mm: make page ref count overflow check tighter and more explicit
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
3b3b1a29 28#include <linux/overflow.h>
1da177e4
LT
29
30struct mempolicy;
31struct anon_vma;
bf181b9f 32struct anon_vma_chain;
4e950f6f 33struct file_ra_state;
e8edc6e0 34struct user_struct;
4e950f6f 35struct writeback_control;
682aa8e1 36struct bdi_writeback;
1da177e4 37
597b7305
MH
38void init_mm_internals(void);
39
fccc9987 40#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 41extern unsigned long max_mapnr;
fccc9987
JL
42
43static inline void set_max_mapnr(unsigned long limit)
44{
45 max_mapnr = limit;
46}
47#else
48static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
49#endif
50
ca79b0c2
AK
51extern atomic_long_t _totalram_pages;
52static inline unsigned long totalram_pages(void)
53{
54 return (unsigned long)atomic_long_read(&_totalram_pages);
55}
56
57static inline void totalram_pages_inc(void)
58{
59 atomic_long_inc(&_totalram_pages);
60}
61
62static inline void totalram_pages_dec(void)
63{
64 atomic_long_dec(&_totalram_pages);
65}
66
67static inline void totalram_pages_add(long count)
68{
69 atomic_long_add(count, &_totalram_pages);
70}
71
72static inline void totalram_pages_set(long val)
73{
74 atomic_long_set(&_totalram_pages, val);
75}
76
1da177e4 77extern void * high_memory;
1da177e4
LT
78extern int page_cluster;
79
80#ifdef CONFIG_SYSCTL
81extern int sysctl_legacy_va_layout;
82#else
83#define sysctl_legacy_va_layout 0
84#endif
85
d07e2259
DC
86#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
87extern const int mmap_rnd_bits_min;
88extern const int mmap_rnd_bits_max;
89extern int mmap_rnd_bits __read_mostly;
90#endif
91#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
92extern const int mmap_rnd_compat_bits_min;
93extern const int mmap_rnd_compat_bits_max;
94extern int mmap_rnd_compat_bits __read_mostly;
95#endif
96
1da177e4
LT
97#include <asm/page.h>
98#include <asm/pgtable.h>
99#include <asm/processor.h>
1da177e4 100
79442ed1
TC
101#ifndef __pa_symbol
102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
103#endif
104
1dff8083
AB
105#ifndef page_to_virt
106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
107#endif
108
568c5fe5
LA
109#ifndef lm_alias
110#define lm_alias(x) __va(__pa_symbol(x))
111#endif
112
593befa6
DD
113/*
114 * To prevent common memory management code establishing
115 * a zero page mapping on a read fault.
116 * This macro should be defined within <asm/pgtable.h>.
117 * s390 does this to prevent multiplexing of hardware bits
118 * related to the physical page in case of virtualization.
119 */
120#ifndef mm_forbids_zeropage
121#define mm_forbids_zeropage(X) (0)
122#endif
123
a4a3ede2
PT
124/*
125 * On some architectures it is expensive to call memset() for small sizes.
126 * Those architectures should provide their own implementation of "struct page"
127 * zeroing by defining this macro in <asm/pgtable.h>.
128 */
129#ifndef mm_zero_struct_page
130#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
131#endif
132
ea606cf5
AR
133/*
134 * Default maximum number of active map areas, this limits the number of vmas
135 * per mm struct. Users can overwrite this number by sysctl but there is a
136 * problem.
137 *
138 * When a program's coredump is generated as ELF format, a section is created
139 * per a vma. In ELF, the number of sections is represented in unsigned short.
140 * This means the number of sections should be smaller than 65535 at coredump.
141 * Because the kernel adds some informative sections to a image of program at
142 * generating coredump, we need some margin. The number of extra sections is
143 * 1-3 now and depends on arch. We use "5" as safe margin, here.
144 *
145 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
146 * not a hard limit any more. Although some userspace tools can be surprised by
147 * that.
148 */
149#define MAPCOUNT_ELF_CORE_MARGIN (5)
150#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
151
152extern int sysctl_max_map_count;
153
c9b1d098 154extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 155extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 156
49f0ce5f
JM
157extern int sysctl_overcommit_memory;
158extern int sysctl_overcommit_ratio;
159extern unsigned long sysctl_overcommit_kbytes;
160
161extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
162 size_t *, loff_t *);
163extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
164 size_t *, loff_t *);
165
1da177e4
LT
166#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
167
27ac792c
AR
168/* to align the pointer to the (next) page boundary */
169#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
170
0fa73b86 171/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 172#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 173
f86196ea
NB
174#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
175
1da177e4
LT
176/*
177 * Linux kernel virtual memory manager primitives.
178 * The idea being to have a "virtual" mm in the same way
179 * we have a virtual fs - giving a cleaner interface to the
180 * mm details, and allowing different kinds of memory mappings
181 * (from shared memory to executable loading to arbitrary
182 * mmap() functions).
183 */
184
490fc053 185struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
186struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
187void vm_area_free(struct vm_area_struct *);
c43692e8 188
1da177e4 189#ifndef CONFIG_MMU
8feae131
DH
190extern struct rb_root nommu_region_tree;
191extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
192
193extern unsigned int kobjsize(const void *objp);
194#endif
195
196/*
605d9288 197 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 198 * When changing, update also include/trace/events/mmflags.h
1da177e4 199 */
cc2383ec
KK
200#define VM_NONE 0x00000000
201
1da177e4
LT
202#define VM_READ 0x00000001 /* currently active flags */
203#define VM_WRITE 0x00000002
204#define VM_EXEC 0x00000004
205#define VM_SHARED 0x00000008
206
7e2cff42 207/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
208#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
209#define VM_MAYWRITE 0x00000020
210#define VM_MAYEXEC 0x00000040
211#define VM_MAYSHARE 0x00000080
212
213#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 214#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 215#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 216#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 217#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 218
1da177e4
LT
219#define VM_LOCKED 0x00002000
220#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
221
222 /* Used by sys_madvise() */
223#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
224#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
225
226#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
227#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 228#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 229#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 230#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 231#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 232#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 233#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 234#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 235#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 236
d9104d1c
CG
237#ifdef CONFIG_MEM_SOFT_DIRTY
238# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
239#else
240# define VM_SOFTDIRTY 0
241#endif
242
b379d790 243#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
244#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
245#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 246#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 247
63c17fb8
DH
248#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
249#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
250#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
251#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
252#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 253#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
254#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
255#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
256#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
257#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 258#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
259#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
260
5212213a 261#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
262# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
263# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 264# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
265# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
266# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
267#ifdef CONFIG_PPC
268# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
269#else
270# define VM_PKEY_BIT4 0
8f62c883 271#endif
5212213a
RP
272#endif /* CONFIG_ARCH_HAS_PKEYS */
273
274#if defined(CONFIG_X86)
275# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
276#elif defined(CONFIG_PPC)
277# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
278#elif defined(CONFIG_PARISC)
279# define VM_GROWSUP VM_ARCH_1
280#elif defined(CONFIG_IA64)
281# define VM_GROWSUP VM_ARCH_1
74a04967
KA
282#elif defined(CONFIG_SPARC64)
283# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
284# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
285#elif !defined(CONFIG_MMU)
286# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
287#endif
288
df3735c5 289#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 290/* MPX specific bounds table or bounds directory */
fa87b91c 291# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
292#else
293# define VM_MPX VM_NONE
4aae7e43
QR
294#endif
295
cc2383ec
KK
296#ifndef VM_GROWSUP
297# define VM_GROWSUP VM_NONE
298#endif
299
a8bef8ff
MG
300/* Bits set in the VMA until the stack is in its final location */
301#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
302
1da177e4
LT
303#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
304#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
305#endif
306
307#ifdef CONFIG_STACK_GROWSUP
30bdbb78 308#define VM_STACK VM_GROWSUP
1da177e4 309#else
30bdbb78 310#define VM_STACK VM_GROWSDOWN
1da177e4
LT
311#endif
312
30bdbb78
KK
313#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
314
b291f000 315/*
78f11a25
AA
316 * Special vmas that are non-mergable, non-mlock()able.
317 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 318 */
9050d7eb 319#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 320
a0715cc2
AT
321/* This mask defines which mm->def_flags a process can inherit its parent */
322#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
323
de60f5f1
EM
324/* This mask is used to clear all the VMA flags used by mlock */
325#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
326
2c2d57b5
KA
327/* Arch-specific flags to clear when updating VM flags on protection change */
328#ifndef VM_ARCH_CLEAR
329# define VM_ARCH_CLEAR VM_NONE
330#endif
331#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
332
1da177e4
LT
333/*
334 * mapping from the currently active vm_flags protection bits (the
335 * low four bits) to a page protection mask..
336 */
337extern pgprot_t protection_map[16];
338
d0217ac0 339#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
340#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
341#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
342#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
343#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
344#define FAULT_FLAG_TRIED 0x20 /* Second try */
345#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 346#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 347#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 348
282a8e03
RZ
349#define FAULT_FLAG_TRACE \
350 { FAULT_FLAG_WRITE, "WRITE" }, \
351 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
352 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
353 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
354 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
355 { FAULT_FLAG_TRIED, "TRIED" }, \
356 { FAULT_FLAG_USER, "USER" }, \
357 { FAULT_FLAG_REMOTE, "REMOTE" }, \
358 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
359
54cb8821 360/*
d0217ac0 361 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
362 * ->fault function. The vma's ->fault is responsible for returning a bitmask
363 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 364 *
c20cd45e
MH
365 * MM layer fills up gfp_mask for page allocations but fault handler might
366 * alter it if its implementation requires a different allocation context.
367 *
9b4bdd2f 368 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 369 */
d0217ac0 370struct vm_fault {
82b0f8c3 371 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 372 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 373 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 374 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 375 unsigned long address; /* Faulting virtual address */
82b0f8c3 376 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 377 * the 'address' */
a2d58167
DJ
378 pud_t *pud; /* Pointer to pud entry matching
379 * the 'address'
380 */
2994302b 381 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 382
3917048d
JK
383 struct page *cow_page; /* Page handler may use for COW fault */
384 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 385 struct page *page; /* ->fault handlers should return a
83c54070 386 * page here, unless VM_FAULT_NOPAGE
d0217ac0 387 * is set (which is also implied by
83c54070 388 * VM_FAULT_ERROR).
d0217ac0 389 */
82b0f8c3 390 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
391 pte_t *pte; /* Pointer to pte entry matching
392 * the 'address'. NULL if the page
393 * table hasn't been allocated.
