
995 struct cfq_group *cfqg = NULL;
996
997 rcu_read_lock();
998 cgroup = task_cgroup(current, blkio_subsys_id);
999 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1000 if (!cfqg && create)
1001 cfqg = &cfqd->root_group;
1002 rcu_read_unlock();
1003 return cfqg;
1004}
1005
1006static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1007{
1008 /* Currently, all async queues are mapped to root group */
1009 if (!cfq_cfqq_sync(cfqq))
1010 cfqg = &cfqq->cfqd->root_group;
1011
1012 cfqq->cfqg = cfqg;
b1c35769
VG
1013 /* cfqq reference on cfqg */
1014 atomic_inc(&cfqq->cfqg->ref);
1015}
1016
1017static void cfq_put_cfqg(struct cfq_group *cfqg)
1018{
1019 struct cfq_rb_root *st;
1020 int i, j;
1021
1022 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1023 if (!atomic_dec_and_test(&cfqg->ref))
1024 return;
1025 for_each_cfqg_st(cfqg, i, j, st)
1026 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1027 kfree(cfqg);
1028}
1029
1030static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1031{
1032 /* Something wrong if we are trying to remove same group twice */
1033 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1034
1035 hlist_del_init(&cfqg->cfqd_node);
1036
1037 /*
1038 * Put the reference taken at the time of creation so that when all
1039 * queues are gone, group can be destroyed.
1040 */
1041 cfq_put_cfqg(cfqg);
1042}
1043
1044static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1045{
1046 struct hlist_node *pos, *n;
1047 struct cfq_group *cfqg;
1048
1049 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1050 /*
1051 * If cgroup removal path got to blk_group first and removed
1052 * it from cgroup list, then it will take care of destroying
1053 * cfqg also.
1054 */
1055 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1056 cfq_destroy_cfqg(cfqd, cfqg);
1057 }
25fb5169 1058}
b1c35769
VG
1059
1060/*
1061 * Blk cgroup controller notification saying that blkio_group object is being
1062 * delinked as associated cgroup object is going away. That also means that
1063 * no new IO will come in this group. So get rid of this group as soon as
1064 * any pending IO in the group is finished.
1065 *
1066 * This function is called under rcu_read_lock(). key is the rcu protected
1067 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1068 * read lock.
1069 *
1070 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1071 * it should not be NULL as even if elevator was exiting, cgroup deltion
1072 * path got to it first.
1073 */
1074void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1075{
1076 unsigned long flags;
1077 struct cfq_data *cfqd = key;
1078
1079 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1080 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1081 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1082}
1083
25fb5169
VG
1084#else /* GROUP_IOSCHED */
1085static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1086{
1087 return &cfqd->root_group;
1088}
1089static inline void
1090cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1091 cfqq->cfqg = cfqg;
1092}
1093
b1c35769
VG
1094static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1095static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1096
25fb5169
VG
1097#endif /* GROUP_IOSCHED */
1098
498d3aa2 1099/*
c0324a02 1100 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1101 * requests waiting to be processed. It is sorted in the order that
1102 * we will service the queues.
1103 */
a36e71f9 1104static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1105 bool add_front)
d9e7620e 1106{
0871714e
JA
1107 struct rb_node **p, *parent;
1108 struct cfq_queue *__cfqq;
d9e7620e 1109 unsigned long rb_key;
c0324a02 1110 struct cfq_rb_root *service_tree;
498d3aa2 1111 int left;
dae739eb 1112 int new_cfqq = 1;
ae30c286
VG
1113 int group_changed = 0;
1114
1115#ifdef CONFIG_CFQ_GROUP_IOSCHED
1116 if (!cfqd->cfq_group_isolation
1117 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1118 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1119 /* Move this cfq to root group */
1120 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1121 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1122 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1123 cfqq->orig_cfqg = cfqq->cfqg;
1124 cfqq->cfqg = &cfqd->root_group;
1125 atomic_inc(&cfqd->root_group.ref);
1126 group_changed = 1;
1127 } else if (!cfqd->cfq_group_isolation
1128 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1129 /* cfqq is sequential now needs to go to its original group */
1130 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1131 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1132 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1133 cfq_put_cfqg(cfqq->cfqg);
1134 cfqq->cfqg = cfqq->orig_cfqg;
1135 cfqq->orig_cfqg = NULL;
1136 group_changed = 1;
1137 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1138 }
1139#endif
d9e7620e 1140
cdb16e8f 1141 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1142 cfqq_type(cfqq));
0871714e
JA
1143 if (cfq_class_idle(cfqq)) {
1144 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1145 parent = rb_last(&service_tree->rb);
0871714e
JA
1146 if (parent && parent != &cfqq->rb_node) {
1147 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1148 rb_key += __cfqq->rb_key;
1149 } else
1150 rb_key += jiffies;
1151 } else if (!add_front) {
b9c8946b
JA
1152 /*
1153 * Get our rb key offset. Subtract any residual slice
1154 * value carried from last service. A negative resid
1155 * count indicates slice overrun, and this should position
1156 * the next service time further away in the tree.
1157 */
edd75ffd 1158 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1159 rb_key -= cfqq->slice_resid;
edd75ffd 1160 cfqq->slice_resid = 0;
48e025e6
CZ
1161 } else {
1162 rb_key = -HZ;
aa6f6a3d 1163 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1164 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1165 }
1da177e4 1166
d9e7620e 1167 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1168 new_cfqq = 0;
99f9628a 1169 /*
d9e7620e 1170 * same position, nothing more to do
99f9628a 1171 */
c0324a02
CZ
1172 if (rb_key == cfqq->rb_key &&
1173 cfqq->service_tree == service_tree)
d9e7620e 1174 return;
1da177e4 1175
aa6f6a3d
CZ
1176 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1177 cfqq->service_tree = NULL;
1da177e4 1178 }
d9e7620e 1179
498d3aa2 1180 left = 1;
0871714e 1181 parent = NULL;
aa6f6a3d
CZ
1182 cfqq->service_tree = service_tree;
1183 p = &service_tree->rb.rb_node;
d9e7620e 1184 while (*p) {
67060e37 1185 struct rb_node **n;
cc09e299 1186
d9e7620e
JA
1187 parent = *p;
1188 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1189
0c534e0a 1190 /*
c0324a02 1191 * sort by key, that represents service time.
0c534e0a 1192 */
c0324a02 1193 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1194 n = &(*p)->rb_left;
c0324a02 1195 else {
67060e37 1196 n = &(*p)->rb_right;
cc09e299 1197 left = 0;
c0324a02 1198 }
67060e37
JA
1199
1200 p = n;
d9e7620e
JA
1201 }
1202
cc09e299 1203 if (left)
aa6f6a3d 1204 service_tree->left = &cfqq->rb_node;
cc09e299 1205
d9e7620e
JA
1206 cfqq->rb_key = rb_key;
1207 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1208 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1209 service_tree->count++;
ae30c286 1210 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1211 return;
1fa8f6d6 1212 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1213}
1214
a36e71f9 1215static struct cfq_queue *
f2d1f0ae
JA
1216cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1217 sector_t sector, struct rb_node **ret_parent,
1218 struct rb_node ***rb_link)
a36e71f9 1219{
a36e71f9
JA
1220 struct rb_node **p, *parent;
1221 struct cfq_queue *cfqq = NULL;
1222
1223 parent = NULL;
1224 p = &root->rb_node;
1225 while (*p) {
1226 struct rb_node **n;
1227
1228 parent = *p;
1229 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1230
1231 /*
1232 * Sort strictly based on sector. Smallest to the left,
1233 * largest to the right.
1234 */
2e46e8b2 1235 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1236 n = &(*p)->rb_right;
2e46e8b2 1237 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1238 n = &(*p)->rb_left;
1239 else
1240 break;
1241 p = n;
3ac6c9f8 1242 cfqq = NULL;
a36e71f9
JA
1243 }
1244
1245 *ret_parent = parent;
1246 if (rb_link)
1247 *rb_link = p;
3ac6c9f8 1248 return cfqq;
a36e71f9
JA
1249}
1250
1251static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1252{
a36e71f9
JA
1253 struct rb_node **p, *parent;
1254 struct cfq_queue *__cfqq;
1255
f2d1f0ae
JA
1256 if (cfqq->p_root) {
1257 rb_erase(&cfqq->p_node, cfqq->p_root);
1258 cfqq->p_root = NULL;
1259 }
a36e71f9
JA
1260
1261 if (cfq_class_idle(cfqq))
1262 return;
1263 if (!cfqq->next_rq)
1264 return;
1265
f2d1f0ae 1266 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1267 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1268 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1269 if (!__cfqq) {
1270 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1271 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1272 } else
1273 cfqq->p_root = NULL;
a36e71f9
JA
1274}
1275
498d3aa2
JA
1276/*
1277 * Update cfqq's position in the service tree.
1278 */
edd75ffd 1279static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1280{
6d048f53
JA
1281 /*
1282 * Resorting requires the cfqq to be on the RR list already.
1283 */
a36e71f9 1284 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1285 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1286 cfq_prio_tree_add(cfqd, cfqq);
1287 }
6d048f53
JA
1288}
1289
1da177e4
LT
1290/*
1291 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1292 * the pending list according to last request service
1da177e4 1293 */
febffd61 1294static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1295{
7b679138 1296 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1297 BUG_ON(cfq_cfqq_on_rr(cfqq));
1298 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1299 cfqd->busy_queues++;
1300
edd75ffd 1301 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1302}
1303
498d3aa2
JA
1304/*
1305 * Called when the cfqq no longer has requests pending, remove it from
1306 * the service tree.
1307 */
febffd61 1308static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1309{
7b679138 1310 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1311 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1312 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1313
aa6f6a3d
CZ
1314 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1315 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1316 cfqq->service_tree = NULL;
1317 }
f2d1f0ae
JA
1318 if (cfqq->p_root) {
1319 rb_erase(&cfqq->p_node, cfqq->p_root);
1320 cfqq->p_root = NULL;
1321 }
d9e7620e 1322
1fa8f6d6 1323 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1324 BUG_ON(!cfqd->busy_queues);
1325 cfqd->busy_queues--;
1326}
1327
1328/*
1329 * rb tree support functions
1330 */
febffd61 1331static void cfq_del_rq_rb(struct request *rq)
1da177e4 1332{
5e705374 1333 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1334 const int sync = rq_is_sync(rq);
1da177e4 1335
b4878f24
JA
1336 BUG_ON(!cfqq->queued[sync]);
1337 cfqq->queued[sync]--;
1da177e4 1338
5e705374 1339 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1340
f04a6424
VG
1341 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1342 /*
1343 * Queue will be deleted from service tree when we actually
1344 * expire it later. Right now just remove it from prio tree
1345 * as it is empty.
1346 */
1347 if (cfqq->p_root) {
1348 rb_erase(&cfqq->p_node, cfqq->p_root);
1349 cfqq->p_root = NULL;
1350 }
1351 }
1da177e4
LT
1352}
1353
5e705374 1354static void cfq_add_rq_rb(struct request *rq)
1da177e4 1355{
5e705374 1356 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1357 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1358 struct request *__alias, *prev;
1da177e4 1359
5380a101 1360 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1361
1362 /*
1363 * looks a little odd, but the first insert might return an alias.
