blk-cgroup: Initialize ioc->cgroup_changed at ioc creation time
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
e98ef89b 17#include "cfq.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
80bdf0c7 33static int cfq_group_idle = HZ / 125;
5db5d642
CZ
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
22e2c507 36
d9e7620e 37/*
0871714e 38 * offset from end of service tree
d9e7620e 39 */
0871714e 40#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT (2)
46
22e2c507 47#define CFQ_SLICE_SCALE (5)
45333d5a 48#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 49#define CFQ_SERVICE_SHIFT 12
22e2c507 50
3dde36dd 51#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 52#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 53#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 54#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 55
fe094d98 56#define RQ_CIC(rq) \
c186794d
MS
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
1da177e4 60
e18b890b
CL
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
1da177e4 63
245b2e70 64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 65static struct completion *ioc_gone;
9a11b4ed 66static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 67
80b15c73
KK
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
22e2c507
JA
71#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
73#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
206dc69b 75#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 76#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 77
cc09e299
JA
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
aa6f6a3d 87 unsigned count;
73e9ffdd 88 unsigned total_weight;
1fa8f6d6 89 u64 min_vdisktime;
cc09e299 90};
73e9ffdd
RK
91#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
cc09e299 93
6118b70b
JA
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98 /* reference count */
30d7b944 99 int ref;
6118b70b
JA
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
dae739eb
VG
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
f75edf2d 125 unsigned int allocated_slice;
c4081ba5 126 unsigned int slice_dispatch;
dae739eb
VG
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
6118b70b
JA
129 unsigned long slice_end;
130 long slice_resid;
6118b70b
JA
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
c4081ba5
RK
141 pid_t pid;
142
3dde36dd 143 u32 seek_history;
b2c18e1e
JM
144 sector_t last_request_pos;
145
aa6f6a3d 146 struct cfq_rb_root *service_tree;
df5fe3e8 147 struct cfq_queue *new_cfqq;
cdb16e8f 148 struct cfq_group *cfqg;
c4e7893e
VG
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
6118b70b
JA
151};
152
c0324a02 153/*
718eee05 154 * First index in the service_trees.
c0324a02
CZ
155 * IDLE is handled separately, so it has negative index
156 */
157enum wl_prio_t {
c0324a02 158 BE_WORKLOAD = 0,
615f0259
VG
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
b4627321 161 CFQ_PRIO_NR,
c0324a02
CZ
162};
163
718eee05
CZ
164/*
165 * Second index in the service_trees.
166 */
167enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
171};
172
cdb16e8f
VG
173/* This is per cgroup per device grouping structure */
174struct cfq_group {
1fa8f6d6
VG
175 /* group service_tree member */
176 struct rb_node rb_node;
177
178 /* group service_tree key */
179 u64 vdisktime;
25bc6b07 180 unsigned int weight;
8184f93e
JT
181 unsigned int new_weight;
182 bool needs_update;
1fa8f6d6
VG
183
184 /* number of cfqq currently on this group */
185 int nr_cfqq;
186
cdb16e8f 187 /*
b4627321
VG
188 * Per group busy queus average. Useful for workload slice calc. We
189 * create the array for each prio class but at run time it is used
190 * only for RT and BE class and slot for IDLE class remains unused.
191 * This is primarily done to avoid confusion and a gcc warning.
192 */
193 unsigned int busy_queues_avg[CFQ_PRIO_NR];
194 /*
195 * rr lists of queues with requests. We maintain service trees for
196 * RT and BE classes. These trees are subdivided in subclasses
197 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
198 * class there is no subclassification and all the cfq queues go on
199 * a single tree service_tree_idle.
cdb16e8f
VG
200 * Counts are embedded in the cfq_rb_root
201 */
202 struct cfq_rb_root service_trees[2][3];
203 struct cfq_rb_root service_tree_idle;
dae739eb
VG
204
205 unsigned long saved_workload_slice;
206 enum wl_type_t saved_workload;
207 enum wl_prio_t saved_serving_prio;
25fb5169
VG
208 struct blkio_group blkg;
209#ifdef CONFIG_CFQ_GROUP_IOSCHED
210 struct hlist_node cfqd_node;
329a6781 211 int ref;
25fb5169 212#endif
80bdf0c7
VG
213 /* number of requests that are on the dispatch list or inside driver */
214 int dispatched;
cdb16e8f 215};
718eee05 216
22e2c507
JA
217/*
218 * Per block device queue structure
219 */
1da177e4 220struct cfq_data {
165125e1 221 struct request_queue *queue;
1fa8f6d6
VG
222 /* Root service tree for cfq_groups */
223 struct cfq_rb_root grp_service_tree;
cdb16e8f 224 struct cfq_group root_group;
22e2c507 225
c0324a02
CZ
226 /*
227 * The priority currently being served
22e2c507 228 */
c0324a02 229 enum wl_prio_t serving_prio;
718eee05
CZ
230 enum wl_type_t serving_type;
231 unsigned long workload_expires;
cdb16e8f 232 struct cfq_group *serving_group;
a36e71f9
JA
233
234 /*
235 * Each priority tree is sorted by next_request position. These
236 * trees are used when determining if two or more queues are
237 * interleaving requests (see cfq_close_cooperator).
238 */
239 struct rb_root prio_trees[CFQ_PRIO_LISTS];
240
22e2c507 241 unsigned int busy_queues;
ef8a41df 242 unsigned int busy_sync_queues;
22e2c507 243
53c583d2
CZ
244 int rq_in_driver;
245 int rq_in_flight[2];
45333d5a
AC
246
247 /*
248 * queue-depth detection
249 */
250 int rq_queued;
25776e35 251 int hw_tag;
e459dd08
CZ
252 /*
253 * hw_tag can be
254 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256 * 0 => no NCQ
257 */
258 int hw_tag_est_depth;
259 unsigned int hw_tag_samples;
1da177e4 260
22e2c507
JA
261 /*
262 * idle window management
263 */
264 struct timer_list idle_slice_timer;
23e018a1 265 struct work_struct unplug_work;
1da177e4 266
22e2c507
JA
267 struct cfq_queue *active_queue;
268 struct cfq_io_context *active_cic;
22e2c507 269
c2dea2d1
VT
270 /*
271 * async queue for each priority case
272 */
273 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274 struct cfq_queue *async_idle_cfqq;
15c31be4 275
6d048f53 276 sector_t last_position;
1da177e4 277
1da177e4
LT
278 /*
279 * tunables, see top of file
280 */
281 unsigned int cfq_quantum;
22e2c507 282 unsigned int cfq_fifo_expire[2];
1da177e4
LT
283 unsigned int cfq_back_penalty;
284 unsigned int cfq_back_max;
22e2c507
JA
285 unsigned int cfq_slice[2];
286 unsigned int cfq_slice_async_rq;
287 unsigned int cfq_slice_idle;
80bdf0c7 288 unsigned int cfq_group_idle;
963b72fc 289 unsigned int cfq_latency;
d9ff4187 290
80b15c73 291 unsigned int cic_index;
d9ff4187 292 struct list_head cic_list;
1da177e4 293
6118b70b
JA
294 /*
295 * Fallback dummy cfqq for extreme OOM conditions
296 */
297 struct cfq_queue oom_cfqq;
365722bb 298
573412b2 299 unsigned long last_delayed_sync;
25fb5169
VG
300
301 /* List of cfq groups being managed on this device*/
302 struct hlist_head cfqg_list;
56edf7d7
VG
303
304 /* Number of groups which are on blkcg->blkg_list */
305 unsigned int nr_blkcg_linked_grps;
1da177e4
LT
306};
307
25fb5169
VG
308static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
309
cdb16e8f
VG
310static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
311 enum wl_prio_t prio,
65b32a57 312 enum wl_type_t type)
c0324a02 313{
1fa8f6d6
VG
314 if (!cfqg)
315 return NULL;
316
c0324a02 317 if (prio == IDLE_WORKLOAD)
cdb16e8f 318 return &cfqg->service_tree_idle;
c0324a02 319
cdb16e8f 320 return &cfqg->service_trees[prio][type];
c0324a02
CZ
321}
322
3b18152c 323enum cfqq_state_flags {
b0b8d749
JA
324 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
325 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 326 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 327 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
328 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
329 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
330 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 331 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 332 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 333 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 334 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 335 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 336 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
337};
338
339#define CFQ_CFQQ_FNS(name) \
340static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
341{ \
fe094d98 342 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
343} \
344static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
345{ \
fe094d98 346 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
347} \
348static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
349{ \
fe094d98 350 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
351}
352
353CFQ_CFQQ_FNS(on_rr);
354CFQ_CFQQ_FNS(wait_request);
b029195d 355CFQ_CFQQ_FNS(must_dispatch);
3b18152c 356CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
357CFQ_CFQQ_FNS(fifo_expire);
358CFQ_CFQQ_FNS(idle_window);
359CFQ_CFQQ_FNS(prio_changed);
44f7c160 360CFQ_CFQQ_FNS(slice_new);
91fac317 361CFQ_CFQQ_FNS(sync);
a36e71f9 362CFQ_CFQQ_FNS(coop);
ae54abed 363CFQ_CFQQ_FNS(split_coop);
76280aff 364CFQ_CFQQ_FNS(deep);
f75edf2d 365CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
366#undef CFQ_CFQQ_FNS
367
afc24d49 368#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
369#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
371 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
372 blkg_path(&(cfqq)->cfqg->blkg), ##args);
373
374#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
375 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
376 blkg_path(&(cfqg)->blkg), ##args); \
377
378#else
7b679138
JA
379#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
380 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
381#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
382#endif
7b679138
JA
383#define cfq_log(cfqd, fmt, args...) \
384 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
385
615f0259
VG
386/* Traverses through cfq group service trees */
387#define for_each_cfqg_st(cfqg, i, j, st) \
388 for (i = 0; i <= IDLE_WORKLOAD; i++) \
389 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
390 : &cfqg->service_tree_idle; \
391 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
392 (i == IDLE_WORKLOAD && j == 0); \
393 j++, st = i < IDLE_WORKLOAD ? \
394 &cfqg->service_trees[i][j]: NULL) \
395
396
02b35081
VG
397static inline bool iops_mode(struct cfq_data *cfqd)
398{
399 /*
400 * If we are not idling on queues and it is a NCQ drive, parallel
401 * execution of requests is on and measuring time is not possible
402 * in most of the cases until and unless we drive shallower queue
403 * depths and that becomes a performance bottleneck. In such cases
404 * switch to start providing fairness in terms of number of IOs.
405 */
406 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
407 return true;
408 else
409 return false;
410}
411
c0324a02
CZ
412static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
413{
414 if (cfq_class_idle(cfqq))
415 return IDLE_WORKLOAD;
416 if (cfq_class_rt(cfqq))
417 return RT_WORKLOAD;
418 return BE_WORKLOAD;
419}
420
718eee05
CZ
421
422static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
423{
424 if (!cfq_cfqq_sync(cfqq))
425 return ASYNC_WORKLOAD;
426 if (!cfq_cfqq_idle_window(cfqq))
427 return SYNC_NOIDLE_WORKLOAD;
428 return SYNC_WORKLOAD;
429}
430
58ff82f3
VG
431static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
432 struct cfq_data *cfqd,
433 struct cfq_group *cfqg)
c0324a02
CZ
434{
435 if (wl == IDLE_WORKLOAD)
cdb16e8f 436 return cfqg->service_tree_idle.count;
c0324a02 437
cdb16e8f
VG
438 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
439 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
440 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
441}
442
f26bd1f0
VG
443static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
444 struct cfq_group *cfqg)
445{
446 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
447 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
448}
449
165125e1 450static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 451static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 452 struct io_context *, gfp_t);
4ac845a2 453static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
454 struct io_context *);
455
456static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 457 bool is_sync)
91fac317 458{
a6151c3a 459 return cic->cfqq[is_sync];
91fac317
VT
460}
461
462static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 463 struct cfq_queue *cfqq, bool is_sync)
91fac317 464{
a6151c3a 465 cic->cfqq[is_sync] = cfqq;
91fac317
VT
466}
467
bca4b914 468#define CIC_DEAD_KEY 1ul
80b15c73 469#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
470
471static inline void *cfqd_dead_key(struct cfq_data *cfqd)
472{
80b15c73 473 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
474}
475
476static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
477{
478 struct cfq_data *cfqd = cic->key;
479
480 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
481 return NULL;
482
483 return cfqd;
484}
485
91fac317
VT
486/*
487 * We regard a request as SYNC, if it's either a read or has the SYNC bit
488 * set (in which case it could also be direct WRITE).
489 */
a6151c3a 490static inline bool cfq_bio_sync(struct bio *bio)
91fac317 491{
7b6d91da 492 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 493}
1da177e4 494
99f95e52
AM
495/*
496 * scheduler run of queue, if there are requests pending and no one in the
497 * driver that will restart queueing
498 */
23e018a1 499static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 500{
7b679138
JA
501 if (cfqd->busy_queues) {
502 cfq_log(cfqd, "schedule dispatch");
23e018a1 503 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 504 }
99f95e52
AM
505}
506
44f7c160
JA
507/*
508 * Scale schedule slice based on io priority. Use the sync time slice only
509 * if a queue is marked sync and has sync io queued. A sync queue with async
510 * io only, should not get full sync slice length.
511 */
a6151c3a 512static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 513 unsigned short prio)
44f7c160 514{
d9e7620e 515 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 516
d9e7620e
JA
517 WARN_ON(prio >= IOPRIO_BE_NR);
518
519 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
520}
44f7c160 521
d9e7620e
JA
522static inline int
523cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
524{
525 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
526}
527
25bc6b07
VG
528static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
529{
530 u64 d = delta << CFQ_SERVICE_SHIFT;
531
532 d = d * BLKIO_WEIGHT_DEFAULT;
533 do_div(d, cfqg->weight);
534 return d;
535}
536
537static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
538{
539 s64 delta = (s64)(vdisktime - min_vdisktime);
540 if (delta > 0)
541 min_vdisktime = vdisktime;
542
543 return min_vdisktime;
544}
545
546static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
547{
548 s64 delta = (s64)(vdisktime - min_vdisktime);
549 if (delta < 0)
550 min_vdisktime = vdisktime;
551
552 return min_vdisktime;
553}
554
555static void update_min_vdisktime(struct cfq_rb_root *st)
556{
25bc6b07
VG
557 struct cfq_group *cfqg;
558
25bc6b07
VG
559 if (st->left) {
560 cfqg = rb_entry_cfqg(st->left);
a6032710
GJ
561 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
562 cfqg->vdisktime);
25bc6b07 563 }
25bc6b07
VG
564}
565
5db5d642
CZ
566/*
567 * get averaged number of queues of RT/BE priority.
568 * average is updated, with a formula that gives more weight to higher numbers,
569 * to quickly follows sudden increases and decrease slowly
570 */
571
58ff82f3
VG
572static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
573 struct cfq_group *cfqg, bool rt)
5869619c 574{
5db5d642
CZ
575 unsigned min_q, max_q;
576 unsigned mult = cfq_hist_divisor - 1;
577 unsigned round = cfq_hist_divisor / 2;
58ff82f3 578 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 579
58ff82f3
VG
580 min_q = min(cfqg->busy_queues_avg[rt], busy);
581 max_q = max(cfqg->busy_queues_avg[rt], busy);
582 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 583 cfq_hist_divisor;
58ff82f3
VG
584 return cfqg->busy_queues_avg[rt];
585}
586
587static inline unsigned
588cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
589{
590 struct cfq_rb_root *st = &cfqd->grp_service_tree;
591
592 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
593}
594
c553f8e3 595static inline unsigned
ba5bd520 596cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
44f7c160 597{
5db5d642
CZ
598 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
599 if (cfqd->cfq_latency) {
58ff82f3
VG
600 /*
601 * interested queues (we consider only the ones with the same
602 * priority class in the cfq group)
603 */
604 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
605 cfq_class_rt(cfqq));
5db5d642
CZ
606 unsigned sync_slice = cfqd->cfq_slice[1];
607 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
608 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
609
610 if (expect_latency > group_slice) {
5db5d642
CZ
611 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
612 /* scale low_slice according to IO priority
613 * and sync vs async */
614 unsigned low_slice =
615 min(slice, base_low_slice * slice / sync_slice);
616 /* the adapted slice value is scaled to fit all iqs
617 * into the target latency */
58ff82f3 618 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
619 low_slice);
620 }
621 }
c553f8e3
SL
622 return slice;
623}
624
625static inline void
626cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
627{
ba5bd520 628 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3 629
dae739eb 630 cfqq->slice_start = jiffies;
5db5d642 631 cfqq->slice_end = jiffies + slice;
f75edf2d 632 cfqq->allocated_slice = slice;
7b679138 633 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
634}
635
636/*
637 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
638 * isn't valid until the first request from the dispatch is activated
639 * and the slice time set.
