arm64: mm: implement pte_devmap support
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
3b3b1a29 28#include <linux/overflow.h>
b5420237 29#include <linux/sizes.h>
1da177e4
LT
30
31struct mempolicy;
32struct anon_vma;
bf181b9f 33struct anon_vma_chain;
4e950f6f 34struct file_ra_state;
e8edc6e0 35struct user_struct;
4e950f6f 36struct writeback_control;
682aa8e1 37struct bdi_writeback;
1da177e4 38
597b7305
MH
39void init_mm_internals(void);
40
fccc9987 41#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 42extern unsigned long max_mapnr;
fccc9987
JL
43
44static inline void set_max_mapnr(unsigned long limit)
45{
46 max_mapnr = limit;
47}
48#else
49static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
50#endif
51
ca79b0c2
AK
52extern atomic_long_t _totalram_pages;
53static inline unsigned long totalram_pages(void)
54{
55 return (unsigned long)atomic_long_read(&_totalram_pages);
56}
57
58static inline void totalram_pages_inc(void)
59{
60 atomic_long_inc(&_totalram_pages);
61}
62
63static inline void totalram_pages_dec(void)
64{
65 atomic_long_dec(&_totalram_pages);
66}
67
68static inline void totalram_pages_add(long count)
69{
70 atomic_long_add(count, &_totalram_pages);
71}
72
73static inline void totalram_pages_set(long val)
74{
75 atomic_long_set(&_totalram_pages, val);
76}
77
1da177e4 78extern void * high_memory;
1da177e4
LT
79extern int page_cluster;
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
d07e2259
DC
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
1da177e4
LT
98#include <asm/page.h>
99#include <asm/pgtable.h>
100#include <asm/processor.h>
1da177e4 101
d9344522
AK
102/*
103 * Architectures that support memory tagging (assigning tags to memory regions,
104 * embedding these tags into addresses that point to these memory regions, and
105 * checking that the memory and the pointer tags match on memory accesses)
106 * redefine this macro to strip tags from pointers.
107 * It's defined as noop for arcitectures that don't support memory tagging.
108 */
109#ifndef untagged_addr
110#define untagged_addr(addr) (addr)
111#endif
112
79442ed1
TC
113#ifndef __pa_symbol
114#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
115#endif
116
1dff8083
AB
117#ifndef page_to_virt
118#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
119#endif
120
568c5fe5
LA
121#ifndef lm_alias
122#define lm_alias(x) __va(__pa_symbol(x))
123#endif
124
593befa6
DD
125/*
126 * To prevent common memory management code establishing
127 * a zero page mapping on a read fault.
128 * This macro should be defined within <asm/pgtable.h>.
129 * s390 does this to prevent multiplexing of hardware bits
130 * related to the physical page in case of virtualization.
131 */
132#ifndef mm_forbids_zeropage
133#define mm_forbids_zeropage(X) (0)
134#endif
135
a4a3ede2
PT
136/*
137 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
138 * If an architecture decides to implement their own version of
139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 141 */
5470dea4
AD
142#if BITS_PER_LONG == 64
143/* This function must be updated when the size of struct page grows above 80
144 * or reduces below 56. The idea that compiler optimizes out switch()
145 * statement, and only leaves move/store instructions. Also the compiler can
146 * combine write statments if they are both assignments and can be reordered,
147 * this can result in several of the writes here being dropped.
148 */
149#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
150static inline void __mm_zero_struct_page(struct page *page)
151{
152 unsigned long *_pp = (void *)page;
153
154 /* Check that struct page is either 56, 64, 72, or 80 bytes */
155 BUILD_BUG_ON(sizeof(struct page) & 7);
156 BUILD_BUG_ON(sizeof(struct page) < 56);
157 BUILD_BUG_ON(sizeof(struct page) > 80);
158
159 switch (sizeof(struct page)) {
160 case 80:
161 _pp[9] = 0; /* fallthrough */
162 case 72:
163 _pp[8] = 0; /* fallthrough */
164 case 64:
165 _pp[7] = 0; /* fallthrough */
166 case 56:
167 _pp[6] = 0;
168 _pp[5] = 0;
169 _pp[4] = 0;
170 _pp[3] = 0;
171 _pp[2] = 0;
172 _pp[1] = 0;
173 _pp[0] = 0;
174 }
175}
176#else
a4a3ede2
PT
177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
178#endif
179
ea606cf5
AR
180/*
181 * Default maximum number of active map areas, this limits the number of vmas
182 * per mm struct. Users can overwrite this number by sysctl but there is a
183 * problem.
184 *
185 * When a program's coredump is generated as ELF format, a section is created
186 * per a vma. In ELF, the number of sections is represented in unsigned short.
187 * This means the number of sections should be smaller than 65535 at coredump.
188 * Because the kernel adds some informative sections to a image of program at
189 * generating coredump, we need some margin. The number of extra sections is
190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 *
192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193 * not a hard limit any more. Although some userspace tools can be surprised by
194 * that.
195 */
196#define MAPCOUNT_ELF_CORE_MARGIN (5)
197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198
199extern int sysctl_max_map_count;
200
c9b1d098 201extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 202extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 203
49f0ce5f
JM
204extern int sysctl_overcommit_memory;
205extern int sysctl_overcommit_ratio;
206extern unsigned long sysctl_overcommit_kbytes;
207
208extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
209 size_t *, loff_t *);
210extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
211 size_t *, loff_t *);
212
1da177e4
LT
213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214
27ac792c
AR
215/* to align the pointer to the (next) page boundary */
216#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217
0fa73b86 218/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 219#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 220
f86196ea
NB
221#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222
1da177e4
LT
223/*
224 * Linux kernel virtual memory manager primitives.
225 * The idea being to have a "virtual" mm in the same way
226 * we have a virtual fs - giving a cleaner interface to the
227 * mm details, and allowing different kinds of memory mappings
228 * (from shared memory to executable loading to arbitrary
229 * mmap() functions).
230 */
231
490fc053 232struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
233struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234void vm_area_free(struct vm_area_struct *);
c43692e8 235
1da177e4 236#ifndef CONFIG_MMU
8feae131
DH
237extern struct rb_root nommu_region_tree;
238extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
239
240extern unsigned int kobjsize(const void *objp);
241#endif
242
243/*
605d9288 244 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 245 * When changing, update also include/trace/events/mmflags.h
1da177e4 246 */
cc2383ec
KK
247#define VM_NONE 0x00000000
248
1da177e4
LT
249#define VM_READ 0x00000001 /* currently active flags */
250#define VM_WRITE 0x00000002
251#define VM_EXEC 0x00000004
252#define VM_SHARED 0x00000008
253
7e2cff42 254/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
255#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
256#define VM_MAYWRITE 0x00000020
257#define VM_MAYEXEC 0x00000040
258#define VM_MAYSHARE 0x00000080
259
260#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 261#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 262#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 263#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 264#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 265
1da177e4
LT
266#define VM_LOCKED 0x00002000
267#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
268
269 /* Used by sys_madvise() */
270#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
271#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
272
273#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
274#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 275#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 276#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 277#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 278#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 279#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 280#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 281#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 282#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 283
d9104d1c
CG
284#ifdef CONFIG_MEM_SOFT_DIRTY
285# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
286#else
287# define VM_SOFTDIRTY 0
288#endif
289
b379d790 290#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
291#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
292#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 293#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 294
63c17fb8
DH
295#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
297#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
298#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
299#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 300#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
301#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
302#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
303#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
304#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 305#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
306#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307
5212213a 308#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
309# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
310# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 311# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
312# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
313# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
314#ifdef CONFIG_PPC
315# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
316#else
317# define VM_PKEY_BIT4 0
8f62c883 318#endif
5212213a
RP
319#endif /* CONFIG_ARCH_HAS_PKEYS */
320
321#if defined(CONFIG_X86)
322# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
323#elif defined(CONFIG_PPC)
324# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
325#elif defined(CONFIG_PARISC)
326# define VM_GROWSUP VM_ARCH_1
327#elif defined(CONFIG_IA64)
328# define VM_GROWSUP VM_ARCH_1
74a04967
KA
329#elif defined(CONFIG_SPARC64)
330# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
331# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
332#elif !defined(CONFIG_MMU)
333# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
334#endif
335
df3735c5 336#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 337/* MPX specific bounds table or bounds directory */
fa87b91c 338# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
339#else
340# define VM_MPX VM_NONE
4aae7e43
QR
341#endif
342
cc2383ec
KK
343#ifndef VM_GROWSUP
344# define VM_GROWSUP VM_NONE
345#endif
346
a8bef8ff
MG
347/* Bits set in the VMA until the stack is in its final location */
348#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
349
1da177e4
LT
350#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
351#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
352#endif
353
354#ifdef CONFIG_STACK_GROWSUP
30bdbb78 355#define VM_STACK VM_GROWSUP
1da177e4 356#else
30bdbb78 357#define VM_STACK VM_GROWSDOWN
1da177e4
LT
358#endif
359
30bdbb78
KK
360#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
361
b291f000 362/*
78f11a25
AA
363 * Special vmas that are non-mergable, non-mlock()able.
364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 365 */
9050d7eb 366#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 367
a0715cc2
AT
368/* This mask defines which mm->def_flags a process can inherit its parent */
369#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
370
de60f5f1
EM
371/* This mask is used to clear all the VMA flags used by mlock */
372#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
373
2c2d57b5
KA
374/* Arch-specific flags to clear when updating VM flags on protection change */
375#ifndef VM_ARCH_CLEAR
376# define VM_ARCH_CLEAR VM_NONE
377#endif
378#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
379
1da177e4
LT
380/*
381 * mapping from the currently active vm_flags protection bits (the
382 * low four bits) to a page protection mask..
383 */
384extern pgprot_t protection_map[16];
385
d0217ac0 386#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
387#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
388#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
389#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
390#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
391#define FAULT_FLAG_TRIED 0x20 /* Second try */
392#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 393#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 394#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 395
282a8e03
RZ
396#define FAULT_FLAG_TRACE \
397 { FAULT_FLAG_WRITE, "WRITE" }, \
398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
402 { FAULT_FLAG_TRIED, "TRIED" }, \
403 { FAULT_FLAG_USER, "USER" }, \
404 { FAULT_FLAG_REMOTE, "REMOTE" }, \
405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
406
54cb8821 407/*
d0217ac0 408 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
409 * ->fault function. The vma's ->fault is responsible for returning a bitmask
410 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 411 *
c20cd45e
MH
412 * MM layer fills up gfp_mask for page allocations but fault handler might
413 * alter it if its implementation requires a different allocation context.
