userfaultfd: don't retake mmap_sem to emulate NOPAGE
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
3b3b1a29 28#include <linux/overflow.h>
b5420237 29#include <linux/sizes.h>
7969f226 30#include <linux/sched.h>
1da177e4
LT
31
32struct mempolicy;
33struct anon_vma;
bf181b9f 34struct anon_vma_chain;
4e950f6f 35struct file_ra_state;
e8edc6e0 36struct user_struct;
4e950f6f 37struct writeback_control;
682aa8e1 38struct bdi_writeback;
1da177e4 39
597b7305
MH
40void init_mm_internals(void);
41
fccc9987 42#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 43extern unsigned long max_mapnr;
fccc9987
JL
44
45static inline void set_max_mapnr(unsigned long limit)
46{
47 max_mapnr = limit;
48}
49#else
50static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
51#endif
52
ca79b0c2
AK
53extern atomic_long_t _totalram_pages;
54static inline unsigned long totalram_pages(void)
55{
56 return (unsigned long)atomic_long_read(&_totalram_pages);
57}
58
59static inline void totalram_pages_inc(void)
60{
61 atomic_long_inc(&_totalram_pages);
62}
63
64static inline void totalram_pages_dec(void)
65{
66 atomic_long_dec(&_totalram_pages);
67}
68
69static inline void totalram_pages_add(long count)
70{
71 atomic_long_add(count, &_totalram_pages);
72}
73
1da177e4 74extern void * high_memory;
1da177e4
LT
75extern int page_cluster;
76
77#ifdef CONFIG_SYSCTL
78extern int sysctl_legacy_va_layout;
79#else
80#define sysctl_legacy_va_layout 0
81#endif
82
d07e2259
DC
83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
84extern const int mmap_rnd_bits_min;
85extern const int mmap_rnd_bits_max;
86extern int mmap_rnd_bits __read_mostly;
87#endif
88#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
89extern const int mmap_rnd_compat_bits_min;
90extern const int mmap_rnd_compat_bits_max;
91extern int mmap_rnd_compat_bits __read_mostly;
92#endif
93
1da177e4
LT
94#include <asm/page.h>
95#include <asm/pgtable.h>
96#include <asm/processor.h>
1da177e4 97
d9344522
AK
98/*
99 * Architectures that support memory tagging (assigning tags to memory regions,
100 * embedding these tags into addresses that point to these memory regions, and
101 * checking that the memory and the pointer tags match on memory accesses)
102 * redefine this macro to strip tags from pointers.
103 * It's defined as noop for arcitectures that don't support memory tagging.
104 */
105#ifndef untagged_addr
106#define untagged_addr(addr) (addr)
107#endif
108
79442ed1
TC
109#ifndef __pa_symbol
110#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
111#endif
112
1dff8083
AB
113#ifndef page_to_virt
114#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
115#endif
116
568c5fe5
LA
117#ifndef lm_alias
118#define lm_alias(x) __va(__pa_symbol(x))
119#endif
120
593befa6
DD
121/*
122 * To prevent common memory management code establishing
123 * a zero page mapping on a read fault.
124 * This macro should be defined within <asm/pgtable.h>.
125 * s390 does this to prevent multiplexing of hardware bits
126 * related to the physical page in case of virtualization.
127 */
128#ifndef mm_forbids_zeropage
129#define mm_forbids_zeropage(X) (0)
130#endif
131
a4a3ede2
PT
132/*
133 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
134 * If an architecture decides to implement their own version of
135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
136 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 137 */
5470dea4
AD
138#if BITS_PER_LONG == 64
139/* This function must be updated when the size of struct page grows above 80
140 * or reduces below 56. The idea that compiler optimizes out switch()
141 * statement, and only leaves move/store instructions. Also the compiler can
142 * combine write statments if they are both assignments and can be reordered,
143 * this can result in several of the writes here being dropped.
144 */
145#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
146static inline void __mm_zero_struct_page(struct page *page)
147{
148 unsigned long *_pp = (void *)page;
149
150 /* Check that struct page is either 56, 64, 72, or 80 bytes */
151 BUILD_BUG_ON(sizeof(struct page) & 7);
152 BUILD_BUG_ON(sizeof(struct page) < 56);
153 BUILD_BUG_ON(sizeof(struct page) > 80);
154
155 switch (sizeof(struct page)) {
156 case 80:
157 _pp[9] = 0; /* fallthrough */
158 case 72:
159 _pp[8] = 0; /* fallthrough */
160 case 64:
161 _pp[7] = 0; /* fallthrough */
162 case 56:
163 _pp[6] = 0;
164 _pp[5] = 0;
165 _pp[4] = 0;
166 _pp[3] = 0;
167 _pp[2] = 0;
168 _pp[1] = 0;
169 _pp[0] = 0;
170 }
171}
172#else
a4a3ede2
PT
173#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
174#endif
175
ea606cf5
AR
176/*
177 * Default maximum number of active map areas, this limits the number of vmas
178 * per mm struct. Users can overwrite this number by sysctl but there is a
179 * problem.
180 *
181 * When a program's coredump is generated as ELF format, a section is created
182 * per a vma. In ELF, the number of sections is represented in unsigned short.
183 * This means the number of sections should be smaller than 65535 at coredump.
184 * Because the kernel adds some informative sections to a image of program at
185 * generating coredump, we need some margin. The number of extra sections is
186 * 1-3 now and depends on arch. We use "5" as safe margin, here.
187 *
188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
189 * not a hard limit any more. Although some userspace tools can be surprised by
190 * that.
191 */
192#define MAPCOUNT_ELF_CORE_MARGIN (5)
193#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
194
195extern int sysctl_max_map_count;
196
c9b1d098 197extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 198extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 199
49f0ce5f
JM
200extern int sysctl_overcommit_memory;
201extern int sysctl_overcommit_ratio;
202extern unsigned long sysctl_overcommit_kbytes;
203
204extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
205 size_t *, loff_t *);
206extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
207 size_t *, loff_t *);
208
1da177e4
LT
209#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
210
27ac792c
AR
211/* to align the pointer to the (next) page boundary */
212#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
213
0fa73b86 214/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 215#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 216
f86196ea
NB
217#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
218
1da177e4
LT
219/*
220 * Linux kernel virtual memory manager primitives.
221 * The idea being to have a "virtual" mm in the same way
222 * we have a virtual fs - giving a cleaner interface to the
223 * mm details, and allowing different kinds of memory mappings
224 * (from shared memory to executable loading to arbitrary
225 * mmap() functions).
226 */
227
490fc053 228struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
229struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
230void vm_area_free(struct vm_area_struct *);
c43692e8 231
1da177e4 232#ifndef CONFIG_MMU
8feae131
DH
233extern struct rb_root nommu_region_tree;
234extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
235
236extern unsigned int kobjsize(const void *objp);
237#endif
238
239/*
605d9288 240 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 241 * When changing, update also include/trace/events/mmflags.h
1da177e4 242 */
cc2383ec
KK
243#define VM_NONE 0x00000000
244
1da177e4
LT
245#define VM_READ 0x00000001 /* currently active flags */
246#define VM_WRITE 0x00000002
247#define VM_EXEC 0x00000004
248#define VM_SHARED 0x00000008
249
7e2cff42 250/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
251#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
252#define VM_MAYWRITE 0x00000020
253#define VM_MAYEXEC 0x00000040
254#define VM_MAYSHARE 0x00000080
255
256#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 257#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 258#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 259#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 260#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 261
1da177e4
LT
262#define VM_LOCKED 0x00002000
263#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
264
265 /* Used by sys_madvise() */
266#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
267#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
268
269#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
270#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 271#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 272#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 273#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 274#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 275#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 276#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 277#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 278#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 279
d9104d1c
CG
280#ifdef CONFIG_MEM_SOFT_DIRTY
281# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
282#else
283# define VM_SOFTDIRTY 0
284#endif
285
b379d790 286#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
287#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
288#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 289#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 290
63c17fb8
DH
291#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
292#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
293#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
294#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
295#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 296#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
297#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
298#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
299#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
300#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 301#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
302#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
303
5212213a 304#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
305# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
306# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 307# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
308# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
309# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
310#ifdef CONFIG_PPC
311# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
312#else
313# define VM_PKEY_BIT4 0
8f62c883 314#endif
5212213a
RP
315#endif /* CONFIG_ARCH_HAS_PKEYS */
316
317#if defined(CONFIG_X86)
318# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
319#elif defined(CONFIG_PPC)
320# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
321#elif defined(CONFIG_PARISC)
322# define VM_GROWSUP VM_ARCH_1
323#elif defined(CONFIG_IA64)
324# define VM_GROWSUP VM_ARCH_1
74a04967
KA
325#elif defined(CONFIG_SPARC64)
326# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
327# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
328#elif !defined(CONFIG_MMU)
329# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
330#endif
331
df3735c5 332#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 333/* MPX specific bounds table or bounds directory */
fa87b91c 334# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
335#else
336# define VM_MPX VM_NONE
4aae7e43
QR
337#endif
338
cc2383ec
KK
339#ifndef VM_GROWSUP
340# define VM_GROWSUP VM_NONE
341#endif
342
a8bef8ff
MG
343/* Bits set in the VMA until the stack is in its final location */
344#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
345
1da177e4
LT
346#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
347#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
348#endif
349
350#ifdef CONFIG_STACK_GROWSUP
30bdbb78 351#define VM_STACK VM_GROWSUP
1da177e4 352#else
30bdbb78 353#define VM_STACK VM_GROWSDOWN
1da177e4
LT
354#endif
355
30bdbb78
KK
356#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
357
b291f000 358/*
78f11a25 359 * Special vmas that are non-mergable, non-mlock()able.
b291f000 360 */
9050d7eb 361#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 362
b4443772
AK
363/* This mask prevents VMA from being scanned with khugepaged */
364#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
365
a0715cc2
AT
366/* This mask defines which mm->def_flags a process can inherit its parent */
367#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
368
de60f5f1
EM
369/* This mask is used to clear all the VMA flags used by mlock */
370#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
371
2c2d57b5
KA
372/* Arch-specific flags to clear when updating VM flags on protection change */
373#ifndef VM_ARCH_CLEAR
374# define VM_ARCH_CLEAR VM_NONE
375#endif
376#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
377
1da177e4
LT
378/*
379 * mapping from the currently active vm_flags protection bits (the
380 * low four bits) to a page protection mask..
381 */
382extern pgprot_t protection_map[16];
383
d0217ac0 384#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
385#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
386#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
387#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
388#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
389#define FAULT_FLAG_TRIED 0x20 /* Second try */
390#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 391#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 392#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 393
282a8e03
RZ
394#define FAULT_FLAG_TRACE \
395 { FAULT_FLAG_WRITE, "WRITE" }, \
396 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
397 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
398 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
399 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
400 { FAULT_FLAG_TRIED, "TRIED" }, \
401 { FAULT_FLAG_USER, "USER" }, \
402 { FAULT_FLAG_REMOTE, "REMOTE" }, \
403 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
404
54cb8821 405/*
d0217ac0 406 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
407 * ->fault function. The vma's ->fault is responsible for returning a bitmask
408 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 409 *
c20cd45e
MH
410 * MM layer fills up gfp_mask for page allocations but fault handler might
411 * alter it if its implementation requires a different allocation context.
