mm: update get_user_pages_longterm to migrate pages allocated from CMA region
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
3b3b1a29 28#include <linux/overflow.h>
1da177e4
LT
29
30struct mempolicy;
31struct anon_vma;
bf181b9f 32struct anon_vma_chain;
4e950f6f 33struct file_ra_state;
e8edc6e0 34struct user_struct;
4e950f6f 35struct writeback_control;
682aa8e1 36struct bdi_writeback;
1da177e4 37
597b7305
MH
38void init_mm_internals(void);
39
fccc9987 40#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 41extern unsigned long max_mapnr;
fccc9987
JL
42
43static inline void set_max_mapnr(unsigned long limit)
44{
45 max_mapnr = limit;
46}
47#else
48static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
49#endif
50
ca79b0c2
AK
51extern atomic_long_t _totalram_pages;
52static inline unsigned long totalram_pages(void)
53{
54 return (unsigned long)atomic_long_read(&_totalram_pages);
55}
56
57static inline void totalram_pages_inc(void)
58{
59 atomic_long_inc(&_totalram_pages);
60}
61
62static inline void totalram_pages_dec(void)
63{
64 atomic_long_dec(&_totalram_pages);
65}
66
67static inline void totalram_pages_add(long count)
68{
69 atomic_long_add(count, &_totalram_pages);
70}
71
72static inline void totalram_pages_set(long val)
73{
74 atomic_long_set(&_totalram_pages, val);
75}
76
1da177e4 77extern void * high_memory;
1da177e4
LT
78extern int page_cluster;
79
80#ifdef CONFIG_SYSCTL
81extern int sysctl_legacy_va_layout;
82#else
83#define sysctl_legacy_va_layout 0
84#endif
85
d07e2259
DC
86#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
87extern const int mmap_rnd_bits_min;
88extern const int mmap_rnd_bits_max;
89extern int mmap_rnd_bits __read_mostly;
90#endif
91#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
92extern const int mmap_rnd_compat_bits_min;
93extern const int mmap_rnd_compat_bits_max;
94extern int mmap_rnd_compat_bits __read_mostly;
95#endif
96
1da177e4
LT
97#include <asm/page.h>
98#include <asm/pgtable.h>
99#include <asm/processor.h>
1da177e4 100
79442ed1
TC
101#ifndef __pa_symbol
102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
103#endif
104
1dff8083
AB
105#ifndef page_to_virt
106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
107#endif
108
568c5fe5
LA
109#ifndef lm_alias
110#define lm_alias(x) __va(__pa_symbol(x))
111#endif
112
593befa6
DD
113/*
114 * To prevent common memory management code establishing
115 * a zero page mapping on a read fault.
116 * This macro should be defined within <asm/pgtable.h>.
117 * s390 does this to prevent multiplexing of hardware bits
118 * related to the physical page in case of virtualization.
119 */
120#ifndef mm_forbids_zeropage
121#define mm_forbids_zeropage(X) (0)
122#endif
123
a4a3ede2
PT
124/*
125 * On some architectures it is expensive to call memset() for small sizes.
126 * Those architectures should provide their own implementation of "struct page"
127 * zeroing by defining this macro in <asm/pgtable.h>.
128 */
129#ifndef mm_zero_struct_page
130#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
131#endif
132
ea606cf5
AR
133/*
134 * Default maximum number of active map areas, this limits the number of vmas
135 * per mm struct. Users can overwrite this number by sysctl but there is a
136 * problem.
137 *
138 * When a program's coredump is generated as ELF format, a section is created
139 * per a vma. In ELF, the number of sections is represented in unsigned short.
140 * This means the number of sections should be smaller than 65535 at coredump.
141 * Because the kernel adds some informative sections to a image of program at
142 * generating coredump, we need some margin. The number of extra sections is
143 * 1-3 now and depends on arch. We use "5" as safe margin, here.
144 *
145 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
146 * not a hard limit any more. Although some userspace tools can be surprised by
147 * that.
148 */
149#define MAPCOUNT_ELF_CORE_MARGIN (5)
150#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
151
152extern int sysctl_max_map_count;
153
c9b1d098 154extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 155extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 156
49f0ce5f
JM
157extern int sysctl_overcommit_memory;
158extern int sysctl_overcommit_ratio;
159extern unsigned long sysctl_overcommit_kbytes;
160
161extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
162 size_t *, loff_t *);
163extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
164 size_t *, loff_t *);
165
1da177e4
LT
166#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
167
27ac792c
AR
168/* to align the pointer to the (next) page boundary */
169#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
170
0fa73b86 171/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 172#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 173
f86196ea
NB
174#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
175
1da177e4
LT
176/*
177 * Linux kernel virtual memory manager primitives.
178 * The idea being to have a "virtual" mm in the same way
179 * we have a virtual fs - giving a cleaner interface to the
180 * mm details, and allowing different kinds of memory mappings
181 * (from shared memory to executable loading to arbitrary
182 * mmap() functions).
183 */
184
490fc053 185struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
186struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
187void vm_area_free(struct vm_area_struct *);
c43692e8 188
1da177e4 189#ifndef CONFIG_MMU
8feae131
DH
190extern struct rb_root nommu_region_tree;
191extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
192
193extern unsigned int kobjsize(const void *objp);
194#endif
195
196/*
605d9288 197 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 198 * When changing, update also include/trace/events/mmflags.h
1da177e4 199 */
cc2383ec
KK
200#define VM_NONE 0x00000000
201
1da177e4
LT
202#define VM_READ 0x00000001 /* currently active flags */
203#define VM_WRITE 0x00000002
204#define VM_EXEC 0x00000004
205#define VM_SHARED 0x00000008
206
7e2cff42 207/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
208#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
209#define VM_MAYWRITE 0x00000020
210#define VM_MAYEXEC 0x00000040
211#define VM_MAYSHARE 0x00000080
212
213#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 214#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 215#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 216#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 217#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 218
1da177e4
LT
219#define VM_LOCKED 0x00002000
220#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
221
222 /* Used by sys_madvise() */
223#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
224#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
225
226#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
227#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 228#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 229#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 230#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 231#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 232#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 233#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 234#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 235#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 236
d9104d1c
CG
237#ifdef CONFIG_MEM_SOFT_DIRTY
238# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
239#else
240# define VM_SOFTDIRTY 0
241#endif
242
b379d790 243#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
244#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
245#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 246#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 247
63c17fb8
DH
248#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
249#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
250#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
251#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
252#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 253#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
254#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
255#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
256#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
257#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 258#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
259#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
260
5212213a 261#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
262# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
263# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 264# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
265# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
266# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
267#ifdef CONFIG_PPC
268# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
269#else
270# define VM_PKEY_BIT4 0
8f62c883 271#endif
5212213a
RP
272#endif /* CONFIG_ARCH_HAS_PKEYS */
273
274#if defined(CONFIG_X86)
275# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
276#elif defined(CONFIG_PPC)
277# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
278#elif defined(CONFIG_PARISC)
279# define VM_GROWSUP VM_ARCH_1
280#elif defined(CONFIG_IA64)
281# define VM_GROWSUP VM_ARCH_1
74a04967
KA
282#elif defined(CONFIG_SPARC64)
283# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
284# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
285#elif !defined(CONFIG_MMU)
286# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
287#endif
288
df3735c5 289#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 290/* MPX specific bounds table or bounds directory */
fa87b91c 291# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
292#else
293# define VM_MPX VM_NONE
4aae7e43
QR
294#endif
295
cc2383ec
KK
296#ifndef VM_GROWSUP
297# define VM_GROWSUP VM_NONE
298#endif
299
a8bef8ff
MG
300/* Bits set in the VMA until the stack is in its final location */
301#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
302
1da177e4
LT
303#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
304#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
305#endif
306
307#ifdef CONFIG_STACK_GROWSUP
30bdbb78 308#define VM_STACK VM_GROWSUP
1da177e4 309#else
30bdbb78 310#define VM_STACK VM_GROWSDOWN
1da177e4
LT
311#endif
312
30bdbb78
KK
313#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
314
b291f000 315/*
78f11a25
AA
316 * Special vmas that are non-mergable, non-mlock()able.
317 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 318 */
9050d7eb 319#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 320
a0715cc2
AT
321/* This mask defines which mm->def_flags a process can inherit its parent */
322#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
323
de60f5f1
EM
324/* This mask is used to clear all the VMA flags used by mlock */
325#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
326
2c2d57b5
KA
327/* Arch-specific flags to clear when updating VM flags on protection change */
328#ifndef VM_ARCH_CLEAR
329# define VM_ARCH_CLEAR VM_NONE
330#endif
331#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
332
1da177e4
LT
333/*
334 * mapping from the currently active vm_flags protection bits (the
335 * low four bits) to a page protection mask..
336 */
337extern pgprot_t protection_map[16];
338
d0217ac0 339#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
340#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
341#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
342#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
343#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
344#define FAULT_FLAG_TRIED 0x20 /* Second try */
345#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 346#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 347#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 348
282a8e03
RZ
349#define FAULT_FLAG_TRACE \
350 { FAULT_FLAG_WRITE, "WRITE" }, \
351 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
352 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
353 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
354 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
355 { FAULT_FLAG_TRIED, "TRIED" }, \
356 { FAULT_FLAG_USER, "USER" }, \
357 { FAULT_FLAG_REMOTE, "REMOTE" }, \
358 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
359
54cb8821 360/*
d0217ac0 361 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
362 * ->fault function. The vma's ->fault is responsible for returning a bitmask
363 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 364 *
c20cd45e
MH
365 * MM layer fills up gfp_mask for page allocations but fault handler might
366 * alter it if its implementation requires a different allocation context.
367 *
9b4bdd2f 368 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 369 */
d0217ac0 370struct vm_fault {
82b0f8c3 371 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 372 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 373 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 374 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 375 unsigned long address; /* Faulting virtual address */
82b0f8c3 376 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 377 * the 'address' */
a2d58167
DJ
378 pud_t *pud; /* Pointer to pud entry matching
379 * the 'address'
380 */
2994302b 381 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 382
3917048d
JK
383 struct page *cow_page; /* Page handler may use for COW fault */
384 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 385 struct page *page; /* ->fault handlers should return a
83c54070 386 * page here, unless VM_FAULT_NOPAGE
d0217ac0 387 * is set (which is also implied by
83c54070 388 * VM_FAULT_ERROR).
d0217ac0 389 */
82b0f8c3 390 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
391 pte_t *pte; /* Pointer to pte entry matching
392 * the 'address'. NULL if the page
393 * table hasn't been allocated.