414 *
9b4bdd2f 415 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 416 */
d0217ac0 417struct vm_fault {
82b0f8c3 418 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 419 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 420 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 421 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 422 unsigned long address; /* Faulting virtual address */
82b0f8c3 423 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 424 * the 'address' */
a2d58167
DJ
425 pud_t *pud; /* Pointer to pud entry matching
426 * the 'address'
427 */
2994302b 428 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 429
3917048d
JK
430 struct page *cow_page; /* Page handler may use for COW fault */
431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 432 struct page *page; /* ->fault handlers should return a
83c54070 433 * page here, unless VM_FAULT_NOPAGE
d0217ac0 434 * is set (which is also implied by
83c54070 435 * VM_FAULT_ERROR).
d0217ac0 436 */
82b0f8c3 437 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
438 pte_t *pte; /* Pointer to pte entry matching
439 * the 'address'. NULL if the page
440 * table hasn't been allocated.
441 */
442 spinlock_t *ptl; /* Page table lock.
443 * Protects pte page table if 'pte'
444 * is not NULL, otherwise pmd.
445 */
7267ec00
KS
446 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
447 * vm_ops->map_pages() calls
448 * alloc_set_pte() from atomic context.
449 * do_fault_around() pre-allocates
450 * page table to avoid allocation from
451 * atomic context.
452 */
54cb8821 453};
1da177e4 454
c791ace1
DJ
455/* page entry size for vm->huge_fault() */
456enum page_entry_size {
457 PE_SIZE_PTE = 0,
458 PE_SIZE_PMD,
459 PE_SIZE_PUD,
460};
461
1da177e4
LT
462/*
463 * These are the virtual MM functions - opening of an area, closing and
464 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 465 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
466 */
467struct vm_operations_struct {
468 void (*open)(struct vm_area_struct * area);
469 void (*close)(struct vm_area_struct * area);
31383c68 470 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 471 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
472 vm_fault_t (*fault)(struct vm_fault *vmf);
473 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
474 enum page_entry_size pe_size);
82b0f8c3 475 void (*map_pages)(struct vm_fault *vmf,
bae473a4 476 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 477 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
478
479 /* notification that a previously read-only page is about to become
480 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 482
dd906184 483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 485
28b2ee20
RR
486 /* called by access_process_vm when get_user_pages() fails, typically
487 * for use by special VMAs that can switch between memory and hardware
488 */
489 int (*access)(struct vm_area_struct *vma, unsigned long addr,
490 void *buf, int len, int write);
78d683e8
AL
491
492 /* Called by the /proc/PID/maps code to ask the vma whether it
493 * has a special name. Returning non-NULL will also cause this
494 * vma to be dumped unconditionally. */
495 const char *(*name)(struct vm_area_struct *vma);
496
1da177e4 497#ifdef CONFIG_NUMA
a6020ed7
LS
498 /*
499 * set_policy() op must add a reference to any non-NULL @new mempolicy
500 * to hold the policy upon return. Caller should pass NULL @new to
501 * remove a policy and fall back to surrounding context--i.e. do not
502 * install a MPOL_DEFAULT policy, nor the task or system default
503 * mempolicy.
504 */
1da177e4 505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
506
507 /*
508 * get_policy() op must add reference [mpol_get()] to any policy at
509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
510 * in mm/mempolicy.c will do this automatically.
511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
514 * must return NULL--i.e., do not "fallback" to task or system default
515 * policy.
516 */
1da177e4
LT
517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
518 unsigned long addr);
519#endif
667a0a06
DV
520 /*
521 * Called by vm_normal_page() for special PTEs to find the
522 * page for @addr. This is useful if the default behavior
523 * (using pte_page()) would not find the correct page.
524 */
525 struct page *(*find_special_page)(struct vm_area_struct *vma,
526 unsigned long addr);
1da177e4
LT
527};
528
027232da
KS
529static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
530{
bfd40eaf
KS
531 static const struct vm_operations_struct dummy_vm_ops = {};
532
a670468f 533 memset(vma, 0, sizeof(*vma));
027232da 534 vma->vm_mm = mm;
bfd40eaf 535 vma->vm_ops = &dummy_vm_ops;
027232da
KS
536 INIT_LIST_HEAD(&vma->anon_vma_chain);
537}
538
bfd40eaf
KS
539static inline void vma_set_anonymous(struct vm_area_struct *vma)
540{
541 vma->vm_ops = NULL;
542}
543
8b11ec1b
LT
544/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
545#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
546
1da177e4
LT
547struct mmu_gather;
548struct inode;
549
17596731 550#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
5c7fb56e
DW
551static inline int pmd_devmap(pmd_t pmd)
552{
553 return 0;
554}
a00cc7d9
MW
555static inline int pud_devmap(pud_t pud)
556{
557 return 0;
558}
b59f65fa
KS
559static inline int pgd_devmap(pgd_t pgd)
560{
561 return 0;
562}
5c7fb56e
DW
563#endif
564
1da177e4
LT
565/*
566 * FIXME: take this include out, include page-flags.h in
567 * files which need it (119 of them)
568 */
569#include <linux/page-flags.h>
71e3aac0 570#include <linux/huge_mm.h>
1da177e4
LT
571
572/*
573 * Methods to modify the page usage count.
574 *
575 * What counts for a page usage:
576 * - cache mapping (page->mapping)
577 * - private data (page->private)
578 * - page mapped in a task's page tables, each mapping
579 * is counted separately
580 *
581 * Also, many kernel routines increase the page count before a critical
582 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
583 */
584
585/*
da6052f7 586 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 587 */
7c8ee9a8
NP
588static inline int put_page_testzero(struct page *page)
589{
fe896d18
JK
590 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
591 return page_ref_dec_and_test(page);
7c8ee9a8 592}
1da177e4
LT
593
594/*
7c8ee9a8
NP
595 * Try to grab a ref unless the page has a refcount of zero, return false if
596 * that is the case.
8e0861fa
AK
597 * This can be called when MMU is off so it must not access
598 * any of the virtual mappings.
1da177e4 599 */
7c8ee9a8
NP
600static inline int get_page_unless_zero(struct page *page)
601{
fe896d18 602 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 603}
1da177e4 604
53df8fdc 605extern int page_is_ram(unsigned long pfn);
124fe20d
DW
606
607enum {
608 REGION_INTERSECTS,
609 REGION_DISJOINT,
610 REGION_MIXED,
611};
612
1c29f25b
TK
613int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
614 unsigned long desc);
53df8fdc 615
48667e7a 616/* Support for virtually mapped pages */
b3bdda02
CL
617struct page *vmalloc_to_page(const void *addr);
618unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 619
0738c4bb
PM
620/*
621 * Determine if an address is within the vmalloc range
622 *
623 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
624 * is no special casing required.
625 */
bb00a789 626static inline bool is_vmalloc_addr(const void *x)
9e2779fa 627{
0738c4bb 628#ifdef CONFIG_MMU
9e2779fa
CL
629 unsigned long addr = (unsigned long)x;
630
631 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 632#else
bb00a789 633 return false;
8ca3ed87 634#endif
0738c4bb 635}
9bd3bb67
AK
636
637#ifndef is_ioremap_addr
638#define is_ioremap_addr(x) is_vmalloc_addr(x)
639#endif
640
81ac3ad9
KH
641#ifdef CONFIG_MMU
642extern int is_vmalloc_or_module_addr(const void *x);
643#else
934831d0 644static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
645{
646 return 0;
647}
648#endif
9e2779fa 649
a7c3e901
MH
650extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
651static inline void *kvmalloc(size_t size, gfp_t flags)
652{
653 return kvmalloc_node(size, flags, NUMA_NO_NODE);
654}
655static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
656{
657 return kvmalloc_node(size, flags | __GFP_ZERO, node);
658}
659static inline void *kvzalloc(size_t size, gfp_t flags)
660{
661 return kvmalloc(size, flags | __GFP_ZERO);
662}
663
752ade68
MH
664static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
665{
3b3b1a29
KC
666 size_t bytes;
667
668 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
669 return NULL;
670
3b3b1a29 671 return kvmalloc(bytes, flags);
752ade68
MH
672}
673
1c542f38
KC
674static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
675{
676 return kvmalloc_array(n, size, flags | __GFP_ZERO);
677}
678
39f1f78d
AV
679extern void kvfree(const void *addr);
680
53f9263b
KS
681static inline atomic_t *compound_mapcount_ptr(struct page *page)
682{
683 return &page[1].compound_mapcount;
684}
685
686static inline int compound_mapcount(struct page *page)
687{
5f527c2b 688 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
689 page = compound_head(page);
690 return atomic_read(compound_mapcount_ptr(page)) + 1;
691}
692
70b50f94
AA
693/*
694 * The atomic page->_mapcount, starts from -1: so that transitions
695 * both from it and to it can be tracked, using atomic_inc_and_test
696 * and atomic_add_negative(-1).
697 */
22b751c3 698static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
699{
700 atomic_set(&(page)->_mapcount, -1);
701}
702
b20ce5e0
KS
703int __page_mapcount(struct page *page);
704
70b50f94
AA
705static inline int page_mapcount(struct page *page)
706{
1d148e21 707 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 708
b20ce5e0
KS
709 if (unlikely(PageCompound(page)))
710 return __page_mapcount(page);
711 return atomic_read(&page->_mapcount) + 1;
712}
713
714#ifdef CONFIG_TRANSPARENT_HUGEPAGE
715int total_mapcount(struct page *page);
6d0a07ed 716int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
717#else
718static inline int total_mapcount(struct page *page)
719{
720 return page_mapcount(page);
70b50f94 721}
6d0a07ed
AA
722static inline int page_trans_huge_mapcount(struct page *page,
723 int *total_mapcount)
724{
725 int mapcount = page_mapcount(page);
726 if (total_mapcount)
727 *total_mapcount = mapcount;
728 return mapcount;
729}
b20ce5e0 730#endif
70b50f94 731
b49af68f
CL
732static inline struct page *virt_to_head_page(const void *x)
733{
734 struct page *page = virt_to_page(x);
ccaafd7f 735
1d798ca3 736 return compound_head(page);
b49af68f
CL
737}
738
ddc58f27
KS
739void __put_page(struct page *page);
740
1d7ea732 741void put_pages_list(struct list_head *pages);
1da177e4 742
8dfcc9ba 743void split_page(struct page *page, unsigned int order);
8dfcc9ba 744
33f2ef89
AW
745/*
746 * Compound pages have a destructor function. Provide a
747 * prototype for that function and accessor functions.
f1e61557 748 * These are _only_ valid on the head of a compound page.
