mm/vma: add missing VMA flag readable name for VM_SYNC
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
3b3b1a29 28#include <linux/overflow.h>
b5420237 29#include <linux/sizes.h>
7969f226 30#include <linux/sched.h>
1da177e4
LT
31
32struct mempolicy;
33struct anon_vma;
bf181b9f 34struct anon_vma_chain;
4e950f6f 35struct file_ra_state;
e8edc6e0 36struct user_struct;
4e950f6f 37struct writeback_control;
682aa8e1 38struct bdi_writeback;
1da177e4 39
597b7305
MH
40void init_mm_internals(void);
41
fccc9987 42#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 43extern unsigned long max_mapnr;
fccc9987
JL
44
45static inline void set_max_mapnr(unsigned long limit)
46{
47 max_mapnr = limit;
48}
49#else
50static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
51#endif
52
ca79b0c2
AK
53extern atomic_long_t _totalram_pages;
54static inline unsigned long totalram_pages(void)
55{
56 return (unsigned long)atomic_long_read(&_totalram_pages);
57}
58
59static inline void totalram_pages_inc(void)
60{
61 atomic_long_inc(&_totalram_pages);
62}
63
64static inline void totalram_pages_dec(void)
65{
66 atomic_long_dec(&_totalram_pages);
67}
68
69static inline void totalram_pages_add(long count)
70{
71 atomic_long_add(count, &_totalram_pages);
72}
73
1da177e4 74extern void * high_memory;
1da177e4
LT
75extern int page_cluster;
76
77#ifdef CONFIG_SYSCTL
78extern int sysctl_legacy_va_layout;
79#else
80#define sysctl_legacy_va_layout 0
81#endif
82
d07e2259
DC
83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
84extern const int mmap_rnd_bits_min;
85extern const int mmap_rnd_bits_max;
86extern int mmap_rnd_bits __read_mostly;
87#endif
88#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
89extern const int mmap_rnd_compat_bits_min;
90extern const int mmap_rnd_compat_bits_max;
91extern int mmap_rnd_compat_bits __read_mostly;
92#endif
93
1da177e4
LT
94#include <asm/page.h>
95#include <asm/pgtable.h>
96#include <asm/processor.h>
1da177e4 97
d9344522
AK
98/*
99 * Architectures that support memory tagging (assigning tags to memory regions,
100 * embedding these tags into addresses that point to these memory regions, and
101 * checking that the memory and the pointer tags match on memory accesses)
102 * redefine this macro to strip tags from pointers.
103 * It's defined as noop for arcitectures that don't support memory tagging.
104 */
105#ifndef untagged_addr
106#define untagged_addr(addr) (addr)
107#endif
108
79442ed1
TC
109#ifndef __pa_symbol
110#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
111#endif
112
1dff8083
AB
113#ifndef page_to_virt
114#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
115#endif
116
568c5fe5
LA
117#ifndef lm_alias
118#define lm_alias(x) __va(__pa_symbol(x))
119#endif
120
593befa6
DD
121/*
122 * To prevent common memory management code establishing
123 * a zero page mapping on a read fault.
124 * This macro should be defined within <asm/pgtable.h>.
125 * s390 does this to prevent multiplexing of hardware bits
126 * related to the physical page in case of virtualization.
127 */
128#ifndef mm_forbids_zeropage
129#define mm_forbids_zeropage(X) (0)
130#endif
131
a4a3ede2
PT
132/*
133 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
134 * If an architecture decides to implement their own version of
135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
136 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 137 */
5470dea4
AD
138#if BITS_PER_LONG == 64
139/* This function must be updated when the size of struct page grows above 80
140 * or reduces below 56. The idea that compiler optimizes out switch()
141 * statement, and only leaves move/store instructions. Also the compiler can
142 * combine write statments if they are both assignments and can be reordered,
143 * this can result in several of the writes here being dropped.
144 */
145#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
146static inline void __mm_zero_struct_page(struct page *page)
147{
148 unsigned long *_pp = (void *)page;
149
150 /* Check that struct page is either 56, 64, 72, or 80 bytes */
151 BUILD_BUG_ON(sizeof(struct page) & 7);
152 BUILD_BUG_ON(sizeof(struct page) < 56);
153 BUILD_BUG_ON(sizeof(struct page) > 80);
154
155 switch (sizeof(struct page)) {
156 case 80:
157 _pp[9] = 0; /* fallthrough */
158 case 72:
159 _pp[8] = 0; /* fallthrough */
160 case 64:
161 _pp[7] = 0; /* fallthrough */
162 case 56:
163 _pp[6] = 0;
164 _pp[5] = 0;
165 _pp[4] = 0;
166 _pp[3] = 0;
167 _pp[2] = 0;
168 _pp[1] = 0;
169 _pp[0] = 0;
170 }
171}
172#else
a4a3ede2
PT
173#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
174#endif
175
ea606cf5
AR
176/*
177 * Default maximum number of active map areas, this limits the number of vmas
178 * per mm struct. Users can overwrite this number by sysctl but there is a
179 * problem.
180 *
181 * When a program's coredump is generated as ELF format, a section is created
182 * per a vma. In ELF, the number of sections is represented in unsigned short.
183 * This means the number of sections should be smaller than 65535 at coredump.
184 * Because the kernel adds some informative sections to a image of program at
185 * generating coredump, we need some margin. The number of extra sections is
186 * 1-3 now and depends on arch. We use "5" as safe margin, here.
187 *
188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
189 * not a hard limit any more. Although some userspace tools can be surprised by
190 * that.
191 */
192#define MAPCOUNT_ELF_CORE_MARGIN (5)
193#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
194
195extern int sysctl_max_map_count;
196
c9b1d098 197extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 198extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 199
49f0ce5f
JM
200extern int sysctl_overcommit_memory;
201extern int sysctl_overcommit_ratio;
202extern unsigned long sysctl_overcommit_kbytes;
203
204extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
205 size_t *, loff_t *);
206extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
207 size_t *, loff_t *);
208
1da177e4
LT
209#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
210
27ac792c
AR
211/* to align the pointer to the (next) page boundary */
212#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
213
0fa73b86 214/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 215#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 216
f86196ea
NB
217#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
218
1da177e4
LT
219/*
220 * Linux kernel virtual memory manager primitives.
221 * The idea being to have a "virtual" mm in the same way
222 * we have a virtual fs - giving a cleaner interface to the
223 * mm details, and allowing different kinds of memory mappings
224 * (from shared memory to executable loading to arbitrary
225 * mmap() functions).
226 */
227
490fc053 228struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
229struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
230void vm_area_free(struct vm_area_struct *);
c43692e8 231
1da177e4 232#ifndef CONFIG_MMU
8feae131
DH
233extern struct rb_root nommu_region_tree;
234extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
235
236extern unsigned int kobjsize(const void *objp);
237#endif
238
239/*
605d9288 240 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 241 * When changing, update also include/trace/events/mmflags.h
1da177e4 242 */
cc2383ec
KK
243#define VM_NONE 0x00000000
244
1da177e4
LT
245#define VM_READ 0x00000001 /* currently active flags */
246#define VM_WRITE 0x00000002
247#define VM_EXEC 0x00000004
248#define VM_SHARED 0x00000008
249
7e2cff42 250/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
251#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
252#define VM_MAYWRITE 0x00000020
253#define VM_MAYEXEC 0x00000040
254#define VM_MAYSHARE 0x00000080
255
256#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 257#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 258#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 259#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 260#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 261
1da177e4
LT
262#define VM_LOCKED 0x00002000
263#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
264
265 /* Used by sys_madvise() */
266#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
267#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
268
269#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
270#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 271#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 272#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 273#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 274#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 275#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 276#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 277#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 278#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 279
d9104d1c
CG
280#ifdef CONFIG_MEM_SOFT_DIRTY
281# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
282#else
283# define VM_SOFTDIRTY 0
284#endif
285
b379d790 286#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
287#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
288#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 289#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 290
63c17fb8
DH
291#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
292#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
293#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
294#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
295#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 296#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
297#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
298#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
299#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
300#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 301#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
302#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
303
5212213a 304#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
305# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
306# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 307# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
308# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
309# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
310#ifdef CONFIG_PPC
311# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
312#else
313# define VM_PKEY_BIT4 0
8f62c883 314#endif
5212213a
RP
315#endif /* CONFIG_ARCH_HAS_PKEYS */
316
317#if defined(CONFIG_X86)
318# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
319#elif defined(CONFIG_PPC)
320# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
321#elif defined(CONFIG_PARISC)
322# define VM_GROWSUP VM_ARCH_1
323#elif defined(CONFIG_IA64)
324# define VM_GROWSUP VM_ARCH_1
74a04967
KA
325#elif defined(CONFIG_SPARC64)
326# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
327# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
328#elif !defined(CONFIG_MMU)
329# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
330#endif
331
df3735c5 332#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 333/* MPX specific bounds table or bounds directory */
fa87b91c 334# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
335#else
336# define VM_MPX VM_NONE
4aae7e43
QR
337#endif
338
cc2383ec
KK
339#ifndef VM_GROWSUP
340# define VM_GROWSUP VM_NONE
341#endif
342
a8bef8ff
MG
343/* Bits set in the VMA until the stack is in its final location */
344#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
345
1da177e4
LT
346#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
347#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
348#endif
349
350#ifdef CONFIG_STACK_GROWSUP
30bdbb78 351#define VM_STACK VM_GROWSUP
1da177e4 352#else
30bdbb78 353#define VM_STACK VM_GROWSDOWN
1da177e4
LT
354#endif
355
30bdbb78
KK
356#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
357
b291f000 358/*
78f11a25 359 * Special vmas that are non-mergable, non-mlock()able.
b291f000 360 */
9050d7eb 361#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 362
b4443772
AK
363/* This mask prevents VMA from being scanned with khugepaged */
364#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
365
a0715cc2
AT
366/* This mask defines which mm->def_flags a process can inherit its parent */
367#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
368
de60f5f1
EM
369/* This mask is used to clear all the VMA flags used by mlock */
370#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
371
2c2d57b5
KA
372/* Arch-specific flags to clear when updating VM flags on protection change */
373#ifndef VM_ARCH_CLEAR
374# define VM_ARCH_CLEAR VM_NONE
375#endif
376#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
377
1da177e4
LT
378/*
379 * mapping from the currently active vm_flags protection bits (the
380 * low four bits) to a page protection mask..
381 */
382extern pgprot_t protection_map[16];
383
c270a7ee
PX
384/**
385 * Fault flag definitions.
386 *
387 * @FAULT_FLAG_WRITE: Fault was a write fault.
388 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
389 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
390 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_sem and wait when retrying.
391 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
392 * @FAULT_FLAG_TRIED: The fault has been tried once.
393 * @FAULT_FLAG_USER: The fault originated in userspace.
394 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
395 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
396 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
397 *
398 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
399 * whether we would allow page faults to retry by specifying these two
400 * fault flags correctly. Currently there can be three legal combinations:
401 *
402 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
403 * this is the first try
404 *
405 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
406 * we've already tried at least once
407 *
408 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
409 *
410 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
411 * be used. Note that page faults can be allowed to retry for multiple times,
412 * in which case we'll have an initial fault with flags (a) then later on
413 * continuous faults with flags (b). We should always try to detect pending
414 * signals before a retry to make sure the continuous page faults can still be
415 * interrupted if necessary.
c270a7ee
PX
416 */
417#define FAULT_FLAG_WRITE 0x01
418#define FAULT_FLAG_MKWRITE 0x02
419#define FAULT_FLAG_ALLOW_RETRY 0x04
420#define FAULT_FLAG_RETRY_NOWAIT 0x08
421#define FAULT_FLAG_KILLABLE 0x10
422#define FAULT_FLAG_TRIED 0x20
423#define FAULT_FLAG_USER 0x40
424#define FAULT_FLAG_REMOTE 0x80
425#define FAULT_FLAG_INSTRUCTION 0x100
426#define FAULT_FLAG_INTERRUPTIBLE 0x200
d0217ac0 427
dde16072
PX
428/*
429 * The default fault flags that should be used by most of the
430 * arch-specific page fault handlers.
