block, cfq: fix race condition in cic creation path and tighten locking
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
6e736be7 17#include "blk.h"
e98ef89b 18#include "cfq.h"
1da177e4
LT
19
20/*
21 * tunables
22 */
fe094d98 23/* max queue in one round of service */
abc3c744 24static const int cfq_quantum = 8;
64100099 25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
64100099 30static const int cfq_slice_sync = HZ / 10;
3b18152c 31static int cfq_slice_async = HZ / 25;
64100099 32static const int cfq_slice_async_rq = 2;
caaa5f9f 33static int cfq_slice_idle = HZ / 125;
80bdf0c7 34static int cfq_group_idle = HZ / 125;
5db5d642
CZ
35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
22e2c507 37
d9e7620e 38/*
0871714e 39 * offset from end of service tree
d9e7620e 40 */
0871714e 41#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT (2)
47
22e2c507 48#define CFQ_SLICE_SCALE (5)
45333d5a 49#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 50#define CFQ_SERVICE_SHIFT 12
22e2c507 51
3dde36dd 52#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 53#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 54#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 55#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 56
fe094d98 57#define RQ_CIC(rq) \
c186794d
MS
58 ((struct cfq_io_context *) (rq)->elevator_private[0])
59#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
60#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
1da177e4 61
e18b890b
CL
62static struct kmem_cache *cfq_pool;
63static struct kmem_cache *cfq_ioc_pool;
1da177e4 64
245b2e70 65static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 66static struct completion *ioc_gone;
9a11b4ed 67static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 68
22e2c507
JA
69#define CFQ_PRIO_LISTS IOPRIO_BE_NR
70#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
71#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
72
206dc69b 73#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 74#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 75
cc09e299
JA
76/*
77 * Most of our rbtree usage is for sorting with min extraction, so
78 * if we cache the leftmost node we don't have to walk down the tree
79 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
80 * move this into the elevator for the rq sorting as well.
81 */
82struct cfq_rb_root {
83 struct rb_root rb;
84 struct rb_node *left;
aa6f6a3d 85 unsigned count;
73e9ffdd 86 unsigned total_weight;
1fa8f6d6 87 u64 min_vdisktime;
f5f2b6ce 88 struct cfq_ttime ttime;
cc09e299 89};
f5f2b6ce
SL
90#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
91 .ttime = {.last_end_request = jiffies,},}
cc09e299 92
6118b70b
JA
93/*
94 * Per process-grouping structure
95 */
96struct cfq_queue {
97 /* reference count */
30d7b944 98 int ref;
6118b70b
JA
99 /* various state flags, see below */
100 unsigned int flags;
101 /* parent cfq_data */
102 struct cfq_data *cfqd;
103 /* service_tree member */
104 struct rb_node rb_node;
105 /* service_tree key */
106 unsigned long rb_key;
107 /* prio tree member */
108 struct rb_node p_node;
109 /* prio tree root we belong to, if any */
110 struct rb_root *p_root;
111 /* sorted list of pending requests */
112 struct rb_root sort_list;
113 /* if fifo isn't expired, next request to serve */
114 struct request *next_rq;
115 /* requests queued in sort_list */
116 int queued[2];
117 /* currently allocated requests */
118 int allocated[2];
119 /* fifo list of requests in sort_list */
120 struct list_head fifo;
121
dae739eb
VG
122 /* time when queue got scheduled in to dispatch first request. */
123 unsigned long dispatch_start;
f75edf2d 124 unsigned int allocated_slice;
c4081ba5 125 unsigned int slice_dispatch;
dae739eb
VG
126 /* time when first request from queue completed and slice started. */
127 unsigned long slice_start;
6118b70b
JA
128 unsigned long slice_end;
129 long slice_resid;
6118b70b 130
65299a3b
CH
131 /* pending priority requests */
132 int prio_pending;
6118b70b
JA
133 /* number of requests that are on the dispatch list or inside driver */
134 int dispatched;
135
136 /* io prio of this group */
137 unsigned short ioprio, org_ioprio;
4aede84b 138 unsigned short ioprio_class;
6118b70b 139
c4081ba5
RK
140 pid_t pid;
141
3dde36dd 142 u32 seek_history;
b2c18e1e
JM
143 sector_t last_request_pos;
144
aa6f6a3d 145 struct cfq_rb_root *service_tree;
df5fe3e8 146 struct cfq_queue *new_cfqq;
cdb16e8f 147 struct cfq_group *cfqg;
c4e7893e
VG
148 /* Number of sectors dispatched from queue in single dispatch round */
149 unsigned long nr_sectors;
6118b70b
JA
150};
151
c0324a02 152/*
718eee05 153 * First index in the service_trees.
c0324a02
CZ
154 * IDLE is handled separately, so it has negative index
155 */
156enum wl_prio_t {
c0324a02 157 BE_WORKLOAD = 0,
615f0259
VG
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
b4627321 160 CFQ_PRIO_NR,
c0324a02
CZ
161};
162
718eee05
CZ
163/*
164 * Second index in the service_trees.
165 */
166enum wl_type_t {
167 ASYNC_WORKLOAD = 0,
168 SYNC_NOIDLE_WORKLOAD = 1,
169 SYNC_WORKLOAD = 2
170};
171
cdb16e8f
VG
172/* This is per cgroup per device grouping structure */
173struct cfq_group {
1fa8f6d6
VG
174 /* group service_tree member */
175 struct rb_node rb_node;
176
177 /* group service_tree key */
178 u64 vdisktime;
25bc6b07 179 unsigned int weight;
8184f93e
JT
180 unsigned int new_weight;
181 bool needs_update;
1fa8f6d6
VG
182
183 /* number of cfqq currently on this group */
184 int nr_cfqq;
185
cdb16e8f 186 /*
4495a7d4 187 * Per group busy queues average. Useful for workload slice calc. We
b4627321
VG
188 * create the array for each prio class but at run time it is used
189 * only for RT and BE class and slot for IDLE class remains unused.
190 * This is primarily done to avoid confusion and a gcc warning.
191 */
192 unsigned int busy_queues_avg[CFQ_PRIO_NR];
193 /*
194 * rr lists of queues with requests. We maintain service trees for
195 * RT and BE classes. These trees are subdivided in subclasses
196 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
197 * class there is no subclassification and all the cfq queues go on
198 * a single tree service_tree_idle.
cdb16e8f
VG
199 * Counts are embedded in the cfq_rb_root
200 */
201 struct cfq_rb_root service_trees[2][3];
202 struct cfq_rb_root service_tree_idle;
dae739eb
VG
203
204 unsigned long saved_workload_slice;
205 enum wl_type_t saved_workload;
206 enum wl_prio_t saved_serving_prio;
25fb5169
VG
207 struct blkio_group blkg;
208#ifdef CONFIG_CFQ_GROUP_IOSCHED
209 struct hlist_node cfqd_node;
329a6781 210 int ref;
25fb5169 211#endif
80bdf0c7
VG
212 /* number of requests that are on the dispatch list or inside driver */
213 int dispatched;
7700fc4f 214 struct cfq_ttime ttime;
cdb16e8f 215};
718eee05 216
22e2c507
JA
217/*
218 * Per block device queue structure
219 */
1da177e4 220struct cfq_data {
165125e1 221 struct request_queue *queue;
1fa8f6d6
VG
222 /* Root service tree for cfq_groups */
223 struct cfq_rb_root grp_service_tree;
cdb16e8f 224 struct cfq_group root_group;
22e2c507 225
c0324a02
CZ
226 /*
227 * The priority currently being served
22e2c507 228 */
c0324a02 229 enum wl_prio_t serving_prio;
718eee05
CZ
230 enum wl_type_t serving_type;
231 unsigned long workload_expires;
cdb16e8f 232 struct cfq_group *serving_group;
a36e71f9
JA
233
234 /*
235 * Each priority tree is sorted by next_request position. These
236 * trees are used when determining if two or more queues are
237 * interleaving requests (see cfq_close_cooperator).
238 */
239 struct rb_root prio_trees[CFQ_PRIO_LISTS];
240
22e2c507 241 unsigned int busy_queues;
ef8a41df 242 unsigned int busy_sync_queues;
22e2c507 243
53c583d2
CZ
244 int rq_in_driver;
245 int rq_in_flight[2];
45333d5a
AC
246
247 /*
248 * queue-depth detection
249 */
250 int rq_queued;
25776e35 251 int hw_tag;
e459dd08
CZ
252 /*
253 * hw_tag can be
254 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256 * 0 => no NCQ
257 */
258 int hw_tag_est_depth;
259 unsigned int hw_tag_samples;
1da177e4 260
22e2c507
JA
261 /*
262 * idle window management
263 */
264 struct timer_list idle_slice_timer;
23e018a1 265 struct work_struct unplug_work;
1da177e4 266
22e2c507
JA
267 struct cfq_queue *active_queue;
268 struct cfq_io_context *active_cic;
22e2c507 269
c2dea2d1
VT
270 /*
271 * async queue for each priority case
272 */
273 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274 struct cfq_queue *async_idle_cfqq;
15c31be4 275
6d048f53 276 sector_t last_position;
1da177e4 277
1da177e4
LT
278 /*
279 * tunables, see top of file
280 */
281 unsigned int cfq_quantum;
22e2c507 282 unsigned int cfq_fifo_expire[2];
1da177e4
LT
283 unsigned int cfq_back_penalty;
284 unsigned int cfq_back_max;
22e2c507
JA
285 unsigned int cfq_slice[2];
286 unsigned int cfq_slice_async_rq;
287 unsigned int cfq_slice_idle;
80bdf0c7 288 unsigned int cfq_group_idle;
963b72fc 289 unsigned int cfq_latency;
d9ff4187
AV
290
291 struct list_head cic_list;
1da177e4 292
6118b70b
JA
293 /*
294 * Fallback dummy cfqq for extreme OOM conditions
295 */
296 struct cfq_queue oom_cfqq;
365722bb 297
573412b2 298 unsigned long last_delayed_sync;
25fb5169
VG
299
300 /* List of cfq groups being managed on this device*/
301 struct hlist_head cfqg_list;
56edf7d7
VG
302
303 /* Number of groups which are on blkcg->blkg_list */
304 unsigned int nr_blkcg_linked_grps;
1da177e4
LT
305};
306
25fb5169
VG
307static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
308
cdb16e8f
VG
309static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
310 enum wl_prio_t prio,
65b32a57 311 enum wl_type_t type)
c0324a02 312{
1fa8f6d6
VG
313 if (!cfqg)
314 return NULL;
315
c0324a02 316 if (prio == IDLE_WORKLOAD)
cdb16e8f 317 return &cfqg->service_tree_idle;
c0324a02 318
cdb16e8f 319 return &cfqg->service_trees[prio][type];
c0324a02
CZ
320}
321
3b18152c 322enum cfqq_state_flags {
b0b8d749
JA
323 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
324 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 325 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 326 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
327 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
328 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
329 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 330 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 331 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 332 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 333 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 334 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 335 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
336};
337
338#define CFQ_CFQQ_FNS(name) \
339static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
340{ \
fe094d98 341 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
342} \
343static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
344{ \
fe094d98 345 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
346} \
347static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
348{ \
fe094d98 349 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
350}
351
352CFQ_CFQQ_FNS(on_rr);
353CFQ_CFQQ_FNS(wait_request);
b029195d 354CFQ_CFQQ_FNS(must_dispatch);
3b18152c 355CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
356CFQ_CFQQ_FNS(fifo_expire);
357CFQ_CFQQ_FNS(idle_window);
358CFQ_CFQQ_FNS(prio_changed);
44f7c160 359CFQ_CFQQ_FNS(slice_new);
91fac317 360CFQ_CFQQ_FNS(sync);
a36e71f9 361CFQ_CFQQ_FNS(coop);
ae54abed 362CFQ_CFQQ_FNS(split_coop);
76280aff 363CFQ_CFQQ_FNS(deep);
f75edf2d 364CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
365#undef CFQ_CFQQ_FNS
366
afc24d49 367#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
368#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
369 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
370 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
4495a7d4 371 blkg_path(&(cfqq)->cfqg->blkg), ##args)
2868ef7b
VG
372
373#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
374 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
4495a7d4 375 blkg_path(&(cfqg)->blkg), ##args) \
2868ef7b
VG
376
377#else
7b679138
JA
378#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
379 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
4495a7d4 380#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
2868ef7b 381#endif
7b679138
JA
382#define cfq_log(cfqd, fmt, args...) \
383 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
384
615f0259
VG
385/* Traverses through cfq group service trees */
386#define for_each_cfqg_st(cfqg, i, j, st) \
387 for (i = 0; i <= IDLE_WORKLOAD; i++) \
388 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
389 : &cfqg->service_tree_idle; \
390 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
391 (i == IDLE_WORKLOAD && j == 0); \
392 j++, st = i < IDLE_WORKLOAD ? \
393 &cfqg->service_trees[i][j]: NULL) \
394
f5f2b6ce
SL
395static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
396 struct cfq_ttime *ttime, bool group_idle)
397{
398 unsigned long slice;
399 if (!sample_valid(ttime->ttime_samples))
400 return false;
401 if (group_idle)
402 slice = cfqd->cfq_group_idle;
403 else
404 slice = cfqd->cfq_slice_idle;
405 return ttime->ttime_mean > slice;
406}
615f0259 407
02b35081
VG
408static inline bool iops_mode(struct cfq_data *cfqd)
409{
410 /*
411 * If we are not idling on queues and it is a NCQ drive, parallel
412 * execution of requests is on and measuring time is not possible
413 * in most of the cases until and unless we drive shallower queue
414 * depths and that becomes a performance bottleneck. In such cases
415 * switch to start providing fairness in terms of number of IOs.
416 */
417 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
418 return true;
419 else
420 return false;
421}
422
c0324a02
CZ
423static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
424{
425 if (cfq_class_idle(cfqq))
426 return IDLE_WORKLOAD;
427 if (cfq_class_rt(cfqq))
428 return RT_WORKLOAD;
429 return BE_WORKLOAD;
430}
431
718eee05
CZ
432
433static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
434{
435 if (!cfq_cfqq_sync(cfqq))
436 return ASYNC_WORKLOAD;
437 if (!cfq_cfqq_idle_window(cfqq))
438 return SYNC_NOIDLE_WORKLOAD;
439 return SYNC_WORKLOAD;
440}
441
58ff82f3
VG
442static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
443 struct cfq_data *cfqd,
444 struct cfq_group *cfqg)
c0324a02
CZ
445{
446 if (wl == IDLE_WORKLOAD)
cdb16e8f 447 return cfqg->service_tree_idle.count;
c0324a02 448
cdb16e8f
VG
449 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
450 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
451 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
452}
453
f26bd1f0
VG
454static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
455 struct cfq_group *cfqg)
456{
457 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
458 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
459}
460
165125e1 461static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 462static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 463 struct io_context *, gfp_t);
4ac845a2 464static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
465 struct io_context *);
466
467static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 468 bool is_sync)
91fac317 469{
a6151c3a 470 return cic->cfqq[is_sync];
91fac317
VT
471}
472
473static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 474 struct cfq_queue *cfqq, bool is_sync)
91fac317 475{
a6151c3a 476 cic->cfqq[is_sync] = cfqq;
91fac317
VT
477}
478
bca4b914 479#define CIC_DEAD_KEY 1ul
80b15c73 480#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
481
482static inline void *cfqd_dead_key(struct cfq_data *cfqd)
483{
a73f730d 484 return (void *)(cfqd->queue->id << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
485}
486
487static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
488{
489 struct cfq_data *cfqd = cic->key;
490
491 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
492 return NULL;
493
494 return cfqd;
495}
496
91fac317
VT
497/*
498 * We regard a request as SYNC, if it's either a read or has the SYNC bit
499 * set (in which case it could also be direct WRITE).
500 */
a6151c3a 501static inline bool cfq_bio_sync(struct bio *bio)
91fac317 502{
7b6d91da 503 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 504}
1da177e4 505
99f95e52
AM
506/*
507 * scheduler run of queue, if there are requests pending and no one in the
508 * driver that will restart queueing
509 */
23e018a1 510static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 511{
7b679138
JA
512 if (cfqd->busy_queues) {
513 cfq_log(cfqd, "schedule dispatch");
23e018a1 514 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 515 }
99f95e52
AM
516}
517
44f7c160
JA
518/*
519 * Scale schedule slice based on io priority. Use the sync time slice only
520 * if a queue is marked sync and has sync io queued. A sync queue with async
521 * io only, should not get full sync slice length.