412 *
9b4bdd2f 413 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 414 */
d0217ac0 415struct vm_fault {
82b0f8c3 416 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 417 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 418 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 419 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 420 unsigned long address; /* Faulting virtual address */
82b0f8c3 421 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 422 * the 'address' */
a2d58167
DJ
423 pud_t *pud; /* Pointer to pud entry matching
424 * the 'address'
425 */
2994302b 426 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 427
3917048d
JK
428 struct page *cow_page; /* Page handler may use for COW fault */
429 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 430 struct page *page; /* ->fault handlers should return a
83c54070 431 * page here, unless VM_FAULT_NOPAGE
d0217ac0 432 * is set (which is also implied by
83c54070 433 * VM_FAULT_ERROR).
d0217ac0 434 */
82b0f8c3 435 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
436 pte_t *pte; /* Pointer to pte entry matching
437 * the 'address'. NULL if the page
438 * table hasn't been allocated.
439 */
440 spinlock_t *ptl; /* Page table lock.
441 * Protects pte page table if 'pte'
442 * is not NULL, otherwise pmd.
443 */
7267ec00
KS
444 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
445 * vm_ops->map_pages() calls
446 * alloc_set_pte() from atomic context.
447 * do_fault_around() pre-allocates
448 * page table to avoid allocation from
449 * atomic context.
450 */
54cb8821 451};
1da177e4 452
c791ace1
DJ
453/* page entry size for vm->huge_fault() */
454enum page_entry_size {
455 PE_SIZE_PTE = 0,
456 PE_SIZE_PMD,
457 PE_SIZE_PUD,
458};
459
1da177e4
LT
460/*
461 * These are the virtual MM functions - opening of an area, closing and
462 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 463 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
464 */
465struct vm_operations_struct {
466 void (*open)(struct vm_area_struct * area);
467 void (*close)(struct vm_area_struct * area);
31383c68 468 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 469 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
470 vm_fault_t (*fault)(struct vm_fault *vmf);
471 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
472 enum page_entry_size pe_size);
82b0f8c3 473 void (*map_pages)(struct vm_fault *vmf,
bae473a4 474 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 475 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
476
477 /* notification that a previously read-only page is about to become
478 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 479 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 480
dd906184 481 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 482 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 483
28b2ee20
RR
484 /* called by access_process_vm when get_user_pages() fails, typically
485 * for use by special VMAs that can switch between memory and hardware
486 */
487 int (*access)(struct vm_area_struct *vma, unsigned long addr,
488 void *buf, int len, int write);
78d683e8
AL
489
490 /* Called by the /proc/PID/maps code to ask the vma whether it
491 * has a special name. Returning non-NULL will also cause this
492 * vma to be dumped unconditionally. */
493 const char *(*name)(struct vm_area_struct *vma);
494
1da177e4 495#ifdef CONFIG_NUMA
a6020ed7
LS
496 /*
497 * set_policy() op must add a reference to any non-NULL @new mempolicy
498 * to hold the policy upon return. Caller should pass NULL @new to
499 * remove a policy and fall back to surrounding context--i.e. do not
500 * install a MPOL_DEFAULT policy, nor the task or system default
501 * mempolicy.
502 */
1da177e4 503 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
504
505 /*
506 * get_policy() op must add reference [mpol_get()] to any policy at
507 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
508 * in mm/mempolicy.c will do this automatically.
509 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
510 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
511 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
512 * must return NULL--i.e., do not "fallback" to task or system default
513 * policy.
514 */
1da177e4
LT
515 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
516 unsigned long addr);
517#endif
667a0a06
DV
518 /*
519 * Called by vm_normal_page() for special PTEs to find the
520 * page for @addr. This is useful if the default behavior
521 * (using pte_page()) would not find the correct page.
522 */
523 struct page *(*find_special_page)(struct vm_area_struct *vma,
524 unsigned long addr);
1da177e4
LT
525};
526
027232da
KS
527static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
528{
bfd40eaf
KS
529 static const struct vm_operations_struct dummy_vm_ops = {};
530
a670468f 531 memset(vma, 0, sizeof(*vma));
027232da 532 vma->vm_mm = mm;
bfd40eaf 533 vma->vm_ops = &dummy_vm_ops;
027232da
KS
534 INIT_LIST_HEAD(&vma->anon_vma_chain);
535}
536
bfd40eaf
KS
537static inline void vma_set_anonymous(struct vm_area_struct *vma)
538{
539 vma->vm_ops = NULL;
540}
541
43675e6f
YS
542static inline bool vma_is_anonymous(struct vm_area_struct *vma)
543{
544 return !vma->vm_ops;
545}
546
222100ee
AK
547static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
548{
549 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
550
551 if (!maybe_stack)
552 return false;
553
554 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
555 VM_STACK_INCOMPLETE_SETUP)
556 return true;
557
558 return false;
559}
560
7969f226
AK
561static inline bool vma_is_foreign(struct vm_area_struct *vma)
562{
563 if (!current->mm)
564 return true;
565
566 if (current->mm != vma->vm_mm)
567 return true;
568
569 return false;
570}
43675e6f
YS
571#ifdef CONFIG_SHMEM
572/*
573 * The vma_is_shmem is not inline because it is used only by slow
574 * paths in userfault.
575 */
576bool vma_is_shmem(struct vm_area_struct *vma);
577#else
578static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
579#endif
580
581int vma_is_stack_for_current(struct vm_area_struct *vma);
582
8b11ec1b
LT
583/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
584#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
585
1da177e4
LT
586struct mmu_gather;
587struct inode;
588
1da177e4
LT
589/*
590 * FIXME: take this include out, include page-flags.h in
591 * files which need it (119 of them)
592 */
593#include <linux/page-flags.h>
71e3aac0 594#include <linux/huge_mm.h>
1da177e4
LT
595
596/*
597 * Methods to modify the page usage count.
598 *
599 * What counts for a page usage:
600 * - cache mapping (page->mapping)
601 * - private data (page->private)
602 * - page mapped in a task's page tables, each mapping
603 * is counted separately
604 *
605 * Also, many kernel routines increase the page count before a critical
606 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
607 */
608
609/*
da6052f7 610 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 611 */
7c8ee9a8
NP
612static inline int put_page_testzero(struct page *page)
613{
fe896d18
JK
614 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
615 return page_ref_dec_and_test(page);
7c8ee9a8 616}
1da177e4
LT
617
618/*
7c8ee9a8
NP
619 * Try to grab a ref unless the page has a refcount of zero, return false if
620 * that is the case.
8e0861fa
AK
621 * This can be called when MMU is off so it must not access
622 * any of the virtual mappings.
1da177e4 623 */
7c8ee9a8
NP
624static inline int get_page_unless_zero(struct page *page)
625{
fe896d18 626 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 627}
1da177e4 628
53df8fdc 629extern int page_is_ram(unsigned long pfn);
124fe20d
DW
630
631enum {
632 REGION_INTERSECTS,
633 REGION_DISJOINT,
634 REGION_MIXED,
635};
636
1c29f25b
TK
637int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
638 unsigned long desc);
53df8fdc 639
48667e7a 640/* Support for virtually mapped pages */
b3bdda02
CL
641struct page *vmalloc_to_page(const void *addr);
642unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 643
0738c4bb
PM
644/*
645 * Determine if an address is within the vmalloc range
646 *
647 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
648 * is no special casing required.
649 */
9bd3bb67
AK
650
651#ifndef is_ioremap_addr
652#define is_ioremap_addr(x) is_vmalloc_addr(x)
653#endif
654
81ac3ad9 655#ifdef CONFIG_MMU
186525bd 656extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
657extern int is_vmalloc_or_module_addr(const void *x);
658#else
186525bd
IM
659static inline bool is_vmalloc_addr(const void *x)
660{
661 return false;
662}
934831d0 663static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
664{
665 return 0;
666}
667#endif
9e2779fa 668
a7c3e901
MH
669extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
670static inline void *kvmalloc(size_t size, gfp_t flags)
671{
672 return kvmalloc_node(size, flags, NUMA_NO_NODE);
673}
674static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
675{
676 return kvmalloc_node(size, flags | __GFP_ZERO, node);
677}
678static inline void *kvzalloc(size_t size, gfp_t flags)
679{
680 return kvmalloc(size, flags | __GFP_ZERO);
681}
682
752ade68
MH
683static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
684{
3b3b1a29
KC
685 size_t bytes;
686
687 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
688 return NULL;
689
3b3b1a29 690 return kvmalloc(bytes, flags);
752ade68
MH
691}
692
1c542f38
KC
693static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
694{
695 return kvmalloc_array(n, size, flags | __GFP_ZERO);
696}
697
39f1f78d
AV
698extern void kvfree(const void *addr);
699
53f9263b
KS
700static inline int compound_mapcount(struct page *page)
701{
5f527c2b 702 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
703 page = compound_head(page);
704 return atomic_read(compound_mapcount_ptr(page)) + 1;
705}
706
70b50f94
AA
707/*
708 * The atomic page->_mapcount, starts from -1: so that transitions
709 * both from it and to it can be tracked, using atomic_inc_and_test
710 * and atomic_add_negative(-1).
711 */
22b751c3 712static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
713{
714 atomic_set(&(page)->_mapcount, -1);
715}
716
b20ce5e0
KS
717int __page_mapcount(struct page *page);
718
70b50f94
AA
719static inline int page_mapcount(struct page *page)
720{
1d148e21 721 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 722
b20ce5e0
KS
723 if (unlikely(PageCompound(page)))
724 return __page_mapcount(page);
725 return atomic_read(&page->_mapcount) + 1;
726}
727
728#ifdef CONFIG_TRANSPARENT_HUGEPAGE
729int total_mapcount(struct page *page);
6d0a07ed 730int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
731#else
732static inline int total_mapcount(struct page *page)
733{
734 return page_mapcount(page);
70b50f94 735}
6d0a07ed
AA
736static inline int page_trans_huge_mapcount(struct page *page,
737 int *total_mapcount)
738{
739 int mapcount = page_mapcount(page);
740 if (total_mapcount)
741 *total_mapcount = mapcount;
742 return mapcount;
743}
b20ce5e0 744#endif
70b50f94 745
b49af68f
CL
746static inline struct page *virt_to_head_page(const void *x)
747{
748 struct page *page = virt_to_page(x);
ccaafd7f 749
1d798ca3 750 return compound_head(page);
b49af68f
CL
751}
752
ddc58f27
KS
753void __put_page(struct page *page);
754
1d7ea732 755void put_pages_list(struct list_head *pages);
1da177e4 756
8dfcc9ba 757void split_page(struct page *page, unsigned int order);
8dfcc9ba 758
33f2ef89
AW
759/*
760 * Compound pages have a destructor function. Provide a
761 * prototype for that function and accessor functions.
f1e61557 762 * These are _only_ valid on the head of a compound page.
