fs/: remove caller signal_pending branch predictions
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
3b3b1a29 28#include <linux/overflow.h>
1da177e4
LT
29
30struct mempolicy;
31struct anon_vma;
bf181b9f 32struct anon_vma_chain;
4e950f6f 33struct file_ra_state;
e8edc6e0 34struct user_struct;
4e950f6f 35struct writeback_control;
682aa8e1 36struct bdi_writeback;
1da177e4 37
597b7305
MH
38void init_mm_internals(void);
39
fccc9987 40#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 41extern unsigned long max_mapnr;
fccc9987
JL
42
43static inline void set_max_mapnr(unsigned long limit)
44{
45 max_mapnr = limit;
46}
47#else
48static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
49#endif
50
ca79b0c2
AK
51extern atomic_long_t _totalram_pages;
52static inline unsigned long totalram_pages(void)
53{
54 return (unsigned long)atomic_long_read(&_totalram_pages);
55}
56
57static inline void totalram_pages_inc(void)
58{
59 atomic_long_inc(&_totalram_pages);
60}
61
62static inline void totalram_pages_dec(void)
63{
64 atomic_long_dec(&_totalram_pages);
65}
66
67static inline void totalram_pages_add(long count)
68{
69 atomic_long_add(count, &_totalram_pages);
70}
71
72static inline void totalram_pages_set(long val)
73{
74 atomic_long_set(&_totalram_pages, val);
75}
76
1da177e4 77extern void * high_memory;
1da177e4
LT
78extern int page_cluster;
79
80#ifdef CONFIG_SYSCTL
81extern int sysctl_legacy_va_layout;
82#else
83#define sysctl_legacy_va_layout 0
84#endif
85
d07e2259
DC
86#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
87extern const int mmap_rnd_bits_min;
88extern const int mmap_rnd_bits_max;
89extern int mmap_rnd_bits __read_mostly;
90#endif
91#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
92extern const int mmap_rnd_compat_bits_min;
93extern const int mmap_rnd_compat_bits_max;
94extern int mmap_rnd_compat_bits __read_mostly;
95#endif
96
1da177e4
LT
97#include <asm/page.h>
98#include <asm/pgtable.h>
99#include <asm/processor.h>
1da177e4 100
79442ed1
TC
101#ifndef __pa_symbol
102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
103#endif
104
1dff8083
AB
105#ifndef page_to_virt
106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
107#endif
108
568c5fe5
LA
109#ifndef lm_alias
110#define lm_alias(x) __va(__pa_symbol(x))
111#endif
112
593befa6
DD
113/*
114 * To prevent common memory management code establishing
115 * a zero page mapping on a read fault.
116 * This macro should be defined within <asm/pgtable.h>.
117 * s390 does this to prevent multiplexing of hardware bits
118 * related to the physical page in case of virtualization.
119 */
120#ifndef mm_forbids_zeropage
121#define mm_forbids_zeropage(X) (0)
122#endif
123
a4a3ede2
PT
124/*
125 * On some architectures it is expensive to call memset() for small sizes.
126 * Those architectures should provide their own implementation of "struct page"
127 * zeroing by defining this macro in <asm/pgtable.h>.
128 */
129#ifndef mm_zero_struct_page
130#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
131#endif
132
ea606cf5
AR
133/*
134 * Default maximum number of active map areas, this limits the number of vmas
135 * per mm struct. Users can overwrite this number by sysctl but there is a
136 * problem.
137 *
138 * When a program's coredump is generated as ELF format, a section is created
139 * per a vma. In ELF, the number of sections is represented in unsigned short.
140 * This means the number of sections should be smaller than 65535 at coredump.
141 * Because the kernel adds some informative sections to a image of program at
142 * generating coredump, we need some margin. The number of extra sections is
143 * 1-3 now and depends on arch. We use "5" as safe margin, here.
144 *
145 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
146 * not a hard limit any more. Although some userspace tools can be surprised by
147 * that.
148 */
149#define MAPCOUNT_ELF_CORE_MARGIN (5)
150#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
151
152extern int sysctl_max_map_count;
153
c9b1d098 154extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 155extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 156
49f0ce5f
JM
157extern int sysctl_overcommit_memory;
158extern int sysctl_overcommit_ratio;
159extern unsigned long sysctl_overcommit_kbytes;
160
161extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
162 size_t *, loff_t *);
163extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
164 size_t *, loff_t *);
165
1da177e4
LT
166#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
167
27ac792c
AR
168/* to align the pointer to the (next) page boundary */
169#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
170
0fa73b86 171/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 172#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 173
1da177e4
LT
174/*
175 * Linux kernel virtual memory manager primitives.
176 * The idea being to have a "virtual" mm in the same way
177 * we have a virtual fs - giving a cleaner interface to the
178 * mm details, and allowing different kinds of memory mappings
179 * (from shared memory to executable loading to arbitrary
180 * mmap() functions).
181 */
182
490fc053 183struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
184struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
185void vm_area_free(struct vm_area_struct *);
c43692e8 186
1da177e4 187#ifndef CONFIG_MMU
8feae131
DH
188extern struct rb_root nommu_region_tree;
189extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
190
191extern unsigned int kobjsize(const void *objp);
192#endif
193
194/*
605d9288 195 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 196 * When changing, update also include/trace/events/mmflags.h
1da177e4 197 */
cc2383ec
KK
198#define VM_NONE 0x00000000
199
1da177e4
LT
200#define VM_READ 0x00000001 /* currently active flags */
201#define VM_WRITE 0x00000002
202#define VM_EXEC 0x00000004
203#define VM_SHARED 0x00000008
204
7e2cff42 205/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
206#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
207#define VM_MAYWRITE 0x00000020
208#define VM_MAYEXEC 0x00000040
209#define VM_MAYSHARE 0x00000080
210
211#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 212#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 213#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 214#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 215#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 216
1da177e4
LT
217#define VM_LOCKED 0x00002000
218#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
219
220 /* Used by sys_madvise() */
221#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
222#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
223
224#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
225#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 226#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 227#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 228#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 229#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 230#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 231#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 232#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 233#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 234
d9104d1c
CG
235#ifdef CONFIG_MEM_SOFT_DIRTY
236# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
237#else
238# define VM_SOFTDIRTY 0
239#endif
240
b379d790 241#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
242#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
243#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 244#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 245
63c17fb8
DH
246#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
247#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
248#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
249#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
250#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 251#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
252#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
253#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
254#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
255#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 256#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
257#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
258
5212213a 259#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
260# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
261# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 262# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
263# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
264# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
265#ifdef CONFIG_PPC
266# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
267#else
268# define VM_PKEY_BIT4 0
8f62c883 269#endif
5212213a
RP
270#endif /* CONFIG_ARCH_HAS_PKEYS */
271
272#if defined(CONFIG_X86)
273# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
274#elif defined(CONFIG_PPC)
275# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
276#elif defined(CONFIG_PARISC)
277# define VM_GROWSUP VM_ARCH_1
278#elif defined(CONFIG_IA64)
279# define VM_GROWSUP VM_ARCH_1
74a04967
KA
280#elif defined(CONFIG_SPARC64)
281# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
282# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
283#elif !defined(CONFIG_MMU)
284# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
285#endif
286
df3735c5 287#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 288/* MPX specific bounds table or bounds directory */
fa87b91c 289# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
290#else
291# define VM_MPX VM_NONE
4aae7e43
QR
292#endif
293
cc2383ec
KK
294#ifndef VM_GROWSUP
295# define VM_GROWSUP VM_NONE
296#endif
297
a8bef8ff
MG
298/* Bits set in the VMA until the stack is in its final location */
299#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
300
1da177e4
LT
301#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
302#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
303#endif
304
305#ifdef CONFIG_STACK_GROWSUP
30bdbb78 306#define VM_STACK VM_GROWSUP
1da177e4 307#else
30bdbb78 308#define VM_STACK VM_GROWSDOWN
1da177e4
LT
309#endif
310
30bdbb78
KK
311#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
312
b291f000 313/*
78f11a25
AA
314 * Special vmas that are non-mergable, non-mlock()able.
315 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 316 */
9050d7eb 317#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 318
a0715cc2
AT
319/* This mask defines which mm->def_flags a process can inherit its parent */
320#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
321
de60f5f1
EM
322/* This mask is used to clear all the VMA flags used by mlock */
323#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
324
2c2d57b5
KA
325/* Arch-specific flags to clear when updating VM flags on protection change */
326#ifndef VM_ARCH_CLEAR
327# define VM_ARCH_CLEAR VM_NONE
328#endif
329#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
330
1da177e4
LT
331/*
332 * mapping from the currently active vm_flags protection bits (the
333 * low four bits) to a page protection mask..
334 */
335extern pgprot_t protection_map[16];
336
d0217ac0 337#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
338#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
339#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
340#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
341#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
342#define FAULT_FLAG_TRIED 0x20 /* Second try */
343#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 344#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 345#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 346
282a8e03
RZ
347#define FAULT_FLAG_TRACE \
348 { FAULT_FLAG_WRITE, "WRITE" }, \
349 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
350 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
351 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
352 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
353 { FAULT_FLAG_TRIED, "TRIED" }, \
354 { FAULT_FLAG_USER, "USER" }, \
355 { FAULT_FLAG_REMOTE, "REMOTE" }, \
356 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
357
54cb8821 358/*
d0217ac0 359 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
360 * ->fault function. The vma's ->fault is responsible for returning a bitmask
361 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 362 *
c20cd45e
MH
363 * MM layer fills up gfp_mask for page allocations but fault handler might
364 * alter it if its implementation requires a different allocation context.
365 *
9b4bdd2f 366 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 367 */
d0217ac0 368struct vm_fault {
82b0f8c3 369 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 370 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 371 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 372 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 373 unsigned long address; /* Faulting virtual address */
82b0f8c3 374 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 375 * the 'address' */
a2d58167
DJ
376 pud_t *pud; /* Pointer to pud entry matching
377 * the 'address'
378 */
2994302b 379 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 380
3917048d
JK
381 struct page *cow_page; /* Page handler may use for COW fault */
382 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 383 struct page *page; /* ->fault handlers should return a
83c54070 384 * page here, unless VM_FAULT_NOPAGE
d0217ac0 385 * is set (which is also implied by
83c54070 386 * VM_FAULT_ERROR).
d0217ac0 387 */
82b0f8c3 388 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
389 pte_t *pte; /* Pointer to pte entry matching
390 * the 'address'. NULL if the page
391 * table hasn't been allocated.