33f2ef89 749 */
f1e61557
KS
750typedef void compound_page_dtor(struct page *);
751
752/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
753enum compound_dtor_id {
754 NULL_COMPOUND_DTOR,
755 COMPOUND_PAGE_DTOR,
756#ifdef CONFIG_HUGETLB_PAGE
757 HUGETLB_PAGE_DTOR,
9a982250
KS
758#endif
759#ifdef CONFIG_TRANSPARENT_HUGEPAGE
760 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
761#endif
762 NR_COMPOUND_DTORS,
763};
764extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
765
766static inline void set_compound_page_dtor(struct page *page,
f1e61557 767 enum compound_dtor_id compound_dtor)
33f2ef89 768{
f1e61557
KS
769 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
770 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
771}
772
773static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
774{
f1e61557
KS
775 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
776 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
777}
778
d00181b9 779static inline unsigned int compound_order(struct page *page)
d85f3385 780{
6d777953 781 if (!PageHead(page))
d85f3385 782 return 0;
e4b294c2 783 return page[1].compound_order;
d85f3385
CL
784}
785
f1e61557 786static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 787{
e4b294c2 788 page[1].compound_order = order;
d85f3385
CL
789}
790
9a982250
KS
791void free_compound_page(struct page *page);
792
3dece370 793#ifdef CONFIG_MMU
14fd403f
AA
794/*
795 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
796 * servicing faults for write access. In the normal case, do always want
797 * pte_mkwrite. But get_user_pages can cause write faults for mappings
798 * that do not have writing enabled, when used by access_process_vm.
799 */
800static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
801{
802 if (likely(vma->vm_flags & VM_WRITE))
803 pte = pte_mkwrite(pte);
804 return pte;
805}
8c6e50b0 806
2b740303 807vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 808 struct page *page);
2b740303
SJ
809vm_fault_t finish_fault(struct vm_fault *vmf);
810vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 811#endif
14fd403f 812
1da177e4
LT
813/*
814 * Multiple processes may "see" the same page. E.g. for untouched
815 * mappings of /dev/null, all processes see the same page full of
816 * zeroes, and text pages of executables and shared libraries have
817 * only one copy in memory, at most, normally.
818 *
819 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
820 * page_count() == 0 means the page is free. page->lru is then used for
821 * freelist management in the buddy allocator.
da6052f7 822 * page_count() > 0 means the page has been allocated.
1da177e4 823 *
da6052f7
NP
824 * Pages are allocated by the slab allocator in order to provide memory
825 * to kmalloc and kmem_cache_alloc. In this case, the management of the
826 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
827 * unless a particular usage is carefully commented. (the responsibility of
828 * freeing the kmalloc memory is the caller's, of course).
1da177e4 829 *
da6052f7
NP
830 * A page may be used by anyone else who does a __get_free_page().
831 * In this case, page_count still tracks the references, and should only
832 * be used through the normal accessor functions. The top bits of page->flags
833 * and page->virtual store page management information, but all other fields
834 * are unused and could be used privately, carefully. The management of this
835 * page is the responsibility of the one who allocated it, and those who have
836 * subsequently been given references to it.
837 *
838 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
839 * managed by the Linux memory manager: I/O, buffers, swapping etc.
840 * The following discussion applies only to them.
841 *
da6052f7
NP
842 * A pagecache page contains an opaque `private' member, which belongs to the
843 * page's address_space. Usually, this is the address of a circular list of
844 * the page's disk buffers. PG_private must be set to tell the VM to call
845 * into the filesystem to release these pages.
1da177e4 846 *
da6052f7
NP
847 * A page may belong to an inode's memory mapping. In this case, page->mapping
848 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 849 * in units of PAGE_SIZE.
1da177e4 850 *
da6052f7
NP
851 * If pagecache pages are not associated with an inode, they are said to be
852 * anonymous pages. These may become associated with the swapcache, and in that
853 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 854 *
da6052f7
NP
855 * In either case (swapcache or inode backed), the pagecache itself holds one
856 * reference to the page. Setting PG_private should also increment the
857 * refcount. The each user mapping also has a reference to the page.
1da177e4 858 *
da6052f7 859 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 860 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
861 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
862 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 863 *
da6052f7 864 * All pagecache pages may be subject to I/O:
1da177e4
LT
865 * - inode pages may need to be read from disk,
866 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
867 * to be written back to the inode on disk,
868 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
869 * modified may need to be swapped out to swap space and (later) to be read
870 * back into memory.
1da177e4
LT
871 */
872
873/*
874 * The zone field is never updated after free_area_init_core()
875 * sets it, so none of the operations on it need to be atomic.
1da177e4 876 */
348f8b6c 877
90572890 878/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 879#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
880#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
881#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 882#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 883#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 884
348f8b6c 885/*
25985edc 886 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
887 * sections we define the shift as 0; that plus a 0 mask ensures
888 * the compiler will optimise away reference to them.
889 */
d41dee36
AW
890#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
891#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
892#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 893#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 894#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 895
bce54bbf
WD
896/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
897#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 898#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
899#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
900 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 901#else
89689ae7 902#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
903#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
904 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
905#endif
906
bd8029b6 907#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 908
9223b419
CL
909#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
910#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
911#endif
912
d41dee36
AW
913#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
914#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
915#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 916#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 917#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 918#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 919
33dd4e0e 920static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 921{
348f8b6c 922 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 923}
1da177e4 924
260ae3f7
DW
925#ifdef CONFIG_ZONE_DEVICE
926static inline bool is_zone_device_page(const struct page *page)
927{
928 return page_zonenum(page) == ZONE_DEVICE;
929}
966cf44f
AD
930extern void memmap_init_zone_device(struct zone *, unsigned long,
931 unsigned long, struct dev_pagemap *);
260ae3f7
DW
932#else
933static inline bool is_zone_device_page(const struct page *page)
934{
935 return false;
936}
7b2d55d2 937#endif
5042db43 938
e7638488 939#ifdef CONFIG_DEV_PAGEMAP_OPS
e7638488
DW
940void __put_devmap_managed_page(struct page *page);
941DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
942static inline bool put_devmap_managed_page(struct page *page)
943{
944 if (!static_branch_unlikely(&devmap_managed_key))
945 return false;
946 if (!is_zone_device_page(page))
947 return false;
948 switch (page->pgmap->type) {
949 case MEMORY_DEVICE_PRIVATE:
e7638488
DW
950 case MEMORY_DEVICE_FS_DAX:
951 __put_devmap_managed_page(page);
952 return true;
953 default:
954 break;
955 }
956 return false;
957}
958
e7638488 959#else /* CONFIG_DEV_PAGEMAP_OPS */
e7638488
DW
960static inline bool put_devmap_managed_page(struct page *page)
961{
962 return false;
963}
7588adf8 964#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 965
6b368cd4
JG
966static inline bool is_device_private_page(const struct page *page)
967{
7588adf8
RM
968 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
969 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
970 is_zone_device_page(page) &&
971 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 972}
e7638488 973
52916982
LG
974static inline bool is_pci_p2pdma_page(const struct page *page)
975{
7588adf8
RM
976 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
977 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
978 is_zone_device_page(page) &&
979 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 980}
7b2d55d2 981
f958d7b5
LT
982/* 127: arbitrary random number, small enough to assemble well */
983#define page_ref_zero_or_close_to_overflow(page) \
984 ((unsigned int) page_ref_count(page) + 127u <= 127u)
985
3565fce3
DW
986static inline void get_page(struct page *page)
987{
988 page = compound_head(page);
989 /*
990 * Getting a normal page or the head of a compound page
0139aa7b 991 * requires to already have an elevated page->_refcount.
3565fce3 992 */
f958d7b5 993 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 994 page_ref_inc(page);
3565fce3
DW
995}
996
88b1a17d
LT
997static inline __must_check bool try_get_page(struct page *page)
998{
999 page = compound_head(page);
1000 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1001 return false;
fe896d18 1002 page_ref_inc(page);
88b1a17d 1003 return true;
3565fce3
DW
1004}
1005
1006static inline void put_page(struct page *page)
1007{
1008 page = compound_head(page);
1009
7b2d55d2 1010 /*
e7638488
DW
1011 * For devmap managed pages we need to catch refcount transition from
1012 * 2 to 1, when refcount reach one it means the page is free and we
1013 * need to inform the device driver through callback. See
7b2d55d2
JG
1014 * include/linux/memremap.h and HMM for details.
1015 */
e7638488 1016 if (put_devmap_managed_page(page))
7b2d55d2 1017 return;
7b2d55d2 1018
3565fce3
DW
1019 if (put_page_testzero(page))
1020 __put_page(page);
3565fce3
DW
1021}
1022
fc1d8e7c
JH
1023/**
1024 * put_user_page() - release a gup-pinned page
1025 * @page: pointer to page to be released
1026 *
1027 * Pages that were pinned via get_user_pages*() must be released via
1028 * either put_user_page(), or one of the put_user_pages*() routines
1029 * below. This is so that eventually, pages that are pinned via
1030 * get_user_pages*() can be separately tracked and uniquely handled. In
1031 * particular, interactions with RDMA and filesystems need special
1032 * handling.
1033 *
1034 * put_user_page() and put_page() are not interchangeable, despite this early
1035 * implementation that makes them look the same. put_user_page() calls must
1036 * be perfectly matched up with get_user_page() calls.
1037 */
1038static inline void put_user_page(struct page *page)
1039{
1040 put_page(page);
1041}
1042
1043void put_user_pages_dirty(struct page **pages, unsigned long npages);
1044void put_user_pages_dirty_lock(struct page **pages, unsigned long npages);
1045void put_user_pages(struct page **pages, unsigned long npages);
1046
9127ab4f
CS
1047#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1048#define SECTION_IN_PAGE_FLAGS
1049#endif
1050
89689ae7 1051/*
7a8010cd
VB
1052 * The identification function is mainly used by the buddy allocator for
1053 * determining if two pages could be buddies. We are not really identifying
1054 * the zone since we could be using the section number id if we do not have
1055 * node id available in page flags.
1056 * We only guarantee that it will return the same value for two combinable
1057 * pages in a zone.
