mm: remove watermark_boost_factor_sysctl_handler
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
3b3b1a29 28#include <linux/overflow.h>
b5420237 29#include <linux/sizes.h>
7969f226 30#include <linux/sched.h>
1da177e4
LT
31
32struct mempolicy;
33struct anon_vma;
bf181b9f 34struct anon_vma_chain;
4e950f6f 35struct file_ra_state;
e8edc6e0 36struct user_struct;
4e950f6f 37struct writeback_control;
682aa8e1 38struct bdi_writeback;
1da177e4 39
597b7305
MH
40void init_mm_internals(void);
41
fccc9987 42#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 43extern unsigned long max_mapnr;
fccc9987
JL
44
45static inline void set_max_mapnr(unsigned long limit)
46{
47 max_mapnr = limit;
48}
49#else
50static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
51#endif
52
ca79b0c2
AK
53extern atomic_long_t _totalram_pages;
54static inline unsigned long totalram_pages(void)
55{
56 return (unsigned long)atomic_long_read(&_totalram_pages);
57}
58
59static inline void totalram_pages_inc(void)
60{
61 atomic_long_inc(&_totalram_pages);
62}
63
64static inline void totalram_pages_dec(void)
65{
66 atomic_long_dec(&_totalram_pages);
67}
68
69static inline void totalram_pages_add(long count)
70{
71 atomic_long_add(count, &_totalram_pages);
72}
73
1da177e4 74extern void * high_memory;
1da177e4
LT
75extern int page_cluster;
76
77#ifdef CONFIG_SYSCTL
78extern int sysctl_legacy_va_layout;
79#else
80#define sysctl_legacy_va_layout 0
81#endif
82
d07e2259
DC
83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
84extern const int mmap_rnd_bits_min;
85extern const int mmap_rnd_bits_max;
86extern int mmap_rnd_bits __read_mostly;
87#endif
88#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
89extern const int mmap_rnd_compat_bits_min;
90extern const int mmap_rnd_compat_bits_max;
91extern int mmap_rnd_compat_bits __read_mostly;
92#endif
93
1da177e4
LT
94#include <asm/page.h>
95#include <asm/pgtable.h>
96#include <asm/processor.h>
1da177e4 97
d9344522
AK
98/*
99 * Architectures that support memory tagging (assigning tags to memory regions,
100 * embedding these tags into addresses that point to these memory regions, and
101 * checking that the memory and the pointer tags match on memory accesses)
102 * redefine this macro to strip tags from pointers.
103 * It's defined as noop for arcitectures that don't support memory tagging.
104 */
105#ifndef untagged_addr
106#define untagged_addr(addr) (addr)
107#endif
108
79442ed1
TC
109#ifndef __pa_symbol
110#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
111#endif
112
1dff8083
AB
113#ifndef page_to_virt
114#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
115#endif
116
568c5fe5
LA
117#ifndef lm_alias
118#define lm_alias(x) __va(__pa_symbol(x))
119#endif
120
593befa6
DD
121/*
122 * To prevent common memory management code establishing
123 * a zero page mapping on a read fault.
124 * This macro should be defined within <asm/pgtable.h>.
125 * s390 does this to prevent multiplexing of hardware bits
126 * related to the physical page in case of virtualization.
127 */
128#ifndef mm_forbids_zeropage
129#define mm_forbids_zeropage(X) (0)
130#endif
131
a4a3ede2
PT
132/*
133 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
134 * If an architecture decides to implement their own version of
135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
136 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 137 */
5470dea4
AD
138#if BITS_PER_LONG == 64
139/* This function must be updated when the size of struct page grows above 80
140 * or reduces below 56. The idea that compiler optimizes out switch()
141 * statement, and only leaves move/store instructions. Also the compiler can
142 * combine write statments if they are both assignments and can be reordered,
143 * this can result in several of the writes here being dropped.
144 */
145#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
146static inline void __mm_zero_struct_page(struct page *page)
147{
148 unsigned long *_pp = (void *)page;
149
150 /* Check that struct page is either 56, 64, 72, or 80 bytes */
151 BUILD_BUG_ON(sizeof(struct page) & 7);
152 BUILD_BUG_ON(sizeof(struct page) < 56);
153 BUILD_BUG_ON(sizeof(struct page) > 80);
154
155 switch (sizeof(struct page)) {
156 case 80:
157 _pp[9] = 0; /* fallthrough */
158 case 72:
159 _pp[8] = 0; /* fallthrough */
160 case 64:
161 _pp[7] = 0; /* fallthrough */
162 case 56:
163 _pp[6] = 0;
164 _pp[5] = 0;
165 _pp[4] = 0;
166 _pp[3] = 0;
167 _pp[2] = 0;
168 _pp[1] = 0;
169 _pp[0] = 0;
170 }
171}
172#else
a4a3ede2
PT
173#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
174#endif
175
ea606cf5
AR
176/*
177 * Default maximum number of active map areas, this limits the number of vmas
178 * per mm struct. Users can overwrite this number by sysctl but there is a
179 * problem.
180 *
181 * When a program's coredump is generated as ELF format, a section is created
182 * per a vma. In ELF, the number of sections is represented in unsigned short.
183 * This means the number of sections should be smaller than 65535 at coredump.
184 * Because the kernel adds some informative sections to a image of program at
185 * generating coredump, we need some margin. The number of extra sections is
186 * 1-3 now and depends on arch. We use "5" as safe margin, here.
187 *
188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
189 * not a hard limit any more. Although some userspace tools can be surprised by
190 * that.
191 */
192#define MAPCOUNT_ELF_CORE_MARGIN (5)
193#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
194
195extern int sysctl_max_map_count;
196
c9b1d098 197extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 198extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 199
49f0ce5f
JM
200extern int sysctl_overcommit_memory;
201extern int sysctl_overcommit_ratio;
202extern unsigned long sysctl_overcommit_kbytes;
203
204extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
205 size_t *, loff_t *);
206extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
207 size_t *, loff_t *);
208
1da177e4
LT
209#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
210
27ac792c
AR
211/* to align the pointer to the (next) page boundary */
212#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
213
0fa73b86 214/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 215#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 216
f86196ea
NB
217#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
218
1da177e4
LT
219/*
220 * Linux kernel virtual memory manager primitives.
221 * The idea being to have a "virtual" mm in the same way
222 * we have a virtual fs - giving a cleaner interface to the
223 * mm details, and allowing different kinds of memory mappings
224 * (from shared memory to executable loading to arbitrary
225 * mmap() functions).
226 */
227
490fc053 228struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
229struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
230void vm_area_free(struct vm_area_struct *);
c43692e8 231
1da177e4 232#ifndef CONFIG_MMU
8feae131
DH
233extern struct rb_root nommu_region_tree;
234extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
235
236extern unsigned int kobjsize(const void *objp);
237#endif
238
239/*
605d9288 240 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 241 * When changing, update also include/trace/events/mmflags.h
1da177e4 242 */
cc2383ec
KK
243#define VM_NONE 0x00000000
244
1da177e4
LT
245#define VM_READ 0x00000001 /* currently active flags */
246#define VM_WRITE 0x00000002
247#define VM_EXEC 0x00000004
248#define VM_SHARED 0x00000008
249
7e2cff42 250/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
251#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
252#define VM_MAYWRITE 0x00000020
253#define VM_MAYEXEC 0x00000040
254#define VM_MAYSHARE 0x00000080
255
256#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 257#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 258#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 259#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 260#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 261
1da177e4
LT
262#define VM_LOCKED 0x00002000
263#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
264
265 /* Used by sys_madvise() */
266#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
267#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
268
269#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
270#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 271#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 272#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 273#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 274#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 275#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 276#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 277#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 278#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 279
d9104d1c
CG
280#ifdef CONFIG_MEM_SOFT_DIRTY
281# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
282#else
283# define VM_SOFTDIRTY 0
284#endif
285
b379d790 286#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
287#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
288#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 289#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 290
63c17fb8
DH
291#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
292#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
293#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
294#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
295#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 296#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
297#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
298#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
299#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
300#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 301#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
302#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
303
5212213a 304#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
305# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
306# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 307# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
308# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
309# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
310#ifdef CONFIG_PPC
311# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
312#else
313# define VM_PKEY_BIT4 0
8f62c883 314#endif
5212213a
RP
315#endif /* CONFIG_ARCH_HAS_PKEYS */
316
317#if defined(CONFIG_X86)
318# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
319#elif defined(CONFIG_PPC)
320# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
321#elif defined(CONFIG_PARISC)
322# define VM_GROWSUP VM_ARCH_1
323#elif defined(CONFIG_IA64)
324# define VM_GROWSUP VM_ARCH_1
74a04967
KA
325#elif defined(CONFIG_SPARC64)
326# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
327# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
328#elif !defined(CONFIG_MMU)
329# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
330#endif
331
df3735c5 332#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 333/* MPX specific bounds table or bounds directory */
fa87b91c 334# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
335#else
336# define VM_MPX VM_NONE
4aae7e43
QR
337#endif
338
cc2383ec
KK
339#ifndef VM_GROWSUP
340# define VM_GROWSUP VM_NONE
341#endif
342
a8bef8ff
MG
343/* Bits set in the VMA until the stack is in its final location */
344#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
345
c62da0c3
AK
346#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
347
348/* Common data flag combinations */
349#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
350 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
351#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
352 VM_MAYWRITE | VM_MAYEXEC)
353#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
354 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
355
356#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
357#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
358#endif
359
1da177e4
LT
360#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
361#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
362#endif
363
364#ifdef CONFIG_STACK_GROWSUP
30bdbb78 365#define VM_STACK VM_GROWSUP
1da177e4 366#else
30bdbb78 367#define VM_STACK VM_GROWSDOWN
1da177e4
LT
368#endif
369
30bdbb78
KK
370#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
371
6cb4d9a2
AK
372/* VMA basic access permission flags */
373#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
374
375
b291f000 376/*
78f11a25 377 * Special vmas that are non-mergable, non-mlock()able.
b291f000 378 */
9050d7eb 379#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 380
b4443772
AK
381/* This mask prevents VMA from being scanned with khugepaged */
382#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
383
a0715cc2
AT
384/* This mask defines which mm->def_flags a process can inherit its parent */
385#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
386
de60f5f1
EM
387/* This mask is used to clear all the VMA flags used by mlock */
388#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
389
2c2d57b5
KA
390/* Arch-specific flags to clear when updating VM flags on protection change */
391#ifndef VM_ARCH_CLEAR
392# define VM_ARCH_CLEAR VM_NONE
393#endif
394#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
395
1da177e4
LT
396/*
397 * mapping from the currently active vm_flags protection bits (the
398 * low four bits) to a page protection mask..
399 */
400extern pgprot_t protection_map[16];
401
c270a7ee
PX
402/**
403 * Fault flag definitions.
404 *
405 * @FAULT_FLAG_WRITE: Fault was a write fault.
406 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
407 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
408 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_sem and wait when retrying.
409 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
410 * @FAULT_FLAG_TRIED: The fault has been tried once.
411 * @FAULT_FLAG_USER: The fault originated in userspace.
