Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
1da177e4
LT
171/*
172 * struct array_cache
173 *
1da177e4
LT
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
bda5b655 188 void *entry[]; /*
a737b3e2
AM
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
a737b3e2 192 */
1da177e4
LT
193};
194
c8522a3a
JK
195struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198};
199
e498be7d
CL
200/*
201 * Need this for bootstrapping a per node allocator.
202 */
bf0dea23 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 205#define CACHE_CACHE 0
bf0dea23 206#define SIZE_NODE (MAX_NUMNODES)
e498be7d 207
ed11d9eb 208static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 209 struct kmem_cache_node *n, int tofree);
ed11d9eb 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
211 int node, struct list_head *list);
212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 214static void cache_reap(struct work_struct *unused);
ed11d9eb 215
76b342bd
JK
216static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
217 void **list);
218static inline void fixup_slab_list(struct kmem_cache *cachep,
219 struct kmem_cache_node *n, struct page *page,
220 void **list);
e0a42726
IM
221static int slab_early_init = 1;
222
ce8eb6c4 223#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 224
ce8eb6c4 225static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
226{
227 INIT_LIST_HEAD(&parent->slabs_full);
228 INIT_LIST_HEAD(&parent->slabs_partial);
229 INIT_LIST_HEAD(&parent->slabs_free);
230 parent->shared = NULL;
231 parent->alien = NULL;
2e1217cf 232 parent->colour_next = 0;
e498be7d
CL
233 spin_lock_init(&parent->list_lock);
234 parent->free_objects = 0;
235 parent->free_touched = 0;
236}
237
a737b3e2
AM
238#define MAKE_LIST(cachep, listp, slab, nodeid) \
239 do { \
240 INIT_LIST_HEAD(listp); \
18bf8541 241 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
242 } while (0)
243
a737b3e2
AM
244#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
245 do { \
e498be7d
CL
246 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
247 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
248 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
249 } while (0)
1da177e4 250
b03a017b 251#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
1da177e4 252#define CFLGS_OFF_SLAB (0x80000000UL)
b03a017b 253#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
254#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
255
256#define BATCHREFILL_LIMIT 16
a737b3e2
AM
257/*
258 * Optimization question: fewer reaps means less probability for unnessary
259 * cpucache drain/refill cycles.
1da177e4 260 *
dc6f3f27 261 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
262 * which could lock up otherwise freeable slabs.
263 */
5f0985bb
JZ
264#define REAPTIMEOUT_AC (2*HZ)
265#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
266
267#if STATS
268#define STATS_INC_ACTIVE(x) ((x)->num_active++)
269#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
270#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
271#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 272#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
273#define STATS_SET_HIGH(x) \
274 do { \
275 if ((x)->num_active > (x)->high_mark) \
276 (x)->high_mark = (x)->num_active; \
277 } while (0)
1da177e4
LT
278#define STATS_INC_ERR(x) ((x)->errors++)
279#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 280#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 281#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
282#define STATS_SET_FREEABLE(x, i) \
283 do { \
284 if ((x)->max_freeable < i) \
285 (x)->max_freeable = i; \
286 } while (0)
1da177e4
LT
287#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
288#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
289#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
290#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
291#else
292#define STATS_INC_ACTIVE(x) do { } while (0)
293#define STATS_DEC_ACTIVE(x) do { } while (0)
294#define STATS_INC_ALLOCED(x) do { } while (0)
295#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 296#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
297#define STATS_SET_HIGH(x) do { } while (0)
298#define STATS_INC_ERR(x) do { } while (0)
299#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 300#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 301#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 302#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
303#define STATS_INC_ALLOCHIT(x) do { } while (0)
304#define STATS_INC_ALLOCMISS(x) do { } while (0)
305#define STATS_INC_FREEHIT(x) do { } while (0)
306#define STATS_INC_FREEMISS(x) do { } while (0)
307#endif
308
309#if DEBUG
1da177e4 310
a737b3e2
AM
311/*
312 * memory layout of objects:
1da177e4 313 * 0 : objp
3dafccf2 314 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
315 * the end of an object is aligned with the end of the real
316 * allocation. Catches writes behind the end of the allocation.
3dafccf2 317 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 318 * redzone word.
3dafccf2 319 * cachep->obj_offset: The real object.
3b0efdfa
CL
320 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
321 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 322 * [BYTES_PER_WORD long]
1da177e4 323 */
343e0d7a 324static int obj_offset(struct kmem_cache *cachep)
1da177e4 325{
3dafccf2 326 return cachep->obj_offset;
1da177e4
LT
327}
328
b46b8f19 329static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
330{
331 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
332 return (unsigned long long*) (objp + obj_offset(cachep) -
333 sizeof(unsigned long long));
1da177e4
LT
334}
335
b46b8f19 336static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
337{
338 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
339 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 340 return (unsigned long long *)(objp + cachep->size -
b46b8f19 341 sizeof(unsigned long long) -
87a927c7 342 REDZONE_ALIGN);
3b0efdfa 343 return (unsigned long long *) (objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long));
1da177e4
LT
345}
346
343e0d7a 347static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
348{
349 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 350 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
351}
352
353#else
354
3dafccf2 355#define obj_offset(x) 0
b46b8f19
DW
356#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
357#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
358#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
359
360#endif
361
03787301
JK
362#ifdef CONFIG_DEBUG_SLAB_LEAK
363
d31676df 364static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 365{
d31676df
JK
366 return atomic_read(&cachep->store_user_clean) == 1;
367}
03787301 368
d31676df
JK
369static inline void set_store_user_clean(struct kmem_cache *cachep)
370{
371 atomic_set(&cachep->store_user_clean, 1);
372}
03787301 373
d31676df
JK
374static inline void set_store_user_dirty(struct kmem_cache *cachep)
375{
376 if (is_store_user_clean(cachep))
377 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
378}
379
380#else
d31676df 381static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
382
383#endif
384
1da177e4 385/*
3df1cccd
DR
386 * Do not go above this order unless 0 objects fit into the slab or
387 * overridden on the command line.
1da177e4 388 */
543585cc
DR
389#define SLAB_MAX_ORDER_HI 1
390#define SLAB_MAX_ORDER_LO 0
391static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 392static bool slab_max_order_set __initdata;
1da177e4 393
6ed5eb22
PE
394static inline struct kmem_cache *virt_to_cache(const void *obj)
395{
b49af68f 396 struct page *page = virt_to_head_page(obj);
35026088 397 return page->slab_cache;
6ed5eb22
PE
398}
399
8456a648 400static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
401 unsigned int idx)
402{
8456a648 403 return page->s_mem + cache->size * idx;
8fea4e96
PE
404}
405
6a2d7a95 406/*
3b0efdfa
CL
407 * We want to avoid an expensive divide : (offset / cache->size)
408 * Using the fact that size is a constant for a particular cache,
409 * we can replace (offset / cache->size) by
6a2d7a95
ED
410 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
411 */
412static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 413 const struct page *page, void *obj)
8fea4e96 414{
8456a648 415 u32 offset = (obj - page->s_mem);
6a2d7a95 416 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
417}
418
6fb92430 419#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 420/* internal cache of cache description objs */
9b030cb8 421static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
422 .batchcount = 1,
423 .limit = BOOT_CPUCACHE_ENTRIES,
424 .shared = 1,
3b0efdfa 425 .size = sizeof(struct kmem_cache),
b28a02de 426 .name = "kmem_cache",
1da177e4
LT
427};
428
1871e52c 429static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 430
343e0d7a 431static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 432{
bf0dea23 433 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
434}
435
a737b3e2
AM
436/*
437 * Calculate the number of objects and left-over bytes for a given buffer size.
438 */
70f75067
JK
439static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
440 unsigned long flags, size_t *left_over)
fbaccacf 441{
70f75067 442 unsigned int num;
fbaccacf 443 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 444
fbaccacf
SR
445 /*
446 * The slab management structure can be either off the slab or
447 * on it. For the latter case, the memory allocated for a
448 * slab is used for:
449 *
fbaccacf 450 * - @buffer_size bytes for each object
2e6b3602
JK
451 * - One freelist_idx_t for each object
452 *
453 * We don't need to consider alignment of freelist because
454 * freelist will be at the end of slab page. The objects will be
455 * at the correct alignment.
fbaccacf
SR
456 *
457 * If the slab management structure is off the slab, then the
458 * alignment will already be calculated into the size. Because
459 * the slabs are all pages aligned, the objects will be at the
460 * correct alignment when allocated.
461 */
b03a017b 462 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 463 num = slab_size / buffer_size;
2e6b3602 464 *left_over = slab_size % buffer_size;
fbaccacf 465 } else {
70f75067 466 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
467 *left_over = slab_size %
468 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 469 }
70f75067
JK
470
471 return num;
1da177e4
LT
472}
473
f28510d3 474#if DEBUG
d40cee24 475#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 476
a737b3e2
AM
477static void __slab_error(const char *function, struct kmem_cache *cachep,
478 char *msg)
1da177e4 479{
1170532b 480 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 481 function, cachep->name, msg);
1da177e4 482 dump_stack();
373d4d09 483 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 484}
f28510d3 485#endif
1da177e4 486
3395ee05
PM
487/*
488 * By default on NUMA we use alien caches to stage the freeing of
489 * objects allocated from other nodes. This causes massive memory
490 * inefficiencies when using fake NUMA setup to split memory into a
491 * large number of small nodes, so it can be disabled on the command
492 * line
493 */
494
495static int use_alien_caches __read_mostly = 1;
496static int __init noaliencache_setup(char *s)
497{
498 use_alien_caches = 0;
499 return 1;
500}
501__setup("noaliencache", noaliencache_setup);
502
3df1cccd
DR
503static int __init slab_max_order_setup(char *str)
504{
505 get_option(&str, &slab_max_order);
506 slab_max_order = slab_max_order < 0 ? 0 :
507 min(slab_max_order, MAX_ORDER - 1);
508 slab_max_order_set = true;
509
510 return 1;
511}
512__setup("slab_max_order=", slab_max_order_setup);
513
8fce4d8e
CL
514#ifdef CONFIG_NUMA
515/*
516 * Special reaping functions for NUMA systems called from cache_reap().
517 * These take care of doing round robin flushing of alien caches (containing
518 * objects freed on different nodes from which they were allocated) and the
519 * flushing of remote pcps by calling drain_node_pages.
520 */
1871e52c 521static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
522
523static void init_reap_node(int cpu)
524{
0edaf86c
AM
525 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
526 node_online_map);
8fce4d8e
CL
527}
528
529static void next_reap_node(void)
530{
909ea964 531 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 532
0edaf86c 533 node = next_node_in(node, node_online_map);
909ea964 534 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
535}
536
537#else
538#define init_reap_node(cpu) do { } while (0)
539#define next_reap_node(void) do { } while (0)
540#endif
541
1da177e4
LT
542/*
543 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
544 * via the workqueue/eventd.
545 * Add the CPU number into the expiration time to minimize the possibility of
546 * the CPUs getting into lockstep and contending for the global cache chain
547 * lock.
548 */
0db0628d 549static void start_cpu_timer(int cpu)
1da177e4 550{
1871e52c 551 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
552
553 /*
554 * When this gets called from do_initcalls via cpucache_init(),
555 * init_workqueues() has already run, so keventd will be setup
556 * at that time.
557 */
52bad64d 558 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 559 init_reap_node(cpu);
203b42f7 560 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
561 schedule_delayed_work_on(cpu, reap_work,
562 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
563 }
564}
565
1fe00d50 566static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 567{
d5cff635
CM
568 /*
569 * The array_cache structures contain pointers to free object.
25985edc 570 * However, when such objects are allocated or transferred to another
d5cff635
CM
571 * cache the pointers are not cleared and they could be counted as
572 * valid references during a kmemleak scan. Therefore, kmemleak must
573 * not scan such objects.
574 */
1fe00d50
JK
575 kmemleak_no_scan(ac);
576 if (ac) {
577 ac->avail = 0;
578 ac->limit = limit;
579 ac->batchcount = batch;
580 ac->touched = 0;
1da177e4 581 }
1fe00d50
JK
582}
583
584static struct array_cache *alloc_arraycache(int node, int entries,
585 int batchcount, gfp_t gfp)
586{
5e804789 587 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
588 struct array_cache *ac = NULL;
589
590 ac = kmalloc_node(memsize, gfp, node);
591 init_arraycache(ac, entries, batchcount);
592 return ac;
1da177e4
LT
593}
594
f68f8ddd
JK
595static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
596 struct page *page, void *objp)
072bb0aa 597{
f68f8ddd
JK
598 struct kmem_cache_node *n;
599 int page_node;
600 LIST_HEAD(list);
072bb0aa 601
f68f8ddd
JK
602 page_node = page_to_nid(page);
603 n = get_node(cachep, page_node);
381760ea 604
f68f8ddd
JK
605 spin_lock(&n->list_lock);
606 free_block(cachep, &objp, 1, page_node, &list);
607 spin_unlock(&n->list_lock);
381760ea 608
f68f8ddd 609 slabs_destroy(cachep, &list);
072bb0aa
MG
610}
611
3ded175a
CL
612/*
613 * Transfer objects in one arraycache to another.