394 */
395 spinlock_t *ptl; /* Page table lock.
396 * Protects pte page table if 'pte'
397 * is not NULL, otherwise pmd.
398 */
7267ec00
KS
399 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
400 * vm_ops->map_pages() calls
401 * alloc_set_pte() from atomic context.
402 * do_fault_around() pre-allocates
403 * page table to avoid allocation from
404 * atomic context.
405 */
54cb8821 406};
1da177e4 407
c791ace1
DJ
408/* page entry size for vm->huge_fault() */
409enum page_entry_size {
410 PE_SIZE_PTE = 0,
411 PE_SIZE_PMD,
412 PE_SIZE_PUD,
413};
414
1da177e4
LT
415/*
416 * These are the virtual MM functions - opening of an area, closing and
417 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 418 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
419 */
420struct vm_operations_struct {
421 void (*open)(struct vm_area_struct * area);
422 void (*close)(struct vm_area_struct * area);
31383c68 423 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 424 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
425 vm_fault_t (*fault)(struct vm_fault *vmf);
426 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
427 enum page_entry_size pe_size);
82b0f8c3 428 void (*map_pages)(struct vm_fault *vmf,
bae473a4 429 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 430 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
431
432 /* notification that a previously read-only page is about to become
433 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 434 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 435
dd906184 436 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 437 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 438
28b2ee20
RR
439 /* called by access_process_vm when get_user_pages() fails, typically
440 * for use by special VMAs that can switch between memory and hardware
441 */
442 int (*access)(struct vm_area_struct *vma, unsigned long addr,
443 void *buf, int len, int write);
78d683e8
AL
444
445 /* Called by the /proc/PID/maps code to ask the vma whether it
446 * has a special name. Returning non-NULL will also cause this
447 * vma to be dumped unconditionally. */
448 const char *(*name)(struct vm_area_struct *vma);
449
1da177e4 450#ifdef CONFIG_NUMA
a6020ed7
LS
451 /*
452 * set_policy() op must add a reference to any non-NULL @new mempolicy
453 * to hold the policy upon return. Caller should pass NULL @new to
454 * remove a policy and fall back to surrounding context--i.e. do not
455 * install a MPOL_DEFAULT policy, nor the task or system default
456 * mempolicy.
457 */
1da177e4 458 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
459
460 /*
461 * get_policy() op must add reference [mpol_get()] to any policy at
462 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
463 * in mm/mempolicy.c will do this automatically.
464 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
465 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
466 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
467 * must return NULL--i.e., do not "fallback" to task or system default
468 * policy.
469 */
1da177e4
LT
470 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
471 unsigned long addr);
472#endif
667a0a06
DV
473 /*
474 * Called by vm_normal_page() for special PTEs to find the
475 * page for @addr. This is useful if the default behavior
476 * (using pte_page()) would not find the correct page.
477 */
478 struct page *(*find_special_page)(struct vm_area_struct *vma,
479 unsigned long addr);
1da177e4
LT
480};
481
027232da
KS
482static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
483{
bfd40eaf
KS
484 static const struct vm_operations_struct dummy_vm_ops = {};
485
a670468f 486 memset(vma, 0, sizeof(*vma));
027232da 487 vma->vm_mm = mm;
bfd40eaf 488 vma->vm_ops = &dummy_vm_ops;
027232da
KS
489 INIT_LIST_HEAD(&vma->anon_vma_chain);
490}
491
bfd40eaf
KS
492static inline void vma_set_anonymous(struct vm_area_struct *vma)
493{
494 vma->vm_ops = NULL;
495}
496
8b11ec1b
LT
497/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
498#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
499
1da177e4
LT
500struct mmu_gather;
501struct inode;
502
349aef0b
AM
503#define page_private(page) ((page)->private)
504#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 505
5c7fb56e
DW
506#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
507static inline int pmd_devmap(pmd_t pmd)
508{
509 return 0;
510}
a00cc7d9
MW
511static inline int pud_devmap(pud_t pud)
512{
513 return 0;
514}
b59f65fa
KS
515static inline int pgd_devmap(pgd_t pgd)
516{
517 return 0;
518}
5c7fb56e
DW
519#endif
520
1da177e4
LT
521/*
522 * FIXME: take this include out, include page-flags.h in
523 * files which need it (119 of them)
524 */
525#include <linux/page-flags.h>
71e3aac0 526#include <linux/huge_mm.h>
1da177e4
LT
527
528/*
529 * Methods to modify the page usage count.
530 *
531 * What counts for a page usage:
532 * - cache mapping (page->mapping)
533 * - private data (page->private)
534 * - page mapped in a task's page tables, each mapping
535 * is counted separately
536 *
537 * Also, many kernel routines increase the page count before a critical
538 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
539 */
540
541/*
da6052f7 542 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 543 */
7c8ee9a8
NP
544static inline int put_page_testzero(struct page *page)
545{
fe896d18
JK
546 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
547 return page_ref_dec_and_test(page);
7c8ee9a8 548}
1da177e4
LT
549
550/*
7c8ee9a8
NP
551 * Try to grab a ref unless the page has a refcount of zero, return false if
552 * that is the case.
8e0861fa
AK
553 * This can be called when MMU is off so it must not access
554 * any of the virtual mappings.
1da177e4 555 */
7c8ee9a8
NP
556static inline int get_page_unless_zero(struct page *page)
557{
fe896d18 558 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 559}
1da177e4 560
53df8fdc 561extern int page_is_ram(unsigned long pfn);
124fe20d
DW
562
563enum {
564 REGION_INTERSECTS,
565 REGION_DISJOINT,
566 REGION_MIXED,
567};
568
1c29f25b
TK
569int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
570 unsigned long desc);
53df8fdc 571
48667e7a 572/* Support for virtually mapped pages */
b3bdda02
CL
573struct page *vmalloc_to_page(const void *addr);
574unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 575
0738c4bb
PM
576/*
577 * Determine if an address is within the vmalloc range
578 *
579 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
580 * is no special casing required.
581 */
bb00a789 582static inline bool is_vmalloc_addr(const void *x)
9e2779fa 583{
0738c4bb 584#ifdef CONFIG_MMU
9e2779fa
CL
585 unsigned long addr = (unsigned long)x;
586
587 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 588#else
bb00a789 589 return false;
8ca3ed87 590#endif
0738c4bb 591}
81ac3ad9
KH
592#ifdef CONFIG_MMU
593extern int is_vmalloc_or_module_addr(const void *x);
594#else
934831d0 595static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
596{
597 return 0;
598}
599#endif
9e2779fa 600
a7c3e901
MH
601extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
602static inline void *kvmalloc(size_t size, gfp_t flags)
603{
604 return kvmalloc_node(size, flags, NUMA_NO_NODE);
605}
606static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
607{
608 return kvmalloc_node(size, flags | __GFP_ZERO, node);
609}
610static inline void *kvzalloc(size_t size, gfp_t flags)
611{
612 return kvmalloc(size, flags | __GFP_ZERO);
613}
614
752ade68
MH
615static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
616{
3b3b1a29
KC
617 size_t bytes;
618
619 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
620 return NULL;
621
3b3b1a29 622 return kvmalloc(bytes, flags);
752ade68
MH
623}
624
1c542f38
KC
625static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
626{
627 return kvmalloc_array(n, size, flags | __GFP_ZERO);
628}
629
39f1f78d
AV
630extern void kvfree(const void *addr);
631
53f9263b
KS
632static inline atomic_t *compound_mapcount_ptr(struct page *page)
633{
634 return &page[1].compound_mapcount;
635}
636
637static inline int compound_mapcount(struct page *page)
638{
5f527c2b 639 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
640 page = compound_head(page);
641 return atomic_read(compound_mapcount_ptr(page)) + 1;
642}
643
70b50f94
AA
644/*
645 * The atomic page->_mapcount, starts from -1: so that transitions
646 * both from it and to it can be tracked, using atomic_inc_and_test
647 * and atomic_add_negative(-1).
648 */
22b751c3 649static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
650{
651 atomic_set(&(page)->_mapcount, -1);
652}
653
b20ce5e0
KS
654int __page_mapcount(struct page *page);
655
70b50f94
AA
656static inline int page_mapcount(struct page *page)
657{
1d148e21 658 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 659
b20ce5e0
KS
660 if (unlikely(PageCompound(page)))
661 return __page_mapcount(page);
662 return atomic_read(&page->_mapcount) + 1;
663}
664
665#ifdef CONFIG_TRANSPARENT_HUGEPAGE
666int total_mapcount(struct page *page);
6d0a07ed 667int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
668#else
669static inline int total_mapcount(struct page *page)
670{
671 return page_mapcount(page);
70b50f94 672}
6d0a07ed
AA
673static inline int page_trans_huge_mapcount(struct page *page,
674 int *total_mapcount)
675{
676 int mapcount = page_mapcount(page);
677 if (total_mapcount)
678 *total_mapcount = mapcount;
679 return mapcount;
680}
b20ce5e0 681#endif
70b50f94 682
b49af68f
CL
683static inline struct page *virt_to_head_page(const void *x)
684{
685 struct page *page = virt_to_page(x);
ccaafd7f 686
1d798ca3 687 return compound_head(page);
b49af68f
CL
688}
689
ddc58f27
KS
690void __put_page(struct page *page);
691
1d7ea732 692void put_pages_list(struct list_head *pages);
1da177e4 693
8dfcc9ba 694void split_page(struct page *page, unsigned int order);
8dfcc9ba 695
33f2ef89
AW
696/*
697 * Compound pages have a destructor function. Provide a
698 * prototype for that function and accessor functions.
f1e61557 699 * These are _only_ valid on the head of a compound page.
33f2ef89 700 */
f1e61557
KS
701typedef void compound_page_dtor(struct page *);
702
703/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
704enum compound_dtor_id {
705 NULL_COMPOUND_DTOR,
706 COMPOUND_PAGE_DTOR,
707#ifdef CONFIG_HUGETLB_PAGE
708 HUGETLB_PAGE_DTOR,
9a982250
KS
709#endif
710#ifdef CONFIG_TRANSPARENT_HUGEPAGE
711 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
712#endif
713 NR_COMPOUND_DTORS,
714};
715extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
716
717static inline void set_compound_page_dtor(struct page *page,
f1e61557 718 enum compound_dtor_id compound_dtor)
33f2ef89 719{
f1e61557
KS
720 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
721 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
722}
723
724static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
725{
f1e61557
KS
726 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
727 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
728}
729
d00181b9 730static inline unsigned int compound_order(struct page *page)
d85f3385 731{
6d777953 732 if (!PageHead(page))
d85f3385 733 return 0;
e4b294c2 734 return page[1].compound_order;
d85f3385
CL
735}
736
f1e61557 737static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 738{
e4b294c2 739 page[1].compound_order = order;
d85f3385
CL
740}
741
9a982250
KS
742void free_compound_page(struct page *page);
743
3dece370 744#ifdef CONFIG_MMU
14fd403f
AA
745/*
746 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
747 * servicing faults for write access. In the normal case, do always want
748 * pte_mkwrite. But get_user_pages can cause write faults for mappings
749 * that do not have writing enabled, when used by access_process_vm.