522 */
a6151c3a 523static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 524 unsigned short prio)
44f7c160 525{
d9e7620e 526 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 527
d9e7620e
JA
528 WARN_ON(prio >= IOPRIO_BE_NR);
529
530 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
531}
44f7c160 532
d9e7620e
JA
533static inline int
534cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
535{
536 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
537}
538
25bc6b07
VG
539static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
540{
541 u64 d = delta << CFQ_SERVICE_SHIFT;
542
543 d = d * BLKIO_WEIGHT_DEFAULT;
544 do_div(d, cfqg->weight);
545 return d;
546}
547
548static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
549{
550 s64 delta = (s64)(vdisktime - min_vdisktime);
551 if (delta > 0)
552 min_vdisktime = vdisktime;
553
554 return min_vdisktime;
555}
556
557static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
558{
559 s64 delta = (s64)(vdisktime - min_vdisktime);
560 if (delta < 0)
561 min_vdisktime = vdisktime;
562
563 return min_vdisktime;
564}
565
566static void update_min_vdisktime(struct cfq_rb_root *st)
567{
25bc6b07
VG
568 struct cfq_group *cfqg;
569
25bc6b07
VG
570 if (st->left) {
571 cfqg = rb_entry_cfqg(st->left);
a6032710
GJ
572 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
573 cfqg->vdisktime);
25bc6b07 574 }
25bc6b07
VG
575}
576
5db5d642
CZ
577/*
578 * get averaged number of queues of RT/BE priority.
579 * average is updated, with a formula that gives more weight to higher numbers,
580 * to quickly follows sudden increases and decrease slowly
581 */
582
58ff82f3
VG
583static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
584 struct cfq_group *cfqg, bool rt)
5869619c 585{
5db5d642
CZ
586 unsigned min_q, max_q;
587 unsigned mult = cfq_hist_divisor - 1;
588 unsigned round = cfq_hist_divisor / 2;
58ff82f3 589 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 590
58ff82f3
VG
591 min_q = min(cfqg->busy_queues_avg[rt], busy);
592 max_q = max(cfqg->busy_queues_avg[rt], busy);
593 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 594 cfq_hist_divisor;
58ff82f3
VG
595 return cfqg->busy_queues_avg[rt];
596}
597
598static inline unsigned
599cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
600{
601 struct cfq_rb_root *st = &cfqd->grp_service_tree;
602
603 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
604}
605
c553f8e3 606static inline unsigned
ba5bd520 607cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
44f7c160 608{
5db5d642
CZ
609 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
610 if (cfqd->cfq_latency) {
58ff82f3
VG
611 /*
612 * interested queues (we consider only the ones with the same
613 * priority class in the cfq group)
614 */
615 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
616 cfq_class_rt(cfqq));
5db5d642
CZ
617 unsigned sync_slice = cfqd->cfq_slice[1];
618 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
619 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
620
621 if (expect_latency > group_slice) {
5db5d642
CZ
622 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
623 /* scale low_slice according to IO priority
624 * and sync vs async */
625 unsigned low_slice =
626 min(slice, base_low_slice * slice / sync_slice);
627 /* the adapted slice value is scaled to fit all iqs
628 * into the target latency */
58ff82f3 629 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
630 low_slice);
631 }
632 }
c553f8e3
SL
633 return slice;
634}
635
636static inline void
637cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
638{
ba5bd520 639 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3 640
dae739eb 641 cfqq->slice_start = jiffies;
5db5d642 642 cfqq->slice_end = jiffies + slice;
f75edf2d 643 cfqq->allocated_slice = slice;
7b679138 644 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
645}
646
647/*
648 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
649 * isn't valid until the first request from the dispatch is activated
650 * and the slice time set.
651 */
a6151c3a 652static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
653{
654 if (cfq_cfqq_slice_new(cfqq))
c1e44756 655 return false;
44f7c160 656 if (time_before(jiffies, cfqq->slice_end))
c1e44756 657 return false;
44f7c160 658
c1e44756 659 return true;
44f7c160
JA
660}
661
1da177e4 662/*
5e705374 663 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 664 * We choose the request that is closest to the head right now. Distance
e8a99053 665 * behind the head is penalized and only allowed to a certain extent.
1da177e4 666 */
5e705374 667static struct request *
cf7c25cf 668cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 669{
cf7c25cf 670 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 671 unsigned long back_max;
e8a99053
AM
672#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
673#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
674 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 675
5e705374
JA
676 if (rq1 == NULL || rq1 == rq2)
677 return rq2;
678 if (rq2 == NULL)
679 return rq1;
9c2c38a1 680
229836bd
NK
681 if (rq_is_sync(rq1) != rq_is_sync(rq2))
682 return rq_is_sync(rq1) ? rq1 : rq2;
683
65299a3b
CH
684 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
685 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
b53d1ed7 686
83096ebf
TH
687 s1 = blk_rq_pos(rq1);
688 s2 = blk_rq_pos(rq2);
1da177e4 689
1da177e4
LT
690 /*
691 * by definition, 1KiB is 2 sectors
692 */
693 back_max = cfqd->cfq_back_max * 2;
694
695 /*
696 * Strict one way elevator _except_ in the case where we allow
697 * short backward seeks which are biased as twice the cost of a
698 * similar forward seek.
699 */
700 if (s1 >= last)
701 d1 = s1 - last;
702 else if (s1 + back_max >= last)
703 d1 = (last - s1) * cfqd->cfq_back_penalty;
704 else
e8a99053 705 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
706
707 if (s2 >= last)
708 d2 = s2 - last;
709 else if (s2 + back_max >= last)
710 d2 = (last - s2) * cfqd->cfq_back_penalty;
711 else
e8a99053 712 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
713
714 /* Found required data */
e8a99053
AM
715
716 /*
717 * By doing switch() on the bit mask "wrap" we avoid having to
718 * check two variables for all permutations: --> faster!
719 */
720 switch (wrap) {
5e705374 721 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 722 if (d1 < d2)
5e705374 723 return rq1;
e8a99053 724 else if (d2 < d1)
5e705374 725 return rq2;
e8a99053
AM
726 else {
727 if (s1 >= s2)
5e705374 728 return rq1;
e8a99053 729 else
5e705374 730 return rq2;
e8a99053 731 }
1da177e4 732
e8a99053 733 case CFQ_RQ2_WRAP:
5e705374 734 return rq1;
e8a99053 735 case CFQ_RQ1_WRAP:
5e705374
JA
736 return rq2;
737 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
738 default:
739 /*
740 * Since both rqs are wrapped,
741 * start with the one that's further behind head
742 * (--> only *one* back seek required),
743 * since back seek takes more time than forward.
744 */
745 if (s1 <= s2)
5e705374 746 return rq1;
1da177e4 747 else
5e705374 748 return rq2;
1da177e4
LT
749 }
750}
751
498d3aa2
JA
752/*
753 * The below is leftmost cache rbtree addon
754 */
0871714e 755static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 756{
615f0259
VG
757 /* Service tree is empty */
758 if (!root->count)
759 return NULL;
760
cc09e299
JA
761 if (!root->left)
762 root->left = rb_first(&root->rb);
763
0871714e
JA
764 if (root->left)
765 return rb_entry(root->left, struct cfq_queue, rb_node);
766
767 return NULL;
cc09e299
JA
768}
769
1fa8f6d6
VG
770static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
771{
772 if (!root->left)
773 root->left = rb_first(&root->rb);
774
775 if (root->left)
776 return rb_entry_cfqg(root->left);
777
778 return NULL;
779}
780
a36e71f9
JA
781static void rb_erase_init(struct rb_node *n, struct rb_root *root)
782{
783 rb_erase(n, root);
784 RB_CLEAR_NODE(n);
785}
786
cc09e299
JA
787static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
788{
789 if (root->left == n)
790 root->left = NULL;
a36e71f9 791 rb_erase_init(n, &root->rb);
aa6f6a3d 792 --root->count;
cc09e299
JA
793}
794
1da177e4
LT
795/*
796 * would be nice to take fifo expire time into account as well
797 */
5e705374
JA
798static struct request *
799cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
800 struct request *last)
1da177e4 801{
21183b07
JA
802 struct rb_node *rbnext = rb_next(&last->rb_node);
803 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 804 struct request *next = NULL, *prev = NULL;
1da177e4 805
21183b07 806 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
807
808 if (rbprev)
5e705374 809 prev = rb_entry_rq(rbprev);
1da177e4 810
21183b07 811 if (rbnext)
5e705374 812 next = rb_entry_rq(rbnext);
21183b07
JA
813 else {
814 rbnext = rb_first(&cfqq->sort_list);
815 if (rbnext && rbnext != &last->rb_node)
5e705374 816 next = rb_entry_rq(rbnext);
21183b07 817 }
1da177e4 818
cf7c25cf 819 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
820}
821
d9e7620e
JA
822static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
823 struct cfq_queue *cfqq)
1da177e4 824{
d9e7620e
JA
825 /*
826 * just an approximation, should be ok.
827 */
cdb16e8f 828 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 829 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
830}
831
1fa8f6d6
VG
832static inline s64
833cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
834{
835 return cfqg->vdisktime - st->min_vdisktime;
836}
837
838static void
839__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
840{
841 struct rb_node **node = &st->rb.rb_node;
842 struct rb_node *parent = NULL;
843 struct cfq_group *__cfqg;
844 s64 key = cfqg_key(st, cfqg);
845 int left = 1;
846
847 while (*node != NULL) {
848 parent = *node;
849 __cfqg = rb_entry_cfqg(parent);
850
851 if (key < cfqg_key(st, __cfqg))
852 node = &parent->rb_left;
853 else {
854 node = &parent->rb_right;
855 left = 0;
856 }
857 }
858
859 if (left)
860 st->left = &cfqg->rb_node;
861
862 rb_link_node(&cfqg->rb_node, parent, node);
863 rb_insert_color(&cfqg->rb_node, &st->rb);
864}
865
866static void
8184f93e
JT
867cfq_update_group_weight(struct cfq_group *cfqg)
868{
869 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
870 if (cfqg->needs_update) {
871 cfqg->weight = cfqg->new_weight;
872 cfqg->needs_update = false;
873 }
874}
875
876static void
877cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
878{
879 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
880
881 cfq_update_group_weight(cfqg);
882 __cfq_group_service_tree_add(st, cfqg);
883 st->total_weight += cfqg->weight;
884}
885
886static void
887cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
888{
889 struct cfq_rb_root *st = &cfqd->grp_service_tree;
890 struct cfq_group *__cfqg;
891 struct rb_node *n;
892
893 cfqg->nr_cfqq++;
760701bf 894 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1fa8f6d6
VG
895 return;
896
897 /*
898 * Currently put the group at the end. Later implement something
899 * so that groups get lesser vtime based on their weights, so that
25985edc 900 * if group does not loose all if it was not continuously backlogged.
1fa8f6d6
VG
901 */
902 n = rb_last(&st->rb);
903 if (n) {
904 __cfqg = rb_entry_cfqg(n);
905 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
906 } else
907 cfqg->vdisktime = st->min_vdisktime;
8184f93e
JT
908 cfq_group_service_tree_add(st, cfqg);
909}
1fa8f6d6 910
8184f93e
JT
911static void
912cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
913{
914 st->total_weight -= cfqg->weight;
915 if (!RB_EMPTY_NODE(&cfqg->rb_node))
916 cfq_rb_erase(&cfqg->rb_node, st);
1fa8f6d6
VG
917}
918
919static void
8184f93e 920cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
921{
922 struct cfq_rb_root *st = &cfqd->grp_service_tree;
923
924 BUG_ON(cfqg->nr_cfqq < 1);
925 cfqg->nr_cfqq--;
25bc6b07 926
1fa8f6d6
VG
927 /* If there are other cfq queues under this group, don't delete it */
928 if (cfqg->nr_cfqq)
929 return;
930
2868ef7b 931 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
8184f93e 932 cfq_group_service_tree_del(st, cfqg);
dae739eb 933 cfqg->saved_workload_slice = 0;
e98ef89b 934 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
935}
936
167400d3
JT
937static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
938 unsigned int *unaccounted_time)
dae739eb 939{
f75edf2d 940 unsigned int slice_used;
dae739eb
VG
941
942 /*
943 * Queue got expired before even a single request completed or
944 * got expired immediately after first request completion.
945 */
946 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
947 /*
948 * Also charge the seek time incurred to the group, otherwise
949 * if there are mutiple queues in the group, each can dispatch
950 * a single request on seeky media and cause lots of seek time
951 * and group will never know it.
952 */
953 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
954 1);
955 } else {
956 slice_used = jiffies - cfqq->slice_start;
167400d3
JT
957 if (slice_used > cfqq->allocated_slice) {
958 *unaccounted_time = slice_used - cfqq->allocated_slice;
f75edf2d 959 slice_used = cfqq->allocated_slice;
167400d3
JT
960 }
961 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
962 *unaccounted_time += cfqq->slice_start -
963 cfqq->dispatch_start;
dae739eb
VG
964 }
965
dae739eb
VG
966 return slice_used;
967}
968
969static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 970 struct cfq_queue *cfqq)
dae739eb
VG
971{
972 struct cfq_rb_root *st = &cfqd->grp_service_tree;
167400d3 973 unsigned int used_sl, charge, unaccounted_sl = 0;
f26bd1f0
VG
974 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
975 - cfqg->service_tree_idle.count;
976
977 BUG_ON(nr_sync < 0);
167400d3 978 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
dae739eb 979
02b35081
VG
980 if (iops_mode(cfqd))
981 charge = cfqq->slice_dispatch;
982 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
983 charge = cfqq->allocated_slice;
dae739eb
VG
984
985 /* Can't update vdisktime while group is on service tree */
8184f93e 986 cfq_group_service_tree_del(st, cfqg);
02b35081 987 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
8184f93e
JT
988 /* If a new weight was requested, update now, off tree */
989 cfq_group_service_tree_add(st, cfqg);
dae739eb
VG
990
991 /* This group is being expired. Save the context */
992 if (time_after(cfqd->workload_expires, jiffies)) {
993 cfqg->saved_workload_slice = cfqd->workload_expires
994 - jiffies;
995 cfqg->saved_workload = cfqd->serving_type;
996 cfqg->saved_serving_prio = cfqd->serving_prio;
997 } else
998 cfqg->saved_workload_slice = 0;
2868ef7b
VG
999
1000 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1001 st->min_vdisktime);
fd16d263
JP
1002 cfq_log_cfqq(cfqq->cfqd, cfqq,
1003 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1004 used_sl, cfqq->slice_dispatch, charge,
1005 iops_mode(cfqd), cfqq->nr_sectors);
167400d3
JT
1006 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1007 unaccounted_sl);
e98ef89b 1008 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
1009}
1010
25fb5169
VG
1011#ifdef CONFIG_CFQ_GROUP_IOSCHED
1012static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1013{
1014 if (blkg)
1015 return container_of(blkg, struct cfq_group, blkg);
1016 return NULL;
1017}
1018
8aea4545
PB
1019static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1020 unsigned int weight)
f8d461d6 1021{
8184f93e
JT
1022 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1023 cfqg->new_weight = weight;
1024 cfqg->needs_update = true;
f8d461d6
VG
1025}
1026
f469a7b4
VG
1027static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1028 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
25fb5169 1029{
22084190
VG
1030 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1031 unsigned int major, minor;
25fb5169 1032
f469a7b4
VG
1033 /*
1034 * Add group onto cgroup list. It might happen that bdi->dev is
1035 * not initialized yet. Initialize this new group without major
1036 * and minor info and this info will be filled in once a new thread
1037 * comes for IO.
1038 */
1039 if (bdi->dev) {
a74b2ada 1040 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
f469a7b4
VG
1041 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1042 (void *)cfqd, MKDEV(major, minor));
1043 } else
1044 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1045 (void *)cfqd, 0);
1046
1047 cfqd->nr_blkcg_linked_grps++;
1048 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1049
1050 /* Add group on cfqd list */
1051 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1052}
1053
1054/*
1055 * Should be called from sleepable context. No request queue lock as per
1056 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1057 * from sleepable context.
1058 */
1059static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1060{
1061 struct cfq_group *cfqg = NULL;
5624a4e4 1062 int i, j, ret;
f469a7b4 1063 struct cfq_rb_root *st;
25fb5169
VG
1064
1065 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1066 if (!cfqg)
f469a7b4 1067 return NULL;
25fb5169 1068
25fb5169
VG
1069 for_each_cfqg_st(cfqg, i, j, st)
1070 *st = CFQ_RB_ROOT;
1071 RB_CLEAR_NODE(&cfqg->rb_node);
1072
7700fc4f
SL
1073 cfqg->ttime.last_end_request = jiffies;
1074
b1c35769
VG
1075 /*
1076 * Take the initial reference that will be released on destroy
1077 * This can be thought of a joint reference by cgroup and
1078 * elevator which will be dropped by either elevator exit
1079 * or cgroup deletion path depending on who is exiting first.
1080 */
329a6781 1081 cfqg->ref = 1;
5624a4e4
VG
1082
1083 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1084 if (ret) {
1085 kfree(cfqg);
1086 return NULL;
1087 }
1088
f469a7b4
VG
1089 return cfqg;
1090}
1091
1092static struct cfq_group *
1093cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1094{
1095 struct cfq_group *cfqg = NULL;
1096 void *key = cfqd;
1097 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1098 unsigned int major, minor;
b1c35769 1099
180be2a0 1100 /*
f469a7b4
VG
1101 * This is the common case when there are no blkio cgroups.
