Revert "mm: fail GFP_DMA allocations when ZONE_DMA is not configured"
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
e98ef89b 17#include "cfq.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
80bdf0c7 33static int cfq_group_idle = HZ / 125;
5db5d642
CZ
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
22e2c507 36
d9e7620e 37/*
0871714e 38 * offset from end of service tree
d9e7620e 39 */
0871714e 40#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT (2)
46
22e2c507 47#define CFQ_SLICE_SCALE (5)
45333d5a 48#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 49#define CFQ_SERVICE_SHIFT 12
22e2c507 50
3dde36dd 51#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 52#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 53#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 54#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 55
fe094d98 56#define RQ_CIC(rq) \
c186794d
MS
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
1da177e4 60
e18b890b
CL
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
1da177e4 63
245b2e70 64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 65static struct completion *ioc_gone;
9a11b4ed 66static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 67
80b15c73
KK
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
22e2c507
JA
71#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
73#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
206dc69b 75#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 76#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 77
cc09e299
JA
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
aa6f6a3d 87 unsigned count;
73e9ffdd 88 unsigned total_weight;
1fa8f6d6 89 u64 min_vdisktime;
cc09e299 90};
73e9ffdd
RK
91#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
cc09e299 93
6118b70b
JA
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98 /* reference count */
30d7b944 99 int ref;
6118b70b
JA
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
dae739eb
VG
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
f75edf2d 125 unsigned int allocated_slice;
c4081ba5 126 unsigned int slice_dispatch;
dae739eb
VG
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
6118b70b
JA
129 unsigned long slice_end;
130 long slice_resid;
6118b70b
JA
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
c4081ba5
RK
141 pid_t pid;
142
3dde36dd 143 u32 seek_history;
b2c18e1e
JM
144 sector_t last_request_pos;
145
aa6f6a3d 146 struct cfq_rb_root *service_tree;
df5fe3e8 147 struct cfq_queue *new_cfqq;
cdb16e8f 148 struct cfq_group *cfqg;
c4e7893e
VG
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
6118b70b
JA
151};
152
c0324a02 153/*
718eee05 154 * First index in the service_trees.
c0324a02
CZ
155 * IDLE is handled separately, so it has negative index
156 */
157enum wl_prio_t {
c0324a02 158 BE_WORKLOAD = 0,
615f0259
VG
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
b4627321 161 CFQ_PRIO_NR,
c0324a02
CZ
162};
163
718eee05
CZ
164/*
165 * Second index in the service_trees.
166 */
167enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
171};
172
cdb16e8f
VG
173/* This is per cgroup per device grouping structure */
174struct cfq_group {
1fa8f6d6
VG
175 /* group service_tree member */
176 struct rb_node rb_node;
177
178 /* group service_tree key */
179 u64 vdisktime;
25bc6b07 180 unsigned int weight;
8184f93e
JT
181 unsigned int new_weight;
182 bool needs_update;
1fa8f6d6
VG
183
184 /* number of cfqq currently on this group */
185 int nr_cfqq;
186
cdb16e8f 187 /*
b4627321
VG
188 * Per group busy queus average. Useful for workload slice calc. We
189 * create the array for each prio class but at run time it is used
190 * only for RT and BE class and slot for IDLE class remains unused.
191 * This is primarily done to avoid confusion and a gcc warning.
192 */
193 unsigned int busy_queues_avg[CFQ_PRIO_NR];
194 /*
195 * rr lists of queues with requests. We maintain service trees for
196 * RT and BE classes. These trees are subdivided in subclasses
197 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
198 * class there is no subclassification and all the cfq queues go on
199 * a single tree service_tree_idle.
cdb16e8f
VG
200 * Counts are embedded in the cfq_rb_root
201 */
202 struct cfq_rb_root service_trees[2][3];
203 struct cfq_rb_root service_tree_idle;
dae739eb
VG
204
205 unsigned long saved_workload_slice;
206 enum wl_type_t saved_workload;
207 enum wl_prio_t saved_serving_prio;
25fb5169
VG
208 struct blkio_group blkg;
209#ifdef CONFIG_CFQ_GROUP_IOSCHED
210 struct hlist_node cfqd_node;
329a6781 211 int ref;
25fb5169 212#endif
80bdf0c7
VG
213 /* number of requests that are on the dispatch list or inside driver */
214 int dispatched;
cdb16e8f 215};
718eee05 216
22e2c507
JA
217/*
218 * Per block device queue structure
219 */
1da177e4 220struct cfq_data {
165125e1 221 struct request_queue *queue;
1fa8f6d6
VG
222 /* Root service tree for cfq_groups */
223 struct cfq_rb_root grp_service_tree;
cdb16e8f 224 struct cfq_group root_group;
22e2c507 225
c0324a02
CZ
226 /*
227 * The priority currently being served
22e2c507 228 */
c0324a02 229 enum wl_prio_t serving_prio;
718eee05
CZ
230 enum wl_type_t serving_type;
231 unsigned long workload_expires;
cdb16e8f 232 struct cfq_group *serving_group;
a36e71f9
JA
233
234 /*
235 * Each priority tree is sorted by next_request position. These
236 * trees are used when determining if two or more queues are
237 * interleaving requests (see cfq_close_cooperator).
238 */
239 struct rb_root prio_trees[CFQ_PRIO_LISTS];
240
22e2c507 241 unsigned int busy_queues;
ef8a41df 242 unsigned int busy_sync_queues;
22e2c507 243
53c583d2
CZ
244 int rq_in_driver;
245 int rq_in_flight[2];
45333d5a
AC
246
247 /*
248 * queue-depth detection
249 */
250 int rq_queued;
25776e35 251 int hw_tag;
e459dd08
CZ
252 /*
253 * hw_tag can be
254 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256 * 0 => no NCQ
257 */
258 int hw_tag_est_depth;
259 unsigned int hw_tag_samples;
1da177e4 260
22e2c507
JA
261 /*
262 * idle window management
263 */
264 struct timer_list idle_slice_timer;
23e018a1 265 struct work_struct unplug_work;
1da177e4 266
22e2c507
JA
267 struct cfq_queue *active_queue;
268 struct cfq_io_context *active_cic;
22e2c507 269
c2dea2d1
VT
270 /*
271 * async queue for each priority case
272 */
273 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274 struct cfq_queue *async_idle_cfqq;
15c31be4 275
6d048f53 276 sector_t last_position;
1da177e4 277
1da177e4
LT
278 /*
279 * tunables, see top of file
280 */
281 unsigned int cfq_quantum;
22e2c507 282 unsigned int cfq_fifo_expire[2];
1da177e4
LT
283 unsigned int cfq_back_penalty;
284 unsigned int cfq_back_max;
22e2c507
JA
285 unsigned int cfq_slice[2];
286 unsigned int cfq_slice_async_rq;
287 unsigned int cfq_slice_idle;
80bdf0c7 288 unsigned int cfq_group_idle;
963b72fc 289 unsigned int cfq_latency;
d9ff4187 290
80b15c73 291 unsigned int cic_index;
d9ff4187 292 struct list_head cic_list;
1da177e4 293
6118b70b
JA
294 /*
295 * Fallback dummy cfqq for extreme OOM conditions
296 */
297 struct cfq_queue oom_cfqq;
365722bb 298
573412b2 299 unsigned long last_delayed_sync;
25fb5169
VG
300
301 /* List of cfq groups being managed on this device*/
302 struct hlist_head cfqg_list;
56edf7d7
VG
303
304 /* Number of groups which are on blkcg->blkg_list */
305 unsigned int nr_blkcg_linked_grps;
1da177e4
LT
306};
307
25fb5169
VG
308static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
309
cdb16e8f
VG
310static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
311 enum wl_prio_t prio,
65b32a57 312 enum wl_type_t type)
c0324a02 313{
1fa8f6d6
VG
314 if (!cfqg)
315 return NULL;
316
c0324a02 317 if (prio == IDLE_WORKLOAD)
cdb16e8f 318 return &cfqg->service_tree_idle;
c0324a02 319
cdb16e8f 320 return &cfqg->service_trees[prio][type];
c0324a02
CZ
321}
322
3b18152c 323enum cfqq_state_flags {
b0b8d749
JA
324 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
325 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 326 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 327 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
328 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
329 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
330 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 331 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 332 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 333 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 334 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 335 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 336 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
337};
338
339#define CFQ_CFQQ_FNS(name) \
340static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
341{ \
fe094d98 342 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
343} \
344static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
345{ \
fe094d98 346 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
347} \
348static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
349{ \
fe094d98 350 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
351}
352
353CFQ_CFQQ_FNS(on_rr);
354CFQ_CFQQ_FNS(wait_request);
b029195d 355CFQ_CFQQ_FNS(must_dispatch);
3b18152c 356CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
357CFQ_CFQQ_FNS(fifo_expire);
358CFQ_CFQQ_FNS(idle_window);
359CFQ_CFQQ_FNS(prio_changed);
44f7c160 360CFQ_CFQQ_FNS(slice_new);
91fac317 361CFQ_CFQQ_FNS(sync);
a36e71f9 362CFQ_CFQQ_FNS(coop);
ae54abed 363CFQ_CFQQ_FNS(split_coop);
76280aff 364CFQ_CFQQ_FNS(deep);
f75edf2d 365CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
366#undef CFQ_CFQQ_FNS
367
afc24d49 368#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
369#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
371 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
372 blkg_path(&(cfqq)->cfqg->blkg), ##args);
373
374#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
375 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
376 blkg_path(&(cfqg)->blkg), ##args); \
377
378#else
7b679138
JA
379#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
380 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
381#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
382#endif
7b679138
JA
383#define cfq_log(cfqd, fmt, args...) \
384 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
385
615f0259
VG
386/* Traverses through cfq group service trees */
387#define for_each_cfqg_st(cfqg, i, j, st) \
388 for (i = 0; i <= IDLE_WORKLOAD; i++) \
389 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
390 : &cfqg->service_tree_idle; \
391 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
392 (i == IDLE_WORKLOAD && j == 0); \
393 j++, st = i < IDLE_WORKLOAD ? \
394 &cfqg->service_trees[i][j]: NULL) \
395
396
02b35081
VG
397static inline bool iops_mode(struct cfq_data *cfqd)
398{
399 /*
400 * If we are not idling on queues and it is a NCQ drive, parallel
401 * execution of requests is on and measuring time is not possible
402 * in most of the cases until and unless we drive shallower queue
403 * depths and that becomes a performance bottleneck. In such cases
404 * switch to start providing fairness in terms of number of IOs.
405 */
406 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
407 return true;
408 else
409 return false;
410}
411
c0324a02
CZ
412static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
413{
414 if (cfq_class_idle(cfqq))
415 return IDLE_WORKLOAD;
416 if (cfq_class_rt(cfqq))
417 return RT_WORKLOAD;
418 return BE_WORKLOAD;
419}
420
718eee05
CZ
421
422static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
423{
424 if (!cfq_cfqq_sync(cfqq))
425 return ASYNC_WORKLOAD;
426 if (!cfq_cfqq_idle_window(cfqq))
427 return SYNC_NOIDLE_WORKLOAD;
428 return SYNC_WORKLOAD;
429}
430
58ff82f3
VG
431static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
432 struct cfq_data *cfqd,
433 struct cfq_group *cfqg)
c0324a02
CZ
434{
435 if (wl == IDLE_WORKLOAD)
cdb16e8f 436 return cfqg->service_tree_idle.count;
c0324a02 437
cdb16e8f
VG
438 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
439 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
440 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
441}
442
f26bd1f0
VG
443static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
444 struct cfq_group *cfqg)
445{
446 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
447 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
448}
449
165125e1 450static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 451static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 452 struct io_context *, gfp_t);
4ac845a2 453static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
454 struct io_context *);
455
456static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 457 bool is_sync)
91fac317 458{
a6151c3a 459 return cic->cfqq[is_sync];
91fac317
VT
460}
461
462static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 463 struct cfq_queue *cfqq, bool is_sync)
91fac317 464{
a6151c3a 465 cic->cfqq[is_sync] = cfqq;
91fac317
VT
466}
467
bca4b914 468#define CIC_DEAD_KEY 1ul
80b15c73 469#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
470
471static inline void *cfqd_dead_key(struct cfq_data *cfqd)
472{
80b15c73 473 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
474}
475
476static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
477{
478 struct cfq_data *cfqd = cic->key;
479
480 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
481 return NULL;
482
483 return cfqd;
484}
485
91fac317
VT
486/*
487 * We regard a request as SYNC, if it's either a read or has the SYNC bit
488 * set (in which case it could also be direct WRITE).
489 */
a6151c3a 490static inline bool cfq_bio_sync(struct bio *bio)
91fac317 491{
7b6d91da 492 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 493}
1da177e4 494
99f95e52
AM
495/*
496 * scheduler run of queue, if there are requests pending and no one in the
497 * driver that will restart queueing
498 */
23e018a1 499static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 500{
7b679138
JA
501 if (cfqd->busy_queues) {
502 cfq_log(cfqd, "schedule dispatch");
23e018a1 503 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 504 }
99f95e52
AM
505}
506
44f7c160
JA
507/*
508 * Scale schedule slice based on io priority. Use the sync time slice only
509 * if a queue is marked sync and has sync io queued. A sync queue with async
510 * io only, should not get full sync slice length.
511 */
a6151c3a 512static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 513 unsigned short prio)
44f7c160 514{
d9e7620e 515 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 516
d9e7620e
JA
517 WARN_ON(prio >= IOPRIO_BE_NR);
518
519 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
520}
44f7c160 521
d9e7620e
JA
522static inline int
523cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
524{
525 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
526}
527
25bc6b07
VG
528static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
529{
530 u64 d = delta << CFQ_SERVICE_SHIFT;
531
532 d = d * BLKIO_WEIGHT_DEFAULT;
533 do_div(d, cfqg->weight);
534 return d;
535}
536
537static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
538{
539 s64 delta = (s64)(vdisktime - min_vdisktime);
540 if (delta > 0)
541 min_vdisktime = vdisktime;
542
543 return min_vdisktime;
544}
545
546static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
547{
548 s64 delta = (s64)(vdisktime - min_vdisktime);
549 if (delta < 0)
550 min_vdisktime = vdisktime;
551
552 return min_vdisktime;
553}
554
555static void update_min_vdisktime(struct cfq_rb_root *st)
556{
25bc6b07
VG
557 struct cfq_group *cfqg;
558
25bc6b07
VG
559 if (st->left) {
560 cfqg = rb_entry_cfqg(st->left);
a6032710
GJ
561 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
562 cfqg->vdisktime);
25bc6b07 563 }
25bc6b07
VG
564}
565
5db5d642
CZ
566/*
567 * get averaged number of queues of RT/BE priority.
568 * average is updated, with a formula that gives more weight to higher numbers,
569 * to quickly follows sudden increases and decrease slowly
570 */
571
58ff82f3
VG
572static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
573 struct cfq_group *cfqg, bool rt)
5869619c 574{
5db5d642
CZ
575 unsigned min_q, max_q;
576 unsigned mult = cfq_hist_divisor - 1;
577 unsigned round = cfq_hist_divisor / 2;
58ff82f3 578 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 579
58ff82f3
VG
580 min_q = min(cfqg->busy_queues_avg[rt], busy);
581 max_q = max(cfqg->busy_queues_avg[rt], busy);
582 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 583 cfq_hist_divisor;
58ff82f3
VG
584 return cfqg->busy_queues_avg[rt];
585}
586
587static inline unsigned
588cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
589{
590 struct cfq_rb_root *st = &cfqd->grp_service_tree;
591
592 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
593}
594
c553f8e3 595static inline unsigned
ba5bd520 596cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
44f7c160 597{
5db5d642
CZ
598 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
599 if (cfqd->cfq_latency) {
58ff82f3
VG
600 /*
601 * interested queues (we consider only the ones with the same
602 * priority class in the cfq group)
603 */
604 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
605 cfq_class_rt(cfqq));
5db5d642
CZ
606 unsigned sync_slice = cfqd->cfq_slice[1];
607 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
608 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
609
610 if (expect_latency > group_slice) {
5db5d642
CZ
611 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
612 /* scale low_slice according to IO priority
613 * and sync vs async */
614 unsigned low_slice =
615 min(slice, base_low_slice * slice / sync_slice);
616 /* the adapted slice value is scaled to fit all iqs
617 * into the target latency */
58ff82f3 618 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
619 low_slice);
620 }
621 }
c553f8e3
SL
622 return slice;
623}
624
625static inline void
626cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
627{
ba5bd520 628 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3 629
dae739eb 630 cfqq->slice_start = jiffies;
5db5d642 631 cfqq->slice_end = jiffies + slice;
f75edf2d 632 cfqq->allocated_slice = slice;
7b679138 633 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
634}
635
636/*
637 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
638 * isn't valid until the first request from the dispatch is activated
639 * and the slice time set.