750 */
751static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
752{
753 if (likely(vma->vm_flags & VM_WRITE))
754 pte = pte_mkwrite(pte);
755 return pte;
756}
8c6e50b0 757
2b740303 758vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 759 struct page *page);
2b740303
SJ
760vm_fault_t finish_fault(struct vm_fault *vmf);
761vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 762#endif
14fd403f 763
1da177e4
LT
764/*
765 * Multiple processes may "see" the same page. E.g. for untouched
766 * mappings of /dev/null, all processes see the same page full of
767 * zeroes, and text pages of executables and shared libraries have
768 * only one copy in memory, at most, normally.
769 *
770 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
771 * page_count() == 0 means the page is free. page->lru is then used for
772 * freelist management in the buddy allocator.
da6052f7 773 * page_count() > 0 means the page has been allocated.
1da177e4 774 *
da6052f7
NP
775 * Pages are allocated by the slab allocator in order to provide memory
776 * to kmalloc and kmem_cache_alloc. In this case, the management of the
777 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
778 * unless a particular usage is carefully commented. (the responsibility of
779 * freeing the kmalloc memory is the caller's, of course).
1da177e4 780 *
da6052f7
NP
781 * A page may be used by anyone else who does a __get_free_page().
782 * In this case, page_count still tracks the references, and should only
783 * be used through the normal accessor functions. The top bits of page->flags
784 * and page->virtual store page management information, but all other fields
785 * are unused and could be used privately, carefully. The management of this
786 * page is the responsibility of the one who allocated it, and those who have
787 * subsequently been given references to it.
788 *
789 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
790 * managed by the Linux memory manager: I/O, buffers, swapping etc.
791 * The following discussion applies only to them.
792 *
da6052f7
NP
793 * A pagecache page contains an opaque `private' member, which belongs to the
794 * page's address_space. Usually, this is the address of a circular list of
795 * the page's disk buffers. PG_private must be set to tell the VM to call
796 * into the filesystem to release these pages.
1da177e4 797 *
da6052f7
NP
798 * A page may belong to an inode's memory mapping. In this case, page->mapping
799 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 800 * in units of PAGE_SIZE.
1da177e4 801 *
da6052f7
NP
802 * If pagecache pages are not associated with an inode, they are said to be
803 * anonymous pages. These may become associated with the swapcache, and in that
804 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 805 *
da6052f7
NP
806 * In either case (swapcache or inode backed), the pagecache itself holds one
807 * reference to the page. Setting PG_private should also increment the
808 * refcount. The each user mapping also has a reference to the page.
1da177e4 809 *
da6052f7 810 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 811 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
812 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
813 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 814 *
da6052f7 815 * All pagecache pages may be subject to I/O:
1da177e4
LT
816 * - inode pages may need to be read from disk,
817 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
818 * to be written back to the inode on disk,
819 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
820 * modified may need to be swapped out to swap space and (later) to be read
821 * back into memory.
1da177e4
LT
822 */
823
824/*
825 * The zone field is never updated after free_area_init_core()
826 * sets it, so none of the operations on it need to be atomic.
1da177e4 827 */
348f8b6c 828
90572890 829/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 830#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
831#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
832#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 833#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 834#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 835
348f8b6c 836/*
25985edc 837 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
838 * sections we define the shift as 0; that plus a 0 mask ensures
839 * the compiler will optimise away reference to them.
840 */
d41dee36
AW
841#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
842#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
843#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 844#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 845#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 846
bce54bbf
WD
847/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
848#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 849#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
850#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
851 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 852#else
89689ae7 853#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
854#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
855 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
856#endif
857
bd8029b6 858#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 859
9223b419
CL
860#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
861#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
862#endif
863
d41dee36
AW
864#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
865#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
866#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 867#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 868#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 869#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 870
33dd4e0e 871static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 872{
348f8b6c 873 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 874}
1da177e4 875
260ae3f7
DW
876#ifdef CONFIG_ZONE_DEVICE
877static inline bool is_zone_device_page(const struct page *page)
878{
879 return page_zonenum(page) == ZONE_DEVICE;
880}
966cf44f
AD
881extern void memmap_init_zone_device(struct zone *, unsigned long,
882 unsigned long, struct dev_pagemap *);
260ae3f7
DW
883#else
884static inline bool is_zone_device_page(const struct page *page)
885{
886 return false;
887}
7b2d55d2 888#endif
5042db43 889
e7638488
DW
890#ifdef CONFIG_DEV_PAGEMAP_OPS
891void dev_pagemap_get_ops(void);
892void dev_pagemap_put_ops(void);
893void __put_devmap_managed_page(struct page *page);
894DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
895static inline bool put_devmap_managed_page(struct page *page)
896{
897 if (!static_branch_unlikely(&devmap_managed_key))
898 return false;
899 if (!is_zone_device_page(page))
900 return false;
901 switch (page->pgmap->type) {
902 case MEMORY_DEVICE_PRIVATE:
903 case MEMORY_DEVICE_PUBLIC:
904 case MEMORY_DEVICE_FS_DAX:
905 __put_devmap_managed_page(page);
906 return true;
907 default:
908 break;
909 }
910 return false;
911}
912
913static inline bool is_device_private_page(const struct page *page)
914{
915 return is_zone_device_page(page) &&
916 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
917}
918
919static inline bool is_device_public_page(const struct page *page)
920{
921 return is_zone_device_page(page) &&
922 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
923}
924
52916982
LG
925#ifdef CONFIG_PCI_P2PDMA
926static inline bool is_pci_p2pdma_page(const struct page *page)
927{
928 return is_zone_device_page(page) &&
929 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
930}
931#else /* CONFIG_PCI_P2PDMA */
932static inline bool is_pci_p2pdma_page(const struct page *page)
933{
934 return false;
935}
936#endif /* CONFIG_PCI_P2PDMA */
937
e7638488
DW
938#else /* CONFIG_DEV_PAGEMAP_OPS */
939static inline void dev_pagemap_get_ops(void)
5042db43 940{
5042db43 941}
e7638488
DW
942
943static inline void dev_pagemap_put_ops(void)
944{
945}
946
947static inline bool put_devmap_managed_page(struct page *page)
948{
949 return false;
950}
951
6b368cd4
JG
952static inline bool is_device_private_page(const struct page *page)
953{
954 return false;
955}
e7638488 956
6b368cd4
JG
957static inline bool is_device_public_page(const struct page *page)
958{
959 return false;
960}
52916982
LG
961
962static inline bool is_pci_p2pdma_page(const struct page *page)
963{
964 return false;
965}
e7638488 966#endif /* CONFIG_DEV_PAGEMAP_OPS */
7b2d55d2 967
f958d7b5
LT
968/* 127: arbitrary random number, small enough to assemble well */
969#define page_ref_zero_or_close_to_overflow(page) \
970 ((unsigned int) page_ref_count(page) + 127u <= 127u)
971
3565fce3
DW
972static inline void get_page(struct page *page)
973{
974 page = compound_head(page);
975 /*
976 * Getting a normal page or the head of a compound page
0139aa7b 977 * requires to already have an elevated page->_refcount.
3565fce3 978 */
f958d7b5 979 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 980 page_ref_inc(page);
3565fce3
DW
981}
982
983static inline void put_page(struct page *page)
984{
985 page = compound_head(page);
986
7b2d55d2 987 /*
e7638488
DW
988 * For devmap managed pages we need to catch refcount transition from
989 * 2 to 1, when refcount reach one it means the page is free and we
990 * need to inform the device driver through callback. See
7b2d55d2
JG
991 * include/linux/memremap.h and HMM for details.
992 */
e7638488 993 if (put_devmap_managed_page(page))
7b2d55d2 994 return;
7b2d55d2 995
3565fce3
DW
996 if (put_page_testzero(page))
997 __put_page(page);
3565fce3
DW
998}
999
9127ab4f
CS
1000#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1001#define SECTION_IN_PAGE_FLAGS
1002#endif
1003
89689ae7 1004/*
7a8010cd
VB
1005 * The identification function is mainly used by the buddy allocator for
1006 * determining if two pages could be buddies. We are not really identifying
1007 * the zone since we could be using the section number id if we do not have
1008 * node id available in page flags.
1009 * We only guarantee that it will return the same value for two combinable
1010 * pages in a zone.