1364 * if that happens, put the alias on the dispatch list
1365 */
21183b07 1366 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1367 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1368
1369 if (!cfq_cfqq_on_rr(cfqq))
1370 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1371
1372 /*
1373 * check if this request is a better next-serve candidate
1374 */
a36e71f9 1375 prev = cfqq->next_rq;
cf7c25cf 1376 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1377
1378 /*
1379 * adjust priority tree position, if ->next_rq changes
1380 */
1381 if (prev != cfqq->next_rq)
1382 cfq_prio_tree_add(cfqd, cfqq);
1383
5044eed4 1384 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1385}
1386
febffd61 1387static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1388{
5380a101
JA
1389 elv_rb_del(&cfqq->sort_list, rq);
1390 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1391 cfq_add_rq_rb(rq);
1da177e4
LT
1392}
1393
206dc69b
JA
1394static struct request *
1395cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1396{
206dc69b 1397 struct task_struct *tsk = current;
91fac317 1398 struct cfq_io_context *cic;
206dc69b 1399 struct cfq_queue *cfqq;
1da177e4 1400
4ac845a2 1401 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1402 if (!cic)
1403 return NULL;
1404
1405 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1406 if (cfqq) {
1407 sector_t sector = bio->bi_sector + bio_sectors(bio);
1408
21183b07 1409 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1410 }
1da177e4 1411
1da177e4
LT
1412 return NULL;
1413}
1414
165125e1 1415static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1416{
22e2c507 1417 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1418
53c583d2 1419 cfqd->rq_in_driver++;
7b679138 1420 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1421 cfqd->rq_in_driver);
25776e35 1422
5b93629b 1423 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1424}
1425
165125e1 1426static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1427{
b4878f24
JA
1428 struct cfq_data *cfqd = q->elevator->elevator_data;
1429
53c583d2
CZ
1430 WARN_ON(!cfqd->rq_in_driver);
1431 cfqd->rq_in_driver--;
7b679138 1432 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1433 cfqd->rq_in_driver);
1da177e4
LT
1434}
1435
b4878f24 1436static void cfq_remove_request(struct request *rq)
1da177e4 1437{
5e705374 1438 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1439
5e705374
JA
1440 if (cfqq->next_rq == rq)
1441 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1442
b4878f24 1443 list_del_init(&rq->queuelist);
5e705374 1444 cfq_del_rq_rb(rq);
374f84ac 1445
45333d5a 1446 cfqq->cfqd->rq_queued--;
374f84ac
JA
1447 if (rq_is_meta(rq)) {
1448 WARN_ON(!cfqq->meta_pending);
1449 cfqq->meta_pending--;
1450 }
1da177e4
LT
1451}
1452
165125e1
JA
1453static int cfq_merge(struct request_queue *q, struct request **req,
1454 struct bio *bio)
1da177e4
LT
1455{
1456 struct cfq_data *cfqd = q->elevator->elevator_data;
1457 struct request *__rq;
1da177e4 1458
206dc69b 1459 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1460 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1461 *req = __rq;
1462 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1463 }
1464
1465 return ELEVATOR_NO_MERGE;
1da177e4
LT
1466}
1467
165125e1 1468static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1469 int type)
1da177e4 1470{
21183b07 1471 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1472 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1473
5e705374 1474 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1475 }
1da177e4
LT
1476}
1477
1478static void
165125e1 1479cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1480 struct request *next)
1481{
cf7c25cf 1482 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1483 /*
1484 * reposition in fifo if next is older than rq
1485 */
1486 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1487 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1488 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1489 rq_set_fifo_time(rq, rq_fifo_time(next));
1490 }
22e2c507 1491
cf7c25cf
CZ
1492 if (cfqq->next_rq == next)
1493 cfqq->next_rq = rq;
b4878f24 1494 cfq_remove_request(next);
22e2c507
JA
1495}
1496
165125e1 1497static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1498 struct bio *bio)
1499{
1500 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1501 struct cfq_io_context *cic;
da775265 1502 struct cfq_queue *cfqq;
da775265
JA
1503
1504 /*
ec8acb69 1505 * Disallow merge of a sync bio into an async request.
da775265 1506 */
91fac317 1507 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1508 return false;
da775265
JA
1509
1510 /*
719d3402
JA
1511 * Lookup the cfqq that this bio will be queued with. Allow
1512 * merge only if rq is queued there.
da775265 1513 */
4ac845a2 1514 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1515 if (!cic)
a6151c3a 1516 return false;
719d3402 1517
91fac317 1518 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1519 return cfqq == RQ_CFQQ(rq);
da775265
JA
1520}
1521
febffd61
JA
1522static void __cfq_set_active_queue(struct cfq_data *cfqd,
1523 struct cfq_queue *cfqq)
22e2c507
JA
1524{
1525 if (cfqq) {
b1ffe737
DS
1526 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1527 cfqd->serving_prio, cfqd->serving_type);
dae739eb
VG
1528 cfqq->slice_start = 0;
1529 cfqq->dispatch_start = jiffies;
f75edf2d 1530 cfqq->allocated_slice = 0;
22e2c507 1531 cfqq->slice_end = 0;
2f5cb738 1532 cfqq->slice_dispatch = 0;
22084190 1533 cfqq->nr_sectors = 0;
2f5cb738 1534
2f5cb738 1535 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1536 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1537 cfq_clear_cfqq_must_alloc_slice(cfqq);
1538 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1539 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1540
1541 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1542 }
1543
1544 cfqd->active_queue = cfqq;
1545}
1546
7b14e3b5
JA
1547/*
1548 * current cfqq expired its slice (or was too idle), select new one
1549 */
1550static void
1551__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1552 bool timed_out)
7b14e3b5 1553{
7b679138
JA
1554 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1555
7b14e3b5
JA
1556 if (cfq_cfqq_wait_request(cfqq))
1557 del_timer(&cfqd->idle_slice_timer);
1558
7b14e3b5 1559 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1560 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1561
ae54abed
SL
1562 /*
1563 * If this cfqq is shared between multiple processes, check to
1564 * make sure that those processes are still issuing I/Os within
1565 * the mean seek distance. If not, it may be time to break the
1566 * queues apart again.
1567 */
1568 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1569 cfq_mark_cfqq_split_coop(cfqq);
1570
7b14e3b5 1571 /*
6084cdda 1572 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1573 */
7b679138 1574 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1575 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1576 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1577 }
7b14e3b5 1578
dae739eb
VG
1579 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1580
f04a6424
VG
1581 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1582 cfq_del_cfqq_rr(cfqd, cfqq);
1583
edd75ffd 1584 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1585
1586 if (cfqq == cfqd->active_queue)
1587 cfqd->active_queue = NULL;
1588
dae739eb
VG
1589 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1590 cfqd->grp_service_tree.active = NULL;
1591
7b14e3b5
JA
1592 if (cfqd->active_cic) {
1593 put_io_context(cfqd->active_cic->ioc);
1594 cfqd->active_cic = NULL;
1595 }
7b14e3b5
JA
1596}
1597
a6151c3a 1598static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1599{
1600 struct cfq_queue *cfqq = cfqd->active_queue;
1601
1602 if (cfqq)
6084cdda 1603 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1604}
1605
498d3aa2
JA
1606/*
1607 * Get next queue for service. Unless we have a queue preemption,
1608 * we'll simply select the first cfqq in the service tree.
1609 */
6d048f53 1610static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1611{
c0324a02 1612 struct cfq_rb_root *service_tree =
cdb16e8f 1613 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1614 cfqd->serving_type);
d9e7620e 1615
f04a6424
VG
1616 if (!cfqd->rq_queued)
1617 return NULL;
1618
1fa8f6d6
VG
1619 /* There is nothing to dispatch */
1620 if (!service_tree)
1621 return NULL;
c0324a02
CZ
1622 if (RB_EMPTY_ROOT(&service_tree->rb))
1623 return NULL;
1624 return cfq_rb_first(service_tree);
6d048f53
JA
1625}
1626
f04a6424
VG
1627static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1628{
25fb5169 1629 struct cfq_group *cfqg;
f04a6424
VG
1630 struct cfq_queue *cfqq;
1631 int i, j;
1632 struct cfq_rb_root *st;
1633
1634 if (!cfqd->rq_queued)
1635 return NULL;
1636
25fb5169
VG
1637 cfqg = cfq_get_next_cfqg(cfqd);
1638 if (!cfqg)
1639 return NULL;
1640
f04a6424
VG
1641 for_each_cfqg_st(cfqg, i, j, st)
1642 if ((cfqq = cfq_rb_first(st)) != NULL)
1643 return cfqq;
1644 return NULL;
1645}
1646
498d3aa2
JA
1647/*
1648 * Get and set a new active queue for service.
1649 */
a36e71f9
JA
1650static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1651 struct cfq_queue *cfqq)
6d048f53 1652{
e00ef799 1653 if (!cfqq)
a36e71f9 1654 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1655
22e2c507 1656 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1657 return cfqq;
22e2c507
JA
1658}
1659
d9e7620e
JA
1660static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1661 struct request *rq)
1662{
83096ebf
TH
1663 if (blk_rq_pos(rq) >= cfqd->last_position)
1664 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1665 else
83096ebf 1666 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1667}
1668
b2c18e1e 1669static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1670 struct request *rq)
6d048f53 1671{
e9ce335d 1672 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1673}
1674
a36e71f9
JA
1675static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1676 struct cfq_queue *cur_cfqq)
1677{
f2d1f0ae 1678 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1679 struct rb_node *parent, *node;
1680 struct cfq_queue *__cfqq;
1681 sector_t sector = cfqd->last_position;
1682
1683 if (RB_EMPTY_ROOT(root))
1684 return NULL;
1685
1686 /*
1687 * First, if we find a request starting at the end of the last
1688 * request, choose it.
1689 */
f2d1f0ae 1690 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1691 if (__cfqq)
1692 return __cfqq;
1693
1694 /*
1695 * If the exact sector wasn't found, the parent of the NULL leaf
1696 * will contain the closest sector.
1697 */
1698 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1699 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1700 return __cfqq;
1701
2e46e8b2 1702 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1703 node = rb_next(&__cfqq->p_node);
1704 else
1705 node = rb_prev(&__cfqq->p_node);
1706 if (!node)
1707 return NULL;
1708
1709 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1710 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1711 return __cfqq;
1712
1713 return NULL;
1714}
1715
1716/*
1717 * cfqd - obvious
1718 * cur_cfqq - passed in so that we don't decide that the current queue is
1719 * closely cooperating with itself.
1720 *
1721 * So, basically we're assuming that that cur_cfqq has dispatched at least
1722 * one request, and that cfqd->last_position reflects a position on the disk
1723 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1724 * assumption.
1725 */
1726static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1727 struct cfq_queue *cur_cfqq)
6d048f53 1728{
a36e71f9
JA
1729 struct cfq_queue *cfqq;
1730
39c01b21
DS
1731 if (cfq_class_idle(cur_cfqq))
1732 return NULL;
e6c5bc73
JM
1733 if (!cfq_cfqq_sync(cur_cfqq))
1734 return NULL;
1735 if (CFQQ_SEEKY(cur_cfqq))
1736 return NULL;
1737
b9d8f4c7
GJ
1738 /*
1739 * Don't search priority tree if it's the only queue in the group.