392 */
393 spinlock_t *ptl; /* Page table lock.
394 * Protects pte page table if 'pte'
395 * is not NULL, otherwise pmd.
396 */
7267ec00
KS
397 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
398 * vm_ops->map_pages() calls
399 * alloc_set_pte() from atomic context.
400 * do_fault_around() pre-allocates
401 * page table to avoid allocation from
402 * atomic context.
403 */
54cb8821 404};
1da177e4 405
c791ace1
DJ
406/* page entry size for vm->huge_fault() */
407enum page_entry_size {
408 PE_SIZE_PTE = 0,
409 PE_SIZE_PMD,
410 PE_SIZE_PUD,
411};
412
1da177e4
LT
413/*
414 * These are the virtual MM functions - opening of an area, closing and
415 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 416 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
417 */
418struct vm_operations_struct {
419 void (*open)(struct vm_area_struct * area);
420 void (*close)(struct vm_area_struct * area);
31383c68 421 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 422 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
423 vm_fault_t (*fault)(struct vm_fault *vmf);
424 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
425 enum page_entry_size pe_size);
82b0f8c3 426 void (*map_pages)(struct vm_fault *vmf,
bae473a4 427 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 428 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
429
430 /* notification that a previously read-only page is about to become
431 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 432 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 433
dd906184 434 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 435 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 436
28b2ee20
RR
437 /* called by access_process_vm when get_user_pages() fails, typically
438 * for use by special VMAs that can switch between memory and hardware
439 */
440 int (*access)(struct vm_area_struct *vma, unsigned long addr,
441 void *buf, int len, int write);
78d683e8
AL
442
443 /* Called by the /proc/PID/maps code to ask the vma whether it
444 * has a special name. Returning non-NULL will also cause this
445 * vma to be dumped unconditionally. */
446 const char *(*name)(struct vm_area_struct *vma);
447
1da177e4 448#ifdef CONFIG_NUMA
a6020ed7
LS
449 /*
450 * set_policy() op must add a reference to any non-NULL @new mempolicy
451 * to hold the policy upon return. Caller should pass NULL @new to
452 * remove a policy and fall back to surrounding context--i.e. do not
453 * install a MPOL_DEFAULT policy, nor the task or system default
454 * mempolicy.
455 */
1da177e4 456 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
457
458 /*
459 * get_policy() op must add reference [mpol_get()] to any policy at
460 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
461 * in mm/mempolicy.c will do this automatically.
462 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
463 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
464 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
465 * must return NULL--i.e., do not "fallback" to task or system default
466 * policy.
467 */
1da177e4
LT
468 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
469 unsigned long addr);
470#endif
667a0a06
DV
471 /*
472 * Called by vm_normal_page() for special PTEs to find the
473 * page for @addr. This is useful if the default behavior
474 * (using pte_page()) would not find the correct page.
475 */
476 struct page *(*find_special_page)(struct vm_area_struct *vma,
477 unsigned long addr);
1da177e4
LT
478};
479
027232da
KS
480static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
481{
bfd40eaf
KS
482 static const struct vm_operations_struct dummy_vm_ops = {};
483
a670468f 484 memset(vma, 0, sizeof(*vma));
027232da 485 vma->vm_mm = mm;
bfd40eaf 486 vma->vm_ops = &dummy_vm_ops;
027232da
KS
487 INIT_LIST_HEAD(&vma->anon_vma_chain);
488}
489
bfd40eaf
KS
490static inline void vma_set_anonymous(struct vm_area_struct *vma)
491{
492 vma->vm_ops = NULL;
493}
494
8b11ec1b
LT
495/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
496#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
497
1da177e4
LT
498struct mmu_gather;
499struct inode;
500
349aef0b
AM
501#define page_private(page) ((page)->private)
502#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 503
5c7fb56e
DW
504#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
505static inline int pmd_devmap(pmd_t pmd)
506{
507 return 0;
508}
a00cc7d9
MW
509static inline int pud_devmap(pud_t pud)
510{
511 return 0;
512}
b59f65fa
KS
513static inline int pgd_devmap(pgd_t pgd)
514{
515 return 0;
516}
5c7fb56e
DW
517#endif
518
1da177e4
LT
519/*
520 * FIXME: take this include out, include page-flags.h in
521 * files which need it (119 of them)
522 */
523#include <linux/page-flags.h>
71e3aac0 524#include <linux/huge_mm.h>
1da177e4
LT
525
526/*
527 * Methods to modify the page usage count.
528 *
529 * What counts for a page usage:
530 * - cache mapping (page->mapping)
531 * - private data (page->private)
532 * - page mapped in a task's page tables, each mapping
533 * is counted separately
534 *
535 * Also, many kernel routines increase the page count before a critical
536 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
537 */
538
539/*
da6052f7 540 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 541 */
7c8ee9a8
NP
542static inline int put_page_testzero(struct page *page)
543{
fe896d18
JK
544 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
545 return page_ref_dec_and_test(page);
7c8ee9a8 546}
1da177e4
LT
547
548/*
7c8ee9a8
NP
549 * Try to grab a ref unless the page has a refcount of zero, return false if
550 * that is the case.
8e0861fa
AK
551 * This can be called when MMU is off so it must not access
552 * any of the virtual mappings.
1da177e4 553 */
7c8ee9a8
NP
554static inline int get_page_unless_zero(struct page *page)
555{
fe896d18 556 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 557}
1da177e4 558
53df8fdc 559extern int page_is_ram(unsigned long pfn);
124fe20d
DW
560
561enum {
562 REGION_INTERSECTS,
563 REGION_DISJOINT,
564 REGION_MIXED,
565};
566
1c29f25b
TK
567int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
568 unsigned long desc);
53df8fdc 569
48667e7a 570/* Support for virtually mapped pages */
b3bdda02
CL
571struct page *vmalloc_to_page(const void *addr);
572unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 573
0738c4bb
PM
574/*
575 * Determine if an address is within the vmalloc range
576 *
577 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
578 * is no special casing required.
579 */
bb00a789 580static inline bool is_vmalloc_addr(const void *x)
9e2779fa 581{
0738c4bb 582#ifdef CONFIG_MMU
9e2779fa
CL
583 unsigned long addr = (unsigned long)x;
584
585 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 586#else
bb00a789 587 return false;
8ca3ed87 588#endif
0738c4bb 589}
81ac3ad9
KH
590#ifdef CONFIG_MMU
591extern int is_vmalloc_or_module_addr(const void *x);
592#else
934831d0 593static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
594{
595 return 0;
596}
597#endif
9e2779fa 598
a7c3e901
MH
599extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
600static inline void *kvmalloc(size_t size, gfp_t flags)
601{
602 return kvmalloc_node(size, flags, NUMA_NO_NODE);
603}
604static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
605{
606 return kvmalloc_node(size, flags | __GFP_ZERO, node);
607}
608static inline void *kvzalloc(size_t size, gfp_t flags)
609{
610 return kvmalloc(size, flags | __GFP_ZERO);
611}
612
752ade68
MH
613static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
614{
3b3b1a29
KC
615 size_t bytes;
616
617 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
618 return NULL;
619
3b3b1a29 620 return kvmalloc(bytes, flags);
752ade68
MH
621}
622
1c542f38
KC
623static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
624{
625 return kvmalloc_array(n, size, flags | __GFP_ZERO);
626}
627
39f1f78d
AV
628extern void kvfree(const void *addr);
629
53f9263b
KS
630static inline atomic_t *compound_mapcount_ptr(struct page *page)
631{
632 return &page[1].compound_mapcount;
633}
634
635static inline int compound_mapcount(struct page *page)
636{
5f527c2b 637 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
638 page = compound_head(page);
639 return atomic_read(compound_mapcount_ptr(page)) + 1;
640}
641
70b50f94
AA
642/*
643 * The atomic page->_mapcount, starts from -1: so that transitions
644 * both from it and to it can be tracked, using atomic_inc_and_test
645 * and atomic_add_negative(-1).
646 */
22b751c3 647static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
648{
649 atomic_set(&(page)->_mapcount, -1);
650}
651
b20ce5e0
KS
652int __page_mapcount(struct page *page);
653
70b50f94
AA
654static inline int page_mapcount(struct page *page)
655{
1d148e21 656 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 657
b20ce5e0
KS
658 if (unlikely(PageCompound(page)))
659 return __page_mapcount(page);
660 return atomic_read(&page->_mapcount) + 1;
661}
662
663#ifdef CONFIG_TRANSPARENT_HUGEPAGE
664int total_mapcount(struct page *page);
6d0a07ed 665int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
666#else
667static inline int total_mapcount(struct page *page)
668{
669 return page_mapcount(page);
70b50f94 670}
6d0a07ed
AA
671static inline int page_trans_huge_mapcount(struct page *page,
672 int *total_mapcount)
673{
674 int mapcount = page_mapcount(page);
675 if (total_mapcount)
676 *total_mapcount = mapcount;
677 return mapcount;
678}
b20ce5e0 679#endif
70b50f94 680
b49af68f
CL
681static inline struct page *virt_to_head_page(const void *x)
682{
683 struct page *page = virt_to_page(x);
ccaafd7f 684
1d798ca3 685 return compound_head(page);
b49af68f
CL
686}
687
ddc58f27
KS
688void __put_page(struct page *page);
689
1d7ea732 690void put_pages_list(struct list_head *pages);
1da177e4 691
8dfcc9ba 692void split_page(struct page *page, unsigned int order);
8dfcc9ba 693
33f2ef89
AW
694/*
695 * Compound pages have a destructor function. Provide a
696 * prototype for that function and accessor functions.
f1e61557 697 * These are _only_ valid on the head of a compound page.
33f2ef89 698 */
f1e61557
KS
699typedef void compound_page_dtor(struct page *);
700
701/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
702enum compound_dtor_id {
703 NULL_COMPOUND_DTOR,
704 COMPOUND_PAGE_DTOR,
705#ifdef CONFIG_HUGETLB_PAGE
706 HUGETLB_PAGE_DTOR,
9a982250
KS
707#endif
708#ifdef CONFIG_TRANSPARENT_HUGEPAGE
709 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
710#endif
711 NR_COMPOUND_DTORS,
712};
713extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
714
715static inline void set_compound_page_dtor(struct page *page,
f1e61557 716 enum compound_dtor_id compound_dtor)
33f2ef89 717{
f1e61557
KS
718 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
719 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
720}
721
722static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
723{
f1e61557
KS
724 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
725 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
726}
727
d00181b9 728static inline unsigned int compound_order(struct page *page)
d85f3385 729{
6d777953 730 if (!PageHead(page))
d85f3385 731 return 0;
e4b294c2 732 return page[1].compound_order;
d85f3385
CL
733}
734
f1e61557 735static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 736{
e4b294c2 737 page[1].compound_order = order;
d85f3385
CL
738}
739
9a982250
KS
740void free_compound_page(struct page *page);
741
3dece370 742#ifdef CONFIG_MMU
14fd403f
AA
743/*
744 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
745 * servicing faults for write access. In the normal case, do always want
746 * pte_mkwrite. But get_user_pages can cause write faults for mappings
747 * that do not have writing enabled, when used by access_process_vm.