394 */
395 spinlock_t *ptl; /* Page table lock.
396 * Protects pte page table if 'pte'
397 * is not NULL, otherwise pmd.
398 */
7267ec00
KS
399 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
400 * vm_ops->map_pages() calls
401 * alloc_set_pte() from atomic context.
402 * do_fault_around() pre-allocates
403 * page table to avoid allocation from
404 * atomic context.
405 */
54cb8821 406};
1da177e4 407
c791ace1
DJ
408/* page entry size for vm->huge_fault() */
409enum page_entry_size {
410 PE_SIZE_PTE = 0,
411 PE_SIZE_PMD,
412 PE_SIZE_PUD,
413};
414
1da177e4
LT
415/*
416 * These are the virtual MM functions - opening of an area, closing and
417 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 418 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
419 */
420struct vm_operations_struct {
421 void (*open)(struct vm_area_struct * area);
422 void (*close)(struct vm_area_struct * area);
31383c68 423 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 424 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
425 vm_fault_t (*fault)(struct vm_fault *vmf);
426 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
427 enum page_entry_size pe_size);
82b0f8c3 428 void (*map_pages)(struct vm_fault *vmf,
bae473a4 429 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 430 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
431
432 /* notification that a previously read-only page is about to become
433 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 434 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 435
dd906184 436 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 437 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 438
28b2ee20
RR
439 /* called by access_process_vm when get_user_pages() fails, typically
440 * for use by special VMAs that can switch between memory and hardware
441 */
442 int (*access)(struct vm_area_struct *vma, unsigned long addr,
443 void *buf, int len, int write);
78d683e8
AL
444
445 /* Called by the /proc/PID/maps code to ask the vma whether it
446 * has a special name. Returning non-NULL will also cause this
447 * vma to be dumped unconditionally. */
448 const char *(*name)(struct vm_area_struct *vma);
449
1da177e4 450#ifdef CONFIG_NUMA
a6020ed7
LS
451 /*
452 * set_policy() op must add a reference to any non-NULL @new mempolicy
453 * to hold the policy upon return. Caller should pass NULL @new to
454 * remove a policy and fall back to surrounding context--i.e. do not
455 * install a MPOL_DEFAULT policy, nor the task or system default
456 * mempolicy.
457 */
1da177e4 458 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
459
460 /*
461 * get_policy() op must add reference [mpol_get()] to any policy at
462 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
463 * in mm/mempolicy.c will do this automatically.
464 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
465 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
466 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
467 * must return NULL--i.e., do not "fallback" to task or system default
468 * policy.
469 */
1da177e4
LT
470 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
471 unsigned long addr);
472#endif
667a0a06
DV
473 /*
474 * Called by vm_normal_page() for special PTEs to find the
475 * page for @addr. This is useful if the default behavior
476 * (using pte_page()) would not find the correct page.
477 */
478 struct page *(*find_special_page)(struct vm_area_struct *vma,
479 unsigned long addr);
1da177e4
LT
480};
481
027232da
KS
482static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
483{
bfd40eaf
KS
484 static const struct vm_operations_struct dummy_vm_ops = {};
485
a670468f 486 memset(vma, 0, sizeof(*vma));
027232da 487 vma->vm_mm = mm;
bfd40eaf 488 vma->vm_ops = &dummy_vm_ops;
027232da
KS
489 INIT_LIST_HEAD(&vma->anon_vma_chain);
490}
491
bfd40eaf
KS
492static inline void vma_set_anonymous(struct vm_area_struct *vma)
493{
494 vma->vm_ops = NULL;
495}
496
8b11ec1b
LT
497/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
498#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
499
1da177e4
LT
500struct mmu_gather;
501struct inode;
502
349aef0b
AM
503#define page_private(page) ((page)->private)
504#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 505
5c7fb56e
DW
506#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
507static inline int pmd_devmap(pmd_t pmd)
508{
509 return 0;
510}
a00cc7d9
MW
511static inline int pud_devmap(pud_t pud)
512{
513 return 0;
514}
b59f65fa
KS
515static inline int pgd_devmap(pgd_t pgd)
516{
517 return 0;
518}
5c7fb56e
DW
519#endif
520
1da177e4
LT
521/*
522 * FIXME: take this include out, include page-flags.h in
523 * files which need it (119 of them)
524 */
525#include <linux/page-flags.h>
71e3aac0 526#include <linux/huge_mm.h>
1da177e4
LT
527
528/*
529 * Methods to modify the page usage count.
530 *
531 * What counts for a page usage:
532 * - cache mapping (page->mapping)
533 * - private data (page->private)
534 * - page mapped in a task's page tables, each mapping
535 * is counted separately
536 *
537 * Also, many kernel routines increase the page count before a critical
538 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
539 */
540
541/*
da6052f7 542 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 543 */
7c8ee9a8
NP
544static inline int put_page_testzero(struct page *page)
545{
fe896d18
JK
546 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
547 return page_ref_dec_and_test(page);
7c8ee9a8 548}
1da177e4
LT
549
550/*
7c8ee9a8
NP
551 * Try to grab a ref unless the page has a refcount of zero, return false if
552 * that is the case.
8e0861fa
AK
553 * This can be called when MMU is off so it must not access
554 * any of the virtual mappings.
1da177e4 555 */
7c8ee9a8
NP
556static inline int get_page_unless_zero(struct page *page)
557{
fe896d18 558 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 559}
1da177e4 560
53df8fdc 561extern int page_is_ram(unsigned long pfn);
124fe20d
DW
562
563enum {
564 REGION_INTERSECTS,
565 REGION_DISJOINT,
566 REGION_MIXED,
567};
568
1c29f25b
TK
569int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
570 unsigned long desc);
53df8fdc 571
48667e7a 572/* Support for virtually mapped pages */
b3bdda02
CL
573struct page *vmalloc_to_page(const void *addr);
574unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 575
0738c4bb
PM
576/*
577 * Determine if an address is within the vmalloc range
578 *
579 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
580 * is no special casing required.
581 */
bb00a789 582static inline bool is_vmalloc_addr(const void *x)
9e2779fa 583{
0738c4bb 584#ifdef CONFIG_MMU
9e2779fa
CL
585 unsigned long addr = (unsigned long)x;
586
587 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 588#else
bb00a789 589 return false;
8ca3ed87 590#endif
0738c4bb 591}
81ac3ad9
KH
592#ifdef CONFIG_MMU
593extern int is_vmalloc_or_module_addr(const void *x);
594#else
934831d0 595static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
596{
597 return 0;
598}
599#endif
9e2779fa 600
a7c3e901
MH
601extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
602static inline void *kvmalloc(size_t size, gfp_t flags)
603{
604 return kvmalloc_node(size, flags, NUMA_NO_NODE);
605}
606static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
607{
608 return kvmalloc_node(size, flags | __GFP_ZERO, node);
609}
610static inline void *kvzalloc(size_t size, gfp_t flags)
611{
612 return kvmalloc(size, flags | __GFP_ZERO);
613}
614
752ade68
MH
615static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
616{
3b3b1a29
KC
617 size_t bytes;
618
619 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
620 return NULL;
621
3b3b1a29 622 return kvmalloc(bytes, flags);
752ade68
MH
623}
624
1c542f38
KC
625static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
626{
627 return kvmalloc_array(n, size, flags | __GFP_ZERO);
628}
629
39f1f78d
AV
630extern void kvfree(const void *addr);
631
53f9263b
KS
632static inline atomic_t *compound_mapcount_ptr(struct page *page)
633{
634 return &page[1].compound_mapcount;
635}
636
637static inline int compound_mapcount(struct page *page)
638{
5f527c2b 639 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
640 page = compound_head(page);
641 return atomic_read(compound_mapcount_ptr(page)) + 1;
642}
643
70b50f94
AA
644/*
645 * The atomic page->_mapcount, starts from -1: so that transitions
646 * both from it and to it can be tracked, using atomic_inc_and_test
647 * and atomic_add_negative(-1).
648 */
22b751c3 649static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
650{
651 atomic_set(&(page)->_mapcount, -1);
652}
653
b20ce5e0
KS
654int __page_mapcount(struct page *page);
655
70b50f94
AA
656static inline int page_mapcount(struct page *page)
657{
1d148e21 658 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 659
b20ce5e0
KS
660 if (unlikely(PageCompound(page)))
661 return __page_mapcount(page);
662 return atomic_read(&page->_mapcount) + 1;
663}
664
665#ifdef CONFIG_TRANSPARENT_HUGEPAGE
666int total_mapcount(struct page *page);
6d0a07ed 667int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
668#else
669static inline int total_mapcount(struct page *page)
670{
671 return page_mapcount(page);
70b50f94 672}
6d0a07ed
AA
673static inline int page_trans_huge_mapcount(struct page *page,
674 int *total_mapcount)
675{
676 int mapcount = page_mapcount(page);
677 if (total_mapcount)
678 *total_mapcount = mapcount;
679 return mapcount;
680}
b20ce5e0 681#endif
70b50f94 682
b49af68f
CL
683static inline struct page *virt_to_head_page(const void *x)
684{
685 struct page *page = virt_to_page(x);
ccaafd7f 686
1d798ca3 687 return compound_head(page);
b49af68f
CL
688}
689
ddc58f27
KS
690void __put_page(struct page *page);
691
1d7ea732 692void put_pages_list(struct list_head *pages);
1da177e4 693
8dfcc9ba 694void split_page(struct page *page, unsigned int order);
8dfcc9ba 695
33f2ef89
AW
696/*
697 * Compound pages have a destructor function. Provide a
698 * prototype for that function and accessor functions.
f1e61557 699 * These are _only_ valid on the head of a compound page.
33f2ef89 700 */
f1e61557
KS
701typedef void compound_page_dtor(struct page *);
702
703/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
704enum compound_dtor_id {
705 NULL_COMPOUND_DTOR,
706 COMPOUND_PAGE_DTOR,
707#ifdef CONFIG_HUGETLB_PAGE
708 HUGETLB_PAGE_DTOR,
9a982250
KS
709#endif
710#ifdef CONFIG_TRANSPARENT_HUGEPAGE
711 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
712#endif
713 NR_COMPOUND_DTORS,
714};
715extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
716
717static inline void set_compound_page_dtor(struct page *page,
f1e61557 718 enum compound_dtor_id compound_dtor)
33f2ef89 719{
f1e61557
KS
720 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
721 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
722}
723
724static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
725{
f1e61557
KS
726 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
727 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
728}
729
d00181b9 730static inline unsigned int compound_order(struct page *page)
d85f3385 731{
6d777953 732 if (!PageHead(page))
d85f3385 733 return 0;
e4b294c2 734 return page[1].compound_order;
d85f3385
CL
735}
736
f1e61557 737static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 738{
e4b294c2 739 page[1].compound_order = order;
d85f3385
CL
740}
741
9a982250
KS
742void free_compound_page(struct page *page);
743
3dece370 744#ifdef CONFIG_MMU
14fd403f
AA
745/*
746 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
747 * servicing faults for write access. In the normal case, do always want
748 * pte_mkwrite. But get_user_pages can cause write faults for mappings
749 * that do not have writing enabled, when used by access_process_vm.
