mm: remove redundant 'default n' from Kconfig-s
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
3b3b1a29 28#include <linux/overflow.h>
b5420237 29#include <linux/sizes.h>
1da177e4
LT
30
31struct mempolicy;
32struct anon_vma;
bf181b9f 33struct anon_vma_chain;
4e950f6f 34struct file_ra_state;
e8edc6e0 35struct user_struct;
4e950f6f 36struct writeback_control;
682aa8e1 37struct bdi_writeback;
1da177e4 38
597b7305
MH
39void init_mm_internals(void);
40
fccc9987 41#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 42extern unsigned long max_mapnr;
fccc9987
JL
43
44static inline void set_max_mapnr(unsigned long limit)
45{
46 max_mapnr = limit;
47}
48#else
49static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
50#endif
51
ca79b0c2
AK
52extern atomic_long_t _totalram_pages;
53static inline unsigned long totalram_pages(void)
54{
55 return (unsigned long)atomic_long_read(&_totalram_pages);
56}
57
58static inline void totalram_pages_inc(void)
59{
60 atomic_long_inc(&_totalram_pages);
61}
62
63static inline void totalram_pages_dec(void)
64{
65 atomic_long_dec(&_totalram_pages);
66}
67
68static inline void totalram_pages_add(long count)
69{
70 atomic_long_add(count, &_totalram_pages);
71}
72
73static inline void totalram_pages_set(long val)
74{
75 atomic_long_set(&_totalram_pages, val);
76}
77
1da177e4 78extern void * high_memory;
1da177e4
LT
79extern int page_cluster;
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
d07e2259
DC
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
1da177e4
LT
98#include <asm/page.h>
99#include <asm/pgtable.h>
100#include <asm/processor.h>
1da177e4 101
79442ed1
TC
102#ifndef __pa_symbol
103#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
104#endif
105
1dff8083
AB
106#ifndef page_to_virt
107#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
108#endif
109
568c5fe5
LA
110#ifndef lm_alias
111#define lm_alias(x) __va(__pa_symbol(x))
112#endif
113
593befa6
DD
114/*
115 * To prevent common memory management code establishing
116 * a zero page mapping on a read fault.
117 * This macro should be defined within <asm/pgtable.h>.
118 * s390 does this to prevent multiplexing of hardware bits
119 * related to the physical page in case of virtualization.
120 */
121#ifndef mm_forbids_zeropage
122#define mm_forbids_zeropage(X) (0)
123#endif
124
a4a3ede2
PT
125/*
126 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
127 * If an architecture decides to implement their own version of
128 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
129 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 130 */
5470dea4
AD
131#if BITS_PER_LONG == 64
132/* This function must be updated when the size of struct page grows above 80
133 * or reduces below 56. The idea that compiler optimizes out switch()
134 * statement, and only leaves move/store instructions. Also the compiler can
135 * combine write statments if they are both assignments and can be reordered,
136 * this can result in several of the writes here being dropped.
137 */
138#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
139static inline void __mm_zero_struct_page(struct page *page)
140{
141 unsigned long *_pp = (void *)page;
142
143 /* Check that struct page is either 56, 64, 72, or 80 bytes */
144 BUILD_BUG_ON(sizeof(struct page) & 7);
145 BUILD_BUG_ON(sizeof(struct page) < 56);
146 BUILD_BUG_ON(sizeof(struct page) > 80);
147
148 switch (sizeof(struct page)) {
149 case 80:
150 _pp[9] = 0; /* fallthrough */
151 case 72:
152 _pp[8] = 0; /* fallthrough */
153 case 64:
154 _pp[7] = 0; /* fallthrough */
155 case 56:
156 _pp[6] = 0;
157 _pp[5] = 0;
158 _pp[4] = 0;
159 _pp[3] = 0;
160 _pp[2] = 0;
161 _pp[1] = 0;
162 _pp[0] = 0;
163 }
164}
165#else
a4a3ede2
PT
166#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
167#endif
168
ea606cf5
AR
169/*
170 * Default maximum number of active map areas, this limits the number of vmas
171 * per mm struct. Users can overwrite this number by sysctl but there is a
172 * problem.
173 *
174 * When a program's coredump is generated as ELF format, a section is created
175 * per a vma. In ELF, the number of sections is represented in unsigned short.
176 * This means the number of sections should be smaller than 65535 at coredump.
177 * Because the kernel adds some informative sections to a image of program at
178 * generating coredump, we need some margin. The number of extra sections is
179 * 1-3 now and depends on arch. We use "5" as safe margin, here.
180 *
181 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
182 * not a hard limit any more. Although some userspace tools can be surprised by
183 * that.
184 */
185#define MAPCOUNT_ELF_CORE_MARGIN (5)
186#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
187
188extern int sysctl_max_map_count;
189
c9b1d098 190extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 191extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 192
49f0ce5f
JM
193extern int sysctl_overcommit_memory;
194extern int sysctl_overcommit_ratio;
195extern unsigned long sysctl_overcommit_kbytes;
196
197extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
198 size_t *, loff_t *);
199extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
200 size_t *, loff_t *);
201
1da177e4
LT
202#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
203
27ac792c
AR
204/* to align the pointer to the (next) page boundary */
205#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
206
0fa73b86 207/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 208#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 209
f86196ea
NB
210#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
211
1da177e4
LT
212/*
213 * Linux kernel virtual memory manager primitives.
214 * The idea being to have a "virtual" mm in the same way
215 * we have a virtual fs - giving a cleaner interface to the
216 * mm details, and allowing different kinds of memory mappings
217 * (from shared memory to executable loading to arbitrary
218 * mmap() functions).
219 */
220
490fc053 221struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
222struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
223void vm_area_free(struct vm_area_struct *);
c43692e8 224
1da177e4 225#ifndef CONFIG_MMU
8feae131
DH
226extern struct rb_root nommu_region_tree;
227extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
228
229extern unsigned int kobjsize(const void *objp);
230#endif
231
232/*
605d9288 233 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 234 * When changing, update also include/trace/events/mmflags.h
1da177e4 235 */
cc2383ec
KK
236#define VM_NONE 0x00000000
237
1da177e4
LT
238#define VM_READ 0x00000001 /* currently active flags */
239#define VM_WRITE 0x00000002
240#define VM_EXEC 0x00000004
241#define VM_SHARED 0x00000008
242
7e2cff42 243/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
244#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
245#define VM_MAYWRITE 0x00000020
246#define VM_MAYEXEC 0x00000040
247#define VM_MAYSHARE 0x00000080
248
249#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 250#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 251#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 252#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 253#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 254
1da177e4
LT
255#define VM_LOCKED 0x00002000
256#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
257
258 /* Used by sys_madvise() */
259#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
260#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
261
262#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
263#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 264#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 265#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 266#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 267#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 268#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 269#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 270#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 271#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 272
d9104d1c
CG
273#ifdef CONFIG_MEM_SOFT_DIRTY
274# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
275#else
276# define VM_SOFTDIRTY 0
277#endif
278
b379d790 279#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
280#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
281#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 282#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 283
63c17fb8
DH
284#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
285#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
286#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
287#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
288#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 289#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
290#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
291#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
292#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
293#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 294#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
295#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
296
5212213a 297#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
298# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
299# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 300# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
301# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
302# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
303#ifdef CONFIG_PPC
304# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
305#else
306# define VM_PKEY_BIT4 0
8f62c883 307#endif
5212213a
RP
308#endif /* CONFIG_ARCH_HAS_PKEYS */
309
310#if defined(CONFIG_X86)
311# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
312#elif defined(CONFIG_PPC)
313# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
314#elif defined(CONFIG_PARISC)
315# define VM_GROWSUP VM_ARCH_1
316#elif defined(CONFIG_IA64)
317# define VM_GROWSUP VM_ARCH_1
74a04967
KA
318#elif defined(CONFIG_SPARC64)
319# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
320# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
321#elif !defined(CONFIG_MMU)
322# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
323#endif
324
df3735c5 325#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 326/* MPX specific bounds table or bounds directory */
fa87b91c 327# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
328#else
329# define VM_MPX VM_NONE
4aae7e43
QR
330#endif
331
cc2383ec
KK
332#ifndef VM_GROWSUP
333# define VM_GROWSUP VM_NONE
334#endif
335
a8bef8ff
MG
336/* Bits set in the VMA until the stack is in its final location */
337#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
338
1da177e4
LT
339#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
340#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
341#endif
342
343#ifdef CONFIG_STACK_GROWSUP
30bdbb78 344#define VM_STACK VM_GROWSUP
1da177e4 345#else
30bdbb78 346#define VM_STACK VM_GROWSDOWN
1da177e4
LT
347#endif
348
30bdbb78
KK
349#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
350
b291f000 351/*
78f11a25
AA
352 * Special vmas that are non-mergable, non-mlock()able.
353 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 354 */
9050d7eb 355#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 356
a0715cc2
AT
357/* This mask defines which mm->def_flags a process can inherit its parent */
358#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
359
de60f5f1
EM
360/* This mask is used to clear all the VMA flags used by mlock */
361#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
362
2c2d57b5
KA
363/* Arch-specific flags to clear when updating VM flags on protection change */
364#ifndef VM_ARCH_CLEAR
365# define VM_ARCH_CLEAR VM_NONE
366#endif
367#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
368
1da177e4
LT
369/*
370 * mapping from the currently active vm_flags protection bits (the
371 * low four bits) to a page protection mask..
372 */
373extern pgprot_t protection_map[16];
374
d0217ac0 375#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
376#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
377#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
378#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
379#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
380#define FAULT_FLAG_TRIED 0x20 /* Second try */
381#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 382#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 383#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 384
282a8e03
RZ
385#define FAULT_FLAG_TRACE \
386 { FAULT_FLAG_WRITE, "WRITE" }, \
387 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
388 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
389 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
390 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
391 { FAULT_FLAG_TRIED, "TRIED" }, \
392 { FAULT_FLAG_USER, "USER" }, \
393 { FAULT_FLAG_REMOTE, "REMOTE" }, \
394 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
395
54cb8821 396/*
d0217ac0 397 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
398 * ->fault function. The vma's ->fault is responsible for returning a bitmask
399 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 400 *
c20cd45e
MH
401 * MM layer fills up gfp_mask for page allocations but fault handler might
402 * alter it if its implementation requires a different allocation context.