748 */
749static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
750{
751 if (likely(vma->vm_flags & VM_WRITE))
752 pte = pte_mkwrite(pte);
753 return pte;
754}
8c6e50b0 755
2b740303 756vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 757 struct page *page);
2b740303
SJ
758vm_fault_t finish_fault(struct vm_fault *vmf);
759vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 760#endif
14fd403f 761
1da177e4
LT
762/*
763 * Multiple processes may "see" the same page. E.g. for untouched
764 * mappings of /dev/null, all processes see the same page full of
765 * zeroes, and text pages of executables and shared libraries have
766 * only one copy in memory, at most, normally.
767 *
768 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
769 * page_count() == 0 means the page is free. page->lru is then used for
770 * freelist management in the buddy allocator.
da6052f7 771 * page_count() > 0 means the page has been allocated.
1da177e4 772 *
da6052f7
NP
773 * Pages are allocated by the slab allocator in order to provide memory
774 * to kmalloc and kmem_cache_alloc. In this case, the management of the
775 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
776 * unless a particular usage is carefully commented. (the responsibility of
777 * freeing the kmalloc memory is the caller's, of course).
1da177e4 778 *
da6052f7
NP
779 * A page may be used by anyone else who does a __get_free_page().
780 * In this case, page_count still tracks the references, and should only
781 * be used through the normal accessor functions. The top bits of page->flags
782 * and page->virtual store page management information, but all other fields
783 * are unused and could be used privately, carefully. The management of this
784 * page is the responsibility of the one who allocated it, and those who have
785 * subsequently been given references to it.
786 *
787 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
788 * managed by the Linux memory manager: I/O, buffers, swapping etc.
789 * The following discussion applies only to them.
790 *
da6052f7
NP
791 * A pagecache page contains an opaque `private' member, which belongs to the
792 * page's address_space. Usually, this is the address of a circular list of
793 * the page's disk buffers. PG_private must be set to tell the VM to call
794 * into the filesystem to release these pages.
1da177e4 795 *
da6052f7
NP
796 * A page may belong to an inode's memory mapping. In this case, page->mapping
797 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 798 * in units of PAGE_SIZE.
1da177e4 799 *
da6052f7
NP
800 * If pagecache pages are not associated with an inode, they are said to be
801 * anonymous pages. These may become associated with the swapcache, and in that
802 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 803 *
da6052f7
NP
804 * In either case (swapcache or inode backed), the pagecache itself holds one
805 * reference to the page. Setting PG_private should also increment the
806 * refcount. The each user mapping also has a reference to the page.
1da177e4 807 *
da6052f7 808 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 809 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
810 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
811 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 812 *
da6052f7 813 * All pagecache pages may be subject to I/O:
1da177e4
LT
814 * - inode pages may need to be read from disk,
815 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
816 * to be written back to the inode on disk,
817 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
818 * modified may need to be swapped out to swap space and (later) to be read
819 * back into memory.
1da177e4
LT
820 */
821
822/*
823 * The zone field is never updated after free_area_init_core()
824 * sets it, so none of the operations on it need to be atomic.
1da177e4 825 */
348f8b6c 826
90572890 827/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 828#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
829#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
830#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 831#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 832#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 833
348f8b6c 834/*
25985edc 835 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
836 * sections we define the shift as 0; that plus a 0 mask ensures
837 * the compiler will optimise away reference to them.
838 */
d41dee36
AW
839#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
840#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
841#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 842#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 843#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 844
bce54bbf
WD
845/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
846#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 847#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
848#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
849 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 850#else
89689ae7 851#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
852#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
853 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
854#endif
855
bd8029b6 856#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 857
9223b419
CL
858#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
859#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
860#endif
861
d41dee36
AW
862#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
863#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
864#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 865#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 866#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 867#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 868
33dd4e0e 869static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 870{
348f8b6c 871 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 872}
1da177e4 873
260ae3f7
DW
874#ifdef CONFIG_ZONE_DEVICE
875static inline bool is_zone_device_page(const struct page *page)
876{
877 return page_zonenum(page) == ZONE_DEVICE;
878}
966cf44f
AD
879extern void memmap_init_zone_device(struct zone *, unsigned long,
880 unsigned long, struct dev_pagemap *);
260ae3f7
DW
881#else
882static inline bool is_zone_device_page(const struct page *page)
883{
884 return false;
885}
7b2d55d2 886#endif
5042db43 887
e7638488
DW
888#ifdef CONFIG_DEV_PAGEMAP_OPS
889void dev_pagemap_get_ops(void);
890void dev_pagemap_put_ops(void);
891void __put_devmap_managed_page(struct page *page);
892DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
893static inline bool put_devmap_managed_page(struct page *page)
894{
895 if (!static_branch_unlikely(&devmap_managed_key))
896 return false;
897 if (!is_zone_device_page(page))
898 return false;
899 switch (page->pgmap->type) {
900 case MEMORY_DEVICE_PRIVATE:
901 case MEMORY_DEVICE_PUBLIC:
902 case MEMORY_DEVICE_FS_DAX:
903 __put_devmap_managed_page(page);
904 return true;
905 default:
906 break;
907 }
908 return false;
909}
910
911static inline bool is_device_private_page(const struct page *page)
912{
913 return is_zone_device_page(page) &&
914 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
915}
916
917static inline bool is_device_public_page(const struct page *page)
918{
919 return is_zone_device_page(page) &&
920 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
921}
922
52916982
LG
923#ifdef CONFIG_PCI_P2PDMA
924static inline bool is_pci_p2pdma_page(const struct page *page)
925{
926 return is_zone_device_page(page) &&
927 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
928}
929#else /* CONFIG_PCI_P2PDMA */
930static inline bool is_pci_p2pdma_page(const struct page *page)
931{
932 return false;
933}
934#endif /* CONFIG_PCI_P2PDMA */
935
e7638488
DW
936#else /* CONFIG_DEV_PAGEMAP_OPS */
937static inline void dev_pagemap_get_ops(void)
5042db43 938{
5042db43 939}
e7638488
DW
940
941static inline void dev_pagemap_put_ops(void)
942{
943}
944
945static inline bool put_devmap_managed_page(struct page *page)
946{
947 return false;
948}
949
6b368cd4
JG
950static inline bool is_device_private_page(const struct page *page)
951{
952 return false;
953}
e7638488 954
6b368cd4
JG
955static inline bool is_device_public_page(const struct page *page)
956{
957 return false;
958}
52916982
LG
959
960static inline bool is_pci_p2pdma_page(const struct page *page)
961{
962 return false;
963}
e7638488 964#endif /* CONFIG_DEV_PAGEMAP_OPS */
7b2d55d2 965
3565fce3
DW
966static inline void get_page(struct page *page)
967{
968 page = compound_head(page);
969 /*
970 * Getting a normal page or the head of a compound page
0139aa7b 971 * requires to already have an elevated page->_refcount.
3565fce3 972 */
fe896d18
JK
973 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
974 page_ref_inc(page);
3565fce3
DW
975}
976
977static inline void put_page(struct page *page)
978{
979 page = compound_head(page);
980
7b2d55d2 981 /*
e7638488
DW
982 * For devmap managed pages we need to catch refcount transition from
983 * 2 to 1, when refcount reach one it means the page is free and we
984 * need to inform the device driver through callback. See
7b2d55d2
JG
985 * include/linux/memremap.h and HMM for details.
986 */
e7638488 987 if (put_devmap_managed_page(page))
7b2d55d2 988 return;
7b2d55d2 989
3565fce3
DW
990 if (put_page_testzero(page))
991 __put_page(page);
3565fce3
DW
992}
993
9127ab4f
CS
994#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
995#define SECTION_IN_PAGE_FLAGS
996#endif
997
89689ae7 998/*
7a8010cd
VB
999 * The identification function is mainly used by the buddy allocator for
1000 * determining if two pages could be buddies. We are not really identifying
1001 * the zone since we could be using the section number id if we do not have
1002 * node id available in page flags.
1003 * We only guarantee that it will return the same value for two combinable
1004 * pages in a zone.