750 */
751static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
752{
753 if (likely(vma->vm_flags & VM_WRITE))
754 pte = pte_mkwrite(pte);
755 return pte;
756}
8c6e50b0 757
2b740303 758vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 759 struct page *page);
2b740303
SJ
760vm_fault_t finish_fault(struct vm_fault *vmf);
761vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 762#endif
14fd403f 763
1da177e4
LT
764/*
765 * Multiple processes may "see" the same page. E.g. for untouched
766 * mappings of /dev/null, all processes see the same page full of
767 * zeroes, and text pages of executables and shared libraries have
768 * only one copy in memory, at most, normally.
769 *
770 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
771 * page_count() == 0 means the page is free. page->lru is then used for
772 * freelist management in the buddy allocator.
da6052f7 773 * page_count() > 0 means the page has been allocated.
1da177e4 774 *
da6052f7
NP
775 * Pages are allocated by the slab allocator in order to provide memory
776 * to kmalloc and kmem_cache_alloc. In this case, the management of the
777 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
778 * unless a particular usage is carefully commented. (the responsibility of
779 * freeing the kmalloc memory is the caller's, of course).
1da177e4 780 *
da6052f7
NP
781 * A page may be used by anyone else who does a __get_free_page().
782 * In this case, page_count still tracks the references, and should only
783 * be used through the normal accessor functions. The top bits of page->flags
784 * and page->virtual store page management information, but all other fields
785 * are unused and could be used privately, carefully. The management of this
786 * page is the responsibility of the one who allocated it, and those who have
787 * subsequently been given references to it.
788 *
789 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
790 * managed by the Linux memory manager: I/O, buffers, swapping etc.
791 * The following discussion applies only to them.
792 *
da6052f7
NP
793 * A pagecache page contains an opaque `private' member, which belongs to the
794 * page's address_space. Usually, this is the address of a circular list of
795 * the page's disk buffers. PG_private must be set to tell the VM to call
796 * into the filesystem to release these pages.
1da177e4 797 *
da6052f7
NP
798 * A page may belong to an inode's memory mapping. In this case, page->mapping
799 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 800 * in units of PAGE_SIZE.
1da177e4 801 *
da6052f7
NP
802 * If pagecache pages are not associated with an inode, they are said to be
803 * anonymous pages. These may become associated with the swapcache, and in that
804 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 805 *
da6052f7
NP
806 * In either case (swapcache or inode backed), the pagecache itself holds one
807 * reference to the page. Setting PG_private should also increment the
808 * refcount. The each user mapping also has a reference to the page.
1da177e4 809 *
da6052f7 810 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 811 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
812 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
813 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 814 *
da6052f7 815 * All pagecache pages may be subject to I/O:
1da177e4
LT
816 * - inode pages may need to be read from disk,
817 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
818 * to be written back to the inode on disk,
819 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
820 * modified may need to be swapped out to swap space and (later) to be read
821 * back into memory.
1da177e4
LT
822 */
823
824/*
825 * The zone field is never updated after free_area_init_core()
826 * sets it, so none of the operations on it need to be atomic.
1da177e4 827 */
348f8b6c 828
90572890 829/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 830#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
831#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
832#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 833#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 834#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 835
348f8b6c 836/*
25985edc 837 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
838 * sections we define the shift as 0; that plus a 0 mask ensures
839 * the compiler will optimise away reference to them.
840 */
d41dee36
AW
841#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
842#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
843#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 844#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 845#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 846
bce54bbf
WD
847/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
848#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 849#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
850#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
851 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 852#else
89689ae7 853#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
854#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
855 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
856#endif
857
bd8029b6 858#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 859
9223b419
CL
860#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
861#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
862#endif
863
d41dee36
AW
864#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
865#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
866#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 867#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 868#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 869#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 870
33dd4e0e 871static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 872{
348f8b6c 873 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 874}
1da177e4 875
260ae3f7
DW
876#ifdef CONFIG_ZONE_DEVICE
877static inline bool is_zone_device_page(const struct page *page)
878{
879 return page_zonenum(page) == ZONE_DEVICE;
880}
966cf44f
AD
881extern void memmap_init_zone_device(struct zone *, unsigned long,
882 unsigned long, struct dev_pagemap *);
260ae3f7
DW
883#else
884static inline bool is_zone_device_page(const struct page *page)
885{
886 return false;
887}
7b2d55d2 888#endif
5042db43 889
e7638488
DW
890#ifdef CONFIG_DEV_PAGEMAP_OPS
891void dev_pagemap_get_ops(void);
892void dev_pagemap_put_ops(void);
893void __put_devmap_managed_page(struct page *page);
894DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
895static inline bool put_devmap_managed_page(struct page *page)
896{
897 if (!static_branch_unlikely(&devmap_managed_key))
898 return false;
899 if (!is_zone_device_page(page))
900 return false;
901 switch (page->pgmap->type) {
902 case MEMORY_DEVICE_PRIVATE:
903 case MEMORY_DEVICE_PUBLIC:
904 case MEMORY_DEVICE_FS_DAX:
905 __put_devmap_managed_page(page);
906 return true;
907 default:
908 break;
909 }
910 return false;
911}
912
913static inline bool is_device_private_page(const struct page *page)
914{
915 return is_zone_device_page(page) &&
916 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
917}
918
919static inline bool is_device_public_page(const struct page *page)
920{
921 return is_zone_device_page(page) &&
922 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
923}
924
52916982
LG
925#ifdef CONFIG_PCI_P2PDMA
926static inline bool is_pci_p2pdma_page(const struct page *page)
927{
928 return is_zone_device_page(page) &&
929 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
930}
931#else /* CONFIG_PCI_P2PDMA */
932static inline bool is_pci_p2pdma_page(const struct page *page)
933{
934 return false;
935}
936#endif /* CONFIG_PCI_P2PDMA */
937
e7638488
DW
938#else /* CONFIG_DEV_PAGEMAP_OPS */
939static inline void dev_pagemap_get_ops(void)
5042db43 940{
5042db43 941}
e7638488
DW
942
943static inline void dev_pagemap_put_ops(void)
944{
945}
946
947static inline bool put_devmap_managed_page(struct page *page)
948{
949 return false;
950}
951
6b368cd4
JG
952static inline bool is_device_private_page(const struct page *page)
953{
954 return false;
955}
e7638488 956
6b368cd4
JG
957static inline bool is_device_public_page(const struct page *page)
958{
959 return false;
960}
52916982
LG
961
962static inline bool is_pci_p2pdma_page(const struct page *page)
963{
964 return false;
965}
e7638488 966#endif /* CONFIG_DEV_PAGEMAP_OPS */
7b2d55d2 967
3565fce3
DW
968static inline void get_page(struct page *page)
969{
970 page = compound_head(page);
971 /*
972 * Getting a normal page or the head of a compound page
0139aa7b 973 * requires to already have an elevated page->_refcount.
3565fce3 974 */
fe896d18
JK
975 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
976 page_ref_inc(page);
3565fce3
DW
977}
978
979static inline void put_page(struct page *page)
980{
981 page = compound_head(page);
982
7b2d55d2 983 /*
e7638488
DW
984 * For devmap managed pages we need to catch refcount transition from
985 * 2 to 1, when refcount reach one it means the page is free and we
986 * need to inform the device driver through callback. See
7b2d55d2
JG
987 * include/linux/memremap.h and HMM for details.
988 */
e7638488 989 if (put_devmap_managed_page(page))
7b2d55d2 990 return;
7b2d55d2 991
3565fce3
DW
992 if (put_page_testzero(page))
993 __put_page(page);
3565fce3
DW
994}
995
9127ab4f
CS
996#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
997#define SECTION_IN_PAGE_FLAGS
998#endif
999
89689ae7 1000/*
7a8010cd
VB
1001 * The identification function is mainly used by the buddy allocator for
1002 * determining if two pages could be buddies. We are not really identifying
1003 * the zone since we could be using the section number id if we do not have
1004 * node id available in page flags.
1005 * We only guarantee that it will return the same value for two combinable
1006 * pages in a zone.