614 * Locking must be handled by the caller.
615 *
616 * Return the number of entries transferred.
617 */
618static int transfer_objects(struct array_cache *to,
619 struct array_cache *from, unsigned int max)
620{
621 /* Figure out how many entries to transfer */
732eacc0 622 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
623
624 if (!nr)
625 return 0;
626
627 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
628 sizeof(void *) *nr);
629
630 from->avail -= nr;
631 to->avail += nr;
3ded175a
CL
632 return nr;
633}
634
765c4507
CL
635#ifndef CONFIG_NUMA
636
637#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 638#define reap_alien(cachep, n) do { } while (0)
765c4507 639
c8522a3a
JK
640static inline struct alien_cache **alloc_alien_cache(int node,
641 int limit, gfp_t gfp)
765c4507 642{
8888177e 643 return NULL;
765c4507
CL
644}
645
c8522a3a 646static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
647{
648}
649
650static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
651{
652 return 0;
653}
654
655static inline void *alternate_node_alloc(struct kmem_cache *cachep,
656 gfp_t flags)
657{
658 return NULL;
659}
660
8b98c169 661static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
662 gfp_t flags, int nodeid)
663{
664 return NULL;
665}
666
4167e9b2
DR
667static inline gfp_t gfp_exact_node(gfp_t flags)
668{
444eb2a4 669 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
670}
671
765c4507
CL
672#else /* CONFIG_NUMA */
673
8b98c169 674static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 675static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 676
c8522a3a
JK
677static struct alien_cache *__alloc_alien_cache(int node, int entries,
678 int batch, gfp_t gfp)
679{
5e804789 680 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
681 struct alien_cache *alc = NULL;
682
683 alc = kmalloc_node(memsize, gfp, node);
684 init_arraycache(&alc->ac, entries, batch);
49dfc304 685 spin_lock_init(&alc->lock);
c8522a3a
JK
686 return alc;
687}
688
689static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 690{
c8522a3a 691 struct alien_cache **alc_ptr;
5e804789 692 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
693 int i;
694
695 if (limit > 1)
696 limit = 12;
c8522a3a
JK
697 alc_ptr = kzalloc_node(memsize, gfp, node);
698 if (!alc_ptr)
699 return NULL;
700
701 for_each_node(i) {
702 if (i == node || !node_online(i))
703 continue;
704 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
705 if (!alc_ptr[i]) {
706 for (i--; i >= 0; i--)
707 kfree(alc_ptr[i]);
708 kfree(alc_ptr);
709 return NULL;
e498be7d
CL
710 }
711 }
c8522a3a 712 return alc_ptr;
e498be7d
CL
713}
714
c8522a3a 715static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
716{
717 int i;
718
c8522a3a 719 if (!alc_ptr)
e498be7d 720 return;
e498be7d 721 for_each_node(i)
c8522a3a
JK
722 kfree(alc_ptr[i]);
723 kfree(alc_ptr);
e498be7d
CL
724}
725
343e0d7a 726static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
727 struct array_cache *ac, int node,
728 struct list_head *list)
e498be7d 729{
18bf8541 730 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
731
732 if (ac->avail) {
ce8eb6c4 733 spin_lock(&n->list_lock);
e00946fe
CL
734 /*
735 * Stuff objects into the remote nodes shared array first.
736 * That way we could avoid the overhead of putting the objects
737 * into the free lists and getting them back later.
738 */
ce8eb6c4
CL
739 if (n->shared)
740 transfer_objects(n->shared, ac, ac->limit);
e00946fe 741
833b706c 742 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 743 ac->avail = 0;
ce8eb6c4 744 spin_unlock(&n->list_lock);
e498be7d
CL
745 }
746}
747
8fce4d8e
CL
748/*
749 * Called from cache_reap() to regularly drain alien caches round robin.
750 */
ce8eb6c4 751static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 752{
909ea964 753 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 754
ce8eb6c4 755 if (n->alien) {
c8522a3a
JK
756 struct alien_cache *alc = n->alien[node];
757 struct array_cache *ac;
758
759 if (alc) {
760 ac = &alc->ac;
49dfc304 761 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
762 LIST_HEAD(list);
763
764 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 765 spin_unlock_irq(&alc->lock);
833b706c 766 slabs_destroy(cachep, &list);
c8522a3a 767 }
8fce4d8e
CL
768 }
769 }
770}
771
a737b3e2 772static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 773 struct alien_cache **alien)
e498be7d 774{
b28a02de 775 int i = 0;
c8522a3a 776 struct alien_cache *alc;
e498be7d
CL
777 struct array_cache *ac;
778 unsigned long flags;
779
780 for_each_online_node(i) {
c8522a3a
JK
781 alc = alien[i];
782 if (alc) {
833b706c
JK
783 LIST_HEAD(list);
784
c8522a3a 785 ac = &alc->ac;
49dfc304 786 spin_lock_irqsave(&alc->lock, flags);
833b706c 787 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 788 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 789 slabs_destroy(cachep, &list);
e498be7d
CL
790 }
791 }
792}
729bd0b7 793
25c4f304
JK
794static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
795 int node, int page_node)
729bd0b7 796{
ce8eb6c4 797 struct kmem_cache_node *n;
c8522a3a
JK
798 struct alien_cache *alien = NULL;
799 struct array_cache *ac;
97654dfa 800 LIST_HEAD(list);
1ca4cb24 801
18bf8541 802 n = get_node(cachep, node);
729bd0b7 803 STATS_INC_NODEFREES(cachep);
25c4f304
JK
804 if (n->alien && n->alien[page_node]) {
805 alien = n->alien[page_node];
c8522a3a 806 ac = &alien->ac;
49dfc304 807 spin_lock(&alien->lock);
c8522a3a 808 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 809 STATS_INC_ACOVERFLOW(cachep);
25c4f304 810 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 811 }
f68f8ddd 812 ac->entry[ac->avail++] = objp;
49dfc304 813 spin_unlock(&alien->lock);
833b706c 814 slabs_destroy(cachep, &list);
729bd0b7 815 } else {
25c4f304 816 n = get_node(cachep, page_node);
18bf8541 817 spin_lock(&n->list_lock);
25c4f304 818 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 819 spin_unlock(&n->list_lock);
97654dfa 820 slabs_destroy(cachep, &list);
729bd0b7
PE
821 }
822 return 1;
823}
25c4f304
JK
824
825static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
826{
827 int page_node = page_to_nid(virt_to_page(objp));
828 int node = numa_mem_id();
829 /*
830 * Make sure we are not freeing a object from another node to the array
831 * cache on this cpu.
832 */
833 if (likely(node == page_node))
834 return 0;
835
836 return __cache_free_alien(cachep, objp, node, page_node);
837}
4167e9b2
DR
838
839/*
444eb2a4
MG
840 * Construct gfp mask to allocate from a specific node but do not reclaim or
841 * warn about failures.
4167e9b2
DR
842 */
843static inline gfp_t gfp_exact_node(gfp_t flags)
844{
444eb2a4 845 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 846}
e498be7d
CL
847#endif
848
ded0ecf6
JK
849static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
850{
851 struct kmem_cache_node *n;
852
853 /*
854 * Set up the kmem_cache_node for cpu before we can
855 * begin anything. Make sure some other cpu on this
856 * node has not already allocated this
857 */
858 n = get_node(cachep, node);
859 if (n) {
860 spin_lock_irq(&n->list_lock);
861 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
862 cachep->num;
863 spin_unlock_irq(&n->list_lock);
864
865 return 0;
866 }
867
868 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
869 if (!n)
870 return -ENOMEM;
871
872 kmem_cache_node_init(n);
873 n->next_reap = jiffies + REAPTIMEOUT_NODE +
874 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
875
876 n->free_limit =
877 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
878
879 /*
880 * The kmem_cache_nodes don't come and go as CPUs
881 * come and go. slab_mutex is sufficient
882 * protection here.
883 */
884 cachep->node[node] = n;
885
886 return 0;
887}
888
8f9f8d9e 889/*
6a67368c 890 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 891 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 892 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 893 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
894 * already in use.
895 *
18004c5d 896 * Must hold slab_mutex.
8f9f8d9e 897 */
6a67368c 898static int init_cache_node_node(int node)
8f9f8d9e 899{
ded0ecf6 900 int ret;
8f9f8d9e 901 struct kmem_cache *cachep;
8f9f8d9e 902
18004c5d 903 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
904 ret = init_cache_node(cachep, node, GFP_KERNEL);
905 if (ret)
906 return ret;
8f9f8d9e 907 }
ded0ecf6 908
8f9f8d9e
DR
909 return 0;
910}
911
c3d332b6
JK
912static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 int node, gfp_t gfp, bool force_change)
914{
915 int ret = -ENOMEM;
916 struct kmem_cache_node *n;
917 struct array_cache *old_shared = NULL;
918 struct array_cache *new_shared = NULL;
919 struct alien_cache **new_alien = NULL;
920 LIST_HEAD(list);
921
922 if (use_alien_caches) {
923 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 if (!new_alien)
925 goto fail;
926 }
927
928 if (cachep->shared) {
929 new_shared = alloc_arraycache(node,
930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 if (!new_shared)
932 goto fail;
933 }
934
935 ret = init_cache_node(cachep, node, gfp);
936 if (ret)
937 goto fail;
938
939 n = get_node(cachep, node);
940 spin_lock_irq(&n->list_lock);
941 if (n->shared && force_change) {
942 free_block(cachep, n->shared->entry,
943 n->shared->avail, node, &list);
944 n->shared->avail = 0;
945 }
946
947 if (!n->shared || force_change) {
948 old_shared = n->shared;
949 n->shared = new_shared;
950 new_shared = NULL;
951 }
952
953 if (!n->alien) {
954 n->alien = new_alien;
955 new_alien = NULL;
956 }
957
958 spin_unlock_irq(&n->list_lock);
959 slabs_destroy(cachep, &list);
960
801faf0d
JK
961 /*
962 * To protect lockless access to n->shared during irq disabled context.
963 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 * guaranteed to be valid until irq is re-enabled, because it will be
965 * freed after synchronize_sched().
966 */
967 if (force_change)
968 synchronize_sched();
969
c3d332b6
JK
970fail:
971 kfree(old_shared);
972 kfree(new_shared);
973 free_alien_cache(new_alien);
974
975 return ret;
976}
977
0db0628d 978static void cpuup_canceled(long cpu)
fbf1e473
AM
979{
980 struct kmem_cache *cachep;
ce8eb6c4 981 struct kmem_cache_node *n = NULL;
7d6e6d09 982 int node = cpu_to_mem(cpu);
a70f7302 983 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 984
18004c5d 985 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
986 struct array_cache *nc;
987 struct array_cache *shared;
c8522a3a 988 struct alien_cache **alien;
97654dfa 989 LIST_HEAD(list);
fbf1e473 990
18bf8541 991 n = get_node(cachep, node);
ce8eb6c4 992 if (!n)
bf0dea23 993 continue;
fbf1e473 994
ce8eb6c4 995 spin_lock_irq(&n->list_lock);
fbf1e473 996
ce8eb6c4
CL
997 /* Free limit for this kmem_cache_node */
998 n->free_limit -= cachep->batchcount;
bf0dea23
JK
999
1000 /* cpu is dead; no one can alloc from it. */
1001 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1002 if (nc) {
97654dfa 1003 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1004 nc->avail = 0;
1005 }
fbf1e473 1006
58463c1f 1007 if (!cpumask_empty(mask)) {
ce8eb6c4 1008 spin_unlock_irq(&n->list_lock);
bf0dea23 1009 goto free_slab;
fbf1e473
AM
1010 }
1011
ce8eb6c4 1012 shared = n->shared;
fbf1e473
AM
1013 if (shared) {
1014 free_block(cachep, shared->entry,
97654dfa 1015 shared->avail, node, &list);
ce8eb6c4 1016 n->shared = NULL;
fbf1e473
AM
1017 }
1018
ce8eb6c4
CL
1019 alien = n->alien;
1020 n->alien = NULL;
fbf1e473 1021
ce8eb6c4 1022 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1023
1024 kfree(shared);
1025 if (alien) {
1026 drain_alien_cache(cachep, alien);
1027 free_alien_cache(alien);
1028 }
bf0dea23
JK
1029
1030free_slab:
97654dfa 1031 slabs_destroy(cachep, &list);
fbf1e473
AM
1032 }
1033 /*
1034 * In the previous loop, all the objects were freed to
1035 * the respective cache's slabs, now we can go ahead and
1036 * shrink each nodelist to its limit.
1037 */
18004c5d 1038 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1039 n = get_node(cachep, node);
ce8eb6c4 1040 if (!n)
fbf1e473 1041 continue;
a5aa63a5 1042 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1043 }
1044}
1045
0db0628d 1046static int cpuup_prepare(long cpu)
1da177e4 1047{
343e0d7a 1048 struct kmem_cache *cachep;
7d6e6d09 1049 int node = cpu_to_mem(cpu);
8f9f8d9e 1050 int err;
1da177e4 1051
fbf1e473
AM
1052 /*
1053 * We need to do this right in the beginning since
1054 * alloc_arraycache's are going to use this list.