89689ae7 1011 */
cb2b95e1
AW
1012static inline int page_zone_id(struct page *page)
1013{
89689ae7 1014 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1015}
1016
89689ae7 1017#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1018extern int page_to_nid(const struct page *page);
89689ae7 1019#else
33dd4e0e 1020static inline int page_to_nid(const struct page *page)
d41dee36 1021{
f165b378
PT
1022 struct page *p = (struct page *)page;
1023
1024 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1025}
89689ae7
CL
1026#endif
1027
57e0a030 1028#ifdef CONFIG_NUMA_BALANCING
90572890 1029static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1030{
90572890 1031 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1032}
1033
90572890 1034static inline int cpupid_to_pid(int cpupid)
57e0a030 1035{
90572890 1036 return cpupid & LAST__PID_MASK;
57e0a030 1037}
b795854b 1038
90572890 1039static inline int cpupid_to_cpu(int cpupid)
b795854b 1040{
90572890 1041 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1042}
1043
90572890 1044static inline int cpupid_to_nid(int cpupid)
b795854b 1045{
90572890 1046 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1047}
1048
90572890 1049static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1050{
90572890 1051 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1052}
1053
90572890 1054static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1055{
90572890 1056 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1057}
1058
8c8a743c
PZ
1059static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1060{
1061 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1062}
1063
1064#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1065#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1066static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1067{
1ae71d03 1068 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1069}
90572890
PZ
1070
1071static inline int page_cpupid_last(struct page *page)
1072{
1073 return page->_last_cpupid;
1074}
1075static inline void page_cpupid_reset_last(struct page *page)
b795854b 1076{
1ae71d03 1077 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1078}
1079#else
90572890 1080static inline int page_cpupid_last(struct page *page)
75980e97 1081{
90572890 1082 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1083}
1084
90572890 1085extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1086
90572890 1087static inline void page_cpupid_reset_last(struct page *page)
75980e97 1088{
09940a4f 1089 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1090}
90572890
PZ
1091#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1092#else /* !CONFIG_NUMA_BALANCING */
1093static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1094{
90572890 1095 return page_to_nid(page); /* XXX */
57e0a030
MG
1096}
1097
90572890 1098static inline int page_cpupid_last(struct page *page)
57e0a030 1099{
90572890 1100 return page_to_nid(page); /* XXX */
57e0a030
MG
1101}
1102
90572890 1103static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1104{
1105 return -1;
1106}
1107
90572890 1108static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1109{
1110 return -1;
1111}
1112
90572890 1113static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1114{
1115 return -1;
1116}
1117
90572890
PZ
1118static inline int cpu_pid_to_cpupid(int nid, int pid)
1119{
1120 return -1;
1121}
1122
1123static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1124{
1125 return 1;
1126}
1127
90572890 1128static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1129{
1130}
8c8a743c
PZ
1131
1132static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1133{
1134 return false;
1135}
90572890 1136#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1137
2813b9c0
AK
1138#ifdef CONFIG_KASAN_SW_TAGS
1139static inline u8 page_kasan_tag(const struct page *page)
1140{
1141 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1142}
1143
1144static inline void page_kasan_tag_set(struct page *page, u8 tag)
1145{
1146 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1147 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1148}
1149
1150static inline void page_kasan_tag_reset(struct page *page)
1151{
1152 page_kasan_tag_set(page, 0xff);
1153}
1154#else
1155static inline u8 page_kasan_tag(const struct page *page)
1156{
1157 return 0xff;
1158}
1159
1160static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1161static inline void page_kasan_tag_reset(struct page *page) { }
1162#endif
1163
33dd4e0e 1164static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1165{
1166 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1167}
1168
75ef7184
MG
1169static inline pg_data_t *page_pgdat(const struct page *page)
1170{
1171 return NODE_DATA(page_to_nid(page));
1172}
1173
9127ab4f 1174#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1175static inline void set_page_section(struct page *page, unsigned long section)
1176{
1177 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1178 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1179}
1180
aa462abe 1181static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1182{
1183 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1184}
308c05e3 1185#endif
d41dee36 1186
2f1b6248 1187static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1188{
1189 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1190 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1191}
2f1b6248 1192
348f8b6c
DH
1193static inline void set_page_node(struct page *page, unsigned long node)
1194{
1195 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1196 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1197}
89689ae7 1198
2f1b6248 1199static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1200 unsigned long node, unsigned long pfn)
1da177e4 1201{
348f8b6c
DH
1202 set_page_zone(page, zone);
1203 set_page_node(page, node);
9127ab4f 1204#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1205 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1206#endif
1da177e4
LT
1207}
1208
0610c25d
GT
1209#ifdef CONFIG_MEMCG
1210static inline struct mem_cgroup *page_memcg(struct page *page)
1211{
1212 return page->mem_cgroup;
1213}
55779ec7
JW
1214static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1215{
1216 WARN_ON_ONCE(!rcu_read_lock_held());
1217 return READ_ONCE(page->mem_cgroup);
1218}
0610c25d
GT
1219#else
1220static inline struct mem_cgroup *page_memcg(struct page *page)
1221{
1222 return NULL;
1223}
55779ec7
JW
1224static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1225{
1226 WARN_ON_ONCE(!rcu_read_lock_held());
1227 return NULL;
1228}
0610c25d
GT
1229#endif
1230
f6ac2354
CL
1231/*
1232 * Some inline functions in vmstat.h depend on page_zone()
1233 */
1234#include <linux/vmstat.h>
1235
33dd4e0e 1236static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1237{
1dff8083 1238 return page_to_virt(page);
1da177e4
LT
1239}
1240
1241#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1242#define HASHED_PAGE_VIRTUAL
1243#endif
1244
1245#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1246static inline void *page_address(const struct page *page)
1247{
1248 return page->virtual;
1249}
1250static inline void set_page_address(struct page *page, void *address)
1251{
1252 page->virtual = address;
1253}
1da177e4
LT
1254#define page_address_init() do { } while(0)
1255#endif
1256
1257#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1258void *page_address(const struct page *page);
1da177e4
LT
1259void set_page_address(struct page *page, void *virtual);
1260void page_address_init(void);
1261#endif
1262
1263#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1264#define page_address(page) lowmem_page_address(page)
1265#define set_page_address(page, address) do { } while(0)
1266#define page_address_init() do { } while(0)
1267#endif
1268
e39155ea
KS
1269extern void *page_rmapping(struct page *page);
1270extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1271extern struct address_space *page_mapping(struct page *page);
1da177e4 1272
f981c595
MG
1273extern struct address_space *__page_file_mapping(struct page *);
1274
1275static inline
1276struct address_space *page_file_mapping(struct page *page)
1277{
1278 if (unlikely(PageSwapCache(page)))
1279 return __page_file_mapping(page);
1280
1281 return page->mapping;
1282}
1283
f6ab1f7f
HY
1284extern pgoff_t __page_file_index(struct page *page);
1285
1da177e4
LT
1286/*
1287 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1288 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1289 */
1290static inline pgoff_t page_index(struct page *page)
1291{
1292 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1293 return __page_file_index(page);
1da177e4
LT
1294 return page->index;
1295}
1296
1aa8aea5 1297bool page_mapped(struct page *page);
bda807d4 1298struct address_space *page_mapping(struct page *page);
cb9f753a 1299struct address_space *page_mapping_file(struct page *page);
1da177e4 1300
2f064f34
MH
1301/*
1302 * Return true only if the page has been allocated with
1303 * ALLOC_NO_WATERMARKS and the low watermark was not
1304 * met implying that the system is under some pressure.
1305 */
1306static inline bool page_is_pfmemalloc(struct page *page)
1307{
1308 /*
1309 * Page index cannot be this large so this must be
1310 * a pfmemalloc page.
1311 */
1312 return page->index == -1UL;
1313}
1314
1315/*
1316 * Only to be called by the page allocator on a freshly allocated
1317 * page.
1318 */
1319static inline void set_page_pfmemalloc(struct page *page)
1320{
1321 page->index = -1UL;
1322}
1323
1324static inline void clear_page_pfmemalloc(struct page *page)
1325{
1326 page->index = 0;
1327}
1328
1da177e4
LT
1329/*
1330 * Different kinds of faults, as returned by handle_mm_fault().
1331 * Used to decide whether a process gets delivered SIGBUS or
1332 * just gets major/minor fault counters bumped up.
1333 */
d0217ac0 1334
83c54070
NP
1335#define VM_FAULT_OOM 0x0001
1336#define VM_FAULT_SIGBUS 0x0002
1337#define VM_FAULT_MAJOR 0x0004
1338#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1339#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1340#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1341#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1342
83c54070
NP
1343#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1344#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1345#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1346#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1347#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
caa51d26
JK
1348#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1349 * and needs fsync() to complete (for
1350 * synchronous page faults in DAX) */
aa50d3a7 1351
33692f27
LT
1352#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1353 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1354 VM_FAULT_FALLBACK)
aa50d3a7 1355
282a8e03
RZ
1356#define VM_FAULT_RESULT_TRACE \
1357 { VM_FAULT_OOM, "OOM" }, \
1358 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1359 { VM_FAULT_MAJOR, "MAJOR" }, \
1360 { VM_FAULT_WRITE, "WRITE" }, \
1361 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1362 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1363 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1364 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1365 { VM_FAULT_LOCKED, "LOCKED" }, \
1366 { VM_FAULT_RETRY, "RETRY" }, \
1367 { VM_FAULT_FALLBACK, "FALLBACK" }, \
caa51d26
JK
1368 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1369 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
282a8e03 1370
aa50d3a7
AK
1371/* Encode hstate index for a hwpoisoned large page */
1372#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1373#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1374
1c0fe6e3
NP
1375/*
1376 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1377 */
1378extern void pagefault_out_of_memory(void);
1379
1da177e4
LT
1380#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1381
ddd588b5 1382/*
7bf02ea2 1383 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1384 * various contexts.
1385 */
4b59e6c4 1386#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1387
9af744d7 1388extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1389
7f43add4 1390extern bool can_do_mlock(void);
1da177e4
LT
1391extern int user_shm_lock(size_t, struct user_struct *);
1392extern void user_shm_unlock(size_t, struct user_struct *);
1393
1394/*
1395 * Parameter block passed down to zap_pte_range in exceptional cases.
1396 */
1397struct zap_details {
1da177e4
LT
1398 struct address_space *check_mapping; /* Check page->mapping if set */
1399 pgoff_t first_index; /* Lowest page->index to unmap */
1400 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1401};
1402
df6ad698
JG
1403struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1404 pte_t pte, bool with_public_device);
1405#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1406
28093f9f
GS
1407struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1408 pmd_t pmd);
7e675137 1409
27d036e3
LR
1410void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1411 unsigned long size);
14f5ff5d 1412void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1413 unsigned long size);
4f74d2c8
LT
1414void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1415 unsigned long start, unsigned long end);
e6473092
MM
1416
1417/**
1418 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1419 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1420 * this handler should only handle pud_trans_huge() puds.