89689ae7 1058 */
cb2b95e1
AW
1059static inline int page_zone_id(struct page *page)
1060{
89689ae7 1061 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1062}
1063
89689ae7 1064#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1065extern int page_to_nid(const struct page *page);
89689ae7 1066#else
33dd4e0e 1067static inline int page_to_nid(const struct page *page)
d41dee36 1068{
f165b378
PT
1069 struct page *p = (struct page *)page;
1070
1071 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1072}
89689ae7
CL
1073#endif
1074
57e0a030 1075#ifdef CONFIG_NUMA_BALANCING
90572890 1076static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1077{
90572890 1078 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1079}
1080
90572890 1081static inline int cpupid_to_pid(int cpupid)
57e0a030 1082{
90572890 1083 return cpupid & LAST__PID_MASK;
57e0a030 1084}
b795854b 1085
90572890 1086static inline int cpupid_to_cpu(int cpupid)
b795854b 1087{
90572890 1088 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1089}
1090
90572890 1091static inline int cpupid_to_nid(int cpupid)
b795854b 1092{
90572890 1093 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1094}
1095
90572890 1096static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1097{
90572890 1098 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1099}
1100
90572890 1101static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1102{
90572890 1103 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1104}
1105
8c8a743c
PZ
1106static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1107{
1108 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1109}
1110
1111#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1112#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1113static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1114{
1ae71d03 1115 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1116}
90572890
PZ
1117
1118static inline int page_cpupid_last(struct page *page)
1119{
1120 return page->_last_cpupid;
1121}
1122static inline void page_cpupid_reset_last(struct page *page)
b795854b 1123{
1ae71d03 1124 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1125}
1126#else
90572890 1127static inline int page_cpupid_last(struct page *page)
75980e97 1128{
90572890 1129 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1130}
1131
90572890 1132extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1133
90572890 1134static inline void page_cpupid_reset_last(struct page *page)
75980e97 1135{
09940a4f 1136 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1137}
90572890
PZ
1138#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1139#else /* !CONFIG_NUMA_BALANCING */
1140static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1141{
90572890 1142 return page_to_nid(page); /* XXX */
57e0a030
MG
1143}
1144
90572890 1145static inline int page_cpupid_last(struct page *page)
57e0a030 1146{
90572890 1147 return page_to_nid(page); /* XXX */
57e0a030
MG
1148}
1149
90572890 1150static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1151{
1152 return -1;
1153}
1154
90572890 1155static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1156{
1157 return -1;
1158}
1159
90572890 1160static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1161{
1162 return -1;
1163}
1164
90572890
PZ
1165static inline int cpu_pid_to_cpupid(int nid, int pid)
1166{
1167 return -1;
1168}
1169
1170static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1171{
1172 return 1;
1173}
1174
90572890 1175static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1176{
1177}
8c8a743c
PZ
1178
1179static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1180{
1181 return false;
1182}
90572890 1183#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1184
2813b9c0
AK
1185#ifdef CONFIG_KASAN_SW_TAGS
1186static inline u8 page_kasan_tag(const struct page *page)
1187{
1188 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1189}
1190
1191static inline void page_kasan_tag_set(struct page *page, u8 tag)
1192{
1193 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1194 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1195}
1196
1197static inline void page_kasan_tag_reset(struct page *page)
1198{
1199 page_kasan_tag_set(page, 0xff);
1200}
1201#else
1202static inline u8 page_kasan_tag(const struct page *page)
1203{
1204 return 0xff;
1205}
1206
1207static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1208static inline void page_kasan_tag_reset(struct page *page) { }
1209#endif
1210
33dd4e0e 1211static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1212{
1213 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1214}
1215
75ef7184
MG
1216static inline pg_data_t *page_pgdat(const struct page *page)
1217{
1218 return NODE_DATA(page_to_nid(page));
1219}
1220
9127ab4f 1221#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1222static inline void set_page_section(struct page *page, unsigned long section)
1223{
1224 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1225 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1226}
1227
aa462abe 1228static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1229{
1230 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1231}
308c05e3 1232#endif
d41dee36 1233
2f1b6248 1234static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1235{
1236 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1237 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1238}
2f1b6248 1239
348f8b6c
DH
1240static inline void set_page_node(struct page *page, unsigned long node)
1241{
1242 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1243 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1244}
89689ae7 1245
2f1b6248 1246static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1247 unsigned long node, unsigned long pfn)
1da177e4 1248{
348f8b6c
DH
1249 set_page_zone(page, zone);
1250 set_page_node(page, node);
9127ab4f 1251#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1252 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1253#endif
1da177e4
LT
1254}
1255
0610c25d
GT
1256#ifdef CONFIG_MEMCG
1257static inline struct mem_cgroup *page_memcg(struct page *page)
1258{
1259 return page->mem_cgroup;
1260}
55779ec7
JW
1261static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1262{
1263 WARN_ON_ONCE(!rcu_read_lock_held());
1264 return READ_ONCE(page->mem_cgroup);
1265}
0610c25d
GT
1266#else
1267static inline struct mem_cgroup *page_memcg(struct page *page)
1268{
1269 return NULL;
1270}
55779ec7
JW
1271static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1272{
1273 WARN_ON_ONCE(!rcu_read_lock_held());
1274 return NULL;
1275}
0610c25d
GT
1276#endif
1277
f6ac2354
CL
1278/*
1279 * Some inline functions in vmstat.h depend on page_zone()
1280 */
1281#include <linux/vmstat.h>
1282
33dd4e0e 1283static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1284{
1dff8083 1285 return page_to_virt(page);
1da177e4
LT
1286}
1287
1288#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1289#define HASHED_PAGE_VIRTUAL
1290#endif
1291
1292#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1293static inline void *page_address(const struct page *page)
1294{
1295 return page->virtual;
1296}
1297static inline void set_page_address(struct page *page, void *address)
1298{
1299 page->virtual = address;
1300}
1da177e4
LT
1301#define page_address_init() do { } while(0)
1302#endif
1303
1304#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1305void *page_address(const struct page *page);
1da177e4
LT
1306void set_page_address(struct page *page, void *virtual);
1307void page_address_init(void);
1308#endif
1309
1310#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1311#define page_address(page) lowmem_page_address(page)
1312#define set_page_address(page, address) do { } while(0)
1313#define page_address_init() do { } while(0)
1314#endif
1315
e39155ea
KS
1316extern void *page_rmapping(struct page *page);
1317extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1318extern struct address_space *page_mapping(struct page *page);
1da177e4 1319
f981c595
MG
1320extern struct address_space *__page_file_mapping(struct page *);
1321
1322static inline
1323struct address_space *page_file_mapping(struct page *page)
1324{
1325 if (unlikely(PageSwapCache(page)))
1326 return __page_file_mapping(page);
1327
1328 return page->mapping;
1329}
1330
f6ab1f7f
HY
1331extern pgoff_t __page_file_index(struct page *page);
1332
1da177e4
LT
1333/*
1334 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1335 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1336 */
1337static inline pgoff_t page_index(struct page *page)
1338{
1339 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1340 return __page_file_index(page);
1da177e4
LT
1341 return page->index;
1342}
1343
1aa8aea5 1344bool page_mapped(struct page *page);
bda807d4 1345struct address_space *page_mapping(struct page *page);
cb9f753a 1346struct address_space *page_mapping_file(struct page *page);
1da177e4 1347
2f064f34
MH
1348/*
1349 * Return true only if the page has been allocated with
1350 * ALLOC_NO_WATERMARKS and the low watermark was not
1351 * met implying that the system is under some pressure.
1352 */
1353static inline bool page_is_pfmemalloc(struct page *page)
1354{
1355 /*
1356 * Page index cannot be this large so this must be
1357 * a pfmemalloc page.
1358 */
1359 return page->index == -1UL;
1360}
1361
1362/*
1363 * Only to be called by the page allocator on a freshly allocated
1364 * page.
1365 */
1366static inline void set_page_pfmemalloc(struct page *page)
1367{
1368 page->index = -1UL;
1369}
1370
1371static inline void clear_page_pfmemalloc(struct page *page)
1372{
1373 page->index = 0;
1374}
1375
1c0fe6e3
NP
1376/*
1377 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1378 */
1379extern void pagefault_out_of_memory(void);
1380
1da177e4
LT
1381#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1382
ddd588b5 1383/*
7bf02ea2 1384 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1385 * various contexts.
1386 */
4b59e6c4 1387#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1388
9af744d7 1389extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1390
7f43add4 1391extern bool can_do_mlock(void);
1da177e4
LT
1392extern int user_shm_lock(size_t, struct user_struct *);
1393extern void user_shm_unlock(size_t, struct user_struct *);
1394
1395/*
1396 * Parameter block passed down to zap_pte_range in exceptional cases.
1397 */
1398struct zap_details {
1da177e4
LT
1399 struct address_space *check_mapping; /* Check page->mapping if set */
1400 pgoff_t first_index; /* Lowest page->index to unmap */
1401 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1402};
1403
25b2995a
CH
1404struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1405 pte_t pte);
28093f9f
GS
1406struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1407 pmd_t pmd);
7e675137 1408
27d036e3
LR
1409void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1410 unsigned long size);
14f5ff5d 1411void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1412 unsigned long size);
4f74d2c8
LT
1413void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1414 unsigned long start, unsigned long end);
e6473092
MM
1415
1416/**
1417 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1418 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1419 * this handler should only handle pud_trans_huge() puds.
1420 * the pmd_entry or pte_entry callbacks will be used for
1421 * regular PUDs.
e6473092 1422 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1423 * this handler is required to be able to handle
1424 * pmd_trans_huge() pmds. They may simply choose to
1425 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1426 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1427 * @pte_hole: if set, called for each hole at all levels
5dc37642 1428 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1429 * @test_walk: caller specific callback function to determine whether
f7e2355f 1430 * we walk over the current vma or not. Returning 0
fafaa426
NH
1431 * value means "do page table walk over the current vma,"
1432 * and a negative one means "abort current page table walk
f7e2355f 1433 * right now." 1 means "skip the current vma."