89689ae7 1007 */
cb2b95e1
AW
1008static inline int page_zone_id(struct page *page)
1009{
89689ae7 1010 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1011}
1012
89689ae7 1013#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1014extern int page_to_nid(const struct page *page);
89689ae7 1015#else
33dd4e0e 1016static inline int page_to_nid(const struct page *page)
d41dee36 1017{
f165b378
PT
1018 struct page *p = (struct page *)page;
1019
1020 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1021}
89689ae7
CL
1022#endif
1023
57e0a030 1024#ifdef CONFIG_NUMA_BALANCING
90572890 1025static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1026{
90572890 1027 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1028}
1029
90572890 1030static inline int cpupid_to_pid(int cpupid)
57e0a030 1031{
90572890 1032 return cpupid & LAST__PID_MASK;
57e0a030 1033}
b795854b 1034
90572890 1035static inline int cpupid_to_cpu(int cpupid)
b795854b 1036{
90572890 1037 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1038}
1039
90572890 1040static inline int cpupid_to_nid(int cpupid)
b795854b 1041{
90572890 1042 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1043}
1044
90572890 1045static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1046{
90572890 1047 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1048}
1049
90572890 1050static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1051{
90572890 1052 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1053}
1054
8c8a743c
PZ
1055static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1056{
1057 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1058}
1059
1060#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1061#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1062static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1063{
1ae71d03 1064 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1065}
90572890
PZ
1066
1067static inline int page_cpupid_last(struct page *page)
1068{
1069 return page->_last_cpupid;
1070}
1071static inline void page_cpupid_reset_last(struct page *page)
b795854b 1072{
1ae71d03 1073 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1074}
1075#else
90572890 1076static inline int page_cpupid_last(struct page *page)
75980e97 1077{
90572890 1078 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1079}
1080
90572890 1081extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1082
90572890 1083static inline void page_cpupid_reset_last(struct page *page)
75980e97 1084{
09940a4f 1085 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1086}
90572890
PZ
1087#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1088#else /* !CONFIG_NUMA_BALANCING */
1089static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1090{
90572890 1091 return page_to_nid(page); /* XXX */
57e0a030
MG
1092}
1093
90572890 1094static inline int page_cpupid_last(struct page *page)
57e0a030 1095{
90572890 1096 return page_to_nid(page); /* XXX */
57e0a030
MG
1097}
1098
90572890 1099static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1100{
1101 return -1;
1102}
1103
90572890 1104static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1105{
1106 return -1;
1107}
1108
90572890 1109static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1110{
1111 return -1;
1112}
1113
90572890
PZ
1114static inline int cpu_pid_to_cpupid(int nid, int pid)
1115{
1116 return -1;
1117}
1118
1119static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1120{
1121 return 1;
1122}
1123
90572890 1124static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1125{
1126}
8c8a743c
PZ
1127
1128static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1129{
1130 return false;
1131}
90572890 1132#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1133
2813b9c0
AK
1134#ifdef CONFIG_KASAN_SW_TAGS
1135static inline u8 page_kasan_tag(const struct page *page)
1136{
1137 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1138}
1139
1140static inline void page_kasan_tag_set(struct page *page, u8 tag)
1141{
1142 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1143 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1144}
1145
1146static inline void page_kasan_tag_reset(struct page *page)
1147{
1148 page_kasan_tag_set(page, 0xff);
1149}
1150#else
1151static inline u8 page_kasan_tag(const struct page *page)
1152{
1153 return 0xff;
1154}
1155
1156static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1157static inline void page_kasan_tag_reset(struct page *page) { }
1158#endif
1159
33dd4e0e 1160static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1161{
1162 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1163}
1164
75ef7184
MG
1165static inline pg_data_t *page_pgdat(const struct page *page)
1166{
1167 return NODE_DATA(page_to_nid(page));
1168}
1169
9127ab4f 1170#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1171static inline void set_page_section(struct page *page, unsigned long section)
1172{
1173 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1174 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1175}
1176
aa462abe 1177static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1178{
1179 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1180}
308c05e3 1181#endif
d41dee36 1182
2f1b6248 1183static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1184{
1185 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1186 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1187}
2f1b6248 1188
348f8b6c
DH
1189static inline void set_page_node(struct page *page, unsigned long node)
1190{
1191 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1192 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1193}
89689ae7 1194
2f1b6248 1195static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1196 unsigned long node, unsigned long pfn)
1da177e4 1197{
348f8b6c
DH
1198 set_page_zone(page, zone);
1199 set_page_node(page, node);
9127ab4f 1200#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1201 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1202#endif
1da177e4
LT
1203}
1204
0610c25d
GT
1205#ifdef CONFIG_MEMCG
1206static inline struct mem_cgroup *page_memcg(struct page *page)
1207{
1208 return page->mem_cgroup;
1209}
55779ec7
JW
1210static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1211{
1212 WARN_ON_ONCE(!rcu_read_lock_held());
1213 return READ_ONCE(page->mem_cgroup);
1214}
0610c25d
GT
1215#else
1216static inline struct mem_cgroup *page_memcg(struct page *page)
1217{
1218 return NULL;
1219}
55779ec7
JW
1220static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1221{
1222 WARN_ON_ONCE(!rcu_read_lock_held());
1223 return NULL;
1224}
0610c25d
GT
1225#endif
1226
f6ac2354
CL
1227/*
1228 * Some inline functions in vmstat.h depend on page_zone()
1229 */
1230#include <linux/vmstat.h>
1231
33dd4e0e 1232static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1233{
1dff8083 1234 return page_to_virt(page);
1da177e4
LT
1235}
1236
1237#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1238#define HASHED_PAGE_VIRTUAL
1239#endif
1240
1241#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1242static inline void *page_address(const struct page *page)
1243{
1244 return page->virtual;
1245}
1246static inline void set_page_address(struct page *page, void *address)
1247{
1248 page->virtual = address;
1249}
1da177e4
LT
1250#define page_address_init() do { } while(0)
1251#endif
1252
1253#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1254void *page_address(const struct page *page);
1da177e4
LT
1255void set_page_address(struct page *page, void *virtual);
1256void page_address_init(void);
1257#endif
1258
1259#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1260#define page_address(page) lowmem_page_address(page)
1261#define set_page_address(page, address) do { } while(0)
1262#define page_address_init() do { } while(0)
1263#endif
1264
e39155ea
KS
1265extern void *page_rmapping(struct page *page);
1266extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1267extern struct address_space *page_mapping(struct page *page);
1da177e4 1268
f981c595
MG
1269extern struct address_space *__page_file_mapping(struct page *);
1270
1271static inline
1272struct address_space *page_file_mapping(struct page *page)
1273{
1274 if (unlikely(PageSwapCache(page)))
1275 return __page_file_mapping(page);
1276
1277 return page->mapping;
1278}
1279
f6ab1f7f
HY
1280extern pgoff_t __page_file_index(struct page *page);
1281
1da177e4
LT
1282/*
1283 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1284 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1285 */
1286static inline pgoff_t page_index(struct page *page)
1287{
1288 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1289 return __page_file_index(page);
1da177e4
LT
1290 return page->index;
1291}
1292
1aa8aea5 1293bool page_mapped(struct page *page);
bda807d4 1294struct address_space *page_mapping(struct page *page);
cb9f753a 1295struct address_space *page_mapping_file(struct page *page);
1da177e4 1296
2f064f34
MH
1297/*
1298 * Return true only if the page has been allocated with
1299 * ALLOC_NO_WATERMARKS and the low watermark was not
1300 * met implying that the system is under some pressure.
1301 */
1302static inline bool page_is_pfmemalloc(struct page *page)
1303{
1304 /*
1305 * Page index cannot be this large so this must be
1306 * a pfmemalloc page.
1307 */
1308 return page->index == -1UL;
1309}
1310
1311/*
1312 * Only to be called by the page allocator on a freshly allocated
1313 * page.
1314 */
1315static inline void set_page_pfmemalloc(struct page *page)
1316{
1317 page->index = -1UL;
1318}
1319
1320static inline void clear_page_pfmemalloc(struct page *page)
1321{
1322 page->index = 0;
1323}
1324
1da177e4
LT
1325/*
1326 * Different kinds of faults, as returned by handle_mm_fault().
1327 * Used to decide whether a process gets delivered SIGBUS or
1328 * just gets major/minor fault counters bumped up.
1329 */
d0217ac0 1330
83c54070
NP
1331#define VM_FAULT_OOM 0x0001
1332#define VM_FAULT_SIGBUS 0x0002
1333#define VM_FAULT_MAJOR 0x0004
1334#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1335#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1336#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1337#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1338
83c54070
NP
1339#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1340#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1341#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1342#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1343#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
caa51d26
JK
1344#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1345 * and needs fsync() to complete (for
1346 * synchronous page faults in DAX) */
aa50d3a7 1347
33692f27
LT
1348#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1349 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1350 VM_FAULT_FALLBACK)
aa50d3a7 1351
282a8e03
RZ
1352#define VM_FAULT_RESULT_TRACE \
1353 { VM_FAULT_OOM, "OOM" }, \
1354 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1355 { VM_FAULT_MAJOR, "MAJOR" }, \
1356 { VM_FAULT_WRITE, "WRITE" }, \
1357 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1358 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1359 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1360 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1361 { VM_FAULT_LOCKED, "LOCKED" }, \
1362 { VM_FAULT_RETRY, "RETRY" }, \
1363 { VM_FAULT_FALLBACK, "FALLBACK" }, \
caa51d26
JK
1364 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1365 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
282a8e03 1366
aa50d3a7
AK
1367/* Encode hstate index for a hwpoisoned large page */
1368#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1369#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1370
1c0fe6e3
NP
1371/*
1372 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1373 */
1374extern void pagefault_out_of_memory(void);
1375
1da177e4
LT
1376#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1377
ddd588b5 1378/*
7bf02ea2 1379 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1380 * various contexts.
1381 */
4b59e6c4 1382#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1383
9af744d7 1384extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1385
7f43add4 1386extern bool can_do_mlock(void);
1da177e4
LT
1387extern int user_shm_lock(size_t, struct user_struct *);
1388extern void user_shm_unlock(size_t, struct user_struct *);
1389
1390/*
1391 * Parameter block passed down to zap_pte_range in exceptional cases.
1392 */
1393struct zap_details {
1da177e4
LT
1394 struct address_space *check_mapping; /* Check page->mapping if set */
1395 pgoff_t first_index; /* Lowest page->index to unmap */
1396 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1397};
1398
df6ad698
JG
1399struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1400 pte_t pte, bool with_public_device);
1401#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1402
28093f9f
GS
1403struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1404 pmd_t pmd);
7e675137 1405
27d036e3
LR
1406void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1407 unsigned long size);
14f5ff5d 1408void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1409 unsigned long size);
4f74d2c8
LT
1410void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1411 unsigned long start, unsigned long end);
e6473092
MM
1412
1413/**
1414 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1415 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1416 * this handler should only handle pud_trans_huge() puds.