412 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
413 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
414 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
415 *
416 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
417 * whether we would allow page faults to retry by specifying these two
418 * fault flags correctly. Currently there can be three legal combinations:
419 *
420 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
421 * this is the first try
422 *
423 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
424 * we've already tried at least once
425 *
426 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
427 *
428 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
429 * be used. Note that page faults can be allowed to retry for multiple times,
430 * in which case we'll have an initial fault with flags (a) then later on
431 * continuous faults with flags (b). We should always try to detect pending
432 * signals before a retry to make sure the continuous page faults can still be
433 * interrupted if necessary.
c270a7ee
PX
434 */
435#define FAULT_FLAG_WRITE 0x01
436#define FAULT_FLAG_MKWRITE 0x02
437#define FAULT_FLAG_ALLOW_RETRY 0x04
438#define FAULT_FLAG_RETRY_NOWAIT 0x08
439#define FAULT_FLAG_KILLABLE 0x10
440#define FAULT_FLAG_TRIED 0x20
441#define FAULT_FLAG_USER 0x40
442#define FAULT_FLAG_REMOTE 0x80
443#define FAULT_FLAG_INSTRUCTION 0x100
444#define FAULT_FLAG_INTERRUPTIBLE 0x200
d0217ac0 445
dde16072
PX
446/*
447 * The default fault flags that should be used by most of the
448 * arch-specific page fault handlers.
449 */
450#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
451 FAULT_FLAG_KILLABLE | \
452 FAULT_FLAG_INTERRUPTIBLE)
dde16072 453
4064b982
PX
454/**
455 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
456 *
457 * This is mostly used for places where we want to try to avoid taking
458 * the mmap_sem for too long a time when waiting for another condition
459 * to change, in which case we can try to be polite to release the
460 * mmap_sem in the first round to avoid potential starvation of other
461 * processes that would also want the mmap_sem.
462 *
463 * Return: true if the page fault allows retry and this is the first
464 * attempt of the fault handling; false otherwise.
465 */
466static inline bool fault_flag_allow_retry_first(unsigned int flags)
467{
468 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
469 (!(flags & FAULT_FLAG_TRIED));
470}
471
282a8e03
RZ
472#define FAULT_FLAG_TRACE \
473 { FAULT_FLAG_WRITE, "WRITE" }, \
474 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
475 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
476 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
477 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
478 { FAULT_FLAG_TRIED, "TRIED" }, \
479 { FAULT_FLAG_USER, "USER" }, \
480 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
481 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
482 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 483
54cb8821 484/*
d0217ac0 485 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
486 * ->fault function. The vma's ->fault is responsible for returning a bitmask
487 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 488 *
c20cd45e
MH
489 * MM layer fills up gfp_mask for page allocations but fault handler might
490 * alter it if its implementation requires a different allocation context.
491 *
9b4bdd2f 492 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 493 */
d0217ac0 494struct vm_fault {
82b0f8c3 495 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 496 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 497 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 498 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 499 unsigned long address; /* Faulting virtual address */
82b0f8c3 500 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 501 * the 'address' */
a2d58167
DJ
502 pud_t *pud; /* Pointer to pud entry matching
503 * the 'address'
504 */
2994302b 505 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 506
3917048d
JK
507 struct page *cow_page; /* Page handler may use for COW fault */
508 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 509 struct page *page; /* ->fault handlers should return a
83c54070 510 * page here, unless VM_FAULT_NOPAGE
d0217ac0 511 * is set (which is also implied by
83c54070 512 * VM_FAULT_ERROR).
d0217ac0 513 */
82b0f8c3 514 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
515 pte_t *pte; /* Pointer to pte entry matching
516 * the 'address'. NULL if the page
517 * table hasn't been allocated.
518 */
519 spinlock_t *ptl; /* Page table lock.
520 * Protects pte page table if 'pte'
521 * is not NULL, otherwise pmd.
522 */
7267ec00
KS
523 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
524 * vm_ops->map_pages() calls
525 * alloc_set_pte() from atomic context.
526 * do_fault_around() pre-allocates
527 * page table to avoid allocation from
528 * atomic context.
529 */
54cb8821 530};
1da177e4 531
c791ace1
DJ
532/* page entry size for vm->huge_fault() */
533enum page_entry_size {
534 PE_SIZE_PTE = 0,
535 PE_SIZE_PMD,
536 PE_SIZE_PUD,
537};
538
1da177e4
LT
539/*
540 * These are the virtual MM functions - opening of an area, closing and
541 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 542 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
543 */
544struct vm_operations_struct {
545 void (*open)(struct vm_area_struct * area);
546 void (*close)(struct vm_area_struct * area);
31383c68 547 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 548 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
549 vm_fault_t (*fault)(struct vm_fault *vmf);
550 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
551 enum page_entry_size pe_size);
82b0f8c3 552 void (*map_pages)(struct vm_fault *vmf,
bae473a4 553 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 554 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
555
556 /* notification that a previously read-only page is about to become
557 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 558 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 559
dd906184 560 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 561 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 562
28b2ee20
RR
563 /* called by access_process_vm when get_user_pages() fails, typically
564 * for use by special VMAs that can switch between memory and hardware
565 */
566 int (*access)(struct vm_area_struct *vma, unsigned long addr,
567 void *buf, int len, int write);
78d683e8
AL
568
569 /* Called by the /proc/PID/maps code to ask the vma whether it
570 * has a special name. Returning non-NULL will also cause this
571 * vma to be dumped unconditionally. */
572 const char *(*name)(struct vm_area_struct *vma);
573
1da177e4 574#ifdef CONFIG_NUMA
a6020ed7
LS
575 /*
576 * set_policy() op must add a reference to any non-NULL @new mempolicy
577 * to hold the policy upon return. Caller should pass NULL @new to
578 * remove a policy and fall back to surrounding context--i.e. do not
579 * install a MPOL_DEFAULT policy, nor the task or system default
580 * mempolicy.
581 */
1da177e4 582 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
583
584 /*
585 * get_policy() op must add reference [mpol_get()] to any policy at
586 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
587 * in mm/mempolicy.c will do this automatically.
588 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
589 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
590 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
591 * must return NULL--i.e., do not "fallback" to task or system default
592 * policy.
593 */
1da177e4
LT
594 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
595 unsigned long addr);
596#endif
667a0a06
DV
597 /*
598 * Called by vm_normal_page() for special PTEs to find the
599 * page for @addr. This is useful if the default behavior
600 * (using pte_page()) would not find the correct page.
601 */
602 struct page *(*find_special_page)(struct vm_area_struct *vma,
603 unsigned long addr);
1da177e4
LT
604};
605
027232da
KS
606static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
607{
bfd40eaf
KS
608 static const struct vm_operations_struct dummy_vm_ops = {};
609
a670468f 610 memset(vma, 0, sizeof(*vma));
027232da 611 vma->vm_mm = mm;
bfd40eaf 612 vma->vm_ops = &dummy_vm_ops;
027232da
KS
613 INIT_LIST_HEAD(&vma->anon_vma_chain);
614}
615
bfd40eaf
KS
616static inline void vma_set_anonymous(struct vm_area_struct *vma)
617{
618 vma->vm_ops = NULL;
619}
620
43675e6f
YS
621static inline bool vma_is_anonymous(struct vm_area_struct *vma)
622{
623 return !vma->vm_ops;
624}
625
222100ee
AK
626static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
627{
628 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
629
630 if (!maybe_stack)
631 return false;
632
633 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
634 VM_STACK_INCOMPLETE_SETUP)
635 return true;
636
637 return false;
638}
639
7969f226
AK
640static inline bool vma_is_foreign(struct vm_area_struct *vma)
641{
642 if (!current->mm)
643 return true;
644
645 if (current->mm != vma->vm_mm)
646 return true;
647
648 return false;
649}
3122e80e
AK
650
651static inline bool vma_is_accessible(struct vm_area_struct *vma)
652{
6cb4d9a2 653 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
654}
655
43675e6f
YS
656#ifdef CONFIG_SHMEM
657/*
658 * The vma_is_shmem is not inline because it is used only by slow
659 * paths in userfault.
660 */
661bool vma_is_shmem(struct vm_area_struct *vma);
662#else
663static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
664#endif
665
666int vma_is_stack_for_current(struct vm_area_struct *vma);
667
8b11ec1b
LT
668/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
669#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
670
1da177e4
LT
671struct mmu_gather;
672struct inode;
673
1da177e4
LT
674/*
675 * FIXME: take this include out, include page-flags.h in
676 * files which need it (119 of them)
677 */
678#include <linux/page-flags.h>
71e3aac0 679#include <linux/huge_mm.h>
1da177e4
LT
680
681/*
682 * Methods to modify the page usage count.
683 *
684 * What counts for a page usage:
685 * - cache mapping (page->mapping)
686 * - private data (page->private)
687 * - page mapped in a task's page tables, each mapping
688 * is counted separately
689 *
690 * Also, many kernel routines increase the page count before a critical
691 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
692 */
693
694/*
da6052f7 695 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 696 */
7c8ee9a8
NP
697static inline int put_page_testzero(struct page *page)
698{
fe896d18
JK
699 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
700 return page_ref_dec_and_test(page);
7c8ee9a8 701}
1da177e4
LT
702
703/*
7c8ee9a8
NP
704 * Try to grab a ref unless the page has a refcount of zero, return false if
705 * that is the case.
8e0861fa
AK
706 * This can be called when MMU is off so it must not access
707 * any of the virtual mappings.
1da177e4 708 */
7c8ee9a8
NP
709static inline int get_page_unless_zero(struct page *page)
710{
fe896d18 711 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 712}
1da177e4 713
53df8fdc 714extern int page_is_ram(unsigned long pfn);
124fe20d
DW
715
716enum {
717 REGION_INTERSECTS,
718 REGION_DISJOINT,
719 REGION_MIXED,
720};
721
1c29f25b
TK
722int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
723 unsigned long desc);
53df8fdc 724
48667e7a 725/* Support for virtually mapped pages */
b3bdda02
CL
726struct page *vmalloc_to_page(const void *addr);
727unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 728
0738c4bb
PM
729/*
730 * Determine if an address is within the vmalloc range
731 *
732 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
733 * is no special casing required.
734 */
9bd3bb67
AK
735
736#ifndef is_ioremap_addr
737#define is_ioremap_addr(x) is_vmalloc_addr(x)
738#endif
739
81ac3ad9 740#ifdef CONFIG_MMU
186525bd 741extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
742extern int is_vmalloc_or_module_addr(const void *x);
743#else
186525bd
IM
744static inline bool is_vmalloc_addr(const void *x)
745{
746 return false;
747}
934831d0 748static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
749{
750 return 0;
751}
752#endif
9e2779fa 753
a7c3e901
MH
754extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
755static inline void *kvmalloc(size_t size, gfp_t flags)
756{
757 return kvmalloc_node(size, flags, NUMA_NO_NODE);
758}
759static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
760{
761 return kvmalloc_node(size, flags | __GFP_ZERO, node);
762}
763static inline void *kvzalloc(size_t size, gfp_t flags)
764{
765 return kvmalloc(size, flags | __GFP_ZERO);
766}
767
752ade68
MH
768static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
769{
3b3b1a29
KC
770 size_t bytes;
771
772 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
773 return NULL;
774
3b3b1a29 775 return kvmalloc(bytes, flags);
752ade68
MH
776}
777
1c542f38
KC
778static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
779{
780 return kvmalloc_array(n, size, flags | __GFP_ZERO);
781}
782
39f1f78d
AV
783extern void kvfree(const void *addr);
784
53f9263b
KS
785static inline int compound_mapcount(struct page *page)
786{
5f527c2b 787 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
788 page = compound_head(page);
789 return atomic_read(compound_mapcount_ptr(page)) + 1;
790}
791
70b50f94
AA
792/*
793 * The atomic page->_mapcount, starts from -1: so that transitions
794 * both from it and to it can be tracked, using atomic_inc_and_test
795 * and atomic_add_negative(-1).