640 */
a6151c3a 641static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
642{
643 if (cfq_cfqq_slice_new(cfqq))
c1e44756 644 return false;
44f7c160 645 if (time_before(jiffies, cfqq->slice_end))
c1e44756 646 return false;
44f7c160 647
c1e44756 648 return true;
44f7c160
JA
649}
650
1da177e4 651/*
5e705374 652 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 653 * We choose the request that is closest to the head right now. Distance
e8a99053 654 * behind the head is penalized and only allowed to a certain extent.
1da177e4 655 */
5e705374 656static struct request *
cf7c25cf 657cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 658{
cf7c25cf 659 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 660 unsigned long back_max;
e8a99053
AM
661#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
662#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
663 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 664
5e705374
JA
665 if (rq1 == NULL || rq1 == rq2)
666 return rq2;
667 if (rq2 == NULL)
668 return rq1;
9c2c38a1 669
5e705374
JA
670 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
671 return rq1;
672 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
673 return rq2;
7b6d91da 674 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
374f84ac 675 return rq1;
7b6d91da
CH
676 else if ((rq2->cmd_flags & REQ_META) &&
677 !(rq1->cmd_flags & REQ_META))
374f84ac 678 return rq2;
1da177e4 679
83096ebf
TH
680 s1 = blk_rq_pos(rq1);
681 s2 = blk_rq_pos(rq2);
1da177e4 682
1da177e4
LT
683 /*
684 * by definition, 1KiB is 2 sectors
685 */
686 back_max = cfqd->cfq_back_max * 2;
687
688 /*
689 * Strict one way elevator _except_ in the case where we allow
690 * short backward seeks which are biased as twice the cost of a
691 * similar forward seek.
692 */
693 if (s1 >= last)
694 d1 = s1 - last;
695 else if (s1 + back_max >= last)
696 d1 = (last - s1) * cfqd->cfq_back_penalty;
697 else
e8a99053 698 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
699
700 if (s2 >= last)
701 d2 = s2 - last;
702 else if (s2 + back_max >= last)
703 d2 = (last - s2) * cfqd->cfq_back_penalty;
704 else
e8a99053 705 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
706
707 /* Found required data */
e8a99053
AM
708
709 /*
710 * By doing switch() on the bit mask "wrap" we avoid having to
711 * check two variables for all permutations: --> faster!
712 */
713 switch (wrap) {
5e705374 714 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 715 if (d1 < d2)
5e705374 716 return rq1;
e8a99053 717 else if (d2 < d1)
5e705374 718 return rq2;
e8a99053
AM
719 else {
720 if (s1 >= s2)
5e705374 721 return rq1;
e8a99053 722 else
5e705374 723 return rq2;
e8a99053 724 }
1da177e4 725
e8a99053 726 case CFQ_RQ2_WRAP:
5e705374 727 return rq1;
e8a99053 728 case CFQ_RQ1_WRAP:
5e705374
JA
729 return rq2;
730 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
731 default:
732 /*
733 * Since both rqs are wrapped,
734 * start with the one that's further behind head
735 * (--> only *one* back seek required),
736 * since back seek takes more time than forward.
737 */
738 if (s1 <= s2)
5e705374 739 return rq1;
1da177e4 740 else
5e705374 741 return rq2;
1da177e4
LT
742 }
743}
744
498d3aa2
JA
745/*
746 * The below is leftmost cache rbtree addon
747 */
0871714e 748static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 749{
615f0259
VG
750 /* Service tree is empty */
751 if (!root->count)
752 return NULL;
753
cc09e299
JA
754 if (!root->left)
755 root->left = rb_first(&root->rb);
756
0871714e
JA
757 if (root->left)
758 return rb_entry(root->left, struct cfq_queue, rb_node);
759
760 return NULL;
cc09e299
JA
761}
762
1fa8f6d6
VG
763static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
764{
765 if (!root->left)
766 root->left = rb_first(&root->rb);
767
768 if (root->left)
769 return rb_entry_cfqg(root->left);
770
771 return NULL;
772}
773
a36e71f9
JA
774static void rb_erase_init(struct rb_node *n, struct rb_root *root)
775{
776 rb_erase(n, root);
777 RB_CLEAR_NODE(n);
778}
779
cc09e299
JA
780static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
781{
782 if (root->left == n)
783 root->left = NULL;
a36e71f9 784 rb_erase_init(n, &root->rb);
aa6f6a3d 785 --root->count;
cc09e299
JA
786}
787
1da177e4
LT
788/*
789 * would be nice to take fifo expire time into account as well
790 */
5e705374
JA
791static struct request *
792cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
793 struct request *last)
1da177e4 794{
21183b07
JA
795 struct rb_node *rbnext = rb_next(&last->rb_node);
796 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 797 struct request *next = NULL, *prev = NULL;
1da177e4 798
21183b07 799 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
800
801 if (rbprev)
5e705374 802 prev = rb_entry_rq(rbprev);
1da177e4 803
21183b07 804 if (rbnext)
5e705374 805 next = rb_entry_rq(rbnext);
21183b07
JA
806 else {
807 rbnext = rb_first(&cfqq->sort_list);
808 if (rbnext && rbnext != &last->rb_node)
5e705374 809 next = rb_entry_rq(rbnext);
21183b07 810 }
1da177e4 811
cf7c25cf 812 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
813}
814
d9e7620e
JA
815static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
816 struct cfq_queue *cfqq)
1da177e4 817{
d9e7620e
JA
818 /*
819 * just an approximation, should be ok.
820 */
cdb16e8f 821 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 822 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
823}
824
1fa8f6d6
VG
825static inline s64
826cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
827{
828 return cfqg->vdisktime - st->min_vdisktime;
829}
830
831static void
832__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
833{
834 struct rb_node **node = &st->rb.rb_node;
835 struct rb_node *parent = NULL;
836 struct cfq_group *__cfqg;
837 s64 key = cfqg_key(st, cfqg);
838 int left = 1;
839
840 while (*node != NULL) {
841 parent = *node;
842 __cfqg = rb_entry_cfqg(parent);
843
844 if (key < cfqg_key(st, __cfqg))
845 node = &parent->rb_left;
846 else {
847 node = &parent->rb_right;
848 left = 0;
849 }
850 }
851
852 if (left)
853 st->left = &cfqg->rb_node;
854
855 rb_link_node(&cfqg->rb_node, parent, node);
856 rb_insert_color(&cfqg->rb_node, &st->rb);
857}
858
859static void
8184f93e
JT
860cfq_update_group_weight(struct cfq_group *cfqg)
861{
862 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
863 if (cfqg->needs_update) {
864 cfqg->weight = cfqg->new_weight;
865 cfqg->needs_update = false;
866 }
867}
868
869static void
870cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
871{
872 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
873
874 cfq_update_group_weight(cfqg);
875 __cfq_group_service_tree_add(st, cfqg);
876 st->total_weight += cfqg->weight;
877}
878
879static void
880cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
881{
882 struct cfq_rb_root *st = &cfqd->grp_service_tree;
883 struct cfq_group *__cfqg;
884 struct rb_node *n;
885
886 cfqg->nr_cfqq++;
760701bf 887 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1fa8f6d6
VG
888 return;
889
890 /*
891 * Currently put the group at the end. Later implement something
892 * so that groups get lesser vtime based on their weights, so that
25985edc 893 * if group does not loose all if it was not continuously backlogged.
1fa8f6d6
VG
894 */
895 n = rb_last(&st->rb);
896 if (n) {
897 __cfqg = rb_entry_cfqg(n);
898 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
899 } else
900 cfqg->vdisktime = st->min_vdisktime;
8184f93e
JT
901 cfq_group_service_tree_add(st, cfqg);
902}
1fa8f6d6 903
8184f93e
JT
904static void
905cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
906{
907 st->total_weight -= cfqg->weight;
908 if (!RB_EMPTY_NODE(&cfqg->rb_node))
909 cfq_rb_erase(&cfqg->rb_node, st);
1fa8f6d6
VG
910}
911
912static void
8184f93e 913cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
914{
915 struct cfq_rb_root *st = &cfqd->grp_service_tree;
916
917 BUG_ON(cfqg->nr_cfqq < 1);
918 cfqg->nr_cfqq--;
25bc6b07 919
1fa8f6d6
VG
920 /* If there are other cfq queues under this group, don't delete it */
921 if (cfqg->nr_cfqq)
922 return;
923
2868ef7b 924 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
8184f93e 925 cfq_group_service_tree_del(st, cfqg);
dae739eb 926 cfqg->saved_workload_slice = 0;
e98ef89b 927 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
928}
929
167400d3
JT
930static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
931 unsigned int *unaccounted_time)
dae739eb 932{
f75edf2d 933 unsigned int slice_used;
dae739eb
VG
934
935 /*
936 * Queue got expired before even a single request completed or
937 * got expired immediately after first request completion.
938 */
939 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
940 /*
941 * Also charge the seek time incurred to the group, otherwise
942 * if there are mutiple queues in the group, each can dispatch
943 * a single request on seeky media and cause lots of seek time
944 * and group will never know it.
945 */
946 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
947 1);
948 } else {
949 slice_used = jiffies - cfqq->slice_start;
167400d3
JT
950 if (slice_used > cfqq->allocated_slice) {
951 *unaccounted_time = slice_used - cfqq->allocated_slice;
f75edf2d 952 slice_used = cfqq->allocated_slice;
167400d3
JT
953 }
954 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
955 *unaccounted_time += cfqq->slice_start -
956 cfqq->dispatch_start;
dae739eb
VG
957 }
958
dae739eb
VG
959 return slice_used;
960}
961
962static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 963 struct cfq_queue *cfqq)
dae739eb
VG
964{
965 struct cfq_rb_root *st = &cfqd->grp_service_tree;
167400d3 966 unsigned int used_sl, charge, unaccounted_sl = 0;
f26bd1f0
VG
967 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
968 - cfqg->service_tree_idle.count;
969
970 BUG_ON(nr_sync < 0);
167400d3 971 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
dae739eb 972
02b35081
VG
973 if (iops_mode(cfqd))
974 charge = cfqq->slice_dispatch;
975 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
976 charge = cfqq->allocated_slice;
dae739eb
VG
977
978 /* Can't update vdisktime while group is on service tree */
8184f93e 979 cfq_group_service_tree_del(st, cfqg);
02b35081 980 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
8184f93e
JT
981 /* If a new weight was requested, update now, off tree */
982 cfq_group_service_tree_add(st, cfqg);
dae739eb
VG
983
984 /* This group is being expired. Save the context */
985 if (time_after(cfqd->workload_expires, jiffies)) {
986 cfqg->saved_workload_slice = cfqd->workload_expires
987 - jiffies;
988 cfqg->saved_workload = cfqd->serving_type;
989 cfqg->saved_serving_prio = cfqd->serving_prio;
990 } else
991 cfqg->saved_workload_slice = 0;
2868ef7b
VG
992
993 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
994 st->min_vdisktime);
c4e7893e
VG
995 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
996 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
997 iops_mode(cfqd), cfqq->nr_sectors);
167400d3
JT
998 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
999 unaccounted_sl);
e98ef89b 1000 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
1001}
1002
25fb5169
VG
1003#ifdef CONFIG_CFQ_GROUP_IOSCHED
1004static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1005{
1006 if (blkg)
1007 return container_of(blkg, struct cfq_group, blkg);
1008 return NULL;
1009}
1010
fe071437
VG
1011void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1012 unsigned int weight)
f8d461d6 1013{
8184f93e
JT
1014 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1015 cfqg->new_weight = weight;
1016 cfqg->needs_update = true;
f8d461d6
VG
1017}
1018
f469a7b4
VG
1019static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1020 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
25fb5169 1021{
22084190
VG
1022 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1023 unsigned int major, minor;
25fb5169 1024
f469a7b4
VG
1025 /*
1026 * Add group onto cgroup list. It might happen that bdi->dev is
1027 * not initialized yet. Initialize this new group without major
1028 * and minor info and this info will be filled in once a new thread
1029 * comes for IO.
1030 */
1031 if (bdi->dev) {
a74b2ada 1032 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
f469a7b4
VG
1033 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1034 (void *)cfqd, MKDEV(major, minor));
1035 } else
1036 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1037 (void *)cfqd, 0);
1038
1039 cfqd->nr_blkcg_linked_grps++;
1040 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1041
1042 /* Add group on cfqd list */
1043 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1044}
1045
1046/*
1047 * Should be called from sleepable context. No request queue lock as per
1048 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1049 * from sleepable context.
1050 */
1051static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1052{
1053 struct cfq_group *cfqg = NULL;
5624a4e4 1054 int i, j, ret;
f469a7b4 1055 struct cfq_rb_root *st;
25fb5169
VG
1056
1057 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1058 if (!cfqg)
f469a7b4 1059 return NULL;
25fb5169 1060
25fb5169
VG
1061 for_each_cfqg_st(cfqg, i, j, st)
1062 *st = CFQ_RB_ROOT;
1063 RB_CLEAR_NODE(&cfqg->rb_node);
1064
b1c35769
VG
1065 /*
1066 * Take the initial reference that will be released on destroy
1067 * This can be thought of a joint reference by cgroup and
1068 * elevator which will be dropped by either elevator exit
1069 * or cgroup deletion path depending on who is exiting first.
1070 */
329a6781 1071 cfqg->ref = 1;
5624a4e4
VG
1072
1073 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1074 if (ret) {
1075 kfree(cfqg);
1076 return NULL;
1077 }
1078
f469a7b4
VG
1079 return cfqg;
1080}
1081
1082static struct cfq_group *
1083cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1084{
1085 struct cfq_group *cfqg = NULL;
1086 void *key = cfqd;
1087 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1088 unsigned int major, minor;
b1c35769 1089
180be2a0 1090 /*
f469a7b4
VG
1091 * This is the common case when there are no blkio cgroups.
1092 * Avoid lookup in this case
180be2a0 1093 */
f469a7b4
VG
1094 if (blkcg == &blkio_root_cgroup)
1095 cfqg = &cfqd->root_group;
1096 else
1097 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
25fb5169 1098
f469a7b4
VG
1099 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1100 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1101 cfqg->blkg.dev = MKDEV(major, minor);
1102 }
25fb5169 1103
25fb5169
VG
1104 return cfqg;
1105}
1106
1107/*
3e59cf9d
VG
1108 * Search for the cfq group current task belongs to. request_queue lock must
1109 * be held.
25fb5169 1110 */
3e59cf9d 1111static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169 1112{
70087dc3 1113 struct blkio_cgroup *blkcg;
f469a7b4
VG
1114 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1115 struct request_queue *q = cfqd->queue;
25fb5169
VG
1116
1117 rcu_read_lock();
70087dc3 1118 blkcg = task_blkio_cgroup(current);
f469a7b4
VG
1119 cfqg = cfq_find_cfqg(cfqd, blkcg);
1120 if (cfqg) {
1121 rcu_read_unlock();
1122 return cfqg;
1123 }
1124
1125 /*
1126 * Need to allocate a group. Allocation of group also needs allocation
1127 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1128 * we need to drop rcu lock and queue_lock before we call alloc.
1129 *
1130 * Not taking any queue reference here and assuming that queue is
1131 * around by the time we return. CFQ queue allocation code does
1132 * the same. It might be racy though.