1417 * the pmd_entry or pte_entry callbacks will be used for
1418 * regular PUDs.
e6473092 1419 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1420 * this handler is required to be able to handle
1421 * pmd_trans_huge() pmds. They may simply choose to
1422 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1423 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1424 * @pte_hole: if set, called for each hole at all levels
5dc37642 1425 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1426 * @test_walk: caller specific callback function to determine whether
f7e2355f 1427 * we walk over the current vma or not. Returning 0
fafaa426
NH
1428 * value means "do page table walk over the current vma,"
1429 * and a negative one means "abort current page table walk
f7e2355f 1430 * right now." 1 means "skip the current vma."
fafaa426
NH
1431 * @mm: mm_struct representing the target process of page table walk
1432 * @vma: vma currently walked (NULL if walking outside vmas)
1433 * @private: private data for callbacks' usage
e6473092 1434 *
fafaa426 1435 * (see the comment on walk_page_range() for more details)
e6473092
MM
1436 */
1437struct mm_walk {
a00cc7d9
MW
1438 int (*pud_entry)(pud_t *pud, unsigned long addr,
1439 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1440 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1441 unsigned long next, struct mm_walk *walk);
1442 int (*pte_entry)(pte_t *pte, unsigned long addr,
1443 unsigned long next, struct mm_walk *walk);
1444 int (*pte_hole)(unsigned long addr, unsigned long next,
1445 struct mm_walk *walk);
1446 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1447 unsigned long addr, unsigned long next,
1448 struct mm_walk *walk);
fafaa426
NH
1449 int (*test_walk)(unsigned long addr, unsigned long next,
1450 struct mm_walk *walk);
2165009b 1451 struct mm_struct *mm;
fafaa426 1452 struct vm_area_struct *vma;
2165009b 1453 void *private;
e6473092
MM
1454};
1455
ac46d4f3
JG
1456struct mmu_notifier_range;
1457
2165009b
DH
1458int walk_page_range(unsigned long addr, unsigned long end,
1459 struct mm_walk *walk);
900fc5f1 1460int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1461void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1462 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1463int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1464 struct vm_area_struct *vma);
09796395 1465int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1466 struct mmu_notifier_range *range,
1467 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1468int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1469 unsigned long *pfn);
d87fe660 1470int follow_phys(struct vm_area_struct *vma, unsigned long address,
1471 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1472int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1473 void *buf, int len, int write);
1da177e4 1474
7caef267 1475extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1476extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1477void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1478void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1479int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1480int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1481int invalidate_inode_page(struct page *page);
1482
7ee1dd3f 1483#ifdef CONFIG_MMU
2b740303
SJ
1484extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1485 unsigned long address, unsigned int flags);
5c723ba5 1486extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1487 unsigned long address, unsigned int fault_flags,
1488 bool *unlocked);
977fbdcd
MW
1489void unmap_mapping_pages(struct address_space *mapping,
1490 pgoff_t start, pgoff_t nr, bool even_cows);
1491void unmap_mapping_range(struct address_space *mapping,
1492 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1493#else
2b740303 1494static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
dcddffd4 1495 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1496{
1497 /* should never happen if there's no MMU */
1498 BUG();
1499 return VM_FAULT_SIGBUS;
1500}
5c723ba5
PZ
1501static inline int fixup_user_fault(struct task_struct *tsk,
1502 struct mm_struct *mm, unsigned long address,
4a9e1cda 1503 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1504{
1505 /* should never happen if there's no MMU */
1506 BUG();
1507 return -EFAULT;
1508}
977fbdcd
MW
1509static inline void unmap_mapping_pages(struct address_space *mapping,
1510 pgoff_t start, pgoff_t nr, bool even_cows) { }
1511static inline void unmap_mapping_range(struct address_space *mapping,
1512 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1513#endif
f33ea7f4 1514
977fbdcd
MW
1515static inline void unmap_shared_mapping_range(struct address_space *mapping,
1516 loff_t const holebegin, loff_t const holelen)
1517{
1518 unmap_mapping_range(mapping, holebegin, holelen, 0);
1519}
1520
1521extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1522 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1523extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1524 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1525extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1526 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1527
1e987790
DH
1528long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1529 unsigned long start, unsigned long nr_pages,
9beae1ea 1530 unsigned int gup_flags, struct page **pages,
5b56d49f 1531 struct vm_area_struct **vmas, int *locked);
c12d2da5 1532long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1533 unsigned int gup_flags, struct page **pages,
cde70140 1534 struct vm_area_struct **vmas);
c12d2da5 1535long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1536 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1537long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1538 struct page **pages, unsigned int gup_flags);
9a4e9f3b
AK
1539
1540#if defined(CONFIG_FS_DAX) || defined(CONFIG_CMA)
2bb6d283
DW
1541long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1542 unsigned int gup_flags, struct page **pages,
1543 struct vm_area_struct **vmas);
1544#else
1545static inline long get_user_pages_longterm(unsigned long start,
1546 unsigned long nr_pages, unsigned int gup_flags,
1547 struct page **pages, struct vm_area_struct **vmas)
1548{
1549 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1550}
1551#endif /* CONFIG_FS_DAX */
1552
d2bf6be8
NP
1553int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1554 struct page **pages);
8025e5dd
JK
1555
1556/* Container for pinned pfns / pages */
1557struct frame_vector {
1558 unsigned int nr_allocated; /* Number of frames we have space for */
1559 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1560 bool got_ref; /* Did we pin pages by getting page ref? */
1561 bool is_pfns; /* Does array contain pages or pfns? */
1562 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1563 * pfns_vector_pages() or pfns_vector_pfns()
1564 * for access */
1565};
1566
1567struct frame_vector *frame_vector_create(unsigned int nr_frames);
1568void frame_vector_destroy(struct frame_vector *vec);
1569int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1570 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1571void put_vaddr_frames(struct frame_vector *vec);
1572int frame_vector_to_pages(struct frame_vector *vec);
1573void frame_vector_to_pfns(struct frame_vector *vec);
1574
1575static inline unsigned int frame_vector_count(struct frame_vector *vec)
1576{
1577 return vec->nr_frames;
1578}
1579
1580static inline struct page **frame_vector_pages(struct frame_vector *vec)
1581{
1582 if (vec->is_pfns) {
1583 int err = frame_vector_to_pages(vec);
1584
1585 if (err)
1586 return ERR_PTR(err);
1587 }
1588 return (struct page **)(vec->ptrs);
1589}
1590
1591static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1592{
1593 if (!vec->is_pfns)
1594 frame_vector_to_pfns(vec);
1595 return (unsigned long *)(vec->ptrs);
1596}
1597
18022c5d
MG
1598struct kvec;
1599int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1600 struct page **pages);
1601int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1602struct page *get_dump_page(unsigned long addr);
1da177e4 1603
cf9a2ae8 1604extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1605extern void do_invalidatepage(struct page *page, unsigned int offset,
1606 unsigned int length);
cf9a2ae8 1607
f82b3764 1608void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1609int __set_page_dirty_nobuffers(struct page *page);
76719325 1610int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1611int redirty_page_for_writepage(struct writeback_control *wbc,
1612 struct page *page);
62cccb8c 1613void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1614void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1615 struct bdi_writeback *wb);
b3c97528 1616int set_page_dirty(struct page *page);
1da177e4 1617int set_page_dirty_lock(struct page *page);
736304f3
JK
1618void __cancel_dirty_page(struct page *page);
1619static inline void cancel_dirty_page(struct page *page)
1620{
1621 /* Avoid atomic ops, locking, etc. when not actually needed. */
1622 if (PageDirty(page))
1623 __cancel_dirty_page(page);
1624}
1da177e4 1625int clear_page_dirty_for_io(struct page *page);
b9ea2515 1626
a9090253 1627int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1628
b5330628
ON
1629static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1630{
1631 return !vma->vm_ops;
1632}
1633
b0506e48
MR
1634#ifdef CONFIG_SHMEM
1635/*
1636 * The vma_is_shmem is not inline because it is used only by slow
1637 * paths in userfault.
1638 */
1639bool vma_is_shmem(struct vm_area_struct *vma);
1640#else
1641static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1642#endif
1643
d17af505 1644int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1645
b6a2fea3
OW
1646extern unsigned long move_page_tables(struct vm_area_struct *vma,
1647 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1648 unsigned long new_addr, unsigned long len,
1649 bool need_rmap_locks);
7da4d641
PZ
1650extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1651 unsigned long end, pgprot_t newprot,
4b10e7d5 1652 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1653extern int mprotect_fixup(struct vm_area_struct *vma,
1654 struct vm_area_struct **pprev, unsigned long start,
1655 unsigned long end, unsigned long newflags);
1da177e4 1656
465a454f
PZ
1657/*
1658 * doesn't attempt to fault and will return short.
1659 */
1660int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1661 struct page **pages);
d559db08
KH
1662/*
1663 * per-process(per-mm_struct) statistics.
1664 */
d559db08
KH
1665static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1666{
69c97823
KK
1667 long val = atomic_long_read(&mm->rss_stat.count[member]);
1668
1669#ifdef SPLIT_RSS_COUNTING
1670 /*
1671 * counter is updated in asynchronous manner and may go to minus.
1672 * But it's never be expected number for users.
1673 */
1674 if (val < 0)
1675 val = 0;
172703b0 1676#endif
69c97823
KK
1677 return (unsigned long)val;
1678}
d559db08
KH
1679
1680static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1681{
172703b0 1682 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1683}
1684
1685static inline void inc_mm_counter(struct mm_struct *mm, int member)
1686{
172703b0 1687 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1688}
1689
1690static inline void dec_mm_counter(struct mm_struct *mm, int member)
1691{
172703b0 1692 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1693}
1694
eca56ff9
JM
1695/* Optimized variant when page is already known not to be PageAnon */
1696static inline int mm_counter_file(struct page *page)
1697{
1698 if (PageSwapBacked(page))
1699 return MM_SHMEMPAGES;
1700 return MM_FILEPAGES;
1701}
1702
1703static inline int mm_counter(struct page *page)
1704{
1705 if (PageAnon(page))
1706 return MM_ANONPAGES;
1707 return mm_counter_file(page);
1708}
1709
d559db08
KH
1710static inline unsigned long get_mm_rss(struct mm_struct *mm)
1711{
1712 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1713 get_mm_counter(mm, MM_ANONPAGES) +
1714 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1715}
1716
1717static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1718{
1719 return max(mm->hiwater_rss, get_mm_rss(mm));
1720}
1721
1722static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1723{
1724 return max(mm->hiwater_vm, mm->total_vm);
1725}
1726
1727static inline void update_hiwater_rss(struct mm_struct *mm)
1728{
1729 unsigned long _rss = get_mm_rss(mm);
1730
1731 if ((mm)->hiwater_rss < _rss)
1732 (mm)->hiwater_rss = _rss;
1733}
1734
1735static inline void update_hiwater_vm(struct mm_struct *mm)
1736{
1737 if (mm->hiwater_vm < mm->total_vm)
1738 mm->hiwater_vm = mm->total_vm;
1739}
1740
695f0559
PC
1741static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1742{
1743 mm->hiwater_rss = get_mm_rss(mm);
1744}
1745
d559db08
KH
1746static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1747 struct mm_struct *mm)
1748{
1749 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1750
1751 if (*maxrss < hiwater_rss)
1752 *maxrss = hiwater_rss;
1753}
1754
53bddb4e 1755#if defined(SPLIT_RSS_COUNTING)
05af2e10 1756void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1757#else
05af2e10 1758static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1759{
1760}
1761#endif
465a454f 1762
3565fce3
DW
1763#ifndef __HAVE_ARCH_PTE_DEVMAP
1764static inline int pte_devmap(pte_t pte)
1765{
1766 return 0;
1767}
1768#endif
1769
6d2329f8 1770int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1771
25ca1d6c
NK
1772extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1773 spinlock_t **ptl);
1774static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1775 spinlock_t **ptl)
1776{
1777 pte_t *ptep;
1778 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1779 return ptep;
1780}
c9cfcddf 1781
c2febafc
KS
1782#ifdef __PAGETABLE_P4D_FOLDED
1783static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1784 unsigned long address)
1785{
1786 return 0;
1787}
1788#else
1789int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1790#endif
1791
b4e98d9a 1792#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1793static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1794 unsigned long address)
1795{
1796 return 0;
1797}
b4e98d9a
KS
1798static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1799static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1800
5f22df00 1801#else
c2febafc 1802int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1803
b4e98d9a
KS
1804static inline void mm_inc_nr_puds(struct mm_struct *mm)
1805{
6d212db1
MS
1806 if (mm_pud_folded(mm))
1807 return;
af5b0f6a 1808 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1809}
1810
1811static inline void mm_dec_nr_puds(struct mm_struct *mm)
1812{
6d212db1
MS
1813 if (mm_pud_folded(mm))
1814 return;
af5b0f6a 1815 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1816}
5f22df00
NP
1817#endif
1818
2d2f5119 1819#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1820static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1821 unsigned long address)
1822{
1823 return 0;
1824}
dc6c9a35 1825
dc6c9a35
KS
1826static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1827static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1828
5f22df00 1829#else
1bb3630e 1830int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1831
dc6c9a35
KS
1832static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1833{
6d212db1
MS
1834 if (mm_pmd_folded(mm))
1835 return;
af5b0f6a 1836 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1837}
1838
1839static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1840{
6d212db1
MS
1841 if (mm_pmd_folded(mm))
1842 return;
af5b0f6a 1843 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1844}
5f22df00
NP
1845#endif
1846
c4812909 1847#ifdef CONFIG_MMU
af5b0f6a 1848static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1849{
af5b0f6a 1850 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1851}
1852
af5b0f6a 1853static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1854{
af5b0f6a 1855 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1856}
1857
1858static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1859{
af5b0f6a 1860 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1861}
1862
1863static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1864{
af5b0f6a 1865 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1866}
1867#else
c4812909 1868
af5b0f6a
KS
1869static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1870static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1871{
1872 return 0;
1873}
1874
1875static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1876static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1877#endif
1878
4cf58924
JFG
1879int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1880int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 1881
1da177e4
LT
1882/*
1883 * The following ifdef needed to get the 4level-fixup.h header to work.