33f2ef89 763 */
f1e61557
KS
764typedef void compound_page_dtor(struct page *);
765
766/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
767enum compound_dtor_id {
768 NULL_COMPOUND_DTOR,
769 COMPOUND_PAGE_DTOR,
770#ifdef CONFIG_HUGETLB_PAGE
771 HUGETLB_PAGE_DTOR,
9a982250
KS
772#endif
773#ifdef CONFIG_TRANSPARENT_HUGEPAGE
774 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
775#endif
776 NR_COMPOUND_DTORS,
777};
778extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
779
780static inline void set_compound_page_dtor(struct page *page,
f1e61557 781 enum compound_dtor_id compound_dtor)
33f2ef89 782{
f1e61557
KS
783 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
784 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
785}
786
787static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
788{
f1e61557
KS
789 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
790 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
791}
792
d00181b9 793static inline unsigned int compound_order(struct page *page)
d85f3385 794{
6d777953 795 if (!PageHead(page))
d85f3385 796 return 0;
e4b294c2 797 return page[1].compound_order;
d85f3385
CL
798}
799
47e29d32
JH
800static inline bool hpage_pincount_available(struct page *page)
801{
802 /*
803 * Can the page->hpage_pinned_refcount field be used? That field is in
804 * the 3rd page of the compound page, so the smallest (2-page) compound
805 * pages cannot support it.
806 */
807 page = compound_head(page);
808 return PageCompound(page) && compound_order(page) > 1;
809}
810
811static inline int compound_pincount(struct page *page)
812{
813 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
814 page = compound_head(page);
815 return atomic_read(compound_pincount_ptr(page));
816}
817
f1e61557 818static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 819{
e4b294c2 820 page[1].compound_order = order;
d85f3385
CL
821}
822
d8c6546b
MWO
823/* Returns the number of pages in this potentially compound page. */
824static inline unsigned long compound_nr(struct page *page)
825{
826 return 1UL << compound_order(page);
827}
828
a50b854e
MWO
829/* Returns the number of bytes in this potentially compound page. */
830static inline unsigned long page_size(struct page *page)
831{
832 return PAGE_SIZE << compound_order(page);
833}
834
94ad9338
MWO
835/* Returns the number of bits needed for the number of bytes in a page */
836static inline unsigned int page_shift(struct page *page)
837{
838 return PAGE_SHIFT + compound_order(page);
839}
840
9a982250
KS
841void free_compound_page(struct page *page);
842
3dece370 843#ifdef CONFIG_MMU
14fd403f
AA
844/*
845 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
846 * servicing faults for write access. In the normal case, do always want
847 * pte_mkwrite. But get_user_pages can cause write faults for mappings
848 * that do not have writing enabled, when used by access_process_vm.
849 */
850static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
851{
852 if (likely(vma->vm_flags & VM_WRITE))
853 pte = pte_mkwrite(pte);
854 return pte;
855}
8c6e50b0 856
2b740303 857vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 858 struct page *page);
2b740303
SJ
859vm_fault_t finish_fault(struct vm_fault *vmf);
860vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 861#endif
14fd403f 862
1da177e4
LT
863/*
864 * Multiple processes may "see" the same page. E.g. for untouched
865 * mappings of /dev/null, all processes see the same page full of
866 * zeroes, and text pages of executables and shared libraries have
867 * only one copy in memory, at most, normally.
868 *
869 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
870 * page_count() == 0 means the page is free. page->lru is then used for
871 * freelist management in the buddy allocator.
da6052f7 872 * page_count() > 0 means the page has been allocated.
1da177e4 873 *
da6052f7
NP
874 * Pages are allocated by the slab allocator in order to provide memory
875 * to kmalloc and kmem_cache_alloc. In this case, the management of the
876 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
877 * unless a particular usage is carefully commented. (the responsibility of
878 * freeing the kmalloc memory is the caller's, of course).
1da177e4 879 *
da6052f7
NP
880 * A page may be used by anyone else who does a __get_free_page().
881 * In this case, page_count still tracks the references, and should only
882 * be used through the normal accessor functions. The top bits of page->flags
883 * and page->virtual store page management information, but all other fields
884 * are unused and could be used privately, carefully. The management of this
885 * page is the responsibility of the one who allocated it, and those who have
886 * subsequently been given references to it.
887 *
888 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
889 * managed by the Linux memory manager: I/O, buffers, swapping etc.
890 * The following discussion applies only to them.
891 *
da6052f7
NP
892 * A pagecache page contains an opaque `private' member, which belongs to the
893 * page's address_space. Usually, this is the address of a circular list of
894 * the page's disk buffers. PG_private must be set to tell the VM to call
895 * into the filesystem to release these pages.
1da177e4 896 *
da6052f7
NP
897 * A page may belong to an inode's memory mapping. In this case, page->mapping
898 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 899 * in units of PAGE_SIZE.
1da177e4 900 *
da6052f7
NP
901 * If pagecache pages are not associated with an inode, they are said to be
902 * anonymous pages. These may become associated with the swapcache, and in that
903 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 904 *
da6052f7
NP
905 * In either case (swapcache or inode backed), the pagecache itself holds one
906 * reference to the page. Setting PG_private should also increment the
907 * refcount. The each user mapping also has a reference to the page.
1da177e4 908 *
da6052f7 909 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 910 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
911 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
912 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 913 *
da6052f7 914 * All pagecache pages may be subject to I/O:
1da177e4
LT
915 * - inode pages may need to be read from disk,
916 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
917 * to be written back to the inode on disk,
918 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
919 * modified may need to be swapped out to swap space and (later) to be read
920 * back into memory.
1da177e4
LT
921 */
922
923/*
924 * The zone field is never updated after free_area_init_core()
925 * sets it, so none of the operations on it need to be atomic.
1da177e4 926 */
348f8b6c 927
90572890 928/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 929#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
930#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
931#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 932#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 933#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 934
348f8b6c 935/*
25985edc 936 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
937 * sections we define the shift as 0; that plus a 0 mask ensures
938 * the compiler will optimise away reference to them.
939 */
d41dee36
AW
940#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
941#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
942#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 943#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 944#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 945
bce54bbf
WD
946/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
947#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 948#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
949#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
950 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 951#else
89689ae7 952#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
953#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
954 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
955#endif
956
bd8029b6 957#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 958
d41dee36
AW
959#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
960#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
961#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 962#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 963#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 964#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 965
33dd4e0e 966static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 967{
348f8b6c 968 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 969}
1da177e4 970
260ae3f7
DW
971#ifdef CONFIG_ZONE_DEVICE
972static inline bool is_zone_device_page(const struct page *page)
973{
974 return page_zonenum(page) == ZONE_DEVICE;
975}
966cf44f
AD
976extern void memmap_init_zone_device(struct zone *, unsigned long,
977 unsigned long, struct dev_pagemap *);
260ae3f7
DW
978#else
979static inline bool is_zone_device_page(const struct page *page)
980{
981 return false;
982}
7b2d55d2 983#endif
5042db43 984
e7638488 985#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 986void free_devmap_managed_page(struct page *page);
e7638488 987DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
988
989static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
990{
991 if (!static_branch_unlikely(&devmap_managed_key))
992 return false;
993 if (!is_zone_device_page(page))
994 return false;
995 switch (page->pgmap->type) {
996 case MEMORY_DEVICE_PRIVATE:
e7638488 997 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
998 return true;
999 default:
1000 break;
1001 }
1002 return false;
1003}
1004
07d80269
JH
1005void put_devmap_managed_page(struct page *page);
1006
e7638488 1007#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1008static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1009{
1010 return false;
1011}
07d80269
JH
1012
1013static inline void put_devmap_managed_page(struct page *page)
1014{
1015}
7588adf8 1016#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1017
6b368cd4
JG
1018static inline bool is_device_private_page(const struct page *page)
1019{
7588adf8
RM
1020 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1021 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1022 is_zone_device_page(page) &&
1023 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1024}
e7638488 1025
52916982
LG
1026static inline bool is_pci_p2pdma_page(const struct page *page)
1027{
7588adf8
RM
1028 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1029 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1030 is_zone_device_page(page) &&
1031 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1032}
7b2d55d2 1033
f958d7b5
LT
1034/* 127: arbitrary random number, small enough to assemble well */
1035#define page_ref_zero_or_close_to_overflow(page) \
1036 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1037
3565fce3
DW
1038static inline void get_page(struct page *page)
1039{
1040 page = compound_head(page);
1041 /*
1042 * Getting a normal page or the head of a compound page
0139aa7b 1043 * requires to already have an elevated page->_refcount.
3565fce3 1044 */
f958d7b5 1045 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1046 page_ref_inc(page);
3565fce3
DW
1047}
1048
3faa52c0
JH
1049bool __must_check try_grab_page(struct page *page, unsigned int flags);
1050
88b1a17d
LT
1051static inline __must_check bool try_get_page(struct page *page)
1052{
1053 page = compound_head(page);
1054 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1055 return false;
fe896d18 1056 page_ref_inc(page);
88b1a17d 1057 return true;
3565fce3
DW
1058}
1059
1060static inline void put_page(struct page *page)
1061{
1062 page = compound_head(page);
1063
7b2d55d2 1064 /*
e7638488
DW
1065 * For devmap managed pages we need to catch refcount transition from
1066 * 2 to 1, when refcount reach one it means the page is free and we
1067 * need to inform the device driver through callback. See
7b2d55d2
JG
1068 * include/linux/memremap.h and HMM for details.
1069 */
07d80269
JH
1070 if (page_is_devmap_managed(page)) {
1071 put_devmap_managed_page(page);
7b2d55d2 1072 return;
07d80269 1073 }
7b2d55d2 1074
3565fce3
DW
1075 if (put_page_testzero(page))
1076 __put_page(page);
3565fce3
DW
1077}
1078
3faa52c0
JH
1079/*
1080 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1081 * the page's refcount so that two separate items are tracked: the original page
1082 * reference count, and also a new count of how many pin_user_pages() calls were
1083 * made against the page. ("gup-pinned" is another term for the latter).
1084 *
1085 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1086 * distinct from normal pages. As such, the unpin_user_page() call (and its
1087 * variants) must be used in order to release gup-pinned pages.
1088 *
1089 * Choice of value:
1090 *
1091 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1092 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1093 * simpler, due to the fact that adding an even power of two to the page
1094 * refcount has the effect of using only the upper N bits, for the code that
1095 * counts up using the bias value. This means that the lower bits are left for
1096 * the exclusive use of the original code that increments and decrements by one
1097 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1098 *
3faa52c0
JH
1099 * Of course, once the lower bits overflow into the upper bits (and this is
1100 * OK, because subtraction recovers the original values), then visual inspection
1101 * no longer suffices to directly view the separate counts. However, for normal
1102 * applications that don't have huge page reference counts, this won't be an
1103 * issue.
fc1d8e7c 1104 *
3faa52c0
JH
1105 * Locking: the lockless algorithm described in page_cache_get_speculative()
1106 * and page_cache_gup_pin_speculative() provides safe operation for
1107 * get_user_pages and page_mkclean and other calls that race to set up page
1108 * table entries.
fc1d8e7c 1109 */
3faa52c0 1110#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1111
3faa52c0 1112void unpin_user_page(struct page *page);
f1f6a7dd
JH
1113void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1114 bool make_dirty);
f1f6a7dd 1115void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1116
3faa52c0
JH
1117/**
1118 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1119 *
1120 * This function checks if a page has been pinned via a call to
1121 * pin_user_pages*().
1122 *
1123 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1124 * because it means "definitely not pinned for DMA", but true means "probably
1125 * pinned for DMA, but possibly a false positive due to having at least
1126 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1127 *
1128 * False positives are OK, because: a) it's unlikely for a page to get that many
1129 * refcounts, and b) all the callers of this routine are expected to be able to
1130 * deal gracefully with a false positive.