1133 */
1134
1135 rcu_read_unlock();
1136 spin_unlock_irq(q->queue_lock);
1137
1138 cfqg = cfq_alloc_cfqg(cfqd);
1139
1140 spin_lock_irq(q->queue_lock);
1141
1142 rcu_read_lock();
1143 blkcg = task_blkio_cgroup(current);
1144
1145 /*
1146 * If some other thread already allocated the group while we were
1147 * not holding queue lock, free up the group
1148 */
1149 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1150
1151 if (__cfqg) {
1152 kfree(cfqg);
1153 rcu_read_unlock();
1154 return __cfqg;
1155 }
1156
3e59cf9d 1157 if (!cfqg)
25fb5169 1158 cfqg = &cfqd->root_group;
f469a7b4
VG
1159
1160 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
25fb5169
VG
1161 rcu_read_unlock();
1162 return cfqg;
1163}
1164
7f1dc8a2
VG
1165static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1166{
329a6781 1167 cfqg->ref++;
7f1dc8a2
VG
1168 return cfqg;
1169}
1170
25fb5169
VG
1171static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1172{
1173 /* Currently, all async queues are mapped to root group */
1174 if (!cfq_cfqq_sync(cfqq))
1175 cfqg = &cfqq->cfqd->root_group;
1176
1177 cfqq->cfqg = cfqg;
b1c35769 1178 /* cfqq reference on cfqg */
329a6781 1179 cfqq->cfqg->ref++;
b1c35769
VG
1180}
1181
1182static void cfq_put_cfqg(struct cfq_group *cfqg)
1183{
1184 struct cfq_rb_root *st;
1185 int i, j;
1186
329a6781
SL
1187 BUG_ON(cfqg->ref <= 0);
1188 cfqg->ref--;
1189 if (cfqg->ref)
b1c35769
VG
1190 return;
1191 for_each_cfqg_st(cfqg, i, j, st)
b54ce60e 1192 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
5624a4e4 1193 free_percpu(cfqg->blkg.stats_cpu);
b1c35769
VG
1194 kfree(cfqg);
1195}
1196
1197static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1198{
1199 /* Something wrong if we are trying to remove same group twice */
1200 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1201
1202 hlist_del_init(&cfqg->cfqd_node);
1203
1204 /*
1205 * Put the reference taken at the time of creation so that when all
1206 * queues are gone, group can be destroyed.
1207 */
1208 cfq_put_cfqg(cfqg);
1209}
1210
1211static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1212{
1213 struct hlist_node *pos, *n;
1214 struct cfq_group *cfqg;
1215
1216 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1217 /*
1218 * If cgroup removal path got to blk_group first and removed
1219 * it from cgroup list, then it will take care of destroying
1220 * cfqg also.
1221 */
e98ef89b 1222 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1223 cfq_destroy_cfqg(cfqd, cfqg);
1224 }
25fb5169 1225}
b1c35769
VG
1226
1227/*
1228 * Blk cgroup controller notification saying that blkio_group object is being
1229 * delinked as associated cgroup object is going away. That also means that
1230 * no new IO will come in this group. So get rid of this group as soon as
1231 * any pending IO in the group is finished.
1232 *
1233 * This function is called under rcu_read_lock(). key is the rcu protected
1234 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1235 * read lock.
1236 *
1237 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1238 * it should not be NULL as even if elevator was exiting, cgroup deltion
1239 * path got to it first.
1240 */
1241void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1242{
1243 unsigned long flags;
1244 struct cfq_data *cfqd = key;
1245
1246 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1247 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1248 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1249}
1250
25fb5169 1251#else /* GROUP_IOSCHED */
3e59cf9d 1252static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169
VG
1253{
1254 return &cfqd->root_group;
1255}
7f1dc8a2
VG
1256
1257static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1258{
50eaeb32 1259 return cfqg;
7f1dc8a2
VG
1260}
1261
25fb5169
VG
1262static inline void
1263cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1264 cfqq->cfqg = cfqg;
1265}
1266
b1c35769
VG
1267static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1268static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1269
25fb5169
VG
1270#endif /* GROUP_IOSCHED */
1271
498d3aa2 1272/*
c0324a02 1273 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1274 * requests waiting to be processed. It is sorted in the order that
1275 * we will service the queues.
1276 */
a36e71f9 1277static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1278 bool add_front)
d9e7620e 1279{
0871714e
JA
1280 struct rb_node **p, *parent;
1281 struct cfq_queue *__cfqq;
d9e7620e 1282 unsigned long rb_key;
c0324a02 1283 struct cfq_rb_root *service_tree;
498d3aa2 1284 int left;
dae739eb 1285 int new_cfqq = 1;
ae30c286
VG
1286 int group_changed = 0;
1287
cdb16e8f 1288 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1289 cfqq_type(cfqq));
0871714e
JA
1290 if (cfq_class_idle(cfqq)) {
1291 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1292 parent = rb_last(&service_tree->rb);
0871714e
JA
1293 if (parent && parent != &cfqq->rb_node) {
1294 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1295 rb_key += __cfqq->rb_key;
1296 } else
1297 rb_key += jiffies;
1298 } else if (!add_front) {
b9c8946b
JA
1299 /*
1300 * Get our rb key offset. Subtract any residual slice
1301 * value carried from last service. A negative resid
1302 * count indicates slice overrun, and this should position
1303 * the next service time further away in the tree.
1304 */
edd75ffd 1305 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1306 rb_key -= cfqq->slice_resid;
edd75ffd 1307 cfqq->slice_resid = 0;
48e025e6
CZ
1308 } else {
1309 rb_key = -HZ;
aa6f6a3d 1310 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1311 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1312 }
1da177e4 1313
d9e7620e 1314 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1315 new_cfqq = 0;
99f9628a 1316 /*
d9e7620e 1317 * same position, nothing more to do
99f9628a 1318 */
c0324a02
CZ
1319 if (rb_key == cfqq->rb_key &&
1320 cfqq->service_tree == service_tree)
d9e7620e 1321 return;
1da177e4 1322
aa6f6a3d
CZ
1323 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1324 cfqq->service_tree = NULL;
1da177e4 1325 }
d9e7620e 1326
498d3aa2 1327 left = 1;
0871714e 1328 parent = NULL;
aa6f6a3d
CZ
1329 cfqq->service_tree = service_tree;
1330 p = &service_tree->rb.rb_node;
d9e7620e 1331 while (*p) {
67060e37 1332 struct rb_node **n;
cc09e299 1333
d9e7620e
JA
1334 parent = *p;
1335 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1336
0c534e0a 1337 /*
c0324a02 1338 * sort by key, that represents service time.
0c534e0a 1339 */
c0324a02 1340 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1341 n = &(*p)->rb_left;
c0324a02 1342 else {
67060e37 1343 n = &(*p)->rb_right;
cc09e299 1344 left = 0;
c0324a02 1345 }
67060e37
JA
1346
1347 p = n;
d9e7620e
JA
1348 }
1349
cc09e299 1350 if (left)
aa6f6a3d 1351 service_tree->left = &cfqq->rb_node;
cc09e299 1352
d9e7620e
JA
1353 cfqq->rb_key = rb_key;
1354 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1355 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1356 service_tree->count++;
ae30c286 1357 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1358 return;
8184f93e 1359 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1da177e4
LT
1360}
1361
a36e71f9 1362static struct cfq_queue *
f2d1f0ae
JA
1363cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1364 sector_t sector, struct rb_node **ret_parent,
1365 struct rb_node ***rb_link)
a36e71f9 1366{
a36e71f9
JA
1367 struct rb_node **p, *parent;
1368 struct cfq_queue *cfqq = NULL;
1369
1370 parent = NULL;
1371 p = &root->rb_node;
1372 while (*p) {
1373 struct rb_node **n;
1374
1375 parent = *p;
1376 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1377
1378 /*
1379 * Sort strictly based on sector. Smallest to the left,
1380 * largest to the right.
1381 */
2e46e8b2 1382 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1383 n = &(*p)->rb_right;
2e46e8b2 1384 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1385 n = &(*p)->rb_left;
1386 else
1387 break;
1388 p = n;
3ac6c9f8 1389 cfqq = NULL;
a36e71f9
JA
1390 }
1391
1392 *ret_parent = parent;
1393 if (rb_link)
1394 *rb_link = p;
3ac6c9f8 1395 return cfqq;
a36e71f9
JA
1396}
1397
1398static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1399{
a36e71f9
JA
1400 struct rb_node **p, *parent;
1401 struct cfq_queue *__cfqq;
1402
f2d1f0ae
JA
1403 if (cfqq->p_root) {
1404 rb_erase(&cfqq->p_node, cfqq->p_root);
1405 cfqq->p_root = NULL;
1406 }
a36e71f9
JA
1407
1408 if (cfq_class_idle(cfqq))
1409 return;
1410 if (!cfqq->next_rq)
1411 return;
1412
f2d1f0ae 1413 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1414 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1415 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1416 if (!__cfqq) {
1417 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1418 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1419 } else
1420 cfqq->p_root = NULL;
a36e71f9
JA
1421}
1422
498d3aa2
JA
1423/*
1424 * Update cfqq's position in the service tree.
1425 */
edd75ffd 1426static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1427{
6d048f53
JA
1428 /*
1429 * Resorting requires the cfqq to be on the RR list already.
1430 */
a36e71f9 1431 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1432 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1433 cfq_prio_tree_add(cfqd, cfqq);
1434 }
6d048f53
JA
1435}
1436
1da177e4
LT
1437/*
1438 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1439 * the pending list according to last request service
1da177e4 1440 */
febffd61 1441static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1442{
7b679138 1443 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1444 BUG_ON(cfq_cfqq_on_rr(cfqq));
1445 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 1446 cfqd->busy_queues++;
ef8a41df
SL
1447 if (cfq_cfqq_sync(cfqq))
1448 cfqd->busy_sync_queues++;
1da177e4 1449
edd75ffd 1450 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1451}
1452
498d3aa2
JA
1453/*
1454 * Called when the cfqq no longer has requests pending, remove it from
1455 * the service tree.
1456 */
febffd61 1457static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1458{
7b679138 1459 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1460 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1461 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1462
aa6f6a3d
CZ
1463 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1464 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1465 cfqq->service_tree = NULL;
1466 }
f2d1f0ae
JA
1467 if (cfqq->p_root) {
1468 rb_erase(&cfqq->p_node, cfqq->p_root);
1469 cfqq->p_root = NULL;
1470 }
d9e7620e 1471
8184f93e 1472 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1da177e4
LT
1473 BUG_ON(!cfqd->busy_queues);
1474 cfqd->busy_queues--;
ef8a41df
SL
1475 if (cfq_cfqq_sync(cfqq))
1476 cfqd->busy_sync_queues--;
1da177e4
LT
1477}
1478
1479/*
1480 * rb tree support functions
1481 */
febffd61 1482static void cfq_del_rq_rb(struct request *rq)
1da177e4 1483{
5e705374 1484 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1485 const int sync = rq_is_sync(rq);
1da177e4 1486
b4878f24
JA
1487 BUG_ON(!cfqq->queued[sync]);
1488 cfqq->queued[sync]--;
1da177e4 1489
5e705374 1490 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1491
f04a6424
VG
1492 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1493 /*
1494 * Queue will be deleted from service tree when we actually
1495 * expire it later. Right now just remove it from prio tree
1496 * as it is empty.
1497 */
1498 if (cfqq->p_root) {
1499 rb_erase(&cfqq->p_node, cfqq->p_root);
1500 cfqq->p_root = NULL;
1501 }
1502 }
1da177e4
LT
1503}
1504
5e705374 1505static void cfq_add_rq_rb(struct request *rq)
1da177e4 1506{
5e705374 1507 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1508 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1509 struct request *__alias, *prev;
1da177e4 1510
5380a101 1511 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1512
1513 /*
1514 * looks a little odd, but the first insert might return an alias.
1515 * if that happens, put the alias on the dispatch list
1516 */
21183b07 1517 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1518 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1519
1520 if (!cfq_cfqq_on_rr(cfqq))
1521 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1522
1523 /*
1524 * check if this request is a better next-serve candidate
1525 */
a36e71f9 1526 prev = cfqq->next_rq;
cf7c25cf 1527 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1528
1529 /*
1530 * adjust priority tree position, if ->next_rq changes
1531 */
1532 if (prev != cfqq->next_rq)
1533 cfq_prio_tree_add(cfqd, cfqq);
1534
5044eed4 1535 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1536}
1537
febffd61 1538static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1539{
5380a101
JA
1540 elv_rb_del(&cfqq->sort_list, rq);
1541 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1542 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1543 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1544 cfq_add_rq_rb(rq);
e98ef89b 1545 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1546 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1547 rq_is_sync(rq));
1da177e4
LT
1548}
1549
206dc69b
JA
1550static struct request *
1551cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1552{
206dc69b 1553 struct task_struct *tsk = current;
91fac317 1554 struct cfq_io_context *cic;
206dc69b 1555 struct cfq_queue *cfqq;
1da177e4 1556
4ac845a2 1557 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1558 if (!cic)
1559 return NULL;
1560
1561 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1562 if (cfqq) {
1563 sector_t sector = bio->bi_sector + bio_sectors(bio);
1564
21183b07 1565 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1566 }
1da177e4 1567
1da177e4
LT
1568 return NULL;
1569}
1570
165125e1 1571static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1572{
22e2c507 1573 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1574
53c583d2 1575 cfqd->rq_in_driver++;
7b679138 1576 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1577 cfqd->rq_in_driver);
25776e35 1578
5b93629b 1579 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1580}
1581
165125e1 1582static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1583{
b4878f24
JA
1584 struct cfq_data *cfqd = q->elevator->elevator_data;
1585
53c583d2
CZ
1586 WARN_ON(!cfqd->rq_in_driver);
1587 cfqd->rq_in_driver--;
7b679138 1588 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1589 cfqd->rq_in_driver);
1da177e4
LT
1590}
1591
b4878f24 1592static void cfq_remove_request(struct request *rq)
1da177e4 1593{
5e705374 1594 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1595
5e705374
JA
1596 if (cfqq->next_rq == rq)
1597 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1598
b4878f24 1599 list_del_init(&rq->queuelist);
5e705374 1600 cfq_del_rq_rb(rq);
374f84ac 1601
45333d5a 1602 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1603 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1604 rq_data_dir(rq), rq_is_sync(rq));
7b6d91da 1605 if (rq->cmd_flags & REQ_META) {
374f84ac
JA
1606 WARN_ON(!cfqq->meta_pending);
1607 cfqq->meta_pending--;
1608 }
1da177e4
LT
1609}
1610
165125e1
JA
1611static int cfq_merge(struct request_queue *q, struct request **req,
1612 struct bio *bio)
1da177e4
LT
1613{
1614 struct cfq_data *cfqd = q->elevator->elevator_data;
1615 struct request *__rq;
1da177e4 1616
206dc69b 1617 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1618 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1619 *req = __rq;
1620 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1621 }
1622
1623 return ELEVATOR_NO_MERGE;
1da177e4
LT
1624}
1625
165125e1 1626static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1627 int type)
1da177e4 1628{
21183b07 1629 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1630 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1631
5e705374 1632 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1633 }
1da177e4
LT
1634}
1635
812d4026
DS
1636static void cfq_bio_merged(struct request_queue *q, struct request *req,
1637 struct bio *bio)
1638{
e98ef89b
VG
1639 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1640 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1641}
1642
1da177e4 1643static void
165125e1 1644cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1645 struct request *next)
1646{
cf7c25cf 1647 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1648 /*
1649 * reposition in fifo if next is older than rq
1650 */
1651 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1652 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1653 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1654 rq_set_fifo_time(rq, rq_fifo_time(next));
1655 }
22e2c507 1656
cf7c25cf
CZ
1657 if (cfqq->next_rq == next)
1658 cfqq->next_rq = rq;
b4878f24 1659 cfq_remove_request(next);
e98ef89b
VG
1660 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1661 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1662}
1663
165125e1 1664static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1665 struct bio *bio)
1666{
1667 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1668 struct cfq_io_context *cic;
da775265 1669 struct cfq_queue *cfqq;
da775265
JA
1670
1671 /*
ec8acb69 1672 * Disallow merge of a sync bio into an async request.
da775265 1673 */
91fac317 1674 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1675 return false;
da775265
JA
1676
1677 /*
719d3402
JA
1678 * Lookup the cfqq that this bio will be queued with. Allow
1679 * merge only if rq is queued there.
da775265 1680 */
4ac845a2 1681 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1682 if (!cic)
a6151c3a 1683 return false;
719d3402 1684
91fac317 1685 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1686 return cfqq == RQ_CFQQ(rq);
da775265
JA
1687}
1688
812df48d
DS
1689static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1690{
1691 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1692 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1693}
1694
febffd61
JA
1695static void __cfq_set_active_queue(struct cfq_data *cfqd,
1696 struct cfq_queue *cfqq)
22e2c507
JA
1697{
1698 if (cfqq) {
b1ffe737
DS
1699 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1700 cfqd->serving_prio, cfqd->serving_type);
62a37f6b
JT
1701 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1702 cfqq->slice_start = 0;
1703 cfqq->dispatch_start = jiffies;
1704 cfqq->allocated_slice = 0;
1705 cfqq->slice_end = 0;
1706 cfqq->slice_dispatch = 0;
1707 cfqq->nr_sectors = 0;
1708
1709 cfq_clear_cfqq_wait_request(cfqq);
1710 cfq_clear_cfqq_must_dispatch(cfqq);
1711 cfq_clear_cfqq_must_alloc_slice(cfqq);
1712 cfq_clear_cfqq_fifo_expire(cfqq);
1713 cfq_mark_cfqq_slice_new(cfqq);
1714
1715 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1716 }
1717
1718 cfqd->active_queue = cfqq;
1719}
1720
7b14e3b5
JA
1721/*
1722 * current cfqq expired its slice (or was too idle), select new one
1723 */
1724static void
1725__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1726 bool timed_out)
7b14e3b5 1727{
7b679138
JA
1728 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1729
7b14e3b5 1730 if (cfq_cfqq_wait_request(cfqq))
812df48d 1731 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1732
7b14e3b5 1733 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1734 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1735
ae54abed
SL
1736 /*
1737 * If this cfqq is shared between multiple processes, check to
1738 * make sure that those processes are still issuing I/Os within
1739 * the mean seek distance. If not, it may be time to break the
1740 * queues apart again.