1884 * Remove it when 4level-fixup.h has been removed.
1885 */
1bb3630e 1886#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1887
1888#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1889static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1890 unsigned long address)
1891{
1892 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1893 NULL : p4d_offset(pgd, address);
1894}
1895
1896static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1897 unsigned long address)
1da177e4 1898{
c2febafc
KS
1899 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1900 NULL : pud_offset(p4d, address);
1da177e4 1901}
505a60e2 1902#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1903
1904static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1905{
1bb3630e
HD
1906 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1907 NULL: pmd_offset(pud, address);
1da177e4 1908}
1bb3630e
HD
1909#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1910
57c1ffce 1911#if USE_SPLIT_PTE_PTLOCKS
597d795a 1912#if ALLOC_SPLIT_PTLOCKS
b35f1819 1913void __init ptlock_cache_init(void);
539edb58
PZ
1914extern bool ptlock_alloc(struct page *page);
1915extern void ptlock_free(struct page *page);
1916
1917static inline spinlock_t *ptlock_ptr(struct page *page)
1918{
1919 return page->ptl;
1920}
597d795a 1921#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1922static inline void ptlock_cache_init(void)
1923{
1924}
1925
49076ec2
KS
1926static inline bool ptlock_alloc(struct page *page)
1927{
49076ec2
KS
1928 return true;
1929}
539edb58 1930
49076ec2
KS
1931static inline void ptlock_free(struct page *page)
1932{
49076ec2
KS
1933}
1934
1935static inline spinlock_t *ptlock_ptr(struct page *page)
1936{
539edb58 1937 return &page->ptl;
49076ec2 1938}
597d795a 1939#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1940
1941static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1942{
1943 return ptlock_ptr(pmd_page(*pmd));
1944}
1945
1946static inline bool ptlock_init(struct page *page)
1947{
1948 /*
1949 * prep_new_page() initialize page->private (and therefore page->ptl)
1950 * with 0. Make sure nobody took it in use in between.
1951 *
1952 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1953 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1954 */
309381fe 1955 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1956 if (!ptlock_alloc(page))
1957 return false;
1958 spin_lock_init(ptlock_ptr(page));
1959 return true;
1960}
1961
57c1ffce 1962#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1963/*
1964 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1965 */
49076ec2
KS
1966static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1967{
1968 return &mm->page_table_lock;
1969}
b35f1819 1970static inline void ptlock_cache_init(void) {}
49076ec2 1971static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 1972static inline void ptlock_free(struct page *page) {}
57c1ffce 1973#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1974
b35f1819
KS
1975static inline void pgtable_init(void)
1976{
1977 ptlock_cache_init();
1978 pgtable_cache_init();
1979}
1980
390f44e2 1981static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1982{
706874e9
VD
1983 if (!ptlock_init(page))
1984 return false;
1d40a5ea 1985 __SetPageTable(page);
2f569afd 1986 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1987 return true;
2f569afd
MS
1988}
1989
1990static inline void pgtable_page_dtor(struct page *page)
1991{
9e247bab 1992 ptlock_free(page);
1d40a5ea 1993 __ClearPageTable(page);
2f569afd
MS
1994 dec_zone_page_state(page, NR_PAGETABLE);
1995}
1996
c74df32c
HD
1997#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1998({ \
4c21e2f2 1999 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2000 pte_t *__pte = pte_offset_map(pmd, address); \
2001 *(ptlp) = __ptl; \
2002 spin_lock(__ptl); \
2003 __pte; \
2004})
2005
2006#define pte_unmap_unlock(pte, ptl) do { \
2007 spin_unlock(ptl); \
2008 pte_unmap(pte); \
2009} while (0)
2010
4cf58924 2011#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2012
2013#define pte_alloc_map(mm, pmd, address) \
4cf58924 2014 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2015
c74df32c 2016#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2017 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2018 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2019
1bb3630e 2020#define pte_alloc_kernel(pmd, address) \
4cf58924 2021 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2022 NULL: pte_offset_kernel(pmd, address))
1da177e4 2023
e009bb30
KS
2024#if USE_SPLIT_PMD_PTLOCKS
2025
634391ac
MS
2026static struct page *pmd_to_page(pmd_t *pmd)
2027{
2028 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2029 return virt_to_page((void *)((unsigned long) pmd & mask));
2030}
2031
e009bb30
KS
2032static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2033{
634391ac 2034 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2035}
2036
2037static inline bool pgtable_pmd_page_ctor(struct page *page)
2038{
e009bb30
KS
2039#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2040 page->pmd_huge_pte = NULL;
2041#endif
49076ec2 2042 return ptlock_init(page);
e009bb30
KS
2043}
2044
2045static inline void pgtable_pmd_page_dtor(struct page *page)
2046{
2047#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2048 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2049#endif
49076ec2 2050 ptlock_free(page);
e009bb30
KS
2051}
2052
634391ac 2053#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2054
2055#else
2056
9a86cb7b
KS
2057static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2058{
2059 return &mm->page_table_lock;
2060}
2061
e009bb30
KS
2062static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2063static inline void pgtable_pmd_page_dtor(struct page *page) {}
2064
c389a250 2065#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2066
e009bb30
KS
2067#endif
2068
9a86cb7b
KS
2069static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2070{
2071 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2072 spin_lock(ptl);
2073 return ptl;
2074}
2075
a00cc7d9
MW
2076/*
2077 * No scalability reason to split PUD locks yet, but follow the same pattern
2078 * as the PMD locks to make it easier if we decide to. The VM should not be
2079 * considered ready to switch to split PUD locks yet; there may be places
2080 * which need to be converted from page_table_lock.
2081 */
2082static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2083{
2084 return &mm->page_table_lock;
2085}
2086
2087static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2088{
2089 spinlock_t *ptl = pud_lockptr(mm, pud);
2090
2091 spin_lock(ptl);
2092 return ptl;
2093}
62906027 2094
a00cc7d9 2095extern void __init pagecache_init(void);
1da177e4 2096extern void free_area_init(unsigned long * zones_size);
03e85f9d 2097extern void __init free_area_init_node(int nid, unsigned long * zones_size,
9109fb7b 2098 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
2099extern void free_initmem(void);
2100
69afade7
JL
2101/*
2102 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2103 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2104 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2105 * Return pages freed into the buddy system.
2106 */
11199692 2107extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2108 int poison, const char *s);
c3d5f5f0 2109
cfa11e08
JL
2110#ifdef CONFIG_HIGHMEM
2111/*
2112 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2113 * and totalram_pages.
2114 */
2115extern void free_highmem_page(struct page *page);
2116#endif
69afade7 2117
c3d5f5f0 2118extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2119extern void mem_init_print_info(const char *str);
69afade7 2120
4b50bcc7 2121extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2122
69afade7
JL
2123/* Free the reserved page into the buddy system, so it gets managed. */
2124static inline void __free_reserved_page(struct page *page)
2125{
2126 ClearPageReserved(page);
2127 init_page_count(page);
2128 __free_page(page);
2129}
2130
2131static inline void free_reserved_page(struct page *page)
2132{
2133 __free_reserved_page(page);
2134 adjust_managed_page_count(page, 1);
2135}
2136
2137static inline void mark_page_reserved(struct page *page)
2138{
2139 SetPageReserved(page);
2140 adjust_managed_page_count(page, -1);
2141}
2142
2143/*
2144 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2145 * The freed pages will be poisoned with pattern "poison" if it's within
2146 * range [0, UCHAR_MAX].
2147 * Return pages freed into the buddy system.