1055 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1056 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1057 */
6a67368c 1058 err = init_cache_node_node(node);
8f9f8d9e
DR
1059 if (err < 0)
1060 goto bad;
fbf1e473
AM
1061
1062 /*
1063 * Now we can go ahead with allocating the shared arrays and
1064 * array caches
1065 */
18004c5d 1066 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1067 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1068 if (err)
1069 goto bad;
fbf1e473 1070 }
ce79ddc8 1071
fbf1e473
AM
1072 return 0;
1073bad:
12d00f6a 1074 cpuup_canceled(cpu);
fbf1e473
AM
1075 return -ENOMEM;
1076}
1077
0db0628d 1078static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1079 unsigned long action, void *hcpu)
1080{
1081 long cpu = (long)hcpu;
1082 int err = 0;
1083
1084 switch (action) {
fbf1e473
AM
1085 case CPU_UP_PREPARE:
1086 case CPU_UP_PREPARE_FROZEN:
18004c5d 1087 mutex_lock(&slab_mutex);
fbf1e473 1088 err = cpuup_prepare(cpu);
18004c5d 1089 mutex_unlock(&slab_mutex);
1da177e4
LT
1090 break;
1091 case CPU_ONLINE:
8bb78442 1092 case CPU_ONLINE_FROZEN:
1da177e4
LT
1093 start_cpu_timer(cpu);
1094 break;
1095#ifdef CONFIG_HOTPLUG_CPU
5830c590 1096 case CPU_DOWN_PREPARE:
8bb78442 1097 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1098 /*
18004c5d 1099 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1100 * held so that if cache_reap() is invoked it cannot do
1101 * anything expensive but will only modify reap_work
1102 * and reschedule the timer.
1103 */
afe2c511 1104 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1105 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1106 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1107 break;
1108 case CPU_DOWN_FAILED:
8bb78442 1109 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1110 start_cpu_timer(cpu);
1111 break;
1da177e4 1112 case CPU_DEAD:
8bb78442 1113 case CPU_DEAD_FROZEN:
4484ebf1
RT
1114 /*
1115 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1116 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1117 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1118 * memory from the node of the cpu going down. The node
4484ebf1
RT
1119 * structure is usually allocated from kmem_cache_create() and
1120 * gets destroyed at kmem_cache_destroy().
1121 */
183ff22b 1122 /* fall through */
8f5be20b 1123#endif
1da177e4 1124 case CPU_UP_CANCELED:
8bb78442 1125 case CPU_UP_CANCELED_FROZEN:
18004c5d 1126 mutex_lock(&slab_mutex);
fbf1e473 1127 cpuup_canceled(cpu);
18004c5d 1128 mutex_unlock(&slab_mutex);
1da177e4 1129 break;
1da177e4 1130 }
eac40680 1131 return notifier_from_errno(err);
1da177e4
LT
1132}
1133
0db0628d 1134static struct notifier_block cpucache_notifier = {
74b85f37
CS
1135 &cpuup_callback, NULL, 0
1136};
1da177e4 1137
8f9f8d9e
DR
1138#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1139/*
1140 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1141 * Returns -EBUSY if all objects cannot be drained so that the node is not
1142 * removed.
1143 *
18004c5d 1144 * Must hold slab_mutex.
8f9f8d9e 1145 */
6a67368c 1146static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1147{
1148 struct kmem_cache *cachep;
1149 int ret = 0;
1150
18004c5d 1151 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1152 struct kmem_cache_node *n;
8f9f8d9e 1153
18bf8541 1154 n = get_node(cachep, node);
ce8eb6c4 1155 if (!n)
8f9f8d9e
DR
1156 continue;
1157
a5aa63a5 1158 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1159
ce8eb6c4
CL
1160 if (!list_empty(&n->slabs_full) ||
1161 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1162 ret = -EBUSY;
1163 break;
1164 }
1165 }
1166 return ret;
1167}
1168
1169static int __meminit slab_memory_callback(struct notifier_block *self,
1170 unsigned long action, void *arg)
1171{
1172 struct memory_notify *mnb = arg;
1173 int ret = 0;
1174 int nid;
1175
1176 nid = mnb->status_change_nid;
1177 if (nid < 0)
1178 goto out;
1179
1180 switch (action) {
1181 case MEM_GOING_ONLINE:
18004c5d 1182 mutex_lock(&slab_mutex);
6a67368c 1183 ret = init_cache_node_node(nid);
18004c5d 1184 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1185 break;
1186 case MEM_GOING_OFFLINE:
18004c5d 1187 mutex_lock(&slab_mutex);
6a67368c 1188 ret = drain_cache_node_node(nid);
18004c5d 1189 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1190 break;
1191 case MEM_ONLINE:
1192 case MEM_OFFLINE:
1193 case MEM_CANCEL_ONLINE:
1194 case MEM_CANCEL_OFFLINE:
1195 break;
1196 }
1197out:
5fda1bd5 1198 return notifier_from_errno(ret);
8f9f8d9e
DR
1199}
1200#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1201
e498be7d 1202/*
ce8eb6c4 1203 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1204 */
6744f087 1205static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1206 int nodeid)
e498be7d 1207{
6744f087 1208 struct kmem_cache_node *ptr;
e498be7d 1209
6744f087 1210 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1211 BUG_ON(!ptr);
1212
6744f087 1213 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1214 /*
1215 * Do not assume that spinlocks can be initialized via memcpy:
1216 */
1217 spin_lock_init(&ptr->list_lock);
1218
e498be7d 1219 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1220 cachep->node[nodeid] = ptr;
e498be7d
CL
1221}
1222
556a169d 1223/*
ce8eb6c4
CL
1224 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1225 * size of kmem_cache_node.
556a169d 1226 */
ce8eb6c4 1227static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1228{
1229 int node;
1230
1231 for_each_online_node(node) {
ce8eb6c4 1232 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1233 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1234 REAPTIMEOUT_NODE +
1235 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1236 }
1237}
1238
c7ce4f60
TG
1239#ifdef CONFIG_SLAB_FREELIST_RANDOM
1240static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list,
1241 size_t count)
1242{
1243 size_t i;
1244 unsigned int rand;
1245
1246 for (i = 0; i < count; i++)
1247 list[i] = i;
1248
1249 /* Fisher-Yates shuffle */
1250 for (i = count - 1; i > 0; i--) {
1251 rand = prandom_u32_state(state);
1252 rand %= (i + 1);
1253 swap(list[i], list[rand]);
1254 }
1255}
1256
1257/* Create a random sequence per cache */
1258static int cache_random_seq_create(struct kmem_cache *cachep, gfp_t gfp)
1259{
1260 unsigned int seed, count = cachep->num;
1261 struct rnd_state state;
1262
1263 if (count < 2)
1264 return 0;
1265
1266 /* If it fails, we will just use the global lists */
1267 cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), gfp);
1268 if (!cachep->random_seq)
1269 return -ENOMEM;
1270
1271 /* Get best entropy at this stage */
1272 get_random_bytes_arch(&seed, sizeof(seed));
1273 prandom_seed_state(&state, seed);
1274
1275 freelist_randomize(&state, cachep->random_seq, count);
1276 return 0;
1277}
1278
1279/* Destroy the per-cache random freelist sequence */
1280static void cache_random_seq_destroy(struct kmem_cache *cachep)
1281{
1282 kfree(cachep->random_seq);
1283 cachep->random_seq = NULL;
1284}
1285#else
1286static inline int cache_random_seq_create(struct kmem_cache *cachep, gfp_t gfp)
1287{
1288 return 0;
1289}
1290static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
1291#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1292
1293
a737b3e2
AM
1294/*
1295 * Initialisation. Called after the page allocator have been initialised and
1296 * before smp_init().
1da177e4
LT
1297 */
1298void __init kmem_cache_init(void)
1299{
e498be7d
CL
1300 int i;
1301
68126702
JK
1302 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1303 sizeof(struct rcu_head));
9b030cb8
CL
1304 kmem_cache = &kmem_cache_boot;
1305
8888177e 1306 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1307 use_alien_caches = 0;
1308
3c583465 1309 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1310 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1311
1da177e4
LT
1312 /*
1313 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1314 * page orders on machines with more than 32MB of memory if
1315 * not overridden on the command line.
1da177e4 1316 */
3df1cccd 1317 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1318 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1319
1da177e4
LT
1320 /* Bootstrap is tricky, because several objects are allocated
1321 * from caches that do not exist yet:
9b030cb8
CL
1322 * 1) initialize the kmem_cache cache: it contains the struct
1323 * kmem_cache structures of all caches, except kmem_cache itself:
1324 * kmem_cache is statically allocated.
e498be7d 1325 * Initially an __init data area is used for the head array and the
ce8eb6c4 1326 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1327 * array at the end of the bootstrap.
1da177e4 1328 * 2) Create the first kmalloc cache.
343e0d7a 1329 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1330 * An __init data area is used for the head array.
1331 * 3) Create the remaining kmalloc caches, with minimally sized
1332 * head arrays.
9b030cb8 1333 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1334 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1335 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1336 * the other cache's with kmalloc allocated memory.
1337 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1338 */
1339
9b030cb8 1340 /* 1) create the kmem_cache */
1da177e4 1341
8da3430d 1342 /*
b56efcf0 1343 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1344 */
2f9baa9f 1345 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1346 offsetof(struct kmem_cache, node) +
6744f087 1347 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1348 SLAB_HWCACHE_ALIGN);
1349 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1350 slab_state = PARTIAL;
1da177e4 1351
a737b3e2 1352 /*
bf0dea23
JK
1353 * Initialize the caches that provide memory for the kmem_cache_node
1354 * structures first. Without this, further allocations will bug.
e498be7d 1355 */
bf0dea23 1356 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1357 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1358 slab_state = PARTIAL_NODE;
34cc6990 1359 setup_kmalloc_cache_index_table();
e498be7d 1360
e0a42726
IM
1361 slab_early_init = 0;
1362
ce8eb6c4 1363 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1364 {
1ca4cb24
PE
1365 int nid;
1366
9c09a95c 1367 for_each_online_node(nid) {
ce8eb6c4 1368 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1369
bf0dea23 1370 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1371 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1372 }
1373 }
1da177e4 1374
f97d5f63 1375 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1376}
1377
1378void __init kmem_cache_init_late(void)
1379{
1380 struct kmem_cache *cachep;
1381
97d06609 1382 slab_state = UP;
52cef189 1383
8429db5c 1384 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1385 mutex_lock(&slab_mutex);
1386 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1387 if (enable_cpucache(cachep, GFP_NOWAIT))
1388 BUG();
18004c5d 1389 mutex_unlock(&slab_mutex);
056c6241 1390
97d06609
CL
1391 /* Done! */
1392 slab_state = FULL;
1393
a737b3e2
AM
1394 /*
1395 * Register a cpu startup notifier callback that initializes
1396 * cpu_cache_get for all new cpus
1da177e4
LT
1397 */
1398 register_cpu_notifier(&cpucache_notifier);
1da177e4 1399
8f9f8d9e
DR
1400#ifdef CONFIG_NUMA
1401 /*
1402 * Register a memory hotplug callback that initializes and frees
6a67368c 1403 * node.
8f9f8d9e
DR
1404 */
1405 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1406#endif
1407
a737b3e2
AM
1408 /*
1409 * The reap timers are started later, with a module init call: That part
1410 * of the kernel is not yet operational.
1da177e4
LT
1411 */
1412}
1413
1414static int __init cpucache_init(void)
1415{
1416 int cpu;
1417
a737b3e2
AM
1418 /*
1419 * Register the timers that return unneeded pages to the page allocator
1da177e4 1420 */
e498be7d 1421 for_each_online_cpu(cpu)
a737b3e2 1422 start_cpu_timer(cpu);
a164f896
GC
1423
1424 /* Done! */
97d06609 1425 slab_state = FULL;
1da177e4
LT
1426 return 0;
1427}
1da177e4
LT
1428__initcall(cpucache_init);
1429
8bdec192
RA
1430static noinline void
1431slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1432{
9a02d699 1433#if DEBUG
ce8eb6c4 1434 struct kmem_cache_node *n;
8456a648 1435 struct page *page;
8bdec192
RA
1436 unsigned long flags;
1437 int node;
9a02d699
DR
1438 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1439 DEFAULT_RATELIMIT_BURST);
1440
1441 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1442 return;
8bdec192 1443
5b3810e5
VB
1444 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1445 nodeid, gfpflags, &gfpflags);
1446 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1447 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1448
18bf8541 1449 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1450 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1451 unsigned long active_slabs = 0, num_slabs = 0;
1452
ce8eb6c4 1453 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1454 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1455 active_objs += cachep->num;
1456 active_slabs++;
1457 }
8456a648
JK
1458 list_for_each_entry(page, &n->slabs_partial, lru) {
1459 active_objs += page->active;
8bdec192
RA
1460 active_slabs++;
1461 }
8456a648 1462 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1463 num_slabs++;
1464
ce8eb6c4
CL
1465 free_objects += n->free_objects;
1466 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1467
1468 num_slabs += active_slabs;
1469 num_objs = num_slabs * cachep->num;
5b3810e5 1470 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
8bdec192
RA
1471 node, active_slabs, num_slabs, active_objs, num_objs,
1472 free_objects);
1473 }
9a02d699 1474#endif
8bdec192
RA
1475}
1476
1da177e4 1477/*
8a7d9b43
WSH
1478 * Interface to system's page allocator. No need to hold the
1479 * kmem_cache_node ->list_lock.