89689ae7 1005 */
cb2b95e1
AW
1006static inline int page_zone_id(struct page *page)
1007{
89689ae7 1008 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1009}
1010
89689ae7 1011#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1012extern int page_to_nid(const struct page *page);
89689ae7 1013#else
33dd4e0e 1014static inline int page_to_nid(const struct page *page)
d41dee36 1015{
f165b378
PT
1016 struct page *p = (struct page *)page;
1017
1018 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1019}
89689ae7
CL
1020#endif
1021
57e0a030 1022#ifdef CONFIG_NUMA_BALANCING
90572890 1023static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1024{
90572890 1025 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1026}
1027
90572890 1028static inline int cpupid_to_pid(int cpupid)
57e0a030 1029{
90572890 1030 return cpupid & LAST__PID_MASK;
57e0a030 1031}
b795854b 1032
90572890 1033static inline int cpupid_to_cpu(int cpupid)
b795854b 1034{
90572890 1035 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1036}
1037
90572890 1038static inline int cpupid_to_nid(int cpupid)
b795854b 1039{
90572890 1040 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1041}
1042
90572890 1043static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1044{
90572890 1045 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1046}
1047
90572890 1048static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1049{
90572890 1050 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1051}
1052
8c8a743c
PZ
1053static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1054{
1055 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1056}
1057
1058#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1059#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1060static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1061{
1ae71d03 1062 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1063}
90572890
PZ
1064
1065static inline int page_cpupid_last(struct page *page)
1066{
1067 return page->_last_cpupid;
1068}
1069static inline void page_cpupid_reset_last(struct page *page)
b795854b 1070{
1ae71d03 1071 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1072}
1073#else
90572890 1074static inline int page_cpupid_last(struct page *page)
75980e97 1075{
90572890 1076 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1077}
1078
90572890 1079extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1080
90572890 1081static inline void page_cpupid_reset_last(struct page *page)
75980e97 1082{
09940a4f 1083 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1084}
90572890
PZ
1085#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1086#else /* !CONFIG_NUMA_BALANCING */
1087static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1088{
90572890 1089 return page_to_nid(page); /* XXX */
57e0a030
MG
1090}
1091
90572890 1092static inline int page_cpupid_last(struct page *page)
57e0a030 1093{
90572890 1094 return page_to_nid(page); /* XXX */
57e0a030
MG
1095}
1096
90572890 1097static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1098{
1099 return -1;
1100}
1101
90572890 1102static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1103{
1104 return -1;
1105}
1106
90572890 1107static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1108{
1109 return -1;
1110}
1111
90572890
PZ
1112static inline int cpu_pid_to_cpupid(int nid, int pid)
1113{
1114 return -1;
1115}
1116
1117static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1118{
1119 return 1;
1120}
1121
90572890 1122static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1123{
1124}
8c8a743c
PZ
1125
1126static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1127{
1128 return false;
1129}
90572890 1130#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1131
2813b9c0
AK
1132#ifdef CONFIG_KASAN_SW_TAGS
1133static inline u8 page_kasan_tag(const struct page *page)
1134{
1135 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1136}
1137
1138static inline void page_kasan_tag_set(struct page *page, u8 tag)
1139{
1140 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1141 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1142}
1143
1144static inline void page_kasan_tag_reset(struct page *page)
1145{
1146 page_kasan_tag_set(page, 0xff);
1147}
1148#else
1149static inline u8 page_kasan_tag(const struct page *page)
1150{
1151 return 0xff;
1152}
1153
1154static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1155static inline void page_kasan_tag_reset(struct page *page) { }
1156#endif
1157
33dd4e0e 1158static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1159{
1160 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1161}
1162
75ef7184
MG
1163static inline pg_data_t *page_pgdat(const struct page *page)
1164{
1165 return NODE_DATA(page_to_nid(page));
1166}
1167
9127ab4f 1168#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1169static inline void set_page_section(struct page *page, unsigned long section)
1170{
1171 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1172 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1173}
1174
aa462abe 1175static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1176{
1177 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1178}
308c05e3 1179#endif
d41dee36 1180
2f1b6248 1181static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1182{
1183 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1184 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1185}
2f1b6248 1186
348f8b6c
DH
1187static inline void set_page_node(struct page *page, unsigned long node)
1188{
1189 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1190 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1191}
89689ae7 1192
2f1b6248 1193static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1194 unsigned long node, unsigned long pfn)
1da177e4 1195{
348f8b6c
DH
1196 set_page_zone(page, zone);
1197 set_page_node(page, node);
9127ab4f 1198#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1199 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1200#endif
1da177e4
LT
1201}
1202
0610c25d
GT
1203#ifdef CONFIG_MEMCG
1204static inline struct mem_cgroup *page_memcg(struct page *page)
1205{
1206 return page->mem_cgroup;
1207}
55779ec7
JW
1208static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1209{
1210 WARN_ON_ONCE(!rcu_read_lock_held());
1211 return READ_ONCE(page->mem_cgroup);
1212}
0610c25d
GT
1213#else
1214static inline struct mem_cgroup *page_memcg(struct page *page)
1215{
1216 return NULL;
1217}
55779ec7
JW
1218static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1219{
1220 WARN_ON_ONCE(!rcu_read_lock_held());
1221 return NULL;
1222}
0610c25d
GT
1223#endif
1224
f6ac2354
CL
1225/*
1226 * Some inline functions in vmstat.h depend on page_zone()
1227 */
1228#include <linux/vmstat.h>
1229
33dd4e0e 1230static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1231{
1dff8083 1232 return page_to_virt(page);
1da177e4
LT
1233}
1234
1235#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1236#define HASHED_PAGE_VIRTUAL
1237#endif
1238
1239#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1240static inline void *page_address(const struct page *page)
1241{
1242 return page->virtual;
1243}
1244static inline void set_page_address(struct page *page, void *address)
1245{
1246 page->virtual = address;
1247}
1da177e4
LT
1248#define page_address_init() do { } while(0)
1249#endif
1250
1251#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1252void *page_address(const struct page *page);
1da177e4
LT
1253void set_page_address(struct page *page, void *virtual);
1254void page_address_init(void);
1255#endif
1256
1257#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1258#define page_address(page) lowmem_page_address(page)
1259#define set_page_address(page, address) do { } while(0)
1260#define page_address_init() do { } while(0)
1261#endif
1262
e39155ea
KS
1263extern void *page_rmapping(struct page *page);
1264extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1265extern struct address_space *page_mapping(struct page *page);
1da177e4 1266
f981c595
MG
1267extern struct address_space *__page_file_mapping(struct page *);
1268
1269static inline
1270struct address_space *page_file_mapping(struct page *page)
1271{
1272 if (unlikely(PageSwapCache(page)))
1273 return __page_file_mapping(page);
1274
1275 return page->mapping;
1276}
1277
f6ab1f7f
HY
1278extern pgoff_t __page_file_index(struct page *page);
1279
1da177e4
LT
1280/*
1281 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1282 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1283 */
1284static inline pgoff_t page_index(struct page *page)
1285{
1286 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1287 return __page_file_index(page);
1da177e4
LT
1288 return page->index;
1289}
1290
1aa8aea5 1291bool page_mapped(struct page *page);
bda807d4 1292struct address_space *page_mapping(struct page *page);
cb9f753a 1293struct address_space *page_mapping_file(struct page *page);
1da177e4 1294
2f064f34
MH
1295/*
1296 * Return true only if the page has been allocated with
1297 * ALLOC_NO_WATERMARKS and the low watermark was not
1298 * met implying that the system is under some pressure.
1299 */
1300static inline bool page_is_pfmemalloc(struct page *page)
1301{
1302 /*
1303 * Page index cannot be this large so this must be
1304 * a pfmemalloc page.
1305 */
1306 return page->index == -1UL;
1307}
1308
1309/*
1310 * Only to be called by the page allocator on a freshly allocated
1311 * page.
1312 */
1313static inline void set_page_pfmemalloc(struct page *page)
1314{
1315 page->index = -1UL;
1316}
1317
1318static inline void clear_page_pfmemalloc(struct page *page)
1319{
1320 page->index = 0;
1321}
1322
1da177e4
LT
1323/*
1324 * Different kinds of faults, as returned by handle_mm_fault().
1325 * Used to decide whether a process gets delivered SIGBUS or
1326 * just gets major/minor fault counters bumped up.
1327 */
d0217ac0 1328
83c54070
NP
1329#define VM_FAULT_OOM 0x0001
1330#define VM_FAULT_SIGBUS 0x0002
1331#define VM_FAULT_MAJOR 0x0004
1332#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1333#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1334#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1335#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1336
83c54070
NP
1337#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1338#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1339#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1340#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1341#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
caa51d26
JK
1342#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1343 * and needs fsync() to complete (for
1344 * synchronous page faults in DAX) */
aa50d3a7 1345
33692f27
LT
1346#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1347 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1348 VM_FAULT_FALLBACK)
aa50d3a7 1349
282a8e03
RZ
1350#define VM_FAULT_RESULT_TRACE \
1351 { VM_FAULT_OOM, "OOM" }, \
1352 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1353 { VM_FAULT_MAJOR, "MAJOR" }, \
1354 { VM_FAULT_WRITE, "WRITE" }, \
1355 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1356 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1357 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1358 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1359 { VM_FAULT_LOCKED, "LOCKED" }, \
1360 { VM_FAULT_RETRY, "RETRY" }, \
1361 { VM_FAULT_FALLBACK, "FALLBACK" }, \
caa51d26
JK
1362 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1363 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
282a8e03 1364
aa50d3a7
AK
1365/* Encode hstate index for a hwpoisoned large page */
1366#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1367#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1368
1c0fe6e3
NP
1369/*
1370 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1371 */
1372extern void pagefault_out_of_memory(void);
1373
1da177e4
LT
1374#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1375
ddd588b5 1376/*
7bf02ea2 1377 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1378 * various contexts.
1379 */
4b59e6c4 1380#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1381
9af744d7 1382extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1383
7f43add4 1384extern bool can_do_mlock(void);
1da177e4
LT
1385extern int user_shm_lock(size_t, struct user_struct *);
1386extern void user_shm_unlock(size_t, struct user_struct *);
1387
1388/*
1389 * Parameter block passed down to zap_pte_range in exceptional cases.
1390 */
1391struct zap_details {
1da177e4
LT
1392 struct address_space *check_mapping; /* Check page->mapping if set */
1393 pgoff_t first_index; /* Lowest page->index to unmap */
1394 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1395};
1396
df6ad698
JG
1397struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1398 pte_t pte, bool with_public_device);
1399#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1400
28093f9f
GS
1401struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1402 pmd_t pmd);
7e675137 1403
27d036e3
LR
1404void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1405 unsigned long size);
14f5ff5d 1406void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1407 unsigned long size);
4f74d2c8
LT
1408void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1409 unsigned long start, unsigned long end);
e6473092
MM
1410
1411/**
1412 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1413 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1414 * this handler should only handle pud_trans_huge() puds.