403 *
9b4bdd2f 404 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 405 */
d0217ac0 406struct vm_fault {
82b0f8c3 407 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 408 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 409 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 410 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 411 unsigned long address; /* Faulting virtual address */
82b0f8c3 412 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 413 * the 'address' */
a2d58167
DJ
414 pud_t *pud; /* Pointer to pud entry matching
415 * the 'address'
416 */
2994302b 417 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 418
3917048d
JK
419 struct page *cow_page; /* Page handler may use for COW fault */
420 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 421 struct page *page; /* ->fault handlers should return a
83c54070 422 * page here, unless VM_FAULT_NOPAGE
d0217ac0 423 * is set (which is also implied by
83c54070 424 * VM_FAULT_ERROR).
d0217ac0 425 */
82b0f8c3 426 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
427 pte_t *pte; /* Pointer to pte entry matching
428 * the 'address'. NULL if the page
429 * table hasn't been allocated.
430 */
431 spinlock_t *ptl; /* Page table lock.
432 * Protects pte page table if 'pte'
433 * is not NULL, otherwise pmd.
434 */
7267ec00
KS
435 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
436 * vm_ops->map_pages() calls
437 * alloc_set_pte() from atomic context.
438 * do_fault_around() pre-allocates
439 * page table to avoid allocation from
440 * atomic context.
441 */
54cb8821 442};
1da177e4 443
c791ace1
DJ
444/* page entry size for vm->huge_fault() */
445enum page_entry_size {
446 PE_SIZE_PTE = 0,
447 PE_SIZE_PMD,
448 PE_SIZE_PUD,
449};
450
1da177e4
LT
451/*
452 * These are the virtual MM functions - opening of an area, closing and
453 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 454 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
455 */
456struct vm_operations_struct {
457 void (*open)(struct vm_area_struct * area);
458 void (*close)(struct vm_area_struct * area);
31383c68 459 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 460 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
461 vm_fault_t (*fault)(struct vm_fault *vmf);
462 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
463 enum page_entry_size pe_size);
82b0f8c3 464 void (*map_pages)(struct vm_fault *vmf,
bae473a4 465 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 466 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
467
468 /* notification that a previously read-only page is about to become
469 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 470 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 471
dd906184 472 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 473 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 474
28b2ee20
RR
475 /* called by access_process_vm when get_user_pages() fails, typically
476 * for use by special VMAs that can switch between memory and hardware
477 */
478 int (*access)(struct vm_area_struct *vma, unsigned long addr,
479 void *buf, int len, int write);
78d683e8
AL
480
481 /* Called by the /proc/PID/maps code to ask the vma whether it
482 * has a special name. Returning non-NULL will also cause this
483 * vma to be dumped unconditionally. */
484 const char *(*name)(struct vm_area_struct *vma);
485
1da177e4 486#ifdef CONFIG_NUMA
a6020ed7
LS
487 /*
488 * set_policy() op must add a reference to any non-NULL @new mempolicy
489 * to hold the policy upon return. Caller should pass NULL @new to
490 * remove a policy and fall back to surrounding context--i.e. do not
491 * install a MPOL_DEFAULT policy, nor the task or system default
492 * mempolicy.
493 */
1da177e4 494 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
495
496 /*
497 * get_policy() op must add reference [mpol_get()] to any policy at
498 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
499 * in mm/mempolicy.c will do this automatically.
500 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
501 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
502 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
503 * must return NULL--i.e., do not "fallback" to task or system default
504 * policy.
505 */
1da177e4
LT
506 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
507 unsigned long addr);
508#endif
667a0a06
DV
509 /*
510 * Called by vm_normal_page() for special PTEs to find the
511 * page for @addr. This is useful if the default behavior
512 * (using pte_page()) would not find the correct page.
513 */
514 struct page *(*find_special_page)(struct vm_area_struct *vma,
515 unsigned long addr);
1da177e4
LT
516};
517
027232da
KS
518static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
519{
bfd40eaf
KS
520 static const struct vm_operations_struct dummy_vm_ops = {};
521
a670468f 522 memset(vma, 0, sizeof(*vma));
027232da 523 vma->vm_mm = mm;
bfd40eaf 524 vma->vm_ops = &dummy_vm_ops;
027232da
KS
525 INIT_LIST_HEAD(&vma->anon_vma_chain);
526}
527
bfd40eaf
KS
528static inline void vma_set_anonymous(struct vm_area_struct *vma)
529{
530 vma->vm_ops = NULL;
531}
532
8b11ec1b
LT
533/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
534#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
535
1da177e4
LT
536struct mmu_gather;
537struct inode;
538
349aef0b
AM
539#define page_private(page) ((page)->private)
540#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 541
5c7fb56e
DW
542#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
543static inline int pmd_devmap(pmd_t pmd)
544{
545 return 0;
546}
a00cc7d9
MW
547static inline int pud_devmap(pud_t pud)
548{
549 return 0;
550}
b59f65fa
KS
551static inline int pgd_devmap(pgd_t pgd)
552{
553 return 0;
554}
5c7fb56e
DW
555#endif
556
1da177e4
LT
557/*
558 * FIXME: take this include out, include page-flags.h in
559 * files which need it (119 of them)
560 */
561#include <linux/page-flags.h>
71e3aac0 562#include <linux/huge_mm.h>
1da177e4
LT
563
564/*
565 * Methods to modify the page usage count.
566 *
567 * What counts for a page usage:
568 * - cache mapping (page->mapping)
569 * - private data (page->private)
570 * - page mapped in a task's page tables, each mapping
571 * is counted separately
572 *
573 * Also, many kernel routines increase the page count before a critical
574 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
575 */
576
577/*
da6052f7 578 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 579 */
7c8ee9a8
NP
580static inline int put_page_testzero(struct page *page)
581{
fe896d18
JK
582 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
583 return page_ref_dec_and_test(page);
7c8ee9a8 584}
1da177e4
LT
585
586/*
7c8ee9a8
NP
587 * Try to grab a ref unless the page has a refcount of zero, return false if
588 * that is the case.
8e0861fa
AK
589 * This can be called when MMU is off so it must not access
590 * any of the virtual mappings.
1da177e4 591 */
7c8ee9a8
NP
592static inline int get_page_unless_zero(struct page *page)
593{
fe896d18 594 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 595}
1da177e4 596
53df8fdc 597extern int page_is_ram(unsigned long pfn);
124fe20d
DW
598
599enum {
600 REGION_INTERSECTS,
601 REGION_DISJOINT,
602 REGION_MIXED,
603};
604
1c29f25b
TK
605int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
606 unsigned long desc);
53df8fdc 607
48667e7a 608/* Support for virtually mapped pages */
b3bdda02
CL
609struct page *vmalloc_to_page(const void *addr);
610unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 611
0738c4bb
PM
612/*
613 * Determine if an address is within the vmalloc range
614 *
615 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
616 * is no special casing required.
617 */
bb00a789 618static inline bool is_vmalloc_addr(const void *x)
9e2779fa 619{
0738c4bb 620#ifdef CONFIG_MMU
9e2779fa
CL
621 unsigned long addr = (unsigned long)x;
622
623 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 624#else
bb00a789 625 return false;
8ca3ed87 626#endif
0738c4bb 627}
81ac3ad9
KH
628#ifdef CONFIG_MMU
629extern int is_vmalloc_or_module_addr(const void *x);
630#else
934831d0 631static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
632{
633 return 0;
634}
635#endif
9e2779fa 636
a7c3e901
MH
637extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
638static inline void *kvmalloc(size_t size, gfp_t flags)
639{
640 return kvmalloc_node(size, flags, NUMA_NO_NODE);
641}
642static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
643{
644 return kvmalloc_node(size, flags | __GFP_ZERO, node);
645}
646static inline void *kvzalloc(size_t size, gfp_t flags)
647{
648 return kvmalloc(size, flags | __GFP_ZERO);
649}
650
752ade68
MH
651static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
652{
3b3b1a29
KC
653 size_t bytes;
654
655 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
656 return NULL;
657
3b3b1a29 658 return kvmalloc(bytes, flags);
752ade68
MH
659}
660
1c542f38
KC
661static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
662{
663 return kvmalloc_array(n, size, flags | __GFP_ZERO);
664}
665
39f1f78d
AV
666extern void kvfree(const void *addr);
667
53f9263b
KS
668static inline atomic_t *compound_mapcount_ptr(struct page *page)
669{
670 return &page[1].compound_mapcount;
671}
672
673static inline int compound_mapcount(struct page *page)
674{
5f527c2b 675 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
676 page = compound_head(page);
677 return atomic_read(compound_mapcount_ptr(page)) + 1;
678}
679
70b50f94
AA
680/*
681 * The atomic page->_mapcount, starts from -1: so that transitions
682 * both from it and to it can be tracked, using atomic_inc_and_test
683 * and atomic_add_negative(-1).
684 */
22b751c3 685static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
686{
687 atomic_set(&(page)->_mapcount, -1);
688}
689
b20ce5e0
KS
690int __page_mapcount(struct page *page);
691
70b50f94
AA
692static inline int page_mapcount(struct page *page)
693{
1d148e21 694 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 695
b20ce5e0
KS
696 if (unlikely(PageCompound(page)))
697 return __page_mapcount(page);
698 return atomic_read(&page->_mapcount) + 1;
699}
700
701#ifdef CONFIG_TRANSPARENT_HUGEPAGE
702int total_mapcount(struct page *page);
6d0a07ed 703int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
704#else
705static inline int total_mapcount(struct page *page)
706{
707 return page_mapcount(page);
70b50f94 708}
6d0a07ed
AA
709static inline int page_trans_huge_mapcount(struct page *page,
710 int *total_mapcount)
711{
712 int mapcount = page_mapcount(page);
713 if (total_mapcount)
714 *total_mapcount = mapcount;
715 return mapcount;
716}
b20ce5e0 717#endif
70b50f94 718
b49af68f
CL
719static inline struct page *virt_to_head_page(const void *x)
720{
721 struct page *page = virt_to_page(x);
ccaafd7f 722
1d798ca3 723 return compound_head(page);
b49af68f
CL
724}
725
ddc58f27
KS
726void __put_page(struct page *page);
727
1d7ea732 728void put_pages_list(struct list_head *pages);
1da177e4 729
8dfcc9ba 730void split_page(struct page *page, unsigned int order);
8dfcc9ba 731
33f2ef89
AW
732/*
733 * Compound pages have a destructor function. Provide a
734 * prototype for that function and accessor functions.
f1e61557 735 * These are _only_ valid on the head of a compound page.