1421 * the pmd_entry or pte_entry callbacks will be used for
1422 * regular PUDs.
e6473092 1423 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1424 * this handler is required to be able to handle
1425 * pmd_trans_huge() pmds. They may simply choose to
1426 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1427 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1428 * @pte_hole: if set, called for each hole at all levels
5dc37642 1429 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1430 * @test_walk: caller specific callback function to determine whether
f7e2355f 1431 * we walk over the current vma or not. Returning 0
fafaa426
NH
1432 * value means "do page table walk over the current vma,"
1433 * and a negative one means "abort current page table walk
f7e2355f 1434 * right now." 1 means "skip the current vma."
fafaa426
NH
1435 * @mm: mm_struct representing the target process of page table walk
1436 * @vma: vma currently walked (NULL if walking outside vmas)
1437 * @private: private data for callbacks' usage
e6473092 1438 *
fafaa426 1439 * (see the comment on walk_page_range() for more details)
e6473092
MM
1440 */
1441struct mm_walk {
a00cc7d9
MW
1442 int (*pud_entry)(pud_t *pud, unsigned long addr,
1443 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1444 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1445 unsigned long next, struct mm_walk *walk);
1446 int (*pte_entry)(pte_t *pte, unsigned long addr,
1447 unsigned long next, struct mm_walk *walk);
1448 int (*pte_hole)(unsigned long addr, unsigned long next,
1449 struct mm_walk *walk);
1450 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1451 unsigned long addr, unsigned long next,
1452 struct mm_walk *walk);
fafaa426
NH
1453 int (*test_walk)(unsigned long addr, unsigned long next,
1454 struct mm_walk *walk);
2165009b 1455 struct mm_struct *mm;
fafaa426 1456 struct vm_area_struct *vma;
2165009b 1457 void *private;
e6473092
MM
1458};
1459
ac46d4f3
JG
1460struct mmu_notifier_range;
1461
2165009b
DH
1462int walk_page_range(unsigned long addr, unsigned long end,
1463 struct mm_walk *walk);
900fc5f1 1464int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1465void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1466 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1467int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1468 struct vm_area_struct *vma);
09796395 1469int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1470 struct mmu_notifier_range *range,
1471 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1472int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1473 unsigned long *pfn);
d87fe660 1474int follow_phys(struct vm_area_struct *vma, unsigned long address,
1475 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1476int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1477 void *buf, int len, int write);
1da177e4 1478
7caef267 1479extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1480extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1481void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1482void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1483int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1484int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1485int invalidate_inode_page(struct page *page);
1486
7ee1dd3f 1487#ifdef CONFIG_MMU
2b740303
SJ
1488extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1489 unsigned long address, unsigned int flags);
5c723ba5 1490extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1491 unsigned long address, unsigned int fault_flags,
1492 bool *unlocked);
977fbdcd
MW
1493void unmap_mapping_pages(struct address_space *mapping,
1494 pgoff_t start, pgoff_t nr, bool even_cows);
1495void unmap_mapping_range(struct address_space *mapping,
1496 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1497#else
2b740303 1498static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
dcddffd4 1499 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1500{
1501 /* should never happen if there's no MMU */
1502 BUG();
1503 return VM_FAULT_SIGBUS;
1504}
5c723ba5
PZ
1505static inline int fixup_user_fault(struct task_struct *tsk,
1506 struct mm_struct *mm, unsigned long address,
4a9e1cda 1507 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1508{
1509 /* should never happen if there's no MMU */
1510 BUG();
1511 return -EFAULT;
1512}
977fbdcd
MW
1513static inline void unmap_mapping_pages(struct address_space *mapping,
1514 pgoff_t start, pgoff_t nr, bool even_cows) { }
1515static inline void unmap_mapping_range(struct address_space *mapping,
1516 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1517#endif
f33ea7f4 1518
977fbdcd
MW
1519static inline void unmap_shared_mapping_range(struct address_space *mapping,
1520 loff_t const holebegin, loff_t const holelen)
1521{
1522 unmap_mapping_range(mapping, holebegin, holelen, 0);
1523}
1524
1525extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1526 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1527extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1528 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1529extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1530 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1531
1e987790
DH
1532long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1533 unsigned long start, unsigned long nr_pages,
9beae1ea 1534 unsigned int gup_flags, struct page **pages,
5b56d49f 1535 struct vm_area_struct **vmas, int *locked);
c12d2da5 1536long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1537 unsigned int gup_flags, struct page **pages,
cde70140 1538 struct vm_area_struct **vmas);
c12d2da5 1539long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1540 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1541long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1542 struct page **pages, unsigned int gup_flags);
2bb6d283
DW
1543#ifdef CONFIG_FS_DAX
1544long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1545 unsigned int gup_flags, struct page **pages,
1546 struct vm_area_struct **vmas);
1547#else
1548static inline long get_user_pages_longterm(unsigned long start,
1549 unsigned long nr_pages, unsigned int gup_flags,
1550 struct page **pages, struct vm_area_struct **vmas)
1551{
1552 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1553}
1554#endif /* CONFIG_FS_DAX */
1555
d2bf6be8
NP
1556int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1557 struct page **pages);
8025e5dd
JK
1558
1559/* Container for pinned pfns / pages */
1560struct frame_vector {
1561 unsigned int nr_allocated; /* Number of frames we have space for */
1562 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1563 bool got_ref; /* Did we pin pages by getting page ref? */
1564 bool is_pfns; /* Does array contain pages or pfns? */
1565 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1566 * pfns_vector_pages() or pfns_vector_pfns()
1567 * for access */
1568};
1569
1570struct frame_vector *frame_vector_create(unsigned int nr_frames);
1571void frame_vector_destroy(struct frame_vector *vec);
1572int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1573 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1574void put_vaddr_frames(struct frame_vector *vec);
1575int frame_vector_to_pages(struct frame_vector *vec);
1576void frame_vector_to_pfns(struct frame_vector *vec);
1577
1578static inline unsigned int frame_vector_count(struct frame_vector *vec)
1579{
1580 return vec->nr_frames;
1581}
1582
1583static inline struct page **frame_vector_pages(struct frame_vector *vec)
1584{
1585 if (vec->is_pfns) {
1586 int err = frame_vector_to_pages(vec);
1587
1588 if (err)
1589 return ERR_PTR(err);
1590 }
1591 return (struct page **)(vec->ptrs);
1592}
1593
1594static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1595{
1596 if (!vec->is_pfns)
1597 frame_vector_to_pfns(vec);
1598 return (unsigned long *)(vec->ptrs);
1599}
1600
18022c5d
MG
1601struct kvec;
1602int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1603 struct page **pages);
1604int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1605struct page *get_dump_page(unsigned long addr);
1da177e4 1606
cf9a2ae8 1607extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1608extern void do_invalidatepage(struct page *page, unsigned int offset,
1609 unsigned int length);
cf9a2ae8 1610
f82b3764 1611void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1612int __set_page_dirty_nobuffers(struct page *page);
76719325 1613int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1614int redirty_page_for_writepage(struct writeback_control *wbc,
1615 struct page *page);
62cccb8c 1616void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1617void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1618 struct bdi_writeback *wb);
b3c97528 1619int set_page_dirty(struct page *page);
1da177e4 1620int set_page_dirty_lock(struct page *page);
736304f3
JK
1621void __cancel_dirty_page(struct page *page);
1622static inline void cancel_dirty_page(struct page *page)
1623{
1624 /* Avoid atomic ops, locking, etc. when not actually needed. */
1625 if (PageDirty(page))
1626 __cancel_dirty_page(page);
1627}
1da177e4 1628int clear_page_dirty_for_io(struct page *page);
b9ea2515 1629
a9090253 1630int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1631
b5330628
ON
1632static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1633{
1634 return !vma->vm_ops;
1635}
1636
b0506e48
MR
1637#ifdef CONFIG_SHMEM
1638/*
1639 * The vma_is_shmem is not inline because it is used only by slow
1640 * paths in userfault.
1641 */
1642bool vma_is_shmem(struct vm_area_struct *vma);
1643#else
1644static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1645#endif
1646
d17af505 1647int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1648
b6a2fea3
OW
1649extern unsigned long move_page_tables(struct vm_area_struct *vma,
1650 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1651 unsigned long new_addr, unsigned long len,
1652 bool need_rmap_locks);
7da4d641
PZ
1653extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1654 unsigned long end, pgprot_t newprot,
4b10e7d5 1655 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1656extern int mprotect_fixup(struct vm_area_struct *vma,
1657 struct vm_area_struct **pprev, unsigned long start,
1658 unsigned long end, unsigned long newflags);
1da177e4 1659
465a454f
PZ
1660/*
1661 * doesn't attempt to fault and will return short.
1662 */
1663int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1664 struct page **pages);
d559db08
KH
1665/*
1666 * per-process(per-mm_struct) statistics.
1667 */
d559db08
KH
1668static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1669{
69c97823
KK
1670 long val = atomic_long_read(&mm->rss_stat.count[member]);
1671
1672#ifdef SPLIT_RSS_COUNTING
1673 /*
1674 * counter is updated in asynchronous manner and may go to minus.
1675 * But it's never be expected number for users.
1676 */
1677 if (val < 0)
1678 val = 0;
172703b0 1679#endif
69c97823
KK
1680 return (unsigned long)val;
1681}
d559db08
KH
1682
1683static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1684{
172703b0 1685 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1686}
1687
1688static inline void inc_mm_counter(struct mm_struct *mm, int member)
1689{
172703b0 1690 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1691}
1692
1693static inline void dec_mm_counter(struct mm_struct *mm, int member)
1694{
172703b0 1695 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1696}
1697
eca56ff9
JM
1698/* Optimized variant when page is already known not to be PageAnon */
1699static inline int mm_counter_file(struct page *page)
1700{
1701 if (PageSwapBacked(page))
1702 return MM_SHMEMPAGES;
1703 return MM_FILEPAGES;
1704}
1705
1706static inline int mm_counter(struct page *page)
1707{
1708 if (PageAnon(page))
1709 return MM_ANONPAGES;
1710 return mm_counter_file(page);
1711}
1712
d559db08
KH
1713static inline unsigned long get_mm_rss(struct mm_struct *mm)
1714{
1715 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1716 get_mm_counter(mm, MM_ANONPAGES) +
1717 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1718}
1719
1720static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1721{
1722 return max(mm->hiwater_rss, get_mm_rss(mm));
1723}
1724
1725static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1726{
1727 return max(mm->hiwater_vm, mm->total_vm);
1728}
1729
1730static inline void update_hiwater_rss(struct mm_struct *mm)
1731{
1732 unsigned long _rss = get_mm_rss(mm);
1733
1734 if ((mm)->hiwater_rss < _rss)
1735 (mm)->hiwater_rss = _rss;
1736}
1737
1738static inline void update_hiwater_vm(struct mm_struct *mm)
1739{
1740 if (mm->hiwater_vm < mm->total_vm)
1741 mm->hiwater_vm = mm->total_vm;
1742}
1743
695f0559
PC
1744static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1745{
1746 mm->hiwater_rss = get_mm_rss(mm);
1747}
1748
d559db08
KH
1749static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1750 struct mm_struct *mm)
1751{
1752 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1753
1754 if (*maxrss < hiwater_rss)
1755 *maxrss = hiwater_rss;
1756}
1757
53bddb4e 1758#if defined(SPLIT_RSS_COUNTING)
05af2e10 1759void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1760#else
05af2e10 1761static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1762{
1763}
1764#endif
465a454f 1765
3565fce3
DW
1766#ifndef __HAVE_ARCH_PTE_DEVMAP
1767static inline int pte_devmap(pte_t pte)
1768{
1769 return 0;
1770}
1771#endif
1772
6d2329f8 1773int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1774
25ca1d6c
NK
1775extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1776 spinlock_t **ptl);
1777static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1778 spinlock_t **ptl)
1779{
1780 pte_t *ptep;
1781 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1782 return ptep;
1783}
c9cfcddf 1784
c2febafc
KS
1785#ifdef __PAGETABLE_P4D_FOLDED
1786static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1787 unsigned long address)
1788{
1789 return 0;
1790}
1791#else
1792int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1793#endif
1794
b4e98d9a 1795#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1796static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1797 unsigned long address)
1798{
1799 return 0;
1800}
b4e98d9a
KS
1801static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1802static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1803
5f22df00 1804#else
c2febafc 1805int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1806
b4e98d9a
KS
1807static inline void mm_inc_nr_puds(struct mm_struct *mm)
1808{
6d212db1
MS
1809 if (mm_pud_folded(mm))
1810 return;
af5b0f6a 1811 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1812}
1813
1814static inline void mm_dec_nr_puds(struct mm_struct *mm)
1815{
6d212db1
MS
1816 if (mm_pud_folded(mm))
1817 return;
af5b0f6a 1818 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1819}
5f22df00
NP
1820#endif
1821
2d2f5119 1822#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1823static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1824 unsigned long address)
1825{
1826 return 0;
1827}
dc6c9a35 1828
dc6c9a35
KS
1829static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1830static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1831
5f22df00 1832#else
1bb3630e 1833int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1834
dc6c9a35
KS
1835static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1836{
6d212db1
MS
1837 if (mm_pmd_folded(mm))
1838 return;
af5b0f6a 1839 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1840}
1841
1842static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1843{
6d212db1
MS
1844 if (mm_pmd_folded(mm))
1845 return;
af5b0f6a 1846 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1847}
5f22df00
NP
1848#endif
1849
c4812909 1850#ifdef CONFIG_MMU
af5b0f6a 1851static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1852{
af5b0f6a 1853 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1854}
1855
af5b0f6a 1856static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1857{
af5b0f6a 1858 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1859}
1860
1861static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1862{
af5b0f6a 1863 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1864}
1865
1866static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1867{
af5b0f6a 1868 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1869}
1870#else
c4812909 1871
af5b0f6a
KS
1872static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1873static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1874{
1875 return 0;
1876}
1877
1878static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1879static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1880#endif
1881
4cf58924
JFG
1882int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1883int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 1884
1da177e4
LT
1885/*
1886 * The following ifdef needed to get the 4level-fixup.h header to work.