796 */
22b751c3 797static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
798{
799 atomic_set(&(page)->_mapcount, -1);
800}
801
b20ce5e0
KS
802int __page_mapcount(struct page *page);
803
70b50f94
AA
804static inline int page_mapcount(struct page *page)
805{
1d148e21 806 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 807
b20ce5e0
KS
808 if (unlikely(PageCompound(page)))
809 return __page_mapcount(page);
810 return atomic_read(&page->_mapcount) + 1;
811}
812
813#ifdef CONFIG_TRANSPARENT_HUGEPAGE
814int total_mapcount(struct page *page);
6d0a07ed 815int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
816#else
817static inline int total_mapcount(struct page *page)
818{
819 return page_mapcount(page);
70b50f94 820}
6d0a07ed
AA
821static inline int page_trans_huge_mapcount(struct page *page,
822 int *total_mapcount)
823{
824 int mapcount = page_mapcount(page);
825 if (total_mapcount)
826 *total_mapcount = mapcount;
827 return mapcount;
828}
b20ce5e0 829#endif
70b50f94 830
b49af68f
CL
831static inline struct page *virt_to_head_page(const void *x)
832{
833 struct page *page = virt_to_page(x);
ccaafd7f 834
1d798ca3 835 return compound_head(page);
b49af68f
CL
836}
837
ddc58f27
KS
838void __put_page(struct page *page);
839
1d7ea732 840void put_pages_list(struct list_head *pages);
1da177e4 841
8dfcc9ba 842void split_page(struct page *page, unsigned int order);
8dfcc9ba 843
33f2ef89
AW
844/*
845 * Compound pages have a destructor function. Provide a
846 * prototype for that function and accessor functions.
f1e61557 847 * These are _only_ valid on the head of a compound page.
33f2ef89 848 */
f1e61557
KS
849typedef void compound_page_dtor(struct page *);
850
851/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
852enum compound_dtor_id {
853 NULL_COMPOUND_DTOR,
854 COMPOUND_PAGE_DTOR,
855#ifdef CONFIG_HUGETLB_PAGE
856 HUGETLB_PAGE_DTOR,
9a982250
KS
857#endif
858#ifdef CONFIG_TRANSPARENT_HUGEPAGE
859 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
860#endif
861 NR_COMPOUND_DTORS,
862};
863extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
864
865static inline void set_compound_page_dtor(struct page *page,
f1e61557 866 enum compound_dtor_id compound_dtor)
33f2ef89 867{
f1e61557
KS
868 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
869 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
870}
871
872static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
873{
f1e61557
KS
874 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
875 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
876}
877
d00181b9 878static inline unsigned int compound_order(struct page *page)
d85f3385 879{
6d777953 880 if (!PageHead(page))
d85f3385 881 return 0;
e4b294c2 882 return page[1].compound_order;
d85f3385
CL
883}
884
47e29d32
JH
885static inline bool hpage_pincount_available(struct page *page)
886{
887 /*
888 * Can the page->hpage_pinned_refcount field be used? That field is in
889 * the 3rd page of the compound page, so the smallest (2-page) compound
890 * pages cannot support it.
891 */
892 page = compound_head(page);
893 return PageCompound(page) && compound_order(page) > 1;
894}
895
896static inline int compound_pincount(struct page *page)
897{
898 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
899 page = compound_head(page);
900 return atomic_read(compound_pincount_ptr(page));
901}
902
f1e61557 903static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 904{
e4b294c2 905 page[1].compound_order = order;
d85f3385
CL
906}
907
d8c6546b
MWO
908/* Returns the number of pages in this potentially compound page. */
909static inline unsigned long compound_nr(struct page *page)
910{
911 return 1UL << compound_order(page);
912}
913
a50b854e
MWO
914/* Returns the number of bytes in this potentially compound page. */
915static inline unsigned long page_size(struct page *page)
916{
917 return PAGE_SIZE << compound_order(page);
918}
919
94ad9338
MWO
920/* Returns the number of bits needed for the number of bytes in a page */
921static inline unsigned int page_shift(struct page *page)
922{
923 return PAGE_SHIFT + compound_order(page);
924}
925
9a982250
KS
926void free_compound_page(struct page *page);
927
3dece370 928#ifdef CONFIG_MMU
14fd403f
AA
929/*
930 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
931 * servicing faults for write access. In the normal case, do always want
932 * pte_mkwrite. But get_user_pages can cause write faults for mappings
933 * that do not have writing enabled, when used by access_process_vm.
934 */
935static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
936{
937 if (likely(vma->vm_flags & VM_WRITE))
938 pte = pte_mkwrite(pte);
939 return pte;
940}
8c6e50b0 941
2b740303 942vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 943 struct page *page);
2b740303
SJ
944vm_fault_t finish_fault(struct vm_fault *vmf);
945vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 946#endif
14fd403f 947
1da177e4
LT
948/*
949 * Multiple processes may "see" the same page. E.g. for untouched
950 * mappings of /dev/null, all processes see the same page full of
951 * zeroes, and text pages of executables and shared libraries have
952 * only one copy in memory, at most, normally.
953 *
954 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
955 * page_count() == 0 means the page is free. page->lru is then used for
956 * freelist management in the buddy allocator.
da6052f7 957 * page_count() > 0 means the page has been allocated.
1da177e4 958 *
da6052f7
NP
959 * Pages are allocated by the slab allocator in order to provide memory
960 * to kmalloc and kmem_cache_alloc. In this case, the management of the
961 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
962 * unless a particular usage is carefully commented. (the responsibility of
963 * freeing the kmalloc memory is the caller's, of course).
1da177e4 964 *
da6052f7
NP
965 * A page may be used by anyone else who does a __get_free_page().
966 * In this case, page_count still tracks the references, and should only
967 * be used through the normal accessor functions. The top bits of page->flags
968 * and page->virtual store page management information, but all other fields
969 * are unused and could be used privately, carefully. The management of this
970 * page is the responsibility of the one who allocated it, and those who have
971 * subsequently been given references to it.
972 *
973 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
974 * managed by the Linux memory manager: I/O, buffers, swapping etc.
975 * The following discussion applies only to them.
976 *
da6052f7
NP
977 * A pagecache page contains an opaque `private' member, which belongs to the
978 * page's address_space. Usually, this is the address of a circular list of
979 * the page's disk buffers. PG_private must be set to tell the VM to call
980 * into the filesystem to release these pages.
1da177e4 981 *
da6052f7
NP
982 * A page may belong to an inode's memory mapping. In this case, page->mapping
983 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 984 * in units of PAGE_SIZE.
1da177e4 985 *
da6052f7
NP
986 * If pagecache pages are not associated with an inode, they are said to be
987 * anonymous pages. These may become associated with the swapcache, and in that
988 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 989 *
da6052f7
NP
990 * In either case (swapcache or inode backed), the pagecache itself holds one
991 * reference to the page. Setting PG_private should also increment the
992 * refcount. The each user mapping also has a reference to the page.
1da177e4 993 *
da6052f7 994 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 995 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
996 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
997 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 998 *
da6052f7 999 * All pagecache pages may be subject to I/O:
1da177e4
LT
1000 * - inode pages may need to be read from disk,
1001 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1002 * to be written back to the inode on disk,
1003 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1004 * modified may need to be swapped out to swap space and (later) to be read
1005 * back into memory.
1da177e4
LT
1006 */
1007
1008/*
1009 * The zone field is never updated after free_area_init_core()
1010 * sets it, so none of the operations on it need to be atomic.
1da177e4 1011 */
348f8b6c 1012
90572890 1013/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1014#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1015#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1016#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1017#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1018#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1019
348f8b6c 1020/*
25985edc 1021 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1022 * sections we define the shift as 0; that plus a 0 mask ensures
1023 * the compiler will optimise away reference to them.
1024 */
d41dee36
AW
1025#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1026#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1027#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1028#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1029#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1030
bce54bbf
WD
1031/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1032#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1033#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1034#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1035 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1036#else
89689ae7 1037#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1038#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1039 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1040#endif
1041
bd8029b6 1042#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1043
d41dee36
AW
1044#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1045#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1046#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1047#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1048#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1049#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1050
33dd4e0e 1051static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1052{
348f8b6c 1053 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1054}
1da177e4 1055
260ae3f7
DW
1056#ifdef CONFIG_ZONE_DEVICE
1057static inline bool is_zone_device_page(const struct page *page)
1058{
1059 return page_zonenum(page) == ZONE_DEVICE;
1060}
966cf44f
AD
1061extern void memmap_init_zone_device(struct zone *, unsigned long,
1062 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1063#else
1064static inline bool is_zone_device_page(const struct page *page)
1065{
1066 return false;
1067}
7b2d55d2 1068#endif
5042db43 1069
e7638488 1070#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1071void free_devmap_managed_page(struct page *page);
e7638488 1072DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1073
1074static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1075{
1076 if (!static_branch_unlikely(&devmap_managed_key))
1077 return false;
1078 if (!is_zone_device_page(page))
1079 return false;
1080 switch (page->pgmap->type) {
1081 case MEMORY_DEVICE_PRIVATE:
e7638488 1082 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1083 return true;
1084 default:
1085 break;
1086 }
1087 return false;
1088}
1089
07d80269
JH
1090void put_devmap_managed_page(struct page *page);
1091
e7638488 1092#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1093static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1094{
1095 return false;
1096}
07d80269
JH
1097
1098static inline void put_devmap_managed_page(struct page *page)
1099{
1100}
7588adf8 1101#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1102
6b368cd4
JG
1103static inline bool is_device_private_page(const struct page *page)
1104{
7588adf8
RM
1105 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1106 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1107 is_zone_device_page(page) &&
1108 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1109}
e7638488 1110
52916982
LG
1111static inline bool is_pci_p2pdma_page(const struct page *page)
1112{
7588adf8
RM
1113 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1114 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1115 is_zone_device_page(page) &&
1116 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1117}
7b2d55d2 1118
f958d7b5
LT
1119/* 127: arbitrary random number, small enough to assemble well */
1120#define page_ref_zero_or_close_to_overflow(page) \
1121 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1122
3565fce3
DW
1123static inline void get_page(struct page *page)
1124{
1125 page = compound_head(page);
1126 /*
1127 * Getting a normal page or the head of a compound page
0139aa7b 1128 * requires to already have an elevated page->_refcount.
3565fce3 1129 */
f958d7b5 1130 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1131 page_ref_inc(page);
3565fce3
DW
1132}
1133
3faa52c0
JH
1134bool __must_check try_grab_page(struct page *page, unsigned int flags);
1135
88b1a17d
LT
1136static inline __must_check bool try_get_page(struct page *page)
1137{
1138 page = compound_head(page);
1139 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1140 return false;
fe896d18 1141 page_ref_inc(page);
88b1a17d 1142 return true;
3565fce3
DW
1143}
1144
1145static inline void put_page(struct page *page)
1146{
1147 page = compound_head(page);
1148
7b2d55d2 1149 /*
e7638488
DW
1150 * For devmap managed pages we need to catch refcount transition from
1151 * 2 to 1, when refcount reach one it means the page is free and we
1152 * need to inform the device driver through callback. See
7b2d55d2
JG
1153 * include/linux/memremap.h and HMM for details.
1154 */
07d80269
JH
1155 if (page_is_devmap_managed(page)) {
1156 put_devmap_managed_page(page);
7b2d55d2 1157 return;
07d80269 1158 }
7b2d55d2 1159
3565fce3
DW
1160 if (put_page_testzero(page))
1161 __put_page(page);
3565fce3
DW
1162}
1163
3faa52c0
JH
1164/*
1165 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1166 * the page's refcount so that two separate items are tracked: the original page
1167 * reference count, and also a new count of how many pin_user_pages() calls were
1168 * made against the page. ("gup-pinned" is another term for the latter).
1169 *
1170 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1171 * distinct from normal pages. As such, the unpin_user_page() call (and its
1172 * variants) must be used in order to release gup-pinned pages.