1741 */
1742 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1743 cfq_mark_cfqq_split_coop(cfqq);
1744
7b14e3b5 1745 /*
6084cdda 1746 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1747 */
c553f8e3
SL
1748 if (timed_out) {
1749 if (cfq_cfqq_slice_new(cfqq))
ba5bd520 1750 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3
SL
1751 else
1752 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1753 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1754 }
7b14e3b5 1755
e5ff082e 1756 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1757
f04a6424
VG
1758 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1759 cfq_del_cfqq_rr(cfqd, cfqq);
1760
edd75ffd 1761 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1762
1763 if (cfqq == cfqd->active_queue)
1764 cfqd->active_queue = NULL;
1765
1766 if (cfqd->active_cic) {
1767 put_io_context(cfqd->active_cic->ioc);
1768 cfqd->active_cic = NULL;
1769 }
7b14e3b5
JA
1770}
1771
e5ff082e 1772static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1773{
1774 struct cfq_queue *cfqq = cfqd->active_queue;
1775
1776 if (cfqq)
e5ff082e 1777 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1778}
1779
498d3aa2
JA
1780/*
1781 * Get next queue for service. Unless we have a queue preemption,
1782 * we'll simply select the first cfqq in the service tree.
1783 */
6d048f53 1784static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1785{
c0324a02 1786 struct cfq_rb_root *service_tree =
cdb16e8f 1787 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1788 cfqd->serving_type);
d9e7620e 1789
f04a6424
VG
1790 if (!cfqd->rq_queued)
1791 return NULL;
1792
1fa8f6d6
VG
1793 /* There is nothing to dispatch */
1794 if (!service_tree)
1795 return NULL;
c0324a02
CZ
1796 if (RB_EMPTY_ROOT(&service_tree->rb))
1797 return NULL;
1798 return cfq_rb_first(service_tree);
6d048f53
JA
1799}
1800
f04a6424
VG
1801static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1802{
25fb5169 1803 struct cfq_group *cfqg;
f04a6424
VG
1804 struct cfq_queue *cfqq;
1805 int i, j;
1806 struct cfq_rb_root *st;
1807
1808 if (!cfqd->rq_queued)
1809 return NULL;
1810
25fb5169
VG
1811 cfqg = cfq_get_next_cfqg(cfqd);
1812 if (!cfqg)
1813 return NULL;
1814
f04a6424
VG
1815 for_each_cfqg_st(cfqg, i, j, st)
1816 if ((cfqq = cfq_rb_first(st)) != NULL)
1817 return cfqq;
1818 return NULL;
1819}
1820
498d3aa2
JA
1821/*
1822 * Get and set a new active queue for service.
1823 */
a36e71f9
JA
1824static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1825 struct cfq_queue *cfqq)
6d048f53 1826{
e00ef799 1827 if (!cfqq)
a36e71f9 1828 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1829
22e2c507 1830 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1831 return cfqq;
22e2c507
JA
1832}
1833
d9e7620e
JA
1834static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1835 struct request *rq)
1836{
83096ebf
TH
1837 if (blk_rq_pos(rq) >= cfqd->last_position)
1838 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1839 else
83096ebf 1840 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1841}
1842
b2c18e1e 1843static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1844 struct request *rq)
6d048f53 1845{
e9ce335d 1846 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1847}
1848
a36e71f9
JA
1849static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1850 struct cfq_queue *cur_cfqq)
1851{
f2d1f0ae 1852 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1853 struct rb_node *parent, *node;
1854 struct cfq_queue *__cfqq;
1855 sector_t sector = cfqd->last_position;
1856
1857 if (RB_EMPTY_ROOT(root))
1858 return NULL;
1859
1860 /*
1861 * First, if we find a request starting at the end of the last
1862 * request, choose it.
1863 */
f2d1f0ae 1864 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1865 if (__cfqq)
1866 return __cfqq;
1867
1868 /*
1869 * If the exact sector wasn't found, the parent of the NULL leaf
1870 * will contain the closest sector.
1871 */
1872 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1873 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1874 return __cfqq;
1875
2e46e8b2 1876 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1877 node = rb_next(&__cfqq->p_node);
1878 else
1879 node = rb_prev(&__cfqq->p_node);
1880 if (!node)
1881 return NULL;
1882
1883 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1884 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1885 return __cfqq;
1886
1887 return NULL;
1888}
1889
1890/*
1891 * cfqd - obvious
1892 * cur_cfqq - passed in so that we don't decide that the current queue is
1893 * closely cooperating with itself.
1894 *
1895 * So, basically we're assuming that that cur_cfqq has dispatched at least
1896 * one request, and that cfqd->last_position reflects a position on the disk
1897 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1898 * assumption.
1899 */
1900static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1901 struct cfq_queue *cur_cfqq)
6d048f53 1902{
a36e71f9
JA
1903 struct cfq_queue *cfqq;
1904
39c01b21
DS
1905 if (cfq_class_idle(cur_cfqq))
1906 return NULL;
e6c5bc73
JM
1907 if (!cfq_cfqq_sync(cur_cfqq))
1908 return NULL;
1909 if (CFQQ_SEEKY(cur_cfqq))
1910 return NULL;
1911
b9d8f4c7
GJ
1912 /*
1913 * Don't search priority tree if it's the only queue in the group.
1914 */
1915 if (cur_cfqq->cfqg->nr_cfqq == 1)
1916 return NULL;
1917
6d048f53 1918 /*
d9e7620e
JA
1919 * We should notice if some of the queues are cooperating, eg
1920 * working closely on the same area of the disk. In that case,
1921 * we can group them together and don't waste time idling.
6d048f53 1922 */
a36e71f9
JA
1923 cfqq = cfqq_close(cfqd, cur_cfqq);
1924 if (!cfqq)
1925 return NULL;
1926
8682e1f1
VG
1927 /* If new queue belongs to different cfq_group, don't choose it */
1928 if (cur_cfqq->cfqg != cfqq->cfqg)
1929 return NULL;
1930
df5fe3e8
JM
1931 /*
1932 * It only makes sense to merge sync queues.
1933 */
1934 if (!cfq_cfqq_sync(cfqq))
1935 return NULL;
e6c5bc73
JM
1936 if (CFQQ_SEEKY(cfqq))
1937 return NULL;
df5fe3e8 1938
c0324a02
CZ
1939 /*
1940 * Do not merge queues of different priority classes
1941 */
1942 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1943 return NULL;
1944
a36e71f9 1945 return cfqq;
6d048f53
JA
1946}
1947
a6d44e98
CZ
1948/*
1949 * Determine whether we should enforce idle window for this queue.
1950 */
1951
1952static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1953{
1954 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1955 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1956
f04a6424
VG
1957 BUG_ON(!service_tree);
1958 BUG_ON(!service_tree->count);
1959
b6508c16
VG
1960 if (!cfqd->cfq_slice_idle)
1961 return false;
1962
a6d44e98
CZ
1963 /* We never do for idle class queues. */
1964 if (prio == IDLE_WORKLOAD)
1965 return false;
1966
1967 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1968 if (cfq_cfqq_idle_window(cfqq) &&
1969 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1970 return true;
1971
1972 /*
1973 * Otherwise, we do only if they are the last ones
1974 * in their service tree.
1975 */
b1ffe737 1976 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
c1e44756 1977 return true;
b1ffe737
DS
1978 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1979 service_tree->count);
c1e44756 1980 return false;
a6d44e98
CZ
1981}
1982
6d048f53 1983static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1984{
1792669c 1985 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1986 struct cfq_io_context *cic;
80bdf0c7 1987 unsigned long sl, group_idle = 0;
7b14e3b5 1988
a68bbddb 1989 /*
f7d7b7a7
JA
1990 * SSD device without seek penalty, disable idling. But only do so
1991 * for devices that support queuing, otherwise we still have a problem
1992 * with sync vs async workloads.
a68bbddb 1993 */
f7d7b7a7 1994 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1995 return;
1996
dd67d051 1997 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1998 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1999
2000 /*
2001 * idle is disabled, either manually or by past process history
2002 */
80bdf0c7
VG
2003 if (!cfq_should_idle(cfqd, cfqq)) {
2004 /* no queue idling. Check for group idling */
2005 if (cfqd->cfq_group_idle)
2006 group_idle = cfqd->cfq_group_idle;
2007 else
2008 return;
2009 }
6d048f53 2010
7b679138 2011 /*
8e550632 2012 * still active requests from this queue, don't idle
7b679138 2013 */
8e550632 2014 if (cfqq->dispatched)
7b679138
JA
2015 return;
2016
22e2c507
JA
2017 /*
2018 * task has exited, don't wait
2019 */
206dc69b 2020 cic = cfqd->active_cic;
66dac98e 2021 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
2022 return;
2023
355b659c
CZ
2024 /*
2025 * If our average think time is larger than the remaining time
2026 * slice, then don't idle. This avoids overrunning the allotted
2027 * time slice.
2028 */
2029 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
2030 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
2031 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
2032 cic->ttime_mean);
355b659c 2033 return;
b1ffe737 2034 }
355b659c 2035
80bdf0c7
VG
2036 /* There are other queues in the group, don't do group idle */
2037 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2038 return;
2039
3b18152c 2040 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 2041
80bdf0c7
VG
2042 if (group_idle)
2043 sl = cfqd->cfq_group_idle;
2044 else
2045 sl = cfqd->cfq_slice_idle;
206dc69b 2046
7b14e3b5 2047 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 2048 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
2049 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2050 group_idle ? 1 : 0);
1da177e4
LT
2051}
2052
498d3aa2
JA
2053/*
2054 * Move request from internal lists to the request queue dispatch list.
2055 */
165125e1 2056static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 2057{
3ed9a296 2058 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2059 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2060
7b679138
JA
2061 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2062
06d21886 2063 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 2064 cfq_remove_request(rq);
6d048f53 2065 cfqq->dispatched++;
80bdf0c7 2066 (RQ_CFQG(rq))->dispatched++;
5380a101 2067 elv_dispatch_sort(q, rq);
3ed9a296 2068
53c583d2 2069 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 2070 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 2071 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 2072 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
2073}
2074
2075/*
2076 * return expired entry, or NULL to just start from scratch in rbtree
2077 */
febffd61 2078static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 2079{
30996f40 2080 struct request *rq = NULL;
1da177e4 2081
3b18152c 2082 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 2083 return NULL;
cb887411
JA
2084
2085 cfq_mark_cfqq_fifo_expire(cfqq);
2086
89850f7e
JA
2087 if (list_empty(&cfqq->fifo))
2088 return NULL;
1da177e4 2089
89850f7e 2090 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 2091 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 2092 rq = NULL;
1da177e4 2093
30996f40 2094 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 2095 return rq;
1da177e4
LT
2096}
2097
22e2c507
JA
2098static inline int
2099cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2100{
2101 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2102
22e2c507 2103 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2104
22e2c507 2105 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
2106}
2107
df5fe3e8
JM
2108/*
2109 * Must be called with the queue_lock held.
2110 */
2111static int cfqq_process_refs(struct cfq_queue *cfqq)
2112{
2113 int process_refs, io_refs;
2114
2115 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
30d7b944 2116 process_refs = cfqq->ref - io_refs;
df5fe3e8
JM
2117 BUG_ON(process_refs < 0);
2118 return process_refs;
2119}
2120
2121static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2122{
e6c5bc73 2123 int process_refs, new_process_refs;
df5fe3e8
JM
2124 struct cfq_queue *__cfqq;
2125
c10b61f0
JM
2126 /*
2127 * If there are no process references on the new_cfqq, then it is
2128 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2129 * chain may have dropped their last reference (not just their
2130 * last process reference).
2131 */
2132 if (!cfqq_process_refs(new_cfqq))
2133 return;
2134
df5fe3e8
JM
2135 /* Avoid a circular list and skip interim queue merges */
2136 while ((__cfqq = new_cfqq->new_cfqq)) {
2137 if (__cfqq == cfqq)
2138 return;
2139 new_cfqq = __cfqq;
2140 }
2141
2142 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2143 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2144 /*
2145 * If the process for the cfqq has gone away, there is no
2146 * sense in merging the queues.
2147 */
c10b61f0 2148 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2149 return;
2150
e6c5bc73
JM
2151 /*
2152 * Merge in the direction of the lesser amount of work.
2153 */
e6c5bc73
JM
2154 if (new_process_refs >= process_refs) {
2155 cfqq->new_cfqq = new_cfqq;
30d7b944 2156 new_cfqq->ref += process_refs;
e6c5bc73
JM
2157 } else {
2158 new_cfqq->new_cfqq = cfqq;
30d7b944 2159 cfqq->ref += new_process_refs;
e6c5bc73 2160 }
df5fe3e8
JM
2161}
2162
cdb16e8f 2163static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2164 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2165{
2166 struct cfq_queue *queue;
2167 int i;
2168 bool key_valid = false;
2169 unsigned long lowest_key = 0;
2170 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2171
65b32a57
VG
2172 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2173 /* select the one with lowest rb_key */
2174 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2175 if (queue &&
2176 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2177 lowest_key = queue->rb_key;
2178 cur_best = i;
2179 key_valid = true;
2180 }
2181 }
2182
2183 return cur_best;
2184}
2185
cdb16e8f 2186static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2187{
718eee05
CZ
2188 unsigned slice;
2189 unsigned count;
cdb16e8f 2190 struct cfq_rb_root *st;
58ff82f3 2191 unsigned group_slice;
e4ea0c16 2192 enum wl_prio_t original_prio = cfqd->serving_prio;
1fa8f6d6 2193
718eee05 2194 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2195 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2196 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2197 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2198 cfqd->serving_prio = BE_WORKLOAD;
2199 else {
2200 cfqd->serving_prio = IDLE_WORKLOAD;
2201 cfqd->workload_expires = jiffies + 1;
2202 return;
2203 }
2204
e4ea0c16
SL
2205 if (original_prio != cfqd->serving_prio)
2206 goto new_workload;
2207
718eee05
CZ
2208 /*
2209 * For RT and BE, we have to choose also the type
2210 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2211 * expiration time
2212 */
65b32a57 2213 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2214 count = st->count;
718eee05
CZ
2215
2216 /*
65b32a57 2217 * check workload expiration, and that we still have other queues ready
718eee05 2218 */
65b32a57 2219 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2220 return;
2221
e4ea0c16 2222new_workload:
718eee05
CZ
2223 /* otherwise select new workload type */
2224 cfqd->serving_type =
65b32a57
VG
2225 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2226 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2227 count = st->count;
718eee05
CZ
2228
2229 /*
2230 * the workload slice is computed as a fraction of target latency
2231 * proportional to the number of queues in that workload, over
2232 * all the queues in the same priority class
2233 */
58ff82f3
VG
2234 group_slice = cfq_group_slice(cfqd, cfqg);
2235
2236 slice = group_slice * count /
2237 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2238 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2239
f26bd1f0
VG
2240 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2241 unsigned int tmp;
2242
2243 /*
2244 * Async queues are currently system wide. Just taking
2245 * proportion of queues with-in same group will lead to higher
2246 * async ratio system wide as generally root group is going
2247 * to have higher weight. A more accurate thing would be to
2248 * calculate system wide asnc/sync ratio.