1415 * the pmd_entry or pte_entry callbacks will be used for
1416 * regular PUDs.
e6473092 1417 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1418 * this handler is required to be able to handle
1419 * pmd_trans_huge() pmds. They may simply choose to
1420 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1421 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1422 * @pte_hole: if set, called for each hole at all levels
5dc37642 1423 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1424 * @test_walk: caller specific callback function to determine whether
f7e2355f 1425 * we walk over the current vma or not. Returning 0
fafaa426
NH
1426 * value means "do page table walk over the current vma,"
1427 * and a negative one means "abort current page table walk
f7e2355f 1428 * right now." 1 means "skip the current vma."
fafaa426
NH
1429 * @mm: mm_struct representing the target process of page table walk
1430 * @vma: vma currently walked (NULL if walking outside vmas)
1431 * @private: private data for callbacks' usage
e6473092 1432 *
fafaa426 1433 * (see the comment on walk_page_range() for more details)
e6473092
MM
1434 */
1435struct mm_walk {
a00cc7d9
MW
1436 int (*pud_entry)(pud_t *pud, unsigned long addr,
1437 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1438 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1439 unsigned long next, struct mm_walk *walk);
1440 int (*pte_entry)(pte_t *pte, unsigned long addr,
1441 unsigned long next, struct mm_walk *walk);
1442 int (*pte_hole)(unsigned long addr, unsigned long next,
1443 struct mm_walk *walk);
1444 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1445 unsigned long addr, unsigned long next,
1446 struct mm_walk *walk);
fafaa426
NH
1447 int (*test_walk)(unsigned long addr, unsigned long next,
1448 struct mm_walk *walk);
2165009b 1449 struct mm_struct *mm;
fafaa426 1450 struct vm_area_struct *vma;
2165009b 1451 void *private;
e6473092
MM
1452};
1453
ac46d4f3
JG
1454struct mmu_notifier_range;
1455
2165009b
DH
1456int walk_page_range(unsigned long addr, unsigned long end,
1457 struct mm_walk *walk);
900fc5f1 1458int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1459void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1460 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1461int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1462 struct vm_area_struct *vma);
09796395 1463int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1464 struct mmu_notifier_range *range,
1465 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1466int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1467 unsigned long *pfn);
d87fe660 1468int follow_phys(struct vm_area_struct *vma, unsigned long address,
1469 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1470int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1471 void *buf, int len, int write);
1da177e4 1472
7caef267 1473extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1474extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1475void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1476void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1477int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1478int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1479int invalidate_inode_page(struct page *page);
1480
7ee1dd3f 1481#ifdef CONFIG_MMU
2b740303
SJ
1482extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1483 unsigned long address, unsigned int flags);
5c723ba5 1484extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1485 unsigned long address, unsigned int fault_flags,
1486 bool *unlocked);
977fbdcd
MW
1487void unmap_mapping_pages(struct address_space *mapping,
1488 pgoff_t start, pgoff_t nr, bool even_cows);
1489void unmap_mapping_range(struct address_space *mapping,
1490 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1491#else
2b740303 1492static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
dcddffd4 1493 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1494{
1495 /* should never happen if there's no MMU */
1496 BUG();
1497 return VM_FAULT_SIGBUS;
1498}
5c723ba5
PZ
1499static inline int fixup_user_fault(struct task_struct *tsk,
1500 struct mm_struct *mm, unsigned long address,
4a9e1cda 1501 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1502{
1503 /* should never happen if there's no MMU */
1504 BUG();
1505 return -EFAULT;
1506}
977fbdcd
MW
1507static inline void unmap_mapping_pages(struct address_space *mapping,
1508 pgoff_t start, pgoff_t nr, bool even_cows) { }
1509static inline void unmap_mapping_range(struct address_space *mapping,
1510 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1511#endif
f33ea7f4 1512
977fbdcd
MW
1513static inline void unmap_shared_mapping_range(struct address_space *mapping,
1514 loff_t const holebegin, loff_t const holelen)
1515{
1516 unmap_mapping_range(mapping, holebegin, holelen, 0);
1517}
1518
1519extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1520 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1521extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1522 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1523extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1524 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1525
1e987790
DH
1526long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1527 unsigned long start, unsigned long nr_pages,
9beae1ea 1528 unsigned int gup_flags, struct page **pages,
5b56d49f 1529 struct vm_area_struct **vmas, int *locked);
c12d2da5 1530long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1531 unsigned int gup_flags, struct page **pages,
cde70140 1532 struct vm_area_struct **vmas);
c12d2da5 1533long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1534 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1535long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1536 struct page **pages, unsigned int gup_flags);
2bb6d283
DW
1537#ifdef CONFIG_FS_DAX
1538long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1539 unsigned int gup_flags, struct page **pages,
1540 struct vm_area_struct **vmas);
1541#else
1542static inline long get_user_pages_longterm(unsigned long start,
1543 unsigned long nr_pages, unsigned int gup_flags,
1544 struct page **pages, struct vm_area_struct **vmas)
1545{
1546 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1547}
1548#endif /* CONFIG_FS_DAX */
1549
d2bf6be8
NP
1550int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1551 struct page **pages);
8025e5dd
JK
1552
1553/* Container for pinned pfns / pages */
1554struct frame_vector {
1555 unsigned int nr_allocated; /* Number of frames we have space for */
1556 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1557 bool got_ref; /* Did we pin pages by getting page ref? */
1558 bool is_pfns; /* Does array contain pages or pfns? */
1559 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1560 * pfns_vector_pages() or pfns_vector_pfns()
1561 * for access */
1562};
1563
1564struct frame_vector *frame_vector_create(unsigned int nr_frames);
1565void frame_vector_destroy(struct frame_vector *vec);
1566int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1567 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1568void put_vaddr_frames(struct frame_vector *vec);
1569int frame_vector_to_pages(struct frame_vector *vec);
1570void frame_vector_to_pfns(struct frame_vector *vec);
1571
1572static inline unsigned int frame_vector_count(struct frame_vector *vec)
1573{
1574 return vec->nr_frames;
1575}
1576
1577static inline struct page **frame_vector_pages(struct frame_vector *vec)
1578{
1579 if (vec->is_pfns) {
1580 int err = frame_vector_to_pages(vec);
1581
1582 if (err)
1583 return ERR_PTR(err);
1584 }
1585 return (struct page **)(vec->ptrs);
1586}
1587
1588static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1589{
1590 if (!vec->is_pfns)
1591 frame_vector_to_pfns(vec);
1592 return (unsigned long *)(vec->ptrs);
1593}
1594
18022c5d
MG
1595struct kvec;
1596int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1597 struct page **pages);
1598int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1599struct page *get_dump_page(unsigned long addr);
1da177e4 1600
cf9a2ae8 1601extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1602extern void do_invalidatepage(struct page *page, unsigned int offset,
1603 unsigned int length);
cf9a2ae8 1604
f82b3764 1605void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1606int __set_page_dirty_nobuffers(struct page *page);
76719325 1607int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1608int redirty_page_for_writepage(struct writeback_control *wbc,
1609 struct page *page);
62cccb8c 1610void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1611void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1612 struct bdi_writeback *wb);
b3c97528 1613int set_page_dirty(struct page *page);
1da177e4 1614int set_page_dirty_lock(struct page *page);
736304f3
JK
1615void __cancel_dirty_page(struct page *page);
1616static inline void cancel_dirty_page(struct page *page)
1617{
1618 /* Avoid atomic ops, locking, etc. when not actually needed. */
1619 if (PageDirty(page))
1620 __cancel_dirty_page(page);
1621}
1da177e4 1622int clear_page_dirty_for_io(struct page *page);
b9ea2515 1623
a9090253 1624int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1625
b5330628
ON
1626static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1627{
1628 return !vma->vm_ops;
1629}
1630
b0506e48
MR
1631#ifdef CONFIG_SHMEM
1632/*
1633 * The vma_is_shmem is not inline because it is used only by slow
1634 * paths in userfault.
1635 */
1636bool vma_is_shmem(struct vm_area_struct *vma);
1637#else
1638static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1639#endif
1640
d17af505 1641int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1642
b6a2fea3
OW
1643extern unsigned long move_page_tables(struct vm_area_struct *vma,
1644 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1645 unsigned long new_addr, unsigned long len,
1646 bool need_rmap_locks);
7da4d641
PZ
1647extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1648 unsigned long end, pgprot_t newprot,
4b10e7d5 1649 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1650extern int mprotect_fixup(struct vm_area_struct *vma,
1651 struct vm_area_struct **pprev, unsigned long start,
1652 unsigned long end, unsigned long newflags);
1da177e4 1653
465a454f
PZ
1654/*
1655 * doesn't attempt to fault and will return short.
1656 */
1657int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1658 struct page **pages);
d559db08
KH
1659/*
1660 * per-process(per-mm_struct) statistics.
1661 */
d559db08
KH
1662static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1663{
69c97823
KK
1664 long val = atomic_long_read(&mm->rss_stat.count[member]);
1665
1666#ifdef SPLIT_RSS_COUNTING
1667 /*
1668 * counter is updated in asynchronous manner and may go to minus.
1669 * But it's never be expected number for users.
1670 */
1671 if (val < 0)
1672 val = 0;
172703b0 1673#endif
69c97823
KK
1674 return (unsigned long)val;
1675}
d559db08
KH
1676
1677static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1678{
172703b0 1679 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1680}
1681
1682static inline void inc_mm_counter(struct mm_struct *mm, int member)
1683{
172703b0 1684 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1685}
1686
1687static inline void dec_mm_counter(struct mm_struct *mm, int member)
1688{
172703b0 1689 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1690}
1691
eca56ff9
JM
1692/* Optimized variant when page is already known not to be PageAnon */
1693static inline int mm_counter_file(struct page *page)
1694{
1695 if (PageSwapBacked(page))
1696 return MM_SHMEMPAGES;
1697 return MM_FILEPAGES;
1698}
1699
1700static inline int mm_counter(struct page *page)
1701{
1702 if (PageAnon(page))
1703 return MM_ANONPAGES;
1704 return mm_counter_file(page);
1705}
1706
d559db08
KH
1707static inline unsigned long get_mm_rss(struct mm_struct *mm)
1708{
1709 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1710 get_mm_counter(mm, MM_ANONPAGES) +
1711 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1712}
1713
1714static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1715{
1716 return max(mm->hiwater_rss, get_mm_rss(mm));
1717}
1718
1719static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1720{
1721 return max(mm->hiwater_vm, mm->total_vm);
1722}
1723
1724static inline void update_hiwater_rss(struct mm_struct *mm)
1725{
1726 unsigned long _rss = get_mm_rss(mm);
1727
1728 if ((mm)->hiwater_rss < _rss)
1729 (mm)->hiwater_rss = _rss;
1730}
1731
1732static inline void update_hiwater_vm(struct mm_struct *mm)
1733{
1734 if (mm->hiwater_vm < mm->total_vm)
1735 mm->hiwater_vm = mm->total_vm;
1736}
1737
695f0559
PC
1738static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1739{
1740 mm->hiwater_rss = get_mm_rss(mm);
1741}
1742
d559db08
KH
1743static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1744 struct mm_struct *mm)
1745{
1746 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1747
1748 if (*maxrss < hiwater_rss)
1749 *maxrss = hiwater_rss;
1750}
1751
53bddb4e 1752#if defined(SPLIT_RSS_COUNTING)
05af2e10 1753void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1754#else
05af2e10 1755static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1756{
1757}
1758#endif
465a454f 1759
3565fce3
DW
1760#ifndef __HAVE_ARCH_PTE_DEVMAP
1761static inline int pte_devmap(pte_t pte)
1762{
1763 return 0;
1764}
1765#endif
1766
6d2329f8 1767int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1768
25ca1d6c
NK
1769extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1770 spinlock_t **ptl);
1771static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1772 spinlock_t **ptl)
1773{
1774 pte_t *ptep;
1775 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1776 return ptep;
1777}
c9cfcddf 1778
c2febafc
KS
1779#ifdef __PAGETABLE_P4D_FOLDED
1780static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1781 unsigned long address)
1782{
1783 return 0;
1784}
1785#else
1786int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1787#endif
1788
b4e98d9a 1789#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1790static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1791 unsigned long address)
1792{
1793 return 0;
1794}
b4e98d9a
KS
1795static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1796static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1797
5f22df00 1798#else
c2febafc 1799int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1800
b4e98d9a
KS
1801static inline void mm_inc_nr_puds(struct mm_struct *mm)
1802{
6d212db1
MS
1803 if (mm_pud_folded(mm))
1804 return;
af5b0f6a 1805 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1806}
1807
1808static inline void mm_dec_nr_puds(struct mm_struct *mm)
1809{
6d212db1
MS
1810 if (mm_pud_folded(mm))
1811 return;
af5b0f6a 1812 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1813}
5f22df00
NP
1814#endif
1815
2d2f5119 1816#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1817static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1818 unsigned long address)
1819{
1820 return 0;
1821}
dc6c9a35 1822
dc6c9a35
KS
1823static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1824static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1825
5f22df00 1826#else
1bb3630e 1827int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1828
dc6c9a35
KS
1829static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1830{
6d212db1
MS
1831 if (mm_pmd_folded(mm))
1832 return;
af5b0f6a 1833 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1834}
1835
1836static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1837{
6d212db1
MS
1838 if (mm_pmd_folded(mm))
1839 return;
af5b0f6a 1840 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1841}
5f22df00
NP
1842#endif
1843
c4812909 1844#ifdef CONFIG_MMU
af5b0f6a 1845static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1846{
af5b0f6a 1847 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1848}
1849
af5b0f6a 1850static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1851{
af5b0f6a 1852 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1853}
1854
1855static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1856{
af5b0f6a 1857 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1858}
1859
1860static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1861{
af5b0f6a 1862 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1863}
1864#else
c4812909 1865
af5b0f6a
KS
1866static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1867static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1868{
1869 return 0;
1870}
1871
1872static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1873static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1874#endif
1875
4cf58924
JFG
1876int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1877int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 1878
1da177e4
LT
1879/*
1880 * The following ifdef needed to get the 4level-fixup.h header to work.