1173 *
1174 * Choice of value:
1175 *
1176 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1177 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1178 * simpler, due to the fact that adding an even power of two to the page
1179 * refcount has the effect of using only the upper N bits, for the code that
1180 * counts up using the bias value. This means that the lower bits are left for
1181 * the exclusive use of the original code that increments and decrements by one
1182 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1183 *
3faa52c0
JH
1184 * Of course, once the lower bits overflow into the upper bits (and this is
1185 * OK, because subtraction recovers the original values), then visual inspection
1186 * no longer suffices to directly view the separate counts. However, for normal
1187 * applications that don't have huge page reference counts, this won't be an
1188 * issue.
fc1d8e7c 1189 *
3faa52c0
JH
1190 * Locking: the lockless algorithm described in page_cache_get_speculative()
1191 * and page_cache_gup_pin_speculative() provides safe operation for
1192 * get_user_pages and page_mkclean and other calls that race to set up page
1193 * table entries.
fc1d8e7c 1194 */
3faa52c0 1195#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1196
3faa52c0 1197void unpin_user_page(struct page *page);
f1f6a7dd
JH
1198void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1199 bool make_dirty);
f1f6a7dd 1200void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1201
3faa52c0
JH
1202/**
1203 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1204 *
1205 * This function checks if a page has been pinned via a call to
1206 * pin_user_pages*().
1207 *
1208 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1209 * because it means "definitely not pinned for DMA", but true means "probably
1210 * pinned for DMA, but possibly a false positive due to having at least
1211 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1212 *
1213 * False positives are OK, because: a) it's unlikely for a page to get that many
1214 * refcounts, and b) all the callers of this routine are expected to be able to
1215 * deal gracefully with a false positive.
1216 *
47e29d32
JH
1217 * For huge pages, the result will be exactly correct. That's because we have
1218 * more tracking data available: the 3rd struct page in the compound page is
1219 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1220 * scheme).
1221 *
3faa52c0
JH
1222 * For more information, please see Documentation/vm/pin_user_pages.rst.
1223 *
1224 * @page: pointer to page to be queried.
1225 * @Return: True, if it is likely that the page has been "dma-pinned".
1226 * False, if the page is definitely not dma-pinned.
1227 */
1228static inline bool page_maybe_dma_pinned(struct page *page)
1229{
47e29d32
JH
1230 if (hpage_pincount_available(page))
1231 return compound_pincount(page) > 0;
1232
3faa52c0
JH
1233 /*
1234 * page_ref_count() is signed. If that refcount overflows, then
1235 * page_ref_count() returns a negative value, and callers will avoid
1236 * further incrementing the refcount.
1237 *
1238 * Here, for that overflow case, use the signed bit to count a little
1239 * bit higher via unsigned math, and thus still get an accurate result.
1240 */
1241 return ((unsigned int)page_ref_count(compound_head(page))) >=
1242 GUP_PIN_COUNTING_BIAS;
1243}
1244
9127ab4f
CS
1245#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1246#define SECTION_IN_PAGE_FLAGS
1247#endif
1248
89689ae7 1249/*
7a8010cd
VB
1250 * The identification function is mainly used by the buddy allocator for
1251 * determining if two pages could be buddies. We are not really identifying
1252 * the zone since we could be using the section number id if we do not have
1253 * node id available in page flags.
1254 * We only guarantee that it will return the same value for two combinable
1255 * pages in a zone.
89689ae7 1256 */
cb2b95e1
AW
1257static inline int page_zone_id(struct page *page)
1258{
89689ae7 1259 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1260}
1261
89689ae7 1262#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1263extern int page_to_nid(const struct page *page);
89689ae7 1264#else
33dd4e0e 1265static inline int page_to_nid(const struct page *page)
d41dee36 1266{
f165b378
PT
1267 struct page *p = (struct page *)page;
1268
1269 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1270}
89689ae7
CL
1271#endif
1272
57e0a030 1273#ifdef CONFIG_NUMA_BALANCING
90572890 1274static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1275{
90572890 1276 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1277}
1278
90572890 1279static inline int cpupid_to_pid(int cpupid)
57e0a030 1280{
90572890 1281 return cpupid & LAST__PID_MASK;
57e0a030 1282}
b795854b 1283
90572890 1284static inline int cpupid_to_cpu(int cpupid)
b795854b 1285{
90572890 1286 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1287}
1288
90572890 1289static inline int cpupid_to_nid(int cpupid)
b795854b 1290{
90572890 1291 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1292}
1293
90572890 1294static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1295{
90572890 1296 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1297}
1298
90572890 1299static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1300{
90572890 1301 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1302}
1303
8c8a743c
PZ
1304static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1305{
1306 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1307}
1308
1309#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1310#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1311static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1312{
1ae71d03 1313 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1314}
90572890
PZ
1315
1316static inline int page_cpupid_last(struct page *page)
1317{
1318 return page->_last_cpupid;
1319}
1320static inline void page_cpupid_reset_last(struct page *page)
b795854b 1321{
1ae71d03 1322 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1323}
1324#else
90572890 1325static inline int page_cpupid_last(struct page *page)
75980e97 1326{
90572890 1327 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1328}
1329
90572890 1330extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1331
90572890 1332static inline void page_cpupid_reset_last(struct page *page)
75980e97 1333{
09940a4f 1334 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1335}
90572890
PZ
1336#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1337#else /* !CONFIG_NUMA_BALANCING */
1338static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1339{
90572890 1340 return page_to_nid(page); /* XXX */
57e0a030
MG
1341}
1342
90572890 1343static inline int page_cpupid_last(struct page *page)
57e0a030 1344{
90572890 1345 return page_to_nid(page); /* XXX */
57e0a030
MG
1346}
1347
90572890 1348static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1349{
1350 return -1;
1351}
1352
90572890 1353static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1354{
1355 return -1;
1356}
1357
90572890 1358static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1359{
1360 return -1;
1361}
1362
90572890
PZ
1363static inline int cpu_pid_to_cpupid(int nid, int pid)
1364{
1365 return -1;
1366}
1367
1368static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1369{
1370 return 1;
1371}
1372
90572890 1373static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1374{
1375}
8c8a743c
PZ
1376
1377static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1378{
1379 return false;
1380}
90572890 1381#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1382
2813b9c0
AK
1383#ifdef CONFIG_KASAN_SW_TAGS
1384static inline u8 page_kasan_tag(const struct page *page)
1385{
1386 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1387}
1388
1389static inline void page_kasan_tag_set(struct page *page, u8 tag)
1390{
1391 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1392 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1393}
1394
1395static inline void page_kasan_tag_reset(struct page *page)
1396{
1397 page_kasan_tag_set(page, 0xff);
1398}
1399#else
1400static inline u8 page_kasan_tag(const struct page *page)
1401{
1402 return 0xff;
1403}
1404
1405static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1406static inline void page_kasan_tag_reset(struct page *page) { }
1407#endif
1408
33dd4e0e 1409static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1410{
1411 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1412}
1413
75ef7184
MG
1414static inline pg_data_t *page_pgdat(const struct page *page)
1415{
1416 return NODE_DATA(page_to_nid(page));
1417}
1418
9127ab4f 1419#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1420static inline void set_page_section(struct page *page, unsigned long section)
1421{
1422 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1423 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1424}
1425
aa462abe 1426static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1427{
1428 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1429}
308c05e3 1430#endif
d41dee36 1431
2f1b6248 1432static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1433{
1434 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1435 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1436}
2f1b6248 1437
348f8b6c
DH
1438static inline void set_page_node(struct page *page, unsigned long node)
1439{
1440 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1441 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1442}
89689ae7 1443
2f1b6248 1444static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1445 unsigned long node, unsigned long pfn)
1da177e4 1446{
348f8b6c
DH
1447 set_page_zone(page, zone);
1448 set_page_node(page, node);
9127ab4f 1449#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1450 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1451#endif
1da177e4
LT
1452}
1453
0610c25d
GT
1454#ifdef CONFIG_MEMCG
1455static inline struct mem_cgroup *page_memcg(struct page *page)
1456{
1457 return page->mem_cgroup;
1458}
55779ec7
JW
1459static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1460{
1461 WARN_ON_ONCE(!rcu_read_lock_held());
1462 return READ_ONCE(page->mem_cgroup);
1463}
0610c25d
GT
1464#else
1465static inline struct mem_cgroup *page_memcg(struct page *page)
1466{
1467 return NULL;
1468}
55779ec7
JW
1469static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1470{
1471 WARN_ON_ONCE(!rcu_read_lock_held());
1472 return NULL;
1473}
0610c25d
GT
1474#endif
1475
f6ac2354
CL
1476/*
1477 * Some inline functions in vmstat.h depend on page_zone()
1478 */
1479#include <linux/vmstat.h>
1480
33dd4e0e 1481static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1482{
1dff8083 1483 return page_to_virt(page);
1da177e4
LT
1484}
1485
1486#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1487#define HASHED_PAGE_VIRTUAL
1488#endif
1489
1490#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1491static inline void *page_address(const struct page *page)
1492{
1493 return page->virtual;
1494}
1495static inline void set_page_address(struct page *page, void *address)
1496{
1497 page->virtual = address;
1498}
1da177e4
LT
1499#define page_address_init() do { } while(0)
1500#endif
1501
1502#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1503void *page_address(const struct page *page);
1da177e4
LT
1504void set_page_address(struct page *page, void *virtual);
1505void page_address_init(void);
1506#endif
1507
1508#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1509#define page_address(page) lowmem_page_address(page)
1510#define set_page_address(page, address) do { } while(0)
1511#define page_address_init() do { } while(0)
1512#endif
1513
e39155ea
KS
1514extern void *page_rmapping(struct page *page);
1515extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1516extern struct address_space *page_mapping(struct page *page);
1da177e4 1517
f981c595
MG
1518extern struct address_space *__page_file_mapping(struct page *);
1519
1520static inline
1521struct address_space *page_file_mapping(struct page *page)
1522{
1523 if (unlikely(PageSwapCache(page)))
1524 return __page_file_mapping(page);
1525
1526 return page->mapping;
1527}
1528
f6ab1f7f
HY
1529extern pgoff_t __page_file_index(struct page *page);
1530
1da177e4
LT
1531/*
1532 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1533 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1534 */
1535static inline pgoff_t page_index(struct page *page)
1536{
1537 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1538 return __page_file_index(page);
1da177e4
LT
1539 return page->index;
1540}
1541
1aa8aea5 1542bool page_mapped(struct page *page);
bda807d4 1543struct address_space *page_mapping(struct page *page);
cb9f753a 1544struct address_space *page_mapping_file(struct page *page);
1da177e4 1545
2f064f34
MH
1546/*
1547 * Return true only if the page has been allocated with
1548 * ALLOC_NO_WATERMARKS and the low watermark was not
1549 * met implying that the system is under some pressure.
1550 */
1551static inline bool page_is_pfmemalloc(struct page *page)
1552{
1553 /*
1554 * Page index cannot be this large so this must be
1555 * a pfmemalloc page.
1556 */
1557 return page->index == -1UL;
1558}
1559
1560/*
1561 * Only to be called by the page allocator on a freshly allocated
1562 * page.
1563 */
1564static inline void set_page_pfmemalloc(struct page *page)
1565{
1566 page->index = -1UL;
1567}
1568
1569static inline void clear_page_pfmemalloc(struct page *page)
1570{
1571 page->index = 0;
1572}
1573
1c0fe6e3
NP
1574/*
1575 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1576 */
1577extern void pagefault_out_of_memory(void);
1578
1da177e4
LT
1579#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1580
ddd588b5 1581/*
7bf02ea2 1582 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1583 * various contexts.