fafaa426
NH
1434 * @mm: mm_struct representing the target process of page table walk
1435 * @vma: vma currently walked (NULL if walking outside vmas)
1436 * @private: private data for callbacks' usage
e6473092 1437 *
fafaa426 1438 * (see the comment on walk_page_range() for more details)
e6473092
MM
1439 */
1440struct mm_walk {
a00cc7d9
MW
1441 int (*pud_entry)(pud_t *pud, unsigned long addr,
1442 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1443 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1444 unsigned long next, struct mm_walk *walk);
1445 int (*pte_entry)(pte_t *pte, unsigned long addr,
1446 unsigned long next, struct mm_walk *walk);
1447 int (*pte_hole)(unsigned long addr, unsigned long next,
1448 struct mm_walk *walk);
1449 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1450 unsigned long addr, unsigned long next,
1451 struct mm_walk *walk);
fafaa426
NH
1452 int (*test_walk)(unsigned long addr, unsigned long next,
1453 struct mm_walk *walk);
2165009b 1454 struct mm_struct *mm;
fafaa426 1455 struct vm_area_struct *vma;
2165009b 1456 void *private;
e6473092
MM
1457};
1458
ac46d4f3
JG
1459struct mmu_notifier_range;
1460
2165009b
DH
1461int walk_page_range(unsigned long addr, unsigned long end,
1462 struct mm_walk *walk);
900fc5f1 1463int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1464void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1465 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1466int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1467 struct vm_area_struct *vma);
09796395 1468int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1469 struct mmu_notifier_range *range,
1470 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1471int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1472 unsigned long *pfn);
d87fe660 1473int follow_phys(struct vm_area_struct *vma, unsigned long address,
1474 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1475int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1476 void *buf, int len, int write);
1da177e4 1477
7caef267 1478extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1479extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1480void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1481void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1482int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1483int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1484int invalidate_inode_page(struct page *page);
1485
7ee1dd3f 1486#ifdef CONFIG_MMU
2b740303
SJ
1487extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1488 unsigned long address, unsigned int flags);
5c723ba5 1489extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1490 unsigned long address, unsigned int fault_flags,
1491 bool *unlocked);
977fbdcd
MW
1492void unmap_mapping_pages(struct address_space *mapping,
1493 pgoff_t start, pgoff_t nr, bool even_cows);
1494void unmap_mapping_range(struct address_space *mapping,
1495 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1496#else
2b740303 1497static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
dcddffd4 1498 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1499{
1500 /* should never happen if there's no MMU */
1501 BUG();
1502 return VM_FAULT_SIGBUS;
1503}
5c723ba5
PZ
1504static inline int fixup_user_fault(struct task_struct *tsk,
1505 struct mm_struct *mm, unsigned long address,
4a9e1cda 1506 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1507{
1508 /* should never happen if there's no MMU */
1509 BUG();
1510 return -EFAULT;
1511}
977fbdcd
MW
1512static inline void unmap_mapping_pages(struct address_space *mapping,
1513 pgoff_t start, pgoff_t nr, bool even_cows) { }
1514static inline void unmap_mapping_range(struct address_space *mapping,
1515 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1516#endif
f33ea7f4 1517
977fbdcd
MW
1518static inline void unmap_shared_mapping_range(struct address_space *mapping,
1519 loff_t const holebegin, loff_t const holelen)
1520{
1521 unmap_mapping_range(mapping, holebegin, holelen, 0);
1522}
1523
1524extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1525 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1526extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1527 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1528extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1529 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1530
1e987790
DH
1531long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1532 unsigned long start, unsigned long nr_pages,
9beae1ea 1533 unsigned int gup_flags, struct page **pages,
5b56d49f 1534 struct vm_area_struct **vmas, int *locked);
c12d2da5 1535long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1536 unsigned int gup_flags, struct page **pages,
cde70140 1537 struct vm_area_struct **vmas);
c12d2da5 1538long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1539 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1540long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1541 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1542
73b0140b
IW
1543int get_user_pages_fast(unsigned long start, int nr_pages,
1544 unsigned int gup_flags, struct page **pages);
8025e5dd
JK
1545
1546/* Container for pinned pfns / pages */
1547struct frame_vector {
1548 unsigned int nr_allocated; /* Number of frames we have space for */
1549 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1550 bool got_ref; /* Did we pin pages by getting page ref? */
1551 bool is_pfns; /* Does array contain pages or pfns? */
1552 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1553 * pfns_vector_pages() or pfns_vector_pfns()
1554 * for access */
1555};
1556
1557struct frame_vector *frame_vector_create(unsigned int nr_frames);
1558void frame_vector_destroy(struct frame_vector *vec);
1559int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1560 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1561void put_vaddr_frames(struct frame_vector *vec);
1562int frame_vector_to_pages(struct frame_vector *vec);
1563void frame_vector_to_pfns(struct frame_vector *vec);
1564
1565static inline unsigned int frame_vector_count(struct frame_vector *vec)
1566{
1567 return vec->nr_frames;
1568}
1569
1570static inline struct page **frame_vector_pages(struct frame_vector *vec)
1571{
1572 if (vec->is_pfns) {
1573 int err = frame_vector_to_pages(vec);
1574
1575 if (err)
1576 return ERR_PTR(err);
1577 }
1578 return (struct page **)(vec->ptrs);
1579}
1580
1581static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1582{
1583 if (!vec->is_pfns)
1584 frame_vector_to_pfns(vec);
1585 return (unsigned long *)(vec->ptrs);
1586}
1587
18022c5d
MG
1588struct kvec;
1589int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1590 struct page **pages);
1591int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1592struct page *get_dump_page(unsigned long addr);
1da177e4 1593
cf9a2ae8 1594extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1595extern void do_invalidatepage(struct page *page, unsigned int offset,
1596 unsigned int length);
cf9a2ae8 1597
f82b3764 1598void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1599int __set_page_dirty_nobuffers(struct page *page);
76719325 1600int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1601int redirty_page_for_writepage(struct writeback_control *wbc,
1602 struct page *page);
62cccb8c 1603void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1604void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1605 struct bdi_writeback *wb);
b3c97528 1606int set_page_dirty(struct page *page);
1da177e4 1607int set_page_dirty_lock(struct page *page);
736304f3
JK
1608void __cancel_dirty_page(struct page *page);
1609static inline void cancel_dirty_page(struct page *page)
1610{
1611 /* Avoid atomic ops, locking, etc. when not actually needed. */
1612 if (PageDirty(page))
1613 __cancel_dirty_page(page);
1614}
1da177e4 1615int clear_page_dirty_for_io(struct page *page);
b9ea2515 1616
a9090253 1617int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1618
b5330628
ON
1619static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1620{
1621 return !vma->vm_ops;
1622}
1623
b0506e48
MR
1624#ifdef CONFIG_SHMEM
1625/*
1626 * The vma_is_shmem is not inline because it is used only by slow
1627 * paths in userfault.
1628 */
1629bool vma_is_shmem(struct vm_area_struct *vma);
1630#else
1631static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1632#endif
1633
d17af505 1634int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1635
b6a2fea3
OW
1636extern unsigned long move_page_tables(struct vm_area_struct *vma,
1637 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1638 unsigned long new_addr, unsigned long len,
1639 bool need_rmap_locks);
7da4d641
PZ
1640extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1641 unsigned long end, pgprot_t newprot,
4b10e7d5 1642 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1643extern int mprotect_fixup(struct vm_area_struct *vma,
1644 struct vm_area_struct **pprev, unsigned long start,
1645 unsigned long end, unsigned long newflags);
1da177e4 1646
465a454f
PZ
1647/*
1648 * doesn't attempt to fault and will return short.
1649 */
1650int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1651 struct page **pages);
d559db08
KH
1652/*
1653 * per-process(per-mm_struct) statistics.
1654 */
d559db08
KH
1655static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1656{
69c97823
KK
1657 long val = atomic_long_read(&mm->rss_stat.count[member]);
1658
1659#ifdef SPLIT_RSS_COUNTING
1660 /*
1661 * counter is updated in asynchronous manner and may go to minus.
1662 * But it's never be expected number for users.
1663 */
1664 if (val < 0)
1665 val = 0;
172703b0 1666#endif
69c97823
KK
1667 return (unsigned long)val;
1668}
d559db08
KH
1669
1670static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1671{
172703b0 1672 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1673}
1674
1675static inline void inc_mm_counter(struct mm_struct *mm, int member)
1676{
172703b0 1677 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1678}
1679
1680static inline void dec_mm_counter(struct mm_struct *mm, int member)
1681{
172703b0 1682 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1683}
1684
eca56ff9
JM
1685/* Optimized variant when page is already known not to be PageAnon */
1686static inline int mm_counter_file(struct page *page)
1687{
1688 if (PageSwapBacked(page))
1689 return MM_SHMEMPAGES;
1690 return MM_FILEPAGES;
1691}
1692
1693static inline int mm_counter(struct page *page)
1694{
1695 if (PageAnon(page))
1696 return MM_ANONPAGES;
1697 return mm_counter_file(page);
1698}
1699
d559db08
KH
1700static inline unsigned long get_mm_rss(struct mm_struct *mm)
1701{
1702 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1703 get_mm_counter(mm, MM_ANONPAGES) +
1704 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1705}
1706
1707static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1708{
1709 return max(mm->hiwater_rss, get_mm_rss(mm));
1710}
1711
1712static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1713{
1714 return max(mm->hiwater_vm, mm->total_vm);
1715}
1716
1717static inline void update_hiwater_rss(struct mm_struct *mm)
1718{
1719 unsigned long _rss = get_mm_rss(mm);
1720
1721 if ((mm)->hiwater_rss < _rss)
1722 (mm)->hiwater_rss = _rss;
1723}
1724
1725static inline void update_hiwater_vm(struct mm_struct *mm)
1726{
1727 if (mm->hiwater_vm < mm->total_vm)
1728 mm->hiwater_vm = mm->total_vm;
1729}
1730
695f0559
PC
1731static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1732{
1733 mm->hiwater_rss = get_mm_rss(mm);
1734}
1735
d559db08
KH
1736static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1737 struct mm_struct *mm)
1738{
1739 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1740
1741 if (*maxrss < hiwater_rss)
1742 *maxrss = hiwater_rss;
1743}
1744
53bddb4e 1745#if defined(SPLIT_RSS_COUNTING)
05af2e10 1746void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1747#else
05af2e10 1748static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1749{
1750}
1751#endif
465a454f 1752
17596731 1753#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
1754static inline int pte_devmap(pte_t pte)
1755{
1756 return 0;
1757}
1758#endif
1759
6d2329f8 1760int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1761
25ca1d6c
NK
1762extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1763 spinlock_t **ptl);
1764static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1765 spinlock_t **ptl)
1766{
1767 pte_t *ptep;
1768 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1769 return ptep;
1770}
c9cfcddf 1771
c2febafc
KS
1772#ifdef __PAGETABLE_P4D_FOLDED
1773static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1774 unsigned long address)
1775{
1776 return 0;
1777}
1778#else
1779int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1780#endif
1781
b4e98d9a 1782#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1783static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1784 unsigned long address)
1785{
1786 return 0;
1787}
b4e98d9a
KS
1788static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1789static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1790
5f22df00 1791#else
c2febafc 1792int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1793
b4e98d9a
KS
1794static inline void mm_inc_nr_puds(struct mm_struct *mm)
1795{
6d212db1
MS
1796 if (mm_pud_folded(mm))
1797 return;
af5b0f6a 1798 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1799}
1800
1801static inline void mm_dec_nr_puds(struct mm_struct *mm)
1802{
6d212db1
MS
1803 if (mm_pud_folded(mm))
1804 return;
af5b0f6a 1805 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1806}
5f22df00
NP
1807#endif
1808
2d2f5119 1809#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1810static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1811 unsigned long address)
1812{
1813 return 0;
1814}
dc6c9a35 1815
dc6c9a35
KS
1816static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1817static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1818
5f22df00 1819#else
1bb3630e 1820int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1821
dc6c9a35
KS
1822static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1823{
6d212db1
MS
1824 if (mm_pmd_folded(mm))
1825 return;
af5b0f6a 1826 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1827}
1828
1829static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1830{
6d212db1
MS
1831 if (mm_pmd_folded(mm))
1832 return;
af5b0f6a 1833 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1834}
5f22df00
NP
1835#endif
1836
c4812909 1837#ifdef CONFIG_MMU
af5b0f6a 1838static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1839{
af5b0f6a 1840 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1841}
1842
af5b0f6a 1843static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1844{
af5b0f6a 1845 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1846}
1847
1848static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1849{
af5b0f6a 1850 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1851}
1852
1853static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1854{
af5b0f6a 1855 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1856}
1857#else
c4812909 1858
af5b0f6a
KS
1859static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1860static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1861{
1862 return 0;
1863}
1864
1865static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1866static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1867#endif
1868
4cf58924
JFG
1869int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1870int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 1871
1da177e4
LT
1872/*
1873 * The following ifdef needed to get the 4level-fixup.h header to work.