640 */
a6151c3a 641static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
642{
643 if (cfq_cfqq_slice_new(cfqq))
c1e44756 644 return false;
44f7c160 645 if (time_before(jiffies, cfqq->slice_end))
c1e44756 646 return false;
44f7c160 647
c1e44756 648 return true;
44f7c160
JA
649}
650
1da177e4 651/*
5e705374 652 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 653 * We choose the request that is closest to the head right now. Distance
e8a99053 654 * behind the head is penalized and only allowed to a certain extent.
1da177e4 655 */
5e705374 656static struct request *
cf7c25cf 657cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 658{
cf7c25cf 659 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 660 unsigned long back_max;
e8a99053
AM
661#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
662#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
663 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 664
5e705374
JA
665 if (rq1 == NULL || rq1 == rq2)
666 return rq2;
667 if (rq2 == NULL)
668 return rq1;
9c2c38a1 669
229836bd
NK
670 if (rq_is_sync(rq1) != rq_is_sync(rq2))
671 return rq_is_sync(rq1) ? rq1 : rq2;
672
673 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_META)
674 return rq1->cmd_flags & REQ_META ? rq1 : rq2;
1da177e4 675
83096ebf
TH
676 s1 = blk_rq_pos(rq1);
677 s2 = blk_rq_pos(rq2);
1da177e4 678
1da177e4
LT
679 /*
680 * by definition, 1KiB is 2 sectors
681 */
682 back_max = cfqd->cfq_back_max * 2;
683
684 /*
685 * Strict one way elevator _except_ in the case where we allow
686 * short backward seeks which are biased as twice the cost of a
687 * similar forward seek.
688 */
689 if (s1 >= last)
690 d1 = s1 - last;
691 else if (s1 + back_max >= last)
692 d1 = (last - s1) * cfqd->cfq_back_penalty;
693 else
e8a99053 694 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
695
696 if (s2 >= last)
697 d2 = s2 - last;
698 else if (s2 + back_max >= last)
699 d2 = (last - s2) * cfqd->cfq_back_penalty;
700 else
e8a99053 701 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
702
703 /* Found required data */
e8a99053
AM
704
705 /*
706 * By doing switch() on the bit mask "wrap" we avoid having to
707 * check two variables for all permutations: --> faster!
708 */
709 switch (wrap) {
5e705374 710 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 711 if (d1 < d2)
5e705374 712 return rq1;
e8a99053 713 else if (d2 < d1)
5e705374 714 return rq2;
e8a99053
AM
715 else {
716 if (s1 >= s2)
5e705374 717 return rq1;
e8a99053 718 else
5e705374 719 return rq2;
e8a99053 720 }
1da177e4 721
e8a99053 722 case CFQ_RQ2_WRAP:
5e705374 723 return rq1;
e8a99053 724 case CFQ_RQ1_WRAP:
5e705374
JA
725 return rq2;
726 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
727 default:
728 /*
729 * Since both rqs are wrapped,
730 * start with the one that's further behind head
731 * (--> only *one* back seek required),
732 * since back seek takes more time than forward.
733 */
734 if (s1 <= s2)
5e705374 735 return rq1;
1da177e4 736 else
5e705374 737 return rq2;
1da177e4
LT
738 }
739}
740
498d3aa2
JA
741/*
742 * The below is leftmost cache rbtree addon
743 */
0871714e 744static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 745{
615f0259
VG
746 /* Service tree is empty */
747 if (!root->count)
748 return NULL;
749
cc09e299
JA
750 if (!root->left)
751 root->left = rb_first(&root->rb);
752
0871714e
JA
753 if (root->left)
754 return rb_entry(root->left, struct cfq_queue, rb_node);
755
756 return NULL;
cc09e299
JA
757}
758
1fa8f6d6
VG
759static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
760{
761 if (!root->left)
762 root->left = rb_first(&root->rb);
763
764 if (root->left)
765 return rb_entry_cfqg(root->left);
766
767 return NULL;
768}
769
a36e71f9
JA
770static void rb_erase_init(struct rb_node *n, struct rb_root *root)
771{
772 rb_erase(n, root);
773 RB_CLEAR_NODE(n);
774}
775
cc09e299
JA
776static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
777{
778 if (root->left == n)
779 root->left = NULL;
a36e71f9 780 rb_erase_init(n, &root->rb);
aa6f6a3d 781 --root->count;
cc09e299
JA
782}
783
1da177e4
LT
784/*
785 * would be nice to take fifo expire time into account as well
786 */
5e705374
JA
787static struct request *
788cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
789 struct request *last)
1da177e4 790{
21183b07
JA
791 struct rb_node *rbnext = rb_next(&last->rb_node);
792 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 793 struct request *next = NULL, *prev = NULL;
1da177e4 794
21183b07 795 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
796
797 if (rbprev)
5e705374 798 prev = rb_entry_rq(rbprev);
1da177e4 799
21183b07 800 if (rbnext)
5e705374 801 next = rb_entry_rq(rbnext);
21183b07
JA
802 else {
803 rbnext = rb_first(&cfqq->sort_list);
804 if (rbnext && rbnext != &last->rb_node)
5e705374 805 next = rb_entry_rq(rbnext);
21183b07 806 }
1da177e4 807
cf7c25cf 808 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
809}
810
d9e7620e
JA
811static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
812 struct cfq_queue *cfqq)
1da177e4 813{
d9e7620e
JA
814 /*
815 * just an approximation, should be ok.
816 */
cdb16e8f 817 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 818 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
819}
820
1fa8f6d6
VG
821static inline s64
822cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
823{
824 return cfqg->vdisktime - st->min_vdisktime;
825}
826
827static void
828__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
829{
830 struct rb_node **node = &st->rb.rb_node;
831 struct rb_node *parent = NULL;
832 struct cfq_group *__cfqg;
833 s64 key = cfqg_key(st, cfqg);
834 int left = 1;
835
836 while (*node != NULL) {
837 parent = *node;
838 __cfqg = rb_entry_cfqg(parent);
839
840 if (key < cfqg_key(st, __cfqg))
841 node = &parent->rb_left;
842 else {
843 node = &parent->rb_right;
844 left = 0;
845 }
846 }
847
848 if (left)
849 st->left = &cfqg->rb_node;
850
851 rb_link_node(&cfqg->rb_node, parent, node);
852 rb_insert_color(&cfqg->rb_node, &st->rb);
853}
854
855static void
8184f93e
JT
856cfq_update_group_weight(struct cfq_group *cfqg)
857{
858 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
859 if (cfqg->needs_update) {
860 cfqg->weight = cfqg->new_weight;
861 cfqg->needs_update = false;
862 }
863}
864
865static void
866cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
867{
868 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
869
870 cfq_update_group_weight(cfqg);
871 __cfq_group_service_tree_add(st, cfqg);
872 st->total_weight += cfqg->weight;
873}
874
875static void
876cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
877{
878 struct cfq_rb_root *st = &cfqd->grp_service_tree;
879 struct cfq_group *__cfqg;
880 struct rb_node *n;
881
882 cfqg->nr_cfqq++;
760701bf 883 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1fa8f6d6
VG
884 return;
885
886 /*
887 * Currently put the group at the end. Later implement something
888 * so that groups get lesser vtime based on their weights, so that
25985edc 889 * if group does not loose all if it was not continuously backlogged.
1fa8f6d6
VG
890 */
891 n = rb_last(&st->rb);
892 if (n) {
893 __cfqg = rb_entry_cfqg(n);
894 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
895 } else
896 cfqg->vdisktime = st->min_vdisktime;
8184f93e
JT
897 cfq_group_service_tree_add(st, cfqg);
898}
1fa8f6d6 899
8184f93e
JT
900static void
901cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
902{
903 st->total_weight -= cfqg->weight;
904 if (!RB_EMPTY_NODE(&cfqg->rb_node))
905 cfq_rb_erase(&cfqg->rb_node, st);
1fa8f6d6
VG
906}
907
908static void
8184f93e 909cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
910{
911 struct cfq_rb_root *st = &cfqd->grp_service_tree;
912
913 BUG_ON(cfqg->nr_cfqq < 1);
914 cfqg->nr_cfqq--;
25bc6b07 915
1fa8f6d6
VG
916 /* If there are other cfq queues under this group, don't delete it */
917 if (cfqg->nr_cfqq)
918 return;
919
2868ef7b 920 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
8184f93e 921 cfq_group_service_tree_del(st, cfqg);
dae739eb 922 cfqg->saved_workload_slice = 0;
e98ef89b 923 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
924}
925
167400d3
JT
926static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
927 unsigned int *unaccounted_time)
dae739eb 928{
f75edf2d 929 unsigned int slice_used;
dae739eb
VG
930
931 /*
932 * Queue got expired before even a single request completed or
933 * got expired immediately after first request completion.
934 */
935 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
936 /*
937 * Also charge the seek time incurred to the group, otherwise
938 * if there are mutiple queues in the group, each can dispatch
939 * a single request on seeky media and cause lots of seek time
940 * and group will never know it.
941 */
942 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
943 1);
944 } else {
945 slice_used = jiffies - cfqq->slice_start;
167400d3
JT
946 if (slice_used > cfqq->allocated_slice) {
947 *unaccounted_time = slice_used - cfqq->allocated_slice;
f75edf2d 948 slice_used = cfqq->allocated_slice;
167400d3
JT
949 }
950 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
951 *unaccounted_time += cfqq->slice_start -
952 cfqq->dispatch_start;
dae739eb
VG
953 }
954
dae739eb
VG
955 return slice_used;
956}
957
958static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 959 struct cfq_queue *cfqq)
dae739eb
VG
960{
961 struct cfq_rb_root *st = &cfqd->grp_service_tree;
167400d3 962 unsigned int used_sl, charge, unaccounted_sl = 0;
f26bd1f0
VG
963 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
964 - cfqg->service_tree_idle.count;
965
966 BUG_ON(nr_sync < 0);
167400d3 967 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
dae739eb 968
02b35081
VG
969 if (iops_mode(cfqd))
970 charge = cfqq->slice_dispatch;
971 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
972 charge = cfqq->allocated_slice;
dae739eb
VG
973
974 /* Can't update vdisktime while group is on service tree */
8184f93e 975 cfq_group_service_tree_del(st, cfqg);
02b35081 976 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
8184f93e
JT
977 /* If a new weight was requested, update now, off tree */
978 cfq_group_service_tree_add(st, cfqg);
dae739eb
VG
979
980 /* This group is being expired. Save the context */
981 if (time_after(cfqd->workload_expires, jiffies)) {
982 cfqg->saved_workload_slice = cfqd->workload_expires
983 - jiffies;
984 cfqg->saved_workload = cfqd->serving_type;
985 cfqg->saved_serving_prio = cfqd->serving_prio;
986 } else
987 cfqg->saved_workload_slice = 0;
2868ef7b
VG
988
989 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
990 st->min_vdisktime);
c4e7893e
VG
991 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
992 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
993 iops_mode(cfqd), cfqq->nr_sectors);
167400d3
JT
994 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
995 unaccounted_sl);
e98ef89b 996 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
997}
998
25fb5169
VG
999#ifdef CONFIG_CFQ_GROUP_IOSCHED
1000static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1001{
1002 if (blkg)
1003 return container_of(blkg, struct cfq_group, blkg);
1004 return NULL;
1005}
1006
fe071437
VG
1007void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1008 unsigned int weight)
f8d461d6 1009{
8184f93e
JT
1010 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1011 cfqg->new_weight = weight;
1012 cfqg->needs_update = true;
f8d461d6
VG
1013}
1014
f469a7b4
VG
1015static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1016 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
25fb5169 1017{
22084190
VG
1018 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1019 unsigned int major, minor;
25fb5169 1020
f469a7b4
VG
1021 /*
1022 * Add group onto cgroup list. It might happen that bdi->dev is
1023 * not initialized yet. Initialize this new group without major
1024 * and minor info and this info will be filled in once a new thread
1025 * comes for IO.
1026 */
1027 if (bdi->dev) {
a74b2ada 1028 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
f469a7b4
VG
1029 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1030 (void *)cfqd, MKDEV(major, minor));
1031 } else
1032 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1033 (void *)cfqd, 0);
1034
1035 cfqd->nr_blkcg_linked_grps++;
1036 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1037
1038 /* Add group on cfqd list */
1039 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1040}
1041
1042/*
1043 * Should be called from sleepable context. No request queue lock as per
1044 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1045 * from sleepable context.
1046 */
1047static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1048{
1049 struct cfq_group *cfqg = NULL;
5624a4e4 1050 int i, j, ret;
f469a7b4 1051 struct cfq_rb_root *st;
25fb5169
VG
1052
1053 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1054 if (!cfqg)
f469a7b4 1055 return NULL;
25fb5169 1056
25fb5169
VG
1057 for_each_cfqg_st(cfqg, i, j, st)
1058 *st = CFQ_RB_ROOT;
1059 RB_CLEAR_NODE(&cfqg->rb_node);
1060
b1c35769
VG
1061 /*
1062 * Take the initial reference that will be released on destroy
1063 * This can be thought of a joint reference by cgroup and
1064 * elevator which will be dropped by either elevator exit
1065 * or cgroup deletion path depending on who is exiting first.
1066 */
329a6781 1067 cfqg->ref = 1;
5624a4e4
VG
1068
1069 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1070 if (ret) {
1071 kfree(cfqg);
1072 return NULL;
1073 }
1074
f469a7b4
VG
1075 return cfqg;
1076}
1077
1078static struct cfq_group *
1079cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1080{
1081 struct cfq_group *cfqg = NULL;
1082 void *key = cfqd;
1083 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1084 unsigned int major, minor;
b1c35769 1085
180be2a0 1086 /*
f469a7b4
VG
1087 * This is the common case when there are no blkio cgroups.
1088 * Avoid lookup in this case
180be2a0 1089 */
f469a7b4
VG
1090 if (blkcg == &blkio_root_cgroup)
1091 cfqg = &cfqd->root_group;
1092 else
1093 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
25fb5169 1094
f469a7b4
VG
1095 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1096 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1097 cfqg->blkg.dev = MKDEV(major, minor);
1098 }
25fb5169 1099
25fb5169
VG
1100 return cfqg;
1101}
1102
1103/*
3e59cf9d
VG
1104 * Search for the cfq group current task belongs to. request_queue lock must
1105 * be held.
25fb5169 1106 */
3e59cf9d 1107static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169 1108{
70087dc3 1109 struct blkio_cgroup *blkcg;
f469a7b4
VG
1110 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1111 struct request_queue *q = cfqd->queue;
25fb5169
VG
1112
1113 rcu_read_lock();
70087dc3 1114 blkcg = task_blkio_cgroup(current);
f469a7b4
VG
1115 cfqg = cfq_find_cfqg(cfqd, blkcg);
1116 if (cfqg) {
1117 rcu_read_unlock();
1118 return cfqg;
1119 }
1120
1121 /*
1122 * Need to allocate a group. Allocation of group also needs allocation
1123 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1124 * we need to drop rcu lock and queue_lock before we call alloc.
1125 *
1126 * Not taking any queue reference here and assuming that queue is
1127 * around by the time we return. CFQ queue allocation code does
1128 * the same. It might be racy though.