1584 */
4b59e6c4 1585#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1586
9af744d7 1587extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1588
710ec38b 1589#ifdef CONFIG_MMU
7f43add4 1590extern bool can_do_mlock(void);
710ec38b
AB
1591#else
1592static inline bool can_do_mlock(void) { return false; }
1593#endif
1da177e4
LT
1594extern int user_shm_lock(size_t, struct user_struct *);
1595extern void user_shm_unlock(size_t, struct user_struct *);
1596
1597/*
1598 * Parameter block passed down to zap_pte_range in exceptional cases.
1599 */
1600struct zap_details {
1da177e4
LT
1601 struct address_space *check_mapping; /* Check page->mapping if set */
1602 pgoff_t first_index; /* Lowest page->index to unmap */
1603 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1604};
1605
25b2995a
CH
1606struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1607 pte_t pte);
28093f9f
GS
1608struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1609 pmd_t pmd);
7e675137 1610
27d036e3
LR
1611void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1612 unsigned long size);
14f5ff5d 1613void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1614 unsigned long size);
4f74d2c8
LT
1615void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1616 unsigned long start, unsigned long end);
e6473092 1617
ac46d4f3
JG
1618struct mmu_notifier_range;
1619
42b77728 1620void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1621 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1622int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1623 struct vm_area_struct *vma);
09796395 1624int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1625 struct mmu_notifier_range *range,
1626 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1627int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1628 unsigned long *pfn);
d87fe660 1629int follow_phys(struct vm_area_struct *vma, unsigned long address,
1630 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1631int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1632 void *buf, int len, int write);
1da177e4 1633
7caef267 1634extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1635extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1636void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1637void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1638int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1639int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1640int invalidate_inode_page(struct page *page);
1641
7ee1dd3f 1642#ifdef CONFIG_MMU
2b740303
SJ
1643extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1644 unsigned long address, unsigned int flags);
5c723ba5 1645extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1646 unsigned long address, unsigned int fault_flags,
1647 bool *unlocked);
977fbdcd
MW
1648void unmap_mapping_pages(struct address_space *mapping,
1649 pgoff_t start, pgoff_t nr, bool even_cows);
1650void unmap_mapping_range(struct address_space *mapping,
1651 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1652#else
2b740303 1653static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
dcddffd4 1654 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1655{
1656 /* should never happen if there's no MMU */
1657 BUG();
1658 return VM_FAULT_SIGBUS;
1659}
5c723ba5
PZ
1660static inline int fixup_user_fault(struct task_struct *tsk,
1661 struct mm_struct *mm, unsigned long address,
4a9e1cda 1662 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1663{
1664 /* should never happen if there's no MMU */
1665 BUG();
1666 return -EFAULT;
1667}
977fbdcd
MW
1668static inline void unmap_mapping_pages(struct address_space *mapping,
1669 pgoff_t start, pgoff_t nr, bool even_cows) { }
1670static inline void unmap_mapping_range(struct address_space *mapping,
1671 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1672#endif
f33ea7f4 1673
977fbdcd
MW
1674static inline void unmap_shared_mapping_range(struct address_space *mapping,
1675 loff_t const holebegin, loff_t const holelen)
1676{
1677 unmap_mapping_range(mapping, holebegin, holelen, 0);
1678}
1679
1680extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1681 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1682extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1683 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1684extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1685 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1686
1e987790
DH
1687long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1688 unsigned long start, unsigned long nr_pages,
9beae1ea 1689 unsigned int gup_flags, struct page **pages,
5b56d49f 1690 struct vm_area_struct **vmas, int *locked);
eddb1c22
JH
1691long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1692 unsigned long start, unsigned long nr_pages,
1693 unsigned int gup_flags, struct page **pages,
1694 struct vm_area_struct **vmas, int *locked);
c12d2da5 1695long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1696 unsigned int gup_flags, struct page **pages,
cde70140 1697 struct vm_area_struct **vmas);
eddb1c22
JH
1698long pin_user_pages(unsigned long start, unsigned long nr_pages,
1699 unsigned int gup_flags, struct page **pages,
1700 struct vm_area_struct **vmas);
c12d2da5 1701long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1702 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1703long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1704 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1705
73b0140b
IW
1706int get_user_pages_fast(unsigned long start, int nr_pages,
1707 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1708int pin_user_pages_fast(unsigned long start, int nr_pages,
1709 unsigned int gup_flags, struct page **pages);
8025e5dd 1710
79eb597c
DJ
1711int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1712int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1713 struct task_struct *task, bool bypass_rlim);
1714
8025e5dd
JK
1715/* Container for pinned pfns / pages */
1716struct frame_vector {
1717 unsigned int nr_allocated; /* Number of frames we have space for */
1718 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1719 bool got_ref; /* Did we pin pages by getting page ref? */
1720 bool is_pfns; /* Does array contain pages or pfns? */
1721 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1722 * pfns_vector_pages() or pfns_vector_pfns()
1723 * for access */
1724};
1725
1726struct frame_vector *frame_vector_create(unsigned int nr_frames);
1727void frame_vector_destroy(struct frame_vector *vec);
1728int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1729 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1730void put_vaddr_frames(struct frame_vector *vec);
1731int frame_vector_to_pages(struct frame_vector *vec);
1732void frame_vector_to_pfns(struct frame_vector *vec);
1733
1734static inline unsigned int frame_vector_count(struct frame_vector *vec)
1735{
1736 return vec->nr_frames;
1737}
1738
1739static inline struct page **frame_vector_pages(struct frame_vector *vec)
1740{
1741 if (vec->is_pfns) {
1742 int err = frame_vector_to_pages(vec);
1743
1744 if (err)
1745 return ERR_PTR(err);
1746 }
1747 return (struct page **)(vec->ptrs);
1748}
1749
1750static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1751{
1752 if (!vec->is_pfns)
1753 frame_vector_to_pfns(vec);
1754 return (unsigned long *)(vec->ptrs);
1755}
1756
18022c5d
MG
1757struct kvec;
1758int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1759 struct page **pages);
1760int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1761struct page *get_dump_page(unsigned long addr);
1da177e4 1762
cf9a2ae8 1763extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1764extern void do_invalidatepage(struct page *page, unsigned int offset,
1765 unsigned int length);
cf9a2ae8 1766
f82b3764 1767void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1768int __set_page_dirty_nobuffers(struct page *page);
76719325 1769int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1770int redirty_page_for_writepage(struct writeback_control *wbc,
1771 struct page *page);
62cccb8c 1772void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1773void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1774 struct bdi_writeback *wb);
b3c97528 1775int set_page_dirty(struct page *page);
1da177e4 1776int set_page_dirty_lock(struct page *page);
736304f3
JK
1777void __cancel_dirty_page(struct page *page);
1778static inline void cancel_dirty_page(struct page *page)
1779{
1780 /* Avoid atomic ops, locking, etc. when not actually needed. */
1781 if (PageDirty(page))
1782 __cancel_dirty_page(page);
1783}
1da177e4 1784int clear_page_dirty_for_io(struct page *page);
b9ea2515 1785
a9090253 1786int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1787
b6a2fea3
OW
1788extern unsigned long move_page_tables(struct vm_area_struct *vma,
1789 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1790 unsigned long new_addr, unsigned long len,
1791 bool need_rmap_locks);
58705444
PX
1792
1793/*
1794 * Flags used by change_protection(). For now we make it a bitmap so
1795 * that we can pass in multiple flags just like parameters. However
1796 * for now all the callers are only use one of the flags at the same
1797 * time.
1798 */
1799/* Whether we should allow dirty bit accounting */
1800#define MM_CP_DIRTY_ACCT (1UL << 0)
1801/* Whether this protection change is for NUMA hints */
1802#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1803/* Whether this change is for write protecting */
1804#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1805#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1806#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1807 MM_CP_UFFD_WP_RESOLVE)
58705444 1808
7da4d641
PZ
1809extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1810 unsigned long end, pgprot_t newprot,
58705444 1811 unsigned long cp_flags);
b6a2fea3
OW
1812extern int mprotect_fixup(struct vm_area_struct *vma,
1813 struct vm_area_struct **pprev, unsigned long start,
1814 unsigned long end, unsigned long newflags);
1da177e4 1815
465a454f
PZ
1816/*
1817 * doesn't attempt to fault and will return short.
1818 */
1819int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1820 struct page **pages);
d559db08
KH
1821/*
1822 * per-process(per-mm_struct) statistics.
1823 */
d559db08
KH
1824static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1825{
69c97823
KK
1826 long val = atomic_long_read(&mm->rss_stat.count[member]);
1827
1828#ifdef SPLIT_RSS_COUNTING
1829 /*
1830 * counter is updated in asynchronous manner and may go to minus.
1831 * But it's never be expected number for users.
1832 */
1833 if (val < 0)
1834 val = 0;
172703b0 1835#endif
69c97823
KK
1836 return (unsigned long)val;
1837}
d559db08 1838
e4dcad20 1839void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1840
d559db08
KH
1841static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1842{
b3d1411b
JFG
1843 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1844
e4dcad20 1845 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1846}
1847
1848static inline void inc_mm_counter(struct mm_struct *mm, int member)
1849{
b3d1411b
JFG
1850 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1851
e4dcad20 1852 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1853}
1854
1855static inline void dec_mm_counter(struct mm_struct *mm, int member)
1856{
b3d1411b
JFG
1857 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1858
e4dcad20 1859 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1860}
1861
eca56ff9
JM
1862/* Optimized variant when page is already known not to be PageAnon */
1863static inline int mm_counter_file(struct page *page)
1864{
1865 if (PageSwapBacked(page))
1866 return MM_SHMEMPAGES;
1867 return MM_FILEPAGES;
1868}
1869
1870static inline int mm_counter(struct page *page)
1871{
1872 if (PageAnon(page))
1873 return MM_ANONPAGES;
1874 return mm_counter_file(page);
1875}
1876
d559db08
KH
1877static inline unsigned long get_mm_rss(struct mm_struct *mm)
1878{
1879 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1880 get_mm_counter(mm, MM_ANONPAGES) +
1881 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1882}
1883
1884static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1885{
1886 return max(mm->hiwater_rss, get_mm_rss(mm));
1887}
1888
1889static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1890{
1891 return max(mm->hiwater_vm, mm->total_vm);
1892}
1893
1894static inline void update_hiwater_rss(struct mm_struct *mm)
1895{
1896 unsigned long _rss = get_mm_rss(mm);
1897
1898 if ((mm)->hiwater_rss < _rss)
1899 (mm)->hiwater_rss = _rss;
1900}
1901
1902static inline void update_hiwater_vm(struct mm_struct *mm)
1903{
1904 if (mm->hiwater_vm < mm->total_vm)
1905 mm->hiwater_vm = mm->total_vm;
1906}
1907
695f0559
PC
1908static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1909{
1910 mm->hiwater_rss = get_mm_rss(mm);
1911}
1912
d559db08
KH
1913static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1914 struct mm_struct *mm)
1915{
1916 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1917
1918 if (*maxrss < hiwater_rss)
1919 *maxrss = hiwater_rss;
1920}
1921
53bddb4e 1922#if defined(SPLIT_RSS_COUNTING)
05af2e10 1923void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1924#else
05af2e10 1925static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1926{
1927}
1928#endif
465a454f 1929
78e7c5af
AK
1930#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1931static inline int pte_special(pte_t pte)
1932{
1933 return 0;
1934}
1935
1936static inline pte_t pte_mkspecial(pte_t pte)
1937{
1938 return pte;
1939}
1940#endif
1941
17596731 1942#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
1943static inline int pte_devmap(pte_t pte)
1944{
1945 return 0;
1946}
1947#endif
1948
6d2329f8 1949int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1950
25ca1d6c
NK
1951extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1952 spinlock_t **ptl);
1953static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1954 spinlock_t **ptl)
1955{
1956 pte_t *ptep;
1957 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1958 return ptep;
1959}
c9cfcddf 1960
c2febafc
KS
1961#ifdef __PAGETABLE_P4D_FOLDED
1962static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1963 unsigned long address)
1964{
1965 return 0;
1966}
1967#else
1968int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1969#endif
1970
b4e98d9a 1971#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1972static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1973 unsigned long address)
1974{
1975 return 0;
1976}
b4e98d9a
KS
1977static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1978static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1979
5f22df00 1980#else
c2febafc 1981int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1982
b4e98d9a
KS
1983static inline void mm_inc_nr_puds(struct mm_struct *mm)
1984{
6d212db1
MS
1985 if (mm_pud_folded(mm))
1986 return;
af5b0f6a 1987 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1988}
1989
1990static inline void mm_dec_nr_puds(struct mm_struct *mm)
1991{
6d212db1
MS
1992 if (mm_pud_folded(mm))
1993 return;
af5b0f6a 1994 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1995}
5f22df00
NP
1996#endif
1997
2d2f5119 1998#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1999static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2000 unsigned long address)
2001{
2002 return 0;
2003}
dc6c9a35 2004
dc6c9a35
KS
2005static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2006static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2007
5f22df00 2008#else
1bb3630e 2009int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2010
dc6c9a35
KS
2011static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2012{
6d212db1
MS
2013 if (mm_pmd_folded(mm))
2014 return;
af5b0f6a 2015 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2016}
2017
2018static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2019{
6d212db1
MS
2020 if (mm_pmd_folded(mm))
2021 return;
af5b0f6a 2022 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2023}
5f22df00
NP
2024#endif
2025
c4812909 2026#ifdef CONFIG_MMU
af5b0f6a 2027static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2028{
af5b0f6a 2029 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2030}
2031
af5b0f6a 2032static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2033{
af5b0f6a 2034 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2035}
2036
2037static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2038{
af5b0f6a 2039 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2040}
2041
2042static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2043{
af5b0f6a 2044 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2045}
2046#else
c4812909 2047
af5b0f6a
KS
2048static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2049static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2050{
2051 return 0;
2052}
2053
2054static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2055static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2056#endif
2057
4cf58924
JFG
2058int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2059int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2060
f949286c
MR
2061#if defined(CONFIG_MMU)
2062
1da177e4 2063/*
f949286c
MR
2064 * The following ifdef needed to get the 5level-fixup.h header to work.