1740 */
1741 if (cur_cfqq->cfqg->nr_cfqq == 1)
1742 return NULL;
1743
6d048f53 1744 /*
d9e7620e
JA
1745 * We should notice if some of the queues are cooperating, eg
1746 * working closely on the same area of the disk. In that case,
1747 * we can group them together and don't waste time idling.
6d048f53 1748 */
a36e71f9
JA
1749 cfqq = cfqq_close(cfqd, cur_cfqq);
1750 if (!cfqq)
1751 return NULL;
1752
8682e1f1
VG
1753 /* If new queue belongs to different cfq_group, don't choose it */
1754 if (cur_cfqq->cfqg != cfqq->cfqg)
1755 return NULL;
1756
df5fe3e8
JM
1757 /*
1758 * It only makes sense to merge sync queues.
1759 */
1760 if (!cfq_cfqq_sync(cfqq))
1761 return NULL;
e6c5bc73
JM
1762 if (CFQQ_SEEKY(cfqq))
1763 return NULL;
df5fe3e8 1764
c0324a02
CZ
1765 /*
1766 * Do not merge queues of different priority classes
1767 */
1768 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1769 return NULL;
1770
a36e71f9 1771 return cfqq;
6d048f53
JA
1772}
1773
a6d44e98
CZ
1774/*
1775 * Determine whether we should enforce idle window for this queue.
1776 */
1777
1778static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1779{
1780 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1781 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1782
f04a6424
VG
1783 BUG_ON(!service_tree);
1784 BUG_ON(!service_tree->count);
1785
a6d44e98
CZ
1786 /* We never do for idle class queues. */
1787 if (prio == IDLE_WORKLOAD)
1788 return false;
1789
1790 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1791 if (cfq_cfqq_idle_window(cfqq) &&
1792 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1793 return true;
1794
1795 /*
1796 * Otherwise, we do only if they are the last ones
1797 * in their service tree.
1798 */
b1ffe737
DS
1799 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1800 return 1;
1801 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1802 service_tree->count);
1803 return 0;
a6d44e98
CZ
1804}
1805
6d048f53 1806static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1807{
1792669c 1808 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1809 struct cfq_io_context *cic;
7b14e3b5
JA
1810 unsigned long sl;
1811
a68bbddb 1812 /*
f7d7b7a7
JA
1813 * SSD device without seek penalty, disable idling. But only do so
1814 * for devices that support queuing, otherwise we still have a problem
1815 * with sync vs async workloads.
a68bbddb 1816 */
f7d7b7a7 1817 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1818 return;
1819
dd67d051 1820 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1821 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1822
1823 /*
1824 * idle is disabled, either manually or by past process history
1825 */
a6d44e98 1826 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1827 return;
1828
7b679138 1829 /*
8e550632 1830 * still active requests from this queue, don't idle
7b679138 1831 */
8e550632 1832 if (cfqq->dispatched)
7b679138
JA
1833 return;
1834
22e2c507
JA
1835 /*
1836 * task has exited, don't wait
1837 */
206dc69b 1838 cic = cfqd->active_cic;
66dac98e 1839 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1840 return;
1841
355b659c
CZ
1842 /*
1843 * If our average think time is larger than the remaining time
1844 * slice, then don't idle. This avoids overrunning the allotted
1845 * time slice.
1846 */
1847 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
1848 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1849 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1850 cic->ttime_mean);
355b659c 1851 return;
b1ffe737 1852 }
355b659c 1853
3b18152c 1854 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1855
6d048f53 1856 sl = cfqd->cfq_slice_idle;
206dc69b 1857
7b14e3b5 1858 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1859 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1860}
1861
498d3aa2
JA
1862/*
1863 * Move request from internal lists to the request queue dispatch list.
1864 */
165125e1 1865static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1866{
3ed9a296 1867 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1868 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1869
7b679138
JA
1870 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1871
06d21886 1872 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1873 cfq_remove_request(rq);
6d048f53 1874 cfqq->dispatched++;
5380a101 1875 elv_dispatch_sort(q, rq);
3ed9a296 1876
53c583d2 1877 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
22084190 1878 cfqq->nr_sectors += blk_rq_sectors(rq);
1da177e4
LT
1879}
1880
1881/*
1882 * return expired entry, or NULL to just start from scratch in rbtree
1883 */
febffd61 1884static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1885{
30996f40 1886 struct request *rq = NULL;
1da177e4 1887
3b18152c 1888 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1889 return NULL;
cb887411
JA
1890
1891 cfq_mark_cfqq_fifo_expire(cfqq);
1892
89850f7e
JA
1893 if (list_empty(&cfqq->fifo))
1894 return NULL;
1da177e4 1895
89850f7e 1896 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1897 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1898 rq = NULL;
1da177e4 1899
30996f40 1900 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1901 return rq;
1da177e4
LT
1902}
1903
22e2c507
JA
1904static inline int
1905cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1906{
1907 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1908
22e2c507 1909 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1910
22e2c507 1911 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1912}
1913
df5fe3e8
JM
1914/*
1915 * Must be called with the queue_lock held.
1916 */
1917static int cfqq_process_refs(struct cfq_queue *cfqq)
1918{
1919 int process_refs, io_refs;
1920
1921 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1922 process_refs = atomic_read(&cfqq->ref) - io_refs;
1923 BUG_ON(process_refs < 0);
1924 return process_refs;
1925}
1926
1927static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1928{
e6c5bc73 1929 int process_refs, new_process_refs;
df5fe3e8
JM
1930 struct cfq_queue *__cfqq;
1931
1932 /* Avoid a circular list and skip interim queue merges */
1933 while ((__cfqq = new_cfqq->new_cfqq)) {
1934 if (__cfqq == cfqq)
1935 return;
1936 new_cfqq = __cfqq;
1937 }
1938
1939 process_refs = cfqq_process_refs(cfqq);
1940 /*
1941 * If the process for the cfqq has gone away, there is no
1942 * sense in merging the queues.
1943 */
1944 if (process_refs == 0)
1945 return;
1946
e6c5bc73
JM
1947 /*
1948 * Merge in the direction of the lesser amount of work.
1949 */
1950 new_process_refs = cfqq_process_refs(new_cfqq);
1951 if (new_process_refs >= process_refs) {
1952 cfqq->new_cfqq = new_cfqq;
1953 atomic_add(process_refs, &new_cfqq->ref);
1954 } else {
1955 new_cfqq->new_cfqq = cfqq;
1956 atomic_add(new_process_refs, &cfqq->ref);
1957 }
df5fe3e8
JM
1958}
1959
cdb16e8f 1960static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 1961 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
1962{
1963 struct cfq_queue *queue;
1964 int i;
1965 bool key_valid = false;
1966 unsigned long lowest_key = 0;
1967 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1968
65b32a57
VG
1969 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1970 /* select the one with lowest rb_key */
1971 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
1972 if (queue &&
1973 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1974 lowest_key = queue->rb_key;
1975 cur_best = i;
1976 key_valid = true;
1977 }
1978 }
1979
1980 return cur_best;
1981}
1982
cdb16e8f 1983static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 1984{
718eee05
CZ
1985 unsigned slice;
1986 unsigned count;
cdb16e8f 1987 struct cfq_rb_root *st;
58ff82f3 1988 unsigned group_slice;
718eee05 1989
1fa8f6d6
VG
1990 if (!cfqg) {
1991 cfqd->serving_prio = IDLE_WORKLOAD;
1992 cfqd->workload_expires = jiffies + 1;
1993 return;
1994 }
1995
718eee05 1996 /* Choose next priority. RT > BE > IDLE */
58ff82f3 1997 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 1998 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 1999 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2000 cfqd->serving_prio = BE_WORKLOAD;
2001 else {
2002 cfqd->serving_prio = IDLE_WORKLOAD;
2003 cfqd->workload_expires = jiffies + 1;
2004 return;
2005 }
2006
2007 /*
2008 * For RT and BE, we have to choose also the type
2009 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2010 * expiration time
2011 */
65b32a57 2012 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2013 count = st->count;
718eee05
CZ
2014
2015 /*
65b32a57 2016 * check workload expiration, and that we still have other queues ready
718eee05 2017 */
65b32a57 2018 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2019 return;
2020
2021 /* otherwise select new workload type */
2022 cfqd->serving_type =
65b32a57
VG
2023 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2024 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2025 count = st->count;
718eee05
CZ
2026
2027 /*
2028 * the workload slice is computed as a fraction of target latency
2029 * proportional to the number of queues in that workload, over
2030 * all the queues in the same priority class
2031 */
58ff82f3
VG
2032 group_slice = cfq_group_slice(cfqd, cfqg);
2033
2034 slice = group_slice * count /
2035 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2036 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2037
f26bd1f0
VG
2038 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2039 unsigned int tmp;
2040
2041 /*
2042 * Async queues are currently system wide. Just taking
2043 * proportion of queues with-in same group will lead to higher
2044 * async ratio system wide as generally root group is going
2045 * to have higher weight. A more accurate thing would be to
2046 * calculate system wide asnc/sync ratio.
2047 */
2048 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2049 tmp = tmp/cfqd->busy_queues;
2050 slice = min_t(unsigned, slice, tmp);
2051
718eee05
CZ
2052 /* async workload slice is scaled down according to
2053 * the sync/async slice ratio. */
2054 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2055 } else
718eee05
CZ
2056 /* sync workload slice is at least 2 * cfq_slice_idle */
2057 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2058
2059 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2060 cfq_log(cfqd, "workload slice:%d", slice);
718eee05 2061 cfqd->workload_expires = jiffies + slice;
8e550632 2062 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2063}
2064
1fa8f6d6
VG
2065static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2066{
2067 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2068 struct cfq_group *cfqg;
1fa8f6d6
VG
2069
2070 if (RB_EMPTY_ROOT(&st->rb))
2071 return NULL;
25bc6b07
VG
2072 cfqg = cfq_rb_first_group(st);
2073 st->active = &cfqg->rb_node;
2074 update_min_vdisktime(st);
2075 return cfqg;
1fa8f6d6
VG
2076}
2077
cdb16e8f
VG
2078static void cfq_choose_cfqg(struct cfq_data *cfqd)
2079{
1fa8f6d6
VG
2080 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2081
2082 cfqd->serving_group = cfqg;
dae739eb
VG
2083
2084 /* Restore the workload type data */
2085 if (cfqg->saved_workload_slice) {
2086 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2087 cfqd->serving_type = cfqg->saved_workload;
2088 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2089 } else
2090 cfqd->workload_expires = jiffies - 1;
2091
1fa8f6d6 2092 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2093}
2094
22e2c507 2095/*
498d3aa2
JA
2096 * Select a queue for service. If we have a current active queue,
2097 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2098 */
1b5ed5e1 2099static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2100{
a36e71f9 2101 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2102
22e2c507
JA
2103 cfqq = cfqd->active_queue;
2104 if (!cfqq)
2105 goto new_queue;
1da177e4 2106
f04a6424
VG
2107 if (!cfqd->rq_queued)
2108 return NULL;
c244bb50
VG
2109
2110 /*
2111 * We were waiting for group to get backlogged. Expire the queue
2112 */
2113 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2114 goto expire;
2115
22e2c507 2116 /*
6d048f53 2117 * The active queue has run out of time, expire it and select new.