1131 *
47e29d32
JH
1132 * For huge pages, the result will be exactly correct. That's because we have
1133 * more tracking data available: the 3rd struct page in the compound page is
1134 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1135 * scheme).
1136 *
3faa52c0
JH
1137 * For more information, please see Documentation/vm/pin_user_pages.rst.
1138 *
1139 * @page: pointer to page to be queried.
1140 * @Return: True, if it is likely that the page has been "dma-pinned".
1141 * False, if the page is definitely not dma-pinned.
1142 */
1143static inline bool page_maybe_dma_pinned(struct page *page)
1144{
47e29d32
JH
1145 if (hpage_pincount_available(page))
1146 return compound_pincount(page) > 0;
1147
3faa52c0
JH
1148 /*
1149 * page_ref_count() is signed. If that refcount overflows, then
1150 * page_ref_count() returns a negative value, and callers will avoid
1151 * further incrementing the refcount.
1152 *
1153 * Here, for that overflow case, use the signed bit to count a little
1154 * bit higher via unsigned math, and thus still get an accurate result.
1155 */
1156 return ((unsigned int)page_ref_count(compound_head(page))) >=
1157 GUP_PIN_COUNTING_BIAS;
1158}
1159
9127ab4f
CS
1160#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1161#define SECTION_IN_PAGE_FLAGS
1162#endif
1163
89689ae7 1164/*
7a8010cd
VB
1165 * The identification function is mainly used by the buddy allocator for
1166 * determining if two pages could be buddies. We are not really identifying
1167 * the zone since we could be using the section number id if we do not have
1168 * node id available in page flags.
1169 * We only guarantee that it will return the same value for two combinable
1170 * pages in a zone.
89689ae7 1171 */
cb2b95e1
AW
1172static inline int page_zone_id(struct page *page)
1173{
89689ae7 1174 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1175}
1176
89689ae7 1177#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1178extern int page_to_nid(const struct page *page);
89689ae7 1179#else
33dd4e0e 1180static inline int page_to_nid(const struct page *page)
d41dee36 1181{
f165b378
PT
1182 struct page *p = (struct page *)page;
1183
1184 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1185}
89689ae7
CL
1186#endif
1187
57e0a030 1188#ifdef CONFIG_NUMA_BALANCING
90572890 1189static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1190{
90572890 1191 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1192}
1193
90572890 1194static inline int cpupid_to_pid(int cpupid)
57e0a030 1195{
90572890 1196 return cpupid & LAST__PID_MASK;
57e0a030 1197}
b795854b 1198
90572890 1199static inline int cpupid_to_cpu(int cpupid)
b795854b 1200{
90572890 1201 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1202}
1203
90572890 1204static inline int cpupid_to_nid(int cpupid)
b795854b 1205{
90572890 1206 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1207}
1208
90572890 1209static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1210{
90572890 1211 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1212}
1213
90572890 1214static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1215{
90572890 1216 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1217}
1218
8c8a743c
PZ
1219static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1220{
1221 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1222}
1223
1224#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1225#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1226static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1227{
1ae71d03 1228 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1229}
90572890
PZ
1230
1231static inline int page_cpupid_last(struct page *page)
1232{
1233 return page->_last_cpupid;
1234}
1235static inline void page_cpupid_reset_last(struct page *page)
b795854b 1236{
1ae71d03 1237 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1238}
1239#else
90572890 1240static inline int page_cpupid_last(struct page *page)
75980e97 1241{
90572890 1242 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1243}
1244
90572890 1245extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1246
90572890 1247static inline void page_cpupid_reset_last(struct page *page)
75980e97 1248{
09940a4f 1249 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1250}
90572890
PZ
1251#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1252#else /* !CONFIG_NUMA_BALANCING */
1253static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1254{
90572890 1255 return page_to_nid(page); /* XXX */
57e0a030
MG
1256}
1257
90572890 1258static inline int page_cpupid_last(struct page *page)
57e0a030 1259{
90572890 1260 return page_to_nid(page); /* XXX */
57e0a030
MG
1261}
1262
90572890 1263static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1264{
1265 return -1;
1266}
1267
90572890 1268static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1269{
1270 return -1;
1271}
1272
90572890 1273static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1274{
1275 return -1;
1276}
1277
90572890
PZ
1278static inline int cpu_pid_to_cpupid(int nid, int pid)
1279{
1280 return -1;
1281}
1282
1283static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1284{
1285 return 1;
1286}
1287
90572890 1288static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1289{
1290}
8c8a743c
PZ
1291
1292static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1293{
1294 return false;
1295}
90572890 1296#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1297
2813b9c0
AK
1298#ifdef CONFIG_KASAN_SW_TAGS
1299static inline u8 page_kasan_tag(const struct page *page)
1300{
1301 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1302}
1303
1304static inline void page_kasan_tag_set(struct page *page, u8 tag)
1305{
1306 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1307 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1308}
1309
1310static inline void page_kasan_tag_reset(struct page *page)
1311{
1312 page_kasan_tag_set(page, 0xff);
1313}
1314#else
1315static inline u8 page_kasan_tag(const struct page *page)
1316{
1317 return 0xff;
1318}
1319
1320static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1321static inline void page_kasan_tag_reset(struct page *page) { }
1322#endif
1323
33dd4e0e 1324static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1325{
1326 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1327}
1328
75ef7184
MG
1329static inline pg_data_t *page_pgdat(const struct page *page)
1330{
1331 return NODE_DATA(page_to_nid(page));
1332}
1333
9127ab4f 1334#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1335static inline void set_page_section(struct page *page, unsigned long section)
1336{
1337 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1338 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1339}
1340
aa462abe 1341static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1342{
1343 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1344}
308c05e3 1345#endif
d41dee36 1346
2f1b6248 1347static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1348{
1349 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1350 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1351}
2f1b6248 1352
348f8b6c
DH
1353static inline void set_page_node(struct page *page, unsigned long node)
1354{
1355 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1356 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1357}
89689ae7 1358
2f1b6248 1359static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1360 unsigned long node, unsigned long pfn)
1da177e4 1361{
348f8b6c
DH
1362 set_page_zone(page, zone);
1363 set_page_node(page, node);
9127ab4f 1364#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1365 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1366#endif
1da177e4
LT
1367}
1368
0610c25d
GT
1369#ifdef CONFIG_MEMCG
1370static inline struct mem_cgroup *page_memcg(struct page *page)
1371{
1372 return page->mem_cgroup;
1373}
55779ec7
JW
1374static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1375{
1376 WARN_ON_ONCE(!rcu_read_lock_held());
1377 return READ_ONCE(page->mem_cgroup);
1378}
0610c25d
GT
1379#else
1380static inline struct mem_cgroup *page_memcg(struct page *page)
1381{
1382 return NULL;
1383}
55779ec7
JW
1384static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1385{
1386 WARN_ON_ONCE(!rcu_read_lock_held());
1387 return NULL;
1388}
0610c25d
GT
1389#endif
1390
f6ac2354
CL
1391/*
1392 * Some inline functions in vmstat.h depend on page_zone()
1393 */
1394#include <linux/vmstat.h>
1395
33dd4e0e 1396static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1397{
1dff8083 1398 return page_to_virt(page);
1da177e4
LT
1399}
1400
1401#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1402#define HASHED_PAGE_VIRTUAL
1403#endif
1404
1405#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1406static inline void *page_address(const struct page *page)
1407{
1408 return page->virtual;
1409}
1410static inline void set_page_address(struct page *page, void *address)
1411{
1412 page->virtual = address;
1413}
1da177e4
LT
1414#define page_address_init() do { } while(0)
1415#endif
1416
1417#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1418void *page_address(const struct page *page);
1da177e4
LT
1419void set_page_address(struct page *page, void *virtual);
1420void page_address_init(void);
1421#endif
1422
1423#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1424#define page_address(page) lowmem_page_address(page)
1425#define set_page_address(page, address) do { } while(0)
1426#define page_address_init() do { } while(0)
1427#endif
1428
e39155ea
KS
1429extern void *page_rmapping(struct page *page);
1430extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1431extern struct address_space *page_mapping(struct page *page);
1da177e4 1432
f981c595
MG
1433extern struct address_space *__page_file_mapping(struct page *);
1434
1435static inline
1436struct address_space *page_file_mapping(struct page *page)
1437{
1438 if (unlikely(PageSwapCache(page)))
1439 return __page_file_mapping(page);
1440
1441 return page->mapping;
1442}
1443
f6ab1f7f
HY
1444extern pgoff_t __page_file_index(struct page *page);
1445
1da177e4
LT
1446/*
1447 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1448 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1449 */
1450static inline pgoff_t page_index(struct page *page)
1451{
1452 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1453 return __page_file_index(page);
1da177e4
LT
1454 return page->index;
1455}
1456
1aa8aea5 1457bool page_mapped(struct page *page);
bda807d4 1458struct address_space *page_mapping(struct page *page);
cb9f753a 1459struct address_space *page_mapping_file(struct page *page);
1da177e4 1460
2f064f34
MH
1461/*
1462 * Return true only if the page has been allocated with
1463 * ALLOC_NO_WATERMARKS and the low watermark was not
1464 * met implying that the system is under some pressure.
1465 */
1466static inline bool page_is_pfmemalloc(struct page *page)
1467{
1468 /*
1469 * Page index cannot be this large so this must be
1470 * a pfmemalloc page.
1471 */
1472 return page->index == -1UL;
1473}
1474
1475/*
1476 * Only to be called by the page allocator on a freshly allocated
1477 * page.
1478 */
1479static inline void set_page_pfmemalloc(struct page *page)
1480{
1481 page->index = -1UL;
1482}
1483
1484static inline void clear_page_pfmemalloc(struct page *page)
1485{
1486 page->index = 0;
1487}
1488
1c0fe6e3
NP
1489/*
1490 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1491 */
1492extern void pagefault_out_of_memory(void);
1493
1da177e4
LT
1494#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1495
ddd588b5 1496/*
7bf02ea2 1497 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1498 * various contexts.
1499 */
4b59e6c4 1500#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1501
9af744d7 1502extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1503
710ec38b 1504#ifdef CONFIG_MMU
7f43add4 1505extern bool can_do_mlock(void);
710ec38b
AB
1506#else
1507static inline bool can_do_mlock(void) { return false; }
1508#endif
1da177e4
LT
1509extern int user_shm_lock(size_t, struct user_struct *);
1510extern void user_shm_unlock(size_t, struct user_struct *);
1511
1512/*
1513 * Parameter block passed down to zap_pte_range in exceptional cases.