2065 * Remove it when 5level-fixup.h has been removed.
1da177e4 2066 */
505a60e2 2067#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
2068static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2069 unsigned long address)
2070{
2071 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2072 NULL : p4d_offset(pgd, address);
2073}
2074
2075static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2076 unsigned long address)
1da177e4 2077{
c2febafc
KS
2078 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2079 NULL : pud_offset(p4d, address);
1da177e4 2080}
505a60e2 2081#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
2082
2083static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2084{
1bb3630e
HD
2085 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2086 NULL: pmd_offset(pud, address);
1da177e4 2087}
f949286c 2088#endif /* CONFIG_MMU */
1bb3630e 2089
57c1ffce 2090#if USE_SPLIT_PTE_PTLOCKS
597d795a 2091#if ALLOC_SPLIT_PTLOCKS
b35f1819 2092void __init ptlock_cache_init(void);
539edb58
PZ
2093extern bool ptlock_alloc(struct page *page);
2094extern void ptlock_free(struct page *page);
2095
2096static inline spinlock_t *ptlock_ptr(struct page *page)
2097{
2098 return page->ptl;
2099}
597d795a 2100#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2101static inline void ptlock_cache_init(void)
2102{
2103}
2104
49076ec2
KS
2105static inline bool ptlock_alloc(struct page *page)
2106{
49076ec2
KS
2107 return true;
2108}
539edb58 2109
49076ec2
KS
2110static inline void ptlock_free(struct page *page)
2111{
49076ec2
KS
2112}
2113
2114static inline spinlock_t *ptlock_ptr(struct page *page)
2115{
539edb58 2116 return &page->ptl;
49076ec2 2117}
597d795a 2118#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2119
2120static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2121{
2122 return ptlock_ptr(pmd_page(*pmd));
2123}
2124
2125static inline bool ptlock_init(struct page *page)
2126{
2127 /*
2128 * prep_new_page() initialize page->private (and therefore page->ptl)
2129 * with 0. Make sure nobody took it in use in between.
2130 *
2131 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2132 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2133 */
309381fe 2134 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2135 if (!ptlock_alloc(page))
2136 return false;
2137 spin_lock_init(ptlock_ptr(page));
2138 return true;
2139}
2140
57c1ffce 2141#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2142/*
2143 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2144 */
49076ec2
KS
2145static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2146{
2147 return &mm->page_table_lock;
2148}
b35f1819 2149static inline void ptlock_cache_init(void) {}
49076ec2 2150static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2151static inline void ptlock_free(struct page *page) {}
57c1ffce 2152#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2153
b35f1819
KS
2154static inline void pgtable_init(void)
2155{
2156 ptlock_cache_init();
2157 pgtable_cache_init();
2158}
2159
b4ed71f5 2160static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2161{
706874e9
VD
2162 if (!ptlock_init(page))
2163 return false;
1d40a5ea 2164 __SetPageTable(page);
2f569afd 2165 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 2166 return true;
2f569afd
MS
2167}
2168
b4ed71f5 2169static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2170{
9e247bab 2171 ptlock_free(page);
1d40a5ea 2172 __ClearPageTable(page);
2f569afd
MS
2173 dec_zone_page_state(page, NR_PAGETABLE);
2174}
2175
c74df32c
HD
2176#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2177({ \
4c21e2f2 2178 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2179 pte_t *__pte = pte_offset_map(pmd, address); \
2180 *(ptlp) = __ptl; \
2181 spin_lock(__ptl); \
2182 __pte; \
2183})
2184
2185#define pte_unmap_unlock(pte, ptl) do { \
2186 spin_unlock(ptl); \
2187 pte_unmap(pte); \
2188} while (0)
2189
4cf58924 2190#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2191
2192#define pte_alloc_map(mm, pmd, address) \
4cf58924 2193 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2194
c74df32c 2195#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2196 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2197 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2198
1bb3630e 2199#define pte_alloc_kernel(pmd, address) \
4cf58924 2200 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2201 NULL: pte_offset_kernel(pmd, address))
1da177e4 2202
e009bb30
KS
2203#if USE_SPLIT_PMD_PTLOCKS
2204
634391ac
MS
2205static struct page *pmd_to_page(pmd_t *pmd)
2206{
2207 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2208 return virt_to_page((void *)((unsigned long) pmd & mask));
2209}
2210
e009bb30
KS
2211static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2212{
634391ac 2213 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2214}
2215
2216static inline bool pgtable_pmd_page_ctor(struct page *page)
2217{
e009bb30
KS
2218#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2219 page->pmd_huge_pte = NULL;
2220#endif
49076ec2 2221 return ptlock_init(page);
e009bb30
KS
2222}
2223
2224static inline void pgtable_pmd_page_dtor(struct page *page)
2225{
2226#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2227 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2228#endif
49076ec2 2229 ptlock_free(page);
e009bb30
KS
2230}
2231
634391ac 2232#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2233
2234#else
2235
9a86cb7b
KS
2236static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2237{
2238 return &mm->page_table_lock;
2239}
2240
e009bb30
KS
2241static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2242static inline void pgtable_pmd_page_dtor(struct page *page) {}
2243
c389a250 2244#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2245
e009bb30
KS
2246#endif
2247
9a86cb7b
KS
2248static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2249{
2250 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2251 spin_lock(ptl);
2252 return ptl;
2253}
2254
a00cc7d9
MW
2255/*
2256 * No scalability reason to split PUD locks yet, but follow the same pattern
2257 * as the PMD locks to make it easier if we decide to. The VM should not be
2258 * considered ready to switch to split PUD locks yet; there may be places
2259 * which need to be converted from page_table_lock.
2260 */
2261static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2262{
2263 return &mm->page_table_lock;
2264}
2265
2266static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2267{
2268 spinlock_t *ptl = pud_lockptr(mm, pud);
2269
2270 spin_lock(ptl);
2271 return ptl;
2272}
62906027 2273
a00cc7d9 2274extern void __init pagecache_init(void);
1da177e4 2275extern void free_area_init(unsigned long * zones_size);
03e85f9d 2276extern void __init free_area_init_node(int nid, unsigned long * zones_size,
9109fb7b 2277 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
2278extern void free_initmem(void);
2279
69afade7
JL
2280/*
2281 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2282 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2283 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2284 * Return pages freed into the buddy system.
2285 */
11199692 2286extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2287 int poison, const char *s);
c3d5f5f0 2288
cfa11e08
JL
2289#ifdef CONFIG_HIGHMEM
2290/*
2291 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2292 * and totalram_pages.
2293 */
2294extern void free_highmem_page(struct page *page);
2295#endif
69afade7 2296
c3d5f5f0 2297extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2298extern void mem_init_print_info(const char *str);
69afade7 2299
4b50bcc7 2300extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2301
69afade7
JL
2302/* Free the reserved page into the buddy system, so it gets managed. */
2303static inline void __free_reserved_page(struct page *page)
2304{
2305 ClearPageReserved(page);
2306 init_page_count(page);
2307 __free_page(page);
2308}
2309
2310static inline void free_reserved_page(struct page *page)
2311{
2312 __free_reserved_page(page);
2313 adjust_managed_page_count(page, 1);
2314}
2315
2316static inline void mark_page_reserved(struct page *page)
2317{
2318 SetPageReserved(page);
2319 adjust_managed_page_count(page, -1);
2320}
2321
2322/*
2323 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2324 * The freed pages will be poisoned with pattern "poison" if it's within
2325 * range [0, UCHAR_MAX].
2326 * Return pages freed into the buddy system.
69afade7
JL
2327 */
2328static inline unsigned long free_initmem_default(int poison)
2329{
2330 extern char __init_begin[], __init_end[];
2331
11199692 2332 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2333 poison, "unused kernel");
2334}
2335
7ee3d4e8
JL
2336static inline unsigned long get_num_physpages(void)
2337{
2338 int nid;
2339 unsigned long phys_pages = 0;
2340
2341 for_each_online_node(nid)
2342 phys_pages += node_present_pages(nid);
2343
2344 return phys_pages;
2345}
2346
0ee332c1 2347#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2348/*
0ee332c1 2349 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2350 * zones, allocate the backing mem_map and account for memory holes in a more
2351 * architecture independent manner. This is a substitute for creating the
2352 * zone_sizes[] and zholes_size[] arrays and passing them to
2353 * free_area_init_node()
2354 *
2355 * An architecture is expected to register range of page frames backed by
0ee332c1 2356 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2357 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2358 * usage, an architecture is expected to do something like
2359 *
2360 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2361 * max_highmem_pfn};
2362 * for_each_valid_physical_page_range()
0ee332c1 2363 * memblock_add_node(base, size, nid)
c713216d
MG
2364 * free_area_init_nodes(max_zone_pfns);
2365 *
0ee332c1
TH
2366 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2367 * registered physical page range. Similarly
2368 * sparse_memory_present_with_active_regions() calls memory_present() for
2369 * each range when SPARSEMEM is enabled.