1102 * Avoid lookup in this case
180be2a0 1103 */
f469a7b4
VG
1104 if (blkcg == &blkio_root_cgroup)
1105 cfqg = &cfqd->root_group;
1106 else
1107 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
25fb5169 1108
f469a7b4
VG
1109 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1110 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1111 cfqg->blkg.dev = MKDEV(major, minor);
1112 }
25fb5169 1113
25fb5169
VG
1114 return cfqg;
1115}
1116
1117/*
3e59cf9d
VG
1118 * Search for the cfq group current task belongs to. request_queue lock must
1119 * be held.
25fb5169 1120 */
3e59cf9d 1121static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169 1122{
70087dc3 1123 struct blkio_cgroup *blkcg;
f469a7b4
VG
1124 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1125 struct request_queue *q = cfqd->queue;
25fb5169
VG
1126
1127 rcu_read_lock();
70087dc3 1128 blkcg = task_blkio_cgroup(current);
f469a7b4
VG
1129 cfqg = cfq_find_cfqg(cfqd, blkcg);
1130 if (cfqg) {
1131 rcu_read_unlock();
1132 return cfqg;
1133 }
1134
1135 /*
1136 * Need to allocate a group. Allocation of group also needs allocation
1137 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1138 * we need to drop rcu lock and queue_lock before we call alloc.
1139 *
1140 * Not taking any queue reference here and assuming that queue is
1141 * around by the time we return. CFQ queue allocation code does
1142 * the same. It might be racy though.
1143 */
1144
1145 rcu_read_unlock();
1146 spin_unlock_irq(q->queue_lock);
1147
1148 cfqg = cfq_alloc_cfqg(cfqd);
1149
1150 spin_lock_irq(q->queue_lock);
1151
1152 rcu_read_lock();
1153 blkcg = task_blkio_cgroup(current);
1154
1155 /*
1156 * If some other thread already allocated the group while we were
1157 * not holding queue lock, free up the group
1158 */
1159 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1160
1161 if (__cfqg) {
1162 kfree(cfqg);
1163 rcu_read_unlock();
1164 return __cfqg;
1165 }
1166
3e59cf9d 1167 if (!cfqg)
25fb5169 1168 cfqg = &cfqd->root_group;
f469a7b4
VG
1169
1170 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
25fb5169
VG
1171 rcu_read_unlock();
1172 return cfqg;
1173}
1174
7f1dc8a2
VG
1175static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1176{
329a6781 1177 cfqg->ref++;
7f1dc8a2
VG
1178 return cfqg;
1179}
1180
25fb5169
VG
1181static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1182{
1183 /* Currently, all async queues are mapped to root group */
1184 if (!cfq_cfqq_sync(cfqq))
1185 cfqg = &cfqq->cfqd->root_group;
1186
1187 cfqq->cfqg = cfqg;
b1c35769 1188 /* cfqq reference on cfqg */
329a6781 1189 cfqq->cfqg->ref++;
b1c35769
VG
1190}
1191
1192static void cfq_put_cfqg(struct cfq_group *cfqg)
1193{
1194 struct cfq_rb_root *st;
1195 int i, j;
1196
329a6781
SL
1197 BUG_ON(cfqg->ref <= 0);
1198 cfqg->ref--;
1199 if (cfqg->ref)
b1c35769
VG
1200 return;
1201 for_each_cfqg_st(cfqg, i, j, st)
b54ce60e 1202 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
5624a4e4 1203 free_percpu(cfqg->blkg.stats_cpu);
b1c35769
VG
1204 kfree(cfqg);
1205}
1206
1207static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1208{
1209 /* Something wrong if we are trying to remove same group twice */
1210 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1211
1212 hlist_del_init(&cfqg->cfqd_node);
1213
a5395b83
VG
1214 BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1215 cfqd->nr_blkcg_linked_grps--;
1216
b1c35769
VG
1217 /*
1218 * Put the reference taken at the time of creation so that when all
1219 * queues are gone, group can be destroyed.
1220 */
1221 cfq_put_cfqg(cfqg);
1222}
1223
1224static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1225{
1226 struct hlist_node *pos, *n;
1227 struct cfq_group *cfqg;
1228
1229 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1230 /*
1231 * If cgroup removal path got to blk_group first and removed
1232 * it from cgroup list, then it will take care of destroying
1233 * cfqg also.
1234 */
e98ef89b 1235 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1236 cfq_destroy_cfqg(cfqd, cfqg);
1237 }
25fb5169 1238}
b1c35769
VG
1239
1240/*
1241 * Blk cgroup controller notification saying that blkio_group object is being
1242 * delinked as associated cgroup object is going away. That also means that
1243 * no new IO will come in this group. So get rid of this group as soon as
1244 * any pending IO in the group is finished.
1245 *
1246 * This function is called under rcu_read_lock(). key is the rcu protected
1247 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1248 * read lock.
1249 *
1250 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1251 * it should not be NULL as even if elevator was exiting, cgroup deltion
1252 * path got to it first.
1253 */
8aea4545 1254static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
b1c35769
VG
1255{
1256 unsigned long flags;
1257 struct cfq_data *cfqd = key;
1258
1259 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1260 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1261 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1262}
1263
25fb5169 1264#else /* GROUP_IOSCHED */
3e59cf9d 1265static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169
VG
1266{
1267 return &cfqd->root_group;
1268}
7f1dc8a2
VG
1269
1270static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1271{
50eaeb32 1272 return cfqg;
7f1dc8a2
VG
1273}
1274
25fb5169
VG
1275static inline void
1276cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1277 cfqq->cfqg = cfqg;
1278}
1279
b1c35769
VG
1280static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1281static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1282
25fb5169
VG
1283#endif /* GROUP_IOSCHED */
1284
498d3aa2 1285/*
c0324a02 1286 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1287 * requests waiting to be processed. It is sorted in the order that
1288 * we will service the queues.
1289 */
a36e71f9 1290static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1291 bool add_front)
d9e7620e 1292{
0871714e
JA
1293 struct rb_node **p, *parent;
1294 struct cfq_queue *__cfqq;
d9e7620e 1295 unsigned long rb_key;
c0324a02 1296 struct cfq_rb_root *service_tree;
498d3aa2 1297 int left;
dae739eb 1298 int new_cfqq = 1;
ae30c286 1299
cdb16e8f 1300 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1301 cfqq_type(cfqq));
0871714e
JA
1302 if (cfq_class_idle(cfqq)) {
1303 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1304 parent = rb_last(&service_tree->rb);
0871714e
JA
1305 if (parent && parent != &cfqq->rb_node) {
1306 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1307 rb_key += __cfqq->rb_key;
1308 } else
1309 rb_key += jiffies;
1310 } else if (!add_front) {
b9c8946b
JA
1311 /*
1312 * Get our rb key offset. Subtract any residual slice
1313 * value carried from last service. A negative resid
1314 * count indicates slice overrun, and this should position
1315 * the next service time further away in the tree.
1316 */
edd75ffd 1317 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1318 rb_key -= cfqq->slice_resid;
edd75ffd 1319 cfqq->slice_resid = 0;
48e025e6
CZ
1320 } else {
1321 rb_key = -HZ;
aa6f6a3d 1322 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1323 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1324 }
1da177e4 1325
d9e7620e 1326 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1327 new_cfqq = 0;
99f9628a 1328 /*
d9e7620e 1329 * same position, nothing more to do
99f9628a 1330 */
c0324a02
CZ
1331 if (rb_key == cfqq->rb_key &&
1332 cfqq->service_tree == service_tree)
d9e7620e 1333 return;
1da177e4 1334
aa6f6a3d
CZ
1335 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1336 cfqq->service_tree = NULL;
1da177e4 1337 }
d9e7620e 1338
498d3aa2 1339 left = 1;
0871714e 1340 parent = NULL;
aa6f6a3d
CZ
1341 cfqq->service_tree = service_tree;
1342 p = &service_tree->rb.rb_node;
d9e7620e 1343 while (*p) {
67060e37 1344 struct rb_node **n;
cc09e299 1345
d9e7620e
JA
1346 parent = *p;
1347 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1348
0c534e0a 1349 /*
c0324a02 1350 * sort by key, that represents service time.
0c534e0a 1351 */
c0324a02 1352 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1353 n = &(*p)->rb_left;
c0324a02 1354 else {
67060e37 1355 n = &(*p)->rb_right;
cc09e299 1356 left = 0;
c0324a02 1357 }
67060e37
JA
1358
1359 p = n;
d9e7620e
JA
1360 }
1361
cc09e299 1362 if (left)
aa6f6a3d 1363 service_tree->left = &cfqq->rb_node;
cc09e299 1364
d9e7620e
JA
1365 cfqq->rb_key = rb_key;
1366 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1367 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1368 service_tree->count++;
20359f27 1369 if (add_front || !new_cfqq)
dae739eb 1370 return;
8184f93e 1371 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1da177e4
LT
1372}
1373
a36e71f9 1374static struct cfq_queue *
f2d1f0ae
JA
1375cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1376 sector_t sector, struct rb_node **ret_parent,
1377 struct rb_node ***rb_link)
a36e71f9 1378{
a36e71f9
JA
1379 struct rb_node **p, *parent;
1380 struct cfq_queue *cfqq = NULL;
1381
1382 parent = NULL;
1383 p = &root->rb_node;
1384 while (*p) {
1385 struct rb_node **n;
1386
1387 parent = *p;
1388 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1389
1390 /*
1391 * Sort strictly based on sector. Smallest to the left,
1392 * largest to the right.
1393 */
2e46e8b2 1394 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1395 n = &(*p)->rb_right;
2e46e8b2 1396 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1397 n = &(*p)->rb_left;
1398 else
1399 break;
1400 p = n;
3ac6c9f8 1401 cfqq = NULL;
a36e71f9
JA
1402 }
1403
1404 *ret_parent = parent;
1405 if (rb_link)
1406 *rb_link = p;
3ac6c9f8 1407 return cfqq;
a36e71f9
JA
1408}
1409
1410static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1411{
a36e71f9
JA
1412 struct rb_node **p, *parent;
1413 struct cfq_queue *__cfqq;
1414
f2d1f0ae
JA
1415 if (cfqq->p_root) {
1416 rb_erase(&cfqq->p_node, cfqq->p_root);
1417 cfqq->p_root = NULL;
1418 }
a36e71f9
JA
1419
1420 if (cfq_class_idle(cfqq))
1421 return;
1422 if (!cfqq->next_rq)
1423 return;
1424
f2d1f0ae 1425 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1426 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1427 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1428 if (!__cfqq) {
1429 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1430 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1431 } else
1432 cfqq->p_root = NULL;
a36e71f9
JA
1433}
1434
498d3aa2
JA
1435/*
1436 * Update cfqq's position in the service tree.
1437 */
edd75ffd 1438static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1439{
6d048f53
JA
1440 /*
1441 * Resorting requires the cfqq to be on the RR list already.
1442 */
a36e71f9 1443 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1444 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1445 cfq_prio_tree_add(cfqd, cfqq);
1446 }
6d048f53
JA
1447}
1448
1da177e4
LT
1449/*
1450 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1451 * the pending list according to last request service
1da177e4 1452 */
febffd61 1453static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1454{
7b679138 1455 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1456 BUG_ON(cfq_cfqq_on_rr(cfqq));
1457 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 1458 cfqd->busy_queues++;
ef8a41df
SL
1459 if (cfq_cfqq_sync(cfqq))
1460 cfqd->busy_sync_queues++;
1da177e4 1461
edd75ffd 1462 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1463}
1464
498d3aa2
JA
1465/*
1466 * Called when the cfqq no longer has requests pending, remove it from
1467 * the service tree.
1468 */
febffd61 1469static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1470{
7b679138 1471 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1472 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1473 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1474
aa6f6a3d
CZ
1475 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1476 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1477 cfqq->service_tree = NULL;
1478 }
f2d1f0ae
JA
1479 if (cfqq->p_root) {
1480 rb_erase(&cfqq->p_node, cfqq->p_root);
1481 cfqq->p_root = NULL;
1482 }
d9e7620e 1483
8184f93e 1484 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1da177e4
LT
1485 BUG_ON(!cfqd->busy_queues);
1486 cfqd->busy_queues--;
ef8a41df
SL
1487 if (cfq_cfqq_sync(cfqq))
1488 cfqd->busy_sync_queues--;
1da177e4
LT
1489}
1490
1491/*
1492 * rb tree support functions
1493 */
febffd61 1494static void cfq_del_rq_rb(struct request *rq)
1da177e4 1495{
5e705374 1496 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1497 const int sync = rq_is_sync(rq);
1da177e4 1498
b4878f24
JA
1499 BUG_ON(!cfqq->queued[sync]);
1500 cfqq->queued[sync]--;
1da177e4 1501
5e705374 1502 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1503
f04a6424
VG
1504 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1505 /*
1506 * Queue will be deleted from service tree when we actually
1507 * expire it later. Right now just remove it from prio tree
1508 * as it is empty.
1509 */
1510 if (cfqq->p_root) {
1511 rb_erase(&cfqq->p_node, cfqq->p_root);
1512 cfqq->p_root = NULL;
1513 }
1514 }
1da177e4
LT
1515}
1516
5e705374 1517static void cfq_add_rq_rb(struct request *rq)
1da177e4 1518{
5e705374 1519 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1520 struct cfq_data *cfqd = cfqq->cfqd;
796d5116 1521 struct request *prev;
1da177e4 1522
5380a101 1523 cfqq->queued[rq_is_sync(rq)]++;
1da177e4 1524
796d5116 1525 elv_rb_add(&cfqq->sort_list, rq);
5fccbf61
JA
1526
1527 if (!cfq_cfqq_on_rr(cfqq))
1528 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1529
1530 /*
1531 * check if this request is a better next-serve candidate
1532 */
a36e71f9 1533 prev = cfqq->next_rq;
cf7c25cf 1534 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1535
1536 /*
1537 * adjust priority tree position, if ->next_rq changes
1538 */
1539 if (prev != cfqq->next_rq)
1540 cfq_prio_tree_add(cfqd, cfqq);
1541
5044eed4 1542 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1543}
1544
febffd61 1545static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1546{
5380a101
JA
1547 elv_rb_del(&cfqq->sort_list, rq);
1548 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1549 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1550 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1551 cfq_add_rq_rb(rq);
e98ef89b 1552 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1553 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1554 rq_is_sync(rq));
1da177e4
LT
1555}
1556
206dc69b
JA
1557static struct request *
1558cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1559{
206dc69b 1560 struct task_struct *tsk = current;
91fac317 1561 struct cfq_io_context *cic;
206dc69b 1562 struct cfq_queue *cfqq;
1da177e4 1563
4ac845a2 1564 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1565 if (!cic)
1566 return NULL;
1567
1568 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1569 if (cfqq) {
1570 sector_t sector = bio->bi_sector + bio_sectors(bio);
1571
21183b07 1572 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1573 }
1da177e4 1574
1da177e4
LT
1575 return NULL;
1576}
1577
165125e1 1578static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1579{
22e2c507 1580 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1581
53c583d2 1582 cfqd->rq_in_driver++;
7b679138 1583 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1584 cfqd->rq_in_driver);
25776e35 1585
5b93629b 1586 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1587}
1588
165125e1 1589static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1590{
b4878f24
JA
1591 struct cfq_data *cfqd = q->elevator->elevator_data;
1592
53c583d2
CZ
1593 WARN_ON(!cfqd->rq_in_driver);
1594 cfqd->rq_in_driver--;
7b679138 1595 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1596 cfqd->rq_in_driver);
1da177e4
LT
1597}
1598
b4878f24 1599static void cfq_remove_request(struct request *rq)
1da177e4 1600{
5e705374 1601 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1602
5e705374
JA
1603 if (cfqq->next_rq == rq)
1604 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1605
b4878f24 1606 list_del_init(&rq->queuelist);
5e705374 1607 cfq_del_rq_rb(rq);
374f84ac 1608
45333d5a 1609 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1610 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1611 rq_data_dir(rq), rq_is_sync(rq));
65299a3b
CH
1612 if (rq->cmd_flags & REQ_PRIO) {
1613 WARN_ON(!cfqq->prio_pending);
1614 cfqq->prio_pending--;
b53d1ed7 1615 }
1da177e4
LT
1616}
1617
165125e1
JA
1618static int cfq_merge(struct request_queue *q, struct request **req,
1619 struct bio *bio)
1da177e4
LT
1620{
1621 struct cfq_data *cfqd = q->elevator->elevator_data;
1622 struct request *__rq;
1da177e4 1623
206dc69b 1624 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1625 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1626 *req = __rq;
1627 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1628 }
1629
1630 return ELEVATOR_NO_MERGE;
1da177e4
LT
1631}
1632
165125e1 1633static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1634 int type)
1da177e4 1635{
21183b07 1636 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1637 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1638
5e705374 1639 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1640 }
1da177e4
LT
1641}
1642
812d4026
DS
1643static void cfq_bio_merged(struct request_queue *q, struct request *req,
1644 struct bio *bio)
1645{
e98ef89b
VG
1646 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1647 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1648}
1649
1da177e4 1650static void
165125e1 1651cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1652 struct request *next)
1653{
cf7c25cf 1654 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1655 /*
1656 * reposition in fifo if next is older than rq
1657 */
1658 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1659 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1660 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1661 rq_set_fifo_time(rq, rq_fifo_time(next));
1662 }
22e2c507 1663
cf7c25cf
CZ
1664 if (cfqq->next_rq == next)
1665 cfqq->next_rq = rq;
b4878f24 1666 cfq_remove_request(next);
e98ef89b
VG
1667 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1668 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1669}
1670
165125e1 1671static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1672 struct bio *bio)
1673{
1674 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1675 struct cfq_io_context *cic;
da775265 1676 struct cfq_queue *cfqq;
da775265
JA
1677
1678 /*
ec8acb69 1679 * Disallow merge of a sync bio into an async request.