1514 */
1515struct zap_details {
1da177e4
LT
1516 struct address_space *check_mapping; /* Check page->mapping if set */
1517 pgoff_t first_index; /* Lowest page->index to unmap */
1518 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1519};
1520
25b2995a
CH
1521struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1522 pte_t pte);
28093f9f
GS
1523struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1524 pmd_t pmd);
7e675137 1525
27d036e3
LR
1526void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1527 unsigned long size);
14f5ff5d 1528void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1529 unsigned long size);
4f74d2c8
LT
1530void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1531 unsigned long start, unsigned long end);
e6473092 1532
ac46d4f3
JG
1533struct mmu_notifier_range;
1534
42b77728 1535void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1536 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1537int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1538 struct vm_area_struct *vma);
09796395 1539int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1540 struct mmu_notifier_range *range,
1541 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1542int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1543 unsigned long *pfn);
d87fe660 1544int follow_phys(struct vm_area_struct *vma, unsigned long address,
1545 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1546int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1547 void *buf, int len, int write);
1da177e4 1548
7caef267 1549extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1550extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1551void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1552void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1553int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1554int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1555int invalidate_inode_page(struct page *page);
1556
7ee1dd3f 1557#ifdef CONFIG_MMU
2b740303
SJ
1558extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1559 unsigned long address, unsigned int flags);
5c723ba5 1560extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1561 unsigned long address, unsigned int fault_flags,
1562 bool *unlocked);
977fbdcd
MW
1563void unmap_mapping_pages(struct address_space *mapping,
1564 pgoff_t start, pgoff_t nr, bool even_cows);
1565void unmap_mapping_range(struct address_space *mapping,
1566 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1567#else
2b740303 1568static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
dcddffd4 1569 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1570{
1571 /* should never happen if there's no MMU */
1572 BUG();
1573 return VM_FAULT_SIGBUS;
1574}
5c723ba5
PZ
1575static inline int fixup_user_fault(struct task_struct *tsk,
1576 struct mm_struct *mm, unsigned long address,
4a9e1cda 1577 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1578{
1579 /* should never happen if there's no MMU */
1580 BUG();
1581 return -EFAULT;
1582}
977fbdcd
MW
1583static inline void unmap_mapping_pages(struct address_space *mapping,
1584 pgoff_t start, pgoff_t nr, bool even_cows) { }
1585static inline void unmap_mapping_range(struct address_space *mapping,
1586 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1587#endif
f33ea7f4 1588
977fbdcd
MW
1589static inline void unmap_shared_mapping_range(struct address_space *mapping,
1590 loff_t const holebegin, loff_t const holelen)
1591{
1592 unmap_mapping_range(mapping, holebegin, holelen, 0);
1593}
1594
1595extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1596 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1597extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1598 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1599extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1600 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1601
1e987790
DH
1602long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1603 unsigned long start, unsigned long nr_pages,
9beae1ea 1604 unsigned int gup_flags, struct page **pages,
5b56d49f 1605 struct vm_area_struct **vmas, int *locked);
eddb1c22
JH
1606long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1607 unsigned long start, unsigned long nr_pages,
1608 unsigned int gup_flags, struct page **pages,
1609 struct vm_area_struct **vmas, int *locked);
c12d2da5 1610long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1611 unsigned int gup_flags, struct page **pages,
cde70140 1612 struct vm_area_struct **vmas);
eddb1c22
JH
1613long pin_user_pages(unsigned long start, unsigned long nr_pages,
1614 unsigned int gup_flags, struct page **pages,
1615 struct vm_area_struct **vmas);
c12d2da5 1616long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1617 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1618long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1619 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1620
73b0140b
IW
1621int get_user_pages_fast(unsigned long start, int nr_pages,
1622 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1623int pin_user_pages_fast(unsigned long start, int nr_pages,
1624 unsigned int gup_flags, struct page **pages);
8025e5dd 1625
79eb597c
DJ
1626int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1627int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1628 struct task_struct *task, bool bypass_rlim);
1629
8025e5dd
JK
1630/* Container for pinned pfns / pages */
1631struct frame_vector {
1632 unsigned int nr_allocated; /* Number of frames we have space for */
1633 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1634 bool got_ref; /* Did we pin pages by getting page ref? */
1635 bool is_pfns; /* Does array contain pages or pfns? */
1636 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1637 * pfns_vector_pages() or pfns_vector_pfns()
1638 * for access */
1639};
1640
1641struct frame_vector *frame_vector_create(unsigned int nr_frames);
1642void frame_vector_destroy(struct frame_vector *vec);
1643int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1644 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1645void put_vaddr_frames(struct frame_vector *vec);
1646int frame_vector_to_pages(struct frame_vector *vec);
1647void frame_vector_to_pfns(struct frame_vector *vec);
1648
1649static inline unsigned int frame_vector_count(struct frame_vector *vec)
1650{
1651 return vec->nr_frames;
1652}
1653
1654static inline struct page **frame_vector_pages(struct frame_vector *vec)
1655{
1656 if (vec->is_pfns) {
1657 int err = frame_vector_to_pages(vec);
1658
1659 if (err)
1660 return ERR_PTR(err);
1661 }
1662 return (struct page **)(vec->ptrs);
1663}
1664
1665static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1666{
1667 if (!vec->is_pfns)
1668 frame_vector_to_pfns(vec);
1669 return (unsigned long *)(vec->ptrs);
1670}
1671
18022c5d
MG
1672struct kvec;
1673int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1674 struct page **pages);
1675int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1676struct page *get_dump_page(unsigned long addr);
1da177e4 1677
cf9a2ae8 1678extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1679extern void do_invalidatepage(struct page *page, unsigned int offset,
1680 unsigned int length);
cf9a2ae8 1681
f82b3764 1682void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1683int __set_page_dirty_nobuffers(struct page *page);
76719325 1684int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1685int redirty_page_for_writepage(struct writeback_control *wbc,
1686 struct page *page);
62cccb8c 1687void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1688void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1689 struct bdi_writeback *wb);
b3c97528 1690int set_page_dirty(struct page *page);
1da177e4 1691int set_page_dirty_lock(struct page *page);
736304f3
JK
1692void __cancel_dirty_page(struct page *page);
1693static inline void cancel_dirty_page(struct page *page)
1694{
1695 /* Avoid atomic ops, locking, etc. when not actually needed. */
1696 if (PageDirty(page))
1697 __cancel_dirty_page(page);
1698}
1da177e4 1699int clear_page_dirty_for_io(struct page *page);
b9ea2515 1700
a9090253 1701int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1702
b6a2fea3
OW
1703extern unsigned long move_page_tables(struct vm_area_struct *vma,
1704 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1705 unsigned long new_addr, unsigned long len,
1706 bool need_rmap_locks);
7da4d641
PZ
1707extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1708 unsigned long end, pgprot_t newprot,
4b10e7d5 1709 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1710extern int mprotect_fixup(struct vm_area_struct *vma,
1711 struct vm_area_struct **pprev, unsigned long start,
1712 unsigned long end, unsigned long newflags);
1da177e4 1713
465a454f
PZ
1714/*
1715 * doesn't attempt to fault and will return short.
1716 */
1717int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1718 struct page **pages);
d559db08
KH
1719/*
1720 * per-process(per-mm_struct) statistics.
1721 */
d559db08
KH
1722static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1723{
69c97823
KK
1724 long val = atomic_long_read(&mm->rss_stat.count[member]);
1725
1726#ifdef SPLIT_RSS_COUNTING
1727 /*
1728 * counter is updated in asynchronous manner and may go to minus.
1729 * But it's never be expected number for users.
1730 */
1731 if (val < 0)
1732 val = 0;
172703b0 1733#endif
69c97823
KK
1734 return (unsigned long)val;
1735}
d559db08 1736
e4dcad20 1737void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1738
d559db08
KH
1739static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1740{
b3d1411b
JFG
1741 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1742
e4dcad20 1743 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1744}
1745
1746static inline void inc_mm_counter(struct mm_struct *mm, int member)
1747{
b3d1411b
JFG
1748 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1749
e4dcad20 1750 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1751}
1752
1753static inline void dec_mm_counter(struct mm_struct *mm, int member)
1754{
b3d1411b
JFG
1755 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1756
e4dcad20 1757 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1758}
1759
eca56ff9
JM
1760/* Optimized variant when page is already known not to be PageAnon */
1761static inline int mm_counter_file(struct page *page)
1762{
1763 if (PageSwapBacked(page))
1764 return MM_SHMEMPAGES;
1765 return MM_FILEPAGES;
1766}
1767
1768static inline int mm_counter(struct page *page)
1769{
1770 if (PageAnon(page))
1771 return MM_ANONPAGES;
1772 return mm_counter_file(page);
1773}
1774
d559db08
KH
1775static inline unsigned long get_mm_rss(struct mm_struct *mm)
1776{
1777 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1778 get_mm_counter(mm, MM_ANONPAGES) +
1779 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1780}
1781
1782static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1783{
1784 return max(mm->hiwater_rss, get_mm_rss(mm));
1785}
1786
1787static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1788{
1789 return max(mm->hiwater_vm, mm->total_vm);
1790}
1791
1792static inline void update_hiwater_rss(struct mm_struct *mm)
1793{
1794 unsigned long _rss = get_mm_rss(mm);
1795
1796 if ((mm)->hiwater_rss < _rss)
1797 (mm)->hiwater_rss = _rss;
1798}
1799
1800static inline void update_hiwater_vm(struct mm_struct *mm)
1801{
1802 if (mm->hiwater_vm < mm->total_vm)
1803 mm->hiwater_vm = mm->total_vm;
1804}
1805
695f0559
PC
1806static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1807{
1808 mm->hiwater_rss = get_mm_rss(mm);
1809}
1810
d559db08
KH
1811static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1812 struct mm_struct *mm)
1813{
1814 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1815
1816 if (*maxrss < hiwater_rss)
1817 *maxrss = hiwater_rss;
1818}
1819
53bddb4e 1820#if defined(SPLIT_RSS_COUNTING)
05af2e10 1821void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1822#else
05af2e10 1823static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1824{
1825}
1826#endif
465a454f 1827
17596731 1828#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
1829static inline int pte_devmap(pte_t pte)
1830{
1831 return 0;
1832}
1833#endif
1834
6d2329f8 1835int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1836
25ca1d6c
NK
1837extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1838 spinlock_t **ptl);
1839static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1840 spinlock_t **ptl)
1841{
1842 pte_t *ptep;
1843 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1844 return ptep;
1845}
c9cfcddf 1846
c2febafc
KS
1847#ifdef __PAGETABLE_P4D_FOLDED
1848static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1849 unsigned long address)
1850{
1851 return 0;
1852}
1853#else
1854int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1855#endif
1856
b4e98d9a 1857#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1858static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1859 unsigned long address)
1860{
1861 return 0;
1862}
b4e98d9a
KS
1863static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1864static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1865
5f22df00 1866#else
c2febafc 1867int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1868
b4e98d9a
KS
1869static inline void mm_inc_nr_puds(struct mm_struct *mm)
1870{
6d212db1
MS
1871 if (mm_pud_folded(mm))
1872 return;
af5b0f6a 1873 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1874}
1875
1876static inline void mm_dec_nr_puds(struct mm_struct *mm)
1877{
6d212db1
MS
1878 if (mm_pud_folded(mm))
1879 return;
af5b0f6a 1880 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1881}
5f22df00
NP
1882#endif
1883
2d2f5119 1884#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1885static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1886 unsigned long address)
1887{
1888 return 0;
1889}
dc6c9a35 1890
dc6c9a35
KS
1891static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1892static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1893
5f22df00 1894#else
1bb3630e 1895int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1896
dc6c9a35
KS
1897static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1898{
6d212db1
MS
1899 if (mm_pmd_folded(mm))
1900 return;
af5b0f6a 1901 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1902}
1903
1904static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1905{
6d212db1
MS
1906 if (mm_pmd_folded(mm))
1907 return;
af5b0f6a 1908 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1909}
5f22df00
NP
1910#endif
1911
c4812909 1912#ifdef CONFIG_MMU
af5b0f6a 1913static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1914{
af5b0f6a 1915 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1916}
1917
af5b0f6a 1918static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1919{
af5b0f6a 1920 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1921}
1922
1923static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1924{
af5b0f6a 1925 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1926}
1927
1928static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1929{
af5b0f6a 1930 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1931}
1932#else
c4812909 1933
af5b0f6a
KS
1934static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1935static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1936{
1937 return 0;
1938}
1939
1940static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1941static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1942#endif
1943
4cf58924
JFG
1944int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1945int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 1946
f949286c
MR
1947#if defined(CONFIG_MMU)
1948
1da177e4 1949/*
f949286c
MR
1950 * The following ifdef needed to get the 5level-fixup.h header to work.