1874 * Remove it when 4level-fixup.h has been removed.
1875 */
1bb3630e 1876#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1877
1878#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1879static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1880 unsigned long address)
1881{
1882 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1883 NULL : p4d_offset(pgd, address);
1884}
1885
1886static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1887 unsigned long address)
1da177e4 1888{
c2febafc
KS
1889 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1890 NULL : pud_offset(p4d, address);
1da177e4 1891}
505a60e2 1892#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1893
1894static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1895{
1bb3630e
HD
1896 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1897 NULL: pmd_offset(pud, address);
1da177e4 1898}
1bb3630e
HD
1899#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1900
57c1ffce 1901#if USE_SPLIT_PTE_PTLOCKS
597d795a 1902#if ALLOC_SPLIT_PTLOCKS
b35f1819 1903void __init ptlock_cache_init(void);
539edb58
PZ
1904extern bool ptlock_alloc(struct page *page);
1905extern void ptlock_free(struct page *page);
1906
1907static inline spinlock_t *ptlock_ptr(struct page *page)
1908{
1909 return page->ptl;
1910}
597d795a 1911#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1912static inline void ptlock_cache_init(void)
1913{
1914}
1915
49076ec2
KS
1916static inline bool ptlock_alloc(struct page *page)
1917{
49076ec2
KS
1918 return true;
1919}
539edb58 1920
49076ec2
KS
1921static inline void ptlock_free(struct page *page)
1922{
49076ec2
KS
1923}
1924
1925static inline spinlock_t *ptlock_ptr(struct page *page)
1926{
539edb58 1927 return &page->ptl;
49076ec2 1928}
597d795a 1929#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1930
1931static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1932{
1933 return ptlock_ptr(pmd_page(*pmd));
1934}
1935
1936static inline bool ptlock_init(struct page *page)
1937{
1938 /*
1939 * prep_new_page() initialize page->private (and therefore page->ptl)
1940 * with 0. Make sure nobody took it in use in between.
1941 *
1942 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1943 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1944 */
309381fe 1945 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1946 if (!ptlock_alloc(page))
1947 return false;
1948 spin_lock_init(ptlock_ptr(page));
1949 return true;
1950}
1951
57c1ffce 1952#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1953/*
1954 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1955 */
49076ec2
KS
1956static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1957{
1958 return &mm->page_table_lock;
1959}
b35f1819 1960static inline void ptlock_cache_init(void) {}
49076ec2 1961static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 1962static inline void ptlock_free(struct page *page) {}
57c1ffce 1963#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1964
b35f1819
KS
1965static inline void pgtable_init(void)
1966{
1967 ptlock_cache_init();
1968 pgtable_cache_init();
1969}
1970
390f44e2 1971static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1972{
706874e9
VD
1973 if (!ptlock_init(page))
1974 return false;
1d40a5ea 1975 __SetPageTable(page);
2f569afd 1976 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1977 return true;
2f569afd
MS
1978}
1979
1980static inline void pgtable_page_dtor(struct page *page)
1981{
9e247bab 1982 ptlock_free(page);
1d40a5ea 1983 __ClearPageTable(page);
2f569afd
MS
1984 dec_zone_page_state(page, NR_PAGETABLE);
1985}
1986
c74df32c
HD
1987#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1988({ \
4c21e2f2 1989 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1990 pte_t *__pte = pte_offset_map(pmd, address); \
1991 *(ptlp) = __ptl; \
1992 spin_lock(__ptl); \
1993 __pte; \
1994})
1995
1996#define pte_unmap_unlock(pte, ptl) do { \
1997 spin_unlock(ptl); \
1998 pte_unmap(pte); \
1999} while (0)
2000
4cf58924 2001#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2002
2003#define pte_alloc_map(mm, pmd, address) \
4cf58924 2004 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2005
c74df32c 2006#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2007 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2008 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2009
1bb3630e 2010#define pte_alloc_kernel(pmd, address) \
4cf58924 2011 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2012 NULL: pte_offset_kernel(pmd, address))
1da177e4 2013
e009bb30
KS
2014#if USE_SPLIT_PMD_PTLOCKS
2015
634391ac
MS
2016static struct page *pmd_to_page(pmd_t *pmd)
2017{
2018 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2019 return virt_to_page((void *)((unsigned long) pmd & mask));
2020}
2021
e009bb30
KS
2022static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2023{
634391ac 2024 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2025}
2026
2027static inline bool pgtable_pmd_page_ctor(struct page *page)
2028{
e009bb30
KS
2029#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2030 page->pmd_huge_pte = NULL;
2031#endif
49076ec2 2032 return ptlock_init(page);
e009bb30
KS
2033}
2034
2035static inline void pgtable_pmd_page_dtor(struct page *page)
2036{
2037#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2038 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2039#endif
49076ec2 2040 ptlock_free(page);
e009bb30
KS
2041}
2042
634391ac 2043#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2044
2045#else
2046
9a86cb7b
KS
2047static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2048{
2049 return &mm->page_table_lock;
2050}
2051
e009bb30
KS
2052static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2053static inline void pgtable_pmd_page_dtor(struct page *page) {}
2054
c389a250 2055#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2056
e009bb30
KS
2057#endif
2058
9a86cb7b
KS
2059static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2060{
2061 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2062 spin_lock(ptl);
2063 return ptl;
2064}
2065
a00cc7d9
MW
2066/*
2067 * No scalability reason to split PUD locks yet, but follow the same pattern
2068 * as the PMD locks to make it easier if we decide to. The VM should not be
2069 * considered ready to switch to split PUD locks yet; there may be places
2070 * which need to be converted from page_table_lock.
2071 */
2072static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2073{
2074 return &mm->page_table_lock;
2075}
2076
2077static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2078{
2079 spinlock_t *ptl = pud_lockptr(mm, pud);
2080
2081 spin_lock(ptl);
2082 return ptl;
2083}
62906027 2084
a00cc7d9 2085extern void __init pagecache_init(void);
1da177e4 2086extern void free_area_init(unsigned long * zones_size);
03e85f9d 2087extern void __init free_area_init_node(int nid, unsigned long * zones_size,
9109fb7b 2088 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
2089extern void free_initmem(void);
2090
69afade7
JL
2091/*
2092 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2093 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2094 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2095 * Return pages freed into the buddy system.
2096 */
11199692 2097extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2098 int poison, const char *s);
c3d5f5f0 2099
cfa11e08
JL
2100#ifdef CONFIG_HIGHMEM
2101/*
2102 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2103 * and totalram_pages.
2104 */
2105extern void free_highmem_page(struct page *page);
2106#endif
69afade7 2107
c3d5f5f0 2108extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2109extern void mem_init_print_info(const char *str);
69afade7 2110
4b50bcc7 2111extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2112
69afade7
JL
2113/* Free the reserved page into the buddy system, so it gets managed. */
2114static inline void __free_reserved_page(struct page *page)
2115{
2116 ClearPageReserved(page);
2117 init_page_count(page);
2118 __free_page(page);
2119}
2120
2121static inline void free_reserved_page(struct page *page)
2122{
2123 __free_reserved_page(page);
2124 adjust_managed_page_count(page, 1);
2125}
2126
2127static inline void mark_page_reserved(struct page *page)
2128{
2129 SetPageReserved(page);
2130 adjust_managed_page_count(page, -1);
2131}
2132
2133/*
2134 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2135 * The freed pages will be poisoned with pattern "poison" if it's within
2136 * range [0, UCHAR_MAX].
2137 * Return pages freed into the buddy system.
69afade7
JL
2138 */
2139static inline unsigned long free_initmem_default(int poison)
2140{
2141 extern char __init_begin[], __init_end[];
2142
11199692 2143 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2144 poison, "unused kernel");
2145}
2146
7ee3d4e8
JL
2147static inline unsigned long get_num_physpages(void)
2148{
2149 int nid;
2150 unsigned long phys_pages = 0;
2151
2152 for_each_online_node(nid)
2153 phys_pages += node_present_pages(nid);
2154
2155 return phys_pages;
2156}
2157
0ee332c1 2158#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2159/*
0ee332c1 2160 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2161 * zones, allocate the backing mem_map and account for memory holes in a more
2162 * architecture independent manner. This is a substitute for creating the
2163 * zone_sizes[] and zholes_size[] arrays and passing them to
2164 * free_area_init_node()
2165 *
2166 * An architecture is expected to register range of page frames backed by
0ee332c1 2167 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2168 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2169 * usage, an architecture is expected to do something like
2170 *
2171 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2172 * max_highmem_pfn};
2173 * for_each_valid_physical_page_range()
0ee332c1 2174 * memblock_add_node(base, size, nid)
c713216d
MG
2175 * free_area_init_nodes(max_zone_pfns);
2176 *
0ee332c1
TH
2177 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2178 * registered physical page range. Similarly
2179 * sparse_memory_present_with_active_regions() calls memory_present() for
2180 * each range when SPARSEMEM is enabled.