33f2ef89 736 */
f1e61557
KS
737typedef void compound_page_dtor(struct page *);
738
739/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
740enum compound_dtor_id {
741 NULL_COMPOUND_DTOR,
742 COMPOUND_PAGE_DTOR,
743#ifdef CONFIG_HUGETLB_PAGE
744 HUGETLB_PAGE_DTOR,
9a982250
KS
745#endif
746#ifdef CONFIG_TRANSPARENT_HUGEPAGE
747 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
748#endif
749 NR_COMPOUND_DTORS,
750};
751extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
752
753static inline void set_compound_page_dtor(struct page *page,
f1e61557 754 enum compound_dtor_id compound_dtor)
33f2ef89 755{
f1e61557
KS
756 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
757 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
758}
759
760static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
761{
f1e61557
KS
762 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
763 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
764}
765
d00181b9 766static inline unsigned int compound_order(struct page *page)
d85f3385 767{
6d777953 768 if (!PageHead(page))
d85f3385 769 return 0;
e4b294c2 770 return page[1].compound_order;
d85f3385
CL
771}
772
f1e61557 773static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 774{
e4b294c2 775 page[1].compound_order = order;
d85f3385
CL
776}
777
9a982250
KS
778void free_compound_page(struct page *page);
779
3dece370 780#ifdef CONFIG_MMU
14fd403f
AA
781/*
782 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
783 * servicing faults for write access. In the normal case, do always want
784 * pte_mkwrite. But get_user_pages can cause write faults for mappings
785 * that do not have writing enabled, when used by access_process_vm.
786 */
787static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
788{
789 if (likely(vma->vm_flags & VM_WRITE))
790 pte = pte_mkwrite(pte);
791 return pte;
792}
8c6e50b0 793
2b740303 794vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 795 struct page *page);
2b740303
SJ
796vm_fault_t finish_fault(struct vm_fault *vmf);
797vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 798#endif
14fd403f 799
1da177e4
LT
800/*
801 * Multiple processes may "see" the same page. E.g. for untouched
802 * mappings of /dev/null, all processes see the same page full of
803 * zeroes, and text pages of executables and shared libraries have
804 * only one copy in memory, at most, normally.
805 *
806 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
807 * page_count() == 0 means the page is free. page->lru is then used for
808 * freelist management in the buddy allocator.
da6052f7 809 * page_count() > 0 means the page has been allocated.
1da177e4 810 *
da6052f7
NP
811 * Pages are allocated by the slab allocator in order to provide memory
812 * to kmalloc and kmem_cache_alloc. In this case, the management of the
813 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
814 * unless a particular usage is carefully commented. (the responsibility of
815 * freeing the kmalloc memory is the caller's, of course).
1da177e4 816 *
da6052f7
NP
817 * A page may be used by anyone else who does a __get_free_page().
818 * In this case, page_count still tracks the references, and should only
819 * be used through the normal accessor functions. The top bits of page->flags
820 * and page->virtual store page management information, but all other fields
821 * are unused and could be used privately, carefully. The management of this
822 * page is the responsibility of the one who allocated it, and those who have
823 * subsequently been given references to it.
824 *
825 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
826 * managed by the Linux memory manager: I/O, buffers, swapping etc.
827 * The following discussion applies only to them.
828 *
da6052f7
NP
829 * A pagecache page contains an opaque `private' member, which belongs to the
830 * page's address_space. Usually, this is the address of a circular list of
831 * the page's disk buffers. PG_private must be set to tell the VM to call
832 * into the filesystem to release these pages.
1da177e4 833 *
da6052f7
NP
834 * A page may belong to an inode's memory mapping. In this case, page->mapping
835 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 836 * in units of PAGE_SIZE.
1da177e4 837 *
da6052f7
NP
838 * If pagecache pages are not associated with an inode, they are said to be
839 * anonymous pages. These may become associated with the swapcache, and in that
840 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 841 *
da6052f7
NP
842 * In either case (swapcache or inode backed), the pagecache itself holds one
843 * reference to the page. Setting PG_private should also increment the
844 * refcount. The each user mapping also has a reference to the page.
1da177e4 845 *
da6052f7 846 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 847 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
848 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
849 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 850 *
da6052f7 851 * All pagecache pages may be subject to I/O:
1da177e4
LT
852 * - inode pages may need to be read from disk,
853 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
854 * to be written back to the inode on disk,
855 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
856 * modified may need to be swapped out to swap space and (later) to be read
857 * back into memory.
1da177e4
LT
858 */
859
860/*
861 * The zone field is never updated after free_area_init_core()
862 * sets it, so none of the operations on it need to be atomic.
1da177e4 863 */
348f8b6c 864
90572890 865/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 866#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
867#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
868#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 869#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 870#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 871
348f8b6c 872/*
25985edc 873 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
874 * sections we define the shift as 0; that plus a 0 mask ensures
875 * the compiler will optimise away reference to them.
876 */
d41dee36
AW
877#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
878#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
879#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 880#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 881#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 882
bce54bbf
WD
883/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
884#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 885#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
886#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
887 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 888#else
89689ae7 889#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
890#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
891 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
892#endif
893
bd8029b6 894#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 895
9223b419
CL
896#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
897#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
898#endif
899
d41dee36
AW
900#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
901#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
902#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 903#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 904#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 905#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 906
33dd4e0e 907static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 908{
348f8b6c 909 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 910}
1da177e4 911
260ae3f7
DW
912#ifdef CONFIG_ZONE_DEVICE
913static inline bool is_zone_device_page(const struct page *page)
914{
915 return page_zonenum(page) == ZONE_DEVICE;
916}
966cf44f
AD
917extern void memmap_init_zone_device(struct zone *, unsigned long,
918 unsigned long, struct dev_pagemap *);
260ae3f7
DW
919#else
920static inline bool is_zone_device_page(const struct page *page)
921{
922 return false;
923}
7b2d55d2 924#endif
5042db43 925
e7638488
DW
926#ifdef CONFIG_DEV_PAGEMAP_OPS
927void dev_pagemap_get_ops(void);
928void dev_pagemap_put_ops(void);
929void __put_devmap_managed_page(struct page *page);
930DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
931static inline bool put_devmap_managed_page(struct page *page)
932{
933 if (!static_branch_unlikely(&devmap_managed_key))
934 return false;
935 if (!is_zone_device_page(page))
936 return false;
937 switch (page->pgmap->type) {
938 case MEMORY_DEVICE_PRIVATE:
939 case MEMORY_DEVICE_PUBLIC:
940 case MEMORY_DEVICE_FS_DAX:
941 __put_devmap_managed_page(page);
942 return true;
943 default:
944 break;
945 }
946 return false;
947}
948
949static inline bool is_device_private_page(const struct page *page)
950{
951 return is_zone_device_page(page) &&
952 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
953}
954
955static inline bool is_device_public_page(const struct page *page)
956{
957 return is_zone_device_page(page) &&
958 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
959}
960
52916982
LG
961#ifdef CONFIG_PCI_P2PDMA
962static inline bool is_pci_p2pdma_page(const struct page *page)
963{
964 return is_zone_device_page(page) &&
965 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
966}
967#else /* CONFIG_PCI_P2PDMA */
968static inline bool is_pci_p2pdma_page(const struct page *page)
969{
970 return false;
971}
972#endif /* CONFIG_PCI_P2PDMA */
973
e7638488
DW
974#else /* CONFIG_DEV_PAGEMAP_OPS */
975static inline void dev_pagemap_get_ops(void)
5042db43 976{
5042db43 977}
e7638488
DW
978
979static inline void dev_pagemap_put_ops(void)
980{
981}
982
983static inline bool put_devmap_managed_page(struct page *page)
984{
985 return false;
986}
987
6b368cd4
JG
988static inline bool is_device_private_page(const struct page *page)
989{
990 return false;
991}
e7638488 992
6b368cd4
JG
993static inline bool is_device_public_page(const struct page *page)
994{
995 return false;
996}
52916982
LG
997
998static inline bool is_pci_p2pdma_page(const struct page *page)
999{
1000 return false;
1001}
e7638488 1002#endif /* CONFIG_DEV_PAGEMAP_OPS */
7b2d55d2 1003
f958d7b5
LT
1004/* 127: arbitrary random number, small enough to assemble well */
1005#define page_ref_zero_or_close_to_overflow(page) \
1006 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1007
3565fce3
DW
1008static inline void get_page(struct page *page)
1009{
1010 page = compound_head(page);
1011 /*
1012 * Getting a normal page or the head of a compound page
0139aa7b 1013 * requires to already have an elevated page->_refcount.
3565fce3 1014 */
f958d7b5 1015 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1016 page_ref_inc(page);
3565fce3
DW
1017}
1018
88b1a17d
LT
1019static inline __must_check bool try_get_page(struct page *page)
1020{
1021 page = compound_head(page);
1022 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1023 return false;
fe896d18 1024 page_ref_inc(page);
88b1a17d 1025 return true;
3565fce3
DW
1026}
1027
1028static inline void put_page(struct page *page)
1029{
1030 page = compound_head(page);
1031
7b2d55d2 1032 /*
e7638488
DW
1033 * For devmap managed pages we need to catch refcount transition from
1034 * 2 to 1, when refcount reach one it means the page is free and we
1035 * need to inform the device driver through callback. See
7b2d55d2
JG
1036 * include/linux/memremap.h and HMM for details.
1037 */
e7638488 1038 if (put_devmap_managed_page(page))
7b2d55d2 1039 return;
7b2d55d2 1040
3565fce3
DW
1041 if (put_page_testzero(page))
1042 __put_page(page);
3565fce3
DW
1043}
1044
fc1d8e7c
JH
1045/**
1046 * put_user_page() - release a gup-pinned page
1047 * @page: pointer to page to be released
1048 *
1049 * Pages that were pinned via get_user_pages*() must be released via
1050 * either put_user_page(), or one of the put_user_pages*() routines
1051 * below. This is so that eventually, pages that are pinned via
1052 * get_user_pages*() can be separately tracked and uniquely handled. In
1053 * particular, interactions with RDMA and filesystems need special
1054 * handling.
1055 *
1056 * put_user_page() and put_page() are not interchangeable, despite this early
1057 * implementation that makes them look the same. put_user_page() calls must
1058 * be perfectly matched up with get_user_page() calls.
1059 */
1060static inline void put_user_page(struct page *page)
1061{
1062 put_page(page);
1063}
1064
1065void put_user_pages_dirty(struct page **pages, unsigned long npages);
1066void put_user_pages_dirty_lock(struct page **pages, unsigned long npages);
1067void put_user_pages(struct page **pages, unsigned long npages);
1068
9127ab4f
CS
1069#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1070#define SECTION_IN_PAGE_FLAGS
1071#endif
1072
89689ae7 1073/*
7a8010cd
VB
1074 * The identification function is mainly used by the buddy allocator for
1075 * determining if two pages could be buddies. We are not really identifying
1076 * the zone since we could be using the section number id if we do not have
1077 * node id available in page flags.
1078 * We only guarantee that it will return the same value for two combinable
1079 * pages in a zone.