1887 * Remove it when 4level-fixup.h has been removed.
1888 */
1bb3630e 1889#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1890
1891#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1892static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1893 unsigned long address)
1894{
1895 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1896 NULL : p4d_offset(pgd, address);
1897}
1898
1899static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1900 unsigned long address)
1da177e4 1901{
c2febafc
KS
1902 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1903 NULL : pud_offset(p4d, address);
1da177e4 1904}
505a60e2 1905#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1906
1907static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1908{
1bb3630e
HD
1909 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1910 NULL: pmd_offset(pud, address);
1da177e4 1911}
1bb3630e
HD
1912#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1913
57c1ffce 1914#if USE_SPLIT_PTE_PTLOCKS
597d795a 1915#if ALLOC_SPLIT_PTLOCKS
b35f1819 1916void __init ptlock_cache_init(void);
539edb58
PZ
1917extern bool ptlock_alloc(struct page *page);
1918extern void ptlock_free(struct page *page);
1919
1920static inline spinlock_t *ptlock_ptr(struct page *page)
1921{
1922 return page->ptl;
1923}
597d795a 1924#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1925static inline void ptlock_cache_init(void)
1926{
1927}
1928
49076ec2
KS
1929static inline bool ptlock_alloc(struct page *page)
1930{
49076ec2
KS
1931 return true;
1932}
539edb58 1933
49076ec2
KS
1934static inline void ptlock_free(struct page *page)
1935{
49076ec2
KS
1936}
1937
1938static inline spinlock_t *ptlock_ptr(struct page *page)
1939{
539edb58 1940 return &page->ptl;
49076ec2 1941}
597d795a 1942#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1943
1944static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1945{
1946 return ptlock_ptr(pmd_page(*pmd));
1947}
1948
1949static inline bool ptlock_init(struct page *page)
1950{
1951 /*
1952 * prep_new_page() initialize page->private (and therefore page->ptl)
1953 * with 0. Make sure nobody took it in use in between.
1954 *
1955 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1956 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1957 */
309381fe 1958 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1959 if (!ptlock_alloc(page))
1960 return false;
1961 spin_lock_init(ptlock_ptr(page));
1962 return true;
1963}
1964
57c1ffce 1965#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1966/*
1967 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1968 */
49076ec2
KS
1969static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1970{
1971 return &mm->page_table_lock;
1972}
b35f1819 1973static inline void ptlock_cache_init(void) {}
49076ec2 1974static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 1975static inline void ptlock_free(struct page *page) {}
57c1ffce 1976#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1977
b35f1819
KS
1978static inline void pgtable_init(void)
1979{
1980 ptlock_cache_init();
1981 pgtable_cache_init();
1982}
1983
390f44e2 1984static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1985{
706874e9
VD
1986 if (!ptlock_init(page))
1987 return false;
1d40a5ea 1988 __SetPageTable(page);
2f569afd 1989 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1990 return true;
2f569afd
MS
1991}
1992
1993static inline void pgtable_page_dtor(struct page *page)
1994{
9e247bab 1995 ptlock_free(page);
1d40a5ea 1996 __ClearPageTable(page);
2f569afd
MS
1997 dec_zone_page_state(page, NR_PAGETABLE);
1998}
1999
c74df32c
HD
2000#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2001({ \
4c21e2f2 2002 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2003 pte_t *__pte = pte_offset_map(pmd, address); \
2004 *(ptlp) = __ptl; \
2005 spin_lock(__ptl); \
2006 __pte; \
2007})
2008
2009#define pte_unmap_unlock(pte, ptl) do { \
2010 spin_unlock(ptl); \
2011 pte_unmap(pte); \
2012} while (0)
2013
4cf58924 2014#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2015
2016#define pte_alloc_map(mm, pmd, address) \
4cf58924 2017 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2018
c74df32c 2019#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2020 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2021 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2022
1bb3630e 2023#define pte_alloc_kernel(pmd, address) \
4cf58924 2024 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2025 NULL: pte_offset_kernel(pmd, address))
1da177e4 2026
e009bb30
KS
2027#if USE_SPLIT_PMD_PTLOCKS
2028
634391ac
MS
2029static struct page *pmd_to_page(pmd_t *pmd)
2030{
2031 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2032 return virt_to_page((void *)((unsigned long) pmd & mask));
2033}
2034
e009bb30
KS
2035static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2036{
634391ac 2037 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2038}
2039
2040static inline bool pgtable_pmd_page_ctor(struct page *page)
2041{
e009bb30
KS
2042#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2043 page->pmd_huge_pte = NULL;
2044#endif
49076ec2 2045 return ptlock_init(page);
e009bb30
KS
2046}
2047
2048static inline void pgtable_pmd_page_dtor(struct page *page)
2049{
2050#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2051 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2052#endif
49076ec2 2053 ptlock_free(page);
e009bb30
KS
2054}
2055
634391ac 2056#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2057
2058#else
2059
9a86cb7b
KS
2060static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2061{
2062 return &mm->page_table_lock;
2063}
2064
e009bb30
KS
2065static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2066static inline void pgtable_pmd_page_dtor(struct page *page) {}
2067
c389a250 2068#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2069
e009bb30
KS
2070#endif
2071
9a86cb7b
KS
2072static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2073{
2074 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2075 spin_lock(ptl);
2076 return ptl;
2077}
2078
a00cc7d9
MW
2079/*
2080 * No scalability reason to split PUD locks yet, but follow the same pattern
2081 * as the PMD locks to make it easier if we decide to. The VM should not be
2082 * considered ready to switch to split PUD locks yet; there may be places
2083 * which need to be converted from page_table_lock.
2084 */
2085static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2086{
2087 return &mm->page_table_lock;
2088}
2089
2090static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2091{
2092 spinlock_t *ptl = pud_lockptr(mm, pud);
2093
2094 spin_lock(ptl);
2095 return ptl;
2096}
62906027 2097
a00cc7d9 2098extern void __init pagecache_init(void);
1da177e4 2099extern void free_area_init(unsigned long * zones_size);
03e85f9d 2100extern void __init free_area_init_node(int nid, unsigned long * zones_size,
9109fb7b 2101 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
2102extern void free_initmem(void);
2103
69afade7
JL
2104/*
2105 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2106 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2107 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2108 * Return pages freed into the buddy system.
2109 */
11199692 2110extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2111 int poison, const char *s);
c3d5f5f0 2112
cfa11e08
JL
2113#ifdef CONFIG_HIGHMEM
2114/*
2115 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2116 * and totalram_pages.
2117 */
2118extern void free_highmem_page(struct page *page);
2119#endif
69afade7 2120
c3d5f5f0 2121extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2122extern void mem_init_print_info(const char *str);
69afade7 2123
4b50bcc7 2124extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2125
69afade7
JL
2126/* Free the reserved page into the buddy system, so it gets managed. */
2127static inline void __free_reserved_page(struct page *page)
2128{
2129 ClearPageReserved(page);
2130 init_page_count(page);
2131 __free_page(page);
2132}
2133
2134static inline void free_reserved_page(struct page *page)
2135{
2136 __free_reserved_page(page);
2137 adjust_managed_page_count(page, 1);
2138}
2139
2140static inline void mark_page_reserved(struct page *page)
2141{
2142 SetPageReserved(page);
2143 adjust_managed_page_count(page, -1);
2144}
2145
2146/*
2147 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2148 * The freed pages will be poisoned with pattern "poison" if it's within
2149 * range [0, UCHAR_MAX].
2150 * Return pages freed into the buddy system.