1da177e4
LT
1480 *
1481 * If we requested dmaable memory, we will get it. Even if we
1482 * did not request dmaable memory, we might get it, but that
1483 * would be relatively rare and ignorable.
1484 */
0c3aa83e
JK
1485static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1486 int nodeid)
1da177e4
LT
1487{
1488 struct page *page;
e1b6aa6f 1489 int nr_pages;
765c4507 1490
a618e89f 1491 flags |= cachep->allocflags;
e12ba74d
MG
1492 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1493 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1494
96db800f 1495 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1496 if (!page) {
9a02d699 1497 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1498 return NULL;
8bdec192 1499 }
1da177e4 1500
f3ccb2c4
VD
1501 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1502 __free_pages(page, cachep->gfporder);
1503 return NULL;
1504 }
1505
e1b6aa6f 1506 nr_pages = (1 << cachep->gfporder);
1da177e4 1507 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1508 add_zone_page_state(page_zone(page),
1509 NR_SLAB_RECLAIMABLE, nr_pages);
1510 else
1511 add_zone_page_state(page_zone(page),
1512 NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1513
a57a4988 1514 __SetPageSlab(page);
f68f8ddd
JK
1515 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1516 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1517 SetPageSlabPfmemalloc(page);
072bb0aa 1518
b1eeab67
VN
1519 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1520 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1521
1522 if (cachep->ctor)
1523 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1524 else
1525 kmemcheck_mark_unallocated_pages(page, nr_pages);
1526 }
c175eea4 1527
0c3aa83e 1528 return page;
1da177e4
LT
1529}
1530
1531/*
1532 * Interface to system's page release.
1533 */
0c3aa83e 1534static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1535{
27ee57c9
VD
1536 int order = cachep->gfporder;
1537 unsigned long nr_freed = (1 << order);
1da177e4 1538
27ee57c9 1539 kmemcheck_free_shadow(page, order);
c175eea4 1540
972d1a7b
CL
1541 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1542 sub_zone_page_state(page_zone(page),
1543 NR_SLAB_RECLAIMABLE, nr_freed);
1544 else
1545 sub_zone_page_state(page_zone(page),
1546 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1547
a57a4988 1548 BUG_ON(!PageSlab(page));
73293c2f 1549 __ClearPageSlabPfmemalloc(page);
a57a4988 1550 __ClearPageSlab(page);
8456a648
JK
1551 page_mapcount_reset(page);
1552 page->mapping = NULL;
1f458cbf 1553
1da177e4
LT
1554 if (current->reclaim_state)
1555 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1556 memcg_uncharge_slab(page, order, cachep);
1557 __free_pages(page, order);
1da177e4
LT
1558}
1559
1560static void kmem_rcu_free(struct rcu_head *head)
1561{
68126702
JK
1562 struct kmem_cache *cachep;
1563 struct page *page;
1da177e4 1564
68126702
JK
1565 page = container_of(head, struct page, rcu_head);
1566 cachep = page->slab_cache;
1567
1568 kmem_freepages(cachep, page);
1da177e4
LT
1569}
1570
1571#if DEBUG
40b44137
JK
1572static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1573{
1574 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1575 (cachep->size % PAGE_SIZE) == 0)
1576 return true;
1577
1578 return false;
1579}
1da177e4
LT
1580
1581#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1582static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1583 unsigned long caller)
1da177e4 1584{
8c138bc0 1585 int size = cachep->object_size;
1da177e4 1586
3dafccf2 1587 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1588
b28a02de 1589 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1590 return;
1591
b28a02de
PE
1592 *addr++ = 0x12345678;
1593 *addr++ = caller;
1594 *addr++ = smp_processor_id();
1595 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1596 {
1597 unsigned long *sptr = &caller;
1598 unsigned long svalue;
1599
1600 while (!kstack_end(sptr)) {
1601 svalue = *sptr++;
1602 if (kernel_text_address(svalue)) {
b28a02de 1603 *addr++ = svalue;
1da177e4
LT
1604 size -= sizeof(unsigned long);
1605 if (size <= sizeof(unsigned long))
1606 break;
1607 }
1608 }
1609
1610 }
b28a02de 1611 *addr++ = 0x87654321;
1da177e4 1612}
40b44137
JK
1613
1614static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1615 int map, unsigned long caller)
1616{
1617 if (!is_debug_pagealloc_cache(cachep))
1618 return;
1619
1620 if (caller)
1621 store_stackinfo(cachep, objp, caller);
1622
1623 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1624}
1625
1626#else
1627static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1628 int map, unsigned long caller) {}
1629
1da177e4
LT
1630#endif
1631
343e0d7a 1632static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1633{
8c138bc0 1634 int size = cachep->object_size;
3dafccf2 1635 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1636
1637 memset(addr, val, size);
b28a02de 1638 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1639}
1640
1641static void dump_line(char *data, int offset, int limit)
1642{
1643 int i;
aa83aa40
DJ
1644 unsigned char error = 0;
1645 int bad_count = 0;
1646
1170532b 1647 pr_err("%03x: ", offset);
aa83aa40
DJ
1648 for (i = 0; i < limit; i++) {
1649 if (data[offset + i] != POISON_FREE) {
1650 error = data[offset + i];
1651 bad_count++;
1652 }
aa83aa40 1653 }
fdde6abb
SAS
1654 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1655 &data[offset], limit, 1);
aa83aa40
DJ
1656
1657 if (bad_count == 1) {
1658 error ^= POISON_FREE;
1659 if (!(error & (error - 1))) {
1170532b 1660 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1661#ifdef CONFIG_X86
1170532b 1662 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1663#else
1170532b 1664 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1665#endif
1666 }
1667 }
1da177e4
LT
1668}
1669#endif
1670
1671#if DEBUG
1672
343e0d7a 1673static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1674{
1675 int i, size;
1676 char *realobj;
1677
1678 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1679 pr_err("Redzone: 0x%llx/0x%llx\n",
1680 *dbg_redzone1(cachep, objp),
1681 *dbg_redzone2(cachep, objp));
1da177e4
LT
1682 }
1683
1684 if (cachep->flags & SLAB_STORE_USER) {
1170532b 1685 pr_err("Last user: [<%p>](%pSR)\n",
071361d3
JP
1686 *dbg_userword(cachep, objp),
1687 *dbg_userword(cachep, objp));
1da177e4 1688 }
3dafccf2 1689 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1690 size = cachep->object_size;
b28a02de 1691 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1692 int limit;
1693 limit = 16;
b28a02de
PE
1694 if (i + limit > size)
1695 limit = size - i;
1da177e4
LT
1696 dump_line(realobj, i, limit);
1697 }
1698}
1699
343e0d7a 1700static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1701{
1702 char *realobj;
1703 int size, i;
1704 int lines = 0;
1705
40b44137
JK
1706 if (is_debug_pagealloc_cache(cachep))
1707 return;
1708
3dafccf2 1709 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1710 size = cachep->object_size;
1da177e4 1711
b28a02de 1712 for (i = 0; i < size; i++) {
1da177e4 1713 char exp = POISON_FREE;
b28a02de 1714 if (i == size - 1)
1da177e4
LT
1715 exp = POISON_END;
1716 if (realobj[i] != exp) {
1717 int limit;
1718 /* Mismatch ! */
1719 /* Print header */
1720 if (lines == 0) {
1170532b
JP
1721 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1722 print_tainted(), cachep->name,
1723 realobj, size);
1da177e4
LT
1724 print_objinfo(cachep, objp, 0);
1725 }
1726 /* Hexdump the affected line */
b28a02de 1727 i = (i / 16) * 16;
1da177e4 1728 limit = 16;
b28a02de
PE
1729 if (i + limit > size)
1730 limit = size - i;
1da177e4
LT
1731 dump_line(realobj, i, limit);
1732 i += 16;
1733 lines++;
1734 /* Limit to 5 lines */
1735 if (lines > 5)
1736 break;
1737 }
1738 }
1739 if (lines != 0) {
1740 /* Print some data about the neighboring objects, if they
1741 * exist:
1742 */
8456a648 1743 struct page *page = virt_to_head_page(objp);
8fea4e96 1744 unsigned int objnr;
1da177e4 1745
8456a648 1746 objnr = obj_to_index(cachep, page, objp);
1da177e4 1747 if (objnr) {
8456a648 1748 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1749 realobj = (char *)objp + obj_offset(cachep);
1170532b 1750 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1751 print_objinfo(cachep, objp, 2);
1752 }
b28a02de 1753 if (objnr + 1 < cachep->num) {
8456a648 1754 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1755 realobj = (char *)objp + obj_offset(cachep);
1170532b 1756 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1757 print_objinfo(cachep, objp, 2);
1758 }
1759 }
1760}
1761#endif
1762
12dd36fa 1763#if DEBUG
8456a648
JK
1764static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1765 struct page *page)
1da177e4 1766{
1da177e4 1767 int i;
b03a017b
JK
1768
1769 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1770 poison_obj(cachep, page->freelist - obj_offset(cachep),
1771 POISON_FREE);
1772 }
1773
1da177e4 1774 for (i = 0; i < cachep->num; i++) {
8456a648 1775 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1776
1777 if (cachep->flags & SLAB_POISON) {
1da177e4 1778 check_poison_obj(cachep, objp);
40b44137 1779 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1780 }
1781 if (cachep->flags & SLAB_RED_ZONE) {
1782 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1783 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1784 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1785 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1786 }
1da177e4 1787 }
12dd36fa 1788}
1da177e4 1789#else
8456a648
JK
1790static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1791 struct page *page)
12dd36fa 1792{
12dd36fa 1793}
1da177e4
LT
1794#endif
1795
911851e6
RD
1796/**
1797 * slab_destroy - destroy and release all objects in a slab
1798 * @cachep: cache pointer being destroyed
cb8ee1a3 1799 * @page: page pointer being destroyed
911851e6 1800 *
8a7d9b43
WSH
1801 * Destroy all the objs in a slab page, and release the mem back to the system.
1802 * Before calling the slab page must have been unlinked from the cache. The
1803 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1804 */
8456a648 1805static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1806{
7e007355 1807 void *freelist;
12dd36fa 1808
8456a648
JK
1809 freelist = page->freelist;
1810 slab_destroy_debugcheck(cachep, page);
bc4f610d
KS
1811 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1812 call_rcu(&page->rcu_head, kmem_rcu_free);
1813 else
0c3aa83e 1814 kmem_freepages(cachep, page);
68126702
JK
1815
1816 /*
8456a648 1817 * From now on, we don't use freelist
68126702
JK
1818 * although actual page can be freed in rcu context
1819 */
1820 if (OFF_SLAB(cachep))
8456a648 1821 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1822}
1823
97654dfa
JK
1824static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1825{
1826 struct page *page, *n;
1827
1828 list_for_each_entry_safe(page, n, list, lru) {
1829 list_del(&page->lru);
1830 slab_destroy(cachep, page);
1831 }
1832}
1833
4d268eba 1834/**
a70773dd
RD
1835 * calculate_slab_order - calculate size (page order) of slabs
1836 * @cachep: pointer to the cache that is being created
1837 * @size: size of objects to be created in this cache.
a70773dd
RD
1838 * @flags: slab allocation flags
1839 *
1840 * Also calculates the number of objects per slab.
4d268eba
PE
1841 *
1842 * This could be made much more intelligent. For now, try to avoid using
1843 * high order pages for slabs. When the gfp() functions are more friendly
1844 * towards high-order requests, this should be changed.
1845 */
a737b3e2 1846static size_t calculate_slab_order(struct kmem_cache *cachep,
2e6b3602 1847 size_t size, unsigned long flags)
4d268eba
PE
1848{
1849 size_t left_over = 0;
9888e6fa 1850 int gfporder;
4d268eba 1851
0aa817f0 1852 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1853 unsigned int num;
1854 size_t remainder;
1855
70f75067 1856 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1857 if (!num)
1858 continue;
9888e6fa 1859
f315e3fa
JK
1860 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1861 if (num > SLAB_OBJ_MAX_NUM)
1862 break;
1863
b1ab41c4 1864 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1865 struct kmem_cache *freelist_cache;
1866 size_t freelist_size;
1867
1868 freelist_size = num * sizeof(freelist_idx_t);
1869 freelist_cache = kmalloc_slab(freelist_size, 0u);
1870 if (!freelist_cache)
1871 continue;
1872
b1ab41c4 1873 /*
3217fd9b 1874 * Needed to avoid possible looping condition
76b342bd 1875 * in cache_grow_begin()
b1ab41c4 1876 */
3217fd9b
JK
1877 if (OFF_SLAB(freelist_cache))
1878 continue;
b1ab41c4 1879
3217fd9b
JK
1880 /* check if off slab has enough benefit */
1881 if (freelist_cache->size > cachep->size / 2)
1882 continue;
b1ab41c4 1883 }
4d268eba 1884
9888e6fa 1885 /* Found something acceptable - save it away */
4d268eba 1886 cachep->num = num;
9888e6fa 1887 cachep->gfporder = gfporder;
4d268eba
PE
1888 left_over = remainder;
1889
f78bb8ad
LT
1890 /*
1891 * A VFS-reclaimable slab tends to have most allocations
1892 * as GFP_NOFS and we really don't want to have to be allocating
1893 * higher-order pages when we are unable to shrink dcache.