89689ae7 1080 */
cb2b95e1
AW
1081static inline int page_zone_id(struct page *page)
1082{
89689ae7 1083 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1084}
1085
89689ae7 1086#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1087extern int page_to_nid(const struct page *page);
89689ae7 1088#else
33dd4e0e 1089static inline int page_to_nid(const struct page *page)
d41dee36 1090{
f165b378
PT
1091 struct page *p = (struct page *)page;
1092
1093 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1094}
89689ae7
CL
1095#endif
1096
57e0a030 1097#ifdef CONFIG_NUMA_BALANCING
90572890 1098static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1099{
90572890 1100 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1101}
1102
90572890 1103static inline int cpupid_to_pid(int cpupid)
57e0a030 1104{
90572890 1105 return cpupid & LAST__PID_MASK;
57e0a030 1106}
b795854b 1107
90572890 1108static inline int cpupid_to_cpu(int cpupid)
b795854b 1109{
90572890 1110 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1111}
1112
90572890 1113static inline int cpupid_to_nid(int cpupid)
b795854b 1114{
90572890 1115 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1116}
1117
90572890 1118static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1119{
90572890 1120 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1121}
1122
90572890 1123static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1124{
90572890 1125 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1126}
1127
8c8a743c
PZ
1128static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1129{
1130 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1131}
1132
1133#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1134#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1135static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1136{
1ae71d03 1137 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1138}
90572890
PZ
1139
1140static inline int page_cpupid_last(struct page *page)
1141{
1142 return page->_last_cpupid;
1143}
1144static inline void page_cpupid_reset_last(struct page *page)
b795854b 1145{
1ae71d03 1146 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1147}
1148#else
90572890 1149static inline int page_cpupid_last(struct page *page)
75980e97 1150{
90572890 1151 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1152}
1153
90572890 1154extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1155
90572890 1156static inline void page_cpupid_reset_last(struct page *page)
75980e97 1157{
09940a4f 1158 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1159}
90572890
PZ
1160#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1161#else /* !CONFIG_NUMA_BALANCING */
1162static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1163{
90572890 1164 return page_to_nid(page); /* XXX */
57e0a030
MG
1165}
1166
90572890 1167static inline int page_cpupid_last(struct page *page)
57e0a030 1168{
90572890 1169 return page_to_nid(page); /* XXX */
57e0a030
MG
1170}
1171
90572890 1172static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1173{
1174 return -1;
1175}
1176
90572890 1177static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1178{
1179 return -1;
1180}
1181
90572890 1182static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1183{
1184 return -1;
1185}
1186
90572890
PZ
1187static inline int cpu_pid_to_cpupid(int nid, int pid)
1188{
1189 return -1;
1190}
1191
1192static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1193{
1194 return 1;
1195}
1196
90572890 1197static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1198{
1199}
8c8a743c
PZ
1200
1201static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1202{
1203 return false;
1204}
90572890 1205#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1206
2813b9c0
AK
1207#ifdef CONFIG_KASAN_SW_TAGS
1208static inline u8 page_kasan_tag(const struct page *page)
1209{
1210 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1211}
1212
1213static inline void page_kasan_tag_set(struct page *page, u8 tag)
1214{
1215 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1216 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1217}
1218
1219static inline void page_kasan_tag_reset(struct page *page)
1220{
1221 page_kasan_tag_set(page, 0xff);
1222}
1223#else
1224static inline u8 page_kasan_tag(const struct page *page)
1225{
1226 return 0xff;
1227}
1228
1229static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1230static inline void page_kasan_tag_reset(struct page *page) { }
1231#endif
1232
33dd4e0e 1233static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1234{
1235 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1236}
1237
75ef7184
MG
1238static inline pg_data_t *page_pgdat(const struct page *page)
1239{
1240 return NODE_DATA(page_to_nid(page));
1241}
1242
9127ab4f 1243#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1244static inline void set_page_section(struct page *page, unsigned long section)
1245{
1246 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1247 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1248}
1249
aa462abe 1250static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1251{
1252 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1253}
308c05e3 1254#endif
d41dee36 1255
2f1b6248 1256static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1257{
1258 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1259 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1260}
2f1b6248 1261
348f8b6c
DH
1262static inline void set_page_node(struct page *page, unsigned long node)
1263{
1264 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1265 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1266}
89689ae7 1267
2f1b6248 1268static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1269 unsigned long node, unsigned long pfn)
1da177e4 1270{
348f8b6c
DH
1271 set_page_zone(page, zone);
1272 set_page_node(page, node);
9127ab4f 1273#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1274 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1275#endif
1da177e4
LT
1276}
1277
0610c25d
GT
1278#ifdef CONFIG_MEMCG
1279static inline struct mem_cgroup *page_memcg(struct page *page)
1280{
1281 return page->mem_cgroup;
1282}
55779ec7
JW
1283static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1284{
1285 WARN_ON_ONCE(!rcu_read_lock_held());
1286 return READ_ONCE(page->mem_cgroup);
1287}
0610c25d
GT
1288#else
1289static inline struct mem_cgroup *page_memcg(struct page *page)
1290{
1291 return NULL;
1292}
55779ec7
JW
1293static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1294{
1295 WARN_ON_ONCE(!rcu_read_lock_held());
1296 return NULL;
1297}
0610c25d
GT
1298#endif
1299
f6ac2354
CL
1300/*
1301 * Some inline functions in vmstat.h depend on page_zone()
1302 */
1303#include <linux/vmstat.h>
1304
33dd4e0e 1305static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1306{
1dff8083 1307 return page_to_virt(page);
1da177e4
LT
1308}
1309
1310#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1311#define HASHED_PAGE_VIRTUAL
1312#endif
1313
1314#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1315static inline void *page_address(const struct page *page)
1316{
1317 return page->virtual;
1318}
1319static inline void set_page_address(struct page *page, void *address)
1320{
1321 page->virtual = address;
1322}
1da177e4
LT
1323#define page_address_init() do { } while(0)
1324#endif
1325
1326#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1327void *page_address(const struct page *page);
1da177e4
LT
1328void set_page_address(struct page *page, void *virtual);
1329void page_address_init(void);
1330#endif
1331
1332#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1333#define page_address(page) lowmem_page_address(page)
1334#define set_page_address(page, address) do { } while(0)
1335#define page_address_init() do { } while(0)
1336#endif
1337
e39155ea
KS
1338extern void *page_rmapping(struct page *page);
1339extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1340extern struct address_space *page_mapping(struct page *page);
1da177e4 1341
f981c595
MG
1342extern struct address_space *__page_file_mapping(struct page *);
1343
1344static inline
1345struct address_space *page_file_mapping(struct page *page)
1346{
1347 if (unlikely(PageSwapCache(page)))
1348 return __page_file_mapping(page);
1349
1350 return page->mapping;
1351}
1352
f6ab1f7f
HY
1353extern pgoff_t __page_file_index(struct page *page);
1354
1da177e4
LT
1355/*
1356 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1357 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1358 */
1359static inline pgoff_t page_index(struct page *page)
1360{
1361 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1362 return __page_file_index(page);
1da177e4
LT
1363 return page->index;
1364}
1365
1aa8aea5 1366bool page_mapped(struct page *page);
bda807d4 1367struct address_space *page_mapping(struct page *page);
cb9f753a 1368struct address_space *page_mapping_file(struct page *page);
1da177e4 1369
2f064f34
MH
1370/*
1371 * Return true only if the page has been allocated with
1372 * ALLOC_NO_WATERMARKS and the low watermark was not
1373 * met implying that the system is under some pressure.
1374 */
1375static inline bool page_is_pfmemalloc(struct page *page)
1376{
1377 /*
1378 * Page index cannot be this large so this must be
1379 * a pfmemalloc page.
1380 */
1381 return page->index == -1UL;
1382}
1383
1384/*
1385 * Only to be called by the page allocator on a freshly allocated
1386 * page.
1387 */
1388static inline void set_page_pfmemalloc(struct page *page)
1389{
1390 page->index = -1UL;
1391}
1392
1393static inline void clear_page_pfmemalloc(struct page *page)
1394{
1395 page->index = 0;
1396}
1397
1c0fe6e3
NP
1398/*
1399 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1400 */
1401extern void pagefault_out_of_memory(void);
1402
1da177e4
LT
1403#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1404
ddd588b5 1405/*
7bf02ea2 1406 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1407 * various contexts.
1408 */
4b59e6c4 1409#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1410
9af744d7 1411extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1412
7f43add4 1413extern bool can_do_mlock(void);
1da177e4
LT
1414extern int user_shm_lock(size_t, struct user_struct *);
1415extern void user_shm_unlock(size_t, struct user_struct *);
1416
1417/*
1418 * Parameter block passed down to zap_pte_range in exceptional cases.
1419 */
1420struct zap_details {
1da177e4
LT
1421 struct address_space *check_mapping; /* Check page->mapping if set */
1422 pgoff_t first_index; /* Lowest page->index to unmap */
1423 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1424};
1425
df6ad698
JG
1426struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1427 pte_t pte, bool with_public_device);
1428#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1429
28093f9f
GS
1430struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1431 pmd_t pmd);
7e675137 1432
27d036e3
LR
1433void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1434 unsigned long size);
14f5ff5d 1435void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1436 unsigned long size);
4f74d2c8
LT
1437void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1438 unsigned long start, unsigned long end);
e6473092
MM
1439
1440/**
1441 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1442 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1443 * this handler should only handle pud_trans_huge() puds.