2249 */
2250 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2251 tmp = tmp/cfqd->busy_queues;
2252 slice = min_t(unsigned, slice, tmp);
2253
718eee05
CZ
2254 /* async workload slice is scaled down according to
2255 * the sync/async slice ratio. */
2256 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2257 } else
718eee05
CZ
2258 /* sync workload slice is at least 2 * cfq_slice_idle */
2259 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2260
2261 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2262 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2263 cfqd->workload_expires = jiffies + slice;
2264}
2265
1fa8f6d6
VG
2266static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2267{
2268 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2269 struct cfq_group *cfqg;
1fa8f6d6
VG
2270
2271 if (RB_EMPTY_ROOT(&st->rb))
2272 return NULL;
25bc6b07 2273 cfqg = cfq_rb_first_group(st);
25bc6b07
VG
2274 update_min_vdisktime(st);
2275 return cfqg;
1fa8f6d6
VG
2276}
2277
cdb16e8f
VG
2278static void cfq_choose_cfqg(struct cfq_data *cfqd)
2279{
1fa8f6d6
VG
2280 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2281
2282 cfqd->serving_group = cfqg;
dae739eb
VG
2283
2284 /* Restore the workload type data */
2285 if (cfqg->saved_workload_slice) {
2286 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2287 cfqd->serving_type = cfqg->saved_workload;
2288 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2289 } else
2290 cfqd->workload_expires = jiffies - 1;
2291
1fa8f6d6 2292 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2293}
2294
22e2c507 2295/*
498d3aa2
JA
2296 * Select a queue for service. If we have a current active queue,
2297 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2298 */
1b5ed5e1 2299static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2300{
a36e71f9 2301 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2302
22e2c507
JA
2303 cfqq = cfqd->active_queue;
2304 if (!cfqq)
2305 goto new_queue;
1da177e4 2306
f04a6424
VG
2307 if (!cfqd->rq_queued)
2308 return NULL;
c244bb50
VG
2309
2310 /*
2311 * We were waiting for group to get backlogged. Expire the queue
2312 */
2313 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2314 goto expire;
2315
22e2c507 2316 /*
6d048f53 2317 * The active queue has run out of time, expire it and select new.
22e2c507 2318 */
7667aa06
VG
2319 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2320 /*
2321 * If slice had not expired at the completion of last request
2322 * we might not have turned on wait_busy flag. Don't expire
2323 * the queue yet. Allow the group to get backlogged.
2324 *
2325 * The very fact that we have used the slice, that means we
2326 * have been idling all along on this queue and it should be
2327 * ok to wait for this request to complete.
2328 */
82bbbf28
VG
2329 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2330 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2331 cfqq = NULL;
7667aa06 2332 goto keep_queue;
82bbbf28 2333 } else
80bdf0c7 2334 goto check_group_idle;
7667aa06 2335 }
1da177e4 2336
22e2c507 2337 /*
6d048f53
JA
2338 * The active queue has requests and isn't expired, allow it to
2339 * dispatch.
22e2c507 2340 */
dd67d051 2341 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2342 goto keep_queue;
6d048f53 2343
a36e71f9
JA
2344 /*
2345 * If another queue has a request waiting within our mean seek
2346 * distance, let it run. The expire code will check for close
2347 * cooperators and put the close queue at the front of the service
df5fe3e8 2348 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2349 */
b3b6d040 2350 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2351 if (new_cfqq) {
2352 if (!cfqq->new_cfqq)
2353 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2354 goto expire;
df5fe3e8 2355 }
a36e71f9 2356
6d048f53
JA
2357 /*
2358 * No requests pending. If the active queue still has requests in
2359 * flight or is idling for a new request, allow either of these
2360 * conditions to happen (or time out) before selecting a new queue.
2361 */
80bdf0c7
VG
2362 if (timer_pending(&cfqd->idle_slice_timer)) {
2363 cfqq = NULL;
2364 goto keep_queue;
2365 }
2366
8e1ac665
SL
2367 /*
2368 * This is a deep seek queue, but the device is much faster than
2369 * the queue can deliver, don't idle
2370 **/
2371 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2372 (cfq_cfqq_slice_new(cfqq) ||
2373 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2374 cfq_clear_cfqq_deep(cfqq);
2375 cfq_clear_cfqq_idle_window(cfqq);
2376 }
2377
80bdf0c7
VG
2378 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2379 cfqq = NULL;
2380 goto keep_queue;
2381 }
2382
2383 /*
2384 * If group idle is enabled and there are requests dispatched from
2385 * this group, wait for requests to complete.
2386 */
2387check_group_idle:
2388 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2389 && cfqq->cfqg->dispatched) {
caaa5f9f
JA
2390 cfqq = NULL;
2391 goto keep_queue;
22e2c507
JA
2392 }
2393
3b18152c 2394expire:
e5ff082e 2395 cfq_slice_expired(cfqd, 0);
3b18152c 2396new_queue:
718eee05
CZ
2397 /*
2398 * Current queue expired. Check if we have to switch to a new
2399 * service tree
2400 */
2401 if (!new_cfqq)
cdb16e8f 2402 cfq_choose_cfqg(cfqd);
718eee05 2403
a36e71f9 2404 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2405keep_queue:
3b18152c 2406 return cfqq;
22e2c507
JA
2407}
2408
febffd61 2409static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2410{
2411 int dispatched = 0;
2412
2413 while (cfqq->next_rq) {
2414 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2415 dispatched++;
2416 }
2417
2418 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2419
2420 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2421 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2422 return dispatched;
2423}
2424
498d3aa2
JA
2425/*
2426 * Drain our current requests. Used for barriers and when switching
2427 * io schedulers on-the-fly.
2428 */
d9e7620e 2429static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2430{
0871714e 2431 struct cfq_queue *cfqq;
d9e7620e 2432 int dispatched = 0;
cdb16e8f 2433
3440c49f 2434 /* Expire the timeslice of the current active queue first */
e5ff082e 2435 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2436 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2437 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2438 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2439 }
1b5ed5e1 2440
1b5ed5e1
TH
2441 BUG_ON(cfqd->busy_queues);
2442
6923715a 2443 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2444 return dispatched;
2445}
2446
abc3c744
SL
2447static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2448 struct cfq_queue *cfqq)
2449{
2450 /* the queue hasn't finished any request, can't estimate */
2451 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2452 return true;
abc3c744
SL
2453 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2454 cfqq->slice_end))
c1e44756 2455 return true;
abc3c744 2456
c1e44756 2457 return false;
abc3c744
SL
2458}
2459
0b182d61 2460static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2461{
2f5cb738 2462 unsigned int max_dispatch;
22e2c507 2463
5ad531db
JA
2464 /*
2465 * Drain async requests before we start sync IO
2466 */
53c583d2 2467 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2468 return false;
5ad531db 2469
2f5cb738
JA
2470 /*
2471 * If this is an async queue and we have sync IO in flight, let it wait
2472 */
53c583d2 2473 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2474 return false;
2f5cb738 2475
abc3c744 2476 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2477 if (cfq_class_idle(cfqq))
2478 max_dispatch = 1;
b4878f24 2479
2f5cb738
JA
2480 /*
2481 * Does this cfqq already have too much IO in flight?
2482 */
2483 if (cfqq->dispatched >= max_dispatch) {
ef8a41df 2484 bool promote_sync = false;
2f5cb738
JA
2485 /*
2486 * idle queue must always only have a single IO in flight
2487 */
3ed9a296 2488 if (cfq_class_idle(cfqq))
0b182d61 2489 return false;
3ed9a296 2490
ef8a41df 2491 /*
c4ade94f
LS
2492 * If there is only one sync queue
2493 * we can ignore async queue here and give the sync
ef8a41df
SL
2494 * queue no dispatch limit. The reason is a sync queue can
2495 * preempt async queue, limiting the sync queue doesn't make
2496 * sense. This is useful for aiostress test.
2497 */
c4ade94f
LS
2498 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2499 promote_sync = true;
ef8a41df 2500
2f5cb738
JA
2501 /*
2502 * We have other queues, don't allow more IO from this one
2503 */
ef8a41df
SL
2504 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2505 !promote_sync)
0b182d61 2506 return false;
9ede209e 2507
365722bb 2508 /*
474b18cc 2509 * Sole queue user, no limit
365722bb 2510 */
ef8a41df 2511 if (cfqd->busy_queues == 1 || promote_sync)
abc3c744
SL
2512 max_dispatch = -1;
2513 else
2514 /*
2515 * Normally we start throttling cfqq when cfq_quantum/2
2516 * requests have been dispatched. But we can drive
2517 * deeper queue depths at the beginning of slice
2518 * subjected to upper limit of cfq_quantum.
2519 * */
2520 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2521 }
2522
2523 /*
2524 * Async queues must wait a bit before being allowed dispatch.
2525 * We also ramp up the dispatch depth gradually for async IO,
2526 * based on the last sync IO we serviced
2527 */
963b72fc 2528 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2529 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2530 unsigned int depth;
365722bb 2531
61f0c1dc 2532 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2533 if (!depth && !cfqq->dispatched)
2534 depth = 1;
8e296755
JA
2535 if (depth < max_dispatch)
2536 max_dispatch = depth;
2f5cb738 2537 }
3ed9a296 2538
0b182d61
JA
2539 /*
2540 * If we're below the current max, allow a dispatch
2541 */
2542 return cfqq->dispatched < max_dispatch;
2543}
2544
2545/*
2546 * Dispatch a request from cfqq, moving them to the request queue
2547 * dispatch list.
2548 */
2549static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2550{
2551 struct request *rq;
2552
2553 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2554
2555 if (!cfq_may_dispatch(cfqd, cfqq))
2556 return false;
2557
2558 /*
2559 * follow expired path, else get first next available
2560 */
2561 rq = cfq_check_fifo(cfqq);
2562 if (!rq)
2563 rq = cfqq->next_rq;
2564
2565 /*
2566 * insert request into driver dispatch list
2567 */
2568 cfq_dispatch_insert(cfqd->queue, rq);
2569
2570 if (!cfqd->active_cic) {
2571 struct cfq_io_context *cic = RQ_CIC(rq);
2572
2573 atomic_long_inc(&cic->ioc->refcount);
2574 cfqd->active_cic = cic;
2575 }
2576
2577 return true;
2578}
2579
2580/*
2581 * Find the cfqq that we need to service and move a request from that to the
2582 * dispatch list
2583 */
2584static int cfq_dispatch_requests(struct request_queue *q, int force)
2585{
2586 struct cfq_data *cfqd = q->elevator->elevator_data;
2587 struct cfq_queue *cfqq;
2588
2589 if (!cfqd->busy_queues)
2590 return 0;
2591
2592 if (unlikely(force))
2593 return cfq_forced_dispatch(cfqd);
2594
2595 cfqq = cfq_select_queue(cfqd);
2596 if (!cfqq)
8e296755
JA
2597 return 0;
2598
2f5cb738 2599 /*
0b182d61 2600 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2601 */
0b182d61
JA
2602 if (!cfq_dispatch_request(cfqd, cfqq))
2603 return 0;
2604
2f5cb738 2605 cfqq->slice_dispatch++;
b029195d 2606 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2607
2f5cb738
JA
2608 /*
2609 * expire an async queue immediately if it has used up its slice. idle
2610 * queue always expire after 1 dispatch round.
2611 */
2612 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2613 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2614 cfq_class_idle(cfqq))) {
2615 cfqq->slice_end = jiffies + 1;
e5ff082e 2616 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2617 }
2618
b217a903 2619 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2620 return 1;
1da177e4
LT
2621}
2622
1da177e4 2623/*
5e705374
JA
2624 * task holds one reference to the queue, dropped when task exits. each rq
2625 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2626 *
b1c35769 2627 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2628 * queue lock must be held here.
2629 */
2630static void cfq_put_queue(struct cfq_queue *cfqq)
2631{
22e2c507 2632 struct cfq_data *cfqd = cfqq->cfqd;
0bbfeb83 2633 struct cfq_group *cfqg;
22e2c507 2634
30d7b944 2635 BUG_ON(cfqq->ref <= 0);
1da177e4 2636
30d7b944
SL
2637 cfqq->ref--;
2638 if (cfqq->ref)
1da177e4
LT
2639 return;
2640
7b679138 2641 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2642 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2643 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2644 cfqg = cfqq->cfqg;
1da177e4 2645
28f95cbc 2646 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2647 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2648 cfq_schedule_dispatch(cfqd);
28f95cbc 2649 }
22e2c507 2650
f04a6424 2651 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2652 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2653 cfq_put_cfqg(cfqg);
1da177e4
LT
2654}
2655
d6de8be7 2656/*
5f45c695 2657 * Call func for each cic attached to this ioc.
d6de8be7 2658 */
07416d29 2659static void
5f45c695
JA
2660call_for_each_cic(struct io_context *ioc,
2661 void (*func)(struct io_context *, struct cfq_io_context *))
07416d29
JA
2662{
2663 struct cfq_io_context *cic;
2664 struct hlist_node *n;
2665
5f45c695
JA
2666 rcu_read_lock();
2667
07416d29
JA
2668 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2669 func(ioc, cic);
07416d29 2670
4ac845a2 2671 rcu_read_unlock();
34e6bbf2
FC
2672}
2673
2674static void cfq_cic_free_rcu(struct rcu_head *head)
2675{
2676 struct cfq_io_context *cic;
2677
2678 cic = container_of(head, struct cfq_io_context, rcu_head);
2679
2680 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2681 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2682
9a11b4ed
JA
2683 if (ioc_gone) {
2684 /*
2685 * CFQ scheduler is exiting, grab exit lock and check
2686 * the pending io context count. If it hits zero,
2687 * complete ioc_gone and set it back to NULL
2688 */
2689 spin_lock(&ioc_gone_lock);
245b2e70 2690 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2691 complete(ioc_gone);
2692 ioc_gone = NULL;
2693 }
2694 spin_unlock(&ioc_gone_lock);
2695 }
34e6bbf2 2696}
4ac845a2 2697
34e6bbf2
FC
2698static void cfq_cic_free(struct cfq_io_context *cic)
2699{
2700 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2701}
2702
2703static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2704{
2705 unsigned long flags;
bca4b914 2706 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2707
bca4b914 2708 BUG_ON(!(dead_key & CIC_DEAD_KEY));
4ac845a2
JA
2709
2710 spin_lock_irqsave(&ioc->lock, flags);
80b15c73 2711 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2712 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2713 spin_unlock_irqrestore(&ioc->lock, flags);
2714
34e6bbf2 2715 cfq_cic_free(cic);
4ac845a2
JA
2716}
2717
d6de8be7
JA
2718/*
2719 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2720 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2721 * and ->trim() which is called with the task lock held
2722 */
4ac845a2
JA
2723static void cfq_free_io_context(struct io_context *ioc)
2724{
4ac845a2 2725 /*
34e6bbf2
FC
2726 * ioc->refcount is zero here, or we are called from elv_unregister(),
2727 * so no more cic's are allowed to be linked into this ioc. So it
2728 * should be ok to iterate over the known list, we will see all cic's
2729 * since no new ones are added.