1129 */
1130
1131 rcu_read_unlock();
1132 spin_unlock_irq(q->queue_lock);
1133
1134 cfqg = cfq_alloc_cfqg(cfqd);
1135
1136 spin_lock_irq(q->queue_lock);
1137
1138 rcu_read_lock();
1139 blkcg = task_blkio_cgroup(current);
1140
1141 /*
1142 * If some other thread already allocated the group while we were
1143 * not holding queue lock, free up the group
1144 */
1145 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1146
1147 if (__cfqg) {
1148 kfree(cfqg);
1149 rcu_read_unlock();
1150 return __cfqg;
1151 }
1152
3e59cf9d 1153 if (!cfqg)
25fb5169 1154 cfqg = &cfqd->root_group;
f469a7b4
VG
1155
1156 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
25fb5169
VG
1157 rcu_read_unlock();
1158 return cfqg;
1159}
1160
7f1dc8a2
VG
1161static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1162{
329a6781 1163 cfqg->ref++;
7f1dc8a2
VG
1164 return cfqg;
1165}
1166
25fb5169
VG
1167static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1168{
1169 /* Currently, all async queues are mapped to root group */
1170 if (!cfq_cfqq_sync(cfqq))
1171 cfqg = &cfqq->cfqd->root_group;
1172
1173 cfqq->cfqg = cfqg;
b1c35769 1174 /* cfqq reference on cfqg */
329a6781 1175 cfqq->cfqg->ref++;
b1c35769
VG
1176}
1177
1178static void cfq_put_cfqg(struct cfq_group *cfqg)
1179{
1180 struct cfq_rb_root *st;
1181 int i, j;
1182
329a6781
SL
1183 BUG_ON(cfqg->ref <= 0);
1184 cfqg->ref--;
1185 if (cfqg->ref)
b1c35769
VG
1186 return;
1187 for_each_cfqg_st(cfqg, i, j, st)
b54ce60e 1188 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
5624a4e4 1189 free_percpu(cfqg->blkg.stats_cpu);
b1c35769
VG
1190 kfree(cfqg);
1191}
1192
1193static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1194{
1195 /* Something wrong if we are trying to remove same group twice */
1196 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1197
1198 hlist_del_init(&cfqg->cfqd_node);
1199
1200 /*
1201 * Put the reference taken at the time of creation so that when all
1202 * queues are gone, group can be destroyed.
1203 */
1204 cfq_put_cfqg(cfqg);
1205}
1206
1207static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1208{
1209 struct hlist_node *pos, *n;
1210 struct cfq_group *cfqg;
1211
1212 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1213 /*
1214 * If cgroup removal path got to blk_group first and removed
1215 * it from cgroup list, then it will take care of destroying
1216 * cfqg also.
1217 */
e98ef89b 1218 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1219 cfq_destroy_cfqg(cfqd, cfqg);
1220 }
25fb5169 1221}
b1c35769
VG
1222
1223/*
1224 * Blk cgroup controller notification saying that blkio_group object is being
1225 * delinked as associated cgroup object is going away. That also means that
1226 * no new IO will come in this group. So get rid of this group as soon as
1227 * any pending IO in the group is finished.
1228 *
1229 * This function is called under rcu_read_lock(). key is the rcu protected
1230 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1231 * read lock.
1232 *
1233 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1234 * it should not be NULL as even if elevator was exiting, cgroup deltion
1235 * path got to it first.
1236 */
1237void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1238{
1239 unsigned long flags;
1240 struct cfq_data *cfqd = key;
1241
1242 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1243 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1244 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1245}
1246
25fb5169 1247#else /* GROUP_IOSCHED */
3e59cf9d 1248static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169
VG
1249{
1250 return &cfqd->root_group;
1251}
7f1dc8a2
VG
1252
1253static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1254{
50eaeb32 1255 return cfqg;
7f1dc8a2
VG
1256}
1257
25fb5169
VG
1258static inline void
1259cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1260 cfqq->cfqg = cfqg;
1261}
1262
b1c35769
VG
1263static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1264static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1265
25fb5169
VG
1266#endif /* GROUP_IOSCHED */
1267
498d3aa2 1268/*
c0324a02 1269 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1270 * requests waiting to be processed. It is sorted in the order that
1271 * we will service the queues.
1272 */
a36e71f9 1273static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1274 bool add_front)
d9e7620e 1275{
0871714e
JA
1276 struct rb_node **p, *parent;
1277 struct cfq_queue *__cfqq;
d9e7620e 1278 unsigned long rb_key;
c0324a02 1279 struct cfq_rb_root *service_tree;
498d3aa2 1280 int left;
dae739eb 1281 int new_cfqq = 1;
ae30c286 1282
cdb16e8f 1283 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1284 cfqq_type(cfqq));
0871714e
JA
1285 if (cfq_class_idle(cfqq)) {
1286 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1287 parent = rb_last(&service_tree->rb);
0871714e
JA
1288 if (parent && parent != &cfqq->rb_node) {
1289 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1290 rb_key += __cfqq->rb_key;
1291 } else
1292 rb_key += jiffies;
1293 } else if (!add_front) {
b9c8946b
JA
1294 /*
1295 * Get our rb key offset. Subtract any residual slice
1296 * value carried from last service. A negative resid
1297 * count indicates slice overrun, and this should position
1298 * the next service time further away in the tree.
1299 */
edd75ffd 1300 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1301 rb_key -= cfqq->slice_resid;
edd75ffd 1302 cfqq->slice_resid = 0;
48e025e6
CZ
1303 } else {
1304 rb_key = -HZ;
aa6f6a3d 1305 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1306 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1307 }
1da177e4 1308
d9e7620e 1309 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1310 new_cfqq = 0;
99f9628a 1311 /*
d9e7620e 1312 * same position, nothing more to do
99f9628a 1313 */
c0324a02
CZ
1314 if (rb_key == cfqq->rb_key &&
1315 cfqq->service_tree == service_tree)
d9e7620e 1316 return;
1da177e4 1317
aa6f6a3d
CZ
1318 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1319 cfqq->service_tree = NULL;
1da177e4 1320 }
d9e7620e 1321
498d3aa2 1322 left = 1;
0871714e 1323 parent = NULL;
aa6f6a3d
CZ
1324 cfqq->service_tree = service_tree;
1325 p = &service_tree->rb.rb_node;
d9e7620e 1326 while (*p) {
67060e37 1327 struct rb_node **n;
cc09e299 1328
d9e7620e
JA
1329 parent = *p;
1330 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1331
0c534e0a 1332 /*
c0324a02 1333 * sort by key, that represents service time.
0c534e0a 1334 */
c0324a02 1335 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1336 n = &(*p)->rb_left;
c0324a02 1337 else {
67060e37 1338 n = &(*p)->rb_right;
cc09e299 1339 left = 0;
c0324a02 1340 }
67060e37
JA
1341
1342 p = n;
d9e7620e
JA
1343 }
1344
cc09e299 1345 if (left)
aa6f6a3d 1346 service_tree->left = &cfqq->rb_node;
cc09e299 1347
d9e7620e
JA
1348 cfqq->rb_key = rb_key;
1349 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1350 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1351 service_tree->count++;
20359f27 1352 if (add_front || !new_cfqq)
dae739eb 1353 return;
8184f93e 1354 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1da177e4
LT
1355}
1356
a36e71f9 1357static struct cfq_queue *
f2d1f0ae
JA
1358cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1359 sector_t sector, struct rb_node **ret_parent,
1360 struct rb_node ***rb_link)
a36e71f9 1361{
a36e71f9
JA
1362 struct rb_node **p, *parent;
1363 struct cfq_queue *cfqq = NULL;
1364
1365 parent = NULL;
1366 p = &root->rb_node;
1367 while (*p) {
1368 struct rb_node **n;
1369
1370 parent = *p;
1371 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1372
1373 /*
1374 * Sort strictly based on sector. Smallest to the left,
1375 * largest to the right.
1376 */
2e46e8b2 1377 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1378 n = &(*p)->rb_right;
2e46e8b2 1379 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1380 n = &(*p)->rb_left;
1381 else
1382 break;
1383 p = n;
3ac6c9f8 1384 cfqq = NULL;
a36e71f9
JA
1385 }
1386
1387 *ret_parent = parent;
1388 if (rb_link)
1389 *rb_link = p;
3ac6c9f8 1390 return cfqq;
a36e71f9
JA
1391}
1392
1393static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1394{
a36e71f9
JA
1395 struct rb_node **p, *parent;
1396 struct cfq_queue *__cfqq;
1397
f2d1f0ae
JA
1398 if (cfqq->p_root) {
1399 rb_erase(&cfqq->p_node, cfqq->p_root);
1400 cfqq->p_root = NULL;
1401 }
a36e71f9
JA
1402
1403 if (cfq_class_idle(cfqq))
1404 return;
1405 if (!cfqq->next_rq)
1406 return;
1407
f2d1f0ae 1408 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1409 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1410 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1411 if (!__cfqq) {
1412 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1413 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1414 } else
1415 cfqq->p_root = NULL;
a36e71f9
JA
1416}
1417
498d3aa2
JA
1418/*
1419 * Update cfqq's position in the service tree.
1420 */
edd75ffd 1421static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1422{
6d048f53
JA
1423 /*
1424 * Resorting requires the cfqq to be on the RR list already.
1425 */
a36e71f9 1426 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1427 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1428 cfq_prio_tree_add(cfqd, cfqq);
1429 }
6d048f53
JA
1430}
1431
1da177e4
LT
1432/*
1433 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1434 * the pending list according to last request service
1da177e4 1435 */
febffd61 1436static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1437{
7b679138 1438 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1439 BUG_ON(cfq_cfqq_on_rr(cfqq));
1440 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 1441 cfqd->busy_queues++;
ef8a41df
SL
1442 if (cfq_cfqq_sync(cfqq))
1443 cfqd->busy_sync_queues++;
1da177e4 1444
edd75ffd 1445 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1446}
1447
498d3aa2
JA
1448/*
1449 * Called when the cfqq no longer has requests pending, remove it from
1450 * the service tree.
1451 */
febffd61 1452static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1453{
7b679138 1454 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1455 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1456 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1457
aa6f6a3d
CZ
1458 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1459 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1460 cfqq->service_tree = NULL;
1461 }
f2d1f0ae
JA
1462 if (cfqq->p_root) {
1463 rb_erase(&cfqq->p_node, cfqq->p_root);
1464 cfqq->p_root = NULL;
1465 }
d9e7620e 1466
8184f93e 1467 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1da177e4
LT
1468 BUG_ON(!cfqd->busy_queues);
1469 cfqd->busy_queues--;
ef8a41df
SL
1470 if (cfq_cfqq_sync(cfqq))
1471 cfqd->busy_sync_queues--;
1da177e4
LT
1472}
1473
1474/*
1475 * rb tree support functions
1476 */
febffd61 1477static void cfq_del_rq_rb(struct request *rq)
1da177e4 1478{
5e705374 1479 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1480 const int sync = rq_is_sync(rq);
1da177e4 1481
b4878f24
JA
1482 BUG_ON(!cfqq->queued[sync]);
1483 cfqq->queued[sync]--;
1da177e4 1484
5e705374 1485 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1486
f04a6424
VG
1487 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1488 /*
1489 * Queue will be deleted from service tree when we actually
1490 * expire it later. Right now just remove it from prio tree
1491 * as it is empty.
1492 */
1493 if (cfqq->p_root) {
1494 rb_erase(&cfqq->p_node, cfqq->p_root);
1495 cfqq->p_root = NULL;
1496 }
1497 }
1da177e4
LT
1498}
1499
5e705374 1500static void cfq_add_rq_rb(struct request *rq)
1da177e4 1501{
5e705374 1502 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1503 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1504 struct request *__alias, *prev;
1da177e4 1505
5380a101 1506 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1507
1508 /*
1509 * looks a little odd, but the first insert might return an alias.
1510 * if that happens, put the alias on the dispatch list
1511 */
21183b07 1512 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1513 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1514
1515 if (!cfq_cfqq_on_rr(cfqq))
1516 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1517
1518 /*
1519 * check if this request is a better next-serve candidate
1520 */
a36e71f9 1521 prev = cfqq->next_rq;
cf7c25cf 1522 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1523
1524 /*
1525 * adjust priority tree position, if ->next_rq changes
1526 */
1527 if (prev != cfqq->next_rq)
1528 cfq_prio_tree_add(cfqd, cfqq);
1529
5044eed4 1530 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1531}
1532
febffd61 1533static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1534{
5380a101
JA
1535 elv_rb_del(&cfqq->sort_list, rq);
1536 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1537 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1538 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1539 cfq_add_rq_rb(rq);
e98ef89b 1540 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1541 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1542 rq_is_sync(rq));
1da177e4
LT
1543}
1544
206dc69b
JA
1545static struct request *
1546cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1547{
206dc69b 1548 struct task_struct *tsk = current;
91fac317 1549 struct cfq_io_context *cic;
206dc69b 1550 struct cfq_queue *cfqq;
1da177e4 1551
4ac845a2 1552 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1553 if (!cic)
1554 return NULL;
1555
1556 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1557 if (cfqq) {
1558 sector_t sector = bio->bi_sector + bio_sectors(bio);
1559
21183b07 1560 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1561 }
1da177e4 1562
1da177e4
LT
1563 return NULL;
1564}
1565
165125e1 1566static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1567{
22e2c507 1568 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1569
53c583d2 1570 cfqd->rq_in_driver++;
7b679138 1571 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1572 cfqd->rq_in_driver);
25776e35 1573
5b93629b 1574 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1575}
1576
165125e1 1577static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1578{
b4878f24
JA
1579 struct cfq_data *cfqd = q->elevator->elevator_data;
1580
53c583d2
CZ
1581 WARN_ON(!cfqd->rq_in_driver);
1582 cfqd->rq_in_driver--;
7b679138 1583 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1584 cfqd->rq_in_driver);
1da177e4
LT
1585}
1586
b4878f24 1587static void cfq_remove_request(struct request *rq)
1da177e4 1588{
5e705374 1589 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1590
5e705374
JA
1591 if (cfqq->next_rq == rq)
1592 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1593
b4878f24 1594 list_del_init(&rq->queuelist);
5e705374 1595 cfq_del_rq_rb(rq);
374f84ac 1596
45333d5a 1597 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1598 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1599 rq_data_dir(rq), rq_is_sync(rq));
7b6d91da 1600 if (rq->cmd_flags & REQ_META) {
374f84ac
JA
1601 WARN_ON(!cfqq->meta_pending);
1602 cfqq->meta_pending--;
1603 }
1da177e4
LT
1604}
1605
165125e1
JA
1606static int cfq_merge(struct request_queue *q, struct request **req,
1607 struct bio *bio)
1da177e4
LT
1608{
1609 struct cfq_data *cfqd = q->elevator->elevator_data;
1610 struct request *__rq;
1da177e4 1611
206dc69b 1612 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1613 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1614 *req = __rq;
1615 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1616 }
1617
1618 return ELEVATOR_NO_MERGE;
1da177e4
LT
1619}
1620
165125e1 1621static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1622 int type)
1da177e4 1623{
21183b07 1624 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1625 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1626
5e705374 1627 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1628 }
1da177e4
LT
1629}
1630
812d4026
DS
1631static void cfq_bio_merged(struct request_queue *q, struct request *req,
1632 struct bio *bio)
1633{
e98ef89b
VG
1634 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1635 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1636}
1637
1da177e4 1638static void
165125e1 1639cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1640 struct request *next)
1641{
cf7c25cf 1642 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1643 /*
1644 * reposition in fifo if next is older than rq
1645 */
1646 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1647 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1648 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1649 rq_set_fifo_time(rq, rq_fifo_time(next));
1650 }
22e2c507 1651
cf7c25cf
CZ
1652 if (cfqq->next_rq == next)
1653 cfqq->next_rq = rq;
b4878f24 1654 cfq_remove_request(next);
e98ef89b
VG
1655 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1656 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1657}
1658
165125e1 1659static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1660 struct bio *bio)
1661{
1662 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1663 struct cfq_io_context *cic;
da775265 1664 struct cfq_queue *cfqq;
da775265
JA
1665
1666 /*
ec8acb69 1667 * Disallow merge of a sync bio into an async request.
da775265 1668 */
91fac317 1669 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1670 return false;
da775265
JA
1671
1672 /*
719d3402
JA
1673 * Lookup the cfqq that this bio will be queued with. Allow
1674 * merge only if rq is queued there.
da775265 1675 */
4ac845a2 1676 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1677 if (!cic)
a6151c3a 1678 return false;
719d3402 1679
91fac317 1680 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1681 return cfqq == RQ_CFQQ(rq);
da775265
JA
1682}
1683
812df48d
DS
1684static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1685{
1686 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1687 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1688}
1689
febffd61
JA
1690static void __cfq_set_active_queue(struct cfq_data *cfqd,
1691 struct cfq_queue *cfqq)
22e2c507
JA
1692{
1693 if (cfqq) {
b1ffe737
DS
1694 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1695 cfqd->serving_prio, cfqd->serving_type);
62a37f6b
JT
1696 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1697 cfqq->slice_start = 0;
1698 cfqq->dispatch_start = jiffies;
1699 cfqq->allocated_slice = 0;
1700 cfqq->slice_end = 0;
1701 cfqq->slice_dispatch = 0;
1702 cfqq->nr_sectors = 0;
1703
1704 cfq_clear_cfqq_wait_request(cfqq);
1705 cfq_clear_cfqq_must_dispatch(cfqq);
1706 cfq_clear_cfqq_must_alloc_slice(cfqq);
1707 cfq_clear_cfqq_fifo_expire(cfqq);
1708 cfq_mark_cfqq_slice_new(cfqq);
1709
1710 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1711 }
1712
1713 cfqd->active_queue = cfqq;
1714}
1715
7b14e3b5
JA
1716/*
1717 * current cfqq expired its slice (or was too idle), select new one
1718 */
1719static void
1720__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1721 bool timed_out)
7b14e3b5 1722{
7b679138
JA
1723 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1724
7b14e3b5 1725 if (cfq_cfqq_wait_request(cfqq))
812df48d 1726 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1727
7b14e3b5 1728 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1729 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1730
ae54abed
SL
1731 /*
1732 * If this cfqq is shared between multiple processes, check to
1733 * make sure that those processes are still issuing I/Os within
1734 * the mean seek distance. If not, it may be time to break the
1735 * queues apart again.