431 */
432#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
433 FAULT_FLAG_KILLABLE | \
434 FAULT_FLAG_INTERRUPTIBLE)
dde16072 435
4064b982
PX
436/**
437 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
438 *
439 * This is mostly used for places where we want to try to avoid taking
440 * the mmap_sem for too long a time when waiting for another condition
441 * to change, in which case we can try to be polite to release the
442 * mmap_sem in the first round to avoid potential starvation of other
443 * processes that would also want the mmap_sem.
444 *
445 * Return: true if the page fault allows retry and this is the first
446 * attempt of the fault handling; false otherwise.
447 */
448static inline bool fault_flag_allow_retry_first(unsigned int flags)
449{
450 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
451 (!(flags & FAULT_FLAG_TRIED));
452}
453
282a8e03
RZ
454#define FAULT_FLAG_TRACE \
455 { FAULT_FLAG_WRITE, "WRITE" }, \
456 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
457 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
458 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
459 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
460 { FAULT_FLAG_TRIED, "TRIED" }, \
461 { FAULT_FLAG_USER, "USER" }, \
462 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
463 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
464 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 465
54cb8821 466/*
d0217ac0 467 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
468 * ->fault function. The vma's ->fault is responsible for returning a bitmask
469 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 470 *
c20cd45e
MH
471 * MM layer fills up gfp_mask for page allocations but fault handler might
472 * alter it if its implementation requires a different allocation context.
473 *
9b4bdd2f 474 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 475 */
d0217ac0 476struct vm_fault {
82b0f8c3 477 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 478 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 479 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 480 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 481 unsigned long address; /* Faulting virtual address */
82b0f8c3 482 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 483 * the 'address' */
a2d58167
DJ
484 pud_t *pud; /* Pointer to pud entry matching
485 * the 'address'
486 */
2994302b 487 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 488
3917048d
JK
489 struct page *cow_page; /* Page handler may use for COW fault */
490 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 491 struct page *page; /* ->fault handlers should return a
83c54070 492 * page here, unless VM_FAULT_NOPAGE
d0217ac0 493 * is set (which is also implied by
83c54070 494 * VM_FAULT_ERROR).
d0217ac0 495 */
82b0f8c3 496 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
497 pte_t *pte; /* Pointer to pte entry matching
498 * the 'address'. NULL if the page
499 * table hasn't been allocated.
500 */
501 spinlock_t *ptl; /* Page table lock.
502 * Protects pte page table if 'pte'
503 * is not NULL, otherwise pmd.
504 */
7267ec00
KS
505 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
506 * vm_ops->map_pages() calls
507 * alloc_set_pte() from atomic context.
508 * do_fault_around() pre-allocates
509 * page table to avoid allocation from
510 * atomic context.
511 */
54cb8821 512};
1da177e4 513
c791ace1
DJ
514/* page entry size for vm->huge_fault() */
515enum page_entry_size {
516 PE_SIZE_PTE = 0,
517 PE_SIZE_PMD,
518 PE_SIZE_PUD,
519};
520
1da177e4
LT
521/*
522 * These are the virtual MM functions - opening of an area, closing and
523 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 524 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
525 */
526struct vm_operations_struct {
527 void (*open)(struct vm_area_struct * area);
528 void (*close)(struct vm_area_struct * area);
31383c68 529 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 530 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
531 vm_fault_t (*fault)(struct vm_fault *vmf);
532 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
533 enum page_entry_size pe_size);
82b0f8c3 534 void (*map_pages)(struct vm_fault *vmf,
bae473a4 535 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 536 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
537
538 /* notification that a previously read-only page is about to become
539 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 540 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 541
dd906184 542 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 543 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 544
28b2ee20
RR
545 /* called by access_process_vm when get_user_pages() fails, typically
546 * for use by special VMAs that can switch between memory and hardware
547 */
548 int (*access)(struct vm_area_struct *vma, unsigned long addr,
549 void *buf, int len, int write);
78d683e8
AL
550
551 /* Called by the /proc/PID/maps code to ask the vma whether it
552 * has a special name. Returning non-NULL will also cause this
553 * vma to be dumped unconditionally. */
554 const char *(*name)(struct vm_area_struct *vma);
555
1da177e4 556#ifdef CONFIG_NUMA
a6020ed7
LS
557 /*
558 * set_policy() op must add a reference to any non-NULL @new mempolicy
559 * to hold the policy upon return. Caller should pass NULL @new to
560 * remove a policy and fall back to surrounding context--i.e. do not
561 * install a MPOL_DEFAULT policy, nor the task or system default
562 * mempolicy.
563 */
1da177e4 564 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
565
566 /*
567 * get_policy() op must add reference [mpol_get()] to any policy at
568 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
569 * in mm/mempolicy.c will do this automatically.
570 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
571 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
572 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
573 * must return NULL--i.e., do not "fallback" to task or system default
574 * policy.
575 */
1da177e4
LT
576 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
577 unsigned long addr);
578#endif
667a0a06
DV
579 /*
580 * Called by vm_normal_page() for special PTEs to find the
581 * page for @addr. This is useful if the default behavior
582 * (using pte_page()) would not find the correct page.
583 */
584 struct page *(*find_special_page)(struct vm_area_struct *vma,
585 unsigned long addr);
1da177e4
LT
586};
587
027232da
KS
588static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
589{
bfd40eaf
KS
590 static const struct vm_operations_struct dummy_vm_ops = {};
591
a670468f 592 memset(vma, 0, sizeof(*vma));
027232da 593 vma->vm_mm = mm;
bfd40eaf 594 vma->vm_ops = &dummy_vm_ops;
027232da
KS
595 INIT_LIST_HEAD(&vma->anon_vma_chain);
596}
597
bfd40eaf
KS
598static inline void vma_set_anonymous(struct vm_area_struct *vma)
599{
600 vma->vm_ops = NULL;
601}
602
43675e6f
YS
603static inline bool vma_is_anonymous(struct vm_area_struct *vma)
604{
605 return !vma->vm_ops;
606}
607
222100ee
AK
608static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
609{
610 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
611
612 if (!maybe_stack)
613 return false;
614
615 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
616 VM_STACK_INCOMPLETE_SETUP)
617 return true;
618
619 return false;
620}
621
7969f226
AK
622static inline bool vma_is_foreign(struct vm_area_struct *vma)
623{
624 if (!current->mm)
625 return true;
626
627 if (current->mm != vma->vm_mm)
628 return true;
629
630 return false;
631}
43675e6f
YS
632#ifdef CONFIG_SHMEM
633/*
634 * The vma_is_shmem is not inline because it is used only by slow
635 * paths in userfault.
636 */
637bool vma_is_shmem(struct vm_area_struct *vma);
638#else
639static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
640#endif
641
642int vma_is_stack_for_current(struct vm_area_struct *vma);
643
8b11ec1b
LT
644/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
645#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
646
1da177e4
LT
647struct mmu_gather;
648struct inode;
649
1da177e4
LT
650/*
651 * FIXME: take this include out, include page-flags.h in
652 * files which need it (119 of them)
653 */
654#include <linux/page-flags.h>
71e3aac0 655#include <linux/huge_mm.h>
1da177e4
LT
656
657/*
658 * Methods to modify the page usage count.
659 *
660 * What counts for a page usage:
661 * - cache mapping (page->mapping)
662 * - private data (page->private)
663 * - page mapped in a task's page tables, each mapping
664 * is counted separately
665 *
666 * Also, many kernel routines increase the page count before a critical
667 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
668 */
669
670/*
da6052f7 671 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 672 */
7c8ee9a8
NP
673static inline int put_page_testzero(struct page *page)
674{
fe896d18
JK
675 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
676 return page_ref_dec_and_test(page);
7c8ee9a8 677}
1da177e4
LT
678
679/*
7c8ee9a8
NP
680 * Try to grab a ref unless the page has a refcount of zero, return false if
681 * that is the case.
8e0861fa
AK
682 * This can be called when MMU is off so it must not access
683 * any of the virtual mappings.
1da177e4 684 */
7c8ee9a8
NP
685static inline int get_page_unless_zero(struct page *page)
686{
fe896d18 687 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 688}
1da177e4 689
53df8fdc 690extern int page_is_ram(unsigned long pfn);
124fe20d
DW
691
692enum {
693 REGION_INTERSECTS,
694 REGION_DISJOINT,
695 REGION_MIXED,
696};
697
1c29f25b
TK
698int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
699 unsigned long desc);
53df8fdc 700
48667e7a 701/* Support for virtually mapped pages */
b3bdda02
CL
702struct page *vmalloc_to_page(const void *addr);
703unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 704
0738c4bb
PM
705/*
706 * Determine if an address is within the vmalloc range
707 *
708 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
709 * is no special casing required.
710 */
9bd3bb67
AK
711
712#ifndef is_ioremap_addr
713#define is_ioremap_addr(x) is_vmalloc_addr(x)
714#endif
715
81ac3ad9 716#ifdef CONFIG_MMU
186525bd 717extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
718extern int is_vmalloc_or_module_addr(const void *x);
719#else
186525bd
IM
720static inline bool is_vmalloc_addr(const void *x)
721{
722 return false;
723}
934831d0 724static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
725{
726 return 0;
727}
728#endif
9e2779fa 729
a7c3e901
MH
730extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
731static inline void *kvmalloc(size_t size, gfp_t flags)
732{
733 return kvmalloc_node(size, flags, NUMA_NO_NODE);
734}
735static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
736{
737 return kvmalloc_node(size, flags | __GFP_ZERO, node);
738}
739static inline void *kvzalloc(size_t size, gfp_t flags)
740{
741 return kvmalloc(size, flags | __GFP_ZERO);
742}
743
752ade68
MH
744static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
745{
3b3b1a29
KC
746 size_t bytes;
747
748 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
749 return NULL;
750
3b3b1a29 751 return kvmalloc(bytes, flags);
752ade68
MH
752}
753
1c542f38
KC
754static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
755{
756 return kvmalloc_array(n, size, flags | __GFP_ZERO);
757}
758
39f1f78d
AV
759extern void kvfree(const void *addr);
760
53f9263b
KS
761static inline int compound_mapcount(struct page *page)
762{
5f527c2b 763 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
764 page = compound_head(page);
765 return atomic_read(compound_mapcount_ptr(page)) + 1;
766}
767
70b50f94
AA
768/*
769 * The atomic page->_mapcount, starts from -1: so that transitions
770 * both from it and to it can be tracked, using atomic_inc_and_test
771 * and atomic_add_negative(-1).