1894 */
1895 if (flags & SLAB_RECLAIM_ACCOUNT)
1896 break;
1897
4d268eba
PE
1898 /*
1899 * Large number of objects is good, but very large slabs are
1900 * currently bad for the gfp()s.
1901 */
543585cc 1902 if (gfporder >= slab_max_order)
4d268eba
PE
1903 break;
1904
9888e6fa
LT
1905 /*
1906 * Acceptable internal fragmentation?
1907 */
a737b3e2 1908 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1909 break;
1910 }
1911 return left_over;
1912}
1913
bf0dea23
JK
1914static struct array_cache __percpu *alloc_kmem_cache_cpus(
1915 struct kmem_cache *cachep, int entries, int batchcount)
1916{
1917 int cpu;
1918 size_t size;
1919 struct array_cache __percpu *cpu_cache;
1920
1921 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1922 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1923
1924 if (!cpu_cache)
1925 return NULL;
1926
1927 for_each_possible_cpu(cpu) {
1928 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1929 entries, batchcount);
1930 }
1931
1932 return cpu_cache;
1933}
1934
83b519e8 1935static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1936{
97d06609 1937 if (slab_state >= FULL)
83b519e8 1938 return enable_cpucache(cachep, gfp);
2ed3a4ef 1939
bf0dea23
JK
1940 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1941 if (!cachep->cpu_cache)
1942 return 1;
1943
97d06609 1944 if (slab_state == DOWN) {
bf0dea23
JK
1945 /* Creation of first cache (kmem_cache). */
1946 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1947 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1948 /* For kmem_cache_node */
1949 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1950 } else {
bf0dea23 1951 int node;
f30cf7d1 1952
bf0dea23
JK
1953 for_each_online_node(node) {
1954 cachep->node[node] = kmalloc_node(
1955 sizeof(struct kmem_cache_node), gfp, node);
1956 BUG_ON(!cachep->node[node]);
1957 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1958 }
1959 }
bf0dea23 1960
6a67368c 1961 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1962 jiffies + REAPTIMEOUT_NODE +
1963 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1964
1965 cpu_cache_get(cachep)->avail = 0;
1966 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1967 cpu_cache_get(cachep)->batchcount = 1;
1968 cpu_cache_get(cachep)->touched = 0;
1969 cachep->batchcount = 1;
1970 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1971 return 0;
f30cf7d1
PE
1972}
1973
12220dea
JK
1974unsigned long kmem_cache_flags(unsigned long object_size,
1975 unsigned long flags, const char *name,
1976 void (*ctor)(void *))
1977{
1978 return flags;
1979}
1980
1981struct kmem_cache *
1982__kmem_cache_alias(const char *name, size_t size, size_t align,
1983 unsigned long flags, void (*ctor)(void *))
1984{
1985 struct kmem_cache *cachep;
1986
1987 cachep = find_mergeable(size, align, flags, name, ctor);
1988 if (cachep) {
1989 cachep->refcount++;
1990
1991 /*
1992 * Adjust the object sizes so that we clear
1993 * the complete object on kzalloc.
1994 */
1995 cachep->object_size = max_t(int, cachep->object_size, size);
1996 }
1997 return cachep;
1998}
1999
b03a017b
JK
2000static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
2001 size_t size, unsigned long flags)
2002{
2003 size_t left;
2004
2005 cachep->num = 0;
2006
2007 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
2008 return false;
2009
2010 left = calculate_slab_order(cachep, size,
2011 flags | CFLGS_OBJFREELIST_SLAB);
2012 if (!cachep->num)
2013 return false;
2014
2015 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
2016 return false;
2017
2018 cachep->colour = left / cachep->colour_off;
2019
2020 return true;
2021}
2022
158e319b
JK
2023static bool set_off_slab_cache(struct kmem_cache *cachep,
2024 size_t size, unsigned long flags)
2025{
2026 size_t left;
2027
2028 cachep->num = 0;
2029
2030 /*
3217fd9b
JK
2031 * Always use on-slab management when SLAB_NOLEAKTRACE
2032 * to avoid recursive calls into kmemleak.
158e319b 2033 */
158e319b
JK
2034 if (flags & SLAB_NOLEAKTRACE)
2035 return false;
2036
2037 /*
2038 * Size is large, assume best to place the slab management obj
2039 * off-slab (should allow better packing of objs).
2040 */
2041 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
2042 if (!cachep->num)
2043 return false;
2044
2045 /*
2046 * If the slab has been placed off-slab, and we have enough space then
2047 * move it on-slab. This is at the expense of any extra colouring.
2048 */
2049 if (left >= cachep->num * sizeof(freelist_idx_t))
2050 return false;
2051
2052 cachep->colour = left / cachep->colour_off;
2053
2054 return true;
2055}
2056
2057static bool set_on_slab_cache(struct kmem_cache *cachep,
2058 size_t size, unsigned long flags)
2059{
2060 size_t left;
2061
2062 cachep->num = 0;
2063
2064 left = calculate_slab_order(cachep, size, flags);
2065 if (!cachep->num)
2066 return false;
2067
2068 cachep->colour = left / cachep->colour_off;
2069
2070 return true;
2071}
2072
1da177e4 2073/**
039363f3 2074 * __kmem_cache_create - Create a cache.
a755b76a 2075 * @cachep: cache management descriptor
1da177e4 2076 * @flags: SLAB flags
1da177e4
LT
2077 *
2078 * Returns a ptr to the cache on success, NULL on failure.
2079 * Cannot be called within a int, but can be interrupted.
20c2df83 2080 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2081 *
1da177e4
LT
2082 * The flags are
2083 *
2084 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2085 * to catch references to uninitialised memory.
2086 *
2087 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2088 * for buffer overruns.
2089 *
1da177e4
LT
2090 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2091 * cacheline. This can be beneficial if you're counting cycles as closely
2092 * as davem.
2093 */
278b1bb1 2094int
8a13a4cc 2095__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2096{
d4a5fca5 2097 size_t ralign = BYTES_PER_WORD;
83b519e8 2098 gfp_t gfp;
278b1bb1 2099 int err;
8a13a4cc 2100 size_t size = cachep->size;
1da177e4 2101
1da177e4 2102#if DEBUG
1da177e4
LT
2103#if FORCED_DEBUG
2104 /*
2105 * Enable redzoning and last user accounting, except for caches with
2106 * large objects, if the increased size would increase the object size
2107 * above the next power of two: caches with object sizes just above a
2108 * power of two have a significant amount of internal fragmentation.
2109 */
87a927c7
DW
2110 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2111 2 * sizeof(unsigned long long)))
b28a02de 2112 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2113 if (!(flags & SLAB_DESTROY_BY_RCU))
2114 flags |= SLAB_POISON;
2115#endif
1da177e4 2116#endif
1da177e4 2117
a737b3e2
AM
2118 /*
2119 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2120 * unaligned accesses for some archs when redzoning is used, and makes
2121 * sure any on-slab bufctl's are also correctly aligned.
2122 */
b28a02de
PE
2123 if (size & (BYTES_PER_WORD - 1)) {
2124 size += (BYTES_PER_WORD - 1);
2125 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2126 }
2127
87a927c7
DW
2128 if (flags & SLAB_RED_ZONE) {
2129 ralign = REDZONE_ALIGN;
2130 /* If redzoning, ensure that the second redzone is suitably
2131 * aligned, by adjusting the object size accordingly. */
2132 size += REDZONE_ALIGN - 1;
2133 size &= ~(REDZONE_ALIGN - 1);
2134 }
ca5f9703 2135
a44b56d3 2136 /* 3) caller mandated alignment */
8a13a4cc
CL
2137 if (ralign < cachep->align) {
2138 ralign = cachep->align;
1da177e4 2139 }
3ff84a7f
PE
2140 /* disable debug if necessary */
2141 if (ralign > __alignof__(unsigned long long))
a44b56d3 2142 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2143 /*
ca5f9703 2144 * 4) Store it.
1da177e4 2145 */
8a13a4cc 2146 cachep->align = ralign;
158e319b
JK
2147 cachep->colour_off = cache_line_size();
2148 /* Offset must be a multiple of the alignment. */
2149 if (cachep->colour_off < cachep->align)
2150 cachep->colour_off = cachep->align;
1da177e4 2151
83b519e8
PE
2152 if (slab_is_available())
2153 gfp = GFP_KERNEL;
2154 else
2155 gfp = GFP_NOWAIT;
2156
1da177e4 2157#if DEBUG
1da177e4 2158
ca5f9703
PE
2159 /*
2160 * Both debugging options require word-alignment which is calculated
2161 * into align above.
2162 */
1da177e4 2163 if (flags & SLAB_RED_ZONE) {
1da177e4 2164 /* add space for red zone words */
3ff84a7f
PE
2165 cachep->obj_offset += sizeof(unsigned long long);
2166 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2167 }
2168 if (flags & SLAB_STORE_USER) {
ca5f9703 2169 /* user store requires one word storage behind the end of
87a927c7
DW
2170 * the real object. But if the second red zone needs to be
2171 * aligned to 64 bits, we must allow that much space.
1da177e4 2172 */
87a927c7
DW
2173 if (flags & SLAB_RED_ZONE)
2174 size += REDZONE_ALIGN;
2175 else
2176 size += BYTES_PER_WORD;
1da177e4 2177 }
832a15d2
JK
2178#endif
2179
7ed2f9e6
AP
2180 kasan_cache_create(cachep, &size, &flags);
2181
832a15d2
JK
2182 size = ALIGN(size, cachep->align);
2183 /*
2184 * We should restrict the number of objects in a slab to implement
2185 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2186 */
2187 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2188 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2189
2190#if DEBUG
03a2d2a3
JK
2191 /*
2192 * To activate debug pagealloc, off-slab management is necessary
2193 * requirement. In early phase of initialization, small sized slab
2194 * doesn't get initialized so it would not be possible. So, we need
2195 * to check size >= 256. It guarantees that all necessary small
2196 * sized slab is initialized in current slab initialization sequence.
2197 */
40323278 2198 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2199 size >= 256 && cachep->object_size > cache_line_size()) {
2200 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2201 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2202
2203 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2204 flags |= CFLGS_OFF_SLAB;
2205 cachep->obj_offset += tmp_size - size;
2206 size = tmp_size;
2207 goto done;
2208 }
2209 }
1da177e4 2210 }
1da177e4
LT
2211#endif
2212
b03a017b
JK
2213 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2214 flags |= CFLGS_OBJFREELIST_SLAB;
2215 goto done;
2216 }
2217
158e319b 2218 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2219 flags |= CFLGS_OFF_SLAB;
158e319b 2220 goto done;
832a15d2 2221 }
1da177e4 2222
158e319b
JK
2223 if (set_on_slab_cache(cachep, size, flags))
2224 goto done;
1da177e4 2225
158e319b 2226 return -E2BIG;
1da177e4 2227
158e319b
JK
2228done:
2229 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2230 cachep->flags = flags;
a57a4988 2231 cachep->allocflags = __GFP_COMP;
a3187e43 2232 if (flags & SLAB_CACHE_DMA)
a618e89f 2233 cachep->allocflags |= GFP_DMA;
3b0efdfa 2234 cachep->size = size;
6a2d7a95 2235 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2236
40b44137
JK
2237#if DEBUG
2238 /*
2239 * If we're going to use the generic kernel_map_pages()
2240 * poisoning, then it's going to smash the contents of
2241 * the redzone and userword anyhow, so switch them off.