da775265 1680 */
91fac317 1681 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1682 return false;
da775265
JA
1683
1684 /*
719d3402
JA
1685 * Lookup the cfqq that this bio will be queued with. Allow
1686 * merge only if rq is queued there.
da775265 1687 */
4ac845a2 1688 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1689 if (!cic)
a6151c3a 1690 return false;
719d3402 1691
91fac317 1692 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1693 return cfqq == RQ_CFQQ(rq);
da775265
JA
1694}
1695
812df48d
DS
1696static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1697{
1698 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1699 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1700}
1701
febffd61
JA
1702static void __cfq_set_active_queue(struct cfq_data *cfqd,
1703 struct cfq_queue *cfqq)
22e2c507
JA
1704{
1705 if (cfqq) {
b1ffe737
DS
1706 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1707 cfqd->serving_prio, cfqd->serving_type);
62a37f6b
JT
1708 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1709 cfqq->slice_start = 0;
1710 cfqq->dispatch_start = jiffies;
1711 cfqq->allocated_slice = 0;
1712 cfqq->slice_end = 0;
1713 cfqq->slice_dispatch = 0;
1714 cfqq->nr_sectors = 0;
1715
1716 cfq_clear_cfqq_wait_request(cfqq);
1717 cfq_clear_cfqq_must_dispatch(cfqq);
1718 cfq_clear_cfqq_must_alloc_slice(cfqq);
1719 cfq_clear_cfqq_fifo_expire(cfqq);
1720 cfq_mark_cfqq_slice_new(cfqq);
1721
1722 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1723 }
1724
1725 cfqd->active_queue = cfqq;
1726}
1727
7b14e3b5
JA
1728/*
1729 * current cfqq expired its slice (or was too idle), select new one
1730 */
1731static void
1732__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1733 bool timed_out)
7b14e3b5 1734{
7b679138
JA
1735 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1736
7b14e3b5 1737 if (cfq_cfqq_wait_request(cfqq))
812df48d 1738 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1739
7b14e3b5 1740 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1741 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1742
ae54abed
SL
1743 /*
1744 * If this cfqq is shared between multiple processes, check to
1745 * make sure that those processes are still issuing I/Os within
1746 * the mean seek distance. If not, it may be time to break the
1747 * queues apart again.
1748 */
1749 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1750 cfq_mark_cfqq_split_coop(cfqq);
1751
7b14e3b5 1752 /*
6084cdda 1753 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1754 */
c553f8e3
SL
1755 if (timed_out) {
1756 if (cfq_cfqq_slice_new(cfqq))
ba5bd520 1757 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3
SL
1758 else
1759 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1760 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1761 }
7b14e3b5 1762
e5ff082e 1763 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1764
f04a6424
VG
1765 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1766 cfq_del_cfqq_rr(cfqd, cfqq);
1767
edd75ffd 1768 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1769
1770 if (cfqq == cfqd->active_queue)
1771 cfqd->active_queue = NULL;
1772
1773 if (cfqd->active_cic) {
1774 put_io_context(cfqd->active_cic->ioc);
1775 cfqd->active_cic = NULL;
1776 }
7b14e3b5
JA
1777}
1778
e5ff082e 1779static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1780{
1781 struct cfq_queue *cfqq = cfqd->active_queue;
1782
1783 if (cfqq)
e5ff082e 1784 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1785}
1786
498d3aa2
JA
1787/*
1788 * Get next queue for service. Unless we have a queue preemption,
1789 * we'll simply select the first cfqq in the service tree.
1790 */
6d048f53 1791static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1792{
c0324a02 1793 struct cfq_rb_root *service_tree =
cdb16e8f 1794 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1795 cfqd->serving_type);
d9e7620e 1796
f04a6424
VG
1797 if (!cfqd->rq_queued)
1798 return NULL;
1799
1fa8f6d6
VG
1800 /* There is nothing to dispatch */
1801 if (!service_tree)
1802 return NULL;
c0324a02
CZ
1803 if (RB_EMPTY_ROOT(&service_tree->rb))
1804 return NULL;
1805 return cfq_rb_first(service_tree);
6d048f53
JA
1806}
1807
f04a6424
VG
1808static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1809{
25fb5169 1810 struct cfq_group *cfqg;
f04a6424
VG
1811 struct cfq_queue *cfqq;
1812 int i, j;
1813 struct cfq_rb_root *st;
1814
1815 if (!cfqd->rq_queued)
1816 return NULL;
1817
25fb5169
VG
1818 cfqg = cfq_get_next_cfqg(cfqd);
1819 if (!cfqg)
1820 return NULL;
1821
f04a6424
VG
1822 for_each_cfqg_st(cfqg, i, j, st)
1823 if ((cfqq = cfq_rb_first(st)) != NULL)
1824 return cfqq;
1825 return NULL;
1826}
1827
498d3aa2
JA
1828/*
1829 * Get and set a new active queue for service.
1830 */
a36e71f9
JA
1831static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1832 struct cfq_queue *cfqq)
6d048f53 1833{
e00ef799 1834 if (!cfqq)
a36e71f9 1835 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1836
22e2c507 1837 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1838 return cfqq;
22e2c507
JA
1839}
1840
d9e7620e
JA
1841static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1842 struct request *rq)
1843{
83096ebf
TH
1844 if (blk_rq_pos(rq) >= cfqd->last_position)
1845 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1846 else
83096ebf 1847 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1848}
1849
b2c18e1e 1850static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1851 struct request *rq)
6d048f53 1852{
e9ce335d 1853 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1854}
1855
a36e71f9
JA
1856static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1857 struct cfq_queue *cur_cfqq)
1858{
f2d1f0ae 1859 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1860 struct rb_node *parent, *node;
1861 struct cfq_queue *__cfqq;
1862 sector_t sector = cfqd->last_position;
1863
1864 if (RB_EMPTY_ROOT(root))
1865 return NULL;
1866
1867 /*
1868 * First, if we find a request starting at the end of the last
1869 * request, choose it.
1870 */
f2d1f0ae 1871 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1872 if (__cfqq)
1873 return __cfqq;
1874
1875 /*
1876 * If the exact sector wasn't found, the parent of the NULL leaf
1877 * will contain the closest sector.
1878 */
1879 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1880 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1881 return __cfqq;
1882
2e46e8b2 1883 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1884 node = rb_next(&__cfqq->p_node);
1885 else
1886 node = rb_prev(&__cfqq->p_node);
1887 if (!node)
1888 return NULL;
1889
1890 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1891 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1892 return __cfqq;
1893
1894 return NULL;
1895}
1896
1897/*
1898 * cfqd - obvious
1899 * cur_cfqq - passed in so that we don't decide that the current queue is
1900 * closely cooperating with itself.
1901 *
1902 * So, basically we're assuming that that cur_cfqq has dispatched at least
1903 * one request, and that cfqd->last_position reflects a position on the disk
1904 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1905 * assumption.
1906 */
1907static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1908 struct cfq_queue *cur_cfqq)
6d048f53 1909{
a36e71f9
JA
1910 struct cfq_queue *cfqq;
1911
39c01b21
DS
1912 if (cfq_class_idle(cur_cfqq))
1913 return NULL;
e6c5bc73
JM
1914 if (!cfq_cfqq_sync(cur_cfqq))
1915 return NULL;
1916 if (CFQQ_SEEKY(cur_cfqq))
1917 return NULL;
1918
b9d8f4c7
GJ
1919 /*
1920 * Don't search priority tree if it's the only queue in the group.
1921 */
1922 if (cur_cfqq->cfqg->nr_cfqq == 1)
1923 return NULL;
1924
6d048f53 1925 /*
d9e7620e
JA
1926 * We should notice if some of the queues are cooperating, eg
1927 * working closely on the same area of the disk. In that case,
1928 * we can group them together and don't waste time idling.
6d048f53 1929 */
a36e71f9
JA
1930 cfqq = cfqq_close(cfqd, cur_cfqq);
1931 if (!cfqq)
1932 return NULL;
1933
8682e1f1
VG
1934 /* If new queue belongs to different cfq_group, don't choose it */
1935 if (cur_cfqq->cfqg != cfqq->cfqg)
1936 return NULL;
1937
df5fe3e8
JM
1938 /*
1939 * It only makes sense to merge sync queues.
1940 */
1941 if (!cfq_cfqq_sync(cfqq))
1942 return NULL;
e6c5bc73
JM
1943 if (CFQQ_SEEKY(cfqq))
1944 return NULL;
df5fe3e8 1945
c0324a02
CZ
1946 /*
1947 * Do not merge queues of different priority classes
1948 */
1949 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1950 return NULL;
1951
a36e71f9 1952 return cfqq;
6d048f53
JA
1953}
1954
a6d44e98
CZ
1955/*
1956 * Determine whether we should enforce idle window for this queue.
1957 */
1958
1959static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1960{
1961 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1962 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1963
f04a6424
VG
1964 BUG_ON(!service_tree);
1965 BUG_ON(!service_tree->count);
1966
b6508c16
VG
1967 if (!cfqd->cfq_slice_idle)
1968 return false;
1969
a6d44e98
CZ
1970 /* We never do for idle class queues. */
1971 if (prio == IDLE_WORKLOAD)
1972 return false;
1973
1974 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1975 if (cfq_cfqq_idle_window(cfqq) &&
1976 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1977 return true;
1978
1979 /*
1980 * Otherwise, we do only if they are the last ones
1981 * in their service tree.
1982 */
f5f2b6ce
SL
1983 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1984 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
c1e44756 1985 return true;
b1ffe737
DS
1986 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1987 service_tree->count);
c1e44756 1988 return false;
a6d44e98
CZ
1989}
1990
6d048f53 1991static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1992{
1792669c 1993 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1994 struct cfq_io_context *cic;
80bdf0c7 1995 unsigned long sl, group_idle = 0;
7b14e3b5 1996
a68bbddb 1997 /*
f7d7b7a7
JA
1998 * SSD device without seek penalty, disable idling. But only do so
1999 * for devices that support queuing, otherwise we still have a problem
2000 * with sync vs async workloads.
a68bbddb 2001 */
f7d7b7a7 2002 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
2003 return;
2004
dd67d051 2005 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 2006 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
2007
2008 /*
2009 * idle is disabled, either manually or by past process history
2010 */
80bdf0c7
VG
2011 if (!cfq_should_idle(cfqd, cfqq)) {
2012 /* no queue idling. Check for group idling */
2013 if (cfqd->cfq_group_idle)
2014 group_idle = cfqd->cfq_group_idle;
2015 else
2016 return;
2017 }
6d048f53 2018
7b679138 2019 /*
8e550632 2020 * still active requests from this queue, don't idle
7b679138 2021 */
8e550632 2022 if (cfqq->dispatched)
7b679138
JA
2023 return;
2024
22e2c507
JA
2025 /*
2026 * task has exited, don't wait
2027 */
206dc69b 2028 cic = cfqd->active_cic;
66dac98e 2029 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
2030 return;
2031
355b659c
CZ
2032 /*
2033 * If our average think time is larger than the remaining time
2034 * slice, then don't idle. This avoids overrunning the allotted
2035 * time slice.
2036 */
383cd721
SL
2037 if (sample_valid(cic->ttime.ttime_samples) &&
2038 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
fd16d263 2039 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
383cd721 2040 cic->ttime.ttime_mean);
355b659c 2041 return;
b1ffe737 2042 }
355b659c 2043
80bdf0c7
VG
2044 /* There are other queues in the group, don't do group idle */
2045 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2046 return;
2047
3b18152c 2048 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 2049
80bdf0c7
VG
2050 if (group_idle)
2051 sl = cfqd->cfq_group_idle;
2052 else
2053 sl = cfqd->cfq_slice_idle;
206dc69b 2054
7b14e3b5 2055 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 2056 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
2057 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2058 group_idle ? 1 : 0);
1da177e4
LT
2059}
2060
498d3aa2
JA
2061/*
2062 * Move request from internal lists to the request queue dispatch list.
2063 */
165125e1 2064static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 2065{
3ed9a296 2066 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2067 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2068
7b679138
JA
2069 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2070
06d21886 2071 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 2072 cfq_remove_request(rq);
6d048f53 2073 cfqq->dispatched++;
80bdf0c7 2074 (RQ_CFQG(rq))->dispatched++;
5380a101 2075 elv_dispatch_sort(q, rq);
3ed9a296 2076
53c583d2 2077 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 2078 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 2079 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 2080 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
2081}
2082
2083/*
2084 * return expired entry, or NULL to just start from scratch in rbtree
2085 */
febffd61 2086static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 2087{
30996f40 2088 struct request *rq = NULL;
1da177e4 2089
3b18152c 2090 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 2091 return NULL;
cb887411
JA
2092
2093 cfq_mark_cfqq_fifo_expire(cfqq);
2094
89850f7e
JA
2095 if (list_empty(&cfqq->fifo))
2096 return NULL;
1da177e4 2097
89850f7e 2098 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 2099 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 2100 rq = NULL;
1da177e4 2101
30996f40 2102 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 2103 return rq;
1da177e4
LT
2104}
2105
22e2c507
JA
2106static inline int
2107cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2108{
2109 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2110
22e2c507 2111 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2112
b9f8ce05 2113 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
1da177e4
LT
2114}
2115
df5fe3e8
JM
2116/*
2117 * Must be called with the queue_lock held.
2118 */
2119static int cfqq_process_refs(struct cfq_queue *cfqq)
2120{
2121 int process_refs, io_refs;
2122
2123 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
30d7b944 2124 process_refs = cfqq->ref - io_refs;
df5fe3e8
JM
2125 BUG_ON(process_refs < 0);
2126 return process_refs;
2127}
2128
2129static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2130{
e6c5bc73 2131 int process_refs, new_process_refs;
df5fe3e8
JM
2132 struct cfq_queue *__cfqq;
2133
c10b61f0
JM
2134 /*
2135 * If there are no process references on the new_cfqq, then it is
2136 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2137 * chain may have dropped their last reference (not just their
2138 * last process reference).
2139 */
2140 if (!cfqq_process_refs(new_cfqq))
2141 return;
2142
df5fe3e8
JM
2143 /* Avoid a circular list and skip interim queue merges */
2144 while ((__cfqq = new_cfqq->new_cfqq)) {
2145 if (__cfqq == cfqq)
2146 return;
2147 new_cfqq = __cfqq;
2148 }
2149
2150 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2151 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2152 /*
2153 * If the process for the cfqq has gone away, there is no
2154 * sense in merging the queues.
2155 */
c10b61f0 2156 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2157 return;
2158
e6c5bc73
JM
2159 /*
2160 * Merge in the direction of the lesser amount of work.