772 */
22b751c3 773static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
774{
775 atomic_set(&(page)->_mapcount, -1);
776}
777
b20ce5e0
KS
778int __page_mapcount(struct page *page);
779
70b50f94
AA
780static inline int page_mapcount(struct page *page)
781{
1d148e21 782 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 783
b20ce5e0
KS
784 if (unlikely(PageCompound(page)))
785 return __page_mapcount(page);
786 return atomic_read(&page->_mapcount) + 1;
787}
788
789#ifdef CONFIG_TRANSPARENT_HUGEPAGE
790int total_mapcount(struct page *page);
6d0a07ed 791int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
792#else
793static inline int total_mapcount(struct page *page)
794{
795 return page_mapcount(page);
70b50f94 796}
6d0a07ed
AA
797static inline int page_trans_huge_mapcount(struct page *page,
798 int *total_mapcount)
799{
800 int mapcount = page_mapcount(page);
801 if (total_mapcount)
802 *total_mapcount = mapcount;
803 return mapcount;
804}
b20ce5e0 805#endif
70b50f94 806
b49af68f
CL
807static inline struct page *virt_to_head_page(const void *x)
808{
809 struct page *page = virt_to_page(x);
ccaafd7f 810
1d798ca3 811 return compound_head(page);
b49af68f
CL
812}
813
ddc58f27
KS
814void __put_page(struct page *page);
815
1d7ea732 816void put_pages_list(struct list_head *pages);
1da177e4 817
8dfcc9ba 818void split_page(struct page *page, unsigned int order);
8dfcc9ba 819
33f2ef89
AW
820/*
821 * Compound pages have a destructor function. Provide a
822 * prototype for that function and accessor functions.
f1e61557 823 * These are _only_ valid on the head of a compound page.
33f2ef89 824 */
f1e61557
KS
825typedef void compound_page_dtor(struct page *);
826
827/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
828enum compound_dtor_id {
829 NULL_COMPOUND_DTOR,
830 COMPOUND_PAGE_DTOR,
831#ifdef CONFIG_HUGETLB_PAGE
832 HUGETLB_PAGE_DTOR,
9a982250
KS
833#endif
834#ifdef CONFIG_TRANSPARENT_HUGEPAGE
835 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
836#endif
837 NR_COMPOUND_DTORS,
838};
839extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
840
841static inline void set_compound_page_dtor(struct page *page,
f1e61557 842 enum compound_dtor_id compound_dtor)
33f2ef89 843{
f1e61557
KS
844 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
845 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
846}
847
848static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
849{
f1e61557
KS
850 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
851 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
852}
853
d00181b9 854static inline unsigned int compound_order(struct page *page)
d85f3385 855{
6d777953 856 if (!PageHead(page))
d85f3385 857 return 0;
e4b294c2 858 return page[1].compound_order;
d85f3385
CL
859}
860
47e29d32
JH
861static inline bool hpage_pincount_available(struct page *page)
862{
863 /*
864 * Can the page->hpage_pinned_refcount field be used? That field is in
865 * the 3rd page of the compound page, so the smallest (2-page) compound
866 * pages cannot support it.
867 */
868 page = compound_head(page);
869 return PageCompound(page) && compound_order(page) > 1;
870}
871
872static inline int compound_pincount(struct page *page)
873{
874 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
875 page = compound_head(page);
876 return atomic_read(compound_pincount_ptr(page));
877}
878
f1e61557 879static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 880{
e4b294c2 881 page[1].compound_order = order;
d85f3385
CL
882}
883
d8c6546b
MWO
884/* Returns the number of pages in this potentially compound page. */
885static inline unsigned long compound_nr(struct page *page)
886{
887 return 1UL << compound_order(page);
888}
889
a50b854e
MWO
890/* Returns the number of bytes in this potentially compound page. */
891static inline unsigned long page_size(struct page *page)
892{
893 return PAGE_SIZE << compound_order(page);
894}
895
94ad9338
MWO
896/* Returns the number of bits needed for the number of bytes in a page */
897static inline unsigned int page_shift(struct page *page)
898{
899 return PAGE_SHIFT + compound_order(page);
900}
901
9a982250
KS
902void free_compound_page(struct page *page);
903
3dece370 904#ifdef CONFIG_MMU
14fd403f
AA
905/*
906 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
907 * servicing faults for write access. In the normal case, do always want
908 * pte_mkwrite. But get_user_pages can cause write faults for mappings
909 * that do not have writing enabled, when used by access_process_vm.
910 */
911static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
912{
913 if (likely(vma->vm_flags & VM_WRITE))
914 pte = pte_mkwrite(pte);
915 return pte;
916}
8c6e50b0 917
2b740303 918vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 919 struct page *page);
2b740303
SJ
920vm_fault_t finish_fault(struct vm_fault *vmf);
921vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 922#endif
14fd403f 923
1da177e4
LT
924/*
925 * Multiple processes may "see" the same page. E.g. for untouched
926 * mappings of /dev/null, all processes see the same page full of
927 * zeroes, and text pages of executables and shared libraries have
928 * only one copy in memory, at most, normally.
929 *
930 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
931 * page_count() == 0 means the page is free. page->lru is then used for
932 * freelist management in the buddy allocator.
da6052f7 933 * page_count() > 0 means the page has been allocated.
1da177e4 934 *
da6052f7
NP
935 * Pages are allocated by the slab allocator in order to provide memory
936 * to kmalloc and kmem_cache_alloc. In this case, the management of the
937 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
938 * unless a particular usage is carefully commented. (the responsibility of
939 * freeing the kmalloc memory is the caller's, of course).
1da177e4 940 *
da6052f7
NP
941 * A page may be used by anyone else who does a __get_free_page().
942 * In this case, page_count still tracks the references, and should only
943 * be used through the normal accessor functions. The top bits of page->flags
944 * and page->virtual store page management information, but all other fields
945 * are unused and could be used privately, carefully. The management of this
946 * page is the responsibility of the one who allocated it, and those who have
947 * subsequently been given references to it.
948 *
949 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
950 * managed by the Linux memory manager: I/O, buffers, swapping etc.
951 * The following discussion applies only to them.
952 *
da6052f7
NP
953 * A pagecache page contains an opaque `private' member, which belongs to the
954 * page's address_space. Usually, this is the address of a circular list of
955 * the page's disk buffers. PG_private must be set to tell the VM to call
956 * into the filesystem to release these pages.
1da177e4 957 *
da6052f7
NP
958 * A page may belong to an inode's memory mapping. In this case, page->mapping
959 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 960 * in units of PAGE_SIZE.
1da177e4 961 *
da6052f7
NP
962 * If pagecache pages are not associated with an inode, they are said to be
963 * anonymous pages. These may become associated with the swapcache, and in that
964 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 965 *
da6052f7
NP
966 * In either case (swapcache or inode backed), the pagecache itself holds one
967 * reference to the page. Setting PG_private should also increment the
968 * refcount. The each user mapping also has a reference to the page.
1da177e4 969 *
da6052f7 970 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 971 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
972 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
973 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 974 *
da6052f7 975 * All pagecache pages may be subject to I/O:
1da177e4
LT
976 * - inode pages may need to be read from disk,
977 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
978 * to be written back to the inode on disk,
979 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
980 * modified may need to be swapped out to swap space and (later) to be read
981 * back into memory.
1da177e4
LT
982 */
983
984/*
985 * The zone field is never updated after free_area_init_core()
986 * sets it, so none of the operations on it need to be atomic.
1da177e4 987 */
348f8b6c 988
90572890 989/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 990#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
991#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
992#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 993#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 994#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 995
348f8b6c 996/*
25985edc 997 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
998 * sections we define the shift as 0; that plus a 0 mask ensures
999 * the compiler will optimise away reference to them.
1000 */
d41dee36
AW
1001#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1002#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1003#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1004#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1005#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1006
bce54bbf
WD
1007/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1008#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1009#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1010#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1011 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1012#else
89689ae7 1013#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1014#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1015 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1016#endif
1017
bd8029b6 1018#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1019
d41dee36
AW
1020#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1021#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1022#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1023#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1024#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1025#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1026
33dd4e0e 1027static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1028{
348f8b6c 1029 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1030}
1da177e4 1031
260ae3f7
DW
1032#ifdef CONFIG_ZONE_DEVICE
1033static inline bool is_zone_device_page(const struct page *page)
1034{
1035 return page_zonenum(page) == ZONE_DEVICE;
1036}
966cf44f
AD
1037extern void memmap_init_zone_device(struct zone *, unsigned long,
1038 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1039#else
1040static inline bool is_zone_device_page(const struct page *page)
1041{
1042 return false;
1043}
7b2d55d2 1044#endif
5042db43 1045
e7638488 1046#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1047void free_devmap_managed_page(struct page *page);
e7638488 1048DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1049
1050static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1051{
1052 if (!static_branch_unlikely(&devmap_managed_key))
1053 return false;
1054 if (!is_zone_device_page(page))
1055 return false;
1056 switch (page->pgmap->type) {
1057 case MEMORY_DEVICE_PRIVATE:
e7638488 1058 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1059 return true;
1060 default:
1061 break;
1062 }
1063 return false;
1064}
1065
07d80269
JH
1066void put_devmap_managed_page(struct page *page);
1067
e7638488 1068#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1069static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1070{
1071 return false;
1072}
07d80269
JH
1073
1074static inline void put_devmap_managed_page(struct page *page)
1075{
1076}
7588adf8 1077#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1078
6b368cd4
JG
1079static inline bool is_device_private_page(const struct page *page)
1080{
7588adf8
RM
1081 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1082 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1083 is_zone_device_page(page) &&
1084 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1085}
e7638488 1086
52916982
LG
1087static inline bool is_pci_p2pdma_page(const struct page *page)
1088{
7588adf8
RM
1089 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1090 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1091 is_zone_device_page(page) &&
1092 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1093}
7b2d55d2 1094
f958d7b5
LT
1095/* 127: arbitrary random number, small enough to assemble well */
1096#define page_ref_zero_or_close_to_overflow(page) \
1097 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1098
3565fce3
DW
1099static inline void get_page(struct page *page)
1100{
1101 page = compound_head(page);
1102 /*
1103 * Getting a normal page or the head of a compound page
0139aa7b 1104 * requires to already have an elevated page->_refcount.
3565fce3 1105 */
f958d7b5 1106 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1107 page_ref_inc(page);
3565fce3
DW
1108}
1109
3faa52c0
JH
1110bool __must_check try_grab_page(struct page *page, unsigned int flags);
1111
88b1a17d
LT
1112static inline __must_check bool try_get_page(struct page *page)
1113{
1114 page = compound_head(page);
1115 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1116 return false;
fe896d18 1117 page_ref_inc(page);
88b1a17d 1118 return true;
3565fce3
DW
1119}
1120
1121static inline void put_page(struct page *page)
1122{
1123 page = compound_head(page);
1124
7b2d55d2 1125 /*
e7638488
DW
1126 * For devmap managed pages we need to catch refcount transition from
1127 * 2 to 1, when refcount reach one it means the page is free and we
1128 * need to inform the device driver through callback. See
7b2d55d2
JG
1129 * include/linux/memremap.h and HMM for details.
1130 */
07d80269
JH
1131 if (page_is_devmap_managed(page)) {
1132 put_devmap_managed_page(page);
7b2d55d2 1133 return;
07d80269 1134 }
7b2d55d2 1135
3565fce3
DW
1136 if (put_page_testzero(page))
1137 __put_page(page);
3565fce3
DW
1138}
1139
3faa52c0
JH
1140/*
1141 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1142 * the page's refcount so that two separate items are tracked: the original page
1143 * reference count, and also a new count of how many pin_user_pages() calls were
1144 * made against the page. ("gup-pinned" is another term for the latter).
1145 *
1146 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1147 * distinct from normal pages. As such, the unpin_user_page() call (and its
1148 * variants) must be used in order to release gup-pinned pages.