22e2c507 2118 */
7667aa06
VG
2119 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2120 /*
2121 * If slice had not expired at the completion of last request
2122 * we might not have turned on wait_busy flag. Don't expire
2123 * the queue yet. Allow the group to get backlogged.
2124 *
2125 * The very fact that we have used the slice, that means we
2126 * have been idling all along on this queue and it should be
2127 * ok to wait for this request to complete.
2128 */
82bbbf28
VG
2129 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2130 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2131 cfqq = NULL;
7667aa06 2132 goto keep_queue;
82bbbf28 2133 } else
7667aa06
VG
2134 goto expire;
2135 }
1da177e4 2136
22e2c507 2137 /*
6d048f53
JA
2138 * The active queue has requests and isn't expired, allow it to
2139 * dispatch.
22e2c507 2140 */
dd67d051 2141 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2142 goto keep_queue;
6d048f53 2143
a36e71f9
JA
2144 /*
2145 * If another queue has a request waiting within our mean seek
2146 * distance, let it run. The expire code will check for close
2147 * cooperators and put the close queue at the front of the service
df5fe3e8 2148 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2149 */
b3b6d040 2150 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2151 if (new_cfqq) {
2152 if (!cfqq->new_cfqq)
2153 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2154 goto expire;
df5fe3e8 2155 }
a36e71f9 2156
6d048f53
JA
2157 /*
2158 * No requests pending. If the active queue still has requests in
2159 * flight or is idling for a new request, allow either of these
2160 * conditions to happen (or time out) before selecting a new queue.
2161 */
cc197479 2162 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2163 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2164 cfqq = NULL;
2165 goto keep_queue;
22e2c507
JA
2166 }
2167
3b18152c 2168expire:
6084cdda 2169 cfq_slice_expired(cfqd, 0);
3b18152c 2170new_queue:
718eee05
CZ
2171 /*
2172 * Current queue expired. Check if we have to switch to a new
2173 * service tree
2174 */
2175 if (!new_cfqq)
cdb16e8f 2176 cfq_choose_cfqg(cfqd);
718eee05 2177
a36e71f9 2178 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2179keep_queue:
3b18152c 2180 return cfqq;
22e2c507
JA
2181}
2182
febffd61 2183static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2184{
2185 int dispatched = 0;
2186
2187 while (cfqq->next_rq) {
2188 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2189 dispatched++;
2190 }
2191
2192 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2193
2194 /* By default cfqq is not expired if it is empty. Do it explicitly */
2195 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2196 return dispatched;
2197}
2198
498d3aa2
JA
2199/*
2200 * Drain our current requests. Used for barriers and when switching
2201 * io schedulers on-the-fly.
2202 */
d9e7620e 2203static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2204{
0871714e 2205 struct cfq_queue *cfqq;
d9e7620e 2206 int dispatched = 0;
cdb16e8f 2207
f04a6424
VG
2208 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2209 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 2210
6084cdda 2211 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
2212 BUG_ON(cfqd->busy_queues);
2213
6923715a 2214 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2215 return dispatched;
2216}
2217
abc3c744
SL
2218static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2219 struct cfq_queue *cfqq)
2220{
2221 /* the queue hasn't finished any request, can't estimate */
2222 if (cfq_cfqq_slice_new(cfqq))
2223 return 1;
2224 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2225 cfqq->slice_end))
2226 return 1;
2227
2228 return 0;
2229}
2230
0b182d61 2231static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2232{
2f5cb738 2233 unsigned int max_dispatch;
22e2c507 2234
5ad531db
JA
2235 /*
2236 * Drain async requests before we start sync IO
2237 */
53c583d2 2238 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2239 return false;
5ad531db 2240
2f5cb738
JA
2241 /*
2242 * If this is an async queue and we have sync IO in flight, let it wait
2243 */
53c583d2 2244 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2245 return false;
2f5cb738 2246
abc3c744 2247 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2248 if (cfq_class_idle(cfqq))
2249 max_dispatch = 1;
b4878f24 2250
2f5cb738
JA
2251 /*
2252 * Does this cfqq already have too much IO in flight?
2253 */
2254 if (cfqq->dispatched >= max_dispatch) {
2255 /*
2256 * idle queue must always only have a single IO in flight
2257 */
3ed9a296 2258 if (cfq_class_idle(cfqq))
0b182d61 2259 return false;
3ed9a296 2260
2f5cb738
JA
2261 /*
2262 * We have other queues, don't allow more IO from this one
2263 */
abc3c744 2264 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
0b182d61 2265 return false;
9ede209e 2266
365722bb 2267 /*
474b18cc 2268 * Sole queue user, no limit
365722bb 2269 */
abc3c744
SL
2270 if (cfqd->busy_queues == 1)
2271 max_dispatch = -1;
2272 else
2273 /*
2274 * Normally we start throttling cfqq when cfq_quantum/2
2275 * requests have been dispatched. But we can drive
2276 * deeper queue depths at the beginning of slice
2277 * subjected to upper limit of cfq_quantum.
2278 * */
2279 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2280 }
2281
2282 /*
2283 * Async queues must wait a bit before being allowed dispatch.
2284 * We also ramp up the dispatch depth gradually for async IO,
2285 * based on the last sync IO we serviced
2286 */
963b72fc 2287 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2288 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2289 unsigned int depth;
365722bb 2290
61f0c1dc 2291 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2292 if (!depth && !cfqq->dispatched)
2293 depth = 1;
8e296755
JA
2294 if (depth < max_dispatch)
2295 max_dispatch = depth;
2f5cb738 2296 }
3ed9a296 2297
0b182d61
JA
2298 /*
2299 * If we're below the current max, allow a dispatch
2300 */
2301 return cfqq->dispatched < max_dispatch;
2302}
2303
2304/*
2305 * Dispatch a request from cfqq, moving them to the request queue
2306 * dispatch list.
2307 */
2308static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2309{
2310 struct request *rq;
2311
2312 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2313
2314 if (!cfq_may_dispatch(cfqd, cfqq))
2315 return false;
2316
2317 /*
2318 * follow expired path, else get first next available
2319 */
2320 rq = cfq_check_fifo(cfqq);
2321 if (!rq)
2322 rq = cfqq->next_rq;
2323
2324 /*
2325 * insert request into driver dispatch list
2326 */
2327 cfq_dispatch_insert(cfqd->queue, rq);
2328
2329 if (!cfqd->active_cic) {
2330 struct cfq_io_context *cic = RQ_CIC(rq);
2331
2332 atomic_long_inc(&cic->ioc->refcount);
2333 cfqd->active_cic = cic;
2334 }
2335
2336 return true;
2337}
2338
2339/*
2340 * Find the cfqq that we need to service and move a request from that to the
2341 * dispatch list
2342 */
2343static int cfq_dispatch_requests(struct request_queue *q, int force)
2344{
2345 struct cfq_data *cfqd = q->elevator->elevator_data;
2346 struct cfq_queue *cfqq;
2347
2348 if (!cfqd->busy_queues)
2349 return 0;
2350
2351 if (unlikely(force))
2352 return cfq_forced_dispatch(cfqd);
2353
2354 cfqq = cfq_select_queue(cfqd);
2355 if (!cfqq)
8e296755
JA
2356 return 0;
2357
2f5cb738 2358 /*
0b182d61 2359 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2360 */
0b182d61
JA
2361 if (!cfq_dispatch_request(cfqd, cfqq))
2362 return 0;
2363
2f5cb738 2364 cfqq->slice_dispatch++;
b029195d 2365 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2366
2f5cb738
JA
2367 /*
2368 * expire an async queue immediately if it has used up its slice. idle
2369 * queue always expire after 1 dispatch round.
2370 */
2371 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2372 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2373 cfq_class_idle(cfqq))) {
2374 cfqq->slice_end = jiffies + 1;
2375 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2376 }
2377
b217a903 2378 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2379 return 1;
1da177e4
LT
2380}
2381
1da177e4 2382/*
5e705374
JA
2383 * task holds one reference to the queue, dropped when task exits. each rq
2384 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2385 *
b1c35769 2386 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2387 * queue lock must be held here.
2388 */
2389static void cfq_put_queue(struct cfq_queue *cfqq)
2390{
22e2c507 2391 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2392 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2393
2394 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2395
2396 if (!atomic_dec_and_test(&cfqq->ref))
2397 return;
2398
7b679138 2399 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2400 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2401 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2402 cfqg = cfqq->cfqg;
878eaddd 2403 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2404
28f95cbc 2405 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2406 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2407 cfq_schedule_dispatch(cfqd);
28f95cbc 2408 }
22e2c507 2409
f04a6424 2410 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2411 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2412 cfq_put_cfqg(cfqg);
878eaddd
VG
2413 if (orig_cfqg)
2414 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2415}
2416
d6de8be7
JA
2417/*
2418 * Must always be called with the rcu_read_lock() held
2419 */
07416d29
JA
2420static void
2421__call_for_each_cic(struct io_context *ioc,
2422 void (*func)(struct io_context *, struct cfq_io_context *))
2423{
2424 struct cfq_io_context *cic;
2425 struct hlist_node *n;
2426
2427 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2428 func(ioc, cic);
2429}
2430
4ac845a2 2431/*
34e6bbf2 2432 * Call func for each cic attached to this ioc.
4ac845a2 2433 */
34e6bbf2 2434static void
4ac845a2
JA
2435call_for_each_cic(struct io_context *ioc,
2436 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2437{
4ac845a2 2438 rcu_read_lock();
07416d29 2439 __call_for_each_cic(ioc, func);
4ac845a2 2440 rcu_read_unlock();
34e6bbf2
FC
2441}
2442
2443static void cfq_cic_free_rcu(struct rcu_head *head)
2444{
2445 struct cfq_io_context *cic;
2446
2447 cic = container_of(head, struct cfq_io_context, rcu_head);
2448
2449 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2450 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2451
9a11b4ed
JA
2452 if (ioc_gone) {
2453 /*
2454 * CFQ scheduler is exiting, grab exit lock and check
2455 * the pending io context count. If it hits zero,
2456 * complete ioc_gone and set it back to NULL
2457 */
2458 spin_lock(&ioc_gone_lock);
245b2e70 2459 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2460 complete(ioc_gone);
2461 ioc_gone = NULL;
2462 }
2463 spin_unlock(&ioc_gone_lock);
2464 }
34e6bbf2 2465}
4ac845a2 2466
34e6bbf2
FC
2467static void cfq_cic_free(struct cfq_io_context *cic)
2468{
2469 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2470}
2471
2472static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2473{
2474 unsigned long flags;
2475
2476 BUG_ON(!cic->dead_key);
2477
2478 spin_lock_irqsave(&ioc->lock, flags);
2479 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2480 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2481 spin_unlock_irqrestore(&ioc->lock, flags);
2482
34e6bbf2 2483 cfq_cic_free(cic);
4ac845a2
JA
2484}
2485
d6de8be7
JA
2486/*
2487 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2488 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2489 * and ->trim() which is called with the task lock held
2490 */
4ac845a2
JA
2491static void cfq_free_io_context(struct io_context *ioc)
2492{
4ac845a2 2493 /*
34e6bbf2
FC
2494 * ioc->refcount is zero here, or we are called from elv_unregister(),
2495 * so no more cic's are allowed to be linked into this ioc. So it
2496 * should be ok to iterate over the known list, we will see all cic's
2497 * since no new ones are added.