1444 * the pmd_entry or pte_entry callbacks will be used for
1445 * regular PUDs.
e6473092 1446 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1447 * this handler is required to be able to handle
1448 * pmd_trans_huge() pmds. They may simply choose to
1449 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1450 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1451 * @pte_hole: if set, called for each hole at all levels
5dc37642 1452 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1453 * @test_walk: caller specific callback function to determine whether
f7e2355f 1454 * we walk over the current vma or not. Returning 0
fafaa426
NH
1455 * value means "do page table walk over the current vma,"
1456 * and a negative one means "abort current page table walk
f7e2355f 1457 * right now." 1 means "skip the current vma."
fafaa426
NH
1458 * @mm: mm_struct representing the target process of page table walk
1459 * @vma: vma currently walked (NULL if walking outside vmas)
1460 * @private: private data for callbacks' usage
e6473092 1461 *
fafaa426 1462 * (see the comment on walk_page_range() for more details)
e6473092
MM
1463 */
1464struct mm_walk {
a00cc7d9
MW
1465 int (*pud_entry)(pud_t *pud, unsigned long addr,
1466 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1467 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1468 unsigned long next, struct mm_walk *walk);
1469 int (*pte_entry)(pte_t *pte, unsigned long addr,
1470 unsigned long next, struct mm_walk *walk);
1471 int (*pte_hole)(unsigned long addr, unsigned long next,
1472 struct mm_walk *walk);
1473 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1474 unsigned long addr, unsigned long next,
1475 struct mm_walk *walk);
fafaa426
NH
1476 int (*test_walk)(unsigned long addr, unsigned long next,
1477 struct mm_walk *walk);
2165009b 1478 struct mm_struct *mm;
fafaa426 1479 struct vm_area_struct *vma;
2165009b 1480 void *private;
e6473092
MM
1481};
1482
ac46d4f3
JG
1483struct mmu_notifier_range;
1484
2165009b
DH
1485int walk_page_range(unsigned long addr, unsigned long end,
1486 struct mm_walk *walk);
900fc5f1 1487int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1488void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1489 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1490int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1491 struct vm_area_struct *vma);
09796395 1492int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1493 struct mmu_notifier_range *range,
1494 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1495int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1496 unsigned long *pfn);
d87fe660 1497int follow_phys(struct vm_area_struct *vma, unsigned long address,
1498 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1499int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1500 void *buf, int len, int write);
1da177e4 1501
7caef267 1502extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1503extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1504void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1505void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1506int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1507int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1508int invalidate_inode_page(struct page *page);
1509
7ee1dd3f 1510#ifdef CONFIG_MMU
2b740303
SJ
1511extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1512 unsigned long address, unsigned int flags);
5c723ba5 1513extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1514 unsigned long address, unsigned int fault_flags,
1515 bool *unlocked);
977fbdcd
MW
1516void unmap_mapping_pages(struct address_space *mapping,
1517 pgoff_t start, pgoff_t nr, bool even_cows);
1518void unmap_mapping_range(struct address_space *mapping,
1519 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1520#else
2b740303 1521static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
dcddffd4 1522 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1523{
1524 /* should never happen if there's no MMU */
1525 BUG();
1526 return VM_FAULT_SIGBUS;
1527}
5c723ba5
PZ
1528static inline int fixup_user_fault(struct task_struct *tsk,
1529 struct mm_struct *mm, unsigned long address,
4a9e1cda 1530 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1531{
1532 /* should never happen if there's no MMU */
1533 BUG();
1534 return -EFAULT;
1535}
977fbdcd
MW
1536static inline void unmap_mapping_pages(struct address_space *mapping,
1537 pgoff_t start, pgoff_t nr, bool even_cows) { }
1538static inline void unmap_mapping_range(struct address_space *mapping,
1539 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1540#endif
f33ea7f4 1541
977fbdcd
MW
1542static inline void unmap_shared_mapping_range(struct address_space *mapping,
1543 loff_t const holebegin, loff_t const holelen)
1544{
1545 unmap_mapping_range(mapping, holebegin, holelen, 0);
1546}
1547
1548extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1549 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1550extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1551 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1552extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1553 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1554
1e987790
DH
1555long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1556 unsigned long start, unsigned long nr_pages,
9beae1ea 1557 unsigned int gup_flags, struct page **pages,
5b56d49f 1558 struct vm_area_struct **vmas, int *locked);
c12d2da5 1559long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1560 unsigned int gup_flags, struct page **pages,
cde70140 1561 struct vm_area_struct **vmas);
c12d2da5 1562long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1563 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1564long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1565 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1566
73b0140b
IW
1567int get_user_pages_fast(unsigned long start, int nr_pages,
1568 unsigned int gup_flags, struct page **pages);
8025e5dd
JK
1569
1570/* Container for pinned pfns / pages */
1571struct frame_vector {
1572 unsigned int nr_allocated; /* Number of frames we have space for */
1573 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1574 bool got_ref; /* Did we pin pages by getting page ref? */
1575 bool is_pfns; /* Does array contain pages or pfns? */
1576 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1577 * pfns_vector_pages() or pfns_vector_pfns()
1578 * for access */
1579};
1580
1581struct frame_vector *frame_vector_create(unsigned int nr_frames);
1582void frame_vector_destroy(struct frame_vector *vec);
1583int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1584 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1585void put_vaddr_frames(struct frame_vector *vec);
1586int frame_vector_to_pages(struct frame_vector *vec);
1587void frame_vector_to_pfns(struct frame_vector *vec);
1588
1589static inline unsigned int frame_vector_count(struct frame_vector *vec)
1590{
1591 return vec->nr_frames;
1592}
1593
1594static inline struct page **frame_vector_pages(struct frame_vector *vec)
1595{
1596 if (vec->is_pfns) {
1597 int err = frame_vector_to_pages(vec);
1598
1599 if (err)
1600 return ERR_PTR(err);
1601 }
1602 return (struct page **)(vec->ptrs);
1603}
1604
1605static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1606{
1607 if (!vec->is_pfns)
1608 frame_vector_to_pfns(vec);
1609 return (unsigned long *)(vec->ptrs);
1610}
1611
18022c5d
MG
1612struct kvec;
1613int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1614 struct page **pages);
1615int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1616struct page *get_dump_page(unsigned long addr);
1da177e4 1617
cf9a2ae8 1618extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1619extern void do_invalidatepage(struct page *page, unsigned int offset,
1620 unsigned int length);
cf9a2ae8 1621
f82b3764 1622void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1623int __set_page_dirty_nobuffers(struct page *page);
76719325 1624int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1625int redirty_page_for_writepage(struct writeback_control *wbc,
1626 struct page *page);
62cccb8c 1627void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1628void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1629 struct bdi_writeback *wb);
b3c97528 1630int set_page_dirty(struct page *page);
1da177e4 1631int set_page_dirty_lock(struct page *page);
736304f3
JK
1632void __cancel_dirty_page(struct page *page);
1633static inline void cancel_dirty_page(struct page *page)
1634{
1635 /* Avoid atomic ops, locking, etc. when not actually needed. */
1636 if (PageDirty(page))
1637 __cancel_dirty_page(page);
1638}
1da177e4 1639int clear_page_dirty_for_io(struct page *page);
b9ea2515 1640
a9090253 1641int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1642
b5330628
ON
1643static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1644{
1645 return !vma->vm_ops;
1646}
1647
b0506e48
MR
1648#ifdef CONFIG_SHMEM
1649/*
1650 * The vma_is_shmem is not inline because it is used only by slow
1651 * paths in userfault.
1652 */
1653bool vma_is_shmem(struct vm_area_struct *vma);
1654#else
1655static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1656#endif
1657
d17af505 1658int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1659
b6a2fea3
OW
1660extern unsigned long move_page_tables(struct vm_area_struct *vma,
1661 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1662 unsigned long new_addr, unsigned long len,
1663 bool need_rmap_locks);
7da4d641
PZ
1664extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1665 unsigned long end, pgprot_t newprot,
4b10e7d5 1666 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1667extern int mprotect_fixup(struct vm_area_struct *vma,
1668 struct vm_area_struct **pprev, unsigned long start,
1669 unsigned long end, unsigned long newflags);
1da177e4 1670
465a454f
PZ
1671/*
1672 * doesn't attempt to fault and will return short.
1673 */
1674int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1675 struct page **pages);
d559db08
KH
1676/*
1677 * per-process(per-mm_struct) statistics.
1678 */
d559db08
KH
1679static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1680{
69c97823
KK
1681 long val = atomic_long_read(&mm->rss_stat.count[member]);
1682
1683#ifdef SPLIT_RSS_COUNTING
1684 /*
1685 * counter is updated in asynchronous manner and may go to minus.
1686 * But it's never be expected number for users.
1687 */
1688 if (val < 0)
1689 val = 0;
172703b0 1690#endif
69c97823
KK
1691 return (unsigned long)val;
1692}
d559db08
KH
1693
1694static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1695{
172703b0 1696 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1697}
1698
1699static inline void inc_mm_counter(struct mm_struct *mm, int member)
1700{
172703b0 1701 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1702}
1703
1704static inline void dec_mm_counter(struct mm_struct *mm, int member)
1705{
172703b0 1706 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1707}
1708
eca56ff9
JM
1709/* Optimized variant when page is already known not to be PageAnon */
1710static inline int mm_counter_file(struct page *page)
1711{
1712 if (PageSwapBacked(page))
1713 return MM_SHMEMPAGES;
1714 return MM_FILEPAGES;
1715}
1716
1717static inline int mm_counter(struct page *page)
1718{
1719 if (PageAnon(page))
1720 return MM_ANONPAGES;
1721 return mm_counter_file(page);
1722}
1723
d559db08
KH
1724static inline unsigned long get_mm_rss(struct mm_struct *mm)
1725{
1726 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1727 get_mm_counter(mm, MM_ANONPAGES) +
1728 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1729}
1730
1731static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1732{
1733 return max(mm->hiwater_rss, get_mm_rss(mm));
1734}
1735
1736static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1737{
1738 return max(mm->hiwater_vm, mm->total_vm);
1739}
1740
1741static inline void update_hiwater_rss(struct mm_struct *mm)
1742{
1743 unsigned long _rss = get_mm_rss(mm);
1744
1745 if ((mm)->hiwater_rss < _rss)
1746 (mm)->hiwater_rss = _rss;
1747}
1748
1749static inline void update_hiwater_vm(struct mm_struct *mm)
1750{
1751 if (mm->hiwater_vm < mm->total_vm)
1752 mm->hiwater_vm = mm->total_vm;
1753}
1754
695f0559
PC
1755static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1756{
1757 mm->hiwater_rss = get_mm_rss(mm);
1758}
1759
d559db08
KH
1760static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1761 struct mm_struct *mm)
1762{
1763 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1764
1765 if (*maxrss < hiwater_rss)
1766 *maxrss = hiwater_rss;
1767}
1768
53bddb4e 1769#if defined(SPLIT_RSS_COUNTING)
05af2e10 1770void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1771#else
05af2e10 1772static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1773{
1774}
1775#endif
465a454f 1776
3565fce3
DW
1777#ifndef __HAVE_ARCH_PTE_DEVMAP
1778static inline int pte_devmap(pte_t pte)
1779{
1780 return 0;
1781}
1782#endif
1783
6d2329f8 1784int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1785
25ca1d6c
NK
1786extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1787 spinlock_t **ptl);
1788static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1789 spinlock_t **ptl)
1790{
1791 pte_t *ptep;
1792 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1793 return ptep;
1794}
c9cfcddf 1795
c2febafc
KS
1796#ifdef __PAGETABLE_P4D_FOLDED
1797static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1798 unsigned long address)
1799{
1800 return 0;
1801}
1802#else
1803int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1804#endif
1805
b4e98d9a 1806#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1807static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1808 unsigned long address)
1809{
1810 return 0;
1811}
b4e98d9a
KS
1812static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1813static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1814
5f22df00 1815#else
c2febafc 1816int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1817
b4e98d9a
KS
1818static inline void mm_inc_nr_puds(struct mm_struct *mm)
1819{
6d212db1
MS
1820 if (mm_pud_folded(mm))
1821 return;
af5b0f6a 1822 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1823}
1824
1825static inline void mm_dec_nr_puds(struct mm_struct *mm)
1826{
6d212db1
MS
1827 if (mm_pud_folded(mm))
1828 return;
af5b0f6a 1829 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1830}
5f22df00
NP
1831#endif
1832
2d2f5119 1833#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1834static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1835 unsigned long address)
1836{
1837 return 0;
1838}
dc6c9a35 1839
dc6c9a35
KS
1840static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1841static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1842
5f22df00 1843#else
1bb3630e 1844int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1845
dc6c9a35
KS
1846static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1847{
6d212db1
MS
1848 if (mm_pmd_folded(mm))
1849 return;
af5b0f6a 1850 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1851}
1852
1853static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1854{
6d212db1
MS
1855 if (mm_pmd_folded(mm))
1856 return;
af5b0f6a 1857 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1858}
5f22df00
NP
1859#endif
1860
c4812909 1861#ifdef CONFIG_MMU
af5b0f6a 1862static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1863{
af5b0f6a 1864 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1865}
1866
af5b0f6a 1867static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1868{
af5b0f6a 1869 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1870}
1871
1872static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1873{
af5b0f6a 1874 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1875}
1876
1877static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1878{
af5b0f6a 1879 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1880}
1881#else
c4812909 1882
af5b0f6a
KS
1883static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1884static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1885{
1886 return 0;
1887}
1888
1889static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1890static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1891#endif
1892
4cf58924
JFG
1893int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1894int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 1895
1da177e4
LT
1896/*
1897 * The following ifdef needed to get the 4level-fixup.h header to work.