1149 *
1150 * Choice of value:
1151 *
1152 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1153 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1154 * simpler, due to the fact that adding an even power of two to the page
1155 * refcount has the effect of using only the upper N bits, for the code that
1156 * counts up using the bias value. This means that the lower bits are left for
1157 * the exclusive use of the original code that increments and decrements by one
1158 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1159 *
3faa52c0
JH
1160 * Of course, once the lower bits overflow into the upper bits (and this is
1161 * OK, because subtraction recovers the original values), then visual inspection
1162 * no longer suffices to directly view the separate counts. However, for normal
1163 * applications that don't have huge page reference counts, this won't be an
1164 * issue.
fc1d8e7c 1165 *
3faa52c0
JH
1166 * Locking: the lockless algorithm described in page_cache_get_speculative()
1167 * and page_cache_gup_pin_speculative() provides safe operation for
1168 * get_user_pages and page_mkclean and other calls that race to set up page
1169 * table entries.
fc1d8e7c 1170 */
3faa52c0 1171#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1172
3faa52c0 1173void unpin_user_page(struct page *page);
f1f6a7dd
JH
1174void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1175 bool make_dirty);
f1f6a7dd 1176void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1177
3faa52c0
JH
1178/**
1179 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1180 *
1181 * This function checks if a page has been pinned via a call to
1182 * pin_user_pages*().
1183 *
1184 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1185 * because it means "definitely not pinned for DMA", but true means "probably
1186 * pinned for DMA, but possibly a false positive due to having at least
1187 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1188 *
1189 * False positives are OK, because: a) it's unlikely for a page to get that many
1190 * refcounts, and b) all the callers of this routine are expected to be able to
1191 * deal gracefully with a false positive.
1192 *
47e29d32
JH
1193 * For huge pages, the result will be exactly correct. That's because we have
1194 * more tracking data available: the 3rd struct page in the compound page is
1195 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1196 * scheme).
1197 *
3faa52c0
JH
1198 * For more information, please see Documentation/vm/pin_user_pages.rst.
1199 *
1200 * @page: pointer to page to be queried.
1201 * @Return: True, if it is likely that the page has been "dma-pinned".
1202 * False, if the page is definitely not dma-pinned.
1203 */
1204static inline bool page_maybe_dma_pinned(struct page *page)
1205{
47e29d32
JH
1206 if (hpage_pincount_available(page))
1207 return compound_pincount(page) > 0;
1208
3faa52c0
JH
1209 /*
1210 * page_ref_count() is signed. If that refcount overflows, then
1211 * page_ref_count() returns a negative value, and callers will avoid
1212 * further incrementing the refcount.
1213 *
1214 * Here, for that overflow case, use the signed bit to count a little
1215 * bit higher via unsigned math, and thus still get an accurate result.
1216 */
1217 return ((unsigned int)page_ref_count(compound_head(page))) >=
1218 GUP_PIN_COUNTING_BIAS;
1219}
1220
9127ab4f
CS
1221#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1222#define SECTION_IN_PAGE_FLAGS
1223#endif
1224
89689ae7 1225/*
7a8010cd
VB
1226 * The identification function is mainly used by the buddy allocator for
1227 * determining if two pages could be buddies. We are not really identifying
1228 * the zone since we could be using the section number id if we do not have
1229 * node id available in page flags.
1230 * We only guarantee that it will return the same value for two combinable
1231 * pages in a zone.
89689ae7 1232 */
cb2b95e1
AW
1233static inline int page_zone_id(struct page *page)
1234{
89689ae7 1235 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1236}
1237
89689ae7 1238#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1239extern int page_to_nid(const struct page *page);
89689ae7 1240#else
33dd4e0e 1241static inline int page_to_nid(const struct page *page)
d41dee36 1242{
f165b378
PT
1243 struct page *p = (struct page *)page;
1244
1245 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1246}
89689ae7
CL
1247#endif
1248
57e0a030 1249#ifdef CONFIG_NUMA_BALANCING
90572890 1250static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1251{
90572890 1252 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1253}
1254
90572890 1255static inline int cpupid_to_pid(int cpupid)
57e0a030 1256{
90572890 1257 return cpupid & LAST__PID_MASK;
57e0a030 1258}
b795854b 1259
90572890 1260static inline int cpupid_to_cpu(int cpupid)
b795854b 1261{
90572890 1262 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1263}
1264
90572890 1265static inline int cpupid_to_nid(int cpupid)
b795854b 1266{
90572890 1267 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1268}
1269
90572890 1270static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1271{
90572890 1272 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1273}
1274
90572890 1275static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1276{
90572890 1277 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1278}
1279
8c8a743c
PZ
1280static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1281{
1282 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1283}
1284
1285#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1286#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1287static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1288{
1ae71d03 1289 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1290}
90572890
PZ
1291
1292static inline int page_cpupid_last(struct page *page)
1293{
1294 return page->_last_cpupid;
1295}
1296static inline void page_cpupid_reset_last(struct page *page)
b795854b 1297{
1ae71d03 1298 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1299}
1300#else
90572890 1301static inline int page_cpupid_last(struct page *page)
75980e97 1302{
90572890 1303 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1304}
1305
90572890 1306extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1307
90572890 1308static inline void page_cpupid_reset_last(struct page *page)
75980e97 1309{
09940a4f 1310 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1311}
90572890
PZ
1312#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1313#else /* !CONFIG_NUMA_BALANCING */
1314static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1315{
90572890 1316 return page_to_nid(page); /* XXX */
57e0a030
MG
1317}
1318
90572890 1319static inline int page_cpupid_last(struct page *page)
57e0a030 1320{
90572890 1321 return page_to_nid(page); /* XXX */
57e0a030
MG
1322}
1323
90572890 1324static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1325{
1326 return -1;
1327}
1328
90572890 1329static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1330{
1331 return -1;
1332}
1333
90572890 1334static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1335{
1336 return -1;
1337}
1338
90572890
PZ
1339static inline int cpu_pid_to_cpupid(int nid, int pid)
1340{
1341 return -1;
1342}
1343
1344static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1345{
1346 return 1;
1347}
1348
90572890 1349static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1350{
1351}
8c8a743c
PZ
1352
1353static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1354{
1355 return false;
1356}
90572890 1357#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1358
2813b9c0
AK
1359#ifdef CONFIG_KASAN_SW_TAGS
1360static inline u8 page_kasan_tag(const struct page *page)
1361{
1362 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1363}
1364
1365static inline void page_kasan_tag_set(struct page *page, u8 tag)
1366{
1367 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1368 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1369}
1370
1371static inline void page_kasan_tag_reset(struct page *page)
1372{
1373 page_kasan_tag_set(page, 0xff);
1374}
1375#else
1376static inline u8 page_kasan_tag(const struct page *page)
1377{
1378 return 0xff;
1379}
1380
1381static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1382static inline void page_kasan_tag_reset(struct page *page) { }
1383#endif
1384
33dd4e0e 1385static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1386{
1387 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1388}
1389
75ef7184
MG
1390static inline pg_data_t *page_pgdat(const struct page *page)
1391{
1392 return NODE_DATA(page_to_nid(page));
1393}
1394
9127ab4f 1395#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1396static inline void set_page_section(struct page *page, unsigned long section)
1397{
1398 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1399 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1400}
1401
aa462abe 1402static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1403{
1404 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1405}
308c05e3 1406#endif
d41dee36 1407
2f1b6248 1408static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1409{
1410 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1411 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1412}
2f1b6248 1413
348f8b6c
DH
1414static inline void set_page_node(struct page *page, unsigned long node)
1415{
1416 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1417 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1418}
89689ae7 1419
2f1b6248 1420static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1421 unsigned long node, unsigned long pfn)
1da177e4 1422{
348f8b6c
DH
1423 set_page_zone(page, zone);
1424 set_page_node(page, node);
9127ab4f 1425#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1426 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1427#endif
1da177e4
LT
1428}
1429
0610c25d
GT
1430#ifdef CONFIG_MEMCG
1431static inline struct mem_cgroup *page_memcg(struct page *page)
1432{
1433 return page->mem_cgroup;
1434}
55779ec7
JW
1435static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1436{
1437 WARN_ON_ONCE(!rcu_read_lock_held());
1438 return READ_ONCE(page->mem_cgroup);
1439}
0610c25d
GT
1440#else
1441static inline struct mem_cgroup *page_memcg(struct page *page)
1442{
1443 return NULL;
1444}
55779ec7
JW
1445static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1446{
1447 WARN_ON_ONCE(!rcu_read_lock_held());
1448 return NULL;
1449}
0610c25d
GT
1450#endif
1451
f6ac2354
CL
1452/*
1453 * Some inline functions in vmstat.h depend on page_zone()
1454 */
1455#include <linux/vmstat.h>
1456
33dd4e0e 1457static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1458{
1dff8083 1459 return page_to_virt(page);
1da177e4
LT
1460}
1461
1462#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1463#define HASHED_PAGE_VIRTUAL
1464#endif
1465
1466#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1467static inline void *page_address(const struct page *page)
1468{
1469 return page->virtual;
1470}
1471static inline void set_page_address(struct page *page, void *address)
1472{
1473 page->virtual = address;
1474}
1da177e4
LT
1475#define page_address_init() do { } while(0)
1476#endif
1477
1478#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1479void *page_address(const struct page *page);
1da177e4
LT
1480void set_page_address(struct page *page, void *virtual);
1481void page_address_init(void);
1482#endif
1483
1484#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1485#define page_address(page) lowmem_page_address(page)
1486#define set_page_address(page, address) do { } while(0)
1487#define page_address_init() do { } while(0)
1488#endif
1489
e39155ea
KS
1490extern void *page_rmapping(struct page *page);
1491extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1492extern struct address_space *page_mapping(struct page *page);
1da177e4 1493
f981c595
MG
1494extern struct address_space *__page_file_mapping(struct page *);
1495
1496static inline
1497struct address_space *page_file_mapping(struct page *page)
1498{
1499 if (unlikely(PageSwapCache(page)))
1500 return __page_file_mapping(page);
1501
1502 return page->mapping;
1503}
1504
f6ab1f7f
HY
1505extern pgoff_t __page_file_index(struct page *page);
1506
1da177e4
LT
1507/*
1508 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1509 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1510 */
1511static inline pgoff_t page_index(struct page *page)
1512{
1513 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1514 return __page_file_index(page);
1da177e4
LT
1515 return page->index;
1516}
1517
1aa8aea5 1518bool page_mapped(struct page *page);
bda807d4 1519struct address_space *page_mapping(struct page *page);
cb9f753a 1520struct address_space *page_mapping_file(struct page *page);
1da177e4 1521
2f064f34
MH
1522/*
1523 * Return true only if the page has been allocated with
1524 * ALLOC_NO_WATERMARKS and the low watermark was not
1525 * met implying that the system is under some pressure.
1526 */
1527static inline bool page_is_pfmemalloc(struct page *page)
1528{
1529 /*
1530 * Page index cannot be this large so this must be
1531 * a pfmemalloc page.
1532 */
1533 return page->index == -1UL;
1534}
1535
1536/*
1537 * Only to be called by the page allocator on a freshly allocated
1538 * page.
1539 */
1540static inline void set_page_pfmemalloc(struct page *page)
1541{
1542 page->index = -1UL;
1543}
1544
1545static inline void clear_page_pfmemalloc(struct page *page)
1546{
1547 page->index = 0;
1548}
1549
1c0fe6e3
NP
1550/*
1551 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1552 */
1553extern void pagefault_out_of_memory(void);
1554
1da177e4
LT
1555#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1556
ddd588b5 1557/*
7bf02ea2 1558 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1559 * various contexts.