1951 * Remove it when 5level-fixup.h has been removed.
1da177e4 1952 */
505a60e2 1953#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1954static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1955 unsigned long address)
1956{
1957 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1958 NULL : p4d_offset(pgd, address);
1959}
1960
1961static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1962 unsigned long address)
1da177e4 1963{
c2febafc
KS
1964 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1965 NULL : pud_offset(p4d, address);
1da177e4 1966}
505a60e2 1967#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1968
1969static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1970{
1bb3630e
HD
1971 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1972 NULL: pmd_offset(pud, address);
1da177e4 1973}
f949286c 1974#endif /* CONFIG_MMU */
1bb3630e 1975
57c1ffce 1976#if USE_SPLIT_PTE_PTLOCKS
597d795a 1977#if ALLOC_SPLIT_PTLOCKS
b35f1819 1978void __init ptlock_cache_init(void);
539edb58
PZ
1979extern bool ptlock_alloc(struct page *page);
1980extern void ptlock_free(struct page *page);
1981
1982static inline spinlock_t *ptlock_ptr(struct page *page)
1983{
1984 return page->ptl;
1985}
597d795a 1986#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1987static inline void ptlock_cache_init(void)
1988{
1989}
1990
49076ec2
KS
1991static inline bool ptlock_alloc(struct page *page)
1992{
49076ec2
KS
1993 return true;
1994}
539edb58 1995
49076ec2
KS
1996static inline void ptlock_free(struct page *page)
1997{
49076ec2
KS
1998}
1999
2000static inline spinlock_t *ptlock_ptr(struct page *page)
2001{
539edb58 2002 return &page->ptl;
49076ec2 2003}
597d795a 2004#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2005
2006static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2007{
2008 return ptlock_ptr(pmd_page(*pmd));
2009}
2010
2011static inline bool ptlock_init(struct page *page)
2012{
2013 /*
2014 * prep_new_page() initialize page->private (and therefore page->ptl)
2015 * with 0. Make sure nobody took it in use in between.
2016 *
2017 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2018 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2019 */
309381fe 2020 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2021 if (!ptlock_alloc(page))
2022 return false;
2023 spin_lock_init(ptlock_ptr(page));
2024 return true;
2025}
2026
57c1ffce 2027#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2028/*
2029 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2030 */
49076ec2
KS
2031static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2032{
2033 return &mm->page_table_lock;
2034}
b35f1819 2035static inline void ptlock_cache_init(void) {}
49076ec2 2036static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2037static inline void ptlock_free(struct page *page) {}
57c1ffce 2038#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2039
b35f1819
KS
2040static inline void pgtable_init(void)
2041{
2042 ptlock_cache_init();
2043 pgtable_cache_init();
2044}
2045
b4ed71f5 2046static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2047{
706874e9
VD
2048 if (!ptlock_init(page))
2049 return false;
1d40a5ea 2050 __SetPageTable(page);
2f569afd 2051 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 2052 return true;
2f569afd
MS
2053}
2054
b4ed71f5 2055static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2056{
9e247bab 2057 ptlock_free(page);
1d40a5ea 2058 __ClearPageTable(page);
2f569afd
MS
2059 dec_zone_page_state(page, NR_PAGETABLE);
2060}
2061
c74df32c
HD
2062#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2063({ \
4c21e2f2 2064 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2065 pte_t *__pte = pte_offset_map(pmd, address); \
2066 *(ptlp) = __ptl; \
2067 spin_lock(__ptl); \
2068 __pte; \
2069})
2070
2071#define pte_unmap_unlock(pte, ptl) do { \
2072 spin_unlock(ptl); \
2073 pte_unmap(pte); \
2074} while (0)
2075
4cf58924 2076#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2077
2078#define pte_alloc_map(mm, pmd, address) \
4cf58924 2079 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2080
c74df32c 2081#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2082 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2083 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2084
1bb3630e 2085#define pte_alloc_kernel(pmd, address) \
4cf58924 2086 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2087 NULL: pte_offset_kernel(pmd, address))
1da177e4 2088
e009bb30
KS
2089#if USE_SPLIT_PMD_PTLOCKS
2090
634391ac
MS
2091static struct page *pmd_to_page(pmd_t *pmd)
2092{
2093 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2094 return virt_to_page((void *)((unsigned long) pmd & mask));
2095}
2096
e009bb30
KS
2097static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2098{
634391ac 2099 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2100}
2101
2102static inline bool pgtable_pmd_page_ctor(struct page *page)
2103{
e009bb30
KS
2104#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2105 page->pmd_huge_pte = NULL;
2106#endif
49076ec2 2107 return ptlock_init(page);
e009bb30
KS
2108}
2109
2110static inline void pgtable_pmd_page_dtor(struct page *page)
2111{
2112#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2113 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2114#endif
49076ec2 2115 ptlock_free(page);
e009bb30
KS
2116}
2117
634391ac 2118#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2119
2120#else
2121
9a86cb7b
KS
2122static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2123{
2124 return &mm->page_table_lock;
2125}
2126
e009bb30
KS
2127static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2128static inline void pgtable_pmd_page_dtor(struct page *page) {}
2129
c389a250 2130#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2131
e009bb30
KS
2132#endif
2133
9a86cb7b
KS
2134static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2135{
2136 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2137 spin_lock(ptl);
2138 return ptl;
2139}
2140
a00cc7d9
MW
2141/*
2142 * No scalability reason to split PUD locks yet, but follow the same pattern
2143 * as the PMD locks to make it easier if we decide to. The VM should not be
2144 * considered ready to switch to split PUD locks yet; there may be places
2145 * which need to be converted from page_table_lock.
2146 */
2147static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2148{
2149 return &mm->page_table_lock;
2150}
2151
2152static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2153{
2154 spinlock_t *ptl = pud_lockptr(mm, pud);
2155
2156 spin_lock(ptl);
2157 return ptl;
2158}
62906027 2159
a00cc7d9 2160extern void __init pagecache_init(void);
1da177e4 2161extern void free_area_init(unsigned long * zones_size);
03e85f9d 2162extern void __init free_area_init_node(int nid, unsigned long * zones_size,
9109fb7b 2163 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
2164extern void free_initmem(void);
2165
69afade7
JL
2166/*
2167 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2168 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2169 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2170 * Return pages freed into the buddy system.
2171 */
11199692 2172extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2173 int poison, const char *s);
c3d5f5f0 2174
cfa11e08
JL
2175#ifdef CONFIG_HIGHMEM
2176/*
2177 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2178 * and totalram_pages.
2179 */
2180extern void free_highmem_page(struct page *page);
2181#endif
69afade7 2182
c3d5f5f0 2183extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2184extern void mem_init_print_info(const char *str);
69afade7 2185
4b50bcc7 2186extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2187
69afade7
JL
2188/* Free the reserved page into the buddy system, so it gets managed. */
2189static inline void __free_reserved_page(struct page *page)
2190{
2191 ClearPageReserved(page);
2192 init_page_count(page);
2193 __free_page(page);
2194}
2195
2196static inline void free_reserved_page(struct page *page)
2197{
2198 __free_reserved_page(page);
2199 adjust_managed_page_count(page, 1);
2200}
2201
2202static inline void mark_page_reserved(struct page *page)
2203{
2204 SetPageReserved(page);
2205 adjust_managed_page_count(page, -1);
2206}
2207
2208/*
2209 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2210 * The freed pages will be poisoned with pattern "poison" if it's within
2211 * range [0, UCHAR_MAX].
2212 * Return pages freed into the buddy system.
69afade7
JL
2213 */
2214static inline unsigned long free_initmem_default(int poison)
2215{
2216 extern char __init_begin[], __init_end[];
2217
11199692 2218 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2219 poison, "unused kernel");
2220}
2221
7ee3d4e8
JL
2222static inline unsigned long get_num_physpages(void)
2223{
2224 int nid;
2225 unsigned long phys_pages = 0;
2226
2227 for_each_online_node(nid)
2228 phys_pages += node_present_pages(nid);
2229
2230 return phys_pages;
2231}
2232
0ee332c1 2233#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2234/*
0ee332c1 2235 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2236 * zones, allocate the backing mem_map and account for memory holes in a more
2237 * architecture independent manner. This is a substitute for creating the
2238 * zone_sizes[] and zholes_size[] arrays and passing them to
2239 * free_area_init_node()
2240 *
2241 * An architecture is expected to register range of page frames backed by
0ee332c1 2242 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2243 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2244 * usage, an architecture is expected to do something like
2245 *
2246 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2247 * max_highmem_pfn};
2248 * for_each_valid_physical_page_range()
0ee332c1 2249 * memblock_add_node(base, size, nid)
c713216d
MG
2250 * free_area_init_nodes(max_zone_pfns);
2251 *
0ee332c1
TH
2252 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2253 * registered physical page range. Similarly
2254 * sparse_memory_present_with_active_regions() calls memory_present() for
2255 * each range when SPARSEMEM is enabled.