69afade7
JL
2151 */
2152static inline unsigned long free_initmem_default(int poison)
2153{
2154 extern char __init_begin[], __init_end[];
2155
11199692 2156 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2157 poison, "unused kernel");
2158}
2159
7ee3d4e8
JL
2160static inline unsigned long get_num_physpages(void)
2161{
2162 int nid;
2163 unsigned long phys_pages = 0;
2164
2165 for_each_online_node(nid)
2166 phys_pages += node_present_pages(nid);
2167
2168 return phys_pages;
2169}
2170
0ee332c1 2171#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2172/*
0ee332c1 2173 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2174 * zones, allocate the backing mem_map and account for memory holes in a more
2175 * architecture independent manner. This is a substitute for creating the
2176 * zone_sizes[] and zholes_size[] arrays and passing them to
2177 * free_area_init_node()
2178 *
2179 * An architecture is expected to register range of page frames backed by
0ee332c1 2180 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2181 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2182 * usage, an architecture is expected to do something like
2183 *
2184 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2185 * max_highmem_pfn};
2186 * for_each_valid_physical_page_range()
0ee332c1 2187 * memblock_add_node(base, size, nid)
c713216d
MG
2188 * free_area_init_nodes(max_zone_pfns);
2189 *
0ee332c1
TH
2190 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2191 * registered physical page range. Similarly
2192 * sparse_memory_present_with_active_regions() calls memory_present() for
2193 * each range when SPARSEMEM is enabled.
c713216d
MG
2194 *
2195 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2196 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2197 */
2198extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2199unsigned long node_map_pfn_alignment(void);
32996250
YL
2200unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2201 unsigned long end_pfn);
c713216d
MG
2202extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2203 unsigned long end_pfn);
2204extern void get_pfn_range_for_nid(unsigned int nid,
2205 unsigned long *start_pfn, unsigned long *end_pfn);
2206extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2207extern void free_bootmem_with_active_regions(int nid,
2208 unsigned long max_low_pfn);
2209extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2210
0ee332c1 2211#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2212
0ee332c1 2213#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2214 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2215static inline int __early_pfn_to_nid(unsigned long pfn,
2216 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2217{
2218 return 0;
2219}
2220#else
2221/* please see mm/page_alloc.c */
2222extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2223/* there is a per-arch backend function. */
8a942fde
MG
2224extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2225 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2226#endif
2227
aca52c39 2228#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
2229void zero_resv_unavail(void);
2230#else
2231static inline void zero_resv_unavail(void) {}
2232#endif
2233
0e0b864e 2234extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2235extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2236 enum memmap_context, struct vmem_altmap *);
bc75d33f 2237extern void setup_per_zone_wmarks(void);
1b79acc9 2238extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2239extern void mem_init(void);
8feae131 2240extern void __init mmap_init(void);
9af744d7 2241extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2242extern long si_mem_available(void);
1da177e4
LT
2243extern void si_meminfo(struct sysinfo * val);
2244extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2245#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2246extern unsigned long arch_reserved_kernel_pages(void);
2247#endif
1da177e4 2248
a8e99259
MH
2249extern __printf(3, 4)
2250void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2251
e7c8d5c9 2252extern void setup_per_cpu_pageset(void);
e7c8d5c9 2253
112067f0 2254extern void zone_pcp_update(struct zone *zone);
340175b7 2255extern void zone_pcp_reset(struct zone *zone);
112067f0 2256
75f7ad8e
PS
2257/* page_alloc.c */
2258extern int min_free_kbytes;
1c30844d 2259extern int watermark_boost_factor;
795ae7a0 2260extern int watermark_scale_factor;
75f7ad8e 2261
8feae131 2262/* nommu.c */
33e5d769 2263extern atomic_long_t mmap_pages_allocated;
7e660872 2264extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2265
6b2dbba8 2266/* interval_tree.c */
6b2dbba8 2267void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2268 struct rb_root_cached *root);
9826a516
ML
2269void vma_interval_tree_insert_after(struct vm_area_struct *node,
2270 struct vm_area_struct *prev,
f808c13f 2271 struct rb_root_cached *root);
6b2dbba8 2272void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2273 struct rb_root_cached *root);
2274struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2275 unsigned long start, unsigned long last);
2276struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2277 unsigned long start, unsigned long last);
2278
2279#define vma_interval_tree_foreach(vma, root, start, last) \
2280 for (vma = vma_interval_tree_iter_first(root, start, last); \
2281 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2282
bf181b9f 2283void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2284 struct rb_root_cached *root);
bf181b9f 2285void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2286 struct rb_root_cached *root);
2287struct anon_vma_chain *
2288anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2289 unsigned long start, unsigned long last);
bf181b9f
ML
2290struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2291 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2292#ifdef CONFIG_DEBUG_VM_RB
2293void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2294#endif
bf181b9f
ML
2295
2296#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2297 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2298 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2299
1da177e4 2300/* mmap.c */
34b4e4aa 2301extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2302extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2303 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2304 struct vm_area_struct *expand);
2305static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2306 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2307{
2308 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2309}
1da177e4
LT
2310extern struct vm_area_struct *vma_merge(struct mm_struct *,
2311 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2312 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2313 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2314extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2315extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2316 unsigned long addr, int new_below);
2317extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2318 unsigned long addr, int new_below);
1da177e4
LT
2319extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2320extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2321 struct rb_node **, struct rb_node *);
a8fb5618 2322extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2323extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2324 unsigned long addr, unsigned long len, pgoff_t pgoff,
2325 bool *need_rmap_locks);
1da177e4 2326extern void exit_mmap(struct mm_struct *);
925d1c40 2327
9c599024
CG
2328static inline int check_data_rlimit(unsigned long rlim,
2329 unsigned long new,
2330 unsigned long start,
2331 unsigned long end_data,
2332 unsigned long start_data)
2333{
2334 if (rlim < RLIM_INFINITY) {
2335 if (((new - start) + (end_data - start_data)) > rlim)
2336 return -ENOSPC;
2337 }
2338
2339 return 0;
2340}
2341
7906d00c
AA
2342extern int mm_take_all_locks(struct mm_struct *mm);
2343extern void mm_drop_all_locks(struct mm_struct *mm);
2344
38646013
JS
2345extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2346extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2347extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2348
84638335
KK
2349extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2350extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2351
2eefd878
DS
2352extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2353 const struct vm_special_mapping *sm);
3935ed6a
SS
2354extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2355 unsigned long addr, unsigned long len,
a62c34bd
AL
2356 unsigned long flags,
2357 const struct vm_special_mapping *spec);
2358/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2359extern int install_special_mapping(struct mm_struct *mm,
2360 unsigned long addr, unsigned long len,
2361 unsigned long flags, struct page **pages);
1da177e4
LT
2362
2363extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2364
0165ab44 2365extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2366 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2367 struct list_head *uf);
1fcfd8db 2368extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2369 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2370 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2371 struct list_head *uf);
85a06835
YS
2372extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2373 struct list_head *uf, bool downgrade);
897ab3e0
MR
2374extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2375 struct list_head *uf);
1da177e4 2376
1fcfd8db
ON
2377static inline unsigned long
2378do_mmap_pgoff(struct file *file, unsigned long addr,
2379 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2380 unsigned long pgoff, unsigned long *populate,
2381 struct list_head *uf)
1fcfd8db 2382{
897ab3e0 2383 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2384}
2385
bebeb3d6
ML
2386#ifdef CONFIG_MMU
2387extern int __mm_populate(unsigned long addr, unsigned long len,
2388 int ignore_errors);
2389static inline void mm_populate(unsigned long addr, unsigned long len)
2390{
2391 /* Ignore errors */
2392 (void) __mm_populate(addr, len, 1);
2393}
2394#else
2395static inline void mm_populate(unsigned long addr, unsigned long len) {}
2396#endif
2397
e4eb1ff6 2398/* These take the mm semaphore themselves */
5d22fc25 2399extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2400extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2401extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2402extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2403 unsigned long, unsigned long,
2404 unsigned long, unsigned long);
1da177e4 2405
db4fbfb9
ML
2406struct vm_unmapped_area_info {
2407#define VM_UNMAPPED_AREA_TOPDOWN 1
2408 unsigned long flags;
2409 unsigned long length;
2410 unsigned long low_limit;
2411 unsigned long high_limit;
2412 unsigned long align_mask;
2413 unsigned long align_offset;
2414};
2415
2416extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2417extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2418
2419/*
2420 * Search for an unmapped address range.
2421 *
2422 * We are looking for a range that:
2423 * - does not intersect with any VMA;
2424 * - is contained within the [low_limit, high_limit) interval;
2425 * - is at least the desired size.