1560 */
4b59e6c4 1561#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1562
9af744d7 1563extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1564
710ec38b 1565#ifdef CONFIG_MMU
7f43add4 1566extern bool can_do_mlock(void);
710ec38b
AB
1567#else
1568static inline bool can_do_mlock(void) { return false; }
1569#endif
1da177e4
LT
1570extern int user_shm_lock(size_t, struct user_struct *);
1571extern void user_shm_unlock(size_t, struct user_struct *);
1572
1573/*
1574 * Parameter block passed down to zap_pte_range in exceptional cases.
1575 */
1576struct zap_details {
1da177e4
LT
1577 struct address_space *check_mapping; /* Check page->mapping if set */
1578 pgoff_t first_index; /* Lowest page->index to unmap */
1579 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1580};
1581
25b2995a
CH
1582struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1583 pte_t pte);
28093f9f
GS
1584struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1585 pmd_t pmd);
7e675137 1586
27d036e3
LR
1587void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1588 unsigned long size);
14f5ff5d 1589void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1590 unsigned long size);
4f74d2c8
LT
1591void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1592 unsigned long start, unsigned long end);
e6473092 1593
ac46d4f3
JG
1594struct mmu_notifier_range;
1595
42b77728 1596void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1597 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1598int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1599 struct vm_area_struct *vma);
09796395 1600int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1601 struct mmu_notifier_range *range,
1602 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1603int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1604 unsigned long *pfn);
d87fe660 1605int follow_phys(struct vm_area_struct *vma, unsigned long address,
1606 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1607int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1608 void *buf, int len, int write);
1da177e4 1609
7caef267 1610extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1611extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1612void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1613void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1614int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1615int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1616int invalidate_inode_page(struct page *page);
1617
7ee1dd3f 1618#ifdef CONFIG_MMU
2b740303
SJ
1619extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1620 unsigned long address, unsigned int flags);
5c723ba5 1621extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1622 unsigned long address, unsigned int fault_flags,
1623 bool *unlocked);
977fbdcd
MW
1624void unmap_mapping_pages(struct address_space *mapping,
1625 pgoff_t start, pgoff_t nr, bool even_cows);
1626void unmap_mapping_range(struct address_space *mapping,
1627 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1628#else
2b740303 1629static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
dcddffd4 1630 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1631{
1632 /* should never happen if there's no MMU */
1633 BUG();
1634 return VM_FAULT_SIGBUS;
1635}
5c723ba5
PZ
1636static inline int fixup_user_fault(struct task_struct *tsk,
1637 struct mm_struct *mm, unsigned long address,
4a9e1cda 1638 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1639{
1640 /* should never happen if there's no MMU */
1641 BUG();
1642 return -EFAULT;
1643}
977fbdcd
MW
1644static inline void unmap_mapping_pages(struct address_space *mapping,
1645 pgoff_t start, pgoff_t nr, bool even_cows) { }
1646static inline void unmap_mapping_range(struct address_space *mapping,
1647 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1648#endif
f33ea7f4 1649
977fbdcd
MW
1650static inline void unmap_shared_mapping_range(struct address_space *mapping,
1651 loff_t const holebegin, loff_t const holelen)
1652{
1653 unmap_mapping_range(mapping, holebegin, holelen, 0);
1654}
1655
1656extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1657 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1658extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1659 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1660extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1661 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1662
1e987790
DH
1663long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1664 unsigned long start, unsigned long nr_pages,
9beae1ea 1665 unsigned int gup_flags, struct page **pages,
5b56d49f 1666 struct vm_area_struct **vmas, int *locked);
eddb1c22
JH
1667long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1668 unsigned long start, unsigned long nr_pages,
1669 unsigned int gup_flags, struct page **pages,
1670 struct vm_area_struct **vmas, int *locked);
c12d2da5 1671long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1672 unsigned int gup_flags, struct page **pages,
cde70140 1673 struct vm_area_struct **vmas);
eddb1c22
JH
1674long pin_user_pages(unsigned long start, unsigned long nr_pages,
1675 unsigned int gup_flags, struct page **pages,
1676 struct vm_area_struct **vmas);
c12d2da5 1677long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1678 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1679long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1680 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1681
73b0140b
IW
1682int get_user_pages_fast(unsigned long start, int nr_pages,
1683 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1684int pin_user_pages_fast(unsigned long start, int nr_pages,
1685 unsigned int gup_flags, struct page **pages);
8025e5dd 1686
79eb597c
DJ
1687int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1688int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1689 struct task_struct *task, bool bypass_rlim);
1690
8025e5dd
JK
1691/* Container for pinned pfns / pages */
1692struct frame_vector {
1693 unsigned int nr_allocated; /* Number of frames we have space for */
1694 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1695 bool got_ref; /* Did we pin pages by getting page ref? */
1696 bool is_pfns; /* Does array contain pages or pfns? */
1697 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1698 * pfns_vector_pages() or pfns_vector_pfns()
1699 * for access */
1700};
1701
1702struct frame_vector *frame_vector_create(unsigned int nr_frames);
1703void frame_vector_destroy(struct frame_vector *vec);
1704int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1705 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1706void put_vaddr_frames(struct frame_vector *vec);
1707int frame_vector_to_pages(struct frame_vector *vec);
1708void frame_vector_to_pfns(struct frame_vector *vec);
1709
1710static inline unsigned int frame_vector_count(struct frame_vector *vec)
1711{
1712 return vec->nr_frames;
1713}
1714
1715static inline struct page **frame_vector_pages(struct frame_vector *vec)
1716{
1717 if (vec->is_pfns) {
1718 int err = frame_vector_to_pages(vec);
1719
1720 if (err)
1721 return ERR_PTR(err);
1722 }
1723 return (struct page **)(vec->ptrs);
1724}
1725
1726static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1727{
1728 if (!vec->is_pfns)
1729 frame_vector_to_pfns(vec);
1730 return (unsigned long *)(vec->ptrs);
1731}
1732
18022c5d
MG
1733struct kvec;
1734int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1735 struct page **pages);
1736int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1737struct page *get_dump_page(unsigned long addr);
1da177e4 1738
cf9a2ae8 1739extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1740extern void do_invalidatepage(struct page *page, unsigned int offset,
1741 unsigned int length);
cf9a2ae8 1742
f82b3764 1743void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1744int __set_page_dirty_nobuffers(struct page *page);
76719325 1745int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1746int redirty_page_for_writepage(struct writeback_control *wbc,
1747 struct page *page);
62cccb8c 1748void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1749void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1750 struct bdi_writeback *wb);
b3c97528 1751int set_page_dirty(struct page *page);
1da177e4 1752int set_page_dirty_lock(struct page *page);
736304f3
JK
1753void __cancel_dirty_page(struct page *page);
1754static inline void cancel_dirty_page(struct page *page)
1755{
1756 /* Avoid atomic ops, locking, etc. when not actually needed. */
1757 if (PageDirty(page))
1758 __cancel_dirty_page(page);
1759}
1da177e4 1760int clear_page_dirty_for_io(struct page *page);
b9ea2515 1761
a9090253 1762int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1763
b6a2fea3
OW
1764extern unsigned long move_page_tables(struct vm_area_struct *vma,
1765 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1766 unsigned long new_addr, unsigned long len,
1767 bool need_rmap_locks);
7da4d641
PZ
1768extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1769 unsigned long end, pgprot_t newprot,
4b10e7d5 1770 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1771extern int mprotect_fixup(struct vm_area_struct *vma,
1772 struct vm_area_struct **pprev, unsigned long start,
1773 unsigned long end, unsigned long newflags);
1da177e4 1774
465a454f
PZ
1775/*
1776 * doesn't attempt to fault and will return short.
1777 */
1778int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1779 struct page **pages);
d559db08
KH
1780/*
1781 * per-process(per-mm_struct) statistics.
1782 */
d559db08
KH
1783static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1784{
69c97823
KK
1785 long val = atomic_long_read(&mm->rss_stat.count[member]);
1786
1787#ifdef SPLIT_RSS_COUNTING
1788 /*
1789 * counter is updated in asynchronous manner and may go to minus.
1790 * But it's never be expected number for users.
1791 */
1792 if (val < 0)
1793 val = 0;
172703b0 1794#endif
69c97823
KK
1795 return (unsigned long)val;
1796}
d559db08 1797
e4dcad20 1798void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1799
d559db08
KH
1800static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1801{
b3d1411b
JFG
1802 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1803
e4dcad20 1804 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1805}
1806
1807static inline void inc_mm_counter(struct mm_struct *mm, int member)
1808{
b3d1411b
JFG
1809 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1810
e4dcad20 1811 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1812}
1813
1814static inline void dec_mm_counter(struct mm_struct *mm, int member)
1815{
b3d1411b
JFG
1816 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1817
e4dcad20 1818 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1819}
1820
eca56ff9
JM
1821/* Optimized variant when page is already known not to be PageAnon */
1822static inline int mm_counter_file(struct page *page)
1823{
1824 if (PageSwapBacked(page))
1825 return MM_SHMEMPAGES;
1826 return MM_FILEPAGES;
1827}
1828
1829static inline int mm_counter(struct page *page)
1830{
1831 if (PageAnon(page))
1832 return MM_ANONPAGES;
1833 return mm_counter_file(page);
1834}
1835
d559db08
KH
1836static inline unsigned long get_mm_rss(struct mm_struct *mm)
1837{
1838 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1839 get_mm_counter(mm, MM_ANONPAGES) +
1840 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1841}
1842
1843static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1844{
1845 return max(mm->hiwater_rss, get_mm_rss(mm));
1846}
1847
1848static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1849{
1850 return max(mm->hiwater_vm, mm->total_vm);
1851}
1852
1853static inline void update_hiwater_rss(struct mm_struct *mm)
1854{
1855 unsigned long _rss = get_mm_rss(mm);
1856
1857 if ((mm)->hiwater_rss < _rss)
1858 (mm)->hiwater_rss = _rss;
1859}
1860
1861static inline void update_hiwater_vm(struct mm_struct *mm)
1862{
1863 if (mm->hiwater_vm < mm->total_vm)
1864 mm->hiwater_vm = mm->total_vm;
1865}
1866
695f0559
PC
1867static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1868{
1869 mm->hiwater_rss = get_mm_rss(mm);
1870}
1871
d559db08
KH
1872static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1873 struct mm_struct *mm)
1874{
1875 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1876
1877 if (*maxrss < hiwater_rss)
1878 *maxrss = hiwater_rss;
1879}
1880
53bddb4e 1881#if defined(SPLIT_RSS_COUNTING)
05af2e10 1882void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1883#else
05af2e10 1884static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1885{
1886}
1887#endif
465a454f 1888
17596731 1889#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
1890static inline int pte_devmap(pte_t pte)
1891{
1892 return 0;
1893}
1894#endif
1895
6d2329f8 1896int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1897
25ca1d6c
NK
1898extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1899 spinlock_t **ptl);
1900static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1901 spinlock_t **ptl)
1902{
1903 pte_t *ptep;
1904 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1905 return ptep;
1906}
c9cfcddf 1907
c2febafc
KS
1908#ifdef __PAGETABLE_P4D_FOLDED
1909static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1910 unsigned long address)
1911{
1912 return 0;
1913}
1914#else
1915int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1916#endif
1917
b4e98d9a 1918#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1919static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1920 unsigned long address)
1921{
1922 return 0;
1923}
b4e98d9a
KS
1924static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1925static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1926
5f22df00 1927#else
c2febafc 1928int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1929
b4e98d9a
KS
1930static inline void mm_inc_nr_puds(struct mm_struct *mm)
1931{
6d212db1
MS
1932 if (mm_pud_folded(mm))
1933 return;
af5b0f6a 1934 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1935}
1936
1937static inline void mm_dec_nr_puds(struct mm_struct *mm)
1938{
6d212db1
MS
1939 if (mm_pud_folded(mm))
1940 return;
af5b0f6a 1941 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1942}
5f22df00
NP
1943#endif
1944
2d2f5119 1945#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1946static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1947 unsigned long address)
1948{
1949 return 0;
1950}
dc6c9a35 1951
dc6c9a35
KS
1952static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1953static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1954
5f22df00 1955#else
1bb3630e 1956int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1957
dc6c9a35
KS
1958static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1959{
6d212db1
MS
1960 if (mm_pmd_folded(mm))
1961 return;
af5b0f6a 1962 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1963}
1964
1965static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1966{
6d212db1
MS
1967 if (mm_pmd_folded(mm))
1968 return;
af5b0f6a 1969 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1970}
5f22df00
NP
1971#endif
1972
c4812909 1973#ifdef CONFIG_MMU
af5b0f6a 1974static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1975{
af5b0f6a 1976 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1977}
1978
af5b0f6a 1979static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1980{
af5b0f6a 1981 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1982}
1983
1984static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1985{
af5b0f6a 1986 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1987}
1988
1989static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1990{
af5b0f6a 1991 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1992}
1993#else
c4812909 1994
af5b0f6a
KS
1995static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1996static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1997{
1998 return 0;
1999}
2000
2001static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2002static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2003#endif
2004
4cf58924
JFG
2005int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2006int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2007
f949286c
MR
2008#if defined(CONFIG_MMU)
2009
1da177e4 2010/*
f949286c
MR
2011 * The following ifdef needed to get the 5level-fixup.h header to work.