1881 * Remove it when 4level-fixup.h has been removed.
1882 */
1bb3630e 1883#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1884
1885#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1886static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1887 unsigned long address)
1888{
1889 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1890 NULL : p4d_offset(pgd, address);
1891}
1892
1893static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1894 unsigned long address)
1da177e4 1895{
c2febafc
KS
1896 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1897 NULL : pud_offset(p4d, address);
1da177e4 1898}
505a60e2 1899#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1900
1901static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1902{
1bb3630e
HD
1903 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1904 NULL: pmd_offset(pud, address);
1da177e4 1905}
1bb3630e
HD
1906#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1907
57c1ffce 1908#if USE_SPLIT_PTE_PTLOCKS
597d795a 1909#if ALLOC_SPLIT_PTLOCKS
b35f1819 1910void __init ptlock_cache_init(void);
539edb58
PZ
1911extern bool ptlock_alloc(struct page *page);
1912extern void ptlock_free(struct page *page);
1913
1914static inline spinlock_t *ptlock_ptr(struct page *page)
1915{
1916 return page->ptl;
1917}
597d795a 1918#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1919static inline void ptlock_cache_init(void)
1920{
1921}
1922
49076ec2
KS
1923static inline bool ptlock_alloc(struct page *page)
1924{
49076ec2
KS
1925 return true;
1926}
539edb58 1927
49076ec2
KS
1928static inline void ptlock_free(struct page *page)
1929{
49076ec2
KS
1930}
1931
1932static inline spinlock_t *ptlock_ptr(struct page *page)
1933{
539edb58 1934 return &page->ptl;
49076ec2 1935}
597d795a 1936#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1937
1938static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1939{
1940 return ptlock_ptr(pmd_page(*pmd));
1941}
1942
1943static inline bool ptlock_init(struct page *page)
1944{
1945 /*
1946 * prep_new_page() initialize page->private (and therefore page->ptl)
1947 * with 0. Make sure nobody took it in use in between.
1948 *
1949 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1950 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1951 */
309381fe 1952 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1953 if (!ptlock_alloc(page))
1954 return false;
1955 spin_lock_init(ptlock_ptr(page));
1956 return true;
1957}
1958
57c1ffce 1959#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1960/*
1961 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1962 */
49076ec2
KS
1963static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1964{
1965 return &mm->page_table_lock;
1966}
b35f1819 1967static inline void ptlock_cache_init(void) {}
49076ec2 1968static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 1969static inline void ptlock_free(struct page *page) {}
57c1ffce 1970#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1971
b35f1819
KS
1972static inline void pgtable_init(void)
1973{
1974 ptlock_cache_init();
1975 pgtable_cache_init();
1976}
1977
390f44e2 1978static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1979{
706874e9
VD
1980 if (!ptlock_init(page))
1981 return false;
1d40a5ea 1982 __SetPageTable(page);
2f569afd 1983 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1984 return true;
2f569afd
MS
1985}
1986
1987static inline void pgtable_page_dtor(struct page *page)
1988{
9e247bab 1989 ptlock_free(page);
1d40a5ea 1990 __ClearPageTable(page);
2f569afd
MS
1991 dec_zone_page_state(page, NR_PAGETABLE);
1992}
1993
c74df32c
HD
1994#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1995({ \
4c21e2f2 1996 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1997 pte_t *__pte = pte_offset_map(pmd, address); \
1998 *(ptlp) = __ptl; \
1999 spin_lock(__ptl); \
2000 __pte; \
2001})
2002
2003#define pte_unmap_unlock(pte, ptl) do { \
2004 spin_unlock(ptl); \
2005 pte_unmap(pte); \
2006} while (0)
2007
4cf58924 2008#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2009
2010#define pte_alloc_map(mm, pmd, address) \
4cf58924 2011 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2012
c74df32c 2013#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2014 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2015 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2016
1bb3630e 2017#define pte_alloc_kernel(pmd, address) \
4cf58924 2018 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2019 NULL: pte_offset_kernel(pmd, address))
1da177e4 2020
e009bb30
KS
2021#if USE_SPLIT_PMD_PTLOCKS
2022
634391ac
MS
2023static struct page *pmd_to_page(pmd_t *pmd)
2024{
2025 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2026 return virt_to_page((void *)((unsigned long) pmd & mask));
2027}
2028
e009bb30
KS
2029static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2030{
634391ac 2031 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2032}
2033
2034static inline bool pgtable_pmd_page_ctor(struct page *page)
2035{
e009bb30
KS
2036#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2037 page->pmd_huge_pte = NULL;
2038#endif
49076ec2 2039 return ptlock_init(page);
e009bb30
KS
2040}
2041
2042static inline void pgtable_pmd_page_dtor(struct page *page)
2043{
2044#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2045 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2046#endif
49076ec2 2047 ptlock_free(page);
e009bb30
KS
2048}
2049
634391ac 2050#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2051
2052#else
2053
9a86cb7b
KS
2054static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2055{
2056 return &mm->page_table_lock;
2057}
2058
e009bb30
KS
2059static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2060static inline void pgtable_pmd_page_dtor(struct page *page) {}
2061
c389a250 2062#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2063
e009bb30
KS
2064#endif
2065
9a86cb7b
KS
2066static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2067{
2068 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2069 spin_lock(ptl);
2070 return ptl;
2071}
2072
a00cc7d9
MW
2073/*
2074 * No scalability reason to split PUD locks yet, but follow the same pattern
2075 * as the PMD locks to make it easier if we decide to. The VM should not be
2076 * considered ready to switch to split PUD locks yet; there may be places
2077 * which need to be converted from page_table_lock.
2078 */
2079static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2080{
2081 return &mm->page_table_lock;
2082}
2083
2084static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2085{
2086 spinlock_t *ptl = pud_lockptr(mm, pud);
2087
2088 spin_lock(ptl);
2089 return ptl;
2090}
62906027 2091
a00cc7d9 2092extern void __init pagecache_init(void);
1da177e4 2093extern void free_area_init(unsigned long * zones_size);
03e85f9d 2094extern void __init free_area_init_node(int nid, unsigned long * zones_size,
9109fb7b 2095 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
2096extern void free_initmem(void);
2097
69afade7
JL
2098/*
2099 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2100 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2101 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2102 * Return pages freed into the buddy system.
2103 */
11199692 2104extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2105 int poison, const char *s);
c3d5f5f0 2106
cfa11e08
JL
2107#ifdef CONFIG_HIGHMEM
2108/*
2109 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2110 * and totalram_pages.
2111 */
2112extern void free_highmem_page(struct page *page);
2113#endif
69afade7 2114
c3d5f5f0 2115extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2116extern void mem_init_print_info(const char *str);
69afade7 2117
4b50bcc7 2118extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2119
69afade7
JL
2120/* Free the reserved page into the buddy system, so it gets managed. */
2121static inline void __free_reserved_page(struct page *page)
2122{
2123 ClearPageReserved(page);
2124 init_page_count(page);
2125 __free_page(page);
2126}
2127
2128static inline void free_reserved_page(struct page *page)
2129{
2130 __free_reserved_page(page);
2131 adjust_managed_page_count(page, 1);
2132}
2133
2134static inline void mark_page_reserved(struct page *page)
2135{
2136 SetPageReserved(page);
2137 adjust_managed_page_count(page, -1);
2138}
2139
2140/*
2141 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2142 * The freed pages will be poisoned with pattern "poison" if it's within
2143 * range [0, UCHAR_MAX].
2144 * Return pages freed into the buddy system.