1736 */
1737 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1738 cfq_mark_cfqq_split_coop(cfqq);
1739
7b14e3b5 1740 /*
6084cdda 1741 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1742 */
c553f8e3
SL
1743 if (timed_out) {
1744 if (cfq_cfqq_slice_new(cfqq))
ba5bd520 1745 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3
SL
1746 else
1747 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1748 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1749 }
7b14e3b5 1750
e5ff082e 1751 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1752
f04a6424
VG
1753 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1754 cfq_del_cfqq_rr(cfqd, cfqq);
1755
edd75ffd 1756 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1757
1758 if (cfqq == cfqd->active_queue)
1759 cfqd->active_queue = NULL;
1760
1761 if (cfqd->active_cic) {
1762 put_io_context(cfqd->active_cic->ioc);
1763 cfqd->active_cic = NULL;
1764 }
7b14e3b5
JA
1765}
1766
e5ff082e 1767static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1768{
1769 struct cfq_queue *cfqq = cfqd->active_queue;
1770
1771 if (cfqq)
e5ff082e 1772 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1773}
1774
498d3aa2
JA
1775/*
1776 * Get next queue for service. Unless we have a queue preemption,
1777 * we'll simply select the first cfqq in the service tree.
1778 */
6d048f53 1779static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1780{
c0324a02 1781 struct cfq_rb_root *service_tree =
cdb16e8f 1782 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1783 cfqd->serving_type);
d9e7620e 1784
f04a6424
VG
1785 if (!cfqd->rq_queued)
1786 return NULL;
1787
1fa8f6d6
VG
1788 /* There is nothing to dispatch */
1789 if (!service_tree)
1790 return NULL;
c0324a02
CZ
1791 if (RB_EMPTY_ROOT(&service_tree->rb))
1792 return NULL;
1793 return cfq_rb_first(service_tree);
6d048f53
JA
1794}
1795
f04a6424
VG
1796static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1797{
25fb5169 1798 struct cfq_group *cfqg;
f04a6424
VG
1799 struct cfq_queue *cfqq;
1800 int i, j;
1801 struct cfq_rb_root *st;
1802
1803 if (!cfqd->rq_queued)
1804 return NULL;
1805
25fb5169
VG
1806 cfqg = cfq_get_next_cfqg(cfqd);
1807 if (!cfqg)
1808 return NULL;
1809
f04a6424
VG
1810 for_each_cfqg_st(cfqg, i, j, st)
1811 if ((cfqq = cfq_rb_first(st)) != NULL)
1812 return cfqq;
1813 return NULL;
1814}
1815
498d3aa2
JA
1816/*
1817 * Get and set a new active queue for service.
1818 */
a36e71f9
JA
1819static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1820 struct cfq_queue *cfqq)
6d048f53 1821{
e00ef799 1822 if (!cfqq)
a36e71f9 1823 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1824
22e2c507 1825 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1826 return cfqq;
22e2c507
JA
1827}
1828
d9e7620e
JA
1829static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1830 struct request *rq)
1831{
83096ebf
TH
1832 if (blk_rq_pos(rq) >= cfqd->last_position)
1833 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1834 else
83096ebf 1835 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1836}
1837
b2c18e1e 1838static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1839 struct request *rq)
6d048f53 1840{
e9ce335d 1841 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1842}
1843
a36e71f9
JA
1844static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1845 struct cfq_queue *cur_cfqq)
1846{
f2d1f0ae 1847 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1848 struct rb_node *parent, *node;
1849 struct cfq_queue *__cfqq;
1850 sector_t sector = cfqd->last_position;
1851
1852 if (RB_EMPTY_ROOT(root))
1853 return NULL;
1854
1855 /*
1856 * First, if we find a request starting at the end of the last
1857 * request, choose it.
1858 */
f2d1f0ae 1859 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1860 if (__cfqq)
1861 return __cfqq;
1862
1863 /*
1864 * If the exact sector wasn't found, the parent of the NULL leaf
1865 * will contain the closest sector.
1866 */
1867 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1868 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1869 return __cfqq;
1870
2e46e8b2 1871 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1872 node = rb_next(&__cfqq->p_node);
1873 else
1874 node = rb_prev(&__cfqq->p_node);
1875 if (!node)
1876 return NULL;
1877
1878 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1879 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1880 return __cfqq;
1881
1882 return NULL;
1883}
1884
1885/*
1886 * cfqd - obvious
1887 * cur_cfqq - passed in so that we don't decide that the current queue is
1888 * closely cooperating with itself.
1889 *
1890 * So, basically we're assuming that that cur_cfqq has dispatched at least
1891 * one request, and that cfqd->last_position reflects a position on the disk
1892 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1893 * assumption.
1894 */
1895static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1896 struct cfq_queue *cur_cfqq)
6d048f53 1897{
a36e71f9
JA
1898 struct cfq_queue *cfqq;
1899
39c01b21
DS
1900 if (cfq_class_idle(cur_cfqq))
1901 return NULL;
e6c5bc73
JM
1902 if (!cfq_cfqq_sync(cur_cfqq))
1903 return NULL;
1904 if (CFQQ_SEEKY(cur_cfqq))
1905 return NULL;
1906
b9d8f4c7
GJ
1907 /*
1908 * Don't search priority tree if it's the only queue in the group.
1909 */
1910 if (cur_cfqq->cfqg->nr_cfqq == 1)
1911 return NULL;
1912
6d048f53 1913 /*
d9e7620e
JA
1914 * We should notice if some of the queues are cooperating, eg
1915 * working closely on the same area of the disk. In that case,
1916 * we can group them together and don't waste time idling.
6d048f53 1917 */
a36e71f9
JA
1918 cfqq = cfqq_close(cfqd, cur_cfqq);
1919 if (!cfqq)
1920 return NULL;
1921
8682e1f1
VG
1922 /* If new queue belongs to different cfq_group, don't choose it */
1923 if (cur_cfqq->cfqg != cfqq->cfqg)
1924 return NULL;
1925
df5fe3e8
JM
1926 /*
1927 * It only makes sense to merge sync queues.
1928 */
1929 if (!cfq_cfqq_sync(cfqq))
1930 return NULL;
e6c5bc73
JM
1931 if (CFQQ_SEEKY(cfqq))
1932 return NULL;
df5fe3e8 1933
c0324a02
CZ
1934 /*
1935 * Do not merge queues of different priority classes
1936 */
1937 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1938 return NULL;
1939
a36e71f9 1940 return cfqq;
6d048f53
JA
1941}
1942
a6d44e98
CZ
1943/*
1944 * Determine whether we should enforce idle window for this queue.
1945 */
1946
1947static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1948{
1949 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1950 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1951
f04a6424
VG
1952 BUG_ON(!service_tree);
1953 BUG_ON(!service_tree->count);
1954
b6508c16
VG
1955 if (!cfqd->cfq_slice_idle)
1956 return false;
1957
a6d44e98
CZ
1958 /* We never do for idle class queues. */
1959 if (prio == IDLE_WORKLOAD)
1960 return false;
1961
1962 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1963 if (cfq_cfqq_idle_window(cfqq) &&
1964 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1965 return true;
1966
1967 /*
1968 * Otherwise, we do only if they are the last ones
1969 * in their service tree.
1970 */
b1ffe737 1971 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
c1e44756 1972 return true;
b1ffe737
DS
1973 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1974 service_tree->count);
c1e44756 1975 return false;
a6d44e98
CZ
1976}
1977
6d048f53 1978static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1979{
1792669c 1980 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1981 struct cfq_io_context *cic;
80bdf0c7 1982 unsigned long sl, group_idle = 0;
7b14e3b5 1983
a68bbddb 1984 /*
f7d7b7a7
JA
1985 * SSD device without seek penalty, disable idling. But only do so
1986 * for devices that support queuing, otherwise we still have a problem
1987 * with sync vs async workloads.
a68bbddb 1988 */
f7d7b7a7 1989 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1990 return;
1991
dd67d051 1992 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1993 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1994
1995 /*
1996 * idle is disabled, either manually or by past process history
1997 */
80bdf0c7
VG
1998 if (!cfq_should_idle(cfqd, cfqq)) {
1999 /* no queue idling. Check for group idling */
2000 if (cfqd->cfq_group_idle)
2001 group_idle = cfqd->cfq_group_idle;
2002 else
2003 return;
2004 }
6d048f53 2005
7b679138 2006 /*
8e550632 2007 * still active requests from this queue, don't idle
7b679138 2008 */
8e550632 2009 if (cfqq->dispatched)
7b679138
JA
2010 return;
2011
22e2c507
JA
2012 /*
2013 * task has exited, don't wait
2014 */
206dc69b 2015 cic = cfqd->active_cic;
66dac98e 2016 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
2017 return;
2018
355b659c
CZ
2019 /*
2020 * If our average think time is larger than the remaining time
2021 * slice, then don't idle. This avoids overrunning the allotted
2022 * time slice.
2023 */
2024 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
2025 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
2026 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
2027 cic->ttime_mean);
355b659c 2028 return;
b1ffe737 2029 }
355b659c 2030
80bdf0c7
VG
2031 /* There are other queues in the group, don't do group idle */
2032 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2033 return;
2034
3b18152c 2035 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 2036
80bdf0c7
VG
2037 if (group_idle)
2038 sl = cfqd->cfq_group_idle;
2039 else
2040 sl = cfqd->cfq_slice_idle;
206dc69b 2041
7b14e3b5 2042 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 2043 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
2044 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2045 group_idle ? 1 : 0);
1da177e4
LT
2046}
2047
498d3aa2
JA
2048/*
2049 * Move request from internal lists to the request queue dispatch list.
2050 */
165125e1 2051static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 2052{
3ed9a296 2053 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2054 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2055
7b679138
JA
2056 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2057
06d21886 2058 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 2059 cfq_remove_request(rq);
6d048f53 2060 cfqq->dispatched++;
80bdf0c7 2061 (RQ_CFQG(rq))->dispatched++;
5380a101 2062 elv_dispatch_sort(q, rq);
3ed9a296 2063
53c583d2 2064 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 2065 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 2066 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 2067 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
2068}
2069
2070/*
2071 * return expired entry, or NULL to just start from scratch in rbtree
2072 */
febffd61 2073static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 2074{
30996f40 2075 struct request *rq = NULL;
1da177e4 2076
3b18152c 2077 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 2078 return NULL;
cb887411
JA
2079
2080 cfq_mark_cfqq_fifo_expire(cfqq);
2081
89850f7e
JA
2082 if (list_empty(&cfqq->fifo))
2083 return NULL;
1da177e4 2084
89850f7e 2085 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 2086 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 2087 rq = NULL;
1da177e4 2088
30996f40 2089 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 2090 return rq;
1da177e4
LT
2091}
2092
22e2c507
JA
2093static inline int
2094cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2095{
2096 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2097
22e2c507 2098 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2099
b9f8ce05 2100 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
1da177e4
LT
2101}
2102
df5fe3e8
JM
2103/*
2104 * Must be called with the queue_lock held.
2105 */
2106static int cfqq_process_refs(struct cfq_queue *cfqq)
2107{
2108 int process_refs, io_refs;
2109
2110 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
30d7b944 2111 process_refs = cfqq->ref - io_refs;
df5fe3e8
JM
2112 BUG_ON(process_refs < 0);
2113 return process_refs;
2114}
2115
2116static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2117{
e6c5bc73 2118 int process_refs, new_process_refs;
df5fe3e8
JM
2119 struct cfq_queue *__cfqq;
2120
c10b61f0
JM
2121 /*
2122 * If there are no process references on the new_cfqq, then it is
2123 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2124 * chain may have dropped their last reference (not just their
2125 * last process reference).
2126 */
2127 if (!cfqq_process_refs(new_cfqq))
2128 return;
2129
df5fe3e8
JM
2130 /* Avoid a circular list and skip interim queue merges */
2131 while ((__cfqq = new_cfqq->new_cfqq)) {
2132 if (__cfqq == cfqq)
2133 return;
2134 new_cfqq = __cfqq;
2135 }
2136
2137 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2138 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2139 /*
2140 * If the process for the cfqq has gone away, there is no
2141 * sense in merging the queues.
2142 */
c10b61f0 2143 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2144 return;
2145
e6c5bc73
JM
2146 /*
2147 * Merge in the direction of the lesser amount of work.
2148 */
e6c5bc73
JM
2149 if (new_process_refs >= process_refs) {
2150 cfqq->new_cfqq = new_cfqq;
30d7b944 2151 new_cfqq->ref += process_refs;
e6c5bc73
JM
2152 } else {
2153 new_cfqq->new_cfqq = cfqq;
30d7b944 2154 cfqq->ref += new_process_refs;
e6c5bc73 2155 }
df5fe3e8
JM
2156}
2157
cdb16e8f 2158static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2159 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2160{
2161 struct cfq_queue *queue;
2162 int i;
2163 bool key_valid = false;
2164 unsigned long lowest_key = 0;
2165 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2166
65b32a57
VG
2167 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2168 /* select the one with lowest rb_key */
2169 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2170 if (queue &&
2171 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2172 lowest_key = queue->rb_key;
2173 cur_best = i;
2174 key_valid = true;
2175 }
2176 }
2177
2178 return cur_best;
2179}
2180
cdb16e8f 2181static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2182{
718eee05
CZ
2183 unsigned slice;
2184 unsigned count;
cdb16e8f 2185 struct cfq_rb_root *st;
58ff82f3 2186 unsigned group_slice;
e4ea0c16 2187 enum wl_prio_t original_prio = cfqd->serving_prio;
1fa8f6d6 2188
718eee05 2189 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2190 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2191 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2192 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2193 cfqd->serving_prio = BE_WORKLOAD;
2194 else {
2195 cfqd->serving_prio = IDLE_WORKLOAD;
2196 cfqd->workload_expires = jiffies + 1;
2197 return;
2198 }
2199
e4ea0c16
SL
2200 if (original_prio != cfqd->serving_prio)
2201 goto new_workload;
2202
718eee05
CZ
2203 /*
2204 * For RT and BE, we have to choose also the type
2205 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2206 * expiration time
2207 */
65b32a57 2208 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2209 count = st->count;
718eee05
CZ
2210
2211 /*
65b32a57 2212 * check workload expiration, and that we still have other queues ready
718eee05 2213 */
65b32a57 2214 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2215 return;
2216
e4ea0c16 2217new_workload:
718eee05
CZ
2218 /* otherwise select new workload type */
2219 cfqd->serving_type =
65b32a57
VG
2220 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2221 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2222 count = st->count;
718eee05
CZ
2223
2224 /*
2225 * the workload slice is computed as a fraction of target latency
2226 * proportional to the number of queues in that workload, over
2227 * all the queues in the same priority class
2228 */
58ff82f3
VG
2229 group_slice = cfq_group_slice(cfqd, cfqg);
2230
2231 slice = group_slice * count /
2232 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2233 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2234
f26bd1f0
VG
2235 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2236 unsigned int tmp;
2237
2238 /*
2239 * Async queues are currently system wide. Just taking
2240 * proportion of queues with-in same group will lead to higher
2241 * async ratio system wide as generally root group is going
2242 * to have higher weight. A more accurate thing would be to
2243 * calculate system wide asnc/sync ratio.