2012 * Remove it when 5level-fixup.h has been removed.
1da177e4 2013 */
505a60e2 2014#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
2015static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2016 unsigned long address)
2017{
2018 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2019 NULL : p4d_offset(pgd, address);
2020}
2021
2022static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2023 unsigned long address)
1da177e4 2024{
c2febafc
KS
2025 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2026 NULL : pud_offset(p4d, address);
1da177e4 2027}
505a60e2 2028#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
2029
2030static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2031{
1bb3630e
HD
2032 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2033 NULL: pmd_offset(pud, address);
1da177e4 2034}
f949286c 2035#endif /* CONFIG_MMU */
1bb3630e 2036
57c1ffce 2037#if USE_SPLIT_PTE_PTLOCKS
597d795a 2038#if ALLOC_SPLIT_PTLOCKS
b35f1819 2039void __init ptlock_cache_init(void);
539edb58
PZ
2040extern bool ptlock_alloc(struct page *page);
2041extern void ptlock_free(struct page *page);
2042
2043static inline spinlock_t *ptlock_ptr(struct page *page)
2044{
2045 return page->ptl;
2046}
597d795a 2047#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2048static inline void ptlock_cache_init(void)
2049{
2050}
2051
49076ec2
KS
2052static inline bool ptlock_alloc(struct page *page)
2053{
49076ec2
KS
2054 return true;
2055}
539edb58 2056
49076ec2
KS
2057static inline void ptlock_free(struct page *page)
2058{
49076ec2
KS
2059}
2060
2061static inline spinlock_t *ptlock_ptr(struct page *page)
2062{
539edb58 2063 return &page->ptl;
49076ec2 2064}
597d795a 2065#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2066
2067static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2068{
2069 return ptlock_ptr(pmd_page(*pmd));
2070}
2071
2072static inline bool ptlock_init(struct page *page)
2073{
2074 /*
2075 * prep_new_page() initialize page->private (and therefore page->ptl)
2076 * with 0. Make sure nobody took it in use in between.
2077 *
2078 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2079 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2080 */
309381fe 2081 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2082 if (!ptlock_alloc(page))
2083 return false;
2084 spin_lock_init(ptlock_ptr(page));
2085 return true;
2086}
2087
57c1ffce 2088#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2089/*
2090 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2091 */
49076ec2
KS
2092static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2093{
2094 return &mm->page_table_lock;
2095}
b35f1819 2096static inline void ptlock_cache_init(void) {}
49076ec2 2097static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2098static inline void ptlock_free(struct page *page) {}
57c1ffce 2099#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2100
b35f1819
KS
2101static inline void pgtable_init(void)
2102{
2103 ptlock_cache_init();
2104 pgtable_cache_init();
2105}
2106
b4ed71f5 2107static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2108{
706874e9
VD
2109 if (!ptlock_init(page))
2110 return false;
1d40a5ea 2111 __SetPageTable(page);
2f569afd 2112 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 2113 return true;
2f569afd
MS
2114}
2115
b4ed71f5 2116static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2117{
9e247bab 2118 ptlock_free(page);
1d40a5ea 2119 __ClearPageTable(page);
2f569afd
MS
2120 dec_zone_page_state(page, NR_PAGETABLE);
2121}
2122
c74df32c
HD
2123#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2124({ \
4c21e2f2 2125 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2126 pte_t *__pte = pte_offset_map(pmd, address); \
2127 *(ptlp) = __ptl; \
2128 spin_lock(__ptl); \
2129 __pte; \
2130})
2131
2132#define pte_unmap_unlock(pte, ptl) do { \
2133 spin_unlock(ptl); \
2134 pte_unmap(pte); \
2135} while (0)
2136
4cf58924 2137#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2138
2139#define pte_alloc_map(mm, pmd, address) \
4cf58924 2140 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2141
c74df32c 2142#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2143 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2144 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2145
1bb3630e 2146#define pte_alloc_kernel(pmd, address) \
4cf58924 2147 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2148 NULL: pte_offset_kernel(pmd, address))
1da177e4 2149
e009bb30
KS
2150#if USE_SPLIT_PMD_PTLOCKS
2151
634391ac
MS
2152static struct page *pmd_to_page(pmd_t *pmd)
2153{
2154 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2155 return virt_to_page((void *)((unsigned long) pmd & mask));
2156}
2157
e009bb30
KS
2158static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2159{
634391ac 2160 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2161}
2162
2163static inline bool pgtable_pmd_page_ctor(struct page *page)
2164{
e009bb30
KS
2165#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2166 page->pmd_huge_pte = NULL;
2167#endif
49076ec2 2168 return ptlock_init(page);
e009bb30
KS
2169}
2170
2171static inline void pgtable_pmd_page_dtor(struct page *page)
2172{
2173#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2174 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2175#endif
49076ec2 2176 ptlock_free(page);
e009bb30
KS
2177}
2178
634391ac 2179#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2180
2181#else
2182
9a86cb7b
KS
2183static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2184{
2185 return &mm->page_table_lock;
2186}
2187
e009bb30
KS
2188static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2189static inline void pgtable_pmd_page_dtor(struct page *page) {}
2190
c389a250 2191#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2192
e009bb30
KS
2193#endif
2194
9a86cb7b
KS
2195static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2196{
2197 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2198 spin_lock(ptl);
2199 return ptl;
2200}
2201
a00cc7d9
MW
2202/*
2203 * No scalability reason to split PUD locks yet, but follow the same pattern
2204 * as the PMD locks to make it easier if we decide to. The VM should not be
2205 * considered ready to switch to split PUD locks yet; there may be places
2206 * which need to be converted from page_table_lock.
2207 */
2208static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2209{
2210 return &mm->page_table_lock;
2211}
2212
2213static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2214{
2215 spinlock_t *ptl = pud_lockptr(mm, pud);
2216
2217 spin_lock(ptl);
2218 return ptl;
2219}
62906027 2220
a00cc7d9 2221extern void __init pagecache_init(void);
1da177e4 2222extern void free_area_init(unsigned long * zones_size);
03e85f9d 2223extern void __init free_area_init_node(int nid, unsigned long * zones_size,
9109fb7b 2224 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
2225extern void free_initmem(void);
2226
69afade7
JL
2227/*
2228 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2229 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2230 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2231 * Return pages freed into the buddy system.
2232 */
11199692 2233extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2234 int poison, const char *s);
c3d5f5f0 2235
cfa11e08
JL
2236#ifdef CONFIG_HIGHMEM
2237/*
2238 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2239 * and totalram_pages.
2240 */
2241extern void free_highmem_page(struct page *page);
2242#endif
69afade7 2243
c3d5f5f0 2244extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2245extern void mem_init_print_info(const char *str);
69afade7 2246
4b50bcc7 2247extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2248
69afade7
JL
2249/* Free the reserved page into the buddy system, so it gets managed. */
2250static inline void __free_reserved_page(struct page *page)
2251{
2252 ClearPageReserved(page);
2253 init_page_count(page);
2254 __free_page(page);
2255}
2256
2257static inline void free_reserved_page(struct page *page)
2258{
2259 __free_reserved_page(page);
2260 adjust_managed_page_count(page, 1);
2261}
2262
2263static inline void mark_page_reserved(struct page *page)
2264{
2265 SetPageReserved(page);
2266 adjust_managed_page_count(page, -1);
2267}
2268
2269/*
2270 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2271 * The freed pages will be poisoned with pattern "poison" if it's within
2272 * range [0, UCHAR_MAX].
2273 * Return pages freed into the buddy system.
69afade7
JL
2274 */
2275static inline unsigned long free_initmem_default(int poison)
2276{
2277 extern char __init_begin[], __init_end[];
2278
11199692 2279 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2280 poison, "unused kernel");
2281}
2282
7ee3d4e8
JL
2283static inline unsigned long get_num_physpages(void)
2284{
2285 int nid;
2286 unsigned long phys_pages = 0;
2287
2288 for_each_online_node(nid)
2289 phys_pages += node_present_pages(nid);
2290
2291 return phys_pages;
2292}
2293
0ee332c1 2294#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2295/*
0ee332c1 2296 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2297 * zones, allocate the backing mem_map and account for memory holes in a more
2298 * architecture independent manner. This is a substitute for creating the
2299 * zone_sizes[] and zholes_size[] arrays and passing them to
2300 * free_area_init_node()
2301 *
2302 * An architecture is expected to register range of page frames backed by
0ee332c1 2303 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2304 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2305 * usage, an architecture is expected to do something like
2306 *
2307 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2308 * max_highmem_pfn};
2309 * for_each_valid_physical_page_range()
0ee332c1 2310 * memblock_add_node(base, size, nid)
c713216d
MG
2311 * free_area_init_nodes(max_zone_pfns);
2312 *
0ee332c1
TH
2313 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2314 * registered physical page range. Similarly
2315 * sparse_memory_present_with_active_regions() calls memory_present() for
2316 * each range when SPARSEMEM is enabled.