1898 * Remove it when 4level-fixup.h has been removed.
1899 */
1bb3630e 1900#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1901
1902#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1903static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1904 unsigned long address)
1905{
1906 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1907 NULL : p4d_offset(pgd, address);
1908}
1909
1910static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1911 unsigned long address)
1da177e4 1912{
c2febafc
KS
1913 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1914 NULL : pud_offset(p4d, address);
1da177e4 1915}
505a60e2 1916#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1917
1918static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1919{
1bb3630e
HD
1920 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1921 NULL: pmd_offset(pud, address);
1da177e4 1922}
1bb3630e
HD
1923#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1924
57c1ffce 1925#if USE_SPLIT_PTE_PTLOCKS
597d795a 1926#if ALLOC_SPLIT_PTLOCKS
b35f1819 1927void __init ptlock_cache_init(void);
539edb58
PZ
1928extern bool ptlock_alloc(struct page *page);
1929extern void ptlock_free(struct page *page);
1930
1931static inline spinlock_t *ptlock_ptr(struct page *page)
1932{
1933 return page->ptl;
1934}
597d795a 1935#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1936static inline void ptlock_cache_init(void)
1937{
1938}
1939
49076ec2
KS
1940static inline bool ptlock_alloc(struct page *page)
1941{
49076ec2
KS
1942 return true;
1943}
539edb58 1944
49076ec2
KS
1945static inline void ptlock_free(struct page *page)
1946{
49076ec2
KS
1947}
1948
1949static inline spinlock_t *ptlock_ptr(struct page *page)
1950{
539edb58 1951 return &page->ptl;
49076ec2 1952}
597d795a 1953#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1954
1955static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1956{
1957 return ptlock_ptr(pmd_page(*pmd));
1958}
1959
1960static inline bool ptlock_init(struct page *page)
1961{
1962 /*
1963 * prep_new_page() initialize page->private (and therefore page->ptl)
1964 * with 0. Make sure nobody took it in use in between.
1965 *
1966 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1967 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1968 */
309381fe 1969 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1970 if (!ptlock_alloc(page))
1971 return false;
1972 spin_lock_init(ptlock_ptr(page));
1973 return true;
1974}
1975
57c1ffce 1976#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1977/*
1978 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1979 */
49076ec2
KS
1980static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1981{
1982 return &mm->page_table_lock;
1983}
b35f1819 1984static inline void ptlock_cache_init(void) {}
49076ec2 1985static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 1986static inline void ptlock_free(struct page *page) {}
57c1ffce 1987#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1988
b35f1819
KS
1989static inline void pgtable_init(void)
1990{
1991 ptlock_cache_init();
1992 pgtable_cache_init();
1993}
1994
390f44e2 1995static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1996{
706874e9
VD
1997 if (!ptlock_init(page))
1998 return false;
1d40a5ea 1999 __SetPageTable(page);
2f569afd 2000 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 2001 return true;
2f569afd
MS
2002}
2003
2004static inline void pgtable_page_dtor(struct page *page)
2005{
9e247bab 2006 ptlock_free(page);
1d40a5ea 2007 __ClearPageTable(page);
2f569afd
MS
2008 dec_zone_page_state(page, NR_PAGETABLE);
2009}
2010
c74df32c
HD
2011#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2012({ \
4c21e2f2 2013 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2014 pte_t *__pte = pte_offset_map(pmd, address); \
2015 *(ptlp) = __ptl; \
2016 spin_lock(__ptl); \
2017 __pte; \
2018})
2019
2020#define pte_unmap_unlock(pte, ptl) do { \
2021 spin_unlock(ptl); \
2022 pte_unmap(pte); \
2023} while (0)
2024
4cf58924 2025#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2026
2027#define pte_alloc_map(mm, pmd, address) \
4cf58924 2028 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2029
c74df32c 2030#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2031 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2032 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2033
1bb3630e 2034#define pte_alloc_kernel(pmd, address) \
4cf58924 2035 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2036 NULL: pte_offset_kernel(pmd, address))
1da177e4 2037
e009bb30
KS
2038#if USE_SPLIT_PMD_PTLOCKS
2039
634391ac
MS
2040static struct page *pmd_to_page(pmd_t *pmd)
2041{
2042 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2043 return virt_to_page((void *)((unsigned long) pmd & mask));
2044}
2045
e009bb30
KS
2046static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2047{
634391ac 2048 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2049}
2050
2051static inline bool pgtable_pmd_page_ctor(struct page *page)
2052{
e009bb30
KS
2053#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2054 page->pmd_huge_pte = NULL;
2055#endif
49076ec2 2056 return ptlock_init(page);
e009bb30
KS
2057}
2058
2059static inline void pgtable_pmd_page_dtor(struct page *page)
2060{
2061#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2062 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2063#endif
49076ec2 2064 ptlock_free(page);
e009bb30
KS
2065}
2066
634391ac 2067#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2068
2069#else
2070
9a86cb7b
KS
2071static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2072{
2073 return &mm->page_table_lock;
2074}
2075
e009bb30
KS
2076static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2077static inline void pgtable_pmd_page_dtor(struct page *page) {}
2078
c389a250 2079#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2080
e009bb30
KS
2081#endif
2082
9a86cb7b
KS
2083static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2084{
2085 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2086 spin_lock(ptl);
2087 return ptl;
2088}
2089
a00cc7d9
MW
2090/*
2091 * No scalability reason to split PUD locks yet, but follow the same pattern
2092 * as the PMD locks to make it easier if we decide to. The VM should not be
2093 * considered ready to switch to split PUD locks yet; there may be places
2094 * which need to be converted from page_table_lock.
2095 */
2096static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2097{
2098 return &mm->page_table_lock;
2099}
2100
2101static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2102{
2103 spinlock_t *ptl = pud_lockptr(mm, pud);
2104
2105 spin_lock(ptl);
2106 return ptl;
2107}
62906027 2108
a00cc7d9 2109extern void __init pagecache_init(void);
1da177e4 2110extern void free_area_init(unsigned long * zones_size);
03e85f9d 2111extern void __init free_area_init_node(int nid, unsigned long * zones_size,
9109fb7b 2112 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
2113extern void free_initmem(void);
2114
69afade7
JL
2115/*
2116 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2117 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2118 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2119 * Return pages freed into the buddy system.
2120 */
11199692 2121extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2122 int poison, const char *s);
c3d5f5f0 2123
cfa11e08
JL
2124#ifdef CONFIG_HIGHMEM
2125/*
2126 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2127 * and totalram_pages.
2128 */
2129extern void free_highmem_page(struct page *page);
2130#endif
69afade7 2131
c3d5f5f0 2132extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2133extern void mem_init_print_info(const char *str);
69afade7 2134
4b50bcc7 2135extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2136
69afade7
JL
2137/* Free the reserved page into the buddy system, so it gets managed. */
2138static inline void __free_reserved_page(struct page *page)
2139{
2140 ClearPageReserved(page);
2141 init_page_count(page);
2142 __free_page(page);
2143}
2144
2145static inline void free_reserved_page(struct page *page)
2146{
2147 __free_reserved_page(page);
2148 adjust_managed_page_count(page, 1);
2149}
2150
2151static inline void mark_page_reserved(struct page *page)
2152{
2153 SetPageReserved(page);
2154 adjust_managed_page_count(page, -1);
2155}
2156
2157/*
2158 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2159 * The freed pages will be poisoned with pattern "poison" if it's within
2160 * range [0, UCHAR_MAX].
2161 * Return pages freed into the buddy system.