4ac845a2 2730 */
5f45c695 2731 call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2732}
2733
d02a2c07 2734static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2735{
df5fe3e8
JM
2736 struct cfq_queue *__cfqq, *next;
2737
df5fe3e8
JM
2738 /*
2739 * If this queue was scheduled to merge with another queue, be
2740 * sure to drop the reference taken on that queue (and others in
2741 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2742 */
2743 __cfqq = cfqq->new_cfqq;
2744 while (__cfqq) {
2745 if (__cfqq == cfqq) {
2746 WARN(1, "cfqq->new_cfqq loop detected\n");
2747 break;
2748 }
2749 next = __cfqq->new_cfqq;
2750 cfq_put_queue(__cfqq);
2751 __cfqq = next;
2752 }
d02a2c07
SL
2753}
2754
2755static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2756{
2757 if (unlikely(cfqq == cfqd->active_queue)) {
2758 __cfq_slice_expired(cfqd, cfqq, 0);
2759 cfq_schedule_dispatch(cfqd);
2760 }
2761
2762 cfq_put_cooperator(cfqq);
df5fe3e8 2763
89850f7e
JA
2764 cfq_put_queue(cfqq);
2765}
22e2c507 2766
89850f7e
JA
2767static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2768 struct cfq_io_context *cic)
2769{
4faa3c81
FC
2770 struct io_context *ioc = cic->ioc;
2771
fc46379d 2772 list_del_init(&cic->queue_list);
4ac845a2
JA
2773
2774 /*
bca4b914 2775 * Make sure dead mark is seen for dead queues
4ac845a2 2776 */
fc46379d 2777 smp_wmb();
bca4b914 2778 cic->key = cfqd_dead_key(cfqd);
fc46379d 2779
4faa3c81
FC
2780 if (ioc->ioc_data == cic)
2781 rcu_assign_pointer(ioc->ioc_data, NULL);
2782
ff6657c6
JA
2783 if (cic->cfqq[BLK_RW_ASYNC]) {
2784 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2785 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2786 }
2787
ff6657c6
JA
2788 if (cic->cfqq[BLK_RW_SYNC]) {
2789 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2790 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2791 }
89850f7e
JA
2792}
2793
4ac845a2
JA
2794static void cfq_exit_single_io_context(struct io_context *ioc,
2795 struct cfq_io_context *cic)
89850f7e 2796{
bca4b914 2797 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2798
89850f7e 2799 if (cfqd) {
165125e1 2800 struct request_queue *q = cfqd->queue;
4ac845a2 2801 unsigned long flags;
89850f7e 2802
4ac845a2 2803 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2804
2805 /*
2806 * Ensure we get a fresh copy of the ->key to prevent
2807 * race between exiting task and queue
2808 */
2809 smp_read_barrier_depends();
bca4b914 2810 if (cic->key == cfqd)
62c1fe9d
JA
2811 __cfq_exit_single_io_context(cfqd, cic);
2812
4ac845a2 2813 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2814 }
1da177e4
LT
2815}
2816
498d3aa2
JA
2817/*
2818 * The process that ioc belongs to has exited, we need to clean up
2819 * and put the internal structures we have that belongs to that process.
2820 */
e2d74ac0 2821static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2822{
4ac845a2 2823 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2824}
2825
22e2c507 2826static struct cfq_io_context *
8267e268 2827cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2828{
b5deef90 2829 struct cfq_io_context *cic;
1da177e4 2830
94f6030c
CL
2831 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2832 cfqd->queue->node);
1da177e4 2833 if (cic) {
22e2c507 2834 cic->last_end_request = jiffies;
553698f9 2835 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2836 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2837 cic->dtor = cfq_free_io_context;
2838 cic->exit = cfq_exit_io_context;
245b2e70 2839 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2840 }
2841
2842 return cic;
2843}
2844
fd0928df 2845static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2846{
2847 struct task_struct *tsk = current;
2848 int ioprio_class;
2849
3b18152c 2850 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2851 return;
2852
fd0928df 2853 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2854 switch (ioprio_class) {
fe094d98
JA
2855 default:
2856 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2857 case IOPRIO_CLASS_NONE:
2858 /*
6d63c275 2859 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2860 */
2861 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2862 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2863 break;
2864 case IOPRIO_CLASS_RT:
2865 cfqq->ioprio = task_ioprio(ioc);
2866 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2867 break;
2868 case IOPRIO_CLASS_BE:
2869 cfqq->ioprio = task_ioprio(ioc);
2870 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2871 break;
2872 case IOPRIO_CLASS_IDLE:
2873 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2874 cfqq->ioprio = 7;
2875 cfq_clear_cfqq_idle_window(cfqq);
2876 break;
22e2c507
JA
2877 }
2878
2879 /*
2880 * keep track of original prio settings in case we have to temporarily
2881 * elevate the priority of this queue
2882 */
2883 cfqq->org_ioprio = cfqq->ioprio;
2884 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2885 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2886}
2887
febffd61 2888static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2889{
bca4b914 2890 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2891 struct cfq_queue *cfqq;
c1b707d2 2892 unsigned long flags;
35e6077c 2893
caaa5f9f
JA
2894 if (unlikely(!cfqd))
2895 return;
2896
c1b707d2 2897 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2898
ff6657c6 2899 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2900 if (cfqq) {
2901 struct cfq_queue *new_cfqq;
ff6657c6
JA
2902 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2903 GFP_ATOMIC);
caaa5f9f 2904 if (new_cfqq) {
ff6657c6 2905 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2906 cfq_put_queue(cfqq);
2907 }
22e2c507 2908 }
caaa5f9f 2909
ff6657c6 2910 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2911 if (cfqq)
2912 cfq_mark_cfqq_prio_changed(cfqq);
2913
c1b707d2 2914 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2915}
2916
fc46379d 2917static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2918{
4ac845a2 2919 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2920 ioc->ioprio_changed = 0;
22e2c507
JA
2921}
2922
d5036d77 2923static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2924 pid_t pid, bool is_sync)
d5036d77
JA
2925{
2926 RB_CLEAR_NODE(&cfqq->rb_node);
2927 RB_CLEAR_NODE(&cfqq->p_node);
2928 INIT_LIST_HEAD(&cfqq->fifo);
2929
30d7b944 2930 cfqq->ref = 0;
d5036d77
JA
2931 cfqq->cfqd = cfqd;
2932
2933 cfq_mark_cfqq_prio_changed(cfqq);
2934
2935 if (is_sync) {
2936 if (!cfq_class_idle(cfqq))
2937 cfq_mark_cfqq_idle_window(cfqq);
2938 cfq_mark_cfqq_sync(cfqq);
2939 }
2940 cfqq->pid = pid;
2941}
2942
24610333
VG
2943#ifdef CONFIG_CFQ_GROUP_IOSCHED
2944static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2945{
2946 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2947 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2948 unsigned long flags;
2949 struct request_queue *q;
2950
2951 if (unlikely(!cfqd))
2952 return;
2953
2954 q = cfqd->queue;
2955
2956 spin_lock_irqsave(q->queue_lock, flags);
2957
2958 if (sync_cfqq) {
2959 /*
2960 * Drop reference to sync queue. A new sync queue will be
2961 * assigned in new group upon arrival of a fresh request.
2962 */
2963 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2964 cic_set_cfqq(cic, NULL, 1);
2965 cfq_put_queue(sync_cfqq);
2966 }
2967
2968 spin_unlock_irqrestore(q->queue_lock, flags);
2969}
2970
2971static void cfq_ioc_set_cgroup(struct io_context *ioc)
2972{
2973 call_for_each_cic(ioc, changed_cgroup);
2974 ioc->cgroup_changed = 0;
2975}
2976#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2977
22e2c507 2978static struct cfq_queue *
a6151c3a 2979cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2980 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2981{
22e2c507 2982 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2983 struct cfq_io_context *cic;
cdb16e8f 2984 struct cfq_group *cfqg;
22e2c507
JA
2985
2986retry:
3e59cf9d 2987 cfqg = cfq_get_cfqg(cfqd);
4ac845a2 2988 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2989 /* cic always exists here */
2990 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2991
6118b70b
JA
2992 /*
2993 * Always try a new alloc if we fell back to the OOM cfqq
2994 * originally, since it should just be a temporary situation.
2995 */
2996 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2997 cfqq = NULL;
22e2c507
JA
2998 if (new_cfqq) {
2999 cfqq = new_cfqq;
3000 new_cfqq = NULL;
3001 } else if (gfp_mask & __GFP_WAIT) {
3002 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 3003 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 3004 gfp_mask | __GFP_ZERO,
94f6030c 3005 cfqd->queue->node);
22e2c507 3006 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
3007 if (new_cfqq)
3008 goto retry;
22e2c507 3009 } else {
94f6030c
CL
3010 cfqq = kmem_cache_alloc_node(cfq_pool,
3011 gfp_mask | __GFP_ZERO,
3012 cfqd->queue->node);
22e2c507
JA
3013 }
3014
6118b70b
JA
3015 if (cfqq) {
3016 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3017 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 3018 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
3019 cfq_log_cfqq(cfqd, cfqq, "alloced");
3020 } else
3021 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
3022 }
3023
3024 if (new_cfqq)
3025 kmem_cache_free(cfq_pool, new_cfqq);
3026
22e2c507
JA
3027 return cfqq;
3028}
3029
c2dea2d1
VT
3030static struct cfq_queue **
3031cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3032{
fe094d98 3033 switch (ioprio_class) {
c2dea2d1
VT
3034 case IOPRIO_CLASS_RT:
3035 return &cfqd->async_cfqq[0][ioprio];
3036 case IOPRIO_CLASS_BE:
3037 return &cfqd->async_cfqq[1][ioprio];
3038 case IOPRIO_CLASS_IDLE:
3039 return &cfqd->async_idle_cfqq;
3040 default:
3041 BUG();
3042 }
3043}
3044
15c31be4 3045static struct cfq_queue *
a6151c3a 3046cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
3047 gfp_t gfp_mask)
3048{
fd0928df
JA
3049 const int ioprio = task_ioprio(ioc);
3050 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 3051 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
3052 struct cfq_queue *cfqq = NULL;
3053
c2dea2d1
VT
3054 if (!is_sync) {
3055 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3056 cfqq = *async_cfqq;
3057 }
3058
6118b70b 3059 if (!cfqq)
fd0928df 3060 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
3061
3062 /*
3063 * pin the queue now that it's allocated, scheduler exit will prune it
3064 */
c2dea2d1 3065 if (!is_sync && !(*async_cfqq)) {
30d7b944 3066 cfqq->ref++;
c2dea2d1 3067 *async_cfqq = cfqq;
15c31be4
JA
3068 }
3069
30d7b944 3070 cfqq->ref++;
15c31be4
JA
3071 return cfqq;
3072}
3073
498d3aa2
JA
3074/*
3075 * We drop cfq io contexts lazily, so we may find a dead one.
3076 */
dbecf3ab 3077static void
4ac845a2
JA
3078cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3079 struct cfq_io_context *cic)
dbecf3ab 3080{
4ac845a2
JA
3081 unsigned long flags;
3082
fc46379d 3083 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 3084 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 3085
4ac845a2
JA
3086 spin_lock_irqsave(&ioc->lock, flags);
3087
4faa3c81 3088 BUG_ON(ioc->ioc_data == cic);
597bc485 3089
80b15c73 3090 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
ffc4e759 3091 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
3092 spin_unlock_irqrestore(&ioc->lock, flags);
3093
3094 cfq_cic_free(cic);
dbecf3ab
OH
3095}
3096
e2d74ac0 3097static struct cfq_io_context *
4ac845a2 3098cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 3099{
e2d74ac0 3100 struct cfq_io_context *cic;
d6de8be7 3101 unsigned long flags;
e2d74ac0 3102
91fac317
VT
3103 if (unlikely(!ioc))
3104 return NULL;
3105
d6de8be7
JA
3106 rcu_read_lock();
3107
597bc485
JA
3108 /*
3109 * we maintain a last-hit cache, to avoid browsing over the tree
3110 */
4ac845a2 3111 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
3112 if (cic && cic->key == cfqd) {
3113 rcu_read_unlock();
597bc485 3114 return cic;
d6de8be7 3115 }
597bc485 3116
4ac845a2 3117 do {
80b15c73 3118 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
4ac845a2
JA
3119 rcu_read_unlock();
3120 if (!cic)
3121 break;
bca4b914 3122 if (unlikely(cic->key != cfqd)) {
4ac845a2 3123 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 3124 rcu_read_lock();
4ac845a2 3125 continue;
dbecf3ab 3126 }
e2d74ac0 3127
d6de8be7 3128 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 3129 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 3130 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
3131 break;
3132 } while (1);
e2d74ac0 3133
4ac845a2 3134 return cic;
e2d74ac0
JA
3135}
3136
4ac845a2
JA
3137/*
3138 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3139 * the process specific cfq io context when entered from the block layer.
3140 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3141 */
febffd61
JA
3142static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3143 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 3144{
0261d688 3145 unsigned long flags;
4ac845a2 3146 int ret;
e2d74ac0 3147
4ac845a2
JA
3148 ret = radix_tree_preload(gfp_mask);
3149 if (!ret) {
3150 cic->ioc = ioc;
3151 cic->key = cfqd;
e2d74ac0 3152
4ac845a2
JA
3153 spin_lock_irqsave(&ioc->lock, flags);
3154 ret = radix_tree_insert(&ioc->radix_root,
80b15c73 3155 cfqd->cic_index, cic);
ffc4e759
JA
3156 if (!ret)
3157 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 3158 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 3159
4ac845a2
JA
3160 radix_tree_preload_end();
3161
3162 if (!ret) {
3163 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3164 list_add(&cic->queue_list, &cfqd->cic_list);
3165 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3166 }
e2d74ac0
JA
3167 }
3168
4ac845a2
JA
3169 if (ret)
3170 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 3171
4ac845a2 3172 return ret;
e2d74ac0
JA
3173}
3174
1da177e4
LT
3175/*
3176 * Setup general io context and cfq io context. There can be several cfq
3177 * io contexts per general io context, if this process is doing io to more
e2d74ac0 3178 * than one device managed by cfq.
1da177e4
LT
3179 */
3180static struct cfq_io_context *
e2d74ac0 3181cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3182{
22e2c507 3183 struct io_context *ioc = NULL;
1da177e4 3184 struct cfq_io_context *cic;
1da177e4 3185
22e2c507 3186 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 3187
b5deef90 3188 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
3189 if (!ioc)
3190 return NULL;
3191
4ac845a2 3192 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
3193 if (cic)
3194 goto out;
1da177e4 3195
e2d74ac0
JA
3196 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3197 if (cic == NULL)
3198 goto err;
1da177e4 3199
4ac845a2
JA
3200 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3201 goto err_free;
3202
1da177e4 3203out:
fc46379d
JA
3204 smp_read_barrier_depends();
3205 if (unlikely(ioc->ioprio_changed))
3206 cfq_ioc_set_ioprio(ioc);
3207
24610333
VG
3208#ifdef CONFIG_CFQ_GROUP_IOSCHED
3209 if (unlikely(ioc->cgroup_changed))
3210 cfq_ioc_set_cgroup(ioc);
3211#endif
1da177e4 3212 return cic;
4ac845a2
JA
3213err_free:
3214 cfq_cic_free(cic);
1da177e4
LT
3215err:
3216 put_io_context(ioc);
3217 return NULL;
3218}
3219
22e2c507
JA
3220static void
3221cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 3222{
aaf1228d
JA
3223 unsigned long elapsed = jiffies - cic->last_end_request;
3224 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 3225
22e2c507
JA
3226 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3227 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3228 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3229}
1da177e4 3230
206dc69b 3231static void
b2c18e1e 3232cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3233 struct request *rq)
206dc69b 3234{
3dde36dd 3235 sector_t sdist = 0;
41647e7a 3236 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3237 if (cfqq->last_request_pos) {
3238 if (cfqq->last_request_pos < blk_rq_pos(rq))
3239 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3240 else
3241 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3242 }
206dc69b 3243
3dde36dd 3244 cfqq->seek_history <<= 1;
41647e7a
CZ
3245 if (blk_queue_nonrot(cfqd->queue))
3246 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3247 else
3248 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3249}
1da177e4 3250
22e2c507
JA
3251/*
3252 * Disable idle window if the process thinks too long or seeks so much that
3253 * it doesn't matter
3254 */
3255static void
3256cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3257 struct cfq_io_context *cic)
3258{
7b679138 3259 int old_idle, enable_idle;
1be92f2f 3260
0871714e
JA
3261 /*
3262 * Don't idle for async or idle io prio class
3263 */
3264 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3265 return;
3266
c265a7f4 3267 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3268
76280aff
CZ
3269 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3270 cfq_mark_cfqq_deep(cfqq);
3271
749ef9f8
CZ
3272 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3273 enable_idle = 0;
3274 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3275 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3276 enable_idle = 0;
3277 else if (sample_valid(cic->ttime_samples)) {
718eee05 3278 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3279 enable_idle = 0;
3280 else
3281 enable_idle = 1;
1da177e4
LT
3282 }
3283
7b679138
JA
3284 if (old_idle != enable_idle) {
3285 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3286 if (enable_idle)
3287 cfq_mark_cfqq_idle_window(cfqq);
3288 else
3289 cfq_clear_cfqq_idle_window(cfqq);
3290 }
22e2c507 3291}
1da177e4 3292
22e2c507
JA
3293/*
3294 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3295 * no or if we aren't sure, a 1 will cause a preempt.