2161 */
e6c5bc73
JM
2162 if (new_process_refs >= process_refs) {
2163 cfqq->new_cfqq = new_cfqq;
30d7b944 2164 new_cfqq->ref += process_refs;
e6c5bc73
JM
2165 } else {
2166 new_cfqq->new_cfqq = cfqq;
30d7b944 2167 cfqq->ref += new_process_refs;
e6c5bc73 2168 }
df5fe3e8
JM
2169}
2170
cdb16e8f 2171static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2172 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2173{
2174 struct cfq_queue *queue;
2175 int i;
2176 bool key_valid = false;
2177 unsigned long lowest_key = 0;
2178 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2179
65b32a57
VG
2180 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2181 /* select the one with lowest rb_key */
2182 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2183 if (queue &&
2184 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2185 lowest_key = queue->rb_key;
2186 cur_best = i;
2187 key_valid = true;
2188 }
2189 }
2190
2191 return cur_best;
2192}
2193
cdb16e8f 2194static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2195{
718eee05
CZ
2196 unsigned slice;
2197 unsigned count;
cdb16e8f 2198 struct cfq_rb_root *st;
58ff82f3 2199 unsigned group_slice;
e4ea0c16 2200 enum wl_prio_t original_prio = cfqd->serving_prio;
1fa8f6d6 2201
718eee05 2202 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2203 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2204 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2205 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2206 cfqd->serving_prio = BE_WORKLOAD;
2207 else {
2208 cfqd->serving_prio = IDLE_WORKLOAD;
2209 cfqd->workload_expires = jiffies + 1;
2210 return;
2211 }
2212
e4ea0c16
SL
2213 if (original_prio != cfqd->serving_prio)
2214 goto new_workload;
2215
718eee05
CZ
2216 /*
2217 * For RT and BE, we have to choose also the type
2218 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2219 * expiration time
2220 */
65b32a57 2221 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2222 count = st->count;
718eee05
CZ
2223
2224 /*
65b32a57 2225 * check workload expiration, and that we still have other queues ready
718eee05 2226 */
65b32a57 2227 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2228 return;
2229
e4ea0c16 2230new_workload:
718eee05
CZ
2231 /* otherwise select new workload type */
2232 cfqd->serving_type =
65b32a57
VG
2233 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2234 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2235 count = st->count;
718eee05
CZ
2236
2237 /*
2238 * the workload slice is computed as a fraction of target latency
2239 * proportional to the number of queues in that workload, over
2240 * all the queues in the same priority class
2241 */
58ff82f3
VG
2242 group_slice = cfq_group_slice(cfqd, cfqg);
2243
2244 slice = group_slice * count /
2245 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2246 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2247
f26bd1f0
VG
2248 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2249 unsigned int tmp;
2250
2251 /*
2252 * Async queues are currently system wide. Just taking
2253 * proportion of queues with-in same group will lead to higher
2254 * async ratio system wide as generally root group is going
2255 * to have higher weight. A more accurate thing would be to
2256 * calculate system wide asnc/sync ratio.
2257 */
2258 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2259 tmp = tmp/cfqd->busy_queues;
2260 slice = min_t(unsigned, slice, tmp);
2261
718eee05
CZ
2262 /* async workload slice is scaled down according to
2263 * the sync/async slice ratio. */
2264 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2265 } else
718eee05
CZ
2266 /* sync workload slice is at least 2 * cfq_slice_idle */
2267 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2268
2269 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2270 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2271 cfqd->workload_expires = jiffies + slice;
2272}
2273
1fa8f6d6
VG
2274static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2275{
2276 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2277 struct cfq_group *cfqg;
1fa8f6d6
VG
2278
2279 if (RB_EMPTY_ROOT(&st->rb))
2280 return NULL;
25bc6b07 2281 cfqg = cfq_rb_first_group(st);
25bc6b07
VG
2282 update_min_vdisktime(st);
2283 return cfqg;
1fa8f6d6
VG
2284}
2285
cdb16e8f
VG
2286static void cfq_choose_cfqg(struct cfq_data *cfqd)
2287{
1fa8f6d6
VG
2288 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2289
2290 cfqd->serving_group = cfqg;
dae739eb
VG
2291
2292 /* Restore the workload type data */
2293 if (cfqg->saved_workload_slice) {
2294 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2295 cfqd->serving_type = cfqg->saved_workload;
2296 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2297 } else
2298 cfqd->workload_expires = jiffies - 1;
2299
1fa8f6d6 2300 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2301}
2302
22e2c507 2303/*
498d3aa2
JA
2304 * Select a queue for service. If we have a current active queue,
2305 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2306 */
1b5ed5e1 2307static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2308{
a36e71f9 2309 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2310
22e2c507
JA
2311 cfqq = cfqd->active_queue;
2312 if (!cfqq)
2313 goto new_queue;
1da177e4 2314
f04a6424
VG
2315 if (!cfqd->rq_queued)
2316 return NULL;
c244bb50
VG
2317
2318 /*
2319 * We were waiting for group to get backlogged. Expire the queue
2320 */
2321 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2322 goto expire;
2323
22e2c507 2324 /*
6d048f53 2325 * The active queue has run out of time, expire it and select new.
22e2c507 2326 */
7667aa06
VG
2327 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2328 /*
2329 * If slice had not expired at the completion of last request
2330 * we might not have turned on wait_busy flag. Don't expire
2331 * the queue yet. Allow the group to get backlogged.
2332 *
2333 * The very fact that we have used the slice, that means we
2334 * have been idling all along on this queue and it should be
2335 * ok to wait for this request to complete.
2336 */
82bbbf28
VG
2337 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2338 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2339 cfqq = NULL;
7667aa06 2340 goto keep_queue;
82bbbf28 2341 } else
80bdf0c7 2342 goto check_group_idle;
7667aa06 2343 }
1da177e4 2344
22e2c507 2345 /*
6d048f53
JA
2346 * The active queue has requests and isn't expired, allow it to
2347 * dispatch.
22e2c507 2348 */
dd67d051 2349 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2350 goto keep_queue;
6d048f53 2351
a36e71f9
JA
2352 /*
2353 * If another queue has a request waiting within our mean seek
2354 * distance, let it run. The expire code will check for close
2355 * cooperators and put the close queue at the front of the service
df5fe3e8 2356 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2357 */
b3b6d040 2358 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2359 if (new_cfqq) {
2360 if (!cfqq->new_cfqq)
2361 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2362 goto expire;
df5fe3e8 2363 }
a36e71f9 2364
6d048f53
JA
2365 /*
2366 * No requests pending. If the active queue still has requests in
2367 * flight or is idling for a new request, allow either of these
2368 * conditions to happen (or time out) before selecting a new queue.
2369 */
80bdf0c7
VG
2370 if (timer_pending(&cfqd->idle_slice_timer)) {
2371 cfqq = NULL;
2372 goto keep_queue;
2373 }
2374
8e1ac665
SL
2375 /*
2376 * This is a deep seek queue, but the device is much faster than
2377 * the queue can deliver, don't idle
2378 **/
2379 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2380 (cfq_cfqq_slice_new(cfqq) ||
2381 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2382 cfq_clear_cfqq_deep(cfqq);
2383 cfq_clear_cfqq_idle_window(cfqq);
2384 }
2385
80bdf0c7
VG
2386 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2387 cfqq = NULL;
2388 goto keep_queue;
2389 }
2390
2391 /*
2392 * If group idle is enabled and there are requests dispatched from
2393 * this group, wait for requests to complete.
2394 */
2395check_group_idle:
7700fc4f
SL
2396 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2397 cfqq->cfqg->dispatched &&
2398 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
caaa5f9f
JA
2399 cfqq = NULL;
2400 goto keep_queue;
22e2c507
JA
2401 }
2402
3b18152c 2403expire:
e5ff082e 2404 cfq_slice_expired(cfqd, 0);
3b18152c 2405new_queue:
718eee05
CZ
2406 /*
2407 * Current queue expired. Check if we have to switch to a new
2408 * service tree
2409 */
2410 if (!new_cfqq)
cdb16e8f 2411 cfq_choose_cfqg(cfqd);
718eee05 2412
a36e71f9 2413 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2414keep_queue:
3b18152c 2415 return cfqq;
22e2c507
JA
2416}
2417
febffd61 2418static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2419{
2420 int dispatched = 0;
2421
2422 while (cfqq->next_rq) {
2423 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2424 dispatched++;
2425 }
2426
2427 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2428
2429 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2430 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2431 return dispatched;
2432}
2433
498d3aa2
JA
2434/*
2435 * Drain our current requests. Used for barriers and when switching
2436 * io schedulers on-the-fly.
2437 */
d9e7620e 2438static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2439{
0871714e 2440 struct cfq_queue *cfqq;
d9e7620e 2441 int dispatched = 0;
cdb16e8f 2442
3440c49f 2443 /* Expire the timeslice of the current active queue first */
e5ff082e 2444 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2445 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2446 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2447 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2448 }
1b5ed5e1 2449
1b5ed5e1
TH
2450 BUG_ON(cfqd->busy_queues);
2451
6923715a 2452 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2453 return dispatched;
2454}
2455
abc3c744
SL
2456static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2457 struct cfq_queue *cfqq)
2458{
2459 /* the queue hasn't finished any request, can't estimate */
2460 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2461 return true;
abc3c744
SL
2462 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2463 cfqq->slice_end))
c1e44756 2464 return true;
abc3c744 2465
c1e44756 2466 return false;
abc3c744
SL
2467}
2468
0b182d61 2469static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2470{
2f5cb738 2471 unsigned int max_dispatch;
22e2c507 2472
5ad531db
JA
2473 /*
2474 * Drain async requests before we start sync IO
2475 */
53c583d2 2476 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2477 return false;
5ad531db 2478
2f5cb738
JA
2479 /*
2480 * If this is an async queue and we have sync IO in flight, let it wait
2481 */
53c583d2 2482 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2483 return false;
2f5cb738 2484
abc3c744 2485 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2486 if (cfq_class_idle(cfqq))
2487 max_dispatch = 1;
b4878f24 2488
2f5cb738
JA
2489 /*
2490 * Does this cfqq already have too much IO in flight?
2491 */
2492 if (cfqq->dispatched >= max_dispatch) {
ef8a41df 2493 bool promote_sync = false;
2f5cb738
JA
2494 /*
2495 * idle queue must always only have a single IO in flight
2496 */
3ed9a296 2497 if (cfq_class_idle(cfqq))
0b182d61 2498 return false;
3ed9a296 2499
ef8a41df 2500 /*
c4ade94f
LS
2501 * If there is only one sync queue
2502 * we can ignore async queue here and give the sync
ef8a41df
SL
2503 * queue no dispatch limit. The reason is a sync queue can
2504 * preempt async queue, limiting the sync queue doesn't make
2505 * sense. This is useful for aiostress test.
2506 */
c4ade94f
LS
2507 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2508 promote_sync = true;
ef8a41df 2509
2f5cb738
JA
2510 /*
2511 * We have other queues, don't allow more IO from this one
2512 */
ef8a41df
SL
2513 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2514 !promote_sync)
0b182d61 2515 return false;
9ede209e 2516
365722bb 2517 /*
474b18cc 2518 * Sole queue user, no limit
365722bb 2519 */
ef8a41df 2520 if (cfqd->busy_queues == 1 || promote_sync)
abc3c744
SL
2521 max_dispatch = -1;
2522 else
2523 /*
2524 * Normally we start throttling cfqq when cfq_quantum/2
2525 * requests have been dispatched. But we can drive
2526 * deeper queue depths at the beginning of slice
2527 * subjected to upper limit of cfq_quantum.
2528 * */
2529 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2530 }
2531
2532 /*
2533 * Async queues must wait a bit before being allowed dispatch.
2534 * We also ramp up the dispatch depth gradually for async IO,
2535 * based on the last sync IO we serviced
2536 */
963b72fc 2537 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2538 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2539 unsigned int depth;
365722bb 2540
61f0c1dc 2541 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2542 if (!depth && !cfqq->dispatched)
2543 depth = 1;
8e296755
JA
2544 if (depth < max_dispatch)
2545 max_dispatch = depth;
2f5cb738 2546 }
3ed9a296 2547
0b182d61
JA
2548 /*
2549 * If we're below the current max, allow a dispatch
2550 */
2551 return cfqq->dispatched < max_dispatch;
2552}
2553
2554/*
2555 * Dispatch a request from cfqq, moving them to the request queue
2556 * dispatch list.
2557 */
2558static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2559{
2560 struct request *rq;
2561
2562 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2563
2564 if (!cfq_may_dispatch(cfqd, cfqq))
2565 return false;
2566
2567 /*
2568 * follow expired path, else get first next available
2569 */
2570 rq = cfq_check_fifo(cfqq);
2571 if (!rq)
2572 rq = cfqq->next_rq;
2573
2574 /*
2575 * insert request into driver dispatch list
2576 */
2577 cfq_dispatch_insert(cfqd->queue, rq);
2578
2579 if (!cfqd->active_cic) {
2580 struct cfq_io_context *cic = RQ_CIC(rq);
2581
2582 atomic_long_inc(&cic->ioc->refcount);
2583 cfqd->active_cic = cic;
2584 }
2585
2586 return true;
2587}
2588
2589/*
2590 * Find the cfqq that we need to service and move a request from that to the
2591 * dispatch list
2592 */
2593static int cfq_dispatch_requests(struct request_queue *q, int force)
2594{
2595 struct cfq_data *cfqd = q->elevator->elevator_data;
2596 struct cfq_queue *cfqq;
2597
2598 if (!cfqd->busy_queues)
2599 return 0;
2600
2601 if (unlikely(force))
2602 return cfq_forced_dispatch(cfqd);
2603
2604 cfqq = cfq_select_queue(cfqd);
2605 if (!cfqq)
8e296755
JA
2606 return 0;
2607
2f5cb738 2608 /*
0b182d61 2609 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2610 */
0b182d61
JA
2611 if (!cfq_dispatch_request(cfqd, cfqq))
2612 return 0;
2613
2f5cb738 2614 cfqq->slice_dispatch++;
b029195d 2615 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2616
2f5cb738
JA
2617 /*
2618 * expire an async queue immediately if it has used up its slice. idle
2619 * queue always expire after 1 dispatch round.
2620 */
2621 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2622 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2623 cfq_class_idle(cfqq))) {
2624 cfqq->slice_end = jiffies + 1;
e5ff082e 2625 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2626 }
2627
b217a903 2628 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2629 return 1;
1da177e4
LT
2630}
2631
1da177e4 2632/*
5e705374
JA
2633 * task holds one reference to the queue, dropped when task exits. each rq
2634 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2635 *
b1c35769 2636 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2637 * queue lock must be held here.
2638 */
2639static void cfq_put_queue(struct cfq_queue *cfqq)
2640{
22e2c507 2641 struct cfq_data *cfqd = cfqq->cfqd;
0bbfeb83 2642 struct cfq_group *cfqg;
22e2c507 2643
30d7b944 2644 BUG_ON(cfqq->ref <= 0);
1da177e4 2645
30d7b944
SL
2646 cfqq->ref--;
2647 if (cfqq->ref)
1da177e4
LT
2648 return;
2649
7b679138 2650 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2651 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2652 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2653 cfqg = cfqq->cfqg;
1da177e4 2654
28f95cbc 2655 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2656 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2657 cfq_schedule_dispatch(cfqd);
28f95cbc 2658 }
22e2c507 2659
f04a6424 2660 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2661 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2662 cfq_put_cfqg(cfqg);
1da177e4
LT
2663}
2664
d6de8be7 2665/*
5f45c695 2666 * Call func for each cic attached to this ioc.
d6de8be7 2667 */
07416d29 2668static void
5f45c695
JA
2669call_for_each_cic(struct io_context *ioc,
2670 void (*func)(struct io_context *, struct cfq_io_context *))
07416d29
JA
2671{
2672 struct cfq_io_context *cic;
2673 struct hlist_node *n;
2674
5f45c695
JA
2675 rcu_read_lock();
2676
07416d29
JA
2677 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2678 func(ioc, cic);
07416d29 2679
4ac845a2 2680 rcu_read_unlock();
34e6bbf2
FC
2681}
2682
2683static void cfq_cic_free_rcu(struct rcu_head *head)
2684{
2685 struct cfq_io_context *cic;
2686
2687 cic = container_of(head, struct cfq_io_context, rcu_head);
2688
2689 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2690 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2691
9a11b4ed
JA
2692 if (ioc_gone) {
2693 /*
2694 * CFQ scheduler is exiting, grab exit lock and check
2695 * the pending io context count. If it hits zero,
2696 * complete ioc_gone and set it back to NULL
2697 */
2698 spin_lock(&ioc_gone_lock);
245b2e70 2699 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2700 complete(ioc_gone);
2701 ioc_gone = NULL;
2702 }
2703 spin_unlock(&ioc_gone_lock);
2704 }
34e6bbf2 2705}
4ac845a2 2706
34e6bbf2
FC
2707static void cfq_cic_free(struct cfq_io_context *cic)
2708{
2709 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2710}
2711
283287a5 2712static void cfq_release_cic(struct cfq_io_context *cic)
4ac845a2 2713{
283287a5 2714 struct io_context *ioc = cic->ioc;
bca4b914 2715 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2716
bca4b914 2717 BUG_ON(!(dead_key & CIC_DEAD_KEY));
80b15c73 2718 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2719 hlist_del_rcu(&cic->cic_list);
34e6bbf2 2720 cfq_cic_free(cic);
4ac845a2
JA
2721}
2722
283287a5
TH
2723static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2724{
2725 unsigned long flags;
2726
2727 spin_lock_irqsave(&ioc->lock, flags);
2728 cfq_release_cic(cic);
2729 spin_unlock_irqrestore(&ioc->lock, flags);
2730}
2731
d6de8be7
JA
2732/*
2733 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2734 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2735 * and ->trim() which is called with the task lock held
2736 */
4ac845a2
JA
2737static void cfq_free_io_context(struct io_context *ioc)
2738{
4ac845a2 2739 /*
34e6bbf2
FC
2740 * ioc->refcount is zero here, or we are called from elv_unregister(),
2741 * so no more cic's are allowed to be linked into this ioc. So it
2742 * should be ok to iterate over the known list, we will see all cic's
2743 * since no new ones are added.