2426 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2427 */
2428static inline unsigned long
2429vm_unmapped_area(struct vm_unmapped_area_info *info)
2430{
cdd7875e 2431 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2432 return unmapped_area_topdown(info);
cdd7875e
BP
2433 else
2434 return unmapped_area(info);
db4fbfb9
ML
2435}
2436
85821aab 2437/* truncate.c */
1da177e4 2438extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2439extern void truncate_inode_pages_range(struct address_space *,
2440 loff_t lstart, loff_t lend);
91b0abe3 2441extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2442
2443/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2444extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2445extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2446 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2447extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2448
2449/* mm/page-writeback.c */
2b69c828 2450int __must_check write_one_page(struct page *page);
1cf6e7d8 2451void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2452
2453/* readahead.c */
2454#define VM_MAX_READAHEAD 128 /* kbytes */
2455#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2456
1da177e4 2457int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2458 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2459
2460void page_cache_sync_readahead(struct address_space *mapping,
2461 struct file_ra_state *ra,
2462 struct file *filp,
2463 pgoff_t offset,
2464 unsigned long size);
2465
2466void page_cache_async_readahead(struct address_space *mapping,
2467 struct file_ra_state *ra,
2468 struct file *filp,
2469 struct page *pg,
2470 pgoff_t offset,
2471 unsigned long size);
2472
1be7107f 2473extern unsigned long stack_guard_gap;
d05f3169 2474/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2475extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2476
2477/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2478extern int expand_downwards(struct vm_area_struct *vma,
2479 unsigned long address);
8ca3eb08 2480#if VM_GROWSUP
46dea3d0 2481extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2482#else
fee7e49d 2483 #define expand_upwards(vma, address) (0)
9ab88515 2484#endif
1da177e4
LT
2485
2486/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2487extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2488extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2489 struct vm_area_struct **pprev);
2490
2491/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2492 NULL if none. Assume start_addr < end_addr. */
2493static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2494{
2495 struct vm_area_struct * vma = find_vma(mm,start_addr);
2496
2497 if (vma && end_addr <= vma->vm_start)
2498 vma = NULL;
2499 return vma;
2500}
2501
1be7107f
HD
2502static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2503{
2504 unsigned long vm_start = vma->vm_start;
2505
2506 if (vma->vm_flags & VM_GROWSDOWN) {
2507 vm_start -= stack_guard_gap;
2508 if (vm_start > vma->vm_start)
2509 vm_start = 0;
2510 }
2511 return vm_start;
2512}
2513
2514static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2515{
2516 unsigned long vm_end = vma->vm_end;
2517
2518 if (vma->vm_flags & VM_GROWSUP) {
2519 vm_end += stack_guard_gap;
2520 if (vm_end < vma->vm_end)
2521 vm_end = -PAGE_SIZE;
2522 }
2523 return vm_end;
2524}
2525
1da177e4
LT
2526static inline unsigned long vma_pages(struct vm_area_struct *vma)
2527{
2528 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2529}
2530
640708a2
PE
2531/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2532static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2533 unsigned long vm_start, unsigned long vm_end)
2534{
2535 struct vm_area_struct *vma = find_vma(mm, vm_start);
2536
2537 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2538 vma = NULL;
2539
2540 return vma;
2541}
2542
017b1660
MK
2543static inline bool range_in_vma(struct vm_area_struct *vma,
2544 unsigned long start, unsigned long end)
2545{
2546 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2547}
2548
bad849b3 2549#ifdef CONFIG_MMU
804af2cf 2550pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2551void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2552#else
2553static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2554{
2555 return __pgprot(0);
2556}
64e45507
PF
2557static inline void vma_set_page_prot(struct vm_area_struct *vma)
2558{
2559 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2560}
bad849b3
DH
2561#endif
2562
5877231f 2563#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2564unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2565 unsigned long start, unsigned long end);
2566#endif
2567
deceb6cd 2568struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2569int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2570 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2571int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
ae2b01f3 2572vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2573 unsigned long pfn);
f5e6d1d5
MW
2574vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2575 unsigned long pfn, pgprot_t pgprot);
5d747637 2576vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2577 pfn_t pfn);
ab77dab4
SJ
2578vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2579 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2580int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2581
1c8f4220
SJ
2582static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2583 unsigned long addr, struct page *page)
2584{
2585 int err = vm_insert_page(vma, addr, page);
2586
2587 if (err == -ENOMEM)
2588 return VM_FAULT_OOM;
2589 if (err < 0 && err != -EBUSY)
2590 return VM_FAULT_SIGBUS;
2591
2592 return VM_FAULT_NOPAGE;
2593}
2594
d97baf94
SJ
2595static inline vm_fault_t vmf_error(int err)
2596{
2597 if (err == -ENOMEM)
2598 return VM_FAULT_OOM;
2599 return VM_FAULT_SIGBUS;
2600}
2601
df06b37f
KB
2602struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2603 unsigned int foll_flags);
240aadee 2604
deceb6cd
HD
2605#define FOLL_WRITE 0x01 /* check pte is writable */
2606#define FOLL_TOUCH 0x02 /* mark page accessed */
2607#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2608#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2609#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2610#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2611 * and return without waiting upon it */
84d33df2 2612#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2613#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2614#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2615#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2616#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2617#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2618#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2619#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2620#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2621#define FOLL_ANON 0x8000 /* don't do file mappings */
1da177e4 2622
2b740303 2623static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2624{
2625 if (vm_fault & VM_FAULT_OOM)
2626 return -ENOMEM;
2627 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2628 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2629 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2630 return -EFAULT;
2631 return 0;
2632}
2633
2f569afd 2634typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2635 void *data);
2636extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2637 unsigned long size, pte_fn_t fn, void *data);
2638
1da177e4 2639
8823b1db
LA
2640#ifdef CONFIG_PAGE_POISONING
2641extern bool page_poisoning_enabled(void);
2642extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2643#else
2644static inline bool page_poisoning_enabled(void) { return false; }
2645static inline void kernel_poison_pages(struct page *page, int numpages,
2646 int enable) { }
2647#endif
2648
12d6f21e 2649#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2650extern bool _debug_pagealloc_enabled;
2651extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2652
2653static inline bool debug_pagealloc_enabled(void)
2654{
2655 return _debug_pagealloc_enabled;
2656}
2657
2658static inline void
2659kernel_map_pages(struct page *page, int numpages, int enable)
2660{
2661 if (!debug_pagealloc_enabled())
2662 return;
2663
2664 __kernel_map_pages(page, numpages, enable);
2665}
8a235efa
RW
2666#ifdef CONFIG_HIBERNATION
2667extern bool kernel_page_present(struct page *page);
40b44137
JK
2668#endif /* CONFIG_HIBERNATION */
2669#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2670static inline void
9858db50 2671kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2672#ifdef CONFIG_HIBERNATION
2673static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2674#endif /* CONFIG_HIBERNATION */
2675static inline bool debug_pagealloc_enabled(void)
2676{
2677 return false;
2678}
2679#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2680
a6c19dfe 2681#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2682extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2683extern int in_gate_area_no_mm(unsigned long addr);
2684extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2685#else
a6c19dfe
AL
2686static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2687{
2688 return NULL;
2689}
2690static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2691static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2692{
2693 return 0;
2694}
1da177e4
LT
2695#endif /* __HAVE_ARCH_GATE_AREA */
2696
44a70ade
MH
2697extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2698
146732ce
JT
2699#ifdef CONFIG_SYSCTL
2700extern int sysctl_drop_caches;
8d65af78 2701int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2702 void __user *, size_t *, loff_t *);
146732ce
JT
2703#endif
2704
cb731d6c
VD
2705void drop_slab(void);
2706void drop_slab_node(int nid);
9d0243bc 2707
7a9166e3
LY
2708#ifndef CONFIG_MMU
2709#define randomize_va_space 0
2710#else
a62eaf15 2711extern int randomize_va_space;
7a9166e3 2712#endif
a62eaf15 2713
045e72ac 2714const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2715void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2716
35fd1eb1 2717void *sparse_buffer_alloc(unsigned long size);
7b73d978
CH
2718struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2719 struct vmem_altmap *altmap);
29c71111 2720pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2721p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2722pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2723pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2724pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2725void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2726struct vmem_altmap;
a8fc357b
CH
2727void *vmemmap_alloc_block_buf(unsigned long size, int node);
2728void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2729void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2730int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2731 int node);
7b73d978
CH
2732int vmemmap_populate(unsigned long start, unsigned long end, int node,
2733 struct vmem_altmap *altmap);
c2b91e2e 2734void vmemmap_populate_print_last(void);
0197518c 2735#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2736void vmemmap_free(unsigned long start, unsigned long end,
2737 struct vmem_altmap *altmap);
0197518c 2738#endif
46723bfa 2739void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2740 unsigned long nr_pages);
6a46079c 2741
82ba011b
AK
2742enum mf_flags {
2743 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2744 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2745 MF_MUST_KILL = 1 << 2,
cf870c70 2746 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2747};
83b57531
EB
2748extern int memory_failure(unsigned long pfn, int flags);
2749extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 2750extern int unpoison_memory(unsigned long pfn);
ead07f6a 2751extern int get_hwpoison_page(struct page *page);
4e41a30c 2752#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2753extern int sysctl_memory_failure_early_kill;
2754extern int sysctl_memory_failure_recovery;
facb6011 2755extern void shake_page(struct page *p, int access);
5844a486 2756extern atomic_long_t num_poisoned_pages __read_mostly;
facb6011 2757extern int soft_offline_page(struct page *page, int flags);
6a46079c 2758
cc637b17
XX
2759
2760/*
2761 * Error handlers for various types of pages.
2762 */
cc3e2af4 2763enum mf_result {
cc637b17
XX
2764 MF_IGNORED, /* Error: cannot be handled */
2765 MF_FAILED, /* Error: handling failed */
2766 MF_DELAYED, /* Will be handled later */
2767 MF_RECOVERED, /* Successfully recovered */
2768};
2769
2770enum mf_action_page_type {
2771 MF_MSG_KERNEL,
2772 MF_MSG_KERNEL_HIGH_ORDER,
2773 MF_MSG_SLAB,
2774 MF_MSG_DIFFERENT_COMPOUND,
2775 MF_MSG_POISONED_HUGE,
2776 MF_MSG_HUGE,
2777 MF_MSG_FREE_HUGE,
31286a84 2778 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2779 MF_MSG_UNMAP_FAILED,
2780 MF_MSG_DIRTY_SWAPCACHE,
2781 MF_MSG_CLEAN_SWAPCACHE,
2782 MF_MSG_DIRTY_MLOCKED_LRU,
2783 MF_MSG_CLEAN_MLOCKED_LRU,
2784 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2785 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2786 MF_MSG_DIRTY_LRU,
2787 MF_MSG_CLEAN_LRU,
2788 MF_MSG_TRUNCATED_LRU,
2789 MF_MSG_BUDDY,
2790 MF_MSG_BUDDY_2ND,
6100e34b 2791 MF_MSG_DAX,
cc637b17
XX
2792 MF_MSG_UNKNOWN,
2793};
2794
47ad8475
AA
2795#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2796extern void clear_huge_page(struct page *page,
c79b57e4 2797 unsigned long addr_hint,
47ad8475
AA
2798 unsigned int pages_per_huge_page);
2799extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
2800 unsigned long addr_hint,
2801 struct vm_area_struct *vma,
47ad8475 2802 unsigned int pages_per_huge_page);
fa4d75c1
MK
2803extern long copy_huge_page_from_user(struct page *dst_page,
2804 const void __user *usr_src,
810a56b9
MK
2805 unsigned int pages_per_huge_page,
2806 bool allow_pagefault);
47ad8475
AA
2807#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2808
e30825f1 2809extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2810
c0a32fc5
SG
2811#ifdef CONFIG_DEBUG_PAGEALLOC
2812extern unsigned int _debug_guardpage_minorder;
e30825f1 2813extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2814
2815static inline unsigned int debug_guardpage_minorder(void)
2816{
2817 return _debug_guardpage_minorder;
2818}
2819
e30825f1
JK
2820static inline bool debug_guardpage_enabled(void)
2821{
2822 return _debug_guardpage_enabled;
2823}
2824
c0a32fc5
SG
2825static inline bool page_is_guard(struct page *page)
2826{
e30825f1
JK
2827 struct page_ext *page_ext;
2828
2829 if (!debug_guardpage_enabled())
2830 return false;
2831
2832 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2833 if (unlikely(!page_ext))
2834 return false;
2835
e30825f1 2836 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2837}
2838#else
2839static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2840static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2841static inline bool page_is_guard(struct page *page) { return false; }
2842#endif /* CONFIG_DEBUG_PAGEALLOC */
2843
f9872caf
CS
2844#if MAX_NUMNODES > 1
2845void __init setup_nr_node_ids(void);
2846#else
2847static inline void setup_nr_node_ids(void) {}
2848#endif
2849
1da177e4
LT
2850#endif /* __KERNEL__ */
2851#endif /* _LINUX_MM_H */