c713216d
MG
2370 *
2371 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2372 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2373 */
2374extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2375unsigned long node_map_pfn_alignment(void);
32996250
YL
2376unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2377 unsigned long end_pfn);
c713216d
MG
2378extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2379 unsigned long end_pfn);
2380extern void get_pfn_range_for_nid(unsigned int nid,
2381 unsigned long *start_pfn, unsigned long *end_pfn);
2382extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2383extern void free_bootmem_with_active_regions(int nid,
2384 unsigned long max_low_pfn);
2385extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2386
0ee332c1 2387#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2388
0ee332c1 2389#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2390 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2391static inline int __early_pfn_to_nid(unsigned long pfn,
2392 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2393{
2394 return 0;
2395}
2396#else
2397/* please see mm/page_alloc.c */
2398extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2399/* there is a per-arch backend function. */
8a942fde
MG
2400extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2401 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2402#endif
2403
0e0b864e 2404extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2405extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2406 enum memmap_context, struct vmem_altmap *);
bc75d33f 2407extern void setup_per_zone_wmarks(void);
1b79acc9 2408extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2409extern void mem_init(void);
8feae131 2410extern void __init mmap_init(void);
9af744d7 2411extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2412extern long si_mem_available(void);
1da177e4
LT
2413extern void si_meminfo(struct sysinfo * val);
2414extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2415#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2416extern unsigned long arch_reserved_kernel_pages(void);
2417#endif
1da177e4 2418
a8e99259
MH
2419extern __printf(3, 4)
2420void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2421
e7c8d5c9 2422extern void setup_per_cpu_pageset(void);
e7c8d5c9 2423
75f7ad8e
PS
2424/* page_alloc.c */
2425extern int min_free_kbytes;
1c30844d 2426extern int watermark_boost_factor;
795ae7a0 2427extern int watermark_scale_factor;
75f7ad8e 2428
8feae131 2429/* nommu.c */
33e5d769 2430extern atomic_long_t mmap_pages_allocated;
7e660872 2431extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2432
6b2dbba8 2433/* interval_tree.c */
6b2dbba8 2434void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2435 struct rb_root_cached *root);
9826a516
ML
2436void vma_interval_tree_insert_after(struct vm_area_struct *node,
2437 struct vm_area_struct *prev,
f808c13f 2438 struct rb_root_cached *root);
6b2dbba8 2439void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2440 struct rb_root_cached *root);
2441struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2442 unsigned long start, unsigned long last);
2443struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2444 unsigned long start, unsigned long last);
2445
2446#define vma_interval_tree_foreach(vma, root, start, last) \
2447 for (vma = vma_interval_tree_iter_first(root, start, last); \
2448 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2449
bf181b9f 2450void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2451 struct rb_root_cached *root);
bf181b9f 2452void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2453 struct rb_root_cached *root);
2454struct anon_vma_chain *
2455anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2456 unsigned long start, unsigned long last);
bf181b9f
ML
2457struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2458 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2459#ifdef CONFIG_DEBUG_VM_RB
2460void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2461#endif
bf181b9f
ML
2462
2463#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2464 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2465 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2466
1da177e4 2467/* mmap.c */
34b4e4aa 2468extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2469extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2470 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2471 struct vm_area_struct *expand);
2472static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2473 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2474{
2475 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2476}
1da177e4
LT
2477extern struct vm_area_struct *vma_merge(struct mm_struct *,
2478 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2479 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2480 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2481extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2482extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2483 unsigned long addr, int new_below);
2484extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2485 unsigned long addr, int new_below);
1da177e4
LT
2486extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2487extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2488 struct rb_node **, struct rb_node *);
a8fb5618 2489extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2490extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2491 unsigned long addr, unsigned long len, pgoff_t pgoff,
2492 bool *need_rmap_locks);
1da177e4 2493extern void exit_mmap(struct mm_struct *);
925d1c40 2494
9c599024
CG
2495static inline int check_data_rlimit(unsigned long rlim,
2496 unsigned long new,
2497 unsigned long start,
2498 unsigned long end_data,
2499 unsigned long start_data)
2500{
2501 if (rlim < RLIM_INFINITY) {
2502 if (((new - start) + (end_data - start_data)) > rlim)
2503 return -ENOSPC;
2504 }
2505
2506 return 0;
2507}
2508
7906d00c
AA
2509extern int mm_take_all_locks(struct mm_struct *mm);
2510extern void mm_drop_all_locks(struct mm_struct *mm);
2511
38646013
JS
2512extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2513extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2514extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2515
84638335
KK
2516extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2517extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2518
2eefd878
DS
2519extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2520 const struct vm_special_mapping *sm);
3935ed6a
SS
2521extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2522 unsigned long addr, unsigned long len,
a62c34bd
AL
2523 unsigned long flags,
2524 const struct vm_special_mapping *spec);
2525/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2526extern int install_special_mapping(struct mm_struct *mm,
2527 unsigned long addr, unsigned long len,
2528 unsigned long flags, struct page **pages);
1da177e4 2529
649775be
AG
2530unsigned long randomize_stack_top(unsigned long stack_top);
2531
1da177e4
LT
2532extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2533
0165ab44 2534extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2535 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2536 struct list_head *uf);
1fcfd8db 2537extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2538 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2539 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2540 struct list_head *uf);
85a06835
YS
2541extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2542 struct list_head *uf, bool downgrade);
897ab3e0
MR
2543extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2544 struct list_head *uf);
db08ca25 2545extern int do_madvise(unsigned long start, size_t len_in, int behavior);
1da177e4 2546
1fcfd8db
ON
2547static inline unsigned long
2548do_mmap_pgoff(struct file *file, unsigned long addr,
2549 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2550 unsigned long pgoff, unsigned long *populate,
2551 struct list_head *uf)
1fcfd8db 2552{
897ab3e0 2553 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2554}
2555
bebeb3d6
ML
2556#ifdef CONFIG_MMU
2557extern int __mm_populate(unsigned long addr, unsigned long len,
2558 int ignore_errors);
2559static inline void mm_populate(unsigned long addr, unsigned long len)
2560{
2561 /* Ignore errors */
2562 (void) __mm_populate(addr, len, 1);
2563}
2564#else
2565static inline void mm_populate(unsigned long addr, unsigned long len) {}
2566#endif
2567
e4eb1ff6 2568/* These take the mm semaphore themselves */
5d22fc25 2569extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2570extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2571extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2572extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2573 unsigned long, unsigned long,
2574 unsigned long, unsigned long);
1da177e4 2575
db4fbfb9
ML
2576struct vm_unmapped_area_info {
2577#define VM_UNMAPPED_AREA_TOPDOWN 1
2578 unsigned long flags;
2579 unsigned long length;
2580 unsigned long low_limit;
2581 unsigned long high_limit;
2582 unsigned long align_mask;
2583 unsigned long align_offset;
2584};
2585
baceaf1c 2586extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2587
85821aab 2588/* truncate.c */
1da177e4 2589extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2590extern void truncate_inode_pages_range(struct address_space *,
2591 loff_t lstart, loff_t lend);
91b0abe3 2592extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2593
2594/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2595extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2596extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2597 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2598extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2599
2600/* mm/page-writeback.c */
2b69c828 2601int __must_check write_one_page(struct page *page);
1cf6e7d8 2602void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2603
2604/* readahead.c */
b5420237 2605#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
1da177e4 2606
1da177e4 2607int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2608 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2609
2610void page_cache_sync_readahead(struct address_space *mapping,
2611 struct file_ra_state *ra,
2612 struct file *filp,
2613 pgoff_t offset,
2614 unsigned long size);
2615
2616void page_cache_async_readahead(struct address_space *mapping,
2617 struct file_ra_state *ra,
2618 struct file *filp,
2619 struct page *pg,
2620 pgoff_t offset,
2621 unsigned long size);
2622
1be7107f 2623extern unsigned long stack_guard_gap;
d05f3169 2624/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2625extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2626
2627/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2628extern int expand_downwards(struct vm_area_struct *vma,
2629 unsigned long address);
8ca3eb08 2630#if VM_GROWSUP
46dea3d0 2631extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2632#else
fee7e49d 2633 #define expand_upwards(vma, address) (0)
9ab88515 2634#endif
1da177e4
LT
2635
2636/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2637extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2638extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2639 struct vm_area_struct **pprev);
2640
2641/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2642 NULL if none. Assume start_addr < end_addr. */
2643static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2644{
2645 struct vm_area_struct * vma = find_vma(mm,start_addr);
2646
2647 if (vma && end_addr <= vma->vm_start)
2648 vma = NULL;
2649 return vma;
2650}
2651
1be7107f
HD
2652static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2653{
2654 unsigned long vm_start = vma->vm_start;
2655
2656 if (vma->vm_flags & VM_GROWSDOWN) {
2657 vm_start -= stack_guard_gap;
2658 if (vm_start > vma->vm_start)
2659 vm_start = 0;
2660 }
2661 return vm_start;
2662}
2663
2664static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2665{
2666 unsigned long vm_end = vma->vm_end;
2667
2668 if (vma->vm_flags & VM_GROWSUP) {
2669 vm_end += stack_guard_gap;
2670 if (vm_end < vma->vm_end)
2671 vm_end = -PAGE_SIZE;
2672 }
2673 return vm_end;
2674}
2675
1da177e4
LT
2676static inline unsigned long vma_pages(struct vm_area_struct *vma)
2677{
2678 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2679}
2680
640708a2
PE
2681/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2682static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2683 unsigned long vm_start, unsigned long vm_end)
2684{
2685 struct vm_area_struct *vma = find_vma(mm, vm_start);
2686
2687 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2688 vma = NULL;
2689
2690 return vma;
2691}
2692
017b1660
MK
2693static inline bool range_in_vma(struct vm_area_struct *vma,
2694 unsigned long start, unsigned long end)
2695{
2696 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2697}
2698
bad849b3 2699#ifdef CONFIG_MMU
804af2cf 2700pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2701void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2702#else
2703static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2704{
2705 return __pgprot(0);
2706}
64e45507
PF
2707static inline void vma_set_page_prot(struct vm_area_struct *vma)
2708{
2709 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2710}
bad849b3
DH
2711#endif
2712
5877231f 2713#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2714unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2715 unsigned long start, unsigned long end);
2716#endif
2717
deceb6cd 2718struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2719int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2720 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2721int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2722int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2723 struct page **pages, unsigned long *num);
a667d745
SJ
2724int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2725 unsigned long num);
2726int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2727 unsigned long num);
ae2b01f3 2728vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2729 unsigned long pfn);
f5e6d1d5
MW
2730vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2731 unsigned long pfn, pgprot_t pgprot);
5d747637 2732vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2733 pfn_t pfn);
574c5b3d
TH
2734vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2735 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2736vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2737 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2738int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2739
1c8f4220
SJ
2740static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2741 unsigned long addr, struct page *page)
2742{
2743 int err = vm_insert_page(vma, addr, page);
2744
2745 if (err == -ENOMEM)
2746 return VM_FAULT_OOM;
2747 if (err < 0 && err != -EBUSY)
2748 return VM_FAULT_SIGBUS;
2749
2750 return VM_FAULT_NOPAGE;
2751}
2752
d97baf94
SJ
2753static inline vm_fault_t vmf_error(int err)
2754{
2755 if (err == -ENOMEM)
2756 return VM_FAULT_OOM;
2757 return VM_FAULT_SIGBUS;
2758}
2759
df06b37f
KB
2760struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2761 unsigned int foll_flags);
240aadee 2762
deceb6cd
HD
2763#define FOLL_WRITE 0x01 /* check pte is writable */
2764#define FOLL_TOUCH 0x02 /* mark page accessed */
2765#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2766#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2767#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2768#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2769 * and return without waiting upon it */
84d33df2 2770#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2771#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2772#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2773#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2774#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2775#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2776#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2777#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2778#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2779#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2780#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2781#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2782#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
932f4a63
IW
2783
2784/*
eddb1c22
JH
2785 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2786 * other. Here is what they mean, and how to use them:
932f4a63
IW
2787 *
2788 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2789 * period _often_ under userspace control. This is in contrast to
2790 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2791 *
2792 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2793 * lifetime enforced by the filesystem and we need guarantees that longterm
2794 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2795 * the filesystem. Ideas for this coordination include revoking the longterm
2796 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2797 * added after the problem with filesystems was found FS DAX VMAs are
2798 * specifically failed. Filesystem pages are still subject to bugs and use of
2799 * FOLL_LONGTERM should be avoided on those pages.