2244 */
2245 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2246 tmp = tmp/cfqd->busy_queues;
2247 slice = min_t(unsigned, slice, tmp);
2248
718eee05
CZ
2249 /* async workload slice is scaled down according to
2250 * the sync/async slice ratio. */
2251 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2252 } else
718eee05
CZ
2253 /* sync workload slice is at least 2 * cfq_slice_idle */
2254 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2255
2256 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2257 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2258 cfqd->workload_expires = jiffies + slice;
2259}
2260
1fa8f6d6
VG
2261static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2262{
2263 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2264 struct cfq_group *cfqg;
1fa8f6d6
VG
2265
2266 if (RB_EMPTY_ROOT(&st->rb))
2267 return NULL;
25bc6b07 2268 cfqg = cfq_rb_first_group(st);
25bc6b07
VG
2269 update_min_vdisktime(st);
2270 return cfqg;
1fa8f6d6
VG
2271}
2272
cdb16e8f
VG
2273static void cfq_choose_cfqg(struct cfq_data *cfqd)
2274{
1fa8f6d6
VG
2275 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2276
2277 cfqd->serving_group = cfqg;
dae739eb
VG
2278
2279 /* Restore the workload type data */
2280 if (cfqg->saved_workload_slice) {
2281 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2282 cfqd->serving_type = cfqg->saved_workload;
2283 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2284 } else
2285 cfqd->workload_expires = jiffies - 1;
2286
1fa8f6d6 2287 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2288}
2289
22e2c507 2290/*
498d3aa2
JA
2291 * Select a queue for service. If we have a current active queue,
2292 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2293 */
1b5ed5e1 2294static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2295{
a36e71f9 2296 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2297
22e2c507
JA
2298 cfqq = cfqd->active_queue;
2299 if (!cfqq)
2300 goto new_queue;
1da177e4 2301
f04a6424
VG
2302 if (!cfqd->rq_queued)
2303 return NULL;
c244bb50
VG
2304
2305 /*
2306 * We were waiting for group to get backlogged. Expire the queue
2307 */
2308 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2309 goto expire;
2310
22e2c507 2311 /*
6d048f53 2312 * The active queue has run out of time, expire it and select new.
22e2c507 2313 */
7667aa06
VG
2314 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2315 /*
2316 * If slice had not expired at the completion of last request
2317 * we might not have turned on wait_busy flag. Don't expire
2318 * the queue yet. Allow the group to get backlogged.
2319 *
2320 * The very fact that we have used the slice, that means we
2321 * have been idling all along on this queue and it should be
2322 * ok to wait for this request to complete.
2323 */
82bbbf28
VG
2324 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2325 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2326 cfqq = NULL;
7667aa06 2327 goto keep_queue;
82bbbf28 2328 } else
80bdf0c7 2329 goto check_group_idle;
7667aa06 2330 }
1da177e4 2331
22e2c507 2332 /*
6d048f53
JA
2333 * The active queue has requests and isn't expired, allow it to
2334 * dispatch.
22e2c507 2335 */
dd67d051 2336 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2337 goto keep_queue;
6d048f53 2338
a36e71f9
JA
2339 /*
2340 * If another queue has a request waiting within our mean seek
2341 * distance, let it run. The expire code will check for close
2342 * cooperators and put the close queue at the front of the service
df5fe3e8 2343 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2344 */
b3b6d040 2345 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2346 if (new_cfqq) {
2347 if (!cfqq->new_cfqq)
2348 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2349 goto expire;
df5fe3e8 2350 }
a36e71f9 2351
6d048f53
JA
2352 /*
2353 * No requests pending. If the active queue still has requests in
2354 * flight or is idling for a new request, allow either of these
2355 * conditions to happen (or time out) before selecting a new queue.
2356 */
80bdf0c7
VG
2357 if (timer_pending(&cfqd->idle_slice_timer)) {
2358 cfqq = NULL;
2359 goto keep_queue;
2360 }
2361
8e1ac665
SL
2362 /*
2363 * This is a deep seek queue, but the device is much faster than
2364 * the queue can deliver, don't idle
2365 **/
2366 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2367 (cfq_cfqq_slice_new(cfqq) ||
2368 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2369 cfq_clear_cfqq_deep(cfqq);
2370 cfq_clear_cfqq_idle_window(cfqq);
2371 }
2372
80bdf0c7
VG
2373 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2374 cfqq = NULL;
2375 goto keep_queue;
2376 }
2377
2378 /*
2379 * If group idle is enabled and there are requests dispatched from
2380 * this group, wait for requests to complete.
2381 */
2382check_group_idle:
2383 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2384 && cfqq->cfqg->dispatched) {
caaa5f9f
JA
2385 cfqq = NULL;
2386 goto keep_queue;
22e2c507
JA
2387 }
2388
3b18152c 2389expire:
e5ff082e 2390 cfq_slice_expired(cfqd, 0);
3b18152c 2391new_queue:
718eee05
CZ
2392 /*
2393 * Current queue expired. Check if we have to switch to a new
2394 * service tree
2395 */
2396 if (!new_cfqq)
cdb16e8f 2397 cfq_choose_cfqg(cfqd);
718eee05 2398
a36e71f9 2399 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2400keep_queue:
3b18152c 2401 return cfqq;
22e2c507
JA
2402}
2403
febffd61 2404static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2405{
2406 int dispatched = 0;
2407
2408 while (cfqq->next_rq) {
2409 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2410 dispatched++;
2411 }
2412
2413 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2414
2415 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2416 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2417 return dispatched;
2418}
2419
498d3aa2
JA
2420/*
2421 * Drain our current requests. Used for barriers and when switching
2422 * io schedulers on-the-fly.
2423 */
d9e7620e 2424static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2425{
0871714e 2426 struct cfq_queue *cfqq;
d9e7620e 2427 int dispatched = 0;
cdb16e8f 2428
3440c49f 2429 /* Expire the timeslice of the current active queue first */
e5ff082e 2430 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2431 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2432 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2433 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2434 }
1b5ed5e1 2435
1b5ed5e1
TH
2436 BUG_ON(cfqd->busy_queues);
2437
6923715a 2438 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2439 return dispatched;
2440}
2441
abc3c744
SL
2442static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2443 struct cfq_queue *cfqq)
2444{
2445 /* the queue hasn't finished any request, can't estimate */
2446 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2447 return true;
abc3c744
SL
2448 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2449 cfqq->slice_end))
c1e44756 2450 return true;
abc3c744 2451
c1e44756 2452 return false;
abc3c744
SL
2453}
2454
0b182d61 2455static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2456{
2f5cb738 2457 unsigned int max_dispatch;
22e2c507 2458
5ad531db
JA
2459 /*
2460 * Drain async requests before we start sync IO
2461 */
53c583d2 2462 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2463 return false;
5ad531db 2464
2f5cb738
JA
2465 /*
2466 * If this is an async queue and we have sync IO in flight, let it wait
2467 */
53c583d2 2468 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2469 return false;
2f5cb738 2470
abc3c744 2471 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2472 if (cfq_class_idle(cfqq))
2473 max_dispatch = 1;
b4878f24 2474
2f5cb738
JA
2475 /*
2476 * Does this cfqq already have too much IO in flight?
2477 */
2478 if (cfqq->dispatched >= max_dispatch) {
ef8a41df 2479 bool promote_sync = false;
2f5cb738
JA
2480 /*
2481 * idle queue must always only have a single IO in flight
2482 */
3ed9a296 2483 if (cfq_class_idle(cfqq))
0b182d61 2484 return false;
3ed9a296 2485
ef8a41df 2486 /*
c4ade94f
LS
2487 * If there is only one sync queue
2488 * we can ignore async queue here and give the sync
ef8a41df
SL
2489 * queue no dispatch limit. The reason is a sync queue can
2490 * preempt async queue, limiting the sync queue doesn't make
2491 * sense. This is useful for aiostress test.
2492 */
c4ade94f
LS
2493 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2494 promote_sync = true;
ef8a41df 2495
2f5cb738
JA
2496 /*
2497 * We have other queues, don't allow more IO from this one
2498 */
ef8a41df
SL
2499 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2500 !promote_sync)
0b182d61 2501 return false;
9ede209e 2502
365722bb 2503 /*
474b18cc 2504 * Sole queue user, no limit
365722bb 2505 */
ef8a41df 2506 if (cfqd->busy_queues == 1 || promote_sync)
abc3c744
SL
2507 max_dispatch = -1;
2508 else
2509 /*
2510 * Normally we start throttling cfqq when cfq_quantum/2
2511 * requests have been dispatched. But we can drive
2512 * deeper queue depths at the beginning of slice
2513 * subjected to upper limit of cfq_quantum.
2514 * */
2515 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2516 }
2517
2518 /*
2519 * Async queues must wait a bit before being allowed dispatch.
2520 * We also ramp up the dispatch depth gradually for async IO,
2521 * based on the last sync IO we serviced
2522 */
963b72fc 2523 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2524 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2525 unsigned int depth;
365722bb 2526
61f0c1dc 2527 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2528 if (!depth && !cfqq->dispatched)
2529 depth = 1;
8e296755
JA
2530 if (depth < max_dispatch)
2531 max_dispatch = depth;
2f5cb738 2532 }
3ed9a296 2533
0b182d61
JA
2534 /*
2535 * If we're below the current max, allow a dispatch
2536 */
2537 return cfqq->dispatched < max_dispatch;
2538}
2539
2540/*
2541 * Dispatch a request from cfqq, moving them to the request queue
2542 * dispatch list.
2543 */
2544static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2545{
2546 struct request *rq;
2547
2548 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2549
2550 if (!cfq_may_dispatch(cfqd, cfqq))
2551 return false;
2552
2553 /*
2554 * follow expired path, else get first next available
2555 */
2556 rq = cfq_check_fifo(cfqq);
2557 if (!rq)
2558 rq = cfqq->next_rq;
2559
2560 /*
2561 * insert request into driver dispatch list
2562 */
2563 cfq_dispatch_insert(cfqd->queue, rq);
2564
2565 if (!cfqd->active_cic) {
2566 struct cfq_io_context *cic = RQ_CIC(rq);
2567
2568 atomic_long_inc(&cic->ioc->refcount);
2569 cfqd->active_cic = cic;
2570 }
2571
2572 return true;
2573}
2574
2575/*
2576 * Find the cfqq that we need to service and move a request from that to the
2577 * dispatch list
2578 */
2579static int cfq_dispatch_requests(struct request_queue *q, int force)
2580{
2581 struct cfq_data *cfqd = q->elevator->elevator_data;
2582 struct cfq_queue *cfqq;
2583
2584 if (!cfqd->busy_queues)
2585 return 0;
2586
2587 if (unlikely(force))
2588 return cfq_forced_dispatch(cfqd);
2589
2590 cfqq = cfq_select_queue(cfqd);
2591 if (!cfqq)
8e296755
JA
2592 return 0;
2593
2f5cb738 2594 /*
0b182d61 2595 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2596 */
0b182d61
JA
2597 if (!cfq_dispatch_request(cfqd, cfqq))
2598 return 0;
2599
2f5cb738 2600 cfqq->slice_dispatch++;
b029195d 2601 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2602
2f5cb738
JA
2603 /*
2604 * expire an async queue immediately if it has used up its slice. idle
2605 * queue always expire after 1 dispatch round.
2606 */
2607 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2608 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2609 cfq_class_idle(cfqq))) {
2610 cfqq->slice_end = jiffies + 1;
e5ff082e 2611 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2612 }
2613
b217a903 2614 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2615 return 1;
1da177e4
LT
2616}
2617
1da177e4 2618/*
5e705374
JA
2619 * task holds one reference to the queue, dropped when task exits. each rq
2620 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2621 *
b1c35769 2622 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2623 * queue lock must be held here.
2624 */
2625static void cfq_put_queue(struct cfq_queue *cfqq)
2626{
22e2c507 2627 struct cfq_data *cfqd = cfqq->cfqd;
0bbfeb83 2628 struct cfq_group *cfqg;
22e2c507 2629
30d7b944 2630 BUG_ON(cfqq->ref <= 0);
1da177e4 2631
30d7b944
SL
2632 cfqq->ref--;
2633 if (cfqq->ref)
1da177e4
LT
2634 return;
2635
7b679138 2636 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2637 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2638 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2639 cfqg = cfqq->cfqg;
1da177e4 2640
28f95cbc 2641 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2642 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2643 cfq_schedule_dispatch(cfqd);
28f95cbc 2644 }
22e2c507 2645
f04a6424 2646 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2647 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2648 cfq_put_cfqg(cfqg);
1da177e4
LT
2649}
2650
d6de8be7 2651/*
5f45c695 2652 * Call func for each cic attached to this ioc.
d6de8be7 2653 */
07416d29 2654static void
5f45c695
JA
2655call_for_each_cic(struct io_context *ioc,
2656 void (*func)(struct io_context *, struct cfq_io_context *))
07416d29
JA
2657{
2658 struct cfq_io_context *cic;
2659 struct hlist_node *n;
2660
5f45c695
JA
2661 rcu_read_lock();
2662
07416d29
JA
2663 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2664 func(ioc, cic);
07416d29 2665
4ac845a2 2666 rcu_read_unlock();
34e6bbf2
FC
2667}
2668
2669static void cfq_cic_free_rcu(struct rcu_head *head)
2670{
2671 struct cfq_io_context *cic;
2672
2673 cic = container_of(head, struct cfq_io_context, rcu_head);
2674
2675 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2676 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2677
9a11b4ed
JA
2678 if (ioc_gone) {
2679 /*
2680 * CFQ scheduler is exiting, grab exit lock and check
2681 * the pending io context count. If it hits zero,
2682 * complete ioc_gone and set it back to NULL
2683 */
2684 spin_lock(&ioc_gone_lock);
245b2e70 2685 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2686 complete(ioc_gone);
2687 ioc_gone = NULL;
2688 }
2689 spin_unlock(&ioc_gone_lock);
2690 }
34e6bbf2 2691}
4ac845a2 2692
34e6bbf2
FC
2693static void cfq_cic_free(struct cfq_io_context *cic)
2694{
2695 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2696}
2697
2698static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2699{
2700 unsigned long flags;
bca4b914 2701 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2702
bca4b914 2703 BUG_ON(!(dead_key & CIC_DEAD_KEY));
4ac845a2
JA
2704
2705 spin_lock_irqsave(&ioc->lock, flags);
80b15c73 2706 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2707 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2708 spin_unlock_irqrestore(&ioc->lock, flags);
2709
34e6bbf2 2710 cfq_cic_free(cic);
4ac845a2
JA
2711}
2712
d6de8be7
JA
2713/*
2714 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2715 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2716 * and ->trim() which is called with the task lock held
2717 */
4ac845a2
JA
2718static void cfq_free_io_context(struct io_context *ioc)
2719{
4ac845a2 2720 /*
34e6bbf2
FC
2721 * ioc->refcount is zero here, or we are called from elv_unregister(),
2722 * so no more cic's are allowed to be linked into this ioc. So it
2723 * should be ok to iterate over the known list, we will see all cic's
2724 * since no new ones are added.