69afade7
JL
2162 */
2163static inline unsigned long free_initmem_default(int poison)
2164{
2165 extern char __init_begin[], __init_end[];
2166
11199692 2167 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2168 poison, "unused kernel");
2169}
2170
7ee3d4e8
JL
2171static inline unsigned long get_num_physpages(void)
2172{
2173 int nid;
2174 unsigned long phys_pages = 0;
2175
2176 for_each_online_node(nid)
2177 phys_pages += node_present_pages(nid);
2178
2179 return phys_pages;
2180}
2181
0ee332c1 2182#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2183/*
0ee332c1 2184 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2185 * zones, allocate the backing mem_map and account for memory holes in a more
2186 * architecture independent manner. This is a substitute for creating the
2187 * zone_sizes[] and zholes_size[] arrays and passing them to
2188 * free_area_init_node()
2189 *
2190 * An architecture is expected to register range of page frames backed by
0ee332c1 2191 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2192 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2193 * usage, an architecture is expected to do something like
2194 *
2195 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2196 * max_highmem_pfn};
2197 * for_each_valid_physical_page_range()
0ee332c1 2198 * memblock_add_node(base, size, nid)
c713216d
MG
2199 * free_area_init_nodes(max_zone_pfns);
2200 *
0ee332c1
TH
2201 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2202 * registered physical page range. Similarly
2203 * sparse_memory_present_with_active_regions() calls memory_present() for
2204 * each range when SPARSEMEM is enabled.
c713216d
MG
2205 *
2206 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2207 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2208 */
2209extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2210unsigned long node_map_pfn_alignment(void);
32996250
YL
2211unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2212 unsigned long end_pfn);
c713216d
MG
2213extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2214 unsigned long end_pfn);
2215extern void get_pfn_range_for_nid(unsigned int nid,
2216 unsigned long *start_pfn, unsigned long *end_pfn);
2217extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2218extern void free_bootmem_with_active_regions(int nid,
2219 unsigned long max_low_pfn);
2220extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2221
0ee332c1 2222#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2223
0ee332c1 2224#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2225 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2226static inline int __early_pfn_to_nid(unsigned long pfn,
2227 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2228{
2229 return 0;
2230}
2231#else
2232/* please see mm/page_alloc.c */
2233extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2234/* there is a per-arch backend function. */
8a942fde
MG
2235extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2236 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2237#endif
2238
aca52c39 2239#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
2240void zero_resv_unavail(void);
2241#else
2242static inline void zero_resv_unavail(void) {}
2243#endif
2244
0e0b864e 2245extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2246extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2247 enum memmap_context, struct vmem_altmap *);
bc75d33f 2248extern void setup_per_zone_wmarks(void);
1b79acc9 2249extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2250extern void mem_init(void);
8feae131 2251extern void __init mmap_init(void);
9af744d7 2252extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2253extern long si_mem_available(void);
1da177e4
LT
2254extern void si_meminfo(struct sysinfo * val);
2255extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2256#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2257extern unsigned long arch_reserved_kernel_pages(void);
2258#endif
1da177e4 2259
a8e99259
MH
2260extern __printf(3, 4)
2261void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2262
e7c8d5c9 2263extern void setup_per_cpu_pageset(void);
e7c8d5c9 2264
112067f0 2265extern void zone_pcp_update(struct zone *zone);
340175b7 2266extern void zone_pcp_reset(struct zone *zone);
112067f0 2267
75f7ad8e
PS
2268/* page_alloc.c */
2269extern int min_free_kbytes;
1c30844d 2270extern int watermark_boost_factor;
795ae7a0 2271extern int watermark_scale_factor;
75f7ad8e 2272
8feae131 2273/* nommu.c */
33e5d769 2274extern atomic_long_t mmap_pages_allocated;
7e660872 2275extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2276
6b2dbba8 2277/* interval_tree.c */
6b2dbba8 2278void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2279 struct rb_root_cached *root);
9826a516
ML
2280void vma_interval_tree_insert_after(struct vm_area_struct *node,
2281 struct vm_area_struct *prev,
f808c13f 2282 struct rb_root_cached *root);
6b2dbba8 2283void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2284 struct rb_root_cached *root);
2285struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2286 unsigned long start, unsigned long last);
2287struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2288 unsigned long start, unsigned long last);
2289
2290#define vma_interval_tree_foreach(vma, root, start, last) \
2291 for (vma = vma_interval_tree_iter_first(root, start, last); \
2292 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2293
bf181b9f 2294void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2295 struct rb_root_cached *root);
bf181b9f 2296void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2297 struct rb_root_cached *root);
2298struct anon_vma_chain *
2299anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2300 unsigned long start, unsigned long last);
bf181b9f
ML
2301struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2302 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2303#ifdef CONFIG_DEBUG_VM_RB
2304void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2305#endif
bf181b9f
ML
2306
2307#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2308 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2309 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2310
1da177e4 2311/* mmap.c */
34b4e4aa 2312extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2313extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2314 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2315 struct vm_area_struct *expand);
2316static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2317 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2318{
2319 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2320}
1da177e4
LT
2321extern struct vm_area_struct *vma_merge(struct mm_struct *,
2322 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2323 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2324 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2325extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2326extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2327 unsigned long addr, int new_below);
2328extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2329 unsigned long addr, int new_below);
1da177e4
LT
2330extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2331extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2332 struct rb_node **, struct rb_node *);
a8fb5618 2333extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2334extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2335 unsigned long addr, unsigned long len, pgoff_t pgoff,
2336 bool *need_rmap_locks);
1da177e4 2337extern void exit_mmap(struct mm_struct *);
925d1c40 2338
9c599024
CG
2339static inline int check_data_rlimit(unsigned long rlim,
2340 unsigned long new,
2341 unsigned long start,
2342 unsigned long end_data,
2343 unsigned long start_data)
2344{
2345 if (rlim < RLIM_INFINITY) {
2346 if (((new - start) + (end_data - start_data)) > rlim)
2347 return -ENOSPC;
2348 }
2349
2350 return 0;
2351}
2352
7906d00c
AA
2353extern int mm_take_all_locks(struct mm_struct *mm);
2354extern void mm_drop_all_locks(struct mm_struct *mm);
2355
38646013
JS
2356extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2357extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2358extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2359
84638335
KK
2360extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2361extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2362
2eefd878
DS
2363extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2364 const struct vm_special_mapping *sm);
3935ed6a
SS
2365extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2366 unsigned long addr, unsigned long len,
a62c34bd
AL
2367 unsigned long flags,
2368 const struct vm_special_mapping *spec);
2369/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2370extern int install_special_mapping(struct mm_struct *mm,
2371 unsigned long addr, unsigned long len,
2372 unsigned long flags, struct page **pages);
1da177e4
LT
2373
2374extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2375
0165ab44 2376extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2377 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2378 struct list_head *uf);
1fcfd8db 2379extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2380 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2381 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2382 struct list_head *uf);
85a06835
YS
2383extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2384 struct list_head *uf, bool downgrade);
897ab3e0
MR
2385extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2386 struct list_head *uf);
1da177e4 2387
1fcfd8db
ON
2388static inline unsigned long
2389do_mmap_pgoff(struct file *file, unsigned long addr,
2390 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2391 unsigned long pgoff, unsigned long *populate,
2392 struct list_head *uf)
1fcfd8db 2393{
897ab3e0 2394 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2395}
2396
bebeb3d6
ML
2397#ifdef CONFIG_MMU
2398extern int __mm_populate(unsigned long addr, unsigned long len,
2399 int ignore_errors);
2400static inline void mm_populate(unsigned long addr, unsigned long len)
2401{
2402 /* Ignore errors */
2403 (void) __mm_populate(addr, len, 1);
2404}
2405#else
2406static inline void mm_populate(unsigned long addr, unsigned long len) {}
2407#endif
2408
e4eb1ff6 2409/* These take the mm semaphore themselves */
5d22fc25 2410extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2411extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2412extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2413extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2414 unsigned long, unsigned long,
2415 unsigned long, unsigned long);
1da177e4 2416
db4fbfb9
ML
2417struct vm_unmapped_area_info {
2418#define VM_UNMAPPED_AREA_TOPDOWN 1
2419 unsigned long flags;
2420 unsigned long length;
2421 unsigned long low_limit;
2422 unsigned long high_limit;
2423 unsigned long align_mask;
2424 unsigned long align_offset;
2425};
2426
2427extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2428extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2429
2430/*
2431 * Search for an unmapped address range.
2432 *
2433 * We are looking for a range that:
2434 * - does not intersect with any VMA;
2435 * - is contained within the [low_limit, high_limit) interval;
2436 * - is at least the desired size.
2437 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2438 */
2439static inline unsigned long
2440vm_unmapped_area(struct vm_unmapped_area_info *info)
2441{
cdd7875e 2442 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2443 return unmapped_area_topdown(info);
cdd7875e
BP
2444 else
2445 return unmapped_area(info);
db4fbfb9
ML
2446}
2447
85821aab 2448/* truncate.c */
1da177e4 2449extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2450extern void truncate_inode_pages_range(struct address_space *,
2451 loff_t lstart, loff_t lend);
91b0abe3 2452extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2453
2454/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2455extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2456extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2457 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2458extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2459
2460/* mm/page-writeback.c */
2b69c828 2461int __must_check write_one_page(struct page *page);
1cf6e7d8 2462void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2463
2464/* readahead.c */
b5420237 2465#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
1da177e4 2466
1da177e4 2467int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2468 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2469
2470void page_cache_sync_readahead(struct address_space *mapping,
2471 struct file_ra_state *ra,
2472 struct file *filp,
2473 pgoff_t offset,
2474 unsigned long size);
2475
2476void page_cache_async_readahead(struct address_space *mapping,
2477 struct file_ra_state *ra,
2478 struct file *filp,
2479 struct page *pg,
2480 pgoff_t offset,
2481 unsigned long size);
2482
1be7107f 2483extern unsigned long stack_guard_gap;
d05f3169 2484/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2485extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2486
2487/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2488extern int expand_downwards(struct vm_area_struct *vma,
2489 unsigned long address);
8ca3eb08 2490#if VM_GROWSUP
46dea3d0 2491extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2492#else
fee7e49d 2493 #define expand_upwards(vma, address) (0)
9ab88515 2494#endif
1da177e4
LT
2495
2496/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2497extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2498extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2499 struct vm_area_struct **pprev);
2500
2501/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2502 NULL if none. Assume start_addr < end_addr. */
2503static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2504{
2505 struct vm_area_struct * vma = find_vma(mm,start_addr);
2506
2507 if (vma && end_addr <= vma->vm_start)
2508 vma = NULL;
2509 return vma;
2510}
2511
1be7107f
HD
2512static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2513{
2514 unsigned long vm_start = vma->vm_start;
2515
2516 if (vma->vm_flags & VM_GROWSDOWN) {
2517 vm_start -= stack_guard_gap;
2518 if (vm_start > vma->vm_start)
2519 vm_start = 0;
2520 }
2521 return vm_start;
2522}
2523
2524static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2525{
2526 unsigned long vm_end = vma->vm_end;
2527
2528 if (vma->vm_flags & VM_GROWSUP) {
2529 vm_end += stack_guard_gap;
2530 if (vm_end < vma->vm_end)
2531 vm_end = -PAGE_SIZE;
2532 }
2533 return vm_end;
2534}
2535
1da177e4
LT
2536static inline unsigned long vma_pages(struct vm_area_struct *vma)
2537{
2538 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2539}
2540
640708a2
PE
2541/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2542static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2543 unsigned long vm_start, unsigned long vm_end)
2544{
2545 struct vm_area_struct *vma = find_vma(mm, vm_start);
2546
2547 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2548 vma = NULL;
2549
2550 return vma;
2551}
2552
017b1660
MK
2553static inline bool range_in_vma(struct vm_area_struct *vma,
2554 unsigned long start, unsigned long end)
2555{
2556 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2557}
2558
bad849b3 2559#ifdef CONFIG_MMU
804af2cf 2560pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2561void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2562#else
2563static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2564{
2565 return __pgprot(0);
2566}
64e45507
PF
2567static inline void vma_set_page_prot(struct vm_area_struct *vma)
2568{
2569 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2570}
bad849b3
DH
2571#endif
2572
5877231f 2573#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2574unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2575 unsigned long start, unsigned long end);
2576#endif
2577
deceb6cd 2578struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2579int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2580 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2581int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
ae2b01f3 2582vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2583 unsigned long pfn);
f5e6d1d5
MW
2584vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2585 unsigned long pfn, pgprot_t pgprot);
5d747637 2586vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2587 pfn_t pfn);
ab77dab4
SJ
2588vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2589 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2590int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2591
1c8f4220
SJ
2592static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2593 unsigned long addr, struct page *page)
2594{
2595 int err = vm_insert_page(vma, addr, page);
2596
2597 if (err == -ENOMEM)
2598 return VM_FAULT_OOM;
2599 if (err < 0 && err != -EBUSY)
2600 return VM_FAULT_SIGBUS;
2601
2602 return VM_FAULT_NOPAGE;
2603}
2604
d97baf94
SJ
2605static inline vm_fault_t vmf_error(int err)
2606{
2607 if (err == -ENOMEM)
2608 return VM_FAULT_OOM;
2609 return VM_FAULT_SIGBUS;
2610}
2611
df06b37f
KB
2612struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2613 unsigned int foll_flags);
240aadee 2614
deceb6cd
HD
2615#define FOLL_WRITE 0x01 /* check pte is writable */
2616#define FOLL_TOUCH 0x02 /* mark page accessed */
2617#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2618#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2619#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2620#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2621 * and return without waiting upon it */
84d33df2 2622#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2623#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2624#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2625#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2626#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2627#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2628#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2629#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2630#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2631#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63
IW
2632#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2633
2634/*
2635 * NOTE on FOLL_LONGTERM:
2636 *
2637 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2638 * period _often_ under userspace control. This is contrasted with
2639 * iov_iter_get_pages() where usages which are transient.