2242 */
2243 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2244 (cachep->flags & SLAB_POISON) &&
2245 is_debug_pagealloc_cache(cachep))
2246 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2247#endif
2248
2249 if (OFF_SLAB(cachep)) {
158e319b
JK
2250 cachep->freelist_cache =
2251 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2252 }
1da177e4 2253
278b1bb1
CL
2254 err = setup_cpu_cache(cachep, gfp);
2255 if (err) {
52b4b950 2256 __kmem_cache_release(cachep);
278b1bb1 2257 return err;
2ed3a4ef 2258 }
1da177e4 2259
278b1bb1 2260 return 0;
1da177e4 2261}
1da177e4
LT
2262
2263#if DEBUG
2264static void check_irq_off(void)
2265{
2266 BUG_ON(!irqs_disabled());
2267}
2268
2269static void check_irq_on(void)
2270{
2271 BUG_ON(irqs_disabled());
2272}
2273
18726ca8
JK
2274static void check_mutex_acquired(void)
2275{
2276 BUG_ON(!mutex_is_locked(&slab_mutex));
2277}
2278
343e0d7a 2279static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2280{
2281#ifdef CONFIG_SMP
2282 check_irq_off();
18bf8541 2283 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2284#endif
2285}
e498be7d 2286
343e0d7a 2287static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2288{
2289#ifdef CONFIG_SMP
2290 check_irq_off();
18bf8541 2291 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2292#endif
2293}
2294
1da177e4
LT
2295#else
2296#define check_irq_off() do { } while(0)
2297#define check_irq_on() do { } while(0)
18726ca8 2298#define check_mutex_acquired() do { } while(0)
1da177e4 2299#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2300#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2301#endif
2302
18726ca8
JK
2303static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2304 int node, bool free_all, struct list_head *list)
2305{
2306 int tofree;
2307
2308 if (!ac || !ac->avail)
2309 return;
2310
2311 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2312 if (tofree > ac->avail)
2313 tofree = (ac->avail + 1) / 2;
2314
2315 free_block(cachep, ac->entry, tofree, node, list);
2316 ac->avail -= tofree;
2317 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2318}
aab2207c 2319
1da177e4
LT
2320static void do_drain(void *arg)
2321{
a737b3e2 2322 struct kmem_cache *cachep = arg;
1da177e4 2323 struct array_cache *ac;
7d6e6d09 2324 int node = numa_mem_id();
18bf8541 2325 struct kmem_cache_node *n;
97654dfa 2326 LIST_HEAD(list);
1da177e4
LT
2327
2328 check_irq_off();
9a2dba4b 2329 ac = cpu_cache_get(cachep);
18bf8541
CL
2330 n = get_node(cachep, node);
2331 spin_lock(&n->list_lock);
97654dfa 2332 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2333 spin_unlock(&n->list_lock);
97654dfa 2334 slabs_destroy(cachep, &list);
1da177e4
LT
2335 ac->avail = 0;
2336}
2337
343e0d7a 2338static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2339{
ce8eb6c4 2340 struct kmem_cache_node *n;
e498be7d 2341 int node;
18726ca8 2342 LIST_HEAD(list);
e498be7d 2343
15c8b6c1 2344 on_each_cpu(do_drain, cachep, 1);
1da177e4 2345 check_irq_on();
18bf8541
CL
2346 for_each_kmem_cache_node(cachep, node, n)
2347 if (n->alien)
ce8eb6c4 2348 drain_alien_cache(cachep, n->alien);
a4523a8b 2349
18726ca8
JK
2350 for_each_kmem_cache_node(cachep, node, n) {
2351 spin_lock_irq(&n->list_lock);
2352 drain_array_locked(cachep, n->shared, node, true, &list);
2353 spin_unlock_irq(&n->list_lock);
2354
2355 slabs_destroy(cachep, &list);
2356 }
1da177e4
LT
2357}
2358
ed11d9eb
CL
2359/*
2360 * Remove slabs from the list of free slabs.
2361 * Specify the number of slabs to drain in tofree.
2362 *
2363 * Returns the actual number of slabs released.
2364 */
2365static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2366 struct kmem_cache_node *n, int tofree)
1da177e4 2367{
ed11d9eb
CL
2368 struct list_head *p;
2369 int nr_freed;
8456a648 2370 struct page *page;
1da177e4 2371
ed11d9eb 2372 nr_freed = 0;
ce8eb6c4 2373 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2374
ce8eb6c4
CL
2375 spin_lock_irq(&n->list_lock);
2376 p = n->slabs_free.prev;
2377 if (p == &n->slabs_free) {
2378 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2379 goto out;
2380 }
1da177e4 2381
8456a648 2382 page = list_entry(p, struct page, lru);
8456a648 2383 list_del(&page->lru);
ed11d9eb
CL
2384 /*
2385 * Safe to drop the lock. The slab is no longer linked
2386 * to the cache.
2387 */
ce8eb6c4
CL
2388 n->free_objects -= cache->num;
2389 spin_unlock_irq(&n->list_lock);
8456a648 2390 slab_destroy(cache, page);
ed11d9eb 2391 nr_freed++;
1da177e4 2392 }
ed11d9eb
CL
2393out:
2394 return nr_freed;
1da177e4
LT
2395}
2396
d6e0b7fa 2397int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
e498be7d 2398{
18bf8541
CL
2399 int ret = 0;
2400 int node;
ce8eb6c4 2401 struct kmem_cache_node *n;
e498be7d
CL
2402
2403 drain_cpu_caches(cachep);
2404
2405 check_irq_on();
18bf8541 2406 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2407 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2408
ce8eb6c4
CL
2409 ret += !list_empty(&n->slabs_full) ||
2410 !list_empty(&n->slabs_partial);
e498be7d
CL
2411 }
2412 return (ret ? 1 : 0);
2413}
2414
945cf2b6 2415int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950
DS
2416{
2417 return __kmem_cache_shrink(cachep, false);
2418}
2419
2420void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2421{
12c3667f 2422 int i;
ce8eb6c4 2423 struct kmem_cache_node *n;
1da177e4 2424
c7ce4f60
TG
2425 cache_random_seq_destroy(cachep);
2426
bf0dea23 2427 free_percpu(cachep->cpu_cache);
1da177e4 2428
ce8eb6c4 2429 /* NUMA: free the node structures */
18bf8541
CL
2430 for_each_kmem_cache_node(cachep, i, n) {
2431 kfree(n->shared);
2432 free_alien_cache(n->alien);
2433 kfree(n);
2434 cachep->node[i] = NULL;
12c3667f 2435 }
1da177e4 2436}
1da177e4 2437
e5ac9c5a
RT
2438/*
2439 * Get the memory for a slab management obj.
5f0985bb
JZ
2440 *
2441 * For a slab cache when the slab descriptor is off-slab, the
2442 * slab descriptor can't come from the same cache which is being created,
2443 * Because if it is the case, that means we defer the creation of
2444 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2445 * And we eventually call down to __kmem_cache_create(), which
2446 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2447 * This is a "chicken-and-egg" problem.
2448 *
2449 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2450 * which are all initialized during kmem_cache_init().
e5ac9c5a 2451 */
7e007355 2452static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2453 struct page *page, int colour_off,
2454 gfp_t local_flags, int nodeid)
1da177e4 2455{
7e007355 2456 void *freelist;
0c3aa83e 2457 void *addr = page_address(page);
b28a02de 2458
2e6b3602
JK
2459 page->s_mem = addr + colour_off;
2460 page->active = 0;
2461
b03a017b
JK
2462 if (OBJFREELIST_SLAB(cachep))
2463 freelist = NULL;
2464 else if (OFF_SLAB(cachep)) {
1da177e4 2465 /* Slab management obj is off-slab. */
8456a648 2466 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2467 local_flags, nodeid);
8456a648 2468 if (!freelist)
1da177e4
LT
2469 return NULL;
2470 } else {
2e6b3602
JK
2471 /* We will use last bytes at the slab for freelist */
2472 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2473 cachep->freelist_size;
1da177e4 2474 }
2e6b3602 2475
8456a648 2476 return freelist;
1da177e4
LT
2477}
2478
7cc68973 2479static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2480{
a41adfaa 2481 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2482}
2483
2484static inline void set_free_obj(struct page *page,
7cc68973 2485 unsigned int idx, freelist_idx_t val)
e5c58dfd 2486{
a41adfaa 2487 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2488}
2489
10b2e9e8 2490static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2491{
10b2e9e8 2492#if DEBUG
1da177e4
LT
2493 int i;
2494
2495 for (i = 0; i < cachep->num; i++) {
8456a648 2496 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2497
1da177e4
LT
2498 if (cachep->flags & SLAB_STORE_USER)
2499 *dbg_userword(cachep, objp) = NULL;
2500
2501 if (cachep->flags & SLAB_RED_ZONE) {
2502 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2503 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2504 }
2505 /*
a737b3e2
AM
2506 * Constructors are not allowed to allocate memory from the same
2507 * cache which they are a constructor for. Otherwise, deadlock.
2508 * They must also be threaded.
1da177e4 2509 */
7ed2f9e6
AP
2510 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2511 kasan_unpoison_object_data(cachep,
2512 objp + obj_offset(cachep));
51cc5068 2513 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2514 kasan_poison_object_data(
2515 cachep, objp + obj_offset(cachep));
2516 }
1da177e4
LT
2517
2518 if (cachep->flags & SLAB_RED_ZONE) {
2519 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2520 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2521 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2522 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2523 }
40b44137
JK
2524 /* need to poison the objs? */
2525 if (cachep->flags & SLAB_POISON) {
2526 poison_obj(cachep, objp, POISON_FREE);
2527 slab_kernel_map(cachep, objp, 0, 0);
2528 }
10b2e9e8 2529 }
1da177e4 2530#endif
10b2e9e8
JK
2531}
2532
c7ce4f60
TG
2533#ifdef CONFIG_SLAB_FREELIST_RANDOM
2534/* Hold information during a freelist initialization */
2535union freelist_init_state {
2536 struct {
2537 unsigned int pos;
2538 freelist_idx_t *list;
2539 unsigned int count;
2540 unsigned int rand;
2541 };
2542 struct rnd_state rnd_state;
2543};
2544
2545/*
2546 * Initialize the state based on the randomization methode available.
2547 * return true if the pre-computed list is available, false otherwize.
2548 */
2549static bool freelist_state_initialize(union freelist_init_state *state,
2550 struct kmem_cache *cachep,
2551 unsigned int count)
2552{
2553 bool ret;
2554 unsigned int rand;
2555
2556 /* Use best entropy available to define a random shift */
2557 get_random_bytes_arch(&rand, sizeof(rand));
2558
2559 /* Use a random state if the pre-computed list is not available */
2560 if (!cachep->random_seq) {
2561 prandom_seed_state(&state->rnd_state, rand);
2562 ret = false;
2563 } else {
2564 state->list = cachep->random_seq;
2565 state->count = count;
2566 state->pos = 0;
2567 state->rand = rand;
2568 ret = true;
2569 }
2570 return ret;
2571}
2572
2573/* Get the next entry on the list and randomize it using a random shift */
2574static freelist_idx_t next_random_slot(union freelist_init_state *state)
2575{
2576 return (state->list[state->pos++] + state->rand) % state->count;
2577}
2578
2579/*
2580 * Shuffle the freelist initialization state based on pre-computed lists.
2581 * return true if the list was successfully shuffled, false otherwise.
2582 */
2583static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2584{
2585 unsigned int objfreelist = 0, i, count = cachep->num;
2586 union freelist_init_state state;
2587 bool precomputed;
2588
2589 if (count < 2)
2590 return false;
2591
2592 precomputed = freelist_state_initialize(&state, cachep, count);
2593
2594 /* Take a random entry as the objfreelist */
2595 if (OBJFREELIST_SLAB(cachep)) {
2596 if (!precomputed)
2597 objfreelist = count - 1;
2598 else
2599 objfreelist = next_random_slot(&state);
2600 page->freelist = index_to_obj(cachep, page, objfreelist) +
2601 obj_offset(cachep);
2602 count--;
2603 }
2604
2605 /*
2606 * On early boot, generate the list dynamically.
2607 * Later use a pre-computed list for speed.
2608 */
2609 if (!precomputed) {
2610 freelist_randomize(&state.rnd_state, page->freelist, count);
2611 } else {
2612 for (i = 0; i < count; i++)
2613 set_free_obj(page, i, next_random_slot(&state));
2614 }
2615
2616 if (OBJFREELIST_SLAB(cachep))
2617 set_free_obj(page, cachep->num - 1, objfreelist);
2618
2619 return true;
2620}
2621#else
2622static inline bool shuffle_freelist(struct kmem_cache *cachep,
2623 struct page *page)
2624{
2625 return false;
2626}
2627#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2628
10b2e9e8
JK
2629static void cache_init_objs(struct kmem_cache *cachep,
2630 struct page *page)
2631{
2632 int i;
7ed2f9e6 2633 void *objp;
c7ce4f60 2634 bool shuffled;
10b2e9e8
JK
2635
2636 cache_init_objs_debug(cachep, page);
2637
c7ce4f60
TG
2638 /* Try to randomize the freelist if enabled */
2639 shuffled = shuffle_freelist(cachep, page);
2640
2641 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2642 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2643 obj_offset(cachep);
2644 }
2645
10b2e9e8
JK
2646 for (i = 0; i < cachep->num; i++) {
2647 /* constructor could break poison info */
7ed2f9e6
AP
2648 if (DEBUG == 0 && cachep->ctor) {
2649 objp = index_to_obj(cachep, page, i);
2650 kasan_unpoison_object_data(cachep, objp);
2651 cachep->ctor(objp);
2652 kasan_poison_object_data(cachep, objp);
2653 }
10b2e9e8 2654
c7ce4f60
TG
2655 if (!shuffled)
2656 set_free_obj(page, i, i);
1da177e4 2657 }
1da177e4
LT
2658}
2659
260b61dd 2660static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2661{
b1cb0982 2662 void *objp;
78d382d7 2663
e5c58dfd 2664 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2665 page->active++;
78d382d7 2666
d31676df
JK
2667#if DEBUG
2668 if (cachep->flags & SLAB_STORE_USER)
2669 set_store_user_dirty(cachep);
2670#endif
2671
78d382d7
MD
2672 return objp;
2673}
2674
260b61dd
JK
2675static void slab_put_obj(struct kmem_cache *cachep,
2676 struct page *page, void *objp)
78d382d7 2677{
8456a648 2678 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2679#if DEBUG
16025177 2680 unsigned int i;
b1cb0982 2681
b1cb0982 2682 /* Verify double free bug */
8456a648 2683 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2684 if (get_free_obj(page, i) == objnr) {
1170532b 2685 pr_err("slab: double free detected in cache '%s', objp %p\n",
756a025f 2686 cachep->name, objp);
b1cb0982
JK
2687 BUG();
2688 }
78d382d7
MD
2689 }
2690#endif
8456a648 2691 page->active--;
b03a017b
JK
2692 if (!page->freelist)
2693 page->freelist = objp + obj_offset(cachep);
2694
e5c58dfd 2695 set_free_obj(page, page->active, objnr);
78d382d7
MD
2696}
2697
4776874f
PE
2698/*
2699 * Map pages beginning at addr to the given cache and slab. This is required
2700 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2701 * virtual address for kfree, ksize, and slab debugging.