69afade7
JL
2145 */
2146static inline unsigned long free_initmem_default(int poison)
2147{
2148 extern char __init_begin[], __init_end[];
2149
11199692 2150 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2151 poison, "unused kernel");
2152}
2153
7ee3d4e8
JL
2154static inline unsigned long get_num_physpages(void)
2155{
2156 int nid;
2157 unsigned long phys_pages = 0;
2158
2159 for_each_online_node(nid)
2160 phys_pages += node_present_pages(nid);
2161
2162 return phys_pages;
2163}
2164
0ee332c1 2165#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2166/*
0ee332c1 2167 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2168 * zones, allocate the backing mem_map and account for memory holes in a more
2169 * architecture independent manner. This is a substitute for creating the
2170 * zone_sizes[] and zholes_size[] arrays and passing them to
2171 * free_area_init_node()
2172 *
2173 * An architecture is expected to register range of page frames backed by
0ee332c1 2174 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2175 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2176 * usage, an architecture is expected to do something like
2177 *
2178 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2179 * max_highmem_pfn};
2180 * for_each_valid_physical_page_range()
0ee332c1 2181 * memblock_add_node(base, size, nid)
c713216d
MG
2182 * free_area_init_nodes(max_zone_pfns);
2183 *
0ee332c1
TH
2184 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2185 * registered physical page range. Similarly
2186 * sparse_memory_present_with_active_regions() calls memory_present() for
2187 * each range when SPARSEMEM is enabled.
c713216d
MG
2188 *
2189 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2190 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2191 */
2192extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2193unsigned long node_map_pfn_alignment(void);
32996250
YL
2194unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2195 unsigned long end_pfn);
c713216d
MG
2196extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2197 unsigned long end_pfn);
2198extern void get_pfn_range_for_nid(unsigned int nid,
2199 unsigned long *start_pfn, unsigned long *end_pfn);
2200extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2201extern void free_bootmem_with_active_regions(int nid,
2202 unsigned long max_low_pfn);
2203extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2204
0ee332c1 2205#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2206
0ee332c1 2207#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2208 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2209static inline int __early_pfn_to_nid(unsigned long pfn,
2210 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2211{
2212 return 0;
2213}
2214#else
2215/* please see mm/page_alloc.c */
2216extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2217/* there is a per-arch backend function. */
8a942fde
MG
2218extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2219 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2220#endif
2221
aca52c39 2222#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
2223void zero_resv_unavail(void);
2224#else
2225static inline void zero_resv_unavail(void) {}
2226#endif
2227
0e0b864e 2228extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2229extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2230 enum memmap_context, struct vmem_altmap *);
bc75d33f 2231extern void setup_per_zone_wmarks(void);
1b79acc9 2232extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2233extern void mem_init(void);
8feae131 2234extern void __init mmap_init(void);
9af744d7 2235extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2236extern long si_mem_available(void);
1da177e4
LT
2237extern void si_meminfo(struct sysinfo * val);
2238extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2239#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2240extern unsigned long arch_reserved_kernel_pages(void);
2241#endif
1da177e4 2242
a8e99259
MH
2243extern __printf(3, 4)
2244void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2245
e7c8d5c9 2246extern void setup_per_cpu_pageset(void);
e7c8d5c9 2247
112067f0 2248extern void zone_pcp_update(struct zone *zone);
340175b7 2249extern void zone_pcp_reset(struct zone *zone);
112067f0 2250
75f7ad8e
PS
2251/* page_alloc.c */
2252extern int min_free_kbytes;
1c30844d 2253extern int watermark_boost_factor;
795ae7a0 2254extern int watermark_scale_factor;
75f7ad8e 2255
8feae131 2256/* nommu.c */
33e5d769 2257extern atomic_long_t mmap_pages_allocated;
7e660872 2258extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2259
6b2dbba8 2260/* interval_tree.c */
6b2dbba8 2261void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2262 struct rb_root_cached *root);
9826a516
ML
2263void vma_interval_tree_insert_after(struct vm_area_struct *node,
2264 struct vm_area_struct *prev,
f808c13f 2265 struct rb_root_cached *root);
6b2dbba8 2266void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2267 struct rb_root_cached *root);
2268struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2269 unsigned long start, unsigned long last);
2270struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2271 unsigned long start, unsigned long last);
2272
2273#define vma_interval_tree_foreach(vma, root, start, last) \
2274 for (vma = vma_interval_tree_iter_first(root, start, last); \
2275 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2276
bf181b9f 2277void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2278 struct rb_root_cached *root);
bf181b9f 2279void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2280 struct rb_root_cached *root);
2281struct anon_vma_chain *
2282anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2283 unsigned long start, unsigned long last);
bf181b9f
ML
2284struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2285 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2286#ifdef CONFIG_DEBUG_VM_RB
2287void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2288#endif
bf181b9f
ML
2289
2290#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2291 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2292 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2293
1da177e4 2294/* mmap.c */
34b4e4aa 2295extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2296extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2297 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2298 struct vm_area_struct *expand);
2299static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2300 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2301{
2302 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2303}
1da177e4
LT
2304extern struct vm_area_struct *vma_merge(struct mm_struct *,
2305 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2306 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2307 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2308extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2309extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2310 unsigned long addr, int new_below);
2311extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2312 unsigned long addr, int new_below);
1da177e4
LT
2313extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2314extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2315 struct rb_node **, struct rb_node *);
a8fb5618 2316extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2317extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2318 unsigned long addr, unsigned long len, pgoff_t pgoff,
2319 bool *need_rmap_locks);
1da177e4 2320extern void exit_mmap(struct mm_struct *);
925d1c40 2321
9c599024
CG
2322static inline int check_data_rlimit(unsigned long rlim,
2323 unsigned long new,
2324 unsigned long start,
2325 unsigned long end_data,
2326 unsigned long start_data)
2327{
2328 if (rlim < RLIM_INFINITY) {
2329 if (((new - start) + (end_data - start_data)) > rlim)
2330 return -ENOSPC;
2331 }
2332
2333 return 0;
2334}
2335
7906d00c
AA
2336extern int mm_take_all_locks(struct mm_struct *mm);
2337extern void mm_drop_all_locks(struct mm_struct *mm);
2338
38646013
JS
2339extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2340extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2341extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2342
84638335
KK
2343extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2344extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2345
2eefd878
DS
2346extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2347 const struct vm_special_mapping *sm);
3935ed6a
SS
2348extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2349 unsigned long addr, unsigned long len,
a62c34bd
AL
2350 unsigned long flags,
2351 const struct vm_special_mapping *spec);
2352/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2353extern int install_special_mapping(struct mm_struct *mm,
2354 unsigned long addr, unsigned long len,
2355 unsigned long flags, struct page **pages);
1da177e4
LT
2356
2357extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2358
0165ab44 2359extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2360 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2361 struct list_head *uf);
1fcfd8db 2362extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2363 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2364 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2365 struct list_head *uf);
85a06835
YS
2366extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2367 struct list_head *uf, bool downgrade);
897ab3e0
MR
2368extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2369 struct list_head *uf);
1da177e4 2370
1fcfd8db
ON
2371static inline unsigned long
2372do_mmap_pgoff(struct file *file, unsigned long addr,
2373 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2374 unsigned long pgoff, unsigned long *populate,
2375 struct list_head *uf)
1fcfd8db 2376{
897ab3e0 2377 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2378}
2379
bebeb3d6
ML
2380#ifdef CONFIG_MMU
2381extern int __mm_populate(unsigned long addr, unsigned long len,
2382 int ignore_errors);
2383static inline void mm_populate(unsigned long addr, unsigned long len)
2384{
2385 /* Ignore errors */
2386 (void) __mm_populate(addr, len, 1);
2387}
2388#else
2389static inline void mm_populate(unsigned long addr, unsigned long len) {}
2390#endif
2391
e4eb1ff6 2392/* These take the mm semaphore themselves */
5d22fc25 2393extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2394extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2395extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2396extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2397 unsigned long, unsigned long,
2398 unsigned long, unsigned long);
1da177e4 2399
db4fbfb9
ML
2400struct vm_unmapped_area_info {
2401#define VM_UNMAPPED_AREA_TOPDOWN 1
2402 unsigned long flags;
2403 unsigned long length;
2404 unsigned long low_limit;
2405 unsigned long high_limit;
2406 unsigned long align_mask;
2407 unsigned long align_offset;
2408};
2409
2410extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2411extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2412
2413/*
2414 * Search for an unmapped address range.
2415 *
2416 * We are looking for a range that:
2417 * - does not intersect with any VMA;
2418 * - is contained within the [low_limit, high_limit) interval;
2419 * - is at least the desired size.