2800 *
2801 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2802 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2803 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2804 * is due to an incompatibility with the FS DAX check and
eddb1c22 2805 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2806 *
eddb1c22
JH
2807 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2808 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2809 * FOLL_LONGTERM is specified.
eddb1c22
JH
2810 *
2811 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2812 * but an additional pin counting system) will be invoked. This is intended for
2813 * anything that gets a page reference and then touches page data (for example,
2814 * Direct IO). This lets the filesystem know that some non-file-system entity is
2815 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2816 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2817 * a call to unpin_user_page().
eddb1c22
JH
2818 *
2819 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2820 * and separate refcounting mechanisms, however, and that means that each has
2821 * its own acquire and release mechanisms:
2822 *
2823 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2824 *
f1f6a7dd 2825 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2826 *
2827 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2828 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2829 * calls applied to them, and that's perfectly OK. This is a constraint on the
2830 * callers, not on the pages.)
2831 *
2832 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2833 * directly by the caller. That's in order to help avoid mismatches when
2834 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2835 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22
JH
2836 *
2837 * Please see Documentation/vm/pin_user_pages.rst for more information.
932f4a63 2838 */
1da177e4 2839
2b740303 2840static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2841{
2842 if (vm_fault & VM_FAULT_OOM)
2843 return -ENOMEM;
2844 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2845 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2846 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2847 return -EFAULT;
2848 return 0;
2849}
2850
8b1e0f81 2851typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2852extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2853 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2854extern int apply_to_existing_page_range(struct mm_struct *mm,
2855 unsigned long address, unsigned long size,
2856 pte_fn_t fn, void *data);
aee16b3c 2857
8823b1db
LA
2858#ifdef CONFIG_PAGE_POISONING
2859extern bool page_poisoning_enabled(void);
2860extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2861#else
2862static inline bool page_poisoning_enabled(void) { return false; }
2863static inline void kernel_poison_pages(struct page *page, int numpages,
2864 int enable) { }
2865#endif
2866
6471384a
AP
2867#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2868DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2869#else
2870DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2871#endif
2872static inline bool want_init_on_alloc(gfp_t flags)
2873{
2874 if (static_branch_unlikely(&init_on_alloc) &&
2875 !page_poisoning_enabled())
2876 return true;
2877 return flags & __GFP_ZERO;
2878}
2879
2880#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2881DECLARE_STATIC_KEY_TRUE(init_on_free);
2882#else
2883DECLARE_STATIC_KEY_FALSE(init_on_free);
2884#endif
2885static inline bool want_init_on_free(void)
2886{
2887 return static_branch_unlikely(&init_on_free) &&
2888 !page_poisoning_enabled();
2889}
2890
8e57f8ac
VB
2891#ifdef CONFIG_DEBUG_PAGEALLOC
2892extern void init_debug_pagealloc(void);
96a2b03f 2893#else
8e57f8ac 2894static inline void init_debug_pagealloc(void) {}
96a2b03f 2895#endif
8e57f8ac
VB
2896extern bool _debug_pagealloc_enabled_early;
2897DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2898
2899static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2900{
2901 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2902 _debug_pagealloc_enabled_early;
2903}
2904
2905/*
2906 * For use in fast paths after init_debug_pagealloc() has run, or when a
2907 * false negative result is not harmful when called too early.
2908 */
2909static inline bool debug_pagealloc_enabled_static(void)
031bc574 2910{
96a2b03f
VB
2911 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2912 return false;
2913
2914 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2915}
2916
d6332692
RE
2917#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2918extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2919
c87cbc1f
VB
2920/*
2921 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2922 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2923 */
031bc574
JK
2924static inline void
2925kernel_map_pages(struct page *page, int numpages, int enable)
2926{
031bc574
JK
2927 __kernel_map_pages(page, numpages, enable);
2928}
8a235efa
RW
2929#ifdef CONFIG_HIBERNATION
2930extern bool kernel_page_present(struct page *page);
40b44137 2931#endif /* CONFIG_HIBERNATION */
d6332692 2932#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2933static inline void
9858db50 2934kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2935#ifdef CONFIG_HIBERNATION
2936static inline bool kernel_page_present(struct page *page) { return true; }
40b44137 2937#endif /* CONFIG_HIBERNATION */
d6332692 2938#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2939
a6c19dfe 2940#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2941extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2942extern int in_gate_area_no_mm(unsigned long addr);
2943extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2944#else
a6c19dfe
AL
2945static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2946{
2947 return NULL;
2948}
2949static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2950static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2951{
2952 return 0;
2953}
1da177e4
LT
2954#endif /* __HAVE_ARCH_GATE_AREA */
2955
44a70ade
MH
2956extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2957
146732ce
JT
2958#ifdef CONFIG_SYSCTL
2959extern int sysctl_drop_caches;
8d65af78 2960int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2961 void __user *, size_t *, loff_t *);
146732ce
JT
2962#endif
2963
cb731d6c
VD
2964void drop_slab(void);
2965void drop_slab_node(int nid);
9d0243bc 2966
7a9166e3
LY
2967#ifndef CONFIG_MMU
2968#define randomize_va_space 0
2969#else
a62eaf15 2970extern int randomize_va_space;
7a9166e3 2971#endif
a62eaf15 2972
045e72ac 2973const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 2974#ifdef CONFIG_MMU
03252919 2975void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
2976#else
2977static inline void print_vma_addr(char *prefix, unsigned long rip)
2978{
2979}
2980#endif
e6e5494c 2981
35fd1eb1 2982void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
2983struct page * __populate_section_memmap(unsigned long pfn,
2984 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 2985pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2986p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2987pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2988pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2989pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2990void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2991struct vmem_altmap;
a8fc357b
CH
2992void *vmemmap_alloc_block_buf(unsigned long size, int node);
2993void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2994void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2995int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2996 int node);
7b73d978
CH
2997int vmemmap_populate(unsigned long start, unsigned long end, int node,
2998 struct vmem_altmap *altmap);
c2b91e2e 2999void vmemmap_populate_print_last(void);
0197518c 3000#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3001void vmemmap_free(unsigned long start, unsigned long end,
3002 struct vmem_altmap *altmap);
0197518c 3003#endif
46723bfa 3004void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3005 unsigned long nr_pages);
6a46079c 3006
82ba011b
AK
3007enum mf_flags {
3008 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3009 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3010 MF_MUST_KILL = 1 << 2,
cf870c70 3011 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3012};
83b57531
EB
3013extern int memory_failure(unsigned long pfn, int flags);
3014extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 3015extern int unpoison_memory(unsigned long pfn);
ead07f6a 3016extern int get_hwpoison_page(struct page *page);
4e41a30c 3017#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
3018extern int sysctl_memory_failure_early_kill;
3019extern int sysctl_memory_failure_recovery;
facb6011 3020extern void shake_page(struct page *p, int access);
5844a486 3021extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3022extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3023
cc637b17
XX
3024
3025/*
3026 * Error handlers for various types of pages.
3027 */
cc3e2af4 3028enum mf_result {
cc637b17
XX
3029 MF_IGNORED, /* Error: cannot be handled */
3030 MF_FAILED, /* Error: handling failed */
3031 MF_DELAYED, /* Will be handled later */
3032 MF_RECOVERED, /* Successfully recovered */
3033};
3034
3035enum mf_action_page_type {
3036 MF_MSG_KERNEL,
3037 MF_MSG_KERNEL_HIGH_ORDER,
3038 MF_MSG_SLAB,
3039 MF_MSG_DIFFERENT_COMPOUND,
3040 MF_MSG_POISONED_HUGE,
3041 MF_MSG_HUGE,
3042 MF_MSG_FREE_HUGE,
31286a84 3043 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3044 MF_MSG_UNMAP_FAILED,
3045 MF_MSG_DIRTY_SWAPCACHE,
3046 MF_MSG_CLEAN_SWAPCACHE,
3047 MF_MSG_DIRTY_MLOCKED_LRU,
3048 MF_MSG_CLEAN_MLOCKED_LRU,
3049 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3050 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3051 MF_MSG_DIRTY_LRU,
3052 MF_MSG_CLEAN_LRU,
3053 MF_MSG_TRUNCATED_LRU,
3054 MF_MSG_BUDDY,
3055 MF_MSG_BUDDY_2ND,
6100e34b 3056 MF_MSG_DAX,
cc637b17
XX
3057 MF_MSG_UNKNOWN,
3058};
3059
47ad8475
AA
3060#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3061extern void clear_huge_page(struct page *page,
c79b57e4 3062 unsigned long addr_hint,
47ad8475
AA
3063 unsigned int pages_per_huge_page);
3064extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3065 unsigned long addr_hint,
3066 struct vm_area_struct *vma,
47ad8475 3067 unsigned int pages_per_huge_page);
fa4d75c1
MK
3068extern long copy_huge_page_from_user(struct page *dst_page,
3069 const void __user *usr_src,
810a56b9
MK
3070 unsigned int pages_per_huge_page,
3071 bool allow_pagefault);
2484ca9b
THV
3072
3073/**
3074 * vma_is_special_huge - Are transhuge page-table entries considered special?
3075 * @vma: Pointer to the struct vm_area_struct to consider
3076 *
3077 * Whether transhuge page-table entries are considered "special" following
3078 * the definition in vm_normal_page().
3079 *
3080 * Return: true if transhuge page-table entries should be considered special,
3081 * false otherwise.
3082 */
3083static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3084{
3085 return vma_is_dax(vma) || (vma->vm_file &&
3086 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3087}
3088
47ad8475
AA
3089#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3090
c0a32fc5
SG
3091#ifdef CONFIG_DEBUG_PAGEALLOC
3092extern unsigned int _debug_guardpage_minorder;
96a2b03f 3093DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3094
3095static inline unsigned int debug_guardpage_minorder(void)
3096{
3097 return _debug_guardpage_minorder;
3098}
3099
e30825f1
JK
3100static inline bool debug_guardpage_enabled(void)
3101{
96a2b03f 3102 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3103}
3104
c0a32fc5
SG
3105static inline bool page_is_guard(struct page *page)
3106{
e30825f1
JK
3107 if (!debug_guardpage_enabled())
3108 return false;
3109
3972f6bb 3110 return PageGuard(page);
c0a32fc5
SG
3111}
3112#else
3113static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3114static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3115static inline bool page_is_guard(struct page *page) { return false; }
3116#endif /* CONFIG_DEBUG_PAGEALLOC */
3117
f9872caf
CS
3118#if MAX_NUMNODES > 1
3119void __init setup_nr_node_ids(void);
3120#else
3121static inline void setup_nr_node_ids(void) {}
3122#endif
3123
010c164a
SL
3124extern int memcmp_pages(struct page *page1, struct page *page2);
3125
3126static inline int pages_identical(struct page *page1, struct page *page2)
3127{
3128 return !memcmp_pages(page1, page2);
3129}
3130
c5acad84
TH
3131#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3132unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3133 pgoff_t first_index, pgoff_t nr,
3134 pgoff_t bitmap_pgoff,
3135 unsigned long *bitmap,
3136 pgoff_t *start,
3137 pgoff_t *end);
3138
3139unsigned long wp_shared_mapping_range(struct address_space *mapping,
3140 pgoff_t first_index, pgoff_t nr);
3141#endif
3142
1da177e4
LT
3143#endif /* __KERNEL__ */
3144#endif /* _LINUX_MM_H */