4776874f 2702 */
8456a648 2703static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2704 void *freelist)
1da177e4 2705{
a57a4988 2706 page->slab_cache = cache;
8456a648 2707 page->freelist = freelist;
1da177e4
LT
2708}
2709
2710/*
2711 * Grow (by 1) the number of slabs within a cache. This is called by
2712 * kmem_cache_alloc() when there are no active objs left in a cache.
2713 */
76b342bd
JK
2714static struct page *cache_grow_begin(struct kmem_cache *cachep,
2715 gfp_t flags, int nodeid)
1da177e4 2716{
7e007355 2717 void *freelist;
b28a02de
PE
2718 size_t offset;
2719 gfp_t local_flags;
511e3a05 2720 int page_node;
ce8eb6c4 2721 struct kmem_cache_node *n;
511e3a05 2722 struct page *page;
1da177e4 2723
a737b3e2
AM
2724 /*
2725 * Be lazy and only check for valid flags here, keeping it out of the
2726 * critical path in kmem_cache_alloc().
1da177e4 2727 */
c871ac4e
AM
2728 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2729 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2730 BUG();
2731 }
6cb06229 2732 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2733
1da177e4 2734 check_irq_off();
d0164adc 2735 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2736 local_irq_enable();
2737
a737b3e2
AM
2738 /*
2739 * Get mem for the objs. Attempt to allocate a physical page from
2740 * 'nodeid'.
e498be7d 2741 */
511e3a05 2742 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2743 if (!page)
1da177e4
LT
2744 goto failed;
2745
511e3a05
JK
2746 page_node = page_to_nid(page);
2747 n = get_node(cachep, page_node);
03d1d43a
JK
2748
2749 /* Get colour for the slab, and cal the next value. */
2750 n->colour_next++;
2751 if (n->colour_next >= cachep->colour)
2752 n->colour_next = 0;
2753
2754 offset = n->colour_next;
2755 if (offset >= cachep->colour)
2756 offset = 0;
2757
2758 offset *= cachep->colour_off;
2759
1da177e4 2760 /* Get slab management. */
8456a648 2761 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2762 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2763 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2764 goto opps1;
2765
8456a648 2766 slab_map_pages(cachep, page, freelist);
1da177e4 2767
7ed2f9e6 2768 kasan_poison_slab(page);
8456a648 2769 cache_init_objs(cachep, page);
1da177e4 2770
d0164adc 2771 if (gfpflags_allow_blocking(local_flags))
1da177e4 2772 local_irq_disable();
1da177e4 2773
76b342bd
JK
2774 return page;
2775
a737b3e2 2776opps1:
0c3aa83e 2777 kmem_freepages(cachep, page);
a737b3e2 2778failed:
d0164adc 2779 if (gfpflags_allow_blocking(local_flags))
1da177e4 2780 local_irq_disable();
76b342bd
JK
2781 return NULL;
2782}
2783
2784static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2785{
2786 struct kmem_cache_node *n;
2787 void *list = NULL;
2788
2789 check_irq_off();
2790
2791 if (!page)
2792 return;
2793
2794 INIT_LIST_HEAD(&page->lru);
2795 n = get_node(cachep, page_to_nid(page));
2796
2797 spin_lock(&n->list_lock);
2798 if (!page->active)
2799 list_add_tail(&page->lru, &(n->slabs_free));
2800 else
2801 fixup_slab_list(cachep, n, page, &list);
2802 STATS_INC_GROWN(cachep);
2803 n->free_objects += cachep->num - page->active;
2804 spin_unlock(&n->list_lock);
2805
2806 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2807}
2808
2809#if DEBUG
2810
2811/*
2812 * Perform extra freeing checks:
2813 * - detect bad pointers.
2814 * - POISON/RED_ZONE checking
1da177e4
LT
2815 */
2816static void kfree_debugcheck(const void *objp)
2817{
1da177e4 2818 if (!virt_addr_valid(objp)) {
1170532b 2819 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2820 (unsigned long)objp);
2821 BUG();
1da177e4 2822 }
1da177e4
LT
2823}
2824
58ce1fd5
PE
2825static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2826{
b46b8f19 2827 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2828
2829 redzone1 = *dbg_redzone1(cache, obj);
2830 redzone2 = *dbg_redzone2(cache, obj);
2831
2832 /*
2833 * Redzone is ok.
2834 */
2835 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2836 return;
2837
2838 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2839 slab_error(cache, "double free detected");
2840 else
2841 slab_error(cache, "memory outside object was overwritten");
2842
1170532b
JP
2843 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2844 obj, redzone1, redzone2);
58ce1fd5
PE
2845}
2846
343e0d7a 2847static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2848 unsigned long caller)
1da177e4 2849{
1da177e4 2850 unsigned int objnr;
8456a648 2851 struct page *page;
1da177e4 2852
80cbd911
MW
2853 BUG_ON(virt_to_cache(objp) != cachep);
2854
3dafccf2 2855 objp -= obj_offset(cachep);
1da177e4 2856 kfree_debugcheck(objp);
b49af68f 2857 page = virt_to_head_page(objp);
1da177e4 2858
1da177e4 2859 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2860 verify_redzone_free(cachep, objp);
1da177e4
LT
2861 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2862 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2863 }
d31676df
JK
2864 if (cachep->flags & SLAB_STORE_USER) {
2865 set_store_user_dirty(cachep);
7c0cb9c6 2866 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2867 }
1da177e4 2868
8456a648 2869 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2870
2871 BUG_ON(objnr >= cachep->num);
8456a648 2872 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2873
1da177e4 2874 if (cachep->flags & SLAB_POISON) {
1da177e4 2875 poison_obj(cachep, objp, POISON_FREE);
40b44137 2876 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2877 }
2878 return objp;
2879}
2880
1da177e4
LT
2881#else
2882#define kfree_debugcheck(x) do { } while(0)
2883#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2884#endif
2885
b03a017b
JK
2886static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2887 void **list)
2888{
2889#if DEBUG
2890 void *next = *list;
2891 void *objp;
2892
2893 while (next) {
2894 objp = next - obj_offset(cachep);
2895 next = *(void **)next;
2896 poison_obj(cachep, objp, POISON_FREE);
2897 }
2898#endif
2899}
2900
d8410234 2901static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2902 struct kmem_cache_node *n, struct page *page,
2903 void **list)
d8410234
JK
2904{
2905 /* move slabp to correct slabp list: */
2906 list_del(&page->lru);
b03a017b 2907 if (page->active == cachep->num) {
d8410234 2908 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2909 if (OBJFREELIST_SLAB(cachep)) {
2910#if DEBUG
2911 /* Poisoning will be done without holding the lock */
2912 if (cachep->flags & SLAB_POISON) {
2913 void **objp = page->freelist;
2914
2915 *objp = *list;
2916 *list = objp;
2917 }
2918#endif
2919 page->freelist = NULL;
2920 }
2921 } else
d8410234
JK
2922 list_add(&page->lru, &n->slabs_partial);
2923}
2924
f68f8ddd
JK
2925/* Try to find non-pfmemalloc slab if needed */
2926static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2927 struct page *page, bool pfmemalloc)
2928{
2929 if (!page)
2930 return NULL;
2931
2932 if (pfmemalloc)
2933 return page;
2934
2935 if (!PageSlabPfmemalloc(page))
2936 return page;
2937
2938 /* No need to keep pfmemalloc slab if we have enough free objects */
2939 if (n->free_objects > n->free_limit) {
2940 ClearPageSlabPfmemalloc(page);
2941 return page;
2942 }
2943
2944 /* Move pfmemalloc slab to the end of list to speed up next search */
2945 list_del(&page->lru);
2946 if (!page->active)
2947 list_add_tail(&page->lru, &n->slabs_free);
2948 else
2949 list_add_tail(&page->lru, &n->slabs_partial);
2950
2951 list_for_each_entry(page, &n->slabs_partial, lru) {
2952 if (!PageSlabPfmemalloc(page))
2953 return page;
2954 }
2955
2956 list_for_each_entry(page, &n->slabs_free, lru) {
2957 if (!PageSlabPfmemalloc(page))
2958 return page;
2959 }
2960
2961 return NULL;
2962}
2963
2964static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2965{
2966 struct page *page;
2967
2968 page = list_first_entry_or_null(&n->slabs_partial,
2969 struct page, lru);
2970 if (!page) {
2971 n->free_touched = 1;
2972 page = list_first_entry_or_null(&n->slabs_free,
2973 struct page, lru);
2974 }
2975
f68f8ddd
JK
2976 if (sk_memalloc_socks())
2977 return get_valid_first_slab(n, page, pfmemalloc);
2978
7aa0d227
GT
2979 return page;
2980}
2981
f68f8ddd
JK
2982static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2983 struct kmem_cache_node *n, gfp_t flags)
2984{
2985 struct page *page;
2986 void *obj;
2987 void *list = NULL;
2988
2989 if (!gfp_pfmemalloc_allowed(flags))
2990 return NULL;
2991
2992 spin_lock(&n->list_lock);
2993 page = get_first_slab(n, true);
2994 if (!page) {
2995 spin_unlock(&n->list_lock);
2996 return NULL;
2997 }
2998
2999 obj = slab_get_obj(cachep, page);
3000 n->free_objects--;
3001
3002 fixup_slab_list(cachep, n, page, &list);
3003
3004 spin_unlock(&n->list_lock);
3005 fixup_objfreelist_debug(cachep, &list);
3006
3007 return obj;
3008}
3009
213b4695
JK
3010/*
3011 * Slab list should be fixed up by fixup_slab_list() for existing slab
3012 * or cache_grow_end() for new slab
3013 */
3014static __always_inline int alloc_block(struct kmem_cache *cachep,
3015 struct array_cache *ac, struct page *page, int batchcount)
3016{
3017 /*
3018 * There must be at least one object available for
3019 * allocation.
3020 */
3021 BUG_ON(page->active >= cachep->num);
3022
3023 while (page->active < cachep->num && batchcount--) {
3024 STATS_INC_ALLOCED(cachep);
3025 STATS_INC_ACTIVE(cachep);
3026 STATS_SET_HIGH(cachep);
3027
3028 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
3029 }
3030
3031 return batchcount;
3032}
3033
f68f8ddd 3034static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
3035{
3036 int batchcount;
ce8eb6c4 3037 struct kmem_cache_node *n;
801faf0d 3038 struct array_cache *ac, *shared;
1ca4cb24 3039 int node;
b03a017b 3040 void *list = NULL;
76b342bd 3041 struct page *page;
1ca4cb24 3042
1da177e4 3043 check_irq_off();
7d6e6d09 3044 node = numa_mem_id();
f68f8ddd 3045
9a2dba4b 3046 ac = cpu_cache_get(cachep);
1da177e4
LT
3047 batchcount = ac->batchcount;
3048 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3049 /*
3050 * If there was little recent activity on this cache, then
3051 * perform only a partial refill. Otherwise we could generate
3052 * refill bouncing.
1da177e4
LT
3053 */
3054 batchcount = BATCHREFILL_LIMIT;
3055 }
18bf8541 3056 n = get_node(cachep, node);
e498be7d 3057
ce8eb6c4 3058 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
3059 shared = READ_ONCE(n->shared);
3060 if (!n->free_objects && (!shared || !shared->avail))
3061 goto direct_grow;
3062
ce8eb6c4 3063 spin_lock(&n->list_lock);
801faf0d 3064 shared = READ_ONCE(n->shared);
1da177e4 3065
3ded175a 3066 /* See if we can refill from the shared array */
801faf0d
JK
3067 if (shared && transfer_objects(ac, shared, batchcount)) {
3068 shared->touched = 1;
3ded175a 3069 goto alloc_done;
44b57f1c 3070 }
3ded175a 3071
1da177e4 3072 while (batchcount > 0) {
1da177e4 3073 /* Get slab alloc is to come from. */
f68f8ddd 3074 page = get_first_slab(n, false);
7aa0d227
GT
3075 if (!page)
3076 goto must_grow;
1da177e4 3077
1da177e4 3078 check_spinlock_acquired(cachep);
714b8171 3079
213b4695 3080 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 3081 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
3082 }
3083
a737b3e2 3084must_grow:
ce8eb6c4 3085 n->free_objects -= ac->avail;
a737b3e2 3086alloc_done:
ce8eb6c4 3087 spin_unlock(&n->list_lock);
b03a017b 3088 fixup_objfreelist_debug(cachep, &list);
1da177e4 3089
801faf0d 3090direct_grow:
1da177e4 3091 if (unlikely(!ac->avail)) {
f68f8ddd
JK
3092 /* Check if we can use obj in pfmemalloc slab */
3093 if (sk_memalloc_socks()) {
3094 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3095
3096 if (obj)
3097 return obj;
3098 }
3099
76b342bd 3100 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 3101
76b342bd
JK
3102 /*
3103 * cache_grow_begin() can reenable interrupts,
3104 * then ac could change.