4ac845a2 2725 */
5f45c695 2726 call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2727}
2728
d02a2c07 2729static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2730{
df5fe3e8
JM
2731 struct cfq_queue *__cfqq, *next;
2732
df5fe3e8
JM
2733 /*
2734 * If this queue was scheduled to merge with another queue, be
2735 * sure to drop the reference taken on that queue (and others in
2736 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2737 */
2738 __cfqq = cfqq->new_cfqq;
2739 while (__cfqq) {
2740 if (__cfqq == cfqq) {
2741 WARN(1, "cfqq->new_cfqq loop detected\n");
2742 break;
2743 }
2744 next = __cfqq->new_cfqq;
2745 cfq_put_queue(__cfqq);
2746 __cfqq = next;
2747 }
d02a2c07
SL
2748}
2749
2750static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2751{
2752 if (unlikely(cfqq == cfqd->active_queue)) {
2753 __cfq_slice_expired(cfqd, cfqq, 0);
2754 cfq_schedule_dispatch(cfqd);
2755 }
2756
2757 cfq_put_cooperator(cfqq);
df5fe3e8 2758
89850f7e
JA
2759 cfq_put_queue(cfqq);
2760}
22e2c507 2761
89850f7e
JA
2762static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2763 struct cfq_io_context *cic)
2764{
4faa3c81
FC
2765 struct io_context *ioc = cic->ioc;
2766
fc46379d 2767 list_del_init(&cic->queue_list);
4ac845a2
JA
2768
2769 /*
bca4b914 2770 * Make sure dead mark is seen for dead queues
4ac845a2 2771 */
fc46379d 2772 smp_wmb();
bca4b914 2773 cic->key = cfqd_dead_key(cfqd);
fc46379d 2774
4faa3c81
FC
2775 if (ioc->ioc_data == cic)
2776 rcu_assign_pointer(ioc->ioc_data, NULL);
2777
ff6657c6
JA
2778 if (cic->cfqq[BLK_RW_ASYNC]) {
2779 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2780 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2781 }
2782
ff6657c6
JA
2783 if (cic->cfqq[BLK_RW_SYNC]) {
2784 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2785 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2786 }
89850f7e
JA
2787}
2788
4ac845a2
JA
2789static void cfq_exit_single_io_context(struct io_context *ioc,
2790 struct cfq_io_context *cic)
89850f7e 2791{
bca4b914 2792 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2793
89850f7e 2794 if (cfqd) {
165125e1 2795 struct request_queue *q = cfqd->queue;
4ac845a2 2796 unsigned long flags;
89850f7e 2797
4ac845a2 2798 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2799
2800 /*
2801 * Ensure we get a fresh copy of the ->key to prevent
2802 * race between exiting task and queue
2803 */
2804 smp_read_barrier_depends();
bca4b914 2805 if (cic->key == cfqd)
62c1fe9d
JA
2806 __cfq_exit_single_io_context(cfqd, cic);
2807
4ac845a2 2808 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2809 }
1da177e4
LT
2810}
2811
498d3aa2
JA
2812/*
2813 * The process that ioc belongs to has exited, we need to clean up
2814 * and put the internal structures we have that belongs to that process.
2815 */
e2d74ac0 2816static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2817{
4ac845a2 2818 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2819}
2820
22e2c507 2821static struct cfq_io_context *
8267e268 2822cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2823{
b5deef90 2824 struct cfq_io_context *cic;
1da177e4 2825
94f6030c
CL
2826 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2827 cfqd->queue->node);
1da177e4 2828 if (cic) {
22e2c507 2829 cic->last_end_request = jiffies;
553698f9 2830 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2831 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2832 cic->dtor = cfq_free_io_context;
2833 cic->exit = cfq_exit_io_context;
245b2e70 2834 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2835 }
2836
2837 return cic;
2838}
2839
fd0928df 2840static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2841{
2842 struct task_struct *tsk = current;
2843 int ioprio_class;
2844
3b18152c 2845 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2846 return;
2847
fd0928df 2848 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2849 switch (ioprio_class) {
fe094d98
JA
2850 default:
2851 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2852 case IOPRIO_CLASS_NONE:
2853 /*
6d63c275 2854 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2855 */
2856 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2857 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2858 break;
2859 case IOPRIO_CLASS_RT:
2860 cfqq->ioprio = task_ioprio(ioc);
2861 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2862 break;
2863 case IOPRIO_CLASS_BE:
2864 cfqq->ioprio = task_ioprio(ioc);
2865 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2866 break;
2867 case IOPRIO_CLASS_IDLE:
2868 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2869 cfqq->ioprio = 7;
2870 cfq_clear_cfqq_idle_window(cfqq);
2871 break;
22e2c507
JA
2872 }
2873
2874 /*
2875 * keep track of original prio settings in case we have to temporarily
2876 * elevate the priority of this queue
2877 */
2878 cfqq->org_ioprio = cfqq->ioprio;
2879 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2880 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2881}
2882
febffd61 2883static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2884{
bca4b914 2885 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2886 struct cfq_queue *cfqq;
c1b707d2 2887 unsigned long flags;
35e6077c 2888
caaa5f9f
JA
2889 if (unlikely(!cfqd))
2890 return;
2891
c1b707d2 2892 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2893
ff6657c6 2894 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2895 if (cfqq) {
2896 struct cfq_queue *new_cfqq;
ff6657c6
JA
2897 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2898 GFP_ATOMIC);
caaa5f9f 2899 if (new_cfqq) {
ff6657c6 2900 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2901 cfq_put_queue(cfqq);
2902 }
22e2c507 2903 }
caaa5f9f 2904
ff6657c6 2905 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2906 if (cfqq)
2907 cfq_mark_cfqq_prio_changed(cfqq);
2908
c1b707d2 2909 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2910}
2911
fc46379d 2912static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2913{
4ac845a2 2914 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2915 ioc->ioprio_changed = 0;
22e2c507
JA
2916}
2917
d5036d77 2918static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2919 pid_t pid, bool is_sync)
d5036d77
JA
2920{
2921 RB_CLEAR_NODE(&cfqq->rb_node);
2922 RB_CLEAR_NODE(&cfqq->p_node);
2923 INIT_LIST_HEAD(&cfqq->fifo);
2924
30d7b944 2925 cfqq->ref = 0;
d5036d77
JA
2926 cfqq->cfqd = cfqd;
2927
2928 cfq_mark_cfqq_prio_changed(cfqq);
2929
2930 if (is_sync) {
2931 if (!cfq_class_idle(cfqq))
2932 cfq_mark_cfqq_idle_window(cfqq);
2933 cfq_mark_cfqq_sync(cfqq);
2934 }
2935 cfqq->pid = pid;
2936}
2937
24610333
VG
2938#ifdef CONFIG_CFQ_GROUP_IOSCHED
2939static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2940{
2941 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2942 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2943 unsigned long flags;
2944 struct request_queue *q;
2945
2946 if (unlikely(!cfqd))
2947 return;
2948
2949 q = cfqd->queue;
2950
2951 spin_lock_irqsave(q->queue_lock, flags);
2952
2953 if (sync_cfqq) {
2954 /*
2955 * Drop reference to sync queue. A new sync queue will be
2956 * assigned in new group upon arrival of a fresh request.
2957 */
2958 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2959 cic_set_cfqq(cic, NULL, 1);
2960 cfq_put_queue(sync_cfqq);
2961 }
2962
2963 spin_unlock_irqrestore(q->queue_lock, flags);
2964}
2965
2966static void cfq_ioc_set_cgroup(struct io_context *ioc)
2967{
2968 call_for_each_cic(ioc, changed_cgroup);
2969 ioc->cgroup_changed = 0;
2970}
2971#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2972
22e2c507 2973static struct cfq_queue *
a6151c3a 2974cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2975 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2976{
22e2c507 2977 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2978 struct cfq_io_context *cic;
cdb16e8f 2979 struct cfq_group *cfqg;
22e2c507
JA
2980
2981retry:
3e59cf9d 2982 cfqg = cfq_get_cfqg(cfqd);
4ac845a2 2983 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2984 /* cic always exists here */
2985 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2986
6118b70b
JA
2987 /*
2988 * Always try a new alloc if we fell back to the OOM cfqq
2989 * originally, since it should just be a temporary situation.
2990 */
2991 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2992 cfqq = NULL;
22e2c507
JA
2993 if (new_cfqq) {
2994 cfqq = new_cfqq;
2995 new_cfqq = NULL;
2996 } else if (gfp_mask & __GFP_WAIT) {
2997 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2998 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2999 gfp_mask | __GFP_ZERO,
94f6030c 3000 cfqd->queue->node);
22e2c507 3001 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
3002 if (new_cfqq)
3003 goto retry;
22e2c507 3004 } else {
94f6030c
CL
3005 cfqq = kmem_cache_alloc_node(cfq_pool,
3006 gfp_mask | __GFP_ZERO,
3007 cfqd->queue->node);
22e2c507
JA
3008 }
3009
6118b70b
JA
3010 if (cfqq) {
3011 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3012 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 3013 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
3014 cfq_log_cfqq(cfqd, cfqq, "alloced");
3015 } else
3016 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
3017 }
3018
3019 if (new_cfqq)
3020 kmem_cache_free(cfq_pool, new_cfqq);
3021
22e2c507
JA
3022 return cfqq;
3023}
3024
c2dea2d1
VT
3025static struct cfq_queue **
3026cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3027{
fe094d98 3028 switch (ioprio_class) {
c2dea2d1
VT
3029 case IOPRIO_CLASS_RT:
3030 return &cfqd->async_cfqq[0][ioprio];
3031 case IOPRIO_CLASS_BE:
3032 return &cfqd->async_cfqq[1][ioprio];
3033 case IOPRIO_CLASS_IDLE:
3034 return &cfqd->async_idle_cfqq;
3035 default:
3036 BUG();
3037 }
3038}
3039
15c31be4 3040static struct cfq_queue *
a6151c3a 3041cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
3042 gfp_t gfp_mask)
3043{
fd0928df
JA
3044 const int ioprio = task_ioprio(ioc);
3045 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 3046 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
3047 struct cfq_queue *cfqq = NULL;
3048
c2dea2d1
VT
3049 if (!is_sync) {
3050 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3051 cfqq = *async_cfqq;
3052 }
3053
6118b70b 3054 if (!cfqq)
fd0928df 3055 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
3056
3057 /*
3058 * pin the queue now that it's allocated, scheduler exit will prune it
3059 */
c2dea2d1 3060 if (!is_sync && !(*async_cfqq)) {
30d7b944 3061 cfqq->ref++;
c2dea2d1 3062 *async_cfqq = cfqq;
15c31be4
JA
3063 }
3064
30d7b944 3065 cfqq->ref++;
15c31be4
JA
3066 return cfqq;
3067}
3068
498d3aa2
JA
3069/*
3070 * We drop cfq io contexts lazily, so we may find a dead one.
3071 */
dbecf3ab 3072static void
4ac845a2
JA
3073cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3074 struct cfq_io_context *cic)
dbecf3ab 3075{
4ac845a2
JA
3076 unsigned long flags;
3077
fc46379d 3078 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 3079 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 3080
4ac845a2
JA
3081 spin_lock_irqsave(&ioc->lock, flags);
3082
4faa3c81 3083 BUG_ON(ioc->ioc_data == cic);
597bc485 3084
80b15c73 3085 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
ffc4e759 3086 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
3087 spin_unlock_irqrestore(&ioc->lock, flags);
3088
3089 cfq_cic_free(cic);
dbecf3ab
OH
3090}
3091
e2d74ac0 3092static struct cfq_io_context *
4ac845a2 3093cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 3094{
e2d74ac0 3095 struct cfq_io_context *cic;
d6de8be7 3096 unsigned long flags;
e2d74ac0 3097
91fac317
VT
3098 if (unlikely(!ioc))
3099 return NULL;
3100
d6de8be7
JA
3101 rcu_read_lock();
3102
597bc485
JA
3103 /*
3104 * we maintain a last-hit cache, to avoid browsing over the tree
3105 */
4ac845a2 3106 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
3107 if (cic && cic->key == cfqd) {
3108 rcu_read_unlock();
597bc485 3109 return cic;
d6de8be7 3110 }
597bc485 3111
4ac845a2 3112 do {
80b15c73 3113 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
4ac845a2
JA
3114 rcu_read_unlock();
3115 if (!cic)
3116 break;
bca4b914 3117 if (unlikely(cic->key != cfqd)) {
4ac845a2 3118 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 3119 rcu_read_lock();
4ac845a2 3120 continue;
dbecf3ab 3121 }
e2d74ac0 3122
d6de8be7 3123 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 3124 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 3125 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
3126 break;
3127 } while (1);
e2d74ac0 3128
4ac845a2 3129 return cic;
e2d74ac0
JA
3130}
3131
4ac845a2
JA
3132/*
3133 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3134 * the process specific cfq io context when entered from the block layer.
3135 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3136 */
febffd61
JA
3137static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3138 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 3139{
0261d688 3140 unsigned long flags;
4ac845a2 3141 int ret;
e2d74ac0 3142
4ac845a2
JA
3143 ret = radix_tree_preload(gfp_mask);
3144 if (!ret) {
3145 cic->ioc = ioc;
3146 cic->key = cfqd;
e2d74ac0 3147
4ac845a2
JA
3148 spin_lock_irqsave(&ioc->lock, flags);
3149 ret = radix_tree_insert(&ioc->radix_root,
80b15c73 3150 cfqd->cic_index, cic);
ffc4e759
JA
3151 if (!ret)
3152 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 3153 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 3154
4ac845a2
JA
3155 radix_tree_preload_end();
3156
3157 if (!ret) {
3158 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3159 list_add(&cic->queue_list, &cfqd->cic_list);
3160 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3161 }
e2d74ac0
JA
3162 }
3163
4ac845a2
JA
3164 if (ret)
3165 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 3166
4ac845a2 3167 return ret;
e2d74ac0
JA
3168}
3169
1da177e4
LT
3170/*
3171 * Setup general io context and cfq io context. There can be several cfq
3172 * io contexts per general io context, if this process is doing io to more
e2d74ac0 3173 * than one device managed by cfq.
1da177e4
LT
3174 */
3175static struct cfq_io_context *
e2d74ac0 3176cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3177{
22e2c507 3178 struct io_context *ioc = NULL;
1da177e4 3179 struct cfq_io_context *cic;
1da177e4 3180
22e2c507 3181 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 3182
b5deef90 3183 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
3184 if (!ioc)
3185 return NULL;
3186
4ac845a2 3187 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
3188 if (cic)
3189 goto out;
1da177e4 3190
e2d74ac0
JA
3191 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3192 if (cic == NULL)
3193 goto err;
1da177e4 3194
4ac845a2
JA
3195 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3196 goto err_free;
3197
1da177e4 3198out:
fc46379d
JA
3199 smp_read_barrier_depends();
3200 if (unlikely(ioc->ioprio_changed))
3201 cfq_ioc_set_ioprio(ioc);
3202
24610333
VG
3203#ifdef CONFIG_CFQ_GROUP_IOSCHED
3204 if (unlikely(ioc->cgroup_changed))
3205 cfq_ioc_set_cgroup(ioc);
3206#endif
1da177e4 3207 return cic;
4ac845a2
JA
3208err_free:
3209 cfq_cic_free(cic);
1da177e4
LT
3210err:
3211 put_io_context(ioc);
3212 return NULL;
3213}
3214
22e2c507
JA
3215static void
3216cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 3217{
aaf1228d
JA
3218 unsigned long elapsed = jiffies - cic->last_end_request;
3219 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 3220
22e2c507
JA
3221 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3222 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3223 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3224}
1da177e4 3225
206dc69b 3226static void
b2c18e1e 3227cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3228 struct request *rq)
206dc69b 3229{
3dde36dd 3230 sector_t sdist = 0;
41647e7a 3231 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3232 if (cfqq->last_request_pos) {
3233 if (cfqq->last_request_pos < blk_rq_pos(rq))
3234 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3235 else
3236 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3237 }
206dc69b 3238
3dde36dd 3239 cfqq->seek_history <<= 1;
41647e7a
CZ
3240 if (blk_queue_nonrot(cfqd->queue))
3241 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3242 else
3243 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3244}
1da177e4 3245
22e2c507
JA
3246/*
3247 * Disable idle window if the process thinks too long or seeks so much that
3248 * it doesn't matter
3249 */
3250static void
3251cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3252 struct cfq_io_context *cic)
3253{
7b679138 3254 int old_idle, enable_idle;
1be92f2f 3255
0871714e
JA
3256 /*
3257 * Don't idle for async or idle io prio class
3258 */
3259 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3260 return;
3261
c265a7f4 3262 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3263
76280aff
CZ
3264 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3265 cfq_mark_cfqq_deep(cfqq);
3266
749ef9f8
CZ
3267 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3268 enable_idle = 0;
3269 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3270 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3271 enable_idle = 0;
3272 else if (sample_valid(cic->ttime_samples)) {
718eee05 3273 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3274 enable_idle = 0;
3275 else
3276 enable_idle = 1;
1da177e4
LT
3277 }
3278
7b679138
JA
3279 if (old_idle != enable_idle) {
3280 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3281 if (enable_idle)
3282 cfq_mark_cfqq_idle_window(cfqq);
3283 else
3284 cfq_clear_cfqq_idle_window(cfqq);
3285 }
22e2c507 3286}
1da177e4 3287
22e2c507
JA
3288/*
3289 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3290 * no or if we aren't sure, a 1 will cause a preempt.