4ac845a2 2498 */
07416d29 2499 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2500}
2501
89850f7e 2502static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2503{
df5fe3e8
JM
2504 struct cfq_queue *__cfqq, *next;
2505
28f95cbc 2506 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2507 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2508 cfq_schedule_dispatch(cfqd);
28f95cbc 2509 }
22e2c507 2510
df5fe3e8
JM
2511 /*
2512 * If this queue was scheduled to merge with another queue, be
2513 * sure to drop the reference taken on that queue (and others in
2514 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2515 */
2516 __cfqq = cfqq->new_cfqq;
2517 while (__cfqq) {
2518 if (__cfqq == cfqq) {
2519 WARN(1, "cfqq->new_cfqq loop detected\n");
2520 break;
2521 }
2522 next = __cfqq->new_cfqq;
2523 cfq_put_queue(__cfqq);
2524 __cfqq = next;
2525 }
2526
89850f7e
JA
2527 cfq_put_queue(cfqq);
2528}
22e2c507 2529
89850f7e
JA
2530static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2531 struct cfq_io_context *cic)
2532{
4faa3c81
FC
2533 struct io_context *ioc = cic->ioc;
2534
fc46379d 2535 list_del_init(&cic->queue_list);
4ac845a2
JA
2536
2537 /*
2538 * Make sure key == NULL is seen for dead queues
2539 */
fc46379d 2540 smp_wmb();
4ac845a2 2541 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2542 cic->key = NULL;
2543
4faa3c81
FC
2544 if (ioc->ioc_data == cic)
2545 rcu_assign_pointer(ioc->ioc_data, NULL);
2546
ff6657c6
JA
2547 if (cic->cfqq[BLK_RW_ASYNC]) {
2548 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2549 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2550 }
2551
ff6657c6
JA
2552 if (cic->cfqq[BLK_RW_SYNC]) {
2553 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2554 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2555 }
89850f7e
JA
2556}
2557
4ac845a2
JA
2558static void cfq_exit_single_io_context(struct io_context *ioc,
2559 struct cfq_io_context *cic)
89850f7e
JA
2560{
2561 struct cfq_data *cfqd = cic->key;
2562
89850f7e 2563 if (cfqd) {
165125e1 2564 struct request_queue *q = cfqd->queue;
4ac845a2 2565 unsigned long flags;
89850f7e 2566
4ac845a2 2567 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2568
2569 /*
2570 * Ensure we get a fresh copy of the ->key to prevent
2571 * race between exiting task and queue
2572 */
2573 smp_read_barrier_depends();
2574 if (cic->key)
2575 __cfq_exit_single_io_context(cfqd, cic);
2576
4ac845a2 2577 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2578 }
1da177e4
LT
2579}
2580
498d3aa2
JA
2581/*
2582 * The process that ioc belongs to has exited, we need to clean up
2583 * and put the internal structures we have that belongs to that process.
2584 */
e2d74ac0 2585static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2586{
4ac845a2 2587 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2588}
2589
22e2c507 2590static struct cfq_io_context *
8267e268 2591cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2592{
b5deef90 2593 struct cfq_io_context *cic;
1da177e4 2594
94f6030c
CL
2595 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2596 cfqd->queue->node);
1da177e4 2597 if (cic) {
22e2c507 2598 cic->last_end_request = jiffies;
553698f9 2599 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2600 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2601 cic->dtor = cfq_free_io_context;
2602 cic->exit = cfq_exit_io_context;
245b2e70 2603 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2604 }
2605
2606 return cic;
2607}
2608
fd0928df 2609static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2610{
2611 struct task_struct *tsk = current;
2612 int ioprio_class;
2613
3b18152c 2614 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2615 return;
2616
fd0928df 2617 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2618 switch (ioprio_class) {
fe094d98
JA
2619 default:
2620 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2621 case IOPRIO_CLASS_NONE:
2622 /*
6d63c275 2623 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2624 */
2625 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2626 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2627 break;
2628 case IOPRIO_CLASS_RT:
2629 cfqq->ioprio = task_ioprio(ioc);
2630 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2631 break;
2632 case IOPRIO_CLASS_BE:
2633 cfqq->ioprio = task_ioprio(ioc);
2634 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2635 break;
2636 case IOPRIO_CLASS_IDLE:
2637 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2638 cfqq->ioprio = 7;
2639 cfq_clear_cfqq_idle_window(cfqq);
2640 break;
22e2c507
JA
2641 }
2642
2643 /*
2644 * keep track of original prio settings in case we have to temporarily
2645 * elevate the priority of this queue
2646 */
2647 cfqq->org_ioprio = cfqq->ioprio;
2648 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2649 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2650}
2651
febffd61 2652static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2653{
478a82b0
AV
2654 struct cfq_data *cfqd = cic->key;
2655 struct cfq_queue *cfqq;
c1b707d2 2656 unsigned long flags;
35e6077c 2657
caaa5f9f
JA
2658 if (unlikely(!cfqd))
2659 return;
2660
c1b707d2 2661 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2662
ff6657c6 2663 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2664 if (cfqq) {
2665 struct cfq_queue *new_cfqq;
ff6657c6
JA
2666 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2667 GFP_ATOMIC);
caaa5f9f 2668 if (new_cfqq) {
ff6657c6 2669 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2670 cfq_put_queue(cfqq);
2671 }
22e2c507 2672 }
caaa5f9f 2673
ff6657c6 2674 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2675 if (cfqq)
2676 cfq_mark_cfqq_prio_changed(cfqq);
2677
c1b707d2 2678 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2679}
2680
fc46379d 2681static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2682{
4ac845a2 2683 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2684 ioc->ioprio_changed = 0;
22e2c507
JA
2685}
2686
d5036d77 2687static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2688 pid_t pid, bool is_sync)
d5036d77
JA
2689{
2690 RB_CLEAR_NODE(&cfqq->rb_node);
2691 RB_CLEAR_NODE(&cfqq->p_node);
2692 INIT_LIST_HEAD(&cfqq->fifo);
2693
2694 atomic_set(&cfqq->ref, 0);
2695 cfqq->cfqd = cfqd;
2696
2697 cfq_mark_cfqq_prio_changed(cfqq);
2698
2699 if (is_sync) {
2700 if (!cfq_class_idle(cfqq))
2701 cfq_mark_cfqq_idle_window(cfqq);
2702 cfq_mark_cfqq_sync(cfqq);
2703 }
2704 cfqq->pid = pid;
2705}
2706
24610333
VG
2707#ifdef CONFIG_CFQ_GROUP_IOSCHED
2708static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2709{
2710 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2711 struct cfq_data *cfqd = cic->key;
2712 unsigned long flags;
2713 struct request_queue *q;
2714
2715 if (unlikely(!cfqd))
2716 return;
2717
2718 q = cfqd->queue;
2719
2720 spin_lock_irqsave(q->queue_lock, flags);
2721
2722 if (sync_cfqq) {
2723 /*
2724 * Drop reference to sync queue. A new sync queue will be
2725 * assigned in new group upon arrival of a fresh request.
2726 */
2727 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2728 cic_set_cfqq(cic, NULL, 1);
2729 cfq_put_queue(sync_cfqq);
2730 }
2731
2732 spin_unlock_irqrestore(q->queue_lock, flags);
2733}
2734
2735static void cfq_ioc_set_cgroup(struct io_context *ioc)
2736{
2737 call_for_each_cic(ioc, changed_cgroup);
2738 ioc->cgroup_changed = 0;
2739}
2740#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2741
22e2c507 2742static struct cfq_queue *
a6151c3a 2743cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2744 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2745{
22e2c507 2746 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2747 struct cfq_io_context *cic;
cdb16e8f 2748 struct cfq_group *cfqg;
22e2c507
JA
2749
2750retry:
cdb16e8f 2751 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2752 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2753 /* cic always exists here */
2754 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2755
6118b70b
JA
2756 /*
2757 * Always try a new alloc if we fell back to the OOM cfqq
2758 * originally, since it should just be a temporary situation.
2759 */
2760 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2761 cfqq = NULL;
22e2c507
JA
2762 if (new_cfqq) {
2763 cfqq = new_cfqq;
2764 new_cfqq = NULL;
2765 } else if (gfp_mask & __GFP_WAIT) {
2766 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2767 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2768 gfp_mask | __GFP_ZERO,
94f6030c 2769 cfqd->queue->node);
22e2c507 2770 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2771 if (new_cfqq)
2772 goto retry;
22e2c507 2773 } else {
94f6030c
CL
2774 cfqq = kmem_cache_alloc_node(cfq_pool,
2775 gfp_mask | __GFP_ZERO,
2776 cfqd->queue->node);
22e2c507
JA
2777 }
2778
6118b70b
JA
2779 if (cfqq) {
2780 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2781 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2782 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2783 cfq_log_cfqq(cfqd, cfqq, "alloced");
2784 } else
2785 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2786 }
2787
2788 if (new_cfqq)
2789 kmem_cache_free(cfq_pool, new_cfqq);
2790
22e2c507
JA
2791 return cfqq;
2792}
2793
c2dea2d1
VT
2794static struct cfq_queue **
2795cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2796{
fe094d98 2797 switch (ioprio_class) {
c2dea2d1
VT
2798 case IOPRIO_CLASS_RT:
2799 return &cfqd->async_cfqq[0][ioprio];
2800 case IOPRIO_CLASS_BE:
2801 return &cfqd->async_cfqq[1][ioprio];
2802 case IOPRIO_CLASS_IDLE:
2803 return &cfqd->async_idle_cfqq;
2804 default:
2805 BUG();
2806 }
2807}
2808
15c31be4 2809static struct cfq_queue *
a6151c3a 2810cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2811 gfp_t gfp_mask)
2812{
fd0928df
JA
2813 const int ioprio = task_ioprio(ioc);
2814 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2815 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2816 struct cfq_queue *cfqq = NULL;
2817
c2dea2d1
VT
2818 if (!is_sync) {
2819 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2820 cfqq = *async_cfqq;
2821 }
2822
6118b70b 2823 if (!cfqq)
fd0928df 2824 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2825
2826 /*
2827 * pin the queue now that it's allocated, scheduler exit will prune it
2828 */
c2dea2d1 2829 if (!is_sync && !(*async_cfqq)) {
15c31be4 2830 atomic_inc(&cfqq->ref);
c2dea2d1 2831 *async_cfqq = cfqq;
15c31be4
JA
2832 }
2833
2834 atomic_inc(&cfqq->ref);
2835 return cfqq;
2836}
2837
498d3aa2
JA
2838/*
2839 * We drop cfq io contexts lazily, so we may find a dead one.