c713216d
MG
2181 *
2182 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2183 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2184 */
2185extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2186unsigned long node_map_pfn_alignment(void);
32996250
YL
2187unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2188 unsigned long end_pfn);
c713216d
MG
2189extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2190 unsigned long end_pfn);
2191extern void get_pfn_range_for_nid(unsigned int nid,
2192 unsigned long *start_pfn, unsigned long *end_pfn);
2193extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2194extern void free_bootmem_with_active_regions(int nid,
2195 unsigned long max_low_pfn);
2196extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2197
0ee332c1 2198#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2199
0ee332c1 2200#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2201 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2202static inline int __early_pfn_to_nid(unsigned long pfn,
2203 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2204{
2205 return 0;
2206}
2207#else
2208/* please see mm/page_alloc.c */
2209extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2210/* there is a per-arch backend function. */
8a942fde
MG
2211extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2212 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2213#endif
2214
aca52c39 2215#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
2216void zero_resv_unavail(void);
2217#else
2218static inline void zero_resv_unavail(void) {}
2219#endif
2220
0e0b864e 2221extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2222extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2223 enum memmap_context, struct vmem_altmap *);
bc75d33f 2224extern void setup_per_zone_wmarks(void);
1b79acc9 2225extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2226extern void mem_init(void);
8feae131 2227extern void __init mmap_init(void);
9af744d7 2228extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2229extern long si_mem_available(void);
1da177e4
LT
2230extern void si_meminfo(struct sysinfo * val);
2231extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2232#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2233extern unsigned long arch_reserved_kernel_pages(void);
2234#endif
1da177e4 2235
a8e99259
MH
2236extern __printf(3, 4)
2237void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2238
e7c8d5c9 2239extern void setup_per_cpu_pageset(void);
e7c8d5c9 2240
112067f0 2241extern void zone_pcp_update(struct zone *zone);
340175b7 2242extern void zone_pcp_reset(struct zone *zone);
112067f0 2243
75f7ad8e
PS
2244/* page_alloc.c */
2245extern int min_free_kbytes;
1c30844d 2246extern int watermark_boost_factor;
795ae7a0 2247extern int watermark_scale_factor;
75f7ad8e 2248
8feae131 2249/* nommu.c */
33e5d769 2250extern atomic_long_t mmap_pages_allocated;
7e660872 2251extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2252
6b2dbba8 2253/* interval_tree.c */
6b2dbba8 2254void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2255 struct rb_root_cached *root);
9826a516
ML
2256void vma_interval_tree_insert_after(struct vm_area_struct *node,
2257 struct vm_area_struct *prev,
f808c13f 2258 struct rb_root_cached *root);
6b2dbba8 2259void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2260 struct rb_root_cached *root);
2261struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2262 unsigned long start, unsigned long last);
2263struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2264 unsigned long start, unsigned long last);
2265
2266#define vma_interval_tree_foreach(vma, root, start, last) \
2267 for (vma = vma_interval_tree_iter_first(root, start, last); \
2268 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2269
bf181b9f 2270void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2271 struct rb_root_cached *root);
bf181b9f 2272void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2273 struct rb_root_cached *root);
2274struct anon_vma_chain *
2275anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2276 unsigned long start, unsigned long last);
bf181b9f
ML
2277struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2278 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2279#ifdef CONFIG_DEBUG_VM_RB
2280void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2281#endif
bf181b9f
ML
2282
2283#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2284 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2285 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2286
1da177e4 2287/* mmap.c */
34b4e4aa 2288extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2289extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2290 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2291 struct vm_area_struct *expand);
2292static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2293 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2294{
2295 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2296}
1da177e4
LT
2297extern struct vm_area_struct *vma_merge(struct mm_struct *,
2298 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2299 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2300 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2301extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2302extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2303 unsigned long addr, int new_below);
2304extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2305 unsigned long addr, int new_below);
1da177e4
LT
2306extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2307extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2308 struct rb_node **, struct rb_node *);
a8fb5618 2309extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2310extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2311 unsigned long addr, unsigned long len, pgoff_t pgoff,
2312 bool *need_rmap_locks);
1da177e4 2313extern void exit_mmap(struct mm_struct *);
925d1c40 2314
9c599024
CG
2315static inline int check_data_rlimit(unsigned long rlim,
2316 unsigned long new,
2317 unsigned long start,
2318 unsigned long end_data,
2319 unsigned long start_data)
2320{
2321 if (rlim < RLIM_INFINITY) {
2322 if (((new - start) + (end_data - start_data)) > rlim)
2323 return -ENOSPC;
2324 }
2325
2326 return 0;
2327}
2328
7906d00c
AA
2329extern int mm_take_all_locks(struct mm_struct *mm);
2330extern void mm_drop_all_locks(struct mm_struct *mm);
2331
38646013
JS
2332extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2333extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2334extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2335
84638335
KK
2336extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2337extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2338
2eefd878
DS
2339extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2340 const struct vm_special_mapping *sm);
3935ed6a
SS
2341extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2342 unsigned long addr, unsigned long len,
a62c34bd
AL
2343 unsigned long flags,
2344 const struct vm_special_mapping *spec);
2345/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2346extern int install_special_mapping(struct mm_struct *mm,
2347 unsigned long addr, unsigned long len,
2348 unsigned long flags, struct page **pages);
1da177e4
LT
2349
2350extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2351
0165ab44 2352extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2353 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2354 struct list_head *uf);
1fcfd8db 2355extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2356 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2357 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2358 struct list_head *uf);
85a06835
YS
2359extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2360 struct list_head *uf, bool downgrade);
897ab3e0
MR
2361extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2362 struct list_head *uf);
1da177e4 2363
1fcfd8db
ON
2364static inline unsigned long
2365do_mmap_pgoff(struct file *file, unsigned long addr,
2366 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2367 unsigned long pgoff, unsigned long *populate,
2368 struct list_head *uf)
1fcfd8db 2369{
897ab3e0 2370 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2371}
2372
bebeb3d6
ML
2373#ifdef CONFIG_MMU
2374extern int __mm_populate(unsigned long addr, unsigned long len,
2375 int ignore_errors);
2376static inline void mm_populate(unsigned long addr, unsigned long len)
2377{
2378 /* Ignore errors */
2379 (void) __mm_populate(addr, len, 1);
2380}
2381#else
2382static inline void mm_populate(unsigned long addr, unsigned long len) {}
2383#endif
2384
e4eb1ff6 2385/* These take the mm semaphore themselves */
5d22fc25 2386extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2387extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2388extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2389extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2390 unsigned long, unsigned long,
2391 unsigned long, unsigned long);
1da177e4 2392
db4fbfb9
ML
2393struct vm_unmapped_area_info {
2394#define VM_UNMAPPED_AREA_TOPDOWN 1
2395 unsigned long flags;
2396 unsigned long length;
2397 unsigned long low_limit;
2398 unsigned long high_limit;
2399 unsigned long align_mask;
2400 unsigned long align_offset;
2401};
2402
2403extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2404extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2405
2406/*
2407 * Search for an unmapped address range.
2408 *
2409 * We are looking for a range that:
2410 * - does not intersect with any VMA;
2411 * - is contained within the [low_limit, high_limit) interval;
2412 * - is at least the desired size.
2413 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2414 */
2415static inline unsigned long
2416vm_unmapped_area(struct vm_unmapped_area_info *info)
2417{
cdd7875e 2418 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2419 return unmapped_area_topdown(info);
cdd7875e
BP
2420 else
2421 return unmapped_area(info);
db4fbfb9
ML
2422}
2423
85821aab 2424/* truncate.c */
1da177e4 2425extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2426extern void truncate_inode_pages_range(struct address_space *,
2427 loff_t lstart, loff_t lend);
91b0abe3 2428extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2429
2430/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2431extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2432extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2433 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2434extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2435
2436/* mm/page-writeback.c */
2b69c828 2437int __must_check write_one_page(struct page *page);
1cf6e7d8 2438void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2439
2440/* readahead.c */
b5420237 2441#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
1da177e4 2442
1da177e4 2443int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2444 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2445
2446void page_cache_sync_readahead(struct address_space *mapping,
2447 struct file_ra_state *ra,
2448 struct file *filp,
2449 pgoff_t offset,
2450 unsigned long size);
2451
2452void page_cache_async_readahead(struct address_space *mapping,
2453 struct file_ra_state *ra,
2454 struct file *filp,
2455 struct page *pg,
2456 pgoff_t offset,
2457 unsigned long size);
2458
1be7107f 2459extern unsigned long stack_guard_gap;
d05f3169 2460/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2461extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2462
2463/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2464extern int expand_downwards(struct vm_area_struct *vma,
2465 unsigned long address);
8ca3eb08 2466#if VM_GROWSUP
46dea3d0 2467extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2468#else
fee7e49d 2469 #define expand_upwards(vma, address) (0)
9ab88515 2470#endif
1da177e4
LT
2471
2472/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2473extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2474extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2475 struct vm_area_struct **pprev);
2476
2477/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2478 NULL if none. Assume start_addr < end_addr. */
2479static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2480{
2481 struct vm_area_struct * vma = find_vma(mm,start_addr);
2482
2483 if (vma && end_addr <= vma->vm_start)
2484 vma = NULL;
2485 return vma;
2486}
2487
1be7107f
HD
2488static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2489{
2490 unsigned long vm_start = vma->vm_start;
2491
2492 if (vma->vm_flags & VM_GROWSDOWN) {
2493 vm_start -= stack_guard_gap;
2494 if (vm_start > vma->vm_start)
2495 vm_start = 0;
2496 }
2497 return vm_start;
2498}
2499
2500static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2501{
2502 unsigned long vm_end = vma->vm_end;
2503
2504 if (vma->vm_flags & VM_GROWSUP) {
2505 vm_end += stack_guard_gap;
2506 if (vm_end < vma->vm_end)
2507 vm_end = -PAGE_SIZE;
2508 }
2509 return vm_end;
2510}
2511
1da177e4
LT
2512static inline unsigned long vma_pages(struct vm_area_struct *vma)
2513{
2514 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2515}
2516
640708a2
PE
2517/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2518static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2519 unsigned long vm_start, unsigned long vm_end)
2520{
2521 struct vm_area_struct *vma = find_vma(mm, vm_start);
2522
2523 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2524 vma = NULL;
2525
2526 return vma;
2527}
2528
017b1660
MK
2529static inline bool range_in_vma(struct vm_area_struct *vma,
2530 unsigned long start, unsigned long end)
2531{
2532 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2533}
2534
bad849b3 2535#ifdef CONFIG_MMU
804af2cf 2536pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2537void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2538#else
2539static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2540{
2541 return __pgprot(0);
2542}
64e45507
PF
2543static inline void vma_set_page_prot(struct vm_area_struct *vma)
2544{
2545 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2546}
bad849b3
DH
2547#endif
2548
5877231f 2549#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2550unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2551 unsigned long start, unsigned long end);
2552#endif
2553
deceb6cd 2554struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2555int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2556 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2557int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
a667d745
SJ
2558int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2559 unsigned long num);
2560int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2561 unsigned long num);
ae2b01f3 2562vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2563 unsigned long pfn);
f5e6d1d5
MW
2564vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2565 unsigned long pfn, pgprot_t pgprot);
5d747637 2566vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2567 pfn_t pfn);
ab77dab4
SJ
2568vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2569 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2570int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2571
1c8f4220
SJ
2572static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2573 unsigned long addr, struct page *page)
2574{
2575 int err = vm_insert_page(vma, addr, page);
2576
2577 if (err == -ENOMEM)
2578 return VM_FAULT_OOM;
2579 if (err < 0 && err != -EBUSY)
2580 return VM_FAULT_SIGBUS;
2581
2582 return VM_FAULT_NOPAGE;
2583}
2584
d97baf94
SJ
2585static inline vm_fault_t vmf_error(int err)
2586{
2587 if (err == -ENOMEM)
2588 return VM_FAULT_OOM;
2589 return VM_FAULT_SIGBUS;
2590}
2591
df06b37f
KB
2592struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2593 unsigned int foll_flags);
240aadee 2594
deceb6cd
HD
2595#define FOLL_WRITE 0x01 /* check pte is writable */
2596#define FOLL_TOUCH 0x02 /* mark page accessed */
2597#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2598#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2599#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2600#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2601 * and return without waiting upon it */
84d33df2 2602#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2603#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2604#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2605#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2606#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2607#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2608#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2609#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2610#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2611#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63
IW
2612#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2613
2614/*
2615 * NOTE on FOLL_LONGTERM:
2616 *
2617 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2618 * period _often_ under userspace control. This is contrasted with
2619 * iov_iter_get_pages() where usages which are transient.