3291 */
a6151c3a 3292static bool
22e2c507 3293cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3294 struct request *rq)
22e2c507 3295{
6d048f53 3296 struct cfq_queue *cfqq;
22e2c507 3297
6d048f53
JA
3298 cfqq = cfqd->active_queue;
3299 if (!cfqq)
a6151c3a 3300 return false;
22e2c507 3301
6d048f53 3302 if (cfq_class_idle(new_cfqq))
a6151c3a 3303 return false;
22e2c507
JA
3304
3305 if (cfq_class_idle(cfqq))
a6151c3a 3306 return true;
1e3335de 3307
875feb63
DS
3308 /*
3309 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3310 */
3311 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3312 return false;
3313
374f84ac
JA
3314 /*
3315 * if the new request is sync, but the currently running queue is
3316 * not, let the sync request have priority.
3317 */
5e705374 3318 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3319 return true;
1e3335de 3320
8682e1f1
VG
3321 if (new_cfqq->cfqg != cfqq->cfqg)
3322 return false;
3323
3324 if (cfq_slice_used(cfqq))
3325 return true;
3326
3327 /* Allow preemption only if we are idling on sync-noidle tree */
3328 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3329 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3330 new_cfqq->service_tree->count == 2 &&
3331 RB_EMPTY_ROOT(&cfqq->sort_list))
3332 return true;
3333
374f84ac
JA
3334 /*
3335 * So both queues are sync. Let the new request get disk time if
3336 * it's a metadata request and the current queue is doing regular IO.
3337 */
7b6d91da 3338 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
e6ec4fe2 3339 return true;
22e2c507 3340
3a9a3f6c
DS
3341 /*
3342 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3343 */
3344 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3345 return true;
3a9a3f6c 3346
d2d59e18
SL
3347 /* An idle queue should not be idle now for some reason */
3348 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3349 return true;
3350
1e3335de 3351 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3352 return false;
1e3335de
JA
3353
3354 /*
3355 * if this request is as-good as one we would expect from the
3356 * current cfqq, let it preempt
3357 */
e9ce335d 3358 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3359 return true;
1e3335de 3360
a6151c3a 3361 return false;
22e2c507
JA
3362}
3363
3364/*
3365 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3366 * let it have half of its nominal slice.
3367 */
3368static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3369{
f8ae6e3e
SL
3370 struct cfq_queue *old_cfqq = cfqd->active_queue;
3371
7b679138 3372 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3373 cfq_slice_expired(cfqd, 1);
22e2c507 3374
f8ae6e3e
SL
3375 /*
3376 * workload type is changed, don't save slice, otherwise preempt
3377 * doesn't happen
3378 */
3379 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3380 cfqq->cfqg->saved_workload_slice = 0;
3381
bf572256
JA
3382 /*
3383 * Put the new queue at the front of the of the current list,
3384 * so we know that it will be selected next.
3385 */
3386 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3387
3388 cfq_service_tree_add(cfqd, cfqq, 1);
eda5e0c9 3389
62a37f6b
JT
3390 cfqq->slice_end = 0;
3391 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3392}
3393
22e2c507 3394/*
5e705374 3395 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3396 * something we should do about it
3397 */
3398static void
5e705374
JA
3399cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3400 struct request *rq)
22e2c507 3401{
5e705374 3402 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3403
45333d5a 3404 cfqd->rq_queued++;
7b6d91da 3405 if (rq->cmd_flags & REQ_META)
374f84ac
JA
3406 cfqq->meta_pending++;
3407
9c2c38a1 3408 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3409 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3410 cfq_update_idle_window(cfqd, cfqq, cic);
3411
b2c18e1e 3412 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3413
3414 if (cfqq == cfqd->active_queue) {
3415 /*
b029195d
JA
3416 * Remember that we saw a request from this process, but
3417 * don't start queuing just yet. Otherwise we risk seeing lots
3418 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3419 * and merging. If the request is already larger than a single
3420 * page, let it rip immediately. For that case we assume that
2d870722
JA
3421 * merging is already done. Ditto for a busy system that
3422 * has other work pending, don't risk delaying until the
3423 * idle timer unplug to continue working.
22e2c507 3424 */
d6ceb25e 3425 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3426 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3427 cfqd->busy_queues > 1) {
812df48d 3428 cfq_del_timer(cfqd, cfqq);
554554f6 3429 cfq_clear_cfqq_wait_request(cfqq);
24ecfbe2 3430 __blk_run_queue(cfqd->queue);
a11cdaa7 3431 } else {
e98ef89b 3432 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3433 &cfqq->cfqg->blkg);
bf791937 3434 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3435 }
d6ceb25e 3436 }
5e705374 3437 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3438 /*
3439 * not the active queue - expire current slice if it is
3440 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3441 * has some old slice time left and is of higher priority or
3442 * this new queue is RT and the current one is BE
22e2c507
JA
3443 */
3444 cfq_preempt_queue(cfqd, cfqq);
24ecfbe2 3445 __blk_run_queue(cfqd->queue);
22e2c507 3446 }
1da177e4
LT
3447}
3448
165125e1 3449static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3450{
b4878f24 3451 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3452 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3453
7b679138 3454 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3455 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3456
30996f40 3457 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3458 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3459 cfq_add_rq_rb(rq);
e98ef89b 3460 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3461 &cfqd->serving_group->blkg, rq_data_dir(rq),
3462 rq_is_sync(rq));
5e705374 3463 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3464}
3465
45333d5a
AC
3466/*
3467 * Update hw_tag based on peak queue depth over 50 samples under
3468 * sufficient load.
3469 */
3470static void cfq_update_hw_tag(struct cfq_data *cfqd)
3471{
1a1238a7
SL
3472 struct cfq_queue *cfqq = cfqd->active_queue;
3473
53c583d2
CZ
3474 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3475 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3476
3477 if (cfqd->hw_tag == 1)
3478 return;
45333d5a
AC
3479
3480 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3481 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3482 return;
3483
1a1238a7
SL
3484 /*
3485 * If active queue hasn't enough requests and can idle, cfq might not
3486 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3487 * case
3488 */
3489 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3490 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3491 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3492 return;
3493
45333d5a
AC
3494 if (cfqd->hw_tag_samples++ < 50)
3495 return;
3496
e459dd08 3497 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3498 cfqd->hw_tag = 1;
3499 else
3500 cfqd->hw_tag = 0;
45333d5a
AC
3501}
3502
7667aa06
VG
3503static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3504{
3505 struct cfq_io_context *cic = cfqd->active_cic;
3506
02a8f01b
JT
3507 /* If the queue already has requests, don't wait */
3508 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3509 return false;
3510
7667aa06
VG
3511 /* If there are other queues in the group, don't wait */
3512 if (cfqq->cfqg->nr_cfqq > 1)
3513 return false;
3514
3515 if (cfq_slice_used(cfqq))
3516 return true;
3517
3518 /* if slice left is less than think time, wait busy */
3519 if (cic && sample_valid(cic->ttime_samples)
3520 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3521 return true;
3522
3523 /*
3524 * If think times is less than a jiffy than ttime_mean=0 and above
3525 * will not be true. It might happen that slice has not expired yet
3526 * but will expire soon (4-5 ns) during select_queue(). To cover the
3527 * case where think time is less than a jiffy, mark the queue wait
3528 * busy if only 1 jiffy is left in the slice.
3529 */
3530 if (cfqq->slice_end - jiffies == 1)
3531 return true;
3532
3533 return false;
3534}
3535
165125e1 3536static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3537{
5e705374 3538 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3539 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3540 const int sync = rq_is_sync(rq);
b4878f24 3541 unsigned long now;
1da177e4 3542
b4878f24 3543 now = jiffies;
33659ebb
CH
3544 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3545 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3546
45333d5a
AC
3547 cfq_update_hw_tag(cfqd);
3548
53c583d2 3549 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3550 WARN_ON(!cfqq->dispatched);
53c583d2 3551 cfqd->rq_in_driver--;
6d048f53 3552 cfqq->dispatched--;
80bdf0c7 3553 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3554 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3555 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3556 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3557
53c583d2 3558 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3559
365722bb 3560 if (sync) {
5e705374 3561 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3562 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3563 cfqd->last_delayed_sync = now;
365722bb 3564 }
caaa5f9f
JA
3565
3566 /*
3567 * If this is the active queue, check if it needs to be expired,
3568 * or if we want to idle in case it has no pending requests.
3569 */
3570 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3571 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3572
44f7c160
JA
3573 if (cfq_cfqq_slice_new(cfqq)) {
3574 cfq_set_prio_slice(cfqd, cfqq);
3575 cfq_clear_cfqq_slice_new(cfqq);
3576 }
f75edf2d
VG
3577
3578 /*
7667aa06
VG
3579 * Should we wait for next request to come in before we expire
3580 * the queue.
f75edf2d 3581 */
7667aa06 3582 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3583 unsigned long extend_sl = cfqd->cfq_slice_idle;
3584 if (!cfqd->cfq_slice_idle)
3585 extend_sl = cfqd->cfq_group_idle;
3586 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3587 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3588 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3589 }
3590
a36e71f9 3591 /*
8e550632
CZ
3592 * Idling is not enabled on:
3593 * - expired queues
3594 * - idle-priority queues
3595 * - async queues
3596 * - queues with still some requests queued
3597 * - when there is a close cooperator
a36e71f9 3598 */
0871714e 3599 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3600 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3601 else if (sync && cfqq_empty &&
3602 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3603 cfq_arm_slice_timer(cfqd);
8e550632 3604 }
caaa5f9f 3605 }
6d048f53 3606
53c583d2 3607 if (!cfqd->rq_in_driver)
23e018a1 3608 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3609}
3610
22e2c507
JA
3611/*
3612 * we temporarily boost lower priority queues if they are holding fs exclusive
3613 * resources. they are boosted to normal prio (CLASS_BE/4)
3614 */
3615static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3616{
22e2c507
JA
3617 if (has_fs_excl()) {
3618 /*
3619 * boost idle prio on transactions that would lock out other
3620 * users of the filesystem
3621 */
3622 if (cfq_class_idle(cfqq))
3623 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3624 if (cfqq->ioprio > IOPRIO_NORM)
3625 cfqq->ioprio = IOPRIO_NORM;
3626 } else {
3627 /*
dddb7451 3628 * unboost the queue (if needed)
22e2c507 3629 */
dddb7451
CZ
3630 cfqq->ioprio_class = cfqq->org_ioprio_class;
3631 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3632 }
22e2c507 3633}
1da177e4 3634
89850f7e 3635static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3636{
1b379d8d 3637 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3638 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3639 return ELV_MQUEUE_MUST;
3b18152c 3640 }
1da177e4 3641
22e2c507 3642 return ELV_MQUEUE_MAY;
22e2c507
JA
3643}
3644
165125e1 3645static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3646{
3647 struct cfq_data *cfqd = q->elevator->elevator_data;
3648 struct task_struct *tsk = current;
91fac317 3649 struct cfq_io_context *cic;
22e2c507
JA
3650 struct cfq_queue *cfqq;
3651
3652 /*
3653 * don't force setup of a queue from here, as a call to may_queue
3654 * does not necessarily imply that a request actually will be queued.
3655 * so just lookup a possibly existing queue, or return 'may queue'
3656 * if that fails
3657 */
4ac845a2 3658 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3659 if (!cic)
3660 return ELV_MQUEUE_MAY;
3661
b0b78f81 3662 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3663 if (cfqq) {
fd0928df 3664 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3665 cfq_prio_boost(cfqq);
3666
89850f7e 3667 return __cfq_may_queue(cfqq);
22e2c507
JA
3668 }
3669
3670 return ELV_MQUEUE_MAY;
1da177e4
LT
3671}
3672
1da177e4
LT
3673/*
3674 * queue lock held here
3675 */
bb37b94c 3676static void cfq_put_request(struct request *rq)
1da177e4 3677{
5e705374 3678 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3679
5e705374 3680 if (cfqq) {
22e2c507 3681 const int rw = rq_data_dir(rq);
1da177e4 3682
22e2c507
JA
3683 BUG_ON(!cfqq->allocated[rw]);
3684 cfqq->allocated[rw]--;
1da177e4 3685
5e705374 3686 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3687
c186794d
MS
3688 rq->elevator_private[0] = NULL;
3689 rq->elevator_private[1] = NULL;
1da177e4 3690
7f1dc8a2
VG
3691 /* Put down rq reference on cfqg */
3692 cfq_put_cfqg(RQ_CFQG(rq));
c186794d 3693 rq->elevator_private[2] = NULL;
7f1dc8a2 3694
1da177e4
LT
3695 cfq_put_queue(cfqq);
3696 }
3697}
3698
df5fe3e8
JM
3699static struct cfq_queue *
3700cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3701 struct cfq_queue *cfqq)
3702{
3703 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3704 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3705 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3706 cfq_put_queue(cfqq);
3707 return cic_to_cfqq(cic, 1);
3708}
3709
e6c5bc73
JM
3710/*
3711 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3712 * was the last process referring to said cfqq.
3713 */
3714static struct cfq_queue *
3715split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3716{
3717 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3718 cfqq->pid = current->pid;
3719 cfq_clear_cfqq_coop(cfqq);
ae54abed 3720 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3721 return cfqq;
3722 }
3723
3724 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3725
3726 cfq_put_cooperator(cfqq);
3727
e6c5bc73
JM
3728 cfq_put_queue(cfqq);
3729 return NULL;
3730}
1da177e4 3731/*
22e2c507 3732 * Allocate cfq data structures associated with this request.
1da177e4 3733 */
22e2c507 3734static int
165125e1 3735cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3736{
3737 struct cfq_data *cfqd = q->elevator->elevator_data;
3738 struct cfq_io_context *cic;
3739 const int rw = rq_data_dir(rq);
a6151c3a 3740 const bool is_sync = rq_is_sync(rq);
22e2c507 3741 struct cfq_queue *cfqq;
1da177e4
LT
3742 unsigned long flags;
3743
3744 might_sleep_if(gfp_mask & __GFP_WAIT);
3745
e2d74ac0 3746 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3747
1da177e4
LT
3748 spin_lock_irqsave(q->queue_lock, flags);
3749
22e2c507
JA
3750 if (!cic)
3751 goto queue_fail;
3752
e6c5bc73 3753new_queue:
91fac317 3754 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3755 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3756 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3757 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3758 } else {
e6c5bc73
JM
3759 /*
3760 * If the queue was seeky for too long, break it apart.
3761 */
ae54abed 3762 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3763 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3764 cfqq = split_cfqq(cic, cfqq);
3765 if (!cfqq)
3766 goto new_queue;
3767 }
3768
df5fe3e8
JM
3769 /*
3770 * Check to see if this queue is scheduled to merge with
3771 * another, closely cooperating queue. The merging of
3772 * queues happens here as it must be done in process context.
3773 * The reference on new_cfqq was taken in merge_cfqqs.