2840 */
dbecf3ab 2841static void
4ac845a2
JA
2842cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2843 struct cfq_io_context *cic)
dbecf3ab 2844{
4ac845a2
JA
2845 unsigned long flags;
2846
fc46379d 2847 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2848
4ac845a2
JA
2849 spin_lock_irqsave(&ioc->lock, flags);
2850
4faa3c81 2851 BUG_ON(ioc->ioc_data == cic);
597bc485 2852
4ac845a2 2853 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2854 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2855 spin_unlock_irqrestore(&ioc->lock, flags);
2856
2857 cfq_cic_free(cic);
dbecf3ab
OH
2858}
2859
e2d74ac0 2860static struct cfq_io_context *
4ac845a2 2861cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2862{
e2d74ac0 2863 struct cfq_io_context *cic;
d6de8be7 2864 unsigned long flags;
4ac845a2 2865 void *k;
e2d74ac0 2866
91fac317
VT
2867 if (unlikely(!ioc))
2868 return NULL;
2869
d6de8be7
JA
2870 rcu_read_lock();
2871
597bc485
JA
2872 /*
2873 * we maintain a last-hit cache, to avoid browsing over the tree
2874 */
4ac845a2 2875 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2876 if (cic && cic->key == cfqd) {
2877 rcu_read_unlock();
597bc485 2878 return cic;
d6de8be7 2879 }
597bc485 2880
4ac845a2 2881 do {
4ac845a2
JA
2882 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2883 rcu_read_unlock();
2884 if (!cic)
2885 break;
be3b0753
OH
2886 /* ->key must be copied to avoid race with cfq_exit_queue() */
2887 k = cic->key;
2888 if (unlikely(!k)) {
4ac845a2 2889 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2890 rcu_read_lock();
4ac845a2 2891 continue;
dbecf3ab 2892 }
e2d74ac0 2893
d6de8be7 2894 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2895 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2896 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2897 break;
2898 } while (1);
e2d74ac0 2899
4ac845a2 2900 return cic;
e2d74ac0
JA
2901}
2902
4ac845a2
JA
2903/*
2904 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2905 * the process specific cfq io context when entered from the block layer.
2906 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2907 */
febffd61
JA
2908static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2909 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2910{
0261d688 2911 unsigned long flags;
4ac845a2 2912 int ret;
e2d74ac0 2913
4ac845a2
JA
2914 ret = radix_tree_preload(gfp_mask);
2915 if (!ret) {
2916 cic->ioc = ioc;
2917 cic->key = cfqd;
e2d74ac0 2918
4ac845a2
JA
2919 spin_lock_irqsave(&ioc->lock, flags);
2920 ret = radix_tree_insert(&ioc->radix_root,
2921 (unsigned long) cfqd, cic);
ffc4e759
JA
2922 if (!ret)
2923 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2924 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2925
4ac845a2
JA
2926 radix_tree_preload_end();
2927
2928 if (!ret) {
2929 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2930 list_add(&cic->queue_list, &cfqd->cic_list);
2931 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2932 }
e2d74ac0
JA
2933 }
2934
4ac845a2
JA
2935 if (ret)
2936 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2937
4ac845a2 2938 return ret;
e2d74ac0
JA
2939}
2940
1da177e4
LT
2941/*
2942 * Setup general io context and cfq io context. There can be several cfq
2943 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2944 * than one device managed by cfq.
1da177e4
LT
2945 */
2946static struct cfq_io_context *
e2d74ac0 2947cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2948{
22e2c507 2949 struct io_context *ioc = NULL;
1da177e4 2950 struct cfq_io_context *cic;
1da177e4 2951
22e2c507 2952 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2953
b5deef90 2954 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2955 if (!ioc)
2956 return NULL;
2957
4ac845a2 2958 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2959 if (cic)
2960 goto out;
1da177e4 2961
e2d74ac0
JA
2962 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2963 if (cic == NULL)
2964 goto err;
1da177e4 2965
4ac845a2
JA
2966 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2967 goto err_free;
2968
1da177e4 2969out:
fc46379d
JA
2970 smp_read_barrier_depends();
2971 if (unlikely(ioc->ioprio_changed))
2972 cfq_ioc_set_ioprio(ioc);
2973
24610333
VG
2974#ifdef CONFIG_CFQ_GROUP_IOSCHED
2975 if (unlikely(ioc->cgroup_changed))
2976 cfq_ioc_set_cgroup(ioc);
2977#endif
1da177e4 2978 return cic;
4ac845a2
JA
2979err_free:
2980 cfq_cic_free(cic);
1da177e4
LT
2981err:
2982 put_io_context(ioc);
2983 return NULL;
2984}
2985
22e2c507
JA
2986static void
2987cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2988{
aaf1228d
JA
2989 unsigned long elapsed = jiffies - cic->last_end_request;
2990 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2991
22e2c507
JA
2992 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2993 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2994 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2995}
1da177e4 2996
206dc69b 2997static void
b2c18e1e 2998cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2999 struct request *rq)
206dc69b 3000{
3dde36dd 3001 sector_t sdist = 0;
41647e7a 3002 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3003 if (cfqq->last_request_pos) {
3004 if (cfqq->last_request_pos < blk_rq_pos(rq))
3005 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3006 else
3007 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3008 }
206dc69b 3009
3dde36dd 3010 cfqq->seek_history <<= 1;
41647e7a
CZ
3011 if (blk_queue_nonrot(cfqd->queue))
3012 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3013 else
3014 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3015}
1da177e4 3016
22e2c507
JA
3017/*
3018 * Disable idle window if the process thinks too long or seeks so much that
3019 * it doesn't matter
3020 */
3021static void
3022cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3023 struct cfq_io_context *cic)
3024{
7b679138 3025 int old_idle, enable_idle;
1be92f2f 3026
0871714e
JA
3027 /*
3028 * Don't idle for async or idle io prio class
3029 */
3030 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3031 return;
3032
c265a7f4 3033 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3034
76280aff
CZ
3035 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3036 cfq_mark_cfqq_deep(cfqq);
3037
66dac98e 3038 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3039 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3040 enable_idle = 0;
3041 else if (sample_valid(cic->ttime_samples)) {
718eee05 3042 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3043 enable_idle = 0;
3044 else
3045 enable_idle = 1;
1da177e4
LT
3046 }
3047
7b679138
JA
3048 if (old_idle != enable_idle) {
3049 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3050 if (enable_idle)
3051 cfq_mark_cfqq_idle_window(cfqq);
3052 else
3053 cfq_clear_cfqq_idle_window(cfqq);
3054 }
22e2c507 3055}
1da177e4 3056
22e2c507
JA
3057/*
3058 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3059 * no or if we aren't sure, a 1 will cause a preempt.
3060 */
a6151c3a 3061static bool
22e2c507 3062cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3063 struct request *rq)
22e2c507 3064{
6d048f53 3065 struct cfq_queue *cfqq;
22e2c507 3066
6d048f53
JA
3067 cfqq = cfqd->active_queue;
3068 if (!cfqq)
a6151c3a 3069 return false;
22e2c507 3070
6d048f53 3071 if (cfq_class_idle(new_cfqq))
a6151c3a 3072 return false;
22e2c507
JA
3073
3074 if (cfq_class_idle(cfqq))
a6151c3a 3075 return true;
1e3335de 3076
875feb63
DS
3077 /*
3078 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3079 */
3080 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3081 return false;
3082
374f84ac
JA
3083 /*
3084 * if the new request is sync, but the currently running queue is
3085 * not, let the sync request have priority.
3086 */
5e705374 3087 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3088 return true;
1e3335de 3089
8682e1f1
VG
3090 if (new_cfqq->cfqg != cfqq->cfqg)
3091 return false;
3092
3093 if (cfq_slice_used(cfqq))
3094 return true;
3095
3096 /* Allow preemption only if we are idling on sync-noidle tree */
3097 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3098 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3099 new_cfqq->service_tree->count == 2 &&
3100 RB_EMPTY_ROOT(&cfqq->sort_list))
3101 return true;
3102
374f84ac
JA
3103 /*
3104 * So both queues are sync. Let the new request get disk time if
3105 * it's a metadata request and the current queue is doing regular IO.
3106 */
3107 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 3108 return true;
22e2c507 3109
3a9a3f6c
DS
3110 /*
3111 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3112 */
3113 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3114 return true;
3a9a3f6c 3115
1e3335de 3116 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3117 return false;
1e3335de
JA
3118
3119 /*
3120 * if this request is as-good as one we would expect from the
3121 * current cfqq, let it preempt
3122 */
e9ce335d 3123 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3124 return true;
1e3335de 3125
a6151c3a 3126 return false;
22e2c507
JA
3127}
3128
3129/*
3130 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3131 * let it have half of its nominal slice.
3132 */
3133static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3134{
7b679138 3135 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 3136 cfq_slice_expired(cfqd, 1);
22e2c507 3137
bf572256
JA
3138 /*
3139 * Put the new queue at the front of the of the current list,
3140 * so we know that it will be selected next.
3141 */
3142 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3143
3144 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3145
44f7c160
JA
3146 cfqq->slice_end = 0;
3147 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3148}
3149
22e2c507 3150/*
5e705374 3151 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3152 * something we should do about it
3153 */
3154static void
5e705374
JA
3155cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3156 struct request *rq)
22e2c507 3157{
5e705374 3158 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3159
45333d5a 3160 cfqd->rq_queued++;
374f84ac
JA
3161 if (rq_is_meta(rq))
3162 cfqq->meta_pending++;
3163
9c2c38a1 3164 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3165 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3166 cfq_update_idle_window(cfqd, cfqq, cic);
3167
b2c18e1e 3168 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3169
3170 if (cfqq == cfqd->active_queue) {
3171 /*
b029195d
JA
3172 * Remember that we saw a request from this process, but
3173 * don't start queuing just yet. Otherwise we risk seeing lots
3174 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3175 * and merging. If the request is already larger than a single
3176 * page, let it rip immediately. For that case we assume that
2d870722
JA
3177 * merging is already done. Ditto for a busy system that
3178 * has other work pending, don't risk delaying until the
3179 * idle timer unplug to continue working.
22e2c507 3180 */
d6ceb25e 3181 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3182 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3183 cfqd->busy_queues > 1) {
d6ceb25e 3184 del_timer(&cfqd->idle_slice_timer);
554554f6 3185 cfq_clear_cfqq_wait_request(cfqq);
bf791937
VG
3186 __blk_run_queue(cfqd->queue);
3187 } else
3188 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 3189 }
5e705374 3190 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3191 /*
3192 * not the active queue - expire current slice if it is
3193 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3194 * has some old slice time left and is of higher priority or
3195 * this new queue is RT and the current one is BE
22e2c507
JA
3196 */
3197 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3198 __blk_run_queue(cfqd->queue);
22e2c507 3199 }
1da177e4
LT
3200}
3201
165125e1 3202static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3203{
b4878f24 3204 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3205 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3206
7b679138 3207 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3208 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3209
30996f40 3210 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3211 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3212 cfq_add_rq_rb(rq);
22e2c507 3213
5e705374 3214 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3215}
3216
45333d5a
AC
3217/*
3218 * Update hw_tag based on peak queue depth over 50 samples under
3219 * sufficient load.