4ac845a2 2744 */
5f45c695 2745 call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2746}
2747
d02a2c07 2748static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2749{
df5fe3e8
JM
2750 struct cfq_queue *__cfqq, *next;
2751
df5fe3e8
JM
2752 /*
2753 * If this queue was scheduled to merge with another queue, be
2754 * sure to drop the reference taken on that queue (and others in
2755 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2756 */
2757 __cfqq = cfqq->new_cfqq;
2758 while (__cfqq) {
2759 if (__cfqq == cfqq) {
2760 WARN(1, "cfqq->new_cfqq loop detected\n");
2761 break;
2762 }
2763 next = __cfqq->new_cfqq;
2764 cfq_put_queue(__cfqq);
2765 __cfqq = next;
2766 }
d02a2c07
SL
2767}
2768
2769static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2770{
2771 if (unlikely(cfqq == cfqd->active_queue)) {
2772 __cfq_slice_expired(cfqd, cfqq, 0);
2773 cfq_schedule_dispatch(cfqd);
2774 }
2775
2776 cfq_put_cooperator(cfqq);
df5fe3e8 2777
89850f7e
JA
2778 cfq_put_queue(cfqq);
2779}
22e2c507 2780
283287a5 2781static void cfq_exit_cic(struct cfq_io_context *cic)
89850f7e 2782{
283287a5 2783 struct cfq_data *cfqd = cic_to_cfqd(cic);
4faa3c81
FC
2784 struct io_context *ioc = cic->ioc;
2785
fc46379d 2786 list_del_init(&cic->queue_list);
4ac845a2
JA
2787
2788 /*
bca4b914 2789 * Make sure dead mark is seen for dead queues
4ac845a2 2790 */
fc46379d 2791 smp_wmb();
bca4b914 2792 cic->key = cfqd_dead_key(cfqd);
fc46379d 2793
3181faa8 2794 rcu_read_lock();
9b50902d 2795 if (rcu_dereference(ioc->ioc_data) == cic) {
3181faa8 2796 rcu_read_unlock();
9b50902d 2797 spin_lock(&ioc->lock);
4faa3c81 2798 rcu_assign_pointer(ioc->ioc_data, NULL);
9b50902d 2799 spin_unlock(&ioc->lock);
3181faa8
SL
2800 } else
2801 rcu_read_unlock();
4faa3c81 2802
ff6657c6
JA
2803 if (cic->cfqq[BLK_RW_ASYNC]) {
2804 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2805 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2806 }
2807
ff6657c6
JA
2808 if (cic->cfqq[BLK_RW_SYNC]) {
2809 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2810 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2811 }
89850f7e
JA
2812}
2813
4ac845a2
JA
2814static void cfq_exit_single_io_context(struct io_context *ioc,
2815 struct cfq_io_context *cic)
89850f7e 2816{
bca4b914 2817 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2818
89850f7e 2819 if (cfqd) {
165125e1 2820 struct request_queue *q = cfqd->queue;
4ac845a2 2821 unsigned long flags;
89850f7e 2822
4ac845a2 2823 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2824
2825 /*
2826 * Ensure we get a fresh copy of the ->key to prevent
2827 * race between exiting task and queue
2828 */
2829 smp_read_barrier_depends();
bca4b914 2830 if (cic->key == cfqd)
283287a5 2831 cfq_exit_cic(cic);
62c1fe9d 2832
4ac845a2 2833 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2834 }
1da177e4
LT
2835}
2836
498d3aa2
JA
2837/*
2838 * The process that ioc belongs to has exited, we need to clean up
2839 * and put the internal structures we have that belongs to that process.
2840 */
e2d74ac0 2841static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2842{
4ac845a2 2843 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2844}
2845
22e2c507 2846static struct cfq_io_context *
8267e268 2847cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2848{
b5deef90 2849 struct cfq_io_context *cic;
1da177e4 2850
94f6030c
CL
2851 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2852 cfqd->queue->node);
1da177e4 2853 if (cic) {
383cd721 2854 cic->ttime.last_end_request = jiffies;
553698f9 2855 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2856 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2857 cic->dtor = cfq_free_io_context;
2858 cic->exit = cfq_exit_io_context;
245b2e70 2859 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2860 }
2861
2862 return cic;
2863}
2864
fd0928df 2865static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2866{
2867 struct task_struct *tsk = current;
2868 int ioprio_class;
2869
3b18152c 2870 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2871 return;
2872
fd0928df 2873 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2874 switch (ioprio_class) {
fe094d98
JA
2875 default:
2876 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2877 case IOPRIO_CLASS_NONE:
2878 /*
6d63c275 2879 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2880 */
2881 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2882 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2883 break;
2884 case IOPRIO_CLASS_RT:
2885 cfqq->ioprio = task_ioprio(ioc);
2886 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2887 break;
2888 case IOPRIO_CLASS_BE:
2889 cfqq->ioprio = task_ioprio(ioc);
2890 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2891 break;
2892 case IOPRIO_CLASS_IDLE:
2893 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2894 cfqq->ioprio = 7;
2895 cfq_clear_cfqq_idle_window(cfqq);
2896 break;
22e2c507
JA
2897 }
2898
2899 /*
2900 * keep track of original prio settings in case we have to temporarily
2901 * elevate the priority of this queue
2902 */
2903 cfqq->org_ioprio = cfqq->ioprio;
3b18152c 2904 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2905}
2906
dc86900e 2907static void changed_ioprio(struct cfq_io_context *cic)
22e2c507 2908{
bca4b914 2909 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2910 struct cfq_queue *cfqq;
35e6077c 2911
caaa5f9f
JA
2912 if (unlikely(!cfqd))
2913 return;
2914
ff6657c6 2915 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2916 if (cfqq) {
2917 struct cfq_queue *new_cfqq;
ff6657c6
JA
2918 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2919 GFP_ATOMIC);
caaa5f9f 2920 if (new_cfqq) {
ff6657c6 2921 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2922 cfq_put_queue(cfqq);
2923 }
22e2c507 2924 }
caaa5f9f 2925
ff6657c6 2926 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2927 if (cfqq)
2928 cfq_mark_cfqq_prio_changed(cfqq);
22e2c507
JA
2929}
2930
d5036d77 2931static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2932 pid_t pid, bool is_sync)
d5036d77
JA
2933{
2934 RB_CLEAR_NODE(&cfqq->rb_node);
2935 RB_CLEAR_NODE(&cfqq->p_node);
2936 INIT_LIST_HEAD(&cfqq->fifo);
2937
30d7b944 2938 cfqq->ref = 0;
d5036d77
JA
2939 cfqq->cfqd = cfqd;
2940
2941 cfq_mark_cfqq_prio_changed(cfqq);
2942
2943 if (is_sync) {
2944 if (!cfq_class_idle(cfqq))
2945 cfq_mark_cfqq_idle_window(cfqq);
2946 cfq_mark_cfqq_sync(cfqq);
2947 }
2948 cfqq->pid = pid;
2949}
2950
24610333 2951#ifdef CONFIG_CFQ_GROUP_IOSCHED
dc86900e 2952static void changed_cgroup(struct cfq_io_context *cic)
24610333
VG
2953{
2954 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2955 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2956 struct request_queue *q;
2957
2958 if (unlikely(!cfqd))
2959 return;
2960
2961 q = cfqd->queue;
2962
24610333
VG
2963 if (sync_cfqq) {
2964 /*
2965 * Drop reference to sync queue. A new sync queue will be
2966 * assigned in new group upon arrival of a fresh request.
2967 */
2968 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2969 cic_set_cfqq(cic, NULL, 1);
2970 cfq_put_queue(sync_cfqq);
2971 }
24610333 2972}
24610333
VG
2973#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2974
22e2c507 2975static struct cfq_queue *
a6151c3a 2976cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2977 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2978{
22e2c507 2979 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2980 struct cfq_io_context *cic;
cdb16e8f 2981 struct cfq_group *cfqg;
22e2c507
JA
2982
2983retry:
3e59cf9d 2984 cfqg = cfq_get_cfqg(cfqd);
4ac845a2 2985 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2986 /* cic always exists here */
2987 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2988
6118b70b
JA
2989 /*
2990 * Always try a new alloc if we fell back to the OOM cfqq
2991 * originally, since it should just be a temporary situation.
2992 */
2993 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2994 cfqq = NULL;
22e2c507
JA
2995 if (new_cfqq) {
2996 cfqq = new_cfqq;
2997 new_cfqq = NULL;
2998 } else if (gfp_mask & __GFP_WAIT) {
2999 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 3000 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 3001 gfp_mask | __GFP_ZERO,
94f6030c 3002 cfqd->queue->node);
22e2c507 3003 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
3004 if (new_cfqq)
3005 goto retry;
22e2c507 3006 } else {
94f6030c
CL
3007 cfqq = kmem_cache_alloc_node(cfq_pool,
3008 gfp_mask | __GFP_ZERO,
3009 cfqd->queue->node);
22e2c507
JA
3010 }
3011
6118b70b
JA
3012 if (cfqq) {
3013 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3014 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 3015 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
3016 cfq_log_cfqq(cfqd, cfqq, "alloced");
3017 } else
3018 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
3019 }
3020
3021 if (new_cfqq)
3022 kmem_cache_free(cfq_pool, new_cfqq);
3023
22e2c507
JA
3024 return cfqq;
3025}
3026
c2dea2d1
VT
3027static struct cfq_queue **
3028cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3029{
fe094d98 3030 switch (ioprio_class) {
c2dea2d1
VT
3031 case IOPRIO_CLASS_RT:
3032 return &cfqd->async_cfqq[0][ioprio];
3033 case IOPRIO_CLASS_BE:
3034 return &cfqd->async_cfqq[1][ioprio];
3035 case IOPRIO_CLASS_IDLE:
3036 return &cfqd->async_idle_cfqq;
3037 default:
3038 BUG();
3039 }
3040}
3041
15c31be4 3042static struct cfq_queue *
a6151c3a 3043cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
3044 gfp_t gfp_mask)
3045{
fd0928df
JA
3046 const int ioprio = task_ioprio(ioc);
3047 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 3048 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
3049 struct cfq_queue *cfqq = NULL;
3050
c2dea2d1
VT
3051 if (!is_sync) {
3052 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3053 cfqq = *async_cfqq;
3054 }
3055
6118b70b 3056 if (!cfqq)
fd0928df 3057 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
3058
3059 /*
3060 * pin the queue now that it's allocated, scheduler exit will prune it
3061 */
c2dea2d1 3062 if (!is_sync && !(*async_cfqq)) {
30d7b944 3063 cfqq->ref++;
c2dea2d1 3064 *async_cfqq = cfqq;
15c31be4
JA
3065 }
3066
30d7b944 3067 cfqq->ref++;
15c31be4
JA
3068 return cfqq;
3069}
3070
498d3aa2
JA
3071/*
3072 * We drop cfq io contexts lazily, so we may find a dead one.
3073 */
dbecf3ab 3074static void
4ac845a2
JA
3075cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3076 struct cfq_io_context *cic)
dbecf3ab 3077{
4ac845a2
JA
3078 unsigned long flags;
3079
fc46379d 3080 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 3081 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 3082
4ac845a2
JA
3083 spin_lock_irqsave(&ioc->lock, flags);
3084
726e99ab
SL
3085 BUG_ON(rcu_dereference_check(ioc->ioc_data,
3086 lockdep_is_held(&ioc->lock)) == cic);
597bc485 3087
a73f730d 3088 radix_tree_delete(&ioc->radix_root, cfqd->queue->id);
ffc4e759 3089 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
3090 spin_unlock_irqrestore(&ioc->lock, flags);
3091
3092 cfq_cic_free(cic);
dbecf3ab
OH
3093}
3094
e2d74ac0 3095static struct cfq_io_context *
4ac845a2 3096cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 3097{
e2d74ac0 3098 struct cfq_io_context *cic;
d6de8be7 3099 unsigned long flags;
e2d74ac0 3100
91fac317
VT
3101 if (unlikely(!ioc))
3102 return NULL;
3103
d6de8be7
JA
3104 rcu_read_lock();
3105
597bc485
JA
3106 /*
3107 * we maintain a last-hit cache, to avoid browsing over the tree
3108 */
4ac845a2 3109 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
3110 if (cic && cic->key == cfqd) {
3111 rcu_read_unlock();
597bc485 3112 return cic;
d6de8be7 3113 }
597bc485 3114
4ac845a2 3115 do {
a73f730d 3116 cic = radix_tree_lookup(&ioc->radix_root, cfqd->queue->id);
4ac845a2
JA
3117 rcu_read_unlock();
3118 if (!cic)
3119 break;
bca4b914 3120 if (unlikely(cic->key != cfqd)) {
4ac845a2 3121 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 3122 rcu_read_lock();
4ac845a2 3123 continue;
dbecf3ab 3124 }
e2d74ac0 3125
d6de8be7 3126 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 3127 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 3128 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
3129 break;
3130 } while (1);
e2d74ac0 3131
4ac845a2 3132 return cic;
e2d74ac0
JA
3133}
3134
216284c3
TH
3135/**
3136 * cfq_create_cic - create and link a cfq_io_context
3137 * @cfqd: cfqd of interest
3138 * @gfp_mask: allocation mask
3139 *
3140 * Make sure cfq_io_context linking %current->io_context and @cfqd exists.
3141 * If ioc and/or cic doesn't exist, they will be created using @gfp_mask.
4ac845a2 3142 */
216284c3 3143static int cfq_create_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
e2d74ac0 3144{
216284c3
TH
3145 struct request_queue *q = cfqd->queue;
3146 struct cfq_io_context *cic = NULL;
3147 struct io_context *ioc;
3148 int ret = -ENOMEM;
3149
3150 might_sleep_if(gfp_mask & __GFP_WAIT);
3151
3152 /* allocate stuff */
3153 ioc = current_io_context(gfp_mask, q->node);
3154 if (!ioc)
3155 goto out;
3156
3157 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3158 if (!cic)
3159 goto out;
e2d74ac0 3160
4ac845a2 3161 ret = radix_tree_preload(gfp_mask);
283287a5
TH
3162 if (ret)
3163 goto out;
e2d74ac0 3164
283287a5
TH
3165 cic->ioc = ioc;
3166 cic->key = cfqd;
3167 cic->q = cfqd->queue;
3168
216284c3
TH
3169 /* lock both q and ioc and try to link @cic */
3170 spin_lock_irq(q->queue_lock);
3171 spin_lock(&ioc->lock);
4ac845a2 3172
216284c3
TH
3173 ret = radix_tree_insert(&ioc->radix_root, q->id, cic);
3174 if (likely(!ret)) {
3175 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
283287a5 3176 list_add(&cic->queue_list, &cfqd->cic_list);
216284c3
TH
3177 cic = NULL;
3178 } else if (ret == -EEXIST) {
3179 /* someone else already did it */
3180 ret = 0;
e2d74ac0 3181 }
216284c3
TH
3182
3183 spin_unlock(&ioc->lock);
3184 spin_unlock_irq(q->queue_lock);
3185
3186 radix_tree_preload_end();
283287a5 3187out:
4ac845a2
JA
3188 if (ret)
3189 printk(KERN_ERR "cfq: cic link failed!\n");
216284c3
TH
3190 if (cic)
3191 cfq_cic_free(cic);
4ac845a2 3192 return ret;
e2d74ac0
JA
3193}
3194
216284c3
TH
3195/**
3196 * cfq_get_io_context - acquire cfq_io_context and bump refcnt on io_context
3197 * @cfqd: cfqd to setup cic for
3198 * @gfp_mask: allocation mask
3199 *
3200 * Return cfq_io_context associating @cfqd and %current->io_context and
3201 * bump refcnt on io_context. If ioc or cic doesn't exist, they're created
3202 * using @gfp_mask.
3203 *
3204 * Must be called under queue_lock which may be released and re-acquired.
3205 * This function also may sleep depending on @gfp_mask.