2420 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2421 */
2422static inline unsigned long
2423vm_unmapped_area(struct vm_unmapped_area_info *info)
2424{
cdd7875e 2425 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2426 return unmapped_area_topdown(info);
cdd7875e
BP
2427 else
2428 return unmapped_area(info);
db4fbfb9
ML
2429}
2430
85821aab 2431/* truncate.c */
1da177e4 2432extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2433extern void truncate_inode_pages_range(struct address_space *,
2434 loff_t lstart, loff_t lend);
91b0abe3 2435extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2436
2437/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2438extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2439extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2440 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2441extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2442
2443/* mm/page-writeback.c */
2b69c828 2444int __must_check write_one_page(struct page *page);
1cf6e7d8 2445void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2446
2447/* readahead.c */
2448#define VM_MAX_READAHEAD 128 /* kbytes */
2449#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2450
1da177e4 2451int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2452 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2453
2454void page_cache_sync_readahead(struct address_space *mapping,
2455 struct file_ra_state *ra,
2456 struct file *filp,
2457 pgoff_t offset,
2458 unsigned long size);
2459
2460void page_cache_async_readahead(struct address_space *mapping,
2461 struct file_ra_state *ra,
2462 struct file *filp,
2463 struct page *pg,
2464 pgoff_t offset,
2465 unsigned long size);
2466
1be7107f 2467extern unsigned long stack_guard_gap;
d05f3169 2468/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2469extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2470
2471/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2472extern int expand_downwards(struct vm_area_struct *vma,
2473 unsigned long address);
8ca3eb08 2474#if VM_GROWSUP
46dea3d0 2475extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2476#else
fee7e49d 2477 #define expand_upwards(vma, address) (0)
9ab88515 2478#endif
1da177e4
LT
2479
2480/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2481extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2482extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2483 struct vm_area_struct **pprev);
2484
2485/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2486 NULL if none. Assume start_addr < end_addr. */
2487static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2488{
2489 struct vm_area_struct * vma = find_vma(mm,start_addr);
2490
2491 if (vma && end_addr <= vma->vm_start)
2492 vma = NULL;
2493 return vma;
2494}
2495
1be7107f
HD
2496static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2497{
2498 unsigned long vm_start = vma->vm_start;
2499
2500 if (vma->vm_flags & VM_GROWSDOWN) {
2501 vm_start -= stack_guard_gap;
2502 if (vm_start > vma->vm_start)
2503 vm_start = 0;
2504 }
2505 return vm_start;
2506}
2507
2508static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2509{
2510 unsigned long vm_end = vma->vm_end;
2511
2512 if (vma->vm_flags & VM_GROWSUP) {
2513 vm_end += stack_guard_gap;
2514 if (vm_end < vma->vm_end)
2515 vm_end = -PAGE_SIZE;
2516 }
2517 return vm_end;
2518}
2519
1da177e4
LT
2520static inline unsigned long vma_pages(struct vm_area_struct *vma)
2521{
2522 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2523}
2524
640708a2
PE
2525/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2526static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2527 unsigned long vm_start, unsigned long vm_end)
2528{
2529 struct vm_area_struct *vma = find_vma(mm, vm_start);
2530
2531 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2532 vma = NULL;
2533
2534 return vma;
2535}
2536
017b1660
MK
2537static inline bool range_in_vma(struct vm_area_struct *vma,
2538 unsigned long start, unsigned long end)
2539{
2540 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2541}
2542
bad849b3 2543#ifdef CONFIG_MMU
804af2cf 2544pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2545void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2546#else
2547static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2548{
2549 return __pgprot(0);
2550}
64e45507
PF
2551static inline void vma_set_page_prot(struct vm_area_struct *vma)
2552{
2553 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2554}
bad849b3
DH
2555#endif
2556
5877231f 2557#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2558unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2559 unsigned long start, unsigned long end);
2560#endif
2561
deceb6cd 2562struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2563int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2564 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2565int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
ae2b01f3 2566vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2567 unsigned long pfn);
f5e6d1d5
MW
2568vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2569 unsigned long pfn, pgprot_t pgprot);
5d747637 2570vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2571 pfn_t pfn);
ab77dab4
SJ
2572vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2573 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2574int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2575
1c8f4220
SJ
2576static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2577 unsigned long addr, struct page *page)
2578{
2579 int err = vm_insert_page(vma, addr, page);
2580
2581 if (err == -ENOMEM)
2582 return VM_FAULT_OOM;
2583 if (err < 0 && err != -EBUSY)
2584 return VM_FAULT_SIGBUS;
2585
2586 return VM_FAULT_NOPAGE;
2587}
2588
d97baf94
SJ
2589static inline vm_fault_t vmf_error(int err)
2590{
2591 if (err == -ENOMEM)
2592 return VM_FAULT_OOM;
2593 return VM_FAULT_SIGBUS;
2594}
2595
df06b37f
KB
2596struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2597 unsigned int foll_flags);
240aadee 2598
deceb6cd
HD
2599#define FOLL_WRITE 0x01 /* check pte is writable */
2600#define FOLL_TOUCH 0x02 /* mark page accessed */
2601#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2602#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2603#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2604#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2605 * and return without waiting upon it */
84d33df2 2606#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2607#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2608#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2609#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2610#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2611#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2612#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2613#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2614#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2615#define FOLL_ANON 0x8000 /* don't do file mappings */
1da177e4 2616
2b740303 2617static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2618{
2619 if (vm_fault & VM_FAULT_OOM)
2620 return -ENOMEM;
2621 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2622 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2623 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2624 return -EFAULT;
2625 return 0;
2626}
2627
2f569afd 2628typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2629 void *data);
2630extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2631 unsigned long size, pte_fn_t fn, void *data);
2632
1da177e4 2633
8823b1db
LA
2634#ifdef CONFIG_PAGE_POISONING
2635extern bool page_poisoning_enabled(void);
2636extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2637#else
2638static inline bool page_poisoning_enabled(void) { return false; }
2639static inline void kernel_poison_pages(struct page *page, int numpages,
2640 int enable) { }
2641#endif
2642
12d6f21e 2643#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2644extern bool _debug_pagealloc_enabled;
2645extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2646
2647static inline bool debug_pagealloc_enabled(void)
2648{
2649 return _debug_pagealloc_enabled;
2650}
2651
2652static inline void
2653kernel_map_pages(struct page *page, int numpages, int enable)
2654{
2655 if (!debug_pagealloc_enabled())
2656 return;
2657
2658 __kernel_map_pages(page, numpages, enable);
2659}
8a235efa
RW
2660#ifdef CONFIG_HIBERNATION
2661extern bool kernel_page_present(struct page *page);
40b44137
JK
2662#endif /* CONFIG_HIBERNATION */
2663#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2664static inline void
9858db50 2665kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2666#ifdef CONFIG_HIBERNATION
2667static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2668#endif /* CONFIG_HIBERNATION */
2669static inline bool debug_pagealloc_enabled(void)
2670{
2671 return false;
2672}
2673#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2674
a6c19dfe 2675#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2676extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2677extern int in_gate_area_no_mm(unsigned long addr);
2678extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2679#else
a6c19dfe
AL
2680static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2681{
2682 return NULL;
2683}
2684static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2685static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2686{
2687 return 0;
2688}
1da177e4
LT
2689#endif /* __HAVE_ARCH_GATE_AREA */
2690
44a70ade
MH
2691extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2692
146732ce
JT
2693#ifdef CONFIG_SYSCTL
2694extern int sysctl_drop_caches;
8d65af78 2695int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2696 void __user *, size_t *, loff_t *);
146732ce
JT
2697#endif
2698
cb731d6c
VD
2699void drop_slab(void);
2700void drop_slab_node(int nid);
9d0243bc 2701
7a9166e3
LY
2702#ifndef CONFIG_MMU
2703#define randomize_va_space 0
2704#else
a62eaf15 2705extern int randomize_va_space;
7a9166e3 2706#endif
a62eaf15 2707
045e72ac 2708const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2709void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2710
35fd1eb1 2711void *sparse_buffer_alloc(unsigned long size);
7b73d978
CH
2712struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2713 struct vmem_altmap *altmap);
29c71111 2714pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2715p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2716pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2717pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2718pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2719void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2720struct vmem_altmap;
a8fc357b
CH
2721void *vmemmap_alloc_block_buf(unsigned long size, int node);
2722void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2723void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2724int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2725 int node);
7b73d978
CH
2726int vmemmap_populate(unsigned long start, unsigned long end, int node,
2727 struct vmem_altmap *altmap);
c2b91e2e 2728void vmemmap_populate_print_last(void);
0197518c 2729#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2730void vmemmap_free(unsigned long start, unsigned long end,
2731 struct vmem_altmap *altmap);
0197518c 2732#endif
46723bfa 2733void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2734 unsigned long nr_pages);
6a46079c 2735
82ba011b
AK
2736enum mf_flags {
2737 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2738 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2739 MF_MUST_KILL = 1 << 2,
cf870c70 2740 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2741};
83b57531
EB
2742extern int memory_failure(unsigned long pfn, int flags);
2743extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 2744extern int unpoison_memory(unsigned long pfn);
ead07f6a 2745extern int get_hwpoison_page(struct page *page);
4e41a30c 2746#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2747extern int sysctl_memory_failure_early_kill;
2748extern int sysctl_memory_failure_recovery;
facb6011 2749extern void shake_page(struct page *p, int access);
5844a486 2750extern atomic_long_t num_poisoned_pages __read_mostly;
facb6011 2751extern int soft_offline_page(struct page *page, int flags);
6a46079c 2752
cc637b17
XX
2753
2754/*
2755 * Error handlers for various types of pages.
2756 */
cc3e2af4 2757enum mf_result {
cc637b17
XX
2758 MF_IGNORED, /* Error: cannot be handled */
2759 MF_FAILED, /* Error: handling failed */
2760 MF_DELAYED, /* Will be handled later */
2761 MF_RECOVERED, /* Successfully recovered */
2762};
2763
2764enum mf_action_page_type {
2765 MF_MSG_KERNEL,
2766 MF_MSG_KERNEL_HIGH_ORDER,
2767 MF_MSG_SLAB,
2768 MF_MSG_DIFFERENT_COMPOUND,
2769 MF_MSG_POISONED_HUGE,
2770 MF_MSG_HUGE,
2771 MF_MSG_FREE_HUGE,
31286a84 2772 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2773 MF_MSG_UNMAP_FAILED,
2774 MF_MSG_DIRTY_SWAPCACHE,
2775 MF_MSG_CLEAN_SWAPCACHE,
2776 MF_MSG_DIRTY_MLOCKED_LRU,
2777 MF_MSG_CLEAN_MLOCKED_LRU,
2778 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2779 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2780 MF_MSG_DIRTY_LRU,
2781 MF_MSG_CLEAN_LRU,
2782 MF_MSG_TRUNCATED_LRU,
2783 MF_MSG_BUDDY,
2784 MF_MSG_BUDDY_2ND,
6100e34b 2785 MF_MSG_DAX,
cc637b17
XX
2786 MF_MSG_UNKNOWN,
2787};
2788
47ad8475
AA
2789#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2790extern void clear_huge_page(struct page *page,
c79b57e4 2791 unsigned long addr_hint,
47ad8475
AA
2792 unsigned int pages_per_huge_page);
2793extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
2794 unsigned long addr_hint,
2795 struct vm_area_struct *vma,
47ad8475 2796 unsigned int pages_per_huge_page);
fa4d75c1
MK
2797extern long copy_huge_page_from_user(struct page *dst_page,
2798 const void __user *usr_src,
810a56b9
MK
2799 unsigned int pages_per_huge_page,
2800 bool allow_pagefault);
47ad8475
AA
2801#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2802
e30825f1 2803extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2804
c0a32fc5
SG
2805#ifdef CONFIG_DEBUG_PAGEALLOC
2806extern unsigned int _debug_guardpage_minorder;
e30825f1 2807extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2808
2809static inline unsigned int debug_guardpage_minorder(void)
2810{
2811 return _debug_guardpage_minorder;
2812}
2813
e30825f1
JK
2814static inline bool debug_guardpage_enabled(void)
2815{
2816 return _debug_guardpage_enabled;
2817}
2818
c0a32fc5
SG
2819static inline bool page_is_guard(struct page *page)
2820{
e30825f1
JK
2821 struct page_ext *page_ext;
2822
2823 if (!debug_guardpage_enabled())
2824 return false;
2825
2826 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2827 if (unlikely(!page_ext))
2828 return false;
2829
e30825f1 2830 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2831}
2832#else
2833static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2834static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2835static inline bool page_is_guard(struct page *page) { return false; }
2836#endif /* CONFIG_DEBUG_PAGEALLOC */
2837
f9872caf
CS
2838#if MAX_NUMNODES > 1
2839void __init setup_nr_node_ids(void);
2840#else
2841static inline void setup_nr_node_ids(void) {}
2842#endif
2843
1da177e4
LT
2844#endif /* __KERNEL__ */
2845#endif /* _LINUX_MM_H */