c713216d
MG
2317 *
2318 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2319 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2320 */
2321extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2322unsigned long node_map_pfn_alignment(void);
32996250
YL
2323unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2324 unsigned long end_pfn);
c713216d
MG
2325extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2326 unsigned long end_pfn);
2327extern void get_pfn_range_for_nid(unsigned int nid,
2328 unsigned long *start_pfn, unsigned long *end_pfn);
2329extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2330extern void free_bootmem_with_active_regions(int nid,
2331 unsigned long max_low_pfn);
2332extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2333
0ee332c1 2334#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2335
0ee332c1 2336#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2337 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2338static inline int __early_pfn_to_nid(unsigned long pfn,
2339 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2340{
2341 return 0;
2342}
2343#else
2344/* please see mm/page_alloc.c */
2345extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2346/* there is a per-arch backend function. */
8a942fde
MG
2347extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2348 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2349#endif
2350
0e0b864e 2351extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2352extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2353 enum memmap_context, struct vmem_altmap *);
bc75d33f 2354extern void setup_per_zone_wmarks(void);
1b79acc9 2355extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2356extern void mem_init(void);
8feae131 2357extern void __init mmap_init(void);
9af744d7 2358extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2359extern long si_mem_available(void);
1da177e4
LT
2360extern void si_meminfo(struct sysinfo * val);
2361extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2362#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2363extern unsigned long arch_reserved_kernel_pages(void);
2364#endif
1da177e4 2365
a8e99259
MH
2366extern __printf(3, 4)
2367void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2368
e7c8d5c9 2369extern void setup_per_cpu_pageset(void);
e7c8d5c9 2370
75f7ad8e
PS
2371/* page_alloc.c */
2372extern int min_free_kbytes;
1c30844d 2373extern int watermark_boost_factor;
795ae7a0 2374extern int watermark_scale_factor;
75f7ad8e 2375
8feae131 2376/* nommu.c */
33e5d769 2377extern atomic_long_t mmap_pages_allocated;
7e660872 2378extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2379
6b2dbba8 2380/* interval_tree.c */
6b2dbba8 2381void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2382 struct rb_root_cached *root);
9826a516
ML
2383void vma_interval_tree_insert_after(struct vm_area_struct *node,
2384 struct vm_area_struct *prev,
f808c13f 2385 struct rb_root_cached *root);
6b2dbba8 2386void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2387 struct rb_root_cached *root);
2388struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2389 unsigned long start, unsigned long last);
2390struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2391 unsigned long start, unsigned long last);
2392
2393#define vma_interval_tree_foreach(vma, root, start, last) \
2394 for (vma = vma_interval_tree_iter_first(root, start, last); \
2395 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2396
bf181b9f 2397void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2398 struct rb_root_cached *root);
bf181b9f 2399void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2400 struct rb_root_cached *root);
2401struct anon_vma_chain *
2402anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2403 unsigned long start, unsigned long last);
bf181b9f
ML
2404struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2405 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2406#ifdef CONFIG_DEBUG_VM_RB
2407void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2408#endif
bf181b9f
ML
2409
2410#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2411 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2412 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2413
1da177e4 2414/* mmap.c */
34b4e4aa 2415extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2416extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2417 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2418 struct vm_area_struct *expand);
2419static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2420 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2421{
2422 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2423}
1da177e4
LT
2424extern struct vm_area_struct *vma_merge(struct mm_struct *,
2425 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2426 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2427 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2428extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2429extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2430 unsigned long addr, int new_below);
2431extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2432 unsigned long addr, int new_below);
1da177e4
LT
2433extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2434extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2435 struct rb_node **, struct rb_node *);
a8fb5618 2436extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2437extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2438 unsigned long addr, unsigned long len, pgoff_t pgoff,
2439 bool *need_rmap_locks);
1da177e4 2440extern void exit_mmap(struct mm_struct *);
925d1c40 2441
9c599024
CG
2442static inline int check_data_rlimit(unsigned long rlim,
2443 unsigned long new,
2444 unsigned long start,
2445 unsigned long end_data,
2446 unsigned long start_data)
2447{
2448 if (rlim < RLIM_INFINITY) {
2449 if (((new - start) + (end_data - start_data)) > rlim)
2450 return -ENOSPC;
2451 }
2452
2453 return 0;
2454}
2455
7906d00c
AA
2456extern int mm_take_all_locks(struct mm_struct *mm);
2457extern void mm_drop_all_locks(struct mm_struct *mm);
2458
38646013
JS
2459extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2460extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2461extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2462
84638335
KK
2463extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2464extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2465
2eefd878
DS
2466extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2467 const struct vm_special_mapping *sm);
3935ed6a
SS
2468extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2469 unsigned long addr, unsigned long len,
a62c34bd
AL
2470 unsigned long flags,
2471 const struct vm_special_mapping *spec);
2472/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2473extern int install_special_mapping(struct mm_struct *mm,
2474 unsigned long addr, unsigned long len,
2475 unsigned long flags, struct page **pages);
1da177e4 2476
649775be
AG
2477unsigned long randomize_stack_top(unsigned long stack_top);
2478
1da177e4
LT
2479extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2480
0165ab44 2481extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2482 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2483 struct list_head *uf);
1fcfd8db 2484extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2485 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2486 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2487 struct list_head *uf);
85a06835
YS
2488extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2489 struct list_head *uf, bool downgrade);
897ab3e0
MR
2490extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2491 struct list_head *uf);
db08ca25 2492extern int do_madvise(unsigned long start, size_t len_in, int behavior);
1da177e4 2493
1fcfd8db
ON
2494static inline unsigned long
2495do_mmap_pgoff(struct file *file, unsigned long addr,
2496 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2497 unsigned long pgoff, unsigned long *populate,
2498 struct list_head *uf)
1fcfd8db 2499{
897ab3e0 2500 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2501}
2502
bebeb3d6
ML
2503#ifdef CONFIG_MMU
2504extern int __mm_populate(unsigned long addr, unsigned long len,
2505 int ignore_errors);
2506static inline void mm_populate(unsigned long addr, unsigned long len)
2507{
2508 /* Ignore errors */
2509 (void) __mm_populate(addr, len, 1);
2510}
2511#else
2512static inline void mm_populate(unsigned long addr, unsigned long len) {}
2513#endif
2514
e4eb1ff6 2515/* These take the mm semaphore themselves */
5d22fc25 2516extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2517extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2518extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2519extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2520 unsigned long, unsigned long,
2521 unsigned long, unsigned long);
1da177e4 2522
db4fbfb9
ML
2523struct vm_unmapped_area_info {
2524#define VM_UNMAPPED_AREA_TOPDOWN 1
2525 unsigned long flags;
2526 unsigned long length;
2527 unsigned long low_limit;
2528 unsigned long high_limit;
2529 unsigned long align_mask;
2530 unsigned long align_offset;
2531};
2532
baceaf1c 2533extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2534
85821aab 2535/* truncate.c */
1da177e4 2536extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2537extern void truncate_inode_pages_range(struct address_space *,
2538 loff_t lstart, loff_t lend);
91b0abe3 2539extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2540
2541/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2542extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2543extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2544 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2545extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2546
2547/* mm/page-writeback.c */
2b69c828 2548int __must_check write_one_page(struct page *page);
1cf6e7d8 2549void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2550
2551/* readahead.c */
b5420237 2552#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
1da177e4 2553
1da177e4 2554int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2555 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2556
2557void page_cache_sync_readahead(struct address_space *mapping,
2558 struct file_ra_state *ra,
2559 struct file *filp,
2560 pgoff_t offset,
2561 unsigned long size);
2562
2563void page_cache_async_readahead(struct address_space *mapping,
2564 struct file_ra_state *ra,
2565 struct file *filp,
2566 struct page *pg,
2567 pgoff_t offset,
2568 unsigned long size);
2569
1be7107f 2570extern unsigned long stack_guard_gap;
d05f3169 2571/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2572extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2573
2574/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2575extern int expand_downwards(struct vm_area_struct *vma,
2576 unsigned long address);
8ca3eb08 2577#if VM_GROWSUP
46dea3d0 2578extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2579#else
fee7e49d 2580 #define expand_upwards(vma, address) (0)
9ab88515 2581#endif
1da177e4
LT
2582
2583/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2584extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2585extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2586 struct vm_area_struct **pprev);
2587
2588/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2589 NULL if none. Assume start_addr < end_addr. */
2590static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2591{
2592 struct vm_area_struct * vma = find_vma(mm,start_addr);
2593
2594 if (vma && end_addr <= vma->vm_start)
2595 vma = NULL;
2596 return vma;
2597}
2598
1be7107f
HD
2599static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2600{
2601 unsigned long vm_start = vma->vm_start;
2602
2603 if (vma->vm_flags & VM_GROWSDOWN) {
2604 vm_start -= stack_guard_gap;
2605 if (vm_start > vma->vm_start)
2606 vm_start = 0;
2607 }
2608 return vm_start;
2609}
2610
2611static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2612{
2613 unsigned long vm_end = vma->vm_end;
2614
2615 if (vma->vm_flags & VM_GROWSUP) {
2616 vm_end += stack_guard_gap;
2617 if (vm_end < vma->vm_end)
2618 vm_end = -PAGE_SIZE;
2619 }
2620 return vm_end;
2621}
2622
1da177e4
LT
2623static inline unsigned long vma_pages(struct vm_area_struct *vma)
2624{
2625 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2626}
2627
640708a2
PE
2628/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2629static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2630 unsigned long vm_start, unsigned long vm_end)
2631{
2632 struct vm_area_struct *vma = find_vma(mm, vm_start);
2633
2634 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2635 vma = NULL;
2636
2637 return vma;
2638}
2639
017b1660
MK
2640static inline bool range_in_vma(struct vm_area_struct *vma,
2641 unsigned long start, unsigned long end)
2642{
2643 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2644}
2645
bad849b3 2646#ifdef CONFIG_MMU
804af2cf 2647pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2648void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2649#else
2650static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2651{
2652 return __pgprot(0);
2653}
64e45507
PF
2654static inline void vma_set_page_prot(struct vm_area_struct *vma)
2655{
2656 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2657}
bad849b3
DH
2658#endif
2659
5877231f 2660#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2661unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2662 unsigned long start, unsigned long end);
2663#endif
2664
deceb6cd 2665struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2666int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2667 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2668int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
a667d745
SJ
2669int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2670 unsigned long num);
2671int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2672 unsigned long num);
ae2b01f3 2673vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2674 unsigned long pfn);
f5e6d1d5
MW
2675vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2676 unsigned long pfn, pgprot_t pgprot);
5d747637 2677vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2678 pfn_t pfn);
574c5b3d
TH
2679vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2680 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2681vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2682 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2683int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2684
1c8f4220
SJ
2685static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2686 unsigned long addr, struct page *page)
2687{
2688 int err = vm_insert_page(vma, addr, page);
2689
2690 if (err == -ENOMEM)
2691 return VM_FAULT_OOM;
2692 if (err < 0 && err != -EBUSY)
2693 return VM_FAULT_SIGBUS;
2694
2695 return VM_FAULT_NOPAGE;
2696}
2697
d97baf94
SJ
2698static inline vm_fault_t vmf_error(int err)
2699{
2700 if (err == -ENOMEM)
2701 return VM_FAULT_OOM;
2702 return VM_FAULT_SIGBUS;
2703}
2704
df06b37f
KB
2705struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2706 unsigned int foll_flags);
240aadee 2707
deceb6cd
HD
2708#define FOLL_WRITE 0x01 /* check pte is writable */
2709#define FOLL_TOUCH 0x02 /* mark page accessed */
2710#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2711#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2712#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2713#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2714 * and return without waiting upon it */
84d33df2 2715#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2716#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2717#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2718#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2719#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2720#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2721#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2722#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2723#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2724#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2725#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2726#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2727#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
932f4a63
IW
2728
2729/*
eddb1c22
JH
2730 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2731 * other. Here is what they mean, and how to use them:
932f4a63
IW
2732 *
2733 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2734 * period _often_ under userspace control. This is in contrast to
2735 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2736 *
2737 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2738 * lifetime enforced by the filesystem and we need guarantees that longterm
2739 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2740 * the filesystem. Ideas for this coordination include revoking the longterm
2741 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2742 * added after the problem with filesystems was found FS DAX VMAs are
2743 * specifically failed. Filesystem pages are still subject to bugs and use of
2744 * FOLL_LONGTERM should be avoided on those pages.