3774 */
3775 if (cfqq->new_cfqq)
3776 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3777 }
1da177e4
LT
3778
3779 cfqq->allocated[rw]++;
1da177e4 3780
6fae9c25 3781 cfqq->ref++;
c186794d
MS
3782 rq->elevator_private[0] = cic;
3783 rq->elevator_private[1] = cfqq;
3784 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
93803e01 3785 spin_unlock_irqrestore(q->queue_lock, flags);
5e705374 3786 return 0;
1da177e4 3787
22e2c507
JA
3788queue_fail:
3789 if (cic)
3790 put_io_context(cic->ioc);
89850f7e 3791
23e018a1 3792 cfq_schedule_dispatch(cfqd);
1da177e4 3793 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3794 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3795 return 1;
3796}
3797
65f27f38 3798static void cfq_kick_queue(struct work_struct *work)
22e2c507 3799{
65f27f38 3800 struct cfq_data *cfqd =
23e018a1 3801 container_of(work, struct cfq_data, unplug_work);
165125e1 3802 struct request_queue *q = cfqd->queue;
22e2c507 3803
40bb54d1 3804 spin_lock_irq(q->queue_lock);
24ecfbe2 3805 __blk_run_queue(cfqd->queue);
40bb54d1 3806 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3807}
3808
3809/*
3810 * Timer running if the active_queue is currently idling inside its time slice
3811 */
3812static void cfq_idle_slice_timer(unsigned long data)
3813{
3814 struct cfq_data *cfqd = (struct cfq_data *) data;
3815 struct cfq_queue *cfqq;
3816 unsigned long flags;
3c6bd2f8 3817 int timed_out = 1;
22e2c507 3818
7b679138
JA
3819 cfq_log(cfqd, "idle timer fired");
3820
22e2c507
JA
3821 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3822
fe094d98
JA
3823 cfqq = cfqd->active_queue;
3824 if (cfqq) {
3c6bd2f8
JA
3825 timed_out = 0;
3826
b029195d
JA
3827 /*
3828 * We saw a request before the queue expired, let it through
3829 */
3830 if (cfq_cfqq_must_dispatch(cfqq))
3831 goto out_kick;
3832
22e2c507
JA
3833 /*
3834 * expired
3835 */
44f7c160 3836 if (cfq_slice_used(cfqq))
22e2c507
JA
3837 goto expire;
3838
3839 /*
3840 * only expire and reinvoke request handler, if there are
3841 * other queues with pending requests
3842 */
caaa5f9f 3843 if (!cfqd->busy_queues)
22e2c507 3844 goto out_cont;
22e2c507
JA
3845
3846 /*
3847 * not expired and it has a request pending, let it dispatch
3848 */
75e50984 3849 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3850 goto out_kick;
76280aff
CZ
3851
3852 /*
3853 * Queue depth flag is reset only when the idle didn't succeed
3854 */
3855 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3856 }
3857expire:
e5ff082e 3858 cfq_slice_expired(cfqd, timed_out);
22e2c507 3859out_kick:
23e018a1 3860 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3861out_cont:
3862 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3863}
3864
3b18152c
JA
3865static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3866{
3867 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3868 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3869}
22e2c507 3870
c2dea2d1
VT
3871static void cfq_put_async_queues(struct cfq_data *cfqd)
3872{
3873 int i;
3874
3875 for (i = 0; i < IOPRIO_BE_NR; i++) {
3876 if (cfqd->async_cfqq[0][i])
3877 cfq_put_queue(cfqd->async_cfqq[0][i]);
3878 if (cfqd->async_cfqq[1][i])
3879 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3880 }
2389d1ef
ON
3881
3882 if (cfqd->async_idle_cfqq)
3883 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3884}
3885
b374d18a 3886static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3887{
22e2c507 3888 struct cfq_data *cfqd = e->elevator_data;
165125e1 3889 struct request_queue *q = cfqd->queue;
56edf7d7 3890 bool wait = false;
22e2c507 3891
3b18152c 3892 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3893
d9ff4187 3894 spin_lock_irq(q->queue_lock);
e2d74ac0 3895
d9ff4187 3896 if (cfqd->active_queue)
e5ff082e 3897 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3898
3899 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3900 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3901 struct cfq_io_context,
3902 queue_list);
89850f7e
JA
3903
3904 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3905 }
e2d74ac0 3906
c2dea2d1 3907 cfq_put_async_queues(cfqd);
b1c35769 3908 cfq_release_cfq_groups(cfqd);
56edf7d7
VG
3909
3910 /*
3911 * If there are groups which we could not unlink from blkcg list,
3912 * wait for a rcu period for them to be freed.
3913 */
3914 if (cfqd->nr_blkcg_linked_grps)
3915 wait = true;
15c31be4 3916
d9ff4187 3917 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3918
3919 cfq_shutdown_timer_wq(cfqd);
3920
80b15c73
KK
3921 spin_lock(&cic_index_lock);
3922 ida_remove(&cic_index_ida, cfqd->cic_index);
3923 spin_unlock(&cic_index_lock);
3924
56edf7d7
VG
3925 /*
3926 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3927 * Do this wait only if there are other unlinked groups out
3928 * there. This can happen if cgroup deletion path claimed the
3929 * responsibility of cleaning up a group before queue cleanup code
3930 * get to the group.
3931 *
3932 * Do not call synchronize_rcu() unconditionally as there are drivers
3933 * which create/delete request queue hundreds of times during scan/boot
3934 * and synchronize_rcu() can take significant time and slow down boot.
3935 */
3936 if (wait)
3937 synchronize_rcu();
2abae55f
VG
3938
3939#ifdef CONFIG_CFQ_GROUP_IOSCHED
3940 /* Free up per cpu stats for root group */
3941 free_percpu(cfqd->root_group.blkg.stats_cpu);
3942#endif
56edf7d7 3943 kfree(cfqd);
1da177e4
LT
3944}
3945
80b15c73
KK
3946static int cfq_alloc_cic_index(void)
3947{
3948 int index, error;
3949
3950 do {
3951 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3952 return -ENOMEM;
3953
3954 spin_lock(&cic_index_lock);
3955 error = ida_get_new(&cic_index_ida, &index);
3956 spin_unlock(&cic_index_lock);
3957 if (error && error != -EAGAIN)
3958 return error;
3959 } while (error);
3960
3961 return index;
3962}
3963
165125e1 3964static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3965{
3966 struct cfq_data *cfqd;
718eee05 3967 int i, j;
cdb16e8f 3968 struct cfq_group *cfqg;
615f0259 3969 struct cfq_rb_root *st;
1da177e4 3970
80b15c73
KK
3971 i = cfq_alloc_cic_index();
3972 if (i < 0)
3973 return NULL;
3974
94f6030c 3975 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1547010e
NK
3976 if (!cfqd) {
3977 spin_lock(&cic_index_lock);
3978 ida_remove(&cic_index_ida, i);
3979 spin_unlock(&cic_index_lock);
bc1c1169 3980 return NULL;
1547010e 3981 }
1da177e4 3982
30d7b944
SL
3983 /*
3984 * Don't need take queue_lock in the routine, since we are
3985 * initializing the ioscheduler, and nobody is using cfqd
3986 */
80b15c73
KK
3987 cfqd->cic_index = i;
3988
1fa8f6d6
VG
3989 /* Init root service tree */
3990 cfqd->grp_service_tree = CFQ_RB_ROOT;
3991
cdb16e8f
VG
3992 /* Init root group */
3993 cfqg = &cfqd->root_group;
615f0259
VG
3994 for_each_cfqg_st(cfqg, i, j, st)
3995 *st = CFQ_RB_ROOT;
1fa8f6d6 3996 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3997
25bc6b07
VG
3998 /* Give preference to root group over other groups */
3999 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
4000
25fb5169 4001#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769 4002 /*
56edf7d7
VG
4003 * Set root group reference to 2. One reference will be dropped when
4004 * all groups on cfqd->cfqg_list are being deleted during queue exit.
4005 * Other reference will remain there as we don't want to delete this
4006 * group as it is statically allocated and gets destroyed when
4007 * throtl_data goes away.
b1c35769 4008 */
56edf7d7 4009 cfqg->ref = 2;
5624a4e4
VG
4010
4011 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4012 kfree(cfqg);
4013 kfree(cfqd);
4014 return NULL;
4015 }
4016
dcf097b2 4017 rcu_read_lock();
5624a4e4 4018
e98ef89b
VG
4019 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4020 (void *)cfqd, 0);
dcf097b2 4021 rcu_read_unlock();
56edf7d7
VG
4022 cfqd->nr_blkcg_linked_grps++;
4023
4024 /* Add group on cfqd->cfqg_list */
4025 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
25fb5169 4026#endif
26a2ac00
JA
4027 /*
4028 * Not strictly needed (since RB_ROOT just clears the node and we
4029 * zeroed cfqd on alloc), but better be safe in case someone decides
4030 * to add magic to the rb code
4031 */
4032 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4033 cfqd->prio_trees[i] = RB_ROOT;
4034
6118b70b
JA
4035 /*
4036 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4037 * Grab a permanent reference to it, so that the normal code flow
4038 * will not attempt to free it.
4039 */
4040 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
30d7b944 4041 cfqd->oom_cfqq.ref++;
cdb16e8f 4042 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 4043
d9ff4187 4044 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 4045
1da177e4 4046 cfqd->queue = q;
1da177e4 4047
22e2c507
JA
4048 init_timer(&cfqd->idle_slice_timer);
4049 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4050 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4051
23e018a1 4052 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 4053
1da177e4 4054 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
4055 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4056 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
4057 cfqd->cfq_back_max = cfq_back_max;
4058 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
4059 cfqd->cfq_slice[0] = cfq_slice_async;
4060 cfqd->cfq_slice[1] = cfq_slice_sync;
4061 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4062 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 4063 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 4064 cfqd->cfq_latency = 1;
e459dd08 4065 cfqd->hw_tag = -1;
edc71131
CZ
4066 /*
4067 * we optimistically start assuming sync ops weren't delayed in last
4068 * second, in order to have larger depth for async operations.
4069 */
573412b2 4070 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 4071 return cfqd;
1da177e4
LT
4072}
4073
4074static void cfq_slab_kill(void)
4075{
d6de8be7
JA
4076 /*
4077 * Caller already ensured that pending RCU callbacks are completed,
4078 * so we should have no busy allocations at this point.
4079 */
1da177e4
LT
4080 if (cfq_pool)
4081 kmem_cache_destroy(cfq_pool);
4082 if (cfq_ioc_pool)
4083 kmem_cache_destroy(cfq_ioc_pool);
4084}
4085
4086static int __init cfq_slab_setup(void)
4087{
0a31bd5f 4088 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
4089 if (!cfq_pool)
4090 goto fail;
4091
34e6bbf2 4092 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
4093 if (!cfq_ioc_pool)
4094 goto fail;
4095
4096 return 0;
4097fail:
4098 cfq_slab_kill();
4099 return -ENOMEM;
4100}
4101
1da177e4
LT
4102/*
4103 * sysfs parts below -->
4104 */
1da177e4
LT
4105static ssize_t
4106cfq_var_show(unsigned int var, char *page)
4107{
4108 return sprintf(page, "%d\n", var);
4109}
4110
4111static ssize_t
4112cfq_var_store(unsigned int *var, const char *page, size_t count)
4113{
4114 char *p = (char *) page;
4115
4116 *var = simple_strtoul(p, &p, 10);
4117 return count;
4118}
4119
1da177e4 4120#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 4121static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 4122{ \
3d1ab40f 4123 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4124 unsigned int __data = __VAR; \
4125 if (__CONV) \
4126 __data = jiffies_to_msecs(__data); \
4127 return cfq_var_show(__data, (page)); \
4128}
4129SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
4130SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4131SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
4132SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4133SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 4134SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 4135SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
4136SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4137SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4138SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 4139SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
4140#undef SHOW_FUNCTION
4141
4142#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 4143static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 4144{ \
3d1ab40f 4145 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4146 unsigned int __data; \
4147 int ret = cfq_var_store(&__data, (page), count); \
4148 if (__data < (MIN)) \
4149 __data = (MIN); \
4150 else if (__data > (MAX)) \
4151 __data = (MAX); \
4152 if (__CONV) \
4153 *(__PTR) = msecs_to_jiffies(__data); \
4154 else \
4155 *(__PTR) = __data; \
4156 return ret; \
4157}
4158STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
4159STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4160 UINT_MAX, 1);
4161STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4162 UINT_MAX, 1);
e572ec7e 4163STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
4164STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4165 UINT_MAX, 0);
22e2c507 4166STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 4167STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
4168STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4169STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
4170STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4171 UINT_MAX, 0);
963b72fc 4172STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
4173#undef STORE_FUNCTION
4174
e572ec7e
AV
4175#define CFQ_ATTR(name) \
4176 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4177
4178static struct elv_fs_entry cfq_attrs[] = {
4179 CFQ_ATTR(quantum),
e572ec7e
AV
4180 CFQ_ATTR(fifo_expire_sync),
4181 CFQ_ATTR(fifo_expire_async),
4182 CFQ_ATTR(back_seek_max),
4183 CFQ_ATTR(back_seek_penalty),
4184 CFQ_ATTR(slice_sync),
4185 CFQ_ATTR(slice_async),
4186 CFQ_ATTR(slice_async_rq),
4187 CFQ_ATTR(slice_idle),
80bdf0c7 4188 CFQ_ATTR(group_idle),
963b72fc 4189 CFQ_ATTR(low_latency),
e572ec7e 4190 __ATTR_NULL
1da177e4
LT
4191};
4192
1da177e4
LT
4193static struct elevator_type iosched_cfq = {
4194 .ops = {
4195 .elevator_merge_fn = cfq_merge,
4196 .elevator_merged_fn = cfq_merged_request,
4197 .elevator_merge_req_fn = cfq_merged_requests,
da775265 4198 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 4199 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 4200 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 4201 .elevator_add_req_fn = cfq_insert_request,
b4878f24 4202 .elevator_activate_req_fn = cfq_activate_request,
1da177e4 4203 .elevator_deactivate_req_fn = cfq_deactivate_request,
1da177e4 4204 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
4205 .elevator_former_req_fn = elv_rb_former_request,
4206 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
4207 .elevator_set_req_fn = cfq_set_request,
4208 .elevator_put_req_fn = cfq_put_request,
4209 .elevator_may_queue_fn = cfq_may_queue,
4210 .elevator_init_fn = cfq_init_queue,
4211 .elevator_exit_fn = cfq_exit_queue,
fc46379d 4212 .trim = cfq_free_io_context,
1da177e4 4213 },
3d1ab40f 4214 .elevator_attrs = cfq_attrs,
1da177e4
LT
4215 .elevator_name = "cfq",
4216 .elevator_owner = THIS_MODULE,
4217};
4218
3e252066
VG
4219#ifdef CONFIG_CFQ_GROUP_IOSCHED
4220static struct blkio_policy_type blkio_policy_cfq = {
4221 .ops = {
4222 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4223 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4224 },
062a644d 4225 .plid = BLKIO_POLICY_PROP,
3e252066
VG
4226};
4227#else
4228static struct blkio_policy_type blkio_policy_cfq;
4229#endif
4230
1da177e4
LT
4231static int __init cfq_init(void)
4232{
22e2c507
JA
4233 /*
4234 * could be 0 on HZ < 1000 setups
4235 */
4236 if (!cfq_slice_async)
4237 cfq_slice_async = 1;
4238 if (!cfq_slice_idle)
4239 cfq_slice_idle = 1;
4240
80bdf0c7
VG
4241#ifdef CONFIG_CFQ_GROUP_IOSCHED
4242 if (!cfq_group_idle)
4243 cfq_group_idle = 1;
4244#else
4245 cfq_group_idle = 0;
4246#endif
1da177e4
LT
4247 if (cfq_slab_setup())
4248 return -ENOMEM;
4249
2fdd82bd 4250 elv_register(&iosched_cfq);
3e252066 4251 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4252
2fdd82bd 4253 return 0;
1da177e4
LT
4254}
4255
4256static void __exit cfq_exit(void)
4257{
6e9a4738 4258 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4259 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4260 elv_unregister(&iosched_cfq);
334e94de 4261 ioc_gone = &all_gone;
fba82272
OH
4262 /* ioc_gone's update must be visible before reading ioc_count */
4263 smp_wmb();
d6de8be7
JA
4264
4265 /*
4266 * this also protects us from entering cfq_slab_kill() with
4267 * pending RCU callbacks
4268 */
245b2e70 4269 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4270 wait_for_completion(&all_gone);
80b15c73 4271 ida_destroy(&cic_index_ida);
83521d3e 4272 cfq_slab_kill();
1da177e4
LT
4273}
4274
4275module_init(cfq_init);
4276module_exit(cfq_exit);
4277
4278MODULE_AUTHOR("Jens Axboe");
4279MODULE_LICENSE("GPL");
4280MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");