c713216d
MG
2256 *
2257 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2258 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2259 */
2260extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2261unsigned long node_map_pfn_alignment(void);
32996250
YL
2262unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2263 unsigned long end_pfn);
c713216d
MG
2264extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2265 unsigned long end_pfn);
2266extern void get_pfn_range_for_nid(unsigned int nid,
2267 unsigned long *start_pfn, unsigned long *end_pfn);
2268extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2269extern void free_bootmem_with_active_regions(int nid,
2270 unsigned long max_low_pfn);
2271extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2272
0ee332c1 2273#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2274
0ee332c1 2275#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2276 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2277static inline int __early_pfn_to_nid(unsigned long pfn,
2278 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2279{
2280 return 0;
2281}
2282#else
2283/* please see mm/page_alloc.c */
2284extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2285/* there is a per-arch backend function. */
8a942fde
MG
2286extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2287 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2288#endif
2289
0e0b864e 2290extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2291extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2292 enum memmap_context, struct vmem_altmap *);
bc75d33f 2293extern void setup_per_zone_wmarks(void);
1b79acc9 2294extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2295extern void mem_init(void);
8feae131 2296extern void __init mmap_init(void);
9af744d7 2297extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2298extern long si_mem_available(void);
1da177e4
LT
2299extern void si_meminfo(struct sysinfo * val);
2300extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2301#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2302extern unsigned long arch_reserved_kernel_pages(void);
2303#endif
1da177e4 2304
a8e99259
MH
2305extern __printf(3, 4)
2306void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2307
e7c8d5c9 2308extern void setup_per_cpu_pageset(void);
e7c8d5c9 2309
75f7ad8e
PS
2310/* page_alloc.c */
2311extern int min_free_kbytes;
1c30844d 2312extern int watermark_boost_factor;
795ae7a0 2313extern int watermark_scale_factor;
75f7ad8e 2314
8feae131 2315/* nommu.c */
33e5d769 2316extern atomic_long_t mmap_pages_allocated;
7e660872 2317extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2318
6b2dbba8 2319/* interval_tree.c */
6b2dbba8 2320void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2321 struct rb_root_cached *root);
9826a516
ML
2322void vma_interval_tree_insert_after(struct vm_area_struct *node,
2323 struct vm_area_struct *prev,
f808c13f 2324 struct rb_root_cached *root);
6b2dbba8 2325void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2326 struct rb_root_cached *root);
2327struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2328 unsigned long start, unsigned long last);
2329struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2330 unsigned long start, unsigned long last);
2331
2332#define vma_interval_tree_foreach(vma, root, start, last) \
2333 for (vma = vma_interval_tree_iter_first(root, start, last); \
2334 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2335
bf181b9f 2336void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2337 struct rb_root_cached *root);
bf181b9f 2338void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2339 struct rb_root_cached *root);
2340struct anon_vma_chain *
2341anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2342 unsigned long start, unsigned long last);
bf181b9f
ML
2343struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2344 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2345#ifdef CONFIG_DEBUG_VM_RB
2346void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2347#endif
bf181b9f
ML
2348
2349#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2350 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2351 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2352
1da177e4 2353/* mmap.c */
34b4e4aa 2354extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2355extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2356 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2357 struct vm_area_struct *expand);
2358static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2359 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2360{
2361 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2362}
1da177e4
LT
2363extern struct vm_area_struct *vma_merge(struct mm_struct *,
2364 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2365 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2366 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2367extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2368extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2369 unsigned long addr, int new_below);
2370extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2371 unsigned long addr, int new_below);
1da177e4
LT
2372extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2373extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2374 struct rb_node **, struct rb_node *);
a8fb5618 2375extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2376extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2377 unsigned long addr, unsigned long len, pgoff_t pgoff,
2378 bool *need_rmap_locks);
1da177e4 2379extern void exit_mmap(struct mm_struct *);
925d1c40 2380
9c599024
CG
2381static inline int check_data_rlimit(unsigned long rlim,
2382 unsigned long new,
2383 unsigned long start,
2384 unsigned long end_data,
2385 unsigned long start_data)
2386{
2387 if (rlim < RLIM_INFINITY) {
2388 if (((new - start) + (end_data - start_data)) > rlim)
2389 return -ENOSPC;
2390 }
2391
2392 return 0;
2393}
2394
7906d00c
AA
2395extern int mm_take_all_locks(struct mm_struct *mm);
2396extern void mm_drop_all_locks(struct mm_struct *mm);
2397
38646013
JS
2398extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2399extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2400extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2401
84638335
KK
2402extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2403extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2404
2eefd878
DS
2405extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2406 const struct vm_special_mapping *sm);
3935ed6a
SS
2407extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2408 unsigned long addr, unsigned long len,
a62c34bd
AL
2409 unsigned long flags,
2410 const struct vm_special_mapping *spec);
2411/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2412extern int install_special_mapping(struct mm_struct *mm,
2413 unsigned long addr, unsigned long len,
2414 unsigned long flags, struct page **pages);
1da177e4 2415
649775be
AG
2416unsigned long randomize_stack_top(unsigned long stack_top);
2417
1da177e4
LT
2418extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2419
0165ab44 2420extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2421 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2422 struct list_head *uf);
1fcfd8db 2423extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2424 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2425 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2426 struct list_head *uf);
85a06835
YS
2427extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2428 struct list_head *uf, bool downgrade);
897ab3e0
MR
2429extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2430 struct list_head *uf);
db08ca25 2431extern int do_madvise(unsigned long start, size_t len_in, int behavior);
1da177e4 2432
1fcfd8db
ON
2433static inline unsigned long
2434do_mmap_pgoff(struct file *file, unsigned long addr,
2435 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2436 unsigned long pgoff, unsigned long *populate,
2437 struct list_head *uf)
1fcfd8db 2438{
897ab3e0 2439 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2440}
2441
bebeb3d6
ML
2442#ifdef CONFIG_MMU
2443extern int __mm_populate(unsigned long addr, unsigned long len,
2444 int ignore_errors);
2445static inline void mm_populate(unsigned long addr, unsigned long len)
2446{
2447 /* Ignore errors */
2448 (void) __mm_populate(addr, len, 1);
2449}
2450#else
2451static inline void mm_populate(unsigned long addr, unsigned long len) {}
2452#endif
2453
e4eb1ff6 2454/* These take the mm semaphore themselves */
5d22fc25 2455extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2456extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2457extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2458extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2459 unsigned long, unsigned long,
2460 unsigned long, unsigned long);
1da177e4 2461
db4fbfb9
ML
2462struct vm_unmapped_area_info {
2463#define VM_UNMAPPED_AREA_TOPDOWN 1
2464 unsigned long flags;
2465 unsigned long length;
2466 unsigned long low_limit;
2467 unsigned long high_limit;
2468 unsigned long align_mask;
2469 unsigned long align_offset;
2470};
2471
2472extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2473extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2474
2475/*
2476 * Search for an unmapped address range.
2477 *
2478 * We are looking for a range that:
2479 * - does not intersect with any VMA;
2480 * - is contained within the [low_limit, high_limit) interval;
2481 * - is at least the desired size.
2482 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2483 */
2484static inline unsigned long
2485vm_unmapped_area(struct vm_unmapped_area_info *info)
2486{
cdd7875e 2487 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2488 return unmapped_area_topdown(info);
cdd7875e
BP
2489 else
2490 return unmapped_area(info);
db4fbfb9
ML
2491}
2492
85821aab 2493/* truncate.c */
1da177e4 2494extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2495extern void truncate_inode_pages_range(struct address_space *,
2496 loff_t lstart, loff_t lend);
91b0abe3 2497extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2498
2499/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2500extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2501extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2502 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2503extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2504
2505/* mm/page-writeback.c */
2b69c828 2506int __must_check write_one_page(struct page *page);
1cf6e7d8 2507void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2508
2509/* readahead.c */
b5420237 2510#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
1da177e4 2511
1da177e4 2512int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2513 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2514
2515void page_cache_sync_readahead(struct address_space *mapping,
2516 struct file_ra_state *ra,
2517 struct file *filp,
2518 pgoff_t offset,
2519 unsigned long size);
2520
2521void page_cache_async_readahead(struct address_space *mapping,
2522 struct file_ra_state *ra,
2523 struct file *filp,
2524 struct page *pg,
2525 pgoff_t offset,
2526 unsigned long size);
2527
1be7107f 2528extern unsigned long stack_guard_gap;
d05f3169 2529/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2530extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2531
2532/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2533extern int expand_downwards(struct vm_area_struct *vma,
2534 unsigned long address);
8ca3eb08 2535#if VM_GROWSUP
46dea3d0 2536extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2537#else
fee7e49d 2538 #define expand_upwards(vma, address) (0)
9ab88515 2539#endif
1da177e4
LT
2540
2541/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2542extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2543extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2544 struct vm_area_struct **pprev);
2545
2546/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2547 NULL if none. Assume start_addr < end_addr. */
2548static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2549{
2550 struct vm_area_struct * vma = find_vma(mm,start_addr);
2551
2552 if (vma && end_addr <= vma->vm_start)
2553 vma = NULL;
2554 return vma;
2555}
2556
1be7107f
HD
2557static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2558{
2559 unsigned long vm_start = vma->vm_start;
2560
2561 if (vma->vm_flags & VM_GROWSDOWN) {
2562 vm_start -= stack_guard_gap;
2563 if (vm_start > vma->vm_start)
2564 vm_start = 0;
2565 }
2566 return vm_start;
2567}
2568
2569static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2570{
2571 unsigned long vm_end = vma->vm_end;
2572
2573 if (vma->vm_flags & VM_GROWSUP) {
2574 vm_end += stack_guard_gap;
2575 if (vm_end < vma->vm_end)
2576 vm_end = -PAGE_SIZE;
2577 }
2578 return vm_end;
2579}
2580
1da177e4
LT
2581static inline unsigned long vma_pages(struct vm_area_struct *vma)
2582{
2583 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2584}
2585
640708a2
PE
2586/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2587static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2588 unsigned long vm_start, unsigned long vm_end)
2589{
2590 struct vm_area_struct *vma = find_vma(mm, vm_start);
2591
2592 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2593 vma = NULL;
2594
2595 return vma;
2596}
2597
017b1660
MK
2598static inline bool range_in_vma(struct vm_area_struct *vma,
2599 unsigned long start, unsigned long end)
2600{
2601 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2602}
2603
bad849b3 2604#ifdef CONFIG_MMU
804af2cf 2605pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2606void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2607#else
2608static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2609{
2610 return __pgprot(0);
2611}
64e45507
PF
2612static inline void vma_set_page_prot(struct vm_area_struct *vma)
2613{
2614 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2615}
bad849b3
DH
2616#endif
2617
5877231f 2618#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2619unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2620 unsigned long start, unsigned long end);
2621#endif
2622
deceb6cd 2623struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2624int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2625 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2626int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
a667d745
SJ
2627int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2628 unsigned long num);
2629int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2630 unsigned long num);
ae2b01f3 2631vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2632 unsigned long pfn);
f5e6d1d5
MW
2633vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2634 unsigned long pfn, pgprot_t pgprot);
5d747637 2635vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2636 pfn_t pfn);
574c5b3d
TH
2637vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2638 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2639vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2640 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2641int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2642
1c8f4220
SJ
2643static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2644 unsigned long addr, struct page *page)
2645{
2646 int err = vm_insert_page(vma, addr, page);
2647
2648 if (err == -ENOMEM)
2649 return VM_FAULT_OOM;
2650 if (err < 0 && err != -EBUSY)
2651 return VM_FAULT_SIGBUS;
2652
2653 return VM_FAULT_NOPAGE;
2654}
2655
d97baf94
SJ
2656static inline vm_fault_t vmf_error(int err)
2657{
2658 if (err == -ENOMEM)
2659 return VM_FAULT_OOM;
2660 return VM_FAULT_SIGBUS;
2661}
2662
df06b37f
KB
2663struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2664 unsigned int foll_flags);
240aadee 2665
deceb6cd
HD
2666#define FOLL_WRITE 0x01 /* check pte is writable */
2667#define FOLL_TOUCH 0x02 /* mark page accessed */
2668#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2669#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2670#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2671#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2672 * and return without waiting upon it */
84d33df2 2673#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2674#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2675#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2676#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2677#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2678#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2679#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2680#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2681#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2682#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2683#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2684#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2685#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
932f4a63
IW
2686
2687/*
eddb1c22
JH
2688 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2689 * other. Here is what they mean, and how to use them:
932f4a63
IW
2690 *
2691 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2692 * period _often_ under userspace control. This is in contrast to
2693 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2694 *
2695 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2696 * lifetime enforced by the filesystem and we need guarantees that longterm
2697 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2698 * the filesystem. Ideas for this coordination include revoking the longterm
2699 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2700 * added after the problem with filesystems was found FS DAX VMAs are
2701 * specifically failed. Filesystem pages are still subject to bugs and use of
2702 * FOLL_LONGTERM should be avoided on those pages.