2745 *
2746 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2747 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2748 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2749 * is due to an incompatibility with the FS DAX check and
eddb1c22 2750 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2751 *
eddb1c22
JH
2752 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2753 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2754 * FOLL_LONGTERM is specified.
eddb1c22
JH
2755 *
2756 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2757 * but an additional pin counting system) will be invoked. This is intended for
2758 * anything that gets a page reference and then touches page data (for example,
2759 * Direct IO). This lets the filesystem know that some non-file-system entity is
2760 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2761 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2762 * a call to unpin_user_page().
eddb1c22
JH
2763 *
2764 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2765 * and separate refcounting mechanisms, however, and that means that each has
2766 * its own acquire and release mechanisms:
2767 *
2768 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2769 *
f1f6a7dd 2770 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2771 *
2772 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2773 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2774 * calls applied to them, and that's perfectly OK. This is a constraint on the
2775 * callers, not on the pages.)
2776 *
2777 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2778 * directly by the caller. That's in order to help avoid mismatches when
2779 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2780 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22
JH
2781 *
2782 * Please see Documentation/vm/pin_user_pages.rst for more information.
932f4a63 2783 */
1da177e4 2784
2b740303 2785static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2786{
2787 if (vm_fault & VM_FAULT_OOM)
2788 return -ENOMEM;
2789 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2790 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2791 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2792 return -EFAULT;
2793 return 0;
2794}
2795
8b1e0f81 2796typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2797extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2798 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2799extern int apply_to_existing_page_range(struct mm_struct *mm,
2800 unsigned long address, unsigned long size,
2801 pte_fn_t fn, void *data);
aee16b3c 2802
8823b1db
LA
2803#ifdef CONFIG_PAGE_POISONING
2804extern bool page_poisoning_enabled(void);
2805extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2806#else
2807static inline bool page_poisoning_enabled(void) { return false; }
2808static inline void kernel_poison_pages(struct page *page, int numpages,
2809 int enable) { }
2810#endif
2811
6471384a
AP
2812#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2813DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2814#else
2815DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2816#endif
2817static inline bool want_init_on_alloc(gfp_t flags)
2818{
2819 if (static_branch_unlikely(&init_on_alloc) &&
2820 !page_poisoning_enabled())
2821 return true;
2822 return flags & __GFP_ZERO;
2823}
2824
2825#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2826DECLARE_STATIC_KEY_TRUE(init_on_free);
2827#else
2828DECLARE_STATIC_KEY_FALSE(init_on_free);
2829#endif
2830static inline bool want_init_on_free(void)
2831{
2832 return static_branch_unlikely(&init_on_free) &&
2833 !page_poisoning_enabled();
2834}
2835
8e57f8ac
VB
2836#ifdef CONFIG_DEBUG_PAGEALLOC
2837extern void init_debug_pagealloc(void);
96a2b03f 2838#else
8e57f8ac 2839static inline void init_debug_pagealloc(void) {}
96a2b03f 2840#endif
8e57f8ac
VB
2841extern bool _debug_pagealloc_enabled_early;
2842DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2843
2844static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2845{
2846 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2847 _debug_pagealloc_enabled_early;
2848}
2849
2850/*
2851 * For use in fast paths after init_debug_pagealloc() has run, or when a
2852 * false negative result is not harmful when called too early.
2853 */
2854static inline bool debug_pagealloc_enabled_static(void)
031bc574 2855{
96a2b03f
VB
2856 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2857 return false;
2858
2859 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2860}
2861
d6332692
RE
2862#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2863extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2864
c87cbc1f
VB
2865/*
2866 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2867 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2868 */
031bc574
JK
2869static inline void
2870kernel_map_pages(struct page *page, int numpages, int enable)
2871{
031bc574
JK
2872 __kernel_map_pages(page, numpages, enable);
2873}
8a235efa
RW
2874#ifdef CONFIG_HIBERNATION
2875extern bool kernel_page_present(struct page *page);
40b44137 2876#endif /* CONFIG_HIBERNATION */
d6332692 2877#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2878static inline void
9858db50 2879kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2880#ifdef CONFIG_HIBERNATION
2881static inline bool kernel_page_present(struct page *page) { return true; }
40b44137 2882#endif /* CONFIG_HIBERNATION */
d6332692 2883#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2884
a6c19dfe 2885#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2886extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2887extern int in_gate_area_no_mm(unsigned long addr);
2888extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2889#else
a6c19dfe
AL
2890static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2891{
2892 return NULL;
2893}
2894static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2895static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2896{
2897 return 0;
2898}
1da177e4
LT
2899#endif /* __HAVE_ARCH_GATE_AREA */
2900
44a70ade
MH
2901extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2902
146732ce
JT
2903#ifdef CONFIG_SYSCTL
2904extern int sysctl_drop_caches;
8d65af78 2905int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2906 void __user *, size_t *, loff_t *);
146732ce
JT
2907#endif
2908
cb731d6c
VD
2909void drop_slab(void);
2910void drop_slab_node(int nid);
9d0243bc 2911
7a9166e3
LY
2912#ifndef CONFIG_MMU
2913#define randomize_va_space 0
2914#else
a62eaf15 2915extern int randomize_va_space;
7a9166e3 2916#endif
a62eaf15 2917
045e72ac 2918const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 2919#ifdef CONFIG_MMU
03252919 2920void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
2921#else
2922static inline void print_vma_addr(char *prefix, unsigned long rip)
2923{
2924}
2925#endif
e6e5494c 2926
35fd1eb1 2927void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
2928struct page * __populate_section_memmap(unsigned long pfn,
2929 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 2930pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2931p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2932pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2933pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2934pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2935void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2936struct vmem_altmap;
a8fc357b
CH
2937void *vmemmap_alloc_block_buf(unsigned long size, int node);
2938void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2939void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2940int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2941 int node);
7b73d978
CH
2942int vmemmap_populate(unsigned long start, unsigned long end, int node,
2943 struct vmem_altmap *altmap);
c2b91e2e 2944void vmemmap_populate_print_last(void);
0197518c 2945#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2946void vmemmap_free(unsigned long start, unsigned long end,
2947 struct vmem_altmap *altmap);
0197518c 2948#endif
46723bfa 2949void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2950 unsigned long nr_pages);
6a46079c 2951
82ba011b
AK
2952enum mf_flags {
2953 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2954 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2955 MF_MUST_KILL = 1 << 2,
cf870c70 2956 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2957};
83b57531
EB
2958extern int memory_failure(unsigned long pfn, int flags);
2959extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 2960extern int unpoison_memory(unsigned long pfn);
ead07f6a 2961extern int get_hwpoison_page(struct page *page);
4e41a30c 2962#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2963extern int sysctl_memory_failure_early_kill;
2964extern int sysctl_memory_failure_recovery;
facb6011 2965extern void shake_page(struct page *p, int access);
5844a486 2966extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 2967extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 2968
cc637b17
XX
2969
2970/*
2971 * Error handlers for various types of pages.
2972 */
cc3e2af4 2973enum mf_result {
cc637b17
XX
2974 MF_IGNORED, /* Error: cannot be handled */
2975 MF_FAILED, /* Error: handling failed */
2976 MF_DELAYED, /* Will be handled later */
2977 MF_RECOVERED, /* Successfully recovered */
2978};
2979
2980enum mf_action_page_type {
2981 MF_MSG_KERNEL,
2982 MF_MSG_KERNEL_HIGH_ORDER,
2983 MF_MSG_SLAB,
2984 MF_MSG_DIFFERENT_COMPOUND,
2985 MF_MSG_POISONED_HUGE,
2986 MF_MSG_HUGE,
2987 MF_MSG_FREE_HUGE,
31286a84 2988 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2989 MF_MSG_UNMAP_FAILED,
2990 MF_MSG_DIRTY_SWAPCACHE,
2991 MF_MSG_CLEAN_SWAPCACHE,
2992 MF_MSG_DIRTY_MLOCKED_LRU,
2993 MF_MSG_CLEAN_MLOCKED_LRU,
2994 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2995 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2996 MF_MSG_DIRTY_LRU,
2997 MF_MSG_CLEAN_LRU,
2998 MF_MSG_TRUNCATED_LRU,
2999 MF_MSG_BUDDY,
3000 MF_MSG_BUDDY_2ND,
6100e34b 3001 MF_MSG_DAX,
cc637b17
XX
3002 MF_MSG_UNKNOWN,
3003};
3004
47ad8475
AA
3005#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3006extern void clear_huge_page(struct page *page,
c79b57e4 3007 unsigned long addr_hint,
47ad8475
AA
3008 unsigned int pages_per_huge_page);
3009extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3010 unsigned long addr_hint,
3011 struct vm_area_struct *vma,
47ad8475 3012 unsigned int pages_per_huge_page);
fa4d75c1
MK
3013extern long copy_huge_page_from_user(struct page *dst_page,
3014 const void __user *usr_src,
810a56b9
MK
3015 unsigned int pages_per_huge_page,
3016 bool allow_pagefault);
2484ca9b
THV
3017
3018/**
3019 * vma_is_special_huge - Are transhuge page-table entries considered special?
3020 * @vma: Pointer to the struct vm_area_struct to consider
3021 *
3022 * Whether transhuge page-table entries are considered "special" following
3023 * the definition in vm_normal_page().
3024 *
3025 * Return: true if transhuge page-table entries should be considered special,
3026 * false otherwise.
3027 */
3028static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3029{
3030 return vma_is_dax(vma) || (vma->vm_file &&
3031 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3032}
3033
47ad8475
AA
3034#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3035
c0a32fc5
SG
3036#ifdef CONFIG_DEBUG_PAGEALLOC
3037extern unsigned int _debug_guardpage_minorder;
96a2b03f 3038DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3039
3040static inline unsigned int debug_guardpage_minorder(void)
3041{
3042 return _debug_guardpage_minorder;
3043}
3044
e30825f1
JK
3045static inline bool debug_guardpage_enabled(void)
3046{
96a2b03f 3047 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3048}
3049
c0a32fc5
SG
3050static inline bool page_is_guard(struct page *page)
3051{
e30825f1
JK
3052 if (!debug_guardpage_enabled())
3053 return false;
3054
3972f6bb 3055 return PageGuard(page);
c0a32fc5
SG
3056}
3057#else
3058static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3059static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3060static inline bool page_is_guard(struct page *page) { return false; }
3061#endif /* CONFIG_DEBUG_PAGEALLOC */
3062
f9872caf
CS
3063#if MAX_NUMNODES > 1
3064void __init setup_nr_node_ids(void);
3065#else
3066static inline void setup_nr_node_ids(void) {}
3067#endif
3068
010c164a
SL
3069extern int memcmp_pages(struct page *page1, struct page *page2);
3070
3071static inline int pages_identical(struct page *page1, struct page *page2)
3072{
3073 return !memcmp_pages(page1, page2);
3074}
3075
c5acad84
TH
3076#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3077unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3078 pgoff_t first_index, pgoff_t nr,
3079 pgoff_t bitmap_pgoff,
3080 unsigned long *bitmap,
3081 pgoff_t *start,
3082 pgoff_t *end);
3083
3084unsigned long wp_shared_mapping_range(struct address_space *mapping,
3085 pgoff_t first_index, pgoff_t nr);
3086#endif
3087
1da177e4
LT
3088#endif /* __KERNEL__ */
3089#endif /* _LINUX_MM_H */