3296 */
a6151c3a 3297static bool
22e2c507 3298cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3299 struct request *rq)
22e2c507 3300{
6d048f53 3301 struct cfq_queue *cfqq;
22e2c507 3302
6d048f53
JA
3303 cfqq = cfqd->active_queue;
3304 if (!cfqq)
a6151c3a 3305 return false;
22e2c507 3306
6d048f53 3307 if (cfq_class_idle(new_cfqq))
a6151c3a 3308 return false;
22e2c507
JA
3309
3310 if (cfq_class_idle(cfqq))
a6151c3a 3311 return true;
1e3335de 3312
875feb63
DS
3313 /*
3314 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3315 */
3316 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3317 return false;
3318
374f84ac
JA
3319 /*
3320 * if the new request is sync, but the currently running queue is
3321 * not, let the sync request have priority.
3322 */
5e705374 3323 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3324 return true;
1e3335de 3325
8682e1f1
VG
3326 if (new_cfqq->cfqg != cfqq->cfqg)
3327 return false;
3328
3329 if (cfq_slice_used(cfqq))
3330 return true;
3331
3332 /* Allow preemption only if we are idling on sync-noidle tree */
3333 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3334 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3335 new_cfqq->service_tree->count == 2 &&
3336 RB_EMPTY_ROOT(&cfqq->sort_list))
3337 return true;
3338
374f84ac
JA
3339 /*
3340 * So both queues are sync. Let the new request get disk time if
3341 * it's a metadata request and the current queue is doing regular IO.
3342 */
7b6d91da 3343 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
e6ec4fe2 3344 return true;
22e2c507 3345
3a9a3f6c
DS
3346 /*
3347 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3348 */
3349 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3350 return true;
3a9a3f6c 3351
d2d59e18
SL
3352 /* An idle queue should not be idle now for some reason */
3353 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3354 return true;
3355
1e3335de 3356 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3357 return false;
1e3335de
JA
3358
3359 /*
3360 * if this request is as-good as one we would expect from the
3361 * current cfqq, let it preempt
3362 */
e9ce335d 3363 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3364 return true;
1e3335de 3365
a6151c3a 3366 return false;
22e2c507
JA
3367}
3368
3369/*
3370 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3371 * let it have half of its nominal slice.
3372 */
3373static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3374{
f8ae6e3e
SL
3375 struct cfq_queue *old_cfqq = cfqd->active_queue;
3376
7b679138 3377 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3378 cfq_slice_expired(cfqd, 1);
22e2c507 3379
f8ae6e3e
SL
3380 /*
3381 * workload type is changed, don't save slice, otherwise preempt
3382 * doesn't happen
3383 */
3384 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3385 cfqq->cfqg->saved_workload_slice = 0;
3386
bf572256
JA
3387 /*
3388 * Put the new queue at the front of the of the current list,
3389 * so we know that it will be selected next.
3390 */
3391 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3392
3393 cfq_service_tree_add(cfqd, cfqq, 1);
eda5e0c9 3394
62a37f6b
JT
3395 cfqq->slice_end = 0;
3396 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3397}
3398
22e2c507 3399/*
5e705374 3400 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3401 * something we should do about it
3402 */
3403static void
5e705374
JA
3404cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3405 struct request *rq)
22e2c507 3406{
5e705374 3407 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3408
45333d5a 3409 cfqd->rq_queued++;
7b6d91da 3410 if (rq->cmd_flags & REQ_META)
374f84ac
JA
3411 cfqq->meta_pending++;
3412
9c2c38a1 3413 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3414 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3415 cfq_update_idle_window(cfqd, cfqq, cic);
3416
b2c18e1e 3417 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3418
3419 if (cfqq == cfqd->active_queue) {
3420 /*
b029195d
JA
3421 * Remember that we saw a request from this process, but
3422 * don't start queuing just yet. Otherwise we risk seeing lots
3423 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3424 * and merging. If the request is already larger than a single
3425 * page, let it rip immediately. For that case we assume that
2d870722
JA
3426 * merging is already done. Ditto for a busy system that
3427 * has other work pending, don't risk delaying until the
3428 * idle timer unplug to continue working.
22e2c507 3429 */
d6ceb25e 3430 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3431 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3432 cfqd->busy_queues > 1) {
812df48d 3433 cfq_del_timer(cfqd, cfqq);
554554f6 3434 cfq_clear_cfqq_wait_request(cfqq);
24ecfbe2 3435 __blk_run_queue(cfqd->queue);
a11cdaa7 3436 } else {
e98ef89b 3437 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3438 &cfqq->cfqg->blkg);
bf791937 3439 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3440 }
d6ceb25e 3441 }
5e705374 3442 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3443 /*
3444 * not the active queue - expire current slice if it is
3445 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3446 * has some old slice time left and is of higher priority or
3447 * this new queue is RT and the current one is BE
22e2c507
JA
3448 */
3449 cfq_preempt_queue(cfqd, cfqq);
24ecfbe2 3450 __blk_run_queue(cfqd->queue);
22e2c507 3451 }
1da177e4
LT
3452}
3453
165125e1 3454static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3455{
b4878f24 3456 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3457 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3458
7b679138 3459 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3460 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3461
30996f40 3462 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3463 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3464 cfq_add_rq_rb(rq);
e98ef89b 3465 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3466 &cfqd->serving_group->blkg, rq_data_dir(rq),
3467 rq_is_sync(rq));
5e705374 3468 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3469}
3470
45333d5a
AC
3471/*
3472 * Update hw_tag based on peak queue depth over 50 samples under
3473 * sufficient load.
3474 */
3475static void cfq_update_hw_tag(struct cfq_data *cfqd)
3476{
1a1238a7
SL
3477 struct cfq_queue *cfqq = cfqd->active_queue;
3478
53c583d2
CZ
3479 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3480 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3481
3482 if (cfqd->hw_tag == 1)
3483 return;
45333d5a
AC
3484
3485 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3486 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3487 return;
3488
1a1238a7
SL
3489 /*
3490 * If active queue hasn't enough requests and can idle, cfq might not
3491 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3492 * case
3493 */
3494 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3495 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3496 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3497 return;
3498
45333d5a
AC
3499 if (cfqd->hw_tag_samples++ < 50)
3500 return;
3501
e459dd08 3502 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3503 cfqd->hw_tag = 1;
3504 else
3505 cfqd->hw_tag = 0;
45333d5a
AC
3506}
3507
7667aa06
VG
3508static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3509{
3510 struct cfq_io_context *cic = cfqd->active_cic;
3511
02a8f01b
JT
3512 /* If the queue already has requests, don't wait */
3513 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3514 return false;
3515
7667aa06
VG
3516 /* If there are other queues in the group, don't wait */
3517 if (cfqq->cfqg->nr_cfqq > 1)
3518 return false;
3519
3520 if (cfq_slice_used(cfqq))
3521 return true;
3522
3523 /* if slice left is less than think time, wait busy */
3524 if (cic && sample_valid(cic->ttime_samples)
3525 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3526 return true;
3527
3528 /*
3529 * If think times is less than a jiffy than ttime_mean=0 and above
3530 * will not be true. It might happen that slice has not expired yet
3531 * but will expire soon (4-5 ns) during select_queue(). To cover the
3532 * case where think time is less than a jiffy, mark the queue wait
3533 * busy if only 1 jiffy is left in the slice.
3534 */
3535 if (cfqq->slice_end - jiffies == 1)
3536 return true;
3537
3538 return false;
3539}
3540
165125e1 3541static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3542{
5e705374 3543 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3544 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3545 const int sync = rq_is_sync(rq);
b4878f24 3546 unsigned long now;
1da177e4 3547
b4878f24 3548 now = jiffies;
33659ebb
CH
3549 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3550 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3551
45333d5a
AC
3552 cfq_update_hw_tag(cfqd);
3553
53c583d2 3554 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3555 WARN_ON(!cfqq->dispatched);
53c583d2 3556 cfqd->rq_in_driver--;
6d048f53 3557 cfqq->dispatched--;
80bdf0c7 3558 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3559 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3560 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3561 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3562
53c583d2 3563 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3564
365722bb 3565 if (sync) {
5e705374 3566 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3567 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3568 cfqd->last_delayed_sync = now;
365722bb 3569 }
caaa5f9f
JA
3570
3571 /*
3572 * If this is the active queue, check if it needs to be expired,
3573 * or if we want to idle in case it has no pending requests.
3574 */
3575 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3576 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3577
44f7c160
JA
3578 if (cfq_cfqq_slice_new(cfqq)) {
3579 cfq_set_prio_slice(cfqd, cfqq);
3580 cfq_clear_cfqq_slice_new(cfqq);
3581 }
f75edf2d
VG
3582
3583 /*
7667aa06
VG
3584 * Should we wait for next request to come in before we expire
3585 * the queue.
f75edf2d 3586 */
7667aa06 3587 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3588 unsigned long extend_sl = cfqd->cfq_slice_idle;
3589 if (!cfqd->cfq_slice_idle)
3590 extend_sl = cfqd->cfq_group_idle;
3591 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3592 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3593 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3594 }
3595
a36e71f9 3596 /*
8e550632
CZ
3597 * Idling is not enabled on:
3598 * - expired queues
3599 * - idle-priority queues
3600 * - async queues
3601 * - queues with still some requests queued
3602 * - when there is a close cooperator
a36e71f9 3603 */
0871714e 3604 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3605 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3606 else if (sync && cfqq_empty &&
3607 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3608 cfq_arm_slice_timer(cfqd);
8e550632 3609 }
caaa5f9f 3610 }
6d048f53 3611
53c583d2 3612 if (!cfqd->rq_in_driver)
23e018a1 3613 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3614}
3615
22e2c507
JA
3616/*
3617 * we temporarily boost lower priority queues if they are holding fs exclusive
3618 * resources. they are boosted to normal prio (CLASS_BE/4)
3619 */
3620static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3621{
22e2c507
JA
3622 if (has_fs_excl()) {
3623 /*
3624 * boost idle prio on transactions that would lock out other
3625 * users of the filesystem
3626 */
3627 if (cfq_class_idle(cfqq))
3628 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3629 if (cfqq->ioprio > IOPRIO_NORM)
3630 cfqq->ioprio = IOPRIO_NORM;
3631 } else {
3632 /*
dddb7451 3633 * unboost the queue (if needed)
22e2c507 3634 */
dddb7451
CZ
3635 cfqq->ioprio_class = cfqq->org_ioprio_class;
3636 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3637 }
22e2c507 3638}
1da177e4 3639
89850f7e 3640static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3641{
1b379d8d 3642 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3643 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3644 return ELV_MQUEUE_MUST;
3b18152c 3645 }
1da177e4 3646
22e2c507 3647 return ELV_MQUEUE_MAY;
22e2c507
JA
3648}
3649
165125e1 3650static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3651{
3652 struct cfq_data *cfqd = q->elevator->elevator_data;
3653 struct task_struct *tsk = current;
91fac317 3654 struct cfq_io_context *cic;
22e2c507
JA
3655 struct cfq_queue *cfqq;
3656
3657 /*
3658 * don't force setup of a queue from here, as a call to may_queue
3659 * does not necessarily imply that a request actually will be queued.
3660 * so just lookup a possibly existing queue, or return 'may queue'
3661 * if that fails
3662 */
4ac845a2 3663 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3664 if (!cic)
3665 return ELV_MQUEUE_MAY;
3666
b0b78f81 3667 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3668 if (cfqq) {
fd0928df 3669 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3670 cfq_prio_boost(cfqq);
3671
89850f7e 3672 return __cfq_may_queue(cfqq);
22e2c507
JA
3673 }
3674
3675 return ELV_MQUEUE_MAY;
1da177e4
LT
3676}
3677
1da177e4
LT
3678/*
3679 * queue lock held here
3680 */
bb37b94c 3681static void cfq_put_request(struct request *rq)
1da177e4 3682{
5e705374 3683 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3684
5e705374 3685 if (cfqq) {
22e2c507 3686 const int rw = rq_data_dir(rq);
1da177e4 3687
22e2c507
JA
3688 BUG_ON(!cfqq->allocated[rw]);
3689 cfqq->allocated[rw]--;
1da177e4 3690
5e705374 3691 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3692
c186794d
MS
3693 rq->elevator_private[0] = NULL;
3694 rq->elevator_private[1] = NULL;
1da177e4 3695
7f1dc8a2
VG
3696 /* Put down rq reference on cfqg */
3697 cfq_put_cfqg(RQ_CFQG(rq));
c186794d 3698 rq->elevator_private[2] = NULL;
7f1dc8a2 3699
1da177e4
LT
3700 cfq_put_queue(cfqq);
3701 }
3702}
3703
df5fe3e8
JM
3704static struct cfq_queue *
3705cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3706 struct cfq_queue *cfqq)
3707{
3708 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3709 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3710 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3711 cfq_put_queue(cfqq);
3712 return cic_to_cfqq(cic, 1);
3713}
3714
e6c5bc73
JM
3715/*
3716 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3717 * was the last process referring to said cfqq.
3718 */
3719static struct cfq_queue *
3720split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3721{
3722 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3723 cfqq->pid = current->pid;
3724 cfq_clear_cfqq_coop(cfqq);
ae54abed 3725 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3726 return cfqq;
3727 }
3728
3729 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3730
3731 cfq_put_cooperator(cfqq);
3732
e6c5bc73
JM
3733 cfq_put_queue(cfqq);
3734 return NULL;
3735}
1da177e4 3736/*
22e2c507 3737 * Allocate cfq data structures associated with this request.
1da177e4 3738 */
22e2c507 3739static int
165125e1 3740cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3741{
3742 struct cfq_data *cfqd = q->elevator->elevator_data;
3743 struct cfq_io_context *cic;
3744 const int rw = rq_data_dir(rq);
a6151c3a 3745 const bool is_sync = rq_is_sync(rq);
22e2c507 3746 struct cfq_queue *cfqq;
1da177e4
LT
3747 unsigned long flags;
3748
3749 might_sleep_if(gfp_mask & __GFP_WAIT);
3750
e2d74ac0 3751 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3752
1da177e4
LT
3753 spin_lock_irqsave(q->queue_lock, flags);
3754
22e2c507
JA
3755 if (!cic)
3756 goto queue_fail;
3757
e6c5bc73 3758new_queue:
91fac317 3759 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3760 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3761 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3762 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3763 } else {
e6c5bc73
JM
3764 /*
3765 * If the queue was seeky for too long, break it apart.
3766 */
ae54abed 3767 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3768 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3769 cfqq = split_cfqq(cic, cfqq);
3770 if (!cfqq)
3771 goto new_queue;
3772 }
3773
df5fe3e8
JM
3774 /*
3775 * Check to see if this queue is scheduled to merge with
3776 * another, closely cooperating queue. The merging of
3777 * queues happens here as it must be done in process context.
3778 * The reference on new_cfqq was taken in merge_cfqqs.