2703 *
2704 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2705 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2706 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2707 * is due to an incompatibility with the FS DAX check and
eddb1c22 2708 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2709 *
eddb1c22
JH
2710 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2711 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2712 * FOLL_LONGTERM is specified.
eddb1c22
JH
2713 *
2714 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2715 * but an additional pin counting system) will be invoked. This is intended for
2716 * anything that gets a page reference and then touches page data (for example,
2717 * Direct IO). This lets the filesystem know that some non-file-system entity is
2718 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2719 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2720 * a call to unpin_user_page().
eddb1c22
JH
2721 *
2722 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2723 * and separate refcounting mechanisms, however, and that means that each has
2724 * its own acquire and release mechanisms:
2725 *
2726 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2727 *
f1f6a7dd 2728 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2729 *
2730 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2731 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2732 * calls applied to them, and that's perfectly OK. This is a constraint on the
2733 * callers, not on the pages.)
2734 *
2735 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2736 * directly by the caller. That's in order to help avoid mismatches when
2737 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2738 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22
JH
2739 *
2740 * Please see Documentation/vm/pin_user_pages.rst for more information.
932f4a63 2741 */
1da177e4 2742
2b740303 2743static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2744{
2745 if (vm_fault & VM_FAULT_OOM)
2746 return -ENOMEM;
2747 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2748 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2749 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2750 return -EFAULT;
2751 return 0;
2752}
2753
8b1e0f81 2754typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2755extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2756 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2757extern int apply_to_existing_page_range(struct mm_struct *mm,
2758 unsigned long address, unsigned long size,
2759 pte_fn_t fn, void *data);
aee16b3c 2760
8823b1db
LA
2761#ifdef CONFIG_PAGE_POISONING
2762extern bool page_poisoning_enabled(void);
2763extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2764#else
2765static inline bool page_poisoning_enabled(void) { return false; }
2766static inline void kernel_poison_pages(struct page *page, int numpages,
2767 int enable) { }
2768#endif
2769
6471384a
AP
2770#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2771DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2772#else
2773DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2774#endif
2775static inline bool want_init_on_alloc(gfp_t flags)
2776{
2777 if (static_branch_unlikely(&init_on_alloc) &&
2778 !page_poisoning_enabled())
2779 return true;
2780 return flags & __GFP_ZERO;
2781}
2782
2783#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2784DECLARE_STATIC_KEY_TRUE(init_on_free);
2785#else
2786DECLARE_STATIC_KEY_FALSE(init_on_free);
2787#endif
2788static inline bool want_init_on_free(void)
2789{
2790 return static_branch_unlikely(&init_on_free) &&
2791 !page_poisoning_enabled();
2792}
2793
8e57f8ac
VB
2794#ifdef CONFIG_DEBUG_PAGEALLOC
2795extern void init_debug_pagealloc(void);
96a2b03f 2796#else
8e57f8ac 2797static inline void init_debug_pagealloc(void) {}
96a2b03f 2798#endif
8e57f8ac
VB
2799extern bool _debug_pagealloc_enabled_early;
2800DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2801
2802static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2803{
2804 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2805 _debug_pagealloc_enabled_early;
2806}
2807
2808/*
2809 * For use in fast paths after init_debug_pagealloc() has run, or when a
2810 * false negative result is not harmful when called too early.
2811 */
2812static inline bool debug_pagealloc_enabled_static(void)
031bc574 2813{
96a2b03f
VB
2814 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2815 return false;
2816
2817 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2818}
2819
d6332692
RE
2820#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2821extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2822
c87cbc1f
VB
2823/*
2824 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2825 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2826 */
031bc574
JK
2827static inline void
2828kernel_map_pages(struct page *page, int numpages, int enable)
2829{
031bc574
JK
2830 __kernel_map_pages(page, numpages, enable);
2831}
8a235efa
RW
2832#ifdef CONFIG_HIBERNATION
2833extern bool kernel_page_present(struct page *page);
40b44137 2834#endif /* CONFIG_HIBERNATION */
d6332692 2835#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2836static inline void
9858db50 2837kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2838#ifdef CONFIG_HIBERNATION
2839static inline bool kernel_page_present(struct page *page) { return true; }
40b44137 2840#endif /* CONFIG_HIBERNATION */
d6332692 2841#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2842
a6c19dfe 2843#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2844extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2845extern int in_gate_area_no_mm(unsigned long addr);
2846extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2847#else
a6c19dfe
AL
2848static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2849{
2850 return NULL;
2851}
2852static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2853static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2854{
2855 return 0;
2856}
1da177e4
LT
2857#endif /* __HAVE_ARCH_GATE_AREA */
2858
44a70ade
MH
2859extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2860
146732ce
JT
2861#ifdef CONFIG_SYSCTL
2862extern int sysctl_drop_caches;
8d65af78 2863int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2864 void __user *, size_t *, loff_t *);
146732ce
JT
2865#endif
2866
cb731d6c
VD
2867void drop_slab(void);
2868void drop_slab_node(int nid);
9d0243bc 2869
7a9166e3
LY
2870#ifndef CONFIG_MMU
2871#define randomize_va_space 0
2872#else
a62eaf15 2873extern int randomize_va_space;
7a9166e3 2874#endif
a62eaf15 2875
045e72ac 2876const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 2877#ifdef CONFIG_MMU
03252919 2878void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
2879#else
2880static inline void print_vma_addr(char *prefix, unsigned long rip)
2881{
2882}
2883#endif
e6e5494c 2884
35fd1eb1 2885void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
2886struct page * __populate_section_memmap(unsigned long pfn,
2887 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 2888pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2889p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2890pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2891pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2892pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2893void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2894struct vmem_altmap;
a8fc357b
CH
2895void *vmemmap_alloc_block_buf(unsigned long size, int node);
2896void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2897void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2898int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2899 int node);
7b73d978
CH
2900int vmemmap_populate(unsigned long start, unsigned long end, int node,
2901 struct vmem_altmap *altmap);
c2b91e2e 2902void vmemmap_populate_print_last(void);
0197518c 2903#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2904void vmemmap_free(unsigned long start, unsigned long end,
2905 struct vmem_altmap *altmap);
0197518c 2906#endif
46723bfa 2907void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2908 unsigned long nr_pages);
6a46079c 2909
82ba011b
AK
2910enum mf_flags {
2911 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2912 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2913 MF_MUST_KILL = 1 << 2,
cf870c70 2914 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2915};
83b57531
EB
2916extern int memory_failure(unsigned long pfn, int flags);
2917extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 2918extern int unpoison_memory(unsigned long pfn);
ead07f6a 2919extern int get_hwpoison_page(struct page *page);
4e41a30c 2920#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2921extern int sysctl_memory_failure_early_kill;
2922extern int sysctl_memory_failure_recovery;
facb6011 2923extern void shake_page(struct page *p, int access);
5844a486 2924extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 2925extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 2926
cc637b17
XX
2927
2928/*
2929 * Error handlers for various types of pages.
2930 */
cc3e2af4 2931enum mf_result {
cc637b17
XX
2932 MF_IGNORED, /* Error: cannot be handled */
2933 MF_FAILED, /* Error: handling failed */
2934 MF_DELAYED, /* Will be handled later */
2935 MF_RECOVERED, /* Successfully recovered */
2936};
2937
2938enum mf_action_page_type {
2939 MF_MSG_KERNEL,
2940 MF_MSG_KERNEL_HIGH_ORDER,
2941 MF_MSG_SLAB,
2942 MF_MSG_DIFFERENT_COMPOUND,
2943 MF_MSG_POISONED_HUGE,
2944 MF_MSG_HUGE,
2945 MF_MSG_FREE_HUGE,
31286a84 2946 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2947 MF_MSG_UNMAP_FAILED,
2948 MF_MSG_DIRTY_SWAPCACHE,
2949 MF_MSG_CLEAN_SWAPCACHE,
2950 MF_MSG_DIRTY_MLOCKED_LRU,
2951 MF_MSG_CLEAN_MLOCKED_LRU,
2952 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2953 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2954 MF_MSG_DIRTY_LRU,
2955 MF_MSG_CLEAN_LRU,
2956 MF_MSG_TRUNCATED_LRU,
2957 MF_MSG_BUDDY,
2958 MF_MSG_BUDDY_2ND,
6100e34b 2959 MF_MSG_DAX,
cc637b17
XX
2960 MF_MSG_UNKNOWN,
2961};
2962
47ad8475
AA
2963#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2964extern void clear_huge_page(struct page *page,
c79b57e4 2965 unsigned long addr_hint,
47ad8475
AA
2966 unsigned int pages_per_huge_page);
2967extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
2968 unsigned long addr_hint,
2969 struct vm_area_struct *vma,
47ad8475 2970 unsigned int pages_per_huge_page);
fa4d75c1
MK
2971extern long copy_huge_page_from_user(struct page *dst_page,
2972 const void __user *usr_src,
810a56b9
MK
2973 unsigned int pages_per_huge_page,
2974 bool allow_pagefault);
47ad8475
AA
2975#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2976
c0a32fc5
SG
2977#ifdef CONFIG_DEBUG_PAGEALLOC
2978extern unsigned int _debug_guardpage_minorder;
96a2b03f 2979DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
2980
2981static inline unsigned int debug_guardpage_minorder(void)
2982{
2983 return _debug_guardpage_minorder;
2984}
2985
e30825f1
JK
2986static inline bool debug_guardpage_enabled(void)
2987{
96a2b03f 2988 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
2989}
2990
c0a32fc5
SG
2991static inline bool page_is_guard(struct page *page)
2992{
e30825f1
JK
2993 if (!debug_guardpage_enabled())
2994 return false;
2995
3972f6bb 2996 return PageGuard(page);
c0a32fc5
SG
2997}
2998#else
2999static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3000static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3001static inline bool page_is_guard(struct page *page) { return false; }
3002#endif /* CONFIG_DEBUG_PAGEALLOC */
3003
f9872caf
CS
3004#if MAX_NUMNODES > 1
3005void __init setup_nr_node_ids(void);
3006#else
3007static inline void setup_nr_node_ids(void) {}
3008#endif
3009
010c164a
SL
3010extern int memcmp_pages(struct page *page1, struct page *page2);
3011
3012static inline int pages_identical(struct page *page1, struct page *page2)
3013{
3014 return !memcmp_pages(page1, page2);
3015}
3016
c5acad84
TH
3017#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3018unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3019 pgoff_t first_index, pgoff_t nr,
3020 pgoff_t bitmap_pgoff,
3021 unsigned long *bitmap,
3022 pgoff_t *start,
3023 pgoff_t *end);
3024
3025unsigned long wp_shared_mapping_range(struct address_space *mapping,
3026 pgoff_t first_index, pgoff_t nr);
3027#endif
3028
1da177e4
LT
3029#endif /* __KERNEL__ */
3030#endif /* _LINUX_MM_H */