1da177e4
LT
3206 */
3207static struct cfq_io_context *
e2d74ac0 3208cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3209{
216284c3 3210 struct request_queue *q = cfqd->queue;
6e736be7 3211 struct cfq_io_context *cic = NULL;
216284c3
TH
3212 struct io_context *ioc;
3213 int err;
3214
3215 lockdep_assert_held(q->queue_lock);
3216
3217 while (true) {
3218 /* fast path */
3219 ioc = current->io_context;
3220 if (likely(ioc)) {
3221 cic = cfq_cic_lookup(cfqd, ioc);
3222 if (likely(cic))
3223 break;
3224 }
1da177e4 3225
216284c3
TH
3226 /* slow path - unlock, create missing ones and retry */
3227 spin_unlock_irq(q->queue_lock);
3228 err = cfq_create_cic(cfqd, gfp_mask);
3229 spin_lock_irq(q->queue_lock);
3230 if (err)
3231 return NULL;
3232 }
1da177e4 3233
216284c3 3234 /* bump @ioc's refcnt and handle changed notifications */
6e736be7
TH
3235 get_io_context(ioc);
3236
dc86900e
TH
3237 if (unlikely(cic->changed)) {
3238 if (test_and_clear_bit(CIC_IOPRIO_CHANGED, &cic->changed))
3239 changed_ioprio(cic);
24610333 3240#ifdef CONFIG_CFQ_GROUP_IOSCHED
dc86900e
TH
3241 if (test_and_clear_bit(CIC_CGROUP_CHANGED, &cic->changed))
3242 changed_cgroup(cic);
24610333 3243#endif
dc86900e
TH
3244 }
3245
1da177e4 3246 return cic;
1da177e4
LT
3247}
3248
22e2c507 3249static void
383cd721 3250__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
1da177e4 3251{
383cd721
SL
3252 unsigned long elapsed = jiffies - ttime->last_end_request;
3253 elapsed = min(elapsed, 2UL * slice_idle);
db3b5848 3254
383cd721
SL
3255 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3256 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3257 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3258}
3259
3260static void
3261cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3262 struct cfq_io_context *cic)
3263{
f5f2b6ce 3264 if (cfq_cfqq_sync(cfqq)) {
383cd721 3265 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
f5f2b6ce
SL
3266 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3267 cfqd->cfq_slice_idle);
3268 }
7700fc4f
SL
3269#ifdef CONFIG_CFQ_GROUP_IOSCHED
3270 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3271#endif
22e2c507 3272}
1da177e4 3273
206dc69b 3274static void
b2c18e1e 3275cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3276 struct request *rq)
206dc69b 3277{
3dde36dd 3278 sector_t sdist = 0;
41647e7a 3279 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3280 if (cfqq->last_request_pos) {
3281 if (cfqq->last_request_pos < blk_rq_pos(rq))
3282 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3283 else
3284 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3285 }
206dc69b 3286
3dde36dd 3287 cfqq->seek_history <<= 1;
41647e7a
CZ
3288 if (blk_queue_nonrot(cfqd->queue))
3289 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3290 else
3291 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3292}
1da177e4 3293
22e2c507
JA
3294/*
3295 * Disable idle window if the process thinks too long or seeks so much that
3296 * it doesn't matter
3297 */
3298static void
3299cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3300 struct cfq_io_context *cic)
3301{
7b679138 3302 int old_idle, enable_idle;
1be92f2f 3303
0871714e
JA
3304 /*
3305 * Don't idle for async or idle io prio class
3306 */
3307 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3308 return;
3309
c265a7f4 3310 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3311
76280aff
CZ
3312 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3313 cfq_mark_cfqq_deep(cfqq);
3314
749ef9f8
CZ
3315 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3316 enable_idle = 0;
3317 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3318 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507 3319 enable_idle = 0;
383cd721
SL
3320 else if (sample_valid(cic->ttime.ttime_samples)) {
3321 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3322 enable_idle = 0;
3323 else
3324 enable_idle = 1;
1da177e4
LT
3325 }
3326
7b679138
JA
3327 if (old_idle != enable_idle) {
3328 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3329 if (enable_idle)
3330 cfq_mark_cfqq_idle_window(cfqq);
3331 else
3332 cfq_clear_cfqq_idle_window(cfqq);
3333 }
22e2c507 3334}
1da177e4 3335
22e2c507
JA
3336/*
3337 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3338 * no or if we aren't sure, a 1 will cause a preempt.
3339 */
a6151c3a 3340static bool
22e2c507 3341cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3342 struct request *rq)
22e2c507 3343{
6d048f53 3344 struct cfq_queue *cfqq;
22e2c507 3345
6d048f53
JA
3346 cfqq = cfqd->active_queue;
3347 if (!cfqq)
a6151c3a 3348 return false;
22e2c507 3349
6d048f53 3350 if (cfq_class_idle(new_cfqq))
a6151c3a 3351 return false;
22e2c507
JA
3352
3353 if (cfq_class_idle(cfqq))
a6151c3a 3354 return true;
1e3335de 3355
875feb63
DS
3356 /*
3357 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3358 */
3359 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3360 return false;
3361
374f84ac
JA
3362 /*
3363 * if the new request is sync, but the currently running queue is
3364 * not, let the sync request have priority.
3365 */
5e705374 3366 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3367 return true;
1e3335de 3368
8682e1f1
VG
3369 if (new_cfqq->cfqg != cfqq->cfqg)
3370 return false;
3371
3372 if (cfq_slice_used(cfqq))
3373 return true;
3374
3375 /* Allow preemption only if we are idling on sync-noidle tree */
3376 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3377 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3378 new_cfqq->service_tree->count == 2 &&
3379 RB_EMPTY_ROOT(&cfqq->sort_list))
3380 return true;
3381
b53d1ed7
JA
3382 /*
3383 * So both queues are sync. Let the new request get disk time if
3384 * it's a metadata request and the current queue is doing regular IO.
3385 */
65299a3b 3386 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
b53d1ed7
JA
3387 return true;
3388
3a9a3f6c
DS
3389 /*
3390 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3391 */
3392 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3393 return true;
3a9a3f6c 3394
d2d59e18
SL
3395 /* An idle queue should not be idle now for some reason */
3396 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3397 return true;
3398
1e3335de 3399 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3400 return false;
1e3335de
JA
3401
3402 /*
3403 * if this request is as-good as one we would expect from the
3404 * current cfqq, let it preempt
3405 */
e9ce335d 3406 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3407 return true;
1e3335de 3408
a6151c3a 3409 return false;
22e2c507
JA
3410}
3411
3412/*
3413 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3414 * let it have half of its nominal slice.
3415 */
3416static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3417{
f8ae6e3e
SL
3418 struct cfq_queue *old_cfqq = cfqd->active_queue;
3419
7b679138 3420 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3421 cfq_slice_expired(cfqd, 1);
22e2c507 3422
f8ae6e3e
SL
3423 /*
3424 * workload type is changed, don't save slice, otherwise preempt
3425 * doesn't happen
3426 */
3427 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3428 cfqq->cfqg->saved_workload_slice = 0;
3429
bf572256
JA
3430 /*
3431 * Put the new queue at the front of the of the current list,
3432 * so we know that it will be selected next.
3433 */
3434 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3435
3436 cfq_service_tree_add(cfqd, cfqq, 1);
eda5e0c9 3437
62a37f6b
JT
3438 cfqq->slice_end = 0;
3439 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3440}
3441
22e2c507 3442/*
5e705374 3443 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3444 * something we should do about it
3445 */
3446static void
5e705374
JA
3447cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3448 struct request *rq)
22e2c507 3449{
5e705374 3450 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3451
45333d5a 3452 cfqd->rq_queued++;
65299a3b
CH
3453 if (rq->cmd_flags & REQ_PRIO)
3454 cfqq->prio_pending++;
374f84ac 3455
383cd721 3456 cfq_update_io_thinktime(cfqd, cfqq, cic);
b2c18e1e 3457 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3458 cfq_update_idle_window(cfqd, cfqq, cic);
3459
b2c18e1e 3460 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3461
3462 if (cfqq == cfqd->active_queue) {
3463 /*
b029195d
JA
3464 * Remember that we saw a request from this process, but
3465 * don't start queuing just yet. Otherwise we risk seeing lots
3466 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3467 * and merging. If the request is already larger than a single
3468 * page, let it rip immediately. For that case we assume that
2d870722
JA
3469 * merging is already done. Ditto for a busy system that
3470 * has other work pending, don't risk delaying until the
3471 * idle timer unplug to continue working.
22e2c507 3472 */
d6ceb25e 3473 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3474 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3475 cfqd->busy_queues > 1) {
812df48d 3476 cfq_del_timer(cfqd, cfqq);
554554f6 3477 cfq_clear_cfqq_wait_request(cfqq);
24ecfbe2 3478 __blk_run_queue(cfqd->queue);
a11cdaa7 3479 } else {
e98ef89b 3480 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3481 &cfqq->cfqg->blkg);
bf791937 3482 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3483 }
d6ceb25e 3484 }
5e705374 3485 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3486 /*
3487 * not the active queue - expire current slice if it is
3488 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3489 * has some old slice time left and is of higher priority or
3490 * this new queue is RT and the current one is BE
22e2c507
JA
3491 */
3492 cfq_preempt_queue(cfqd, cfqq);
24ecfbe2 3493 __blk_run_queue(cfqd->queue);
22e2c507 3494 }
1da177e4
LT
3495}
3496
165125e1 3497static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3498{
b4878f24 3499 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3500 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3501
7b679138 3502 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3503 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3504
30996f40 3505 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3506 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3507 cfq_add_rq_rb(rq);
e98ef89b 3508 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3509 &cfqd->serving_group->blkg, rq_data_dir(rq),
3510 rq_is_sync(rq));
5e705374 3511 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3512}
3513
45333d5a
AC
3514/*
3515 * Update hw_tag based on peak queue depth over 50 samples under
3516 * sufficient load.
3517 */
3518static void cfq_update_hw_tag(struct cfq_data *cfqd)
3519{
1a1238a7
SL
3520 struct cfq_queue *cfqq = cfqd->active_queue;
3521
53c583d2
CZ
3522 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3523 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3524
3525 if (cfqd->hw_tag == 1)
3526 return;
45333d5a
AC
3527
3528 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3529 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3530 return;
3531
1a1238a7
SL
3532 /*
3533 * If active queue hasn't enough requests and can idle, cfq might not
3534 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3535 * case
3536 */
3537 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3538 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3539 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3540 return;
3541
45333d5a
AC
3542 if (cfqd->hw_tag_samples++ < 50)
3543 return;
3544
e459dd08 3545 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3546 cfqd->hw_tag = 1;
3547 else
3548 cfqd->hw_tag = 0;
45333d5a
AC
3549}
3550
7667aa06
VG
3551static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3552{
3553 struct cfq_io_context *cic = cfqd->active_cic;
3554
02a8f01b
JT
3555 /* If the queue already has requests, don't wait */
3556 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3557 return false;
3558
7667aa06
VG
3559 /* If there are other queues in the group, don't wait */
3560 if (cfqq->cfqg->nr_cfqq > 1)
3561 return false;
3562
7700fc4f
SL
3563 /* the only queue in the group, but think time is big */
3564 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3565 return false;
3566
7667aa06
VG
3567 if (cfq_slice_used(cfqq))
3568 return true;
3569
3570 /* if slice left is less than think time, wait busy */
383cd721
SL
3571 if (cic && sample_valid(cic->ttime.ttime_samples)
3572 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
7667aa06
VG
3573 return true;
3574
3575 /*
3576 * If think times is less than a jiffy than ttime_mean=0 and above
3577 * will not be true. It might happen that slice has not expired yet
3578 * but will expire soon (4-5 ns) during select_queue(). To cover the
3579 * case where think time is less than a jiffy, mark the queue wait
3580 * busy if only 1 jiffy is left in the slice.
3581 */
3582 if (cfqq->slice_end - jiffies == 1)
3583 return true;
3584
3585 return false;
3586}
3587
165125e1 3588static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3589{
5e705374 3590 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3591 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3592 const int sync = rq_is_sync(rq);
b4878f24 3593 unsigned long now;
1da177e4 3594
b4878f24 3595 now = jiffies;
33659ebb
CH
3596 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3597 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3598
45333d5a
AC
3599 cfq_update_hw_tag(cfqd);
3600
53c583d2 3601 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3602 WARN_ON(!cfqq->dispatched);
53c583d2 3603 cfqd->rq_in_driver--;
6d048f53 3604 cfqq->dispatched--;
80bdf0c7 3605 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3606 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3607 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3608 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3609
53c583d2 3610 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3611
365722bb 3612 if (sync) {
f5f2b6ce
SL
3613 struct cfq_rb_root *service_tree;
3614
383cd721 3615 RQ_CIC(rq)->ttime.last_end_request = now;
f5f2b6ce
SL
3616
3617 if (cfq_cfqq_on_rr(cfqq))
3618 service_tree = cfqq->service_tree;
3619 else
3620 service_tree = service_tree_for(cfqq->cfqg,
3621 cfqq_prio(cfqq), cfqq_type(cfqq));
3622 service_tree->ttime.last_end_request = now;
573412b2
CZ
3623 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3624 cfqd->last_delayed_sync = now;
365722bb 3625 }
caaa5f9f 3626
7700fc4f
SL
3627#ifdef CONFIG_CFQ_GROUP_IOSCHED
3628 cfqq->cfqg->ttime.last_end_request = now;
3629#endif
3630
caaa5f9f
JA
3631 /*
3632 * If this is the active queue, check if it needs to be expired,
3633 * or if we want to idle in case it has no pending requests.
3634 */
3635 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3636 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3637
44f7c160
JA
3638 if (cfq_cfqq_slice_new(cfqq)) {
3639 cfq_set_prio_slice(cfqd, cfqq);
3640 cfq_clear_cfqq_slice_new(cfqq);
3641 }
f75edf2d
VG
3642
3643 /*
7667aa06
VG
3644 * Should we wait for next request to come in before we expire
3645 * the queue.
f75edf2d 3646 */
7667aa06 3647 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3648 unsigned long extend_sl = cfqd->cfq_slice_idle;
3649 if (!cfqd->cfq_slice_idle)
3650 extend_sl = cfqd->cfq_group_idle;
3651 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3652 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3653 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3654 }
3655
a36e71f9 3656 /*
8e550632
CZ
3657 * Idling is not enabled on:
3658 * - expired queues
3659 * - idle-priority queues
3660 * - async queues
3661 * - queues with still some requests queued
3662 * - when there is a close cooperator
a36e71f9 3663 */
0871714e 3664 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3665 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3666 else if (sync && cfqq_empty &&
3667 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3668 cfq_arm_slice_timer(cfqd);
8e550632 3669 }
caaa5f9f 3670 }
6d048f53 3671
53c583d2 3672 if (!cfqd->rq_in_driver)
23e018a1 3673 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3674}
3675
89850f7e 3676static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3677{
1b379d8d 3678 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3679 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3680 return ELV_MQUEUE_MUST;
3b18152c 3681 }
1da177e4 3682
22e2c507 3683 return ELV_MQUEUE_MAY;
22e2c507
JA
3684}
3685
165125e1 3686static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3687{
3688 struct cfq_data *cfqd = q->elevator->elevator_data;
3689 struct task_struct *tsk = current;
91fac317 3690 struct cfq_io_context *cic;
22e2c507
JA
3691 struct cfq_queue *cfqq;
3692
3693 /*
3694 * don't force setup of a queue from here, as a call to may_queue
3695 * does not necessarily imply that a request actually will be queued.
3696 * so just lookup a possibly existing queue, or return 'may queue'
3697 * if that fails
3698 */
4ac845a2 3699 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3700 if (!cic)
3701 return ELV_MQUEUE_MAY;
3702
b0b78f81 3703 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3704 if (cfqq) {
fd0928df 3705 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507 3706
89850f7e 3707 return __cfq_may_queue(cfqq);
22e2c507
JA
3708 }
3709
3710 return ELV_MQUEUE_MAY;
1da177e4
LT
3711}
3712
1da177e4
LT
3713/*
3714 * queue lock held here
3715 */
bb37b94c 3716static void cfq_put_request(struct request *rq)
1da177e4 3717{
5e705374 3718 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3719
5e705374 3720 if (cfqq) {
22e2c507 3721 const int rw = rq_data_dir(rq);
1da177e4 3722
22e2c507
JA
3723 BUG_ON(!cfqq->allocated[rw]);
3724 cfqq->allocated[rw]--;
1da177e4 3725
5e705374 3726 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3727
c186794d
MS
3728 rq->elevator_private[0] = NULL;
3729 rq->elevator_private[1] = NULL;
1da177e4 3730
7f1dc8a2
VG
3731 /* Put down rq reference on cfqg */
3732 cfq_put_cfqg(RQ_CFQG(rq));
c186794d 3733 rq->elevator_private[2] = NULL;
7f1dc8a2 3734
1da177e4
LT
3735 cfq_put_queue(cfqq);
3736 }
3737}
3738
df5fe3e8
JM
3739static struct cfq_queue *
3740cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3741 struct cfq_queue *cfqq)
3742{
3743 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3744 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3745 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3746 cfq_put_queue(cfqq);
3747 return cic_to_cfqq(cic, 1);
3748}
3749
e6c5bc73
JM
3750/*
3751 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3752 * was the last process referring to said cfqq.
3753 */
3754static struct cfq_queue *
3755split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3756{
3757 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3758 cfqq->pid = current->pid;
3759 cfq_clear_cfqq_coop(cfqq);
ae54abed 3760 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3761 return cfqq;
3762 }
3763
3764 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3765
3766 cfq_put_cooperator(cfqq);
3767
e6c5bc73
JM
3768 cfq_put_queue(cfqq);
3769 return NULL;
3770}
1da177e4 3771/*
22e2c507 3772 * Allocate cfq data structures associated with this request.