3779 */
3780 if (cfqq->new_cfqq)
3781 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3782 }
1da177e4
LT
3783
3784 cfqq->allocated[rw]++;
1da177e4 3785
6fae9c25 3786 cfqq->ref++;
c186794d
MS
3787 rq->elevator_private[0] = cic;
3788 rq->elevator_private[1] = cfqq;
3789 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
93803e01 3790 spin_unlock_irqrestore(q->queue_lock, flags);
5e705374 3791 return 0;
1da177e4 3792
22e2c507
JA
3793queue_fail:
3794 if (cic)
3795 put_io_context(cic->ioc);
89850f7e 3796
23e018a1 3797 cfq_schedule_dispatch(cfqd);
1da177e4 3798 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3799 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3800 return 1;
3801}
3802
65f27f38 3803static void cfq_kick_queue(struct work_struct *work)
22e2c507 3804{
65f27f38 3805 struct cfq_data *cfqd =
23e018a1 3806 container_of(work, struct cfq_data, unplug_work);
165125e1 3807 struct request_queue *q = cfqd->queue;
22e2c507 3808
40bb54d1 3809 spin_lock_irq(q->queue_lock);
24ecfbe2 3810 __blk_run_queue(cfqd->queue);
40bb54d1 3811 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3812}
3813
3814/*
3815 * Timer running if the active_queue is currently idling inside its time slice
3816 */
3817static void cfq_idle_slice_timer(unsigned long data)
3818{
3819 struct cfq_data *cfqd = (struct cfq_data *) data;
3820 struct cfq_queue *cfqq;
3821 unsigned long flags;
3c6bd2f8 3822 int timed_out = 1;
22e2c507 3823
7b679138
JA
3824 cfq_log(cfqd, "idle timer fired");
3825
22e2c507
JA
3826 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3827
fe094d98
JA
3828 cfqq = cfqd->active_queue;
3829 if (cfqq) {
3c6bd2f8
JA
3830 timed_out = 0;
3831
b029195d
JA
3832 /*
3833 * We saw a request before the queue expired, let it through
3834 */
3835 if (cfq_cfqq_must_dispatch(cfqq))
3836 goto out_kick;
3837
22e2c507
JA
3838 /*
3839 * expired
3840 */
44f7c160 3841 if (cfq_slice_used(cfqq))
22e2c507
JA
3842 goto expire;
3843
3844 /*
3845 * only expire and reinvoke request handler, if there are
3846 * other queues with pending requests
3847 */
caaa5f9f 3848 if (!cfqd->busy_queues)
22e2c507 3849 goto out_cont;
22e2c507
JA
3850
3851 /*
3852 * not expired and it has a request pending, let it dispatch
3853 */
75e50984 3854 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3855 goto out_kick;
76280aff
CZ
3856
3857 /*
3858 * Queue depth flag is reset only when the idle didn't succeed
3859 */
3860 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3861 }
3862expire:
e5ff082e 3863 cfq_slice_expired(cfqd, timed_out);
22e2c507 3864out_kick:
23e018a1 3865 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3866out_cont:
3867 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3868}
3869
3b18152c
JA
3870static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3871{
3872 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3873 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3874}
22e2c507 3875
c2dea2d1
VT
3876static void cfq_put_async_queues(struct cfq_data *cfqd)
3877{
3878 int i;
3879
3880 for (i = 0; i < IOPRIO_BE_NR; i++) {
3881 if (cfqd->async_cfqq[0][i])
3882 cfq_put_queue(cfqd->async_cfqq[0][i]);
3883 if (cfqd->async_cfqq[1][i])
3884 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3885 }
2389d1ef
ON
3886
3887 if (cfqd->async_idle_cfqq)
3888 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3889}
3890
b374d18a 3891static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3892{
22e2c507 3893 struct cfq_data *cfqd = e->elevator_data;
165125e1 3894 struct request_queue *q = cfqd->queue;
56edf7d7 3895 bool wait = false;
22e2c507 3896
3b18152c 3897 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3898
d9ff4187 3899 spin_lock_irq(q->queue_lock);
e2d74ac0 3900
d9ff4187 3901 if (cfqd->active_queue)
e5ff082e 3902 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3903
3904 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3905 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3906 struct cfq_io_context,
3907 queue_list);
89850f7e
JA
3908
3909 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3910 }
e2d74ac0 3911
c2dea2d1 3912 cfq_put_async_queues(cfqd);
b1c35769 3913 cfq_release_cfq_groups(cfqd);
56edf7d7
VG
3914
3915 /*
3916 * If there are groups which we could not unlink from blkcg list,
3917 * wait for a rcu period for them to be freed.
3918 */
3919 if (cfqd->nr_blkcg_linked_grps)
3920 wait = true;
15c31be4 3921
d9ff4187 3922 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3923
3924 cfq_shutdown_timer_wq(cfqd);
3925
80b15c73
KK
3926 spin_lock(&cic_index_lock);
3927 ida_remove(&cic_index_ida, cfqd->cic_index);
3928 spin_unlock(&cic_index_lock);
3929
56edf7d7
VG
3930 /*
3931 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3932 * Do this wait only if there are other unlinked groups out
3933 * there. This can happen if cgroup deletion path claimed the
3934 * responsibility of cleaning up a group before queue cleanup code
3935 * get to the group.
3936 *
3937 * Do not call synchronize_rcu() unconditionally as there are drivers
3938 * which create/delete request queue hundreds of times during scan/boot
3939 * and synchronize_rcu() can take significant time and slow down boot.
3940 */
3941 if (wait)
3942 synchronize_rcu();
2abae55f
VG
3943
3944#ifdef CONFIG_CFQ_GROUP_IOSCHED
3945 /* Free up per cpu stats for root group */
3946 free_percpu(cfqd->root_group.blkg.stats_cpu);
3947#endif
56edf7d7 3948 kfree(cfqd);
1da177e4
LT
3949}
3950
80b15c73
KK
3951static int cfq_alloc_cic_index(void)
3952{
3953 int index, error;
3954
3955 do {
3956 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3957 return -ENOMEM;
3958
3959 spin_lock(&cic_index_lock);
3960 error = ida_get_new(&cic_index_ida, &index);
3961 spin_unlock(&cic_index_lock);
3962 if (error && error != -EAGAIN)
3963 return error;
3964 } while (error);
3965
3966 return index;
3967}
3968
165125e1 3969static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3970{
3971 struct cfq_data *cfqd;
718eee05 3972 int i, j;
cdb16e8f 3973 struct cfq_group *cfqg;
615f0259 3974 struct cfq_rb_root *st;
1da177e4 3975
80b15c73
KK
3976 i = cfq_alloc_cic_index();
3977 if (i < 0)
3978 return NULL;
3979
94f6030c 3980 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3981 if (!cfqd)
bc1c1169 3982 return NULL;
1da177e4 3983
30d7b944
SL
3984 /*
3985 * Don't need take queue_lock in the routine, since we are
3986 * initializing the ioscheduler, and nobody is using cfqd
3987 */
80b15c73
KK
3988 cfqd->cic_index = i;
3989
1fa8f6d6
VG
3990 /* Init root service tree */
3991 cfqd->grp_service_tree = CFQ_RB_ROOT;
3992
cdb16e8f
VG
3993 /* Init root group */
3994 cfqg = &cfqd->root_group;
615f0259
VG
3995 for_each_cfqg_st(cfqg, i, j, st)
3996 *st = CFQ_RB_ROOT;
1fa8f6d6 3997 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3998
25bc6b07
VG
3999 /* Give preference to root group over other groups */
4000 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
4001
25fb5169 4002#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769 4003 /*
56edf7d7
VG
4004 * Set root group reference to 2. One reference will be dropped when
4005 * all groups on cfqd->cfqg_list are being deleted during queue exit.
4006 * Other reference will remain there as we don't want to delete this
4007 * group as it is statically allocated and gets destroyed when
4008 * throtl_data goes away.
b1c35769 4009 */
56edf7d7 4010 cfqg->ref = 2;
5624a4e4
VG
4011
4012 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4013 kfree(cfqg);
4014 kfree(cfqd);
4015 return NULL;
4016 }
4017
dcf097b2 4018 rcu_read_lock();
5624a4e4 4019
e98ef89b
VG
4020 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4021 (void *)cfqd, 0);
dcf097b2 4022 rcu_read_unlock();
56edf7d7
VG
4023 cfqd->nr_blkcg_linked_grps++;
4024
4025 /* Add group on cfqd->cfqg_list */
4026 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
25fb5169 4027#endif
26a2ac00
JA
4028 /*
4029 * Not strictly needed (since RB_ROOT just clears the node and we
4030 * zeroed cfqd on alloc), but better be safe in case someone decides
4031 * to add magic to the rb code
4032 */
4033 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4034 cfqd->prio_trees[i] = RB_ROOT;
4035
6118b70b
JA
4036 /*
4037 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4038 * Grab a permanent reference to it, so that the normal code flow
4039 * will not attempt to free it.
4040 */
4041 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
30d7b944 4042 cfqd->oom_cfqq.ref++;
cdb16e8f 4043 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 4044
d9ff4187 4045 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 4046
1da177e4 4047 cfqd->queue = q;
1da177e4 4048
22e2c507
JA
4049 init_timer(&cfqd->idle_slice_timer);
4050 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4051 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4052
23e018a1 4053 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 4054
1da177e4 4055 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
4056 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4057 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
4058 cfqd->cfq_back_max = cfq_back_max;
4059 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
4060 cfqd->cfq_slice[0] = cfq_slice_async;
4061 cfqd->cfq_slice[1] = cfq_slice_sync;
4062 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4063 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 4064 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 4065 cfqd->cfq_latency = 1;
e459dd08 4066 cfqd->hw_tag = -1;
edc71131
CZ
4067 /*
4068 * we optimistically start assuming sync ops weren't delayed in last
4069 * second, in order to have larger depth for async operations.
4070 */
573412b2 4071 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 4072 return cfqd;
1da177e4
LT
4073}
4074
4075static void cfq_slab_kill(void)
4076{
d6de8be7
JA
4077 /*
4078 * Caller already ensured that pending RCU callbacks are completed,
4079 * so we should have no busy allocations at this point.
4080 */
1da177e4
LT
4081 if (cfq_pool)
4082 kmem_cache_destroy(cfq_pool);
4083 if (cfq_ioc_pool)
4084 kmem_cache_destroy(cfq_ioc_pool);
4085}
4086
4087static int __init cfq_slab_setup(void)
4088{
0a31bd5f 4089 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
4090 if (!cfq_pool)
4091 goto fail;
4092
34e6bbf2 4093 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
4094 if (!cfq_ioc_pool)
4095 goto fail;
4096
4097 return 0;
4098fail:
4099 cfq_slab_kill();
4100 return -ENOMEM;
4101}
4102
1da177e4
LT
4103/*
4104 * sysfs parts below -->
4105 */
1da177e4
LT
4106static ssize_t
4107cfq_var_show(unsigned int var, char *page)
4108{
4109 return sprintf(page, "%d\n", var);
4110}
4111
4112static ssize_t
4113cfq_var_store(unsigned int *var, const char *page, size_t count)
4114{
4115 char *p = (char *) page;
4116
4117 *var = simple_strtoul(p, &p, 10);
4118 return count;
4119}
4120
1da177e4 4121#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 4122static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 4123{ \
3d1ab40f 4124 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4125 unsigned int __data = __VAR; \
4126 if (__CONV) \
4127 __data = jiffies_to_msecs(__data); \
4128 return cfq_var_show(__data, (page)); \
4129}
4130SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
4131SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4132SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
4133SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4134SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 4135SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 4136SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
4137SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4138SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4139SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 4140SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
4141#undef SHOW_FUNCTION
4142
4143#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 4144static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 4145{ \
3d1ab40f 4146 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4147 unsigned int __data; \
4148 int ret = cfq_var_store(&__data, (page), count); \
4149 if (__data < (MIN)) \
4150 __data = (MIN); \
4151 else if (__data > (MAX)) \
4152 __data = (MAX); \
4153 if (__CONV) \
4154 *(__PTR) = msecs_to_jiffies(__data); \
4155 else \
4156 *(__PTR) = __data; \
4157 return ret; \
4158}
4159STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
4160STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4161 UINT_MAX, 1);
4162STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4163 UINT_MAX, 1);
e572ec7e 4164STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
4165STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4166 UINT_MAX, 0);
22e2c507 4167STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 4168STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
4169STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4170STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
4171STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4172 UINT_MAX, 0);
963b72fc 4173STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
4174#undef STORE_FUNCTION
4175
e572ec7e
AV
4176#define CFQ_ATTR(name) \
4177 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4178
4179static struct elv_fs_entry cfq_attrs[] = {
4180 CFQ_ATTR(quantum),
e572ec7e
AV
4181 CFQ_ATTR(fifo_expire_sync),
4182 CFQ_ATTR(fifo_expire_async),
4183 CFQ_ATTR(back_seek_max),
4184 CFQ_ATTR(back_seek_penalty),
4185 CFQ_ATTR(slice_sync),
4186 CFQ_ATTR(slice_async),
4187 CFQ_ATTR(slice_async_rq),
4188 CFQ_ATTR(slice_idle),
80bdf0c7 4189 CFQ_ATTR(group_idle),
963b72fc 4190 CFQ_ATTR(low_latency),
e572ec7e 4191 __ATTR_NULL
1da177e4
LT
4192};
4193
1da177e4
LT
4194static struct elevator_type iosched_cfq = {
4195 .ops = {
4196 .elevator_merge_fn = cfq_merge,
4197 .elevator_merged_fn = cfq_merged_request,
4198 .elevator_merge_req_fn = cfq_merged_requests,
da775265 4199 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 4200 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 4201 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 4202 .elevator_add_req_fn = cfq_insert_request,
b4878f24 4203 .elevator_activate_req_fn = cfq_activate_request,
1da177e4 4204 .elevator_deactivate_req_fn = cfq_deactivate_request,
1da177e4 4205 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
4206 .elevator_former_req_fn = elv_rb_former_request,
4207 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
4208 .elevator_set_req_fn = cfq_set_request,
4209 .elevator_put_req_fn = cfq_put_request,
4210 .elevator_may_queue_fn = cfq_may_queue,
4211 .elevator_init_fn = cfq_init_queue,
4212 .elevator_exit_fn = cfq_exit_queue,
fc46379d 4213 .trim = cfq_free_io_context,
1da177e4 4214 },
3d1ab40f 4215 .elevator_attrs = cfq_attrs,
1da177e4
LT
4216 .elevator_name = "cfq",
4217 .elevator_owner = THIS_MODULE,
4218};
4219
3e252066
VG
4220#ifdef CONFIG_CFQ_GROUP_IOSCHED
4221static struct blkio_policy_type blkio_policy_cfq = {
4222 .ops = {
4223 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4224 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4225 },
062a644d 4226 .plid = BLKIO_POLICY_PROP,
3e252066
VG
4227};
4228#else
4229static struct blkio_policy_type blkio_policy_cfq;
4230#endif
4231
1da177e4
LT
4232static int __init cfq_init(void)
4233{
22e2c507
JA
4234 /*
4235 * could be 0 on HZ < 1000 setups
4236 */
4237 if (!cfq_slice_async)
4238 cfq_slice_async = 1;
4239 if (!cfq_slice_idle)
4240 cfq_slice_idle = 1;
4241
80bdf0c7
VG
4242#ifdef CONFIG_CFQ_GROUP_IOSCHED
4243 if (!cfq_group_idle)
4244 cfq_group_idle = 1;
4245#else
4246 cfq_group_idle = 0;
4247#endif
1da177e4
LT
4248 if (cfq_slab_setup())
4249 return -ENOMEM;
4250
2fdd82bd 4251 elv_register(&iosched_cfq);
3e252066 4252 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4253
2fdd82bd 4254 return 0;
1da177e4
LT
4255}
4256
4257static void __exit cfq_exit(void)
4258{
6e9a4738 4259 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4260 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4261 elv_unregister(&iosched_cfq);
334e94de 4262 ioc_gone = &all_gone;
fba82272
OH
4263 /* ioc_gone's update must be visible before reading ioc_count */
4264 smp_wmb();
d6de8be7
JA
4265
4266 /*
4267 * this also protects us from entering cfq_slab_kill() with
4268 * pending RCU callbacks
4269 */
245b2e70 4270 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4271 wait_for_completion(&all_gone);
80b15c73 4272 ida_destroy(&cic_index_ida);
83521d3e 4273 cfq_slab_kill();
1da177e4
LT
4274}
4275
4276module_init(cfq_init);
4277module_exit(cfq_exit);
4278
4279MODULE_AUTHOR("Jens Axboe");
4280MODULE_LICENSE("GPL");
4281MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");