69afade7
JL
2148 */
2149static inline unsigned long free_initmem_default(int poison)
2150{
2151 extern char __init_begin[], __init_end[];
2152
11199692 2153 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2154 poison, "unused kernel");
2155}
2156
7ee3d4e8
JL
2157static inline unsigned long get_num_physpages(void)
2158{
2159 int nid;
2160 unsigned long phys_pages = 0;
2161
2162 for_each_online_node(nid)
2163 phys_pages += node_present_pages(nid);
2164
2165 return phys_pages;
2166}
2167
0ee332c1 2168#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2169/*
0ee332c1 2170 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2171 * zones, allocate the backing mem_map and account for memory holes in a more
2172 * architecture independent manner. This is a substitute for creating the
2173 * zone_sizes[] and zholes_size[] arrays and passing them to
2174 * free_area_init_node()
2175 *
2176 * An architecture is expected to register range of page frames backed by
0ee332c1 2177 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2178 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2179 * usage, an architecture is expected to do something like
2180 *
2181 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2182 * max_highmem_pfn};
2183 * for_each_valid_physical_page_range()
0ee332c1 2184 * memblock_add_node(base, size, nid)
c713216d
MG
2185 * free_area_init_nodes(max_zone_pfns);
2186 *
0ee332c1
TH
2187 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2188 * registered physical page range. Similarly
2189 * sparse_memory_present_with_active_regions() calls memory_present() for
2190 * each range when SPARSEMEM is enabled.
c713216d
MG
2191 *
2192 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2193 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2194 */
2195extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2196unsigned long node_map_pfn_alignment(void);
32996250
YL
2197unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2198 unsigned long end_pfn);
c713216d
MG
2199extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2200 unsigned long end_pfn);
2201extern void get_pfn_range_for_nid(unsigned int nid,
2202 unsigned long *start_pfn, unsigned long *end_pfn);
2203extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2204extern void free_bootmem_with_active_regions(int nid,
2205 unsigned long max_low_pfn);
2206extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2207
0ee332c1 2208#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2209
0ee332c1 2210#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2211 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2212static inline int __early_pfn_to_nid(unsigned long pfn,
2213 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2214{
2215 return 0;
2216}
2217#else
2218/* please see mm/page_alloc.c */
2219extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2220/* there is a per-arch backend function. */
8a942fde
MG
2221extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2222 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2223#endif
2224
aca52c39 2225#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
2226void zero_resv_unavail(void);
2227#else
2228static inline void zero_resv_unavail(void) {}
2229#endif
2230
0e0b864e 2231extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2232extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2233 enum memmap_context, struct vmem_altmap *);
bc75d33f 2234extern void setup_per_zone_wmarks(void);
1b79acc9 2235extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2236extern void mem_init(void);
8feae131 2237extern void __init mmap_init(void);
9af744d7 2238extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2239extern long si_mem_available(void);
1da177e4
LT
2240extern void si_meminfo(struct sysinfo * val);
2241extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2242#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2243extern unsigned long arch_reserved_kernel_pages(void);
2244#endif
1da177e4 2245
a8e99259
MH
2246extern __printf(3, 4)
2247void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2248
e7c8d5c9 2249extern void setup_per_cpu_pageset(void);
e7c8d5c9 2250
112067f0 2251extern void zone_pcp_update(struct zone *zone);
340175b7 2252extern void zone_pcp_reset(struct zone *zone);
112067f0 2253
75f7ad8e
PS
2254/* page_alloc.c */
2255extern int min_free_kbytes;
1c30844d 2256extern int watermark_boost_factor;
795ae7a0 2257extern int watermark_scale_factor;
75f7ad8e 2258
8feae131 2259/* nommu.c */
33e5d769 2260extern atomic_long_t mmap_pages_allocated;
7e660872 2261extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2262
6b2dbba8 2263/* interval_tree.c */
6b2dbba8 2264void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2265 struct rb_root_cached *root);
9826a516
ML
2266void vma_interval_tree_insert_after(struct vm_area_struct *node,
2267 struct vm_area_struct *prev,
f808c13f 2268 struct rb_root_cached *root);
6b2dbba8 2269void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2270 struct rb_root_cached *root);
2271struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2272 unsigned long start, unsigned long last);
2273struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2274 unsigned long start, unsigned long last);
2275
2276#define vma_interval_tree_foreach(vma, root, start, last) \
2277 for (vma = vma_interval_tree_iter_first(root, start, last); \
2278 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2279
bf181b9f 2280void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2281 struct rb_root_cached *root);
bf181b9f 2282void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2283 struct rb_root_cached *root);
2284struct anon_vma_chain *
2285anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2286 unsigned long start, unsigned long last);
bf181b9f
ML
2287struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2288 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2289#ifdef CONFIG_DEBUG_VM_RB
2290void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2291#endif
bf181b9f
ML
2292
2293#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2294 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2295 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2296
1da177e4 2297/* mmap.c */
34b4e4aa 2298extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2299extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2300 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2301 struct vm_area_struct *expand);
2302static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2303 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2304{
2305 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2306}
1da177e4
LT
2307extern struct vm_area_struct *vma_merge(struct mm_struct *,
2308 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2309 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2310 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2311extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2312extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2313 unsigned long addr, int new_below);
2314extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2315 unsigned long addr, int new_below);
1da177e4
LT
2316extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2317extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2318 struct rb_node **, struct rb_node *);
a8fb5618 2319extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2320extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2321 unsigned long addr, unsigned long len, pgoff_t pgoff,
2322 bool *need_rmap_locks);
1da177e4 2323extern void exit_mmap(struct mm_struct *);
925d1c40 2324
9c599024
CG
2325static inline int check_data_rlimit(unsigned long rlim,
2326 unsigned long new,
2327 unsigned long start,
2328 unsigned long end_data,
2329 unsigned long start_data)
2330{
2331 if (rlim < RLIM_INFINITY) {
2332 if (((new - start) + (end_data - start_data)) > rlim)
2333 return -ENOSPC;
2334 }
2335
2336 return 0;
2337}
2338
7906d00c
AA
2339extern int mm_take_all_locks(struct mm_struct *mm);
2340extern void mm_drop_all_locks(struct mm_struct *mm);
2341
38646013
JS
2342extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2343extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2344extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2345
84638335
KK
2346extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2347extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2348
2eefd878
DS
2349extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2350 const struct vm_special_mapping *sm);
3935ed6a
SS
2351extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2352 unsigned long addr, unsigned long len,
a62c34bd
AL
2353 unsigned long flags,
2354 const struct vm_special_mapping *spec);
2355/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2356extern int install_special_mapping(struct mm_struct *mm,
2357 unsigned long addr, unsigned long len,
2358 unsigned long flags, struct page **pages);
1da177e4
LT
2359
2360extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2361
0165ab44 2362extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2363 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2364 struct list_head *uf);
1fcfd8db 2365extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2366 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2367 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2368 struct list_head *uf);
85a06835
YS
2369extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2370 struct list_head *uf, bool downgrade);
897ab3e0
MR
2371extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2372 struct list_head *uf);
1da177e4 2373
1fcfd8db
ON
2374static inline unsigned long
2375do_mmap_pgoff(struct file *file, unsigned long addr,
2376 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2377 unsigned long pgoff, unsigned long *populate,
2378 struct list_head *uf)
1fcfd8db 2379{
897ab3e0 2380 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2381}
2382
bebeb3d6
ML
2383#ifdef CONFIG_MMU
2384extern int __mm_populate(unsigned long addr, unsigned long len,
2385 int ignore_errors);
2386static inline void mm_populate(unsigned long addr, unsigned long len)
2387{
2388 /* Ignore errors */
2389 (void) __mm_populate(addr, len, 1);
2390}
2391#else
2392static inline void mm_populate(unsigned long addr, unsigned long len) {}
2393#endif
2394
e4eb1ff6 2395/* These take the mm semaphore themselves */
5d22fc25 2396extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2397extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2398extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2399extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2400 unsigned long, unsigned long,
2401 unsigned long, unsigned long);
1da177e4 2402
db4fbfb9
ML
2403struct vm_unmapped_area_info {
2404#define VM_UNMAPPED_AREA_TOPDOWN 1
2405 unsigned long flags;
2406 unsigned long length;
2407 unsigned long low_limit;
2408 unsigned long high_limit;
2409 unsigned long align_mask;
2410 unsigned long align_offset;
2411};
2412
2413extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2414extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2415
2416/*
2417 * Search for an unmapped address range.
2418 *
2419 * We are looking for a range that:
2420 * - does not intersect with any VMA;
2421 * - is contained within the [low_limit, high_limit) interval;
2422 * - is at least the desired size.