1da177e4 3773 */
22e2c507 3774static int
165125e1 3775cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3776{
3777 struct cfq_data *cfqd = q->elevator->elevator_data;
3778 struct cfq_io_context *cic;
3779 const int rw = rq_data_dir(rq);
a6151c3a 3780 const bool is_sync = rq_is_sync(rq);
22e2c507 3781 struct cfq_queue *cfqq;
1da177e4
LT
3782
3783 might_sleep_if(gfp_mask & __GFP_WAIT);
3784
216284c3 3785 spin_lock_irq(q->queue_lock);
e2d74ac0 3786 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507
JA
3787 if (!cic)
3788 goto queue_fail;
3789
e6c5bc73 3790new_queue:
91fac317 3791 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3792 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3793 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3794 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3795 } else {
e6c5bc73
JM
3796 /*
3797 * If the queue was seeky for too long, break it apart.
3798 */
ae54abed 3799 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3800 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3801 cfqq = split_cfqq(cic, cfqq);
3802 if (!cfqq)
3803 goto new_queue;
3804 }
3805
df5fe3e8
JM
3806 /*
3807 * Check to see if this queue is scheduled to merge with
3808 * another, closely cooperating queue. The merging of
3809 * queues happens here as it must be done in process context.
3810 * The reference on new_cfqq was taken in merge_cfqqs.
3811 */
3812 if (cfqq->new_cfqq)
3813 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3814 }
1da177e4
LT
3815
3816 cfqq->allocated[rw]++;
1da177e4 3817
6fae9c25 3818 cfqq->ref++;
c186794d
MS
3819 rq->elevator_private[0] = cic;
3820 rq->elevator_private[1] = cfqq;
3821 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
216284c3 3822 spin_unlock_irq(q->queue_lock);
5e705374 3823 return 0;
1da177e4 3824
22e2c507 3825queue_fail:
23e018a1 3826 cfq_schedule_dispatch(cfqd);
216284c3 3827 spin_unlock_irq(q->queue_lock);
7b679138 3828 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3829 return 1;
3830}
3831
65f27f38 3832static void cfq_kick_queue(struct work_struct *work)
22e2c507 3833{
65f27f38 3834 struct cfq_data *cfqd =
23e018a1 3835 container_of(work, struct cfq_data, unplug_work);
165125e1 3836 struct request_queue *q = cfqd->queue;
22e2c507 3837
40bb54d1 3838 spin_lock_irq(q->queue_lock);
24ecfbe2 3839 __blk_run_queue(cfqd->queue);
40bb54d1 3840 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3841}
3842
3843/*
3844 * Timer running if the active_queue is currently idling inside its time slice
3845 */
3846static void cfq_idle_slice_timer(unsigned long data)
3847{
3848 struct cfq_data *cfqd = (struct cfq_data *) data;
3849 struct cfq_queue *cfqq;
3850 unsigned long flags;
3c6bd2f8 3851 int timed_out = 1;
22e2c507 3852
7b679138
JA
3853 cfq_log(cfqd, "idle timer fired");
3854
22e2c507
JA
3855 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3856
fe094d98
JA
3857 cfqq = cfqd->active_queue;
3858 if (cfqq) {
3c6bd2f8
JA
3859 timed_out = 0;
3860
b029195d
JA
3861 /*
3862 * We saw a request before the queue expired, let it through
3863 */
3864 if (cfq_cfqq_must_dispatch(cfqq))
3865 goto out_kick;
3866
22e2c507
JA
3867 /*
3868 * expired
3869 */
44f7c160 3870 if (cfq_slice_used(cfqq))
22e2c507
JA
3871 goto expire;
3872
3873 /*
3874 * only expire and reinvoke request handler, if there are
3875 * other queues with pending requests
3876 */
caaa5f9f 3877 if (!cfqd->busy_queues)
22e2c507 3878 goto out_cont;
22e2c507
JA
3879
3880 /*
3881 * not expired and it has a request pending, let it dispatch
3882 */
75e50984 3883 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3884 goto out_kick;
76280aff
CZ
3885
3886 /*
3887 * Queue depth flag is reset only when the idle didn't succeed
3888 */
3889 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3890 }
3891expire:
e5ff082e 3892 cfq_slice_expired(cfqd, timed_out);
22e2c507 3893out_kick:
23e018a1 3894 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3895out_cont:
3896 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3897}
3898
3b18152c
JA
3899static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3900{
3901 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3902 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3903}
22e2c507 3904
c2dea2d1
VT
3905static void cfq_put_async_queues(struct cfq_data *cfqd)
3906{
3907 int i;
3908
3909 for (i = 0; i < IOPRIO_BE_NR; i++) {
3910 if (cfqd->async_cfqq[0][i])
3911 cfq_put_queue(cfqd->async_cfqq[0][i]);
3912 if (cfqd->async_cfqq[1][i])
3913 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3914 }
2389d1ef
ON
3915
3916 if (cfqd->async_idle_cfqq)
3917 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3918}
3919
b374d18a 3920static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3921{
22e2c507 3922 struct cfq_data *cfqd = e->elevator_data;
165125e1 3923 struct request_queue *q = cfqd->queue;
56edf7d7 3924 bool wait = false;
22e2c507 3925
3b18152c 3926 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3927
d9ff4187 3928 spin_lock_irq(q->queue_lock);
e2d74ac0 3929
d9ff4187 3930 if (cfqd->active_queue)
e5ff082e 3931 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3932
3933 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3934 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3935 struct cfq_io_context,
3936 queue_list);
89850f7e 3937
283287a5 3938 cfq_exit_cic(cic);
d9ff4187 3939 }
e2d74ac0 3940
c2dea2d1 3941 cfq_put_async_queues(cfqd);
b1c35769 3942 cfq_release_cfq_groups(cfqd);
56edf7d7
VG
3943
3944 /*
3945 * If there are groups which we could not unlink from blkcg list,
3946 * wait for a rcu period for them to be freed.
3947 */
3948 if (cfqd->nr_blkcg_linked_grps)
3949 wait = true;
15c31be4 3950
d9ff4187 3951 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3952
3953 cfq_shutdown_timer_wq(cfqd);
3954
56edf7d7
VG
3955 /*
3956 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3957 * Do this wait only if there are other unlinked groups out
3958 * there. This can happen if cgroup deletion path claimed the
3959 * responsibility of cleaning up a group before queue cleanup code
3960 * get to the group.
3961 *
3962 * Do not call synchronize_rcu() unconditionally as there are drivers
3963 * which create/delete request queue hundreds of times during scan/boot
3964 * and synchronize_rcu() can take significant time and slow down boot.
3965 */
3966 if (wait)
3967 synchronize_rcu();
2abae55f
VG
3968
3969#ifdef CONFIG_CFQ_GROUP_IOSCHED
3970 /* Free up per cpu stats for root group */
3971 free_percpu(cfqd->root_group.blkg.stats_cpu);
3972#endif
56edf7d7 3973 kfree(cfqd);
1da177e4
LT
3974}
3975
165125e1 3976static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3977{
3978 struct cfq_data *cfqd;
718eee05 3979 int i, j;
cdb16e8f 3980 struct cfq_group *cfqg;
615f0259 3981 struct cfq_rb_root *st;
1da177e4 3982
94f6030c 3983 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
a73f730d 3984 if (!cfqd)
bc1c1169 3985 return NULL;
80b15c73 3986
1fa8f6d6
VG
3987 /* Init root service tree */
3988 cfqd->grp_service_tree = CFQ_RB_ROOT;
3989
cdb16e8f
VG
3990 /* Init root group */
3991 cfqg = &cfqd->root_group;
615f0259
VG
3992 for_each_cfqg_st(cfqg, i, j, st)
3993 *st = CFQ_RB_ROOT;
1fa8f6d6 3994 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3995
25bc6b07
VG
3996 /* Give preference to root group over other groups */
3997 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3998
25fb5169 3999#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769 4000 /*
56edf7d7
VG
4001 * Set root group reference to 2. One reference will be dropped when
4002 * all groups on cfqd->cfqg_list are being deleted during queue exit.
4003 * Other reference will remain there as we don't want to delete this
4004 * group as it is statically allocated and gets destroyed when
4005 * throtl_data goes away.
b1c35769 4006 */
56edf7d7 4007 cfqg->ref = 2;
5624a4e4
VG
4008
4009 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4010 kfree(cfqg);
4011 kfree(cfqd);
4012 return NULL;
4013 }
4014
dcf097b2 4015 rcu_read_lock();
5624a4e4 4016
e98ef89b
VG
4017 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4018 (void *)cfqd, 0);
dcf097b2 4019 rcu_read_unlock();
56edf7d7
VG
4020 cfqd->nr_blkcg_linked_grps++;
4021
4022 /* Add group on cfqd->cfqg_list */
4023 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
25fb5169 4024#endif
26a2ac00
JA
4025 /*
4026 * Not strictly needed (since RB_ROOT just clears the node and we
4027 * zeroed cfqd on alloc), but better be safe in case someone decides
4028 * to add magic to the rb code
4029 */
4030 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4031 cfqd->prio_trees[i] = RB_ROOT;
4032
6118b70b
JA
4033 /*
4034 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4035 * Grab a permanent reference to it, so that the normal code flow
4036 * will not attempt to free it.
4037 */
4038 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
30d7b944 4039 cfqd->oom_cfqq.ref++;
cdb16e8f 4040 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 4041
d9ff4187 4042 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 4043
1da177e4 4044 cfqd->queue = q;
1da177e4 4045
22e2c507
JA
4046 init_timer(&cfqd->idle_slice_timer);
4047 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4048 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4049
23e018a1 4050 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 4051
1da177e4 4052 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
4053 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4054 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
4055 cfqd->cfq_back_max = cfq_back_max;
4056 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
4057 cfqd->cfq_slice[0] = cfq_slice_async;
4058 cfqd->cfq_slice[1] = cfq_slice_sync;
4059 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4060 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 4061 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 4062 cfqd->cfq_latency = 1;
e459dd08 4063 cfqd->hw_tag = -1;
edc71131
CZ
4064 /*
4065 * we optimistically start assuming sync ops weren't delayed in last
4066 * second, in order to have larger depth for async operations.
4067 */
573412b2 4068 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 4069 return cfqd;
1da177e4
LT
4070}
4071
4072static void cfq_slab_kill(void)
4073{
d6de8be7
JA
4074 /*
4075 * Caller already ensured that pending RCU callbacks are completed,
4076 * so we should have no busy allocations at this point.
4077 */
1da177e4
LT
4078 if (cfq_pool)
4079 kmem_cache_destroy(cfq_pool);
4080 if (cfq_ioc_pool)
4081 kmem_cache_destroy(cfq_ioc_pool);
4082}
4083
4084static int __init cfq_slab_setup(void)
4085{
0a31bd5f 4086 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
4087 if (!cfq_pool)
4088 goto fail;
4089
34e6bbf2 4090 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
4091 if (!cfq_ioc_pool)
4092 goto fail;
4093
4094 return 0;
4095fail:
4096 cfq_slab_kill();
4097 return -ENOMEM;
4098}
4099
1da177e4
LT
4100/*
4101 * sysfs parts below -->
4102 */
1da177e4
LT
4103static ssize_t
4104cfq_var_show(unsigned int var, char *page)
4105{
4106 return sprintf(page, "%d\n", var);
4107}
4108
4109static ssize_t
4110cfq_var_store(unsigned int *var, const char *page, size_t count)
4111{
4112 char *p = (char *) page;
4113
4114 *var = simple_strtoul(p, &p, 10);
4115 return count;
4116}
4117
1da177e4 4118#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 4119static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 4120{ \
3d1ab40f 4121 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4122 unsigned int __data = __VAR; \
4123 if (__CONV) \
4124 __data = jiffies_to_msecs(__data); \
4125 return cfq_var_show(__data, (page)); \
4126}
4127SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
4128SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4129SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
4130SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4131SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 4132SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 4133SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
4134SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4135SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4136SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 4137SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
4138#undef SHOW_FUNCTION
4139
4140#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 4141static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 4142{ \
3d1ab40f 4143 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4144 unsigned int __data; \
4145 int ret = cfq_var_store(&__data, (page), count); \
4146 if (__data < (MIN)) \
4147 __data = (MIN); \
4148 else if (__data > (MAX)) \
4149 __data = (MAX); \
4150 if (__CONV) \
4151 *(__PTR) = msecs_to_jiffies(__data); \
4152 else \
4153 *(__PTR) = __data; \
4154 return ret; \
4155}
4156STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
4157STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4158 UINT_MAX, 1);
4159STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4160 UINT_MAX, 1);
e572ec7e 4161STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
4162STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4163 UINT_MAX, 0);
22e2c507 4164STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 4165STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
4166STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4167STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
4168STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4169 UINT_MAX, 0);
963b72fc 4170STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
4171#undef STORE_FUNCTION
4172
e572ec7e
AV
4173#define CFQ_ATTR(name) \
4174 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4175
4176static struct elv_fs_entry cfq_attrs[] = {
4177 CFQ_ATTR(quantum),
e572ec7e
AV
4178 CFQ_ATTR(fifo_expire_sync),
4179 CFQ_ATTR(fifo_expire_async),
4180 CFQ_ATTR(back_seek_max),
4181 CFQ_ATTR(back_seek_penalty),
4182 CFQ_ATTR(slice_sync),
4183 CFQ_ATTR(slice_async),
4184 CFQ_ATTR(slice_async_rq),
4185 CFQ_ATTR(slice_idle),
80bdf0c7 4186 CFQ_ATTR(group_idle),
963b72fc 4187 CFQ_ATTR(low_latency),
e572ec7e 4188 __ATTR_NULL
1da177e4
LT
4189};
4190
1da177e4
LT
4191static struct elevator_type iosched_cfq = {
4192 .ops = {
4193 .elevator_merge_fn = cfq_merge,
4194 .elevator_merged_fn = cfq_merged_request,
4195 .elevator_merge_req_fn = cfq_merged_requests,
da775265 4196 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 4197 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 4198 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 4199 .elevator_add_req_fn = cfq_insert_request,
b4878f24 4200 .elevator_activate_req_fn = cfq_activate_request,
1da177e4 4201 .elevator_deactivate_req_fn = cfq_deactivate_request,
1da177e4 4202 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
4203 .elevator_former_req_fn = elv_rb_former_request,
4204 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
4205 .elevator_set_req_fn = cfq_set_request,
4206 .elevator_put_req_fn = cfq_put_request,
4207 .elevator_may_queue_fn = cfq_may_queue,
4208 .elevator_init_fn = cfq_init_queue,
4209 .elevator_exit_fn = cfq_exit_queue,
fc46379d 4210 .trim = cfq_free_io_context,
1da177e4 4211 },
3d1ab40f 4212 .elevator_attrs = cfq_attrs,
1da177e4
LT
4213 .elevator_name = "cfq",
4214 .elevator_owner = THIS_MODULE,
4215};
4216
3e252066
VG
4217#ifdef CONFIG_CFQ_GROUP_IOSCHED
4218static struct blkio_policy_type blkio_policy_cfq = {
4219 .ops = {
4220 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4221 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4222 },
062a644d 4223 .plid = BLKIO_POLICY_PROP,
3e252066
VG
4224};
4225#else
4226static struct blkio_policy_type blkio_policy_cfq;
4227#endif
4228
1da177e4
LT
4229static int __init cfq_init(void)
4230{
22e2c507
JA
4231 /*
4232 * could be 0 on HZ < 1000 setups
4233 */
4234 if (!cfq_slice_async)
4235 cfq_slice_async = 1;
4236 if (!cfq_slice_idle)
4237 cfq_slice_idle = 1;
4238
80bdf0c7
VG
4239#ifdef CONFIG_CFQ_GROUP_IOSCHED
4240 if (!cfq_group_idle)
4241 cfq_group_idle = 1;
4242#else
4243 cfq_group_idle = 0;
4244#endif
1da177e4
LT
4245 if (cfq_slab_setup())
4246 return -ENOMEM;
4247
2fdd82bd 4248 elv_register(&iosched_cfq);
3e252066 4249 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4250
2fdd82bd 4251 return 0;
1da177e4
LT
4252}
4253
4254static void __exit cfq_exit(void)
4255{
6e9a4738 4256 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4257 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4258 elv_unregister(&iosched_cfq);
334e94de 4259 ioc_gone = &all_gone;
fba82272
OH
4260 /* ioc_gone's update must be visible before reading ioc_count */
4261 smp_wmb();
d6de8be7
JA
4262
4263 /*
4264 * this also protects us from entering cfq_slab_kill() with
4265 * pending RCU callbacks
4266 */
245b2e70 4267 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4268 wait_for_completion(&all_gone);
83521d3e 4269 cfq_slab_kill();
1da177e4
LT
4270}
4271
4272module_init(cfq_init);
4273module_exit(cfq_exit);
4274
4275MODULE_AUTHOR("Jens Axboe");
4276MODULE_LICENSE("GPL");
4277MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");