2620 *
2621 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2622 * lifetime enforced by the filesystem and we need guarantees that longterm
2623 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2624 * the filesystem. Ideas for this coordination include revoking the longterm
2625 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2626 * added after the problem with filesystems was found FS DAX VMAs are
2627 * specifically failed. Filesystem pages are still subject to bugs and use of
2628 * FOLL_LONGTERM should be avoided on those pages.
2629 *
2630 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2631 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2632 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2633 * is due to an incompatibility with the FS DAX check and
2634 * FAULT_FLAG_ALLOW_RETRY
2635 *
2636 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2637 * that region. And so CMA attempts to migrate the page before pinning when
2638 * FOLL_LONGTERM is specified.
2639 */
1da177e4 2640
2b740303 2641static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2642{
2643 if (vm_fault & VM_FAULT_OOM)
2644 return -ENOMEM;
2645 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2646 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2647 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2648 return -EFAULT;
2649 return 0;
2650}
2651
8b1e0f81 2652typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2653extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2654 unsigned long size, pte_fn_t fn, void *data);
2655
1da177e4 2656
8823b1db
LA
2657#ifdef CONFIG_PAGE_POISONING
2658extern bool page_poisoning_enabled(void);
2659extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2660#else
2661static inline bool page_poisoning_enabled(void) { return false; }
2662static inline void kernel_poison_pages(struct page *page, int numpages,
2663 int enable) { }
2664#endif
2665
6471384a
AP
2666#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2667DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2668#else
2669DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2670#endif
2671static inline bool want_init_on_alloc(gfp_t flags)
2672{
2673 if (static_branch_unlikely(&init_on_alloc) &&
2674 !page_poisoning_enabled())
2675 return true;
2676 return flags & __GFP_ZERO;
2677}
2678
2679#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2680DECLARE_STATIC_KEY_TRUE(init_on_free);
2681#else
2682DECLARE_STATIC_KEY_FALSE(init_on_free);
2683#endif
2684static inline bool want_init_on_free(void)
2685{
2686 return static_branch_unlikely(&init_on_free) &&
2687 !page_poisoning_enabled();
2688}
2689
96a2b03f
VB
2690#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
2691DECLARE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
2692#else
2693DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2694#endif
031bc574
JK
2695
2696static inline bool debug_pagealloc_enabled(void)
2697{
96a2b03f
VB
2698 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2699 return false;
2700
2701 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2702}
2703
d6332692
RE
2704#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2705extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2706
031bc574
JK
2707static inline void
2708kernel_map_pages(struct page *page, int numpages, int enable)
2709{
031bc574
JK
2710 __kernel_map_pages(page, numpages, enable);
2711}
8a235efa
RW
2712#ifdef CONFIG_HIBERNATION
2713extern bool kernel_page_present(struct page *page);
40b44137 2714#endif /* CONFIG_HIBERNATION */
d6332692 2715#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2716static inline void
9858db50 2717kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2718#ifdef CONFIG_HIBERNATION
2719static inline bool kernel_page_present(struct page *page) { return true; }
40b44137 2720#endif /* CONFIG_HIBERNATION */
d6332692 2721#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2722
a6c19dfe 2723#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2724extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2725extern int in_gate_area_no_mm(unsigned long addr);
2726extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2727#else
a6c19dfe
AL
2728static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2729{
2730 return NULL;
2731}
2732static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2733static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2734{
2735 return 0;
2736}
1da177e4
LT
2737#endif /* __HAVE_ARCH_GATE_AREA */
2738
44a70ade
MH
2739extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2740
146732ce
JT
2741#ifdef CONFIG_SYSCTL
2742extern int sysctl_drop_caches;
8d65af78 2743int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2744 void __user *, size_t *, loff_t *);
146732ce
JT
2745#endif
2746
cb731d6c
VD
2747void drop_slab(void);
2748void drop_slab_node(int nid);
9d0243bc 2749
7a9166e3
LY
2750#ifndef CONFIG_MMU
2751#define randomize_va_space 0
2752#else
a62eaf15 2753extern int randomize_va_space;
7a9166e3 2754#endif
a62eaf15 2755
045e72ac 2756const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 2757#ifdef CONFIG_MMU
03252919 2758void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
2759#else
2760static inline void print_vma_addr(char *prefix, unsigned long rip)
2761{
2762}
2763#endif
e6e5494c 2764
35fd1eb1 2765void *sparse_buffer_alloc(unsigned long size);
7b73d978
CH
2766struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2767 struct vmem_altmap *altmap);
29c71111 2768pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2769p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2770pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2771pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2772pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2773void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2774struct vmem_altmap;
a8fc357b
CH
2775void *vmemmap_alloc_block_buf(unsigned long size, int node);
2776void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2777void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2778int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2779 int node);
7b73d978
CH
2780int vmemmap_populate(unsigned long start, unsigned long end, int node,
2781 struct vmem_altmap *altmap);
c2b91e2e 2782void vmemmap_populate_print_last(void);
0197518c 2783#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2784void vmemmap_free(unsigned long start, unsigned long end,
2785 struct vmem_altmap *altmap);
0197518c 2786#endif
46723bfa 2787void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2788 unsigned long nr_pages);
6a46079c 2789
82ba011b
AK
2790enum mf_flags {
2791 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2792 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2793 MF_MUST_KILL = 1 << 2,
cf870c70 2794 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2795};
83b57531
EB
2796extern int memory_failure(unsigned long pfn, int flags);
2797extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 2798extern int unpoison_memory(unsigned long pfn);
ead07f6a 2799extern int get_hwpoison_page(struct page *page);
4e41a30c 2800#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2801extern int sysctl_memory_failure_early_kill;
2802extern int sysctl_memory_failure_recovery;
facb6011 2803extern void shake_page(struct page *p, int access);
5844a486 2804extern atomic_long_t num_poisoned_pages __read_mostly;
facb6011 2805extern int soft_offline_page(struct page *page, int flags);
6a46079c 2806
cc637b17
XX
2807
2808/*
2809 * Error handlers for various types of pages.
2810 */
cc3e2af4 2811enum mf_result {
cc637b17
XX
2812 MF_IGNORED, /* Error: cannot be handled */
2813 MF_FAILED, /* Error: handling failed */
2814 MF_DELAYED, /* Will be handled later */
2815 MF_RECOVERED, /* Successfully recovered */
2816};
2817
2818enum mf_action_page_type {
2819 MF_MSG_KERNEL,
2820 MF_MSG_KERNEL_HIGH_ORDER,
2821 MF_MSG_SLAB,
2822 MF_MSG_DIFFERENT_COMPOUND,
2823 MF_MSG_POISONED_HUGE,
2824 MF_MSG_HUGE,
2825 MF_MSG_FREE_HUGE,
31286a84 2826 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2827 MF_MSG_UNMAP_FAILED,
2828 MF_MSG_DIRTY_SWAPCACHE,
2829 MF_MSG_CLEAN_SWAPCACHE,
2830 MF_MSG_DIRTY_MLOCKED_LRU,
2831 MF_MSG_CLEAN_MLOCKED_LRU,
2832 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2833 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2834 MF_MSG_DIRTY_LRU,
2835 MF_MSG_CLEAN_LRU,
2836 MF_MSG_TRUNCATED_LRU,
2837 MF_MSG_BUDDY,
2838 MF_MSG_BUDDY_2ND,
6100e34b 2839 MF_MSG_DAX,
cc637b17
XX
2840 MF_MSG_UNKNOWN,
2841};
2842
47ad8475
AA
2843#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2844extern void clear_huge_page(struct page *page,
c79b57e4 2845 unsigned long addr_hint,
47ad8475
AA
2846 unsigned int pages_per_huge_page);
2847extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
2848 unsigned long addr_hint,
2849 struct vm_area_struct *vma,
47ad8475 2850 unsigned int pages_per_huge_page);
fa4d75c1
MK
2851extern long copy_huge_page_from_user(struct page *dst_page,
2852 const void __user *usr_src,
810a56b9
MK
2853 unsigned int pages_per_huge_page,
2854 bool allow_pagefault);
47ad8475
AA
2855#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2856
c0a32fc5
SG
2857#ifdef CONFIG_DEBUG_PAGEALLOC
2858extern unsigned int _debug_guardpage_minorder;
96a2b03f 2859DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
2860
2861static inline unsigned int debug_guardpage_minorder(void)
2862{
2863 return _debug_guardpage_minorder;
2864}
2865
e30825f1
JK
2866static inline bool debug_guardpage_enabled(void)
2867{
96a2b03f 2868 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
2869}
2870
c0a32fc5
SG
2871static inline bool page_is_guard(struct page *page)
2872{
e30825f1
JK
2873 if (!debug_guardpage_enabled())
2874 return false;
2875
3972f6bb 2876 return PageGuard(page);
c0a32fc5
SG
2877}
2878#else
2879static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2880static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2881static inline bool page_is_guard(struct page *page) { return false; }
2882#endif /* CONFIG_DEBUG_PAGEALLOC */
2883
f9872caf
CS
2884#if MAX_NUMNODES > 1
2885void __init setup_nr_node_ids(void);
2886#else
2887static inline void setup_nr_node_ids(void) {}
2888#endif
2889
1da177e4
LT
2890#endif /* __KERNEL__ */
2891#endif /* _LINUX_MM_H */