2640 *
2641 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2642 * lifetime enforced by the filesystem and we need guarantees that longterm
2643 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2644 * the filesystem. Ideas for this coordination include revoking the longterm
2645 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2646 * added after the problem with filesystems was found FS DAX VMAs are
2647 * specifically failed. Filesystem pages are still subject to bugs and use of
2648 * FOLL_LONGTERM should be avoided on those pages.
2649 *
2650 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2651 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2652 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2653 * is due to an incompatibility with the FS DAX check and
2654 * FAULT_FLAG_ALLOW_RETRY
2655 *
2656 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2657 * that region. And so CMA attempts to migrate the page before pinning when
2658 * FOLL_LONGTERM is specified.
2659 */
1da177e4 2660
2b740303 2661static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2662{
2663 if (vm_fault & VM_FAULT_OOM)
2664 return -ENOMEM;
2665 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2666 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2667 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2668 return -EFAULT;
2669 return 0;
2670}
2671
2f569afd 2672typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2673 void *data);
2674extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2675 unsigned long size, pte_fn_t fn, void *data);
2676
1da177e4 2677
8823b1db
LA
2678#ifdef CONFIG_PAGE_POISONING
2679extern bool page_poisoning_enabled(void);
2680extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2681#else
2682static inline bool page_poisoning_enabled(void) { return false; }
2683static inline void kernel_poison_pages(struct page *page, int numpages,
2684 int enable) { }
2685#endif
2686
031bc574 2687extern bool _debug_pagealloc_enabled;
031bc574
JK
2688
2689static inline bool debug_pagealloc_enabled(void)
2690{
d6332692 2691 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && _debug_pagealloc_enabled;
031bc574
JK
2692}
2693
d6332692
RE
2694#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2695extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2696
031bc574
JK
2697static inline void
2698kernel_map_pages(struct page *page, int numpages, int enable)
2699{
031bc574
JK
2700 __kernel_map_pages(page, numpages, enable);
2701}
8a235efa
RW
2702#ifdef CONFIG_HIBERNATION
2703extern bool kernel_page_present(struct page *page);
40b44137 2704#endif /* CONFIG_HIBERNATION */
d6332692 2705#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2706static inline void
9858db50 2707kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2708#ifdef CONFIG_HIBERNATION
2709static inline bool kernel_page_present(struct page *page) { return true; }
40b44137 2710#endif /* CONFIG_HIBERNATION */
d6332692 2711#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2712
a6c19dfe 2713#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2714extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2715extern int in_gate_area_no_mm(unsigned long addr);
2716extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2717#else
a6c19dfe
AL
2718static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2719{
2720 return NULL;
2721}
2722static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2723static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2724{
2725 return 0;
2726}
1da177e4
LT
2727#endif /* __HAVE_ARCH_GATE_AREA */
2728
44a70ade
MH
2729extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2730
146732ce
JT
2731#ifdef CONFIG_SYSCTL
2732extern int sysctl_drop_caches;
8d65af78 2733int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2734 void __user *, size_t *, loff_t *);
146732ce
JT
2735#endif
2736
cb731d6c
VD
2737void drop_slab(void);
2738void drop_slab_node(int nid);
9d0243bc 2739
7a9166e3
LY
2740#ifndef CONFIG_MMU
2741#define randomize_va_space 0
2742#else
a62eaf15 2743extern int randomize_va_space;
7a9166e3 2744#endif
a62eaf15 2745
045e72ac 2746const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2747void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2748
35fd1eb1 2749void *sparse_buffer_alloc(unsigned long size);
7b73d978
CH
2750struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2751 struct vmem_altmap *altmap);
29c71111 2752pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2753p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2754pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2755pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2756pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2757void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2758struct vmem_altmap;
a8fc357b
CH
2759void *vmemmap_alloc_block_buf(unsigned long size, int node);
2760void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2761void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2762int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2763 int node);
7b73d978
CH
2764int vmemmap_populate(unsigned long start, unsigned long end, int node,
2765 struct vmem_altmap *altmap);
c2b91e2e 2766void vmemmap_populate_print_last(void);
0197518c 2767#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2768void vmemmap_free(unsigned long start, unsigned long end,
2769 struct vmem_altmap *altmap);
0197518c 2770#endif
46723bfa 2771void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2772 unsigned long nr_pages);
6a46079c 2773
82ba011b
AK
2774enum mf_flags {
2775 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2776 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2777 MF_MUST_KILL = 1 << 2,
cf870c70 2778 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2779};
83b57531
EB
2780extern int memory_failure(unsigned long pfn, int flags);
2781extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 2782extern int unpoison_memory(unsigned long pfn);
ead07f6a 2783extern int get_hwpoison_page(struct page *page);
4e41a30c 2784#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2785extern int sysctl_memory_failure_early_kill;
2786extern int sysctl_memory_failure_recovery;
facb6011 2787extern void shake_page(struct page *p, int access);
5844a486 2788extern atomic_long_t num_poisoned_pages __read_mostly;
facb6011 2789extern int soft_offline_page(struct page *page, int flags);
6a46079c 2790
cc637b17
XX
2791
2792/*
2793 * Error handlers for various types of pages.
2794 */
cc3e2af4 2795enum mf_result {
cc637b17
XX
2796 MF_IGNORED, /* Error: cannot be handled */
2797 MF_FAILED, /* Error: handling failed */
2798 MF_DELAYED, /* Will be handled later */
2799 MF_RECOVERED, /* Successfully recovered */
2800};
2801
2802enum mf_action_page_type {
2803 MF_MSG_KERNEL,
2804 MF_MSG_KERNEL_HIGH_ORDER,
2805 MF_MSG_SLAB,
2806 MF_MSG_DIFFERENT_COMPOUND,
2807 MF_MSG_POISONED_HUGE,
2808 MF_MSG_HUGE,
2809 MF_MSG_FREE_HUGE,
31286a84 2810 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2811 MF_MSG_UNMAP_FAILED,
2812 MF_MSG_DIRTY_SWAPCACHE,
2813 MF_MSG_CLEAN_SWAPCACHE,
2814 MF_MSG_DIRTY_MLOCKED_LRU,
2815 MF_MSG_CLEAN_MLOCKED_LRU,
2816 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2817 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2818 MF_MSG_DIRTY_LRU,
2819 MF_MSG_CLEAN_LRU,
2820 MF_MSG_TRUNCATED_LRU,
2821 MF_MSG_BUDDY,
2822 MF_MSG_BUDDY_2ND,
6100e34b 2823 MF_MSG_DAX,
cc637b17
XX
2824 MF_MSG_UNKNOWN,
2825};
2826
47ad8475
AA
2827#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2828extern void clear_huge_page(struct page *page,
c79b57e4 2829 unsigned long addr_hint,
47ad8475
AA
2830 unsigned int pages_per_huge_page);
2831extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
2832 unsigned long addr_hint,
2833 struct vm_area_struct *vma,
47ad8475 2834 unsigned int pages_per_huge_page);
fa4d75c1
MK
2835extern long copy_huge_page_from_user(struct page *dst_page,
2836 const void __user *usr_src,
810a56b9
MK
2837 unsigned int pages_per_huge_page,
2838 bool allow_pagefault);
47ad8475
AA
2839#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2840
e30825f1 2841extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2842
c0a32fc5
SG
2843#ifdef CONFIG_DEBUG_PAGEALLOC
2844extern unsigned int _debug_guardpage_minorder;
e30825f1 2845extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2846
2847static inline unsigned int debug_guardpage_minorder(void)
2848{
2849 return _debug_guardpage_minorder;
2850}
2851
e30825f1
JK
2852static inline bool debug_guardpage_enabled(void)
2853{
2854 return _debug_guardpage_enabled;
2855}
2856
c0a32fc5
SG
2857static inline bool page_is_guard(struct page *page)
2858{
e30825f1
JK
2859 struct page_ext *page_ext;
2860
2861 if (!debug_guardpage_enabled())
2862 return false;
2863
2864 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2865 if (unlikely(!page_ext))
2866 return false;
2867
e30825f1 2868 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2869}
2870#else
2871static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2872static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2873static inline bool page_is_guard(struct page *page) { return false; }
2874#endif /* CONFIG_DEBUG_PAGEALLOC */
2875
f9872caf
CS
2876#if MAX_NUMNODES > 1
2877void __init setup_nr_node_ids(void);
2878#else
2879static inline void setup_nr_node_ids(void) {}
2880#endif
2881
1da177e4
LT
2882#endif /* __KERNEL__ */
2883#endif /* _LINUX_MM_H */