2423 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2424 */
2425static inline unsigned long
2426vm_unmapped_area(struct vm_unmapped_area_info *info)
2427{
cdd7875e 2428 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2429 return unmapped_area_topdown(info);
cdd7875e
BP
2430 else
2431 return unmapped_area(info);
db4fbfb9
ML
2432}
2433
85821aab 2434/* truncate.c */
1da177e4 2435extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2436extern void truncate_inode_pages_range(struct address_space *,
2437 loff_t lstart, loff_t lend);
91b0abe3 2438extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2439
2440/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2441extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2442extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2443 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2444extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2445
2446/* mm/page-writeback.c */
2b69c828 2447int __must_check write_one_page(struct page *page);
1cf6e7d8 2448void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2449
2450/* readahead.c */
2451#define VM_MAX_READAHEAD 128 /* kbytes */
2452#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2453
1da177e4 2454int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2455 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2456
2457void page_cache_sync_readahead(struct address_space *mapping,
2458 struct file_ra_state *ra,
2459 struct file *filp,
2460 pgoff_t offset,
2461 unsigned long size);
2462
2463void page_cache_async_readahead(struct address_space *mapping,
2464 struct file_ra_state *ra,
2465 struct file *filp,
2466 struct page *pg,
2467 pgoff_t offset,
2468 unsigned long size);
2469
1be7107f 2470extern unsigned long stack_guard_gap;
d05f3169 2471/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2472extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2473
2474/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2475extern int expand_downwards(struct vm_area_struct *vma,
2476 unsigned long address);
8ca3eb08 2477#if VM_GROWSUP
46dea3d0 2478extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2479#else
fee7e49d 2480 #define expand_upwards(vma, address) (0)
9ab88515 2481#endif
1da177e4
LT
2482
2483/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2484extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2485extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2486 struct vm_area_struct **pprev);
2487
2488/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2489 NULL if none. Assume start_addr < end_addr. */
2490static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2491{
2492 struct vm_area_struct * vma = find_vma(mm,start_addr);
2493
2494 if (vma && end_addr <= vma->vm_start)
2495 vma = NULL;
2496 return vma;
2497}
2498
1be7107f
HD
2499static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2500{
2501 unsigned long vm_start = vma->vm_start;
2502
2503 if (vma->vm_flags & VM_GROWSDOWN) {
2504 vm_start -= stack_guard_gap;
2505 if (vm_start > vma->vm_start)
2506 vm_start = 0;
2507 }
2508 return vm_start;
2509}
2510
2511static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2512{
2513 unsigned long vm_end = vma->vm_end;
2514
2515 if (vma->vm_flags & VM_GROWSUP) {
2516 vm_end += stack_guard_gap;
2517 if (vm_end < vma->vm_end)
2518 vm_end = -PAGE_SIZE;
2519 }
2520 return vm_end;
2521}
2522
1da177e4
LT
2523static inline unsigned long vma_pages(struct vm_area_struct *vma)
2524{
2525 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2526}
2527
640708a2
PE
2528/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2529static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2530 unsigned long vm_start, unsigned long vm_end)
2531{
2532 struct vm_area_struct *vma = find_vma(mm, vm_start);
2533
2534 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2535 vma = NULL;
2536
2537 return vma;
2538}
2539
017b1660
MK
2540static inline bool range_in_vma(struct vm_area_struct *vma,
2541 unsigned long start, unsigned long end)
2542{
2543 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2544}
2545
bad849b3 2546#ifdef CONFIG_MMU
804af2cf 2547pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2548void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2549#else
2550static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2551{
2552 return __pgprot(0);
2553}
64e45507
PF
2554static inline void vma_set_page_prot(struct vm_area_struct *vma)
2555{
2556 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2557}
bad849b3
DH
2558#endif
2559
5877231f 2560#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2561unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2562 unsigned long start, unsigned long end);
2563#endif
2564
deceb6cd 2565struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2566int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2567 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2568int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
ae2b01f3 2569vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2570 unsigned long pfn);
f5e6d1d5
MW
2571vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2572 unsigned long pfn, pgprot_t pgprot);
5d747637 2573vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2574 pfn_t pfn);
ab77dab4
SJ
2575vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2576 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2577int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2578
1c8f4220
SJ
2579static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2580 unsigned long addr, struct page *page)
2581{
2582 int err = vm_insert_page(vma, addr, page);
2583
2584 if (err == -ENOMEM)
2585 return VM_FAULT_OOM;
2586 if (err < 0 && err != -EBUSY)
2587 return VM_FAULT_SIGBUS;
2588
2589 return VM_FAULT_NOPAGE;
2590}
2591
d97baf94
SJ
2592static inline vm_fault_t vmf_error(int err)
2593{
2594 if (err == -ENOMEM)
2595 return VM_FAULT_OOM;
2596 return VM_FAULT_SIGBUS;
2597}
2598
df06b37f
KB
2599struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2600 unsigned int foll_flags);
240aadee 2601
deceb6cd
HD
2602#define FOLL_WRITE 0x01 /* check pte is writable */
2603#define FOLL_TOUCH 0x02 /* mark page accessed */
2604#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2605#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2606#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2607#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2608 * and return without waiting upon it */
84d33df2 2609#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2610#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2611#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2612#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2613#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2614#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2615#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2616#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2617#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2618#define FOLL_ANON 0x8000 /* don't do file mappings */
1da177e4 2619
2b740303 2620static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2621{
2622 if (vm_fault & VM_FAULT_OOM)
2623 return -ENOMEM;
2624 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2625 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2626 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2627 return -EFAULT;
2628 return 0;
2629}
2630
2f569afd 2631typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2632 void *data);
2633extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2634 unsigned long size, pte_fn_t fn, void *data);
2635
1da177e4 2636
8823b1db
LA
2637#ifdef CONFIG_PAGE_POISONING
2638extern bool page_poisoning_enabled(void);
2639extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2640#else
2641static inline bool page_poisoning_enabled(void) { return false; }
2642static inline void kernel_poison_pages(struct page *page, int numpages,
2643 int enable) { }
2644#endif
2645
12d6f21e 2646#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2647extern bool _debug_pagealloc_enabled;
2648extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2649
2650static inline bool debug_pagealloc_enabled(void)
2651{
2652 return _debug_pagealloc_enabled;
2653}
2654
2655static inline void
2656kernel_map_pages(struct page *page, int numpages, int enable)
2657{
2658 if (!debug_pagealloc_enabled())
2659 return;
2660
2661 __kernel_map_pages(page, numpages, enable);
2662}
8a235efa
RW
2663#ifdef CONFIG_HIBERNATION
2664extern bool kernel_page_present(struct page *page);
40b44137
JK
2665#endif /* CONFIG_HIBERNATION */
2666#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2667static inline void
9858db50 2668kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2669#ifdef CONFIG_HIBERNATION
2670static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2671#endif /* CONFIG_HIBERNATION */
2672static inline bool debug_pagealloc_enabled(void)
2673{
2674 return false;
2675}
2676#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2677
a6c19dfe 2678#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2679extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2680extern int in_gate_area_no_mm(unsigned long addr);
2681extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2682#else
a6c19dfe
AL
2683static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2684{
2685 return NULL;
2686}
2687static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2688static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2689{
2690 return 0;
2691}
1da177e4
LT
2692#endif /* __HAVE_ARCH_GATE_AREA */
2693
44a70ade
MH
2694extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2695
146732ce
JT
2696#ifdef CONFIG_SYSCTL
2697extern int sysctl_drop_caches;
8d65af78 2698int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2699 void __user *, size_t *, loff_t *);
146732ce
JT
2700#endif
2701
cb731d6c
VD
2702void drop_slab(void);
2703void drop_slab_node(int nid);
9d0243bc 2704
7a9166e3
LY
2705#ifndef CONFIG_MMU
2706#define randomize_va_space 0
2707#else
a62eaf15 2708extern int randomize_va_space;
7a9166e3 2709#endif
a62eaf15 2710
045e72ac 2711const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2712void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2713
35fd1eb1 2714void *sparse_buffer_alloc(unsigned long size);
7b73d978
CH
2715struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2716 struct vmem_altmap *altmap);
29c71111 2717pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2718p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2719pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2720pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2721pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2722void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2723struct vmem_altmap;
a8fc357b
CH
2724void *vmemmap_alloc_block_buf(unsigned long size, int node);
2725void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2726void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2727int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2728 int node);
7b73d978
CH
2729int vmemmap_populate(unsigned long start, unsigned long end, int node,
2730 struct vmem_altmap *altmap);
c2b91e2e 2731void vmemmap_populate_print_last(void);
0197518c 2732#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2733void vmemmap_free(unsigned long start, unsigned long end,
2734 struct vmem_altmap *altmap);
0197518c 2735#endif
46723bfa 2736void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2737 unsigned long nr_pages);
6a46079c 2738
82ba011b
AK
2739enum mf_flags {
2740 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2741 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2742 MF_MUST_KILL = 1 << 2,
cf870c70 2743 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2744};
83b57531
EB
2745extern int memory_failure(unsigned long pfn, int flags);
2746extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 2747extern int unpoison_memory(unsigned long pfn);
ead07f6a 2748extern int get_hwpoison_page(struct page *page);
4e41a30c 2749#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2750extern int sysctl_memory_failure_early_kill;
2751extern int sysctl_memory_failure_recovery;
facb6011 2752extern void shake_page(struct page *p, int access);
5844a486 2753extern atomic_long_t num_poisoned_pages __read_mostly;
facb6011 2754extern int soft_offline_page(struct page *page, int flags);
6a46079c 2755
cc637b17
XX
2756
2757/*
2758 * Error handlers for various types of pages.
2759 */
cc3e2af4 2760enum mf_result {
cc637b17
XX
2761 MF_IGNORED, /* Error: cannot be handled */
2762 MF_FAILED, /* Error: handling failed */
2763 MF_DELAYED, /* Will be handled later */
2764 MF_RECOVERED, /* Successfully recovered */
2765};
2766
2767enum mf_action_page_type {
2768 MF_MSG_KERNEL,
2769 MF_MSG_KERNEL_HIGH_ORDER,
2770 MF_MSG_SLAB,
2771 MF_MSG_DIFFERENT_COMPOUND,
2772 MF_MSG_POISONED_HUGE,
2773 MF_MSG_HUGE,
2774 MF_MSG_FREE_HUGE,
31286a84 2775 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2776 MF_MSG_UNMAP_FAILED,
2777 MF_MSG_DIRTY_SWAPCACHE,
2778 MF_MSG_CLEAN_SWAPCACHE,
2779 MF_MSG_DIRTY_MLOCKED_LRU,
2780 MF_MSG_CLEAN_MLOCKED_LRU,
2781 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2782 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2783 MF_MSG_DIRTY_LRU,
2784 MF_MSG_CLEAN_LRU,
2785 MF_MSG_TRUNCATED_LRU,
2786 MF_MSG_BUDDY,
2787 MF_MSG_BUDDY_2ND,
6100e34b 2788 MF_MSG_DAX,
cc637b17
XX
2789 MF_MSG_UNKNOWN,
2790};
2791
47ad8475
AA
2792#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2793extern void clear_huge_page(struct page *page,
c79b57e4 2794 unsigned long addr_hint,
47ad8475
AA
2795 unsigned int pages_per_huge_page);
2796extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
2797 unsigned long addr_hint,
2798 struct vm_area_struct *vma,
47ad8475 2799 unsigned int pages_per_huge_page);
fa4d75c1
MK
2800extern long copy_huge_page_from_user(struct page *dst_page,
2801 const void __user *usr_src,
810a56b9
MK
2802 unsigned int pages_per_huge_page,
2803 bool allow_pagefault);
47ad8475
AA
2804#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2805
e30825f1 2806extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2807
c0a32fc5
SG
2808#ifdef CONFIG_DEBUG_PAGEALLOC
2809extern unsigned int _debug_guardpage_minorder;
e30825f1 2810extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2811
2812static inline unsigned int debug_guardpage_minorder(void)
2813{
2814 return _debug_guardpage_minorder;
2815}
2816
e30825f1
JK
2817static inline bool debug_guardpage_enabled(void)
2818{
2819 return _debug_guardpage_enabled;
2820}
2821
c0a32fc5
SG
2822static inline bool page_is_guard(struct page *page)
2823{
e30825f1
JK
2824 struct page_ext *page_ext;
2825
2826 if (!debug_guardpage_enabled())
2827 return false;
2828
2829 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2830 if (unlikely(!page_ext))
2831 return false;
2832
e30825f1 2833 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2834}
2835#else
2836static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2837static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2838static inline bool page_is_guard(struct page *page) { return false; }
2839#endif /* CONFIG_DEBUG_PAGEALLOC */
2840
f9872caf
CS
2841#if MAX_NUMNODES > 1
2842void __init setup_nr_node_ids(void);
2843#else
2844static inline void setup_nr_node_ids(void) {}
2845#endif
2846
1da177e4
LT
2847#endif /* __KERNEL__ */
2848#endif /* _LINUX_MM_H */