3220 */
3221static void cfq_update_hw_tag(struct cfq_data *cfqd)
3222{
1a1238a7
SL
3223 struct cfq_queue *cfqq = cfqd->active_queue;
3224
53c583d2
CZ
3225 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3226 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3227
3228 if (cfqd->hw_tag == 1)
3229 return;
45333d5a
AC
3230
3231 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3232 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3233 return;
3234
1a1238a7
SL
3235 /*
3236 * If active queue hasn't enough requests and can idle, cfq might not
3237 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3238 * case
3239 */
3240 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3241 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3242 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3243 return;
3244
45333d5a
AC
3245 if (cfqd->hw_tag_samples++ < 50)
3246 return;
3247
e459dd08 3248 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3249 cfqd->hw_tag = 1;
3250 else
3251 cfqd->hw_tag = 0;
45333d5a
AC
3252}
3253
7667aa06
VG
3254static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3255{
3256 struct cfq_io_context *cic = cfqd->active_cic;
3257
3258 /* If there are other queues in the group, don't wait */
3259 if (cfqq->cfqg->nr_cfqq > 1)
3260 return false;
3261
3262 if (cfq_slice_used(cfqq))
3263 return true;
3264
3265 /* if slice left is less than think time, wait busy */
3266 if (cic && sample_valid(cic->ttime_samples)
3267 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3268 return true;
3269
3270 /*
3271 * If think times is less than a jiffy than ttime_mean=0 and above
3272 * will not be true. It might happen that slice has not expired yet
3273 * but will expire soon (4-5 ns) during select_queue(). To cover the
3274 * case where think time is less than a jiffy, mark the queue wait
3275 * busy if only 1 jiffy is left in the slice.
3276 */
3277 if (cfqq->slice_end - jiffies == 1)
3278 return true;
3279
3280 return false;
3281}
3282
165125e1 3283static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3284{
5e705374 3285 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3286 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3287 const int sync = rq_is_sync(rq);
b4878f24 3288 unsigned long now;
1da177e4 3289
b4878f24 3290 now = jiffies;
2868ef7b 3291 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
1da177e4 3292
45333d5a
AC
3293 cfq_update_hw_tag(cfqd);
3294
53c583d2 3295 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3296 WARN_ON(!cfqq->dispatched);
53c583d2 3297 cfqd->rq_in_driver--;
6d048f53 3298 cfqq->dispatched--;
1da177e4 3299
53c583d2 3300 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3301
365722bb 3302 if (sync) {
5e705374 3303 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3304 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3305 cfqd->last_delayed_sync = now;
365722bb 3306 }
caaa5f9f
JA
3307
3308 /*
3309 * If this is the active queue, check if it needs to be expired,
3310 * or if we want to idle in case it has no pending requests.
3311 */
3312 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3313 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3314
44f7c160
JA
3315 if (cfq_cfqq_slice_new(cfqq)) {
3316 cfq_set_prio_slice(cfqd, cfqq);
3317 cfq_clear_cfqq_slice_new(cfqq);
3318 }
f75edf2d
VG
3319
3320 /*
7667aa06
VG
3321 * Should we wait for next request to come in before we expire
3322 * the queue.
f75edf2d 3323 */
7667aa06 3324 if (cfq_should_wait_busy(cfqd, cfqq)) {
f75edf2d
VG
3325 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3326 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3327 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3328 }
3329
a36e71f9 3330 /*
8e550632
CZ
3331 * Idling is not enabled on:
3332 * - expired queues
3333 * - idle-priority queues
3334 * - async queues
3335 * - queues with still some requests queued
3336 * - when there is a close cooperator
a36e71f9 3337 */
0871714e 3338 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 3339 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3340 else if (sync && cfqq_empty &&
3341 !cfq_close_cooperator(cfqd, cfqq)) {
3342 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3343 /*
3344 * Idling is enabled for SYNC_WORKLOAD.
3345 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3346 * only if we processed at least one !rq_noidle request
3347 */
3348 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3349 || cfqd->noidle_tree_requires_idle
3350 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3351 cfq_arm_slice_timer(cfqd);
3352 }
caaa5f9f 3353 }
6d048f53 3354
53c583d2 3355 if (!cfqd->rq_in_driver)
23e018a1 3356 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3357}
3358
22e2c507
JA
3359/*
3360 * we temporarily boost lower priority queues if they are holding fs exclusive
3361 * resources. they are boosted to normal prio (CLASS_BE/4)
3362 */
3363static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3364{
22e2c507
JA
3365 if (has_fs_excl()) {
3366 /*
3367 * boost idle prio on transactions that would lock out other
3368 * users of the filesystem
3369 */
3370 if (cfq_class_idle(cfqq))
3371 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3372 if (cfqq->ioprio > IOPRIO_NORM)
3373 cfqq->ioprio = IOPRIO_NORM;
3374 } else {
3375 /*
dddb7451 3376 * unboost the queue (if needed)
22e2c507 3377 */
dddb7451
CZ
3378 cfqq->ioprio_class = cfqq->org_ioprio_class;
3379 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3380 }
22e2c507 3381}
1da177e4 3382
89850f7e 3383static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3384{
1b379d8d 3385 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3386 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3387 return ELV_MQUEUE_MUST;
3b18152c 3388 }
1da177e4 3389
22e2c507 3390 return ELV_MQUEUE_MAY;
22e2c507
JA
3391}
3392
165125e1 3393static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3394{
3395 struct cfq_data *cfqd = q->elevator->elevator_data;
3396 struct task_struct *tsk = current;
91fac317 3397 struct cfq_io_context *cic;
22e2c507
JA
3398 struct cfq_queue *cfqq;
3399
3400 /*
3401 * don't force setup of a queue from here, as a call to may_queue
3402 * does not necessarily imply that a request actually will be queued.
3403 * so just lookup a possibly existing queue, or return 'may queue'
3404 * if that fails
3405 */
4ac845a2 3406 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3407 if (!cic)
3408 return ELV_MQUEUE_MAY;
3409
b0b78f81 3410 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3411 if (cfqq) {
fd0928df 3412 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3413 cfq_prio_boost(cfqq);
3414
89850f7e 3415 return __cfq_may_queue(cfqq);
22e2c507
JA
3416 }
3417
3418 return ELV_MQUEUE_MAY;
1da177e4
LT
3419}
3420
1da177e4
LT
3421/*
3422 * queue lock held here
3423 */
bb37b94c 3424static void cfq_put_request(struct request *rq)
1da177e4 3425{
5e705374 3426 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3427
5e705374 3428 if (cfqq) {
22e2c507 3429 const int rw = rq_data_dir(rq);
1da177e4 3430
22e2c507
JA
3431 BUG_ON(!cfqq->allocated[rw]);
3432 cfqq->allocated[rw]--;
1da177e4 3433
5e705374 3434 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3435
1da177e4 3436 rq->elevator_private = NULL;
5e705374 3437 rq->elevator_private2 = NULL;
1da177e4 3438
1da177e4
LT
3439 cfq_put_queue(cfqq);
3440 }
3441}
3442
df5fe3e8
JM
3443static struct cfq_queue *
3444cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3445 struct cfq_queue *cfqq)
3446{
3447 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3448 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3449 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3450 cfq_put_queue(cfqq);
3451 return cic_to_cfqq(cic, 1);
3452}
3453
e6c5bc73
JM
3454/*
3455 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3456 * was the last process referring to said cfqq.
3457 */
3458static struct cfq_queue *
3459split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3460{
3461 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3462 cfqq->pid = current->pid;
3463 cfq_clear_cfqq_coop(cfqq);
ae54abed 3464 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3465 return cfqq;
3466 }
3467
3468 cic_set_cfqq(cic, NULL, 1);
3469 cfq_put_queue(cfqq);
3470 return NULL;
3471}
1da177e4 3472/*
22e2c507 3473 * Allocate cfq data structures associated with this request.
1da177e4 3474 */
22e2c507 3475static int
165125e1 3476cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3477{
3478 struct cfq_data *cfqd = q->elevator->elevator_data;
3479 struct cfq_io_context *cic;
3480 const int rw = rq_data_dir(rq);
a6151c3a 3481 const bool is_sync = rq_is_sync(rq);
22e2c507 3482 struct cfq_queue *cfqq;
1da177e4
LT
3483 unsigned long flags;
3484
3485 might_sleep_if(gfp_mask & __GFP_WAIT);
3486
e2d74ac0 3487 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3488
1da177e4
LT
3489 spin_lock_irqsave(q->queue_lock, flags);
3490
22e2c507
JA
3491 if (!cic)
3492 goto queue_fail;
3493
e6c5bc73 3494new_queue:
91fac317 3495 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3496 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3497 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3498 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3499 } else {
e6c5bc73
JM
3500 /*
3501 * If the queue was seeky for too long, break it apart.
3502 */
ae54abed 3503 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3504 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3505 cfqq = split_cfqq(cic, cfqq);
3506 if (!cfqq)
3507 goto new_queue;
3508 }
3509
df5fe3e8
JM
3510 /*
3511 * Check to see if this queue is scheduled to merge with
3512 * another, closely cooperating queue. The merging of
3513 * queues happens here as it must be done in process context.
3514 * The reference on new_cfqq was taken in merge_cfqqs.
3515 */
3516 if (cfqq->new_cfqq)
3517 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3518 }
1da177e4
LT
3519
3520 cfqq->allocated[rw]++;
22e2c507 3521 atomic_inc(&cfqq->ref);
1da177e4 3522
5e705374 3523 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3524
5e705374
JA
3525 rq->elevator_private = cic;
3526 rq->elevator_private2 = cfqq;
3527 return 0;
1da177e4 3528
22e2c507
JA
3529queue_fail:
3530 if (cic)
3531 put_io_context(cic->ioc);
89850f7e 3532
23e018a1 3533 cfq_schedule_dispatch(cfqd);
1da177e4 3534 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3535 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3536 return 1;
3537}
3538
65f27f38 3539static void cfq_kick_queue(struct work_struct *work)
22e2c507 3540{
65f27f38 3541 struct cfq_data *cfqd =
23e018a1 3542 container_of(work, struct cfq_data, unplug_work);
165125e1 3543 struct request_queue *q = cfqd->queue;
22e2c507 3544
40bb54d1 3545 spin_lock_irq(q->queue_lock);
a7f55792 3546 __blk_run_queue(cfqd->queue);
40bb54d1 3547 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3548}
3549
3550/*
3551 * Timer running if the active_queue is currently idling inside its time slice
3552 */
3553static void cfq_idle_slice_timer(unsigned long data)
3554{
3555 struct cfq_data *cfqd = (struct cfq_data *) data;
3556 struct cfq_queue *cfqq;
3557 unsigned long flags;
3c6bd2f8 3558 int timed_out = 1;
22e2c507 3559
7b679138
JA
3560 cfq_log(cfqd, "idle timer fired");
3561
22e2c507
JA
3562 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3563
fe094d98
JA
3564 cfqq = cfqd->active_queue;
3565 if (cfqq) {
3c6bd2f8
JA
3566 timed_out = 0;
3567
b029195d
JA
3568 /*
3569 * We saw a request before the queue expired, let it through
3570 */
3571 if (cfq_cfqq_must_dispatch(cfqq))
3572 goto out_kick;
3573
22e2c507
JA
3574 /*
3575 * expired
3576 */
44f7c160 3577 if (cfq_slice_used(cfqq))
22e2c507
JA
3578 goto expire;
3579
3580 /*
3581 * only expire and reinvoke request handler, if there are
3582 * other queues with pending requests
3583 */
caaa5f9f 3584 if (!cfqd->busy_queues)
22e2c507 3585 goto out_cont;
22e2c507
JA
3586
3587 /*
3588 * not expired and it has a request pending, let it dispatch
3589 */
75e50984 3590 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3591 goto out_kick;
76280aff
CZ
3592
3593 /*
3594 * Queue depth flag is reset only when the idle didn't succeed
3595 */
3596 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3597 }
3598expire:
6084cdda 3599 cfq_slice_expired(cfqd, timed_out);
22e2c507 3600out_kick:
23e018a1 3601 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3602out_cont:
3603 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3604}
3605
3b18152c
JA
3606static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3607{
3608 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3609 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3610}
22e2c507 3611
c2dea2d1
VT
3612static void cfq_put_async_queues(struct cfq_data *cfqd)
3613{
3614 int i;
3615
3616 for (i = 0; i < IOPRIO_BE_NR; i++) {
3617 if (cfqd->async_cfqq[0][i])
3618 cfq_put_queue(cfqd->async_cfqq[0][i]);
3619 if (cfqd->async_cfqq[1][i])
3620 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3621 }
2389d1ef
ON
3622
3623 if (cfqd->async_idle_cfqq)
3624 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3625}
3626
bb729bc9
JA
3627static void cfq_cfqd_free(struct rcu_head *head)
3628{
3629 kfree(container_of(head, struct cfq_data, rcu));
3630}
3631
b374d18a 3632static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3633{
22e2c507 3634 struct cfq_data *cfqd = e->elevator_data;
165125e1 3635 struct request_queue *q = cfqd->queue;
22e2c507 3636
3b18152c 3637 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3638
d9ff4187 3639 spin_lock_irq(q->queue_lock);
e2d74ac0 3640
d9ff4187 3641 if (cfqd->active_queue)
6084cdda 3642 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3643
3644 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3645 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3646 struct cfq_io_context,
3647 queue_list);
89850f7e
JA
3648
3649 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3650 }
e2d74ac0 3651
c2dea2d1 3652 cfq_put_async_queues(cfqd);
b1c35769
VG
3653 cfq_release_cfq_groups(cfqd);
3654 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3655
d9ff4187 3656 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3657
3658 cfq_shutdown_timer_wq(cfqd);
3659
b1c35769 3660 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3661 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3662}
3663
165125e1 3664static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3665{
3666 struct cfq_data *cfqd;
718eee05 3667 int i, j;
cdb16e8f 3668 struct cfq_group *cfqg;
615f0259 3669 struct cfq_rb_root *st;
1da177e4 3670
94f6030c 3671 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3672 if (!cfqd)
bc1c1169 3673 return NULL;
1da177e4 3674
1fa8f6d6
VG
3675 /* Init root service tree */
3676 cfqd->grp_service_tree = CFQ_RB_ROOT;
3677
cdb16e8f
VG
3678 /* Init root group */
3679 cfqg = &cfqd->root_group;
615f0259
VG
3680 for_each_cfqg_st(cfqg, i, j, st)
3681 *st = CFQ_RB_ROOT;
1fa8f6d6 3682 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3683
25bc6b07
VG
3684 /* Give preference to root group over other groups */
3685 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3686
25fb5169 3687#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3688 /*
3689 * Take a reference to root group which we never drop. This is just
3690 * to make sure that cfq_put_cfqg() does not try to kfree root group
3691 */
3692 atomic_set(&cfqg->ref, 1);
22084190
VG
3693 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3694 0);
25fb5169 3695#endif
26a2ac00
JA
3696 /*
3697 * Not strictly needed (since RB_ROOT just clears the node and we
3698 * zeroed cfqd on alloc), but better be safe in case someone decides
3699 * to add magic to the rb code
3700 */
3701 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3702 cfqd->prio_trees[i] = RB_ROOT;
3703
6118b70b
JA
3704 /*
3705 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3706 * Grab a permanent reference to it, so that the normal code flow
3707 * will not attempt to free it.
3708 */
3709 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3710 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3711 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3712
d9ff4187 3713 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3714
1da177e4 3715 cfqd->queue = q;
1da177e4 3716
22e2c507
JA
3717 init_timer(&cfqd->idle_slice_timer);
3718 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3719 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3720
23e018a1 3721 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3722
1da177e4 3723 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3724 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3725 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3726 cfqd->cfq_back_max = cfq_back_max;
3727 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3728 cfqd->cfq_slice[0] = cfq_slice_async;
3729 cfqd->cfq_slice[1] = cfq_slice_sync;
3730 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3731 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3732 cfqd->cfq_latency = 1;
ae30c286 3733 cfqd->cfq_group_isolation = 0;
e459dd08 3734 cfqd->hw_tag = -1;
edc71131
CZ
3735 /*
3736 * we optimistically start assuming sync ops weren't delayed in last
3737 * second, in order to have larger depth for async operations.
3738 */
573412b2 3739 cfqd->last_delayed_sync = jiffies - HZ;
bb729bc9 3740 INIT_RCU_HEAD(&cfqd->rcu);
bc1c1169 3741 return cfqd;
1da177e4
LT
3742}
3743
3744static void cfq_slab_kill(void)
3745{
d6de8be7
JA
3746 /*
3747 * Caller already ensured that pending RCU callbacks are completed,
3748 * so we should have no busy allocations at this point.
3749 */
1da177e4
LT
3750 if (cfq_pool)
3751 kmem_cache_destroy(cfq_pool);
3752 if (cfq_ioc_pool)
3753 kmem_cache_destroy(cfq_ioc_pool);
3754}
3755
3756static int __init cfq_slab_setup(void)
3757{
0a31bd5f 3758 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3759 if (!cfq_pool)
3760 goto fail;
3761
34e6bbf2 3762 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3763 if (!cfq_ioc_pool)
3764 goto fail;
3765
3766 return 0;
3767fail:
3768 cfq_slab_kill();
3769 return -ENOMEM;
3770}
3771
1da177e4
LT
3772/*
3773 * sysfs parts below -->
3774 */
1da177e4
LT
3775static ssize_t
3776cfq_var_show(unsigned int var, char *page)
3777{
3778 return sprintf(page, "%d\n", var);
3779}
3780
3781static ssize_t
3782cfq_var_store(unsigned int *var, const char *page, size_t count)
3783{
3784 char *p = (char *) page;
3785
3786 *var = simple_strtoul(p, &p, 10);
3787 return count;
3788}
3789
1da177e4 3790#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3791static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3792{ \
3d1ab40f 3793 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3794 unsigned int __data = __VAR; \
3795 if (__CONV) \
3796 __data = jiffies_to_msecs(__data); \
3797 return cfq_var_show(__data, (page)); \
3798}
3799SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3800SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3801SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3802SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3803SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3804SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3805SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3806SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3807SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3808SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3809SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3810#undef SHOW_FUNCTION
3811
3812#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3813static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3814{ \
3d1ab40f 3815 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3816 unsigned int __data; \
3817 int ret = cfq_var_store(&__data, (page), count); \
3818 if (__data < (MIN)) \
3819 __data = (MIN); \
3820 else if (__data > (MAX)) \
3821 __data = (MAX); \
3822 if (__CONV) \
3823 *(__PTR) = msecs_to_jiffies(__data); \
3824 else \
3825 *(__PTR) = __data; \
3826 return ret; \
3827}
3828STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3829STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3830 UINT_MAX, 1);
3831STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3832 UINT_MAX, 1);
e572ec7e 3833STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3834STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3835 UINT_MAX, 0);
22e2c507
JA
3836STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3837STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3838STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3839STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3840 UINT_MAX, 0);
963b72fc 3841STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3842STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3843#undef STORE_FUNCTION
3844
e572ec7e
AV
3845#define CFQ_ATTR(name) \
3846 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3847
3848static struct elv_fs_entry cfq_attrs[] = {
3849 CFQ_ATTR(quantum),
e572ec7e
AV
3850 CFQ_ATTR(fifo_expire_sync),
3851 CFQ_ATTR(fifo_expire_async),
3852 CFQ_ATTR(back_seek_max),
3853 CFQ_ATTR(back_seek_penalty),
3854 CFQ_ATTR(slice_sync),
3855 CFQ_ATTR(slice_async),
3856 CFQ_ATTR(slice_async_rq),
3857 CFQ_ATTR(slice_idle),
963b72fc 3858 CFQ_ATTR(low_latency),
ae30c286 3859 CFQ_ATTR(group_isolation),
e572ec7e 3860 __ATTR_NULL
1da177e4
LT
3861};
3862
1da177e4
LT
3863static struct elevator_type iosched_cfq = {
3864 .ops = {
3865 .elevator_merge_fn = cfq_merge,
3866 .elevator_merged_fn = cfq_merged_request,
3867 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3868 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3869 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3870 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3871 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3872 .elevator_deactivate_req_fn = cfq_deactivate_request,
3873 .elevator_queue_empty_fn = cfq_queue_empty,
3874 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3875 .elevator_former_req_fn = elv_rb_former_request,
3876 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3877 .elevator_set_req_fn = cfq_set_request,
3878 .elevator_put_req_fn = cfq_put_request,
3879 .elevator_may_queue_fn = cfq_may_queue,
3880 .elevator_init_fn = cfq_init_queue,
3881 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3882 .trim = cfq_free_io_context,
1da177e4 3883 },
3d1ab40f 3884 .elevator_attrs = cfq_attrs,
1da177e4
LT
3885 .elevator_name = "cfq",
3886 .elevator_owner = THIS_MODULE,
3887};
3888
3e252066
VG
3889#ifdef CONFIG_CFQ_GROUP_IOSCHED
3890static struct blkio_policy_type blkio_policy_cfq = {
3891 .ops = {
3892 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3893 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3894 },
3895};
3896#else
3897static struct blkio_policy_type blkio_policy_cfq;
3898#endif
3899
1da177e4
LT
3900static int __init cfq_init(void)
3901{
22e2c507
JA
3902 /*
3903 * could be 0 on HZ < 1000 setups
3904 */
3905 if (!cfq_slice_async)
3906 cfq_slice_async = 1;
3907 if (!cfq_slice_idle)
3908 cfq_slice_idle = 1;
3909
1da177e4
LT
3910 if (cfq_slab_setup())
3911 return -ENOMEM;
3912
2fdd82bd 3913 elv_register(&iosched_cfq);
3e252066 3914 blkio_policy_register(&blkio_policy_cfq);
1da177e4 3915
2fdd82bd 3916 return 0;
1da177e4
LT
3917}
3918
3919static void __exit cfq_exit(void)
3920{
6e9a4738 3921 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 3922 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 3923 elv_unregister(&iosched_cfq);
334e94de 3924 ioc_gone = &all_gone;
fba82272
OH
3925 /* ioc_gone's update must be visible before reading ioc_count */
3926 smp_wmb();
d6de8be7
JA
3927
3928 /*
3929 * this also protects us from entering cfq_slab_kill() with
3930 * pending RCU callbacks
3931 */
245b2e70 3932 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3933 wait_for_completion(&all_gone);
83521d3e 3934 cfq_slab_kill();
1da177e4
LT
3935}
3936
3937module_init(cfq_init);
3938module_exit(cfq_exit);
3939
3940MODULE_AUTHOR("Jens Axboe");
3941MODULE_LICENSE("GPL");
3942MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");