3105 */
9a2dba4b 3106 ac = cpu_cache_get(cachep);
213b4695
JK
3107 if (!ac->avail && page)
3108 alloc_block(cachep, ac, page, batchcount);
3109 cache_grow_end(cachep, page);
072bb0aa 3110
213b4695 3111 if (!ac->avail)
1da177e4 3112 return NULL;
1da177e4
LT
3113 }
3114 ac->touched = 1;
072bb0aa 3115
f68f8ddd 3116 return ac->entry[--ac->avail];
1da177e4
LT
3117}
3118
a737b3e2
AM
3119static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3120 gfp_t flags)
1da177e4 3121{
d0164adc 3122 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
3123}
3124
3125#if DEBUG
a737b3e2 3126static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3127 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3128{
b28a02de 3129 if (!objp)
1da177e4 3130 return objp;
b28a02de 3131 if (cachep->flags & SLAB_POISON) {
1da177e4 3132 check_poison_obj(cachep, objp);
40b44137 3133 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
3134 poison_obj(cachep, objp, POISON_INUSE);
3135 }
3136 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3137 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3138
3139 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3140 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3141 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3142 slab_error(cachep, "double free, or memory outside object was overwritten");
1170532b
JP
3143 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3144 objp, *dbg_redzone1(cachep, objp),
3145 *dbg_redzone2(cachep, objp));
1da177e4
LT
3146 }
3147 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3148 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3149 }
03787301 3150
3dafccf2 3151 objp += obj_offset(cachep);
4f104934 3152 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3153 cachep->ctor(objp);
7ea466f2
TH
3154 if (ARCH_SLAB_MINALIGN &&
3155 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
1170532b 3156 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3157 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3158 }
1da177e4
LT
3159 return objp;
3160}
3161#else
3162#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3163#endif
3164
343e0d7a 3165static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3166{
b28a02de 3167 void *objp;
1da177e4
LT
3168 struct array_cache *ac;
3169
5c382300 3170 check_irq_off();
8a8b6502 3171
9a2dba4b 3172 ac = cpu_cache_get(cachep);
1da177e4 3173 if (likely(ac->avail)) {
1da177e4 3174 ac->touched = 1;
f68f8ddd 3175 objp = ac->entry[--ac->avail];
072bb0aa 3176
f68f8ddd
JK
3177 STATS_INC_ALLOCHIT(cachep);
3178 goto out;
1da177e4 3179 }
072bb0aa
MG
3180
3181 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3182 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3183 /*
3184 * the 'ac' may be updated by cache_alloc_refill(),
3185 * and kmemleak_erase() requires its correct value.
3186 */
3187 ac = cpu_cache_get(cachep);
3188
3189out:
d5cff635
CM
3190 /*
3191 * To avoid a false negative, if an object that is in one of the
3192 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3193 * treat the array pointers as a reference to the object.
3194 */
f3d8b53a
O
3195 if (objp)
3196 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3197 return objp;
3198}
3199
e498be7d 3200#ifdef CONFIG_NUMA
c61afb18 3201/*
2ad654bc 3202 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3203 *
3204 * If we are in_interrupt, then process context, including cpusets and
3205 * mempolicy, may not apply and should not be used for allocation policy.
3206 */
3207static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3208{
3209 int nid_alloc, nid_here;
3210
765c4507 3211 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3212 return NULL;
7d6e6d09 3213 nid_alloc = nid_here = numa_mem_id();
c61afb18 3214 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3215 nid_alloc = cpuset_slab_spread_node();
c61afb18 3216 else if (current->mempolicy)
2a389610 3217 nid_alloc = mempolicy_slab_node();
c61afb18 3218 if (nid_alloc != nid_here)
8b98c169 3219 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3220 return NULL;
3221}
3222
765c4507
CL
3223/*
3224 * Fallback function if there was no memory available and no objects on a
3c517a61 3225 * certain node and fall back is permitted. First we scan all the
6a67368c 3226 * available node for available objects. If that fails then we
3c517a61
CL
3227 * perform an allocation without specifying a node. This allows the page
3228 * allocator to do its reclaim / fallback magic. We then insert the
3229 * slab into the proper nodelist and then allocate from it.
765c4507 3230 */
8c8cc2c1 3231static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3232{
8c8cc2c1 3233 struct zonelist *zonelist;
dd1a239f 3234 struct zoneref *z;
54a6eb5c
MG
3235 struct zone *zone;
3236 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3237 void *obj = NULL;
76b342bd 3238 struct page *page;
3c517a61 3239 int nid;
cc9a6c87 3240 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3241
3242 if (flags & __GFP_THISNODE)
3243 return NULL;
3244
cc9a6c87 3245retry_cpuset:
d26914d1 3246 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3247 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3248
3c517a61
CL
3249retry:
3250 /*
3251 * Look through allowed nodes for objects available
3252 * from existing per node queues.
3253 */
54a6eb5c
MG
3254 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3255 nid = zone_to_nid(zone);
aedb0eb1 3256
061d7074 3257 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3258 get_node(cache, nid) &&
3259 get_node(cache, nid)->free_objects) {
3c517a61 3260 obj = ____cache_alloc_node(cache,
4167e9b2 3261 gfp_exact_node(flags), nid);
481c5346
CL
3262 if (obj)
3263 break;
3264 }
3c517a61
CL
3265 }
3266
cfce6604 3267 if (!obj) {
3c517a61
CL
3268 /*
3269 * This allocation will be performed within the constraints
3270 * of the current cpuset / memory policy requirements.
3271 * We may trigger various forms of reclaim on the allowed
3272 * set and go into memory reserves if necessary.
3273 */
76b342bd
JK
3274 page = cache_grow_begin(cache, flags, numa_mem_id());
3275 cache_grow_end(cache, page);
3276 if (page) {
3277 nid = page_to_nid(page);
511e3a05
JK
3278 obj = ____cache_alloc_node(cache,
3279 gfp_exact_node(flags), nid);
0c3aa83e 3280
3c517a61 3281 /*
511e3a05
JK
3282 * Another processor may allocate the objects in
3283 * the slab since we are not holding any locks.
3c517a61 3284 */
511e3a05
JK
3285 if (!obj)
3286 goto retry;
3c517a61 3287 }
aedb0eb1 3288 }
cc9a6c87 3289
d26914d1 3290 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3291 goto retry_cpuset;
765c4507
CL
3292 return obj;
3293}
3294
e498be7d
CL
3295/*
3296 * A interface to enable slab creation on nodeid
1da177e4 3297 */
8b98c169 3298static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3299 int nodeid)
e498be7d 3300{
8456a648 3301 struct page *page;
ce8eb6c4 3302 struct kmem_cache_node *n;
213b4695 3303 void *obj = NULL;
b03a017b 3304 void *list = NULL;
b28a02de 3305
7c3fbbdd 3306 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3307 n = get_node(cachep, nodeid);
ce8eb6c4 3308 BUG_ON(!n);
b28a02de 3309
ca3b9b91 3310 check_irq_off();
ce8eb6c4 3311 spin_lock(&n->list_lock);
f68f8ddd 3312 page = get_first_slab(n, false);
7aa0d227
GT
3313 if (!page)
3314 goto must_grow;
b28a02de 3315
b28a02de 3316 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3317
3318 STATS_INC_NODEALLOCS(cachep);
3319 STATS_INC_ACTIVE(cachep);
3320 STATS_SET_HIGH(cachep);
3321
8456a648 3322 BUG_ON(page->active == cachep->num);
b28a02de 3323
260b61dd 3324 obj = slab_get_obj(cachep, page);
ce8eb6c4 3325 n->free_objects--;
b28a02de 3326
b03a017b 3327 fixup_slab_list(cachep, n, page, &list);
e498be7d 3328
ce8eb6c4 3329 spin_unlock(&n->list_lock);
b03a017b 3330 fixup_objfreelist_debug(cachep, &list);
213b4695 3331 return obj;
e498be7d 3332
a737b3e2 3333must_grow:
ce8eb6c4 3334 spin_unlock(&n->list_lock);
76b342bd 3335 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3336 if (page) {
3337 /* This slab isn't counted yet so don't update free_objects */
3338 obj = slab_get_obj(cachep, page);
3339 }
76b342bd 3340 cache_grow_end(cachep, page);
1da177e4 3341
213b4695 3342 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3343}
8c8cc2c1 3344
8c8cc2c1 3345static __always_inline void *
48356303 3346slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3347 unsigned long caller)
8c8cc2c1
PE
3348{
3349 unsigned long save_flags;
3350 void *ptr;
7d6e6d09 3351 int slab_node = numa_mem_id();
8c8cc2c1 3352
dcce284a 3353 flags &= gfp_allowed_mask;
011eceaf
JDB
3354 cachep = slab_pre_alloc_hook(cachep, flags);
3355 if (unlikely(!cachep))
824ebef1
AM
3356 return NULL;
3357
8c8cc2c1
PE
3358 cache_alloc_debugcheck_before(cachep, flags);
3359 local_irq_save(save_flags);
3360
eacbbae3 3361 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3362 nodeid = slab_node;
8c8cc2c1 3363
18bf8541 3364 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3365 /* Node not bootstrapped yet */
3366 ptr = fallback_alloc(cachep, flags);
3367 goto out;
3368 }
3369
7d6e6d09 3370 if (nodeid == slab_node) {
8c8cc2c1
PE
3371 /*
3372 * Use the locally cached objects if possible.
3373 * However ____cache_alloc does not allow fallback
3374 * to other nodes. It may fail while we still have
3375 * objects on other nodes available.
3376 */
3377 ptr = ____cache_alloc(cachep, flags);
3378 if (ptr)
3379 goto out;
3380 }
3381 /* ___cache_alloc_node can fall back to other nodes */
3382 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3383 out:
3384 local_irq_restore(save_flags);
3385 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3386
d5e3ed66
JDB
3387 if (unlikely(flags & __GFP_ZERO) && ptr)
3388 memset(ptr, 0, cachep->object_size);
d07dbea4 3389
d5e3ed66 3390 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3391 return ptr;
3392}
3393
3394static __always_inline void *
3395__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3396{
3397 void *objp;
3398
2ad654bc 3399 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3400 objp = alternate_node_alloc(cache, flags);
3401 if (objp)
3402 goto out;
3403 }
3404 objp = ____cache_alloc(cache, flags);
3405
3406 /*
3407 * We may just have run out of memory on the local node.
3408 * ____cache_alloc_node() knows how to locate memory on other nodes
3409 */
7d6e6d09
LS
3410 if (!objp)
3411 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3412
3413 out:
3414 return objp;
3415}
3416#else
3417
3418static __always_inline void *
3419__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3420{
3421 return ____cache_alloc(cachep, flags);
3422}
3423
3424#endif /* CONFIG_NUMA */
3425
3426static __always_inline void *
48356303 3427slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3428{
3429 unsigned long save_flags;
3430 void *objp;
3431
dcce284a 3432 flags &= gfp_allowed_mask;
011eceaf
JDB
3433 cachep = slab_pre_alloc_hook(cachep, flags);
3434 if (unlikely(!cachep))
824ebef1
AM
3435 return NULL;
3436
8c8cc2c1
PE
3437 cache_alloc_debugcheck_before(cachep, flags);
3438 local_irq_save(save_flags);
3439 objp = __do_cache_alloc(cachep, flags);
3440 local_irq_restore(save_flags);
3441 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3442 prefetchw(objp);
3443
d5e3ed66
JDB
3444 if (unlikely(flags & __GFP_ZERO) && objp)
3445 memset(objp, 0, cachep->object_size);
d07dbea4 3446
d5e3ed66 3447 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3448 return objp;
3449}
e498be7d
CL
3450
3451/*
5f0985bb 3452 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3453 * @list: List of detached free slabs should be freed by caller
e498be7d 3454 */
97654dfa
JK
3455static void free_block(struct kmem_cache *cachep, void **objpp,
3456 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3457{
3458 int i;
25c063fb 3459 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3460 struct page *page;
3461
3462 n->free_objects += nr_objects;
1da177e4
LT
3463
3464 for (i = 0; i < nr_objects; i++) {
072bb0aa 3465 void *objp;
8456a648 3466 struct page *page;
1da177e4 3467
072bb0aa
MG
3468 objp = objpp[i];
3469
8456a648 3470 page = virt_to_head_page(objp);
8456a648 3471 list_del(&page->lru);
ff69416e 3472 check_spinlock_acquired_node(cachep, node);
260b61dd 3473 slab_put_obj(cachep, page, objp);
1da177e4 3474 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3475
3476 /* fixup slab chains */
6052b788
JK
3477 if (page->active == 0)
3478 list_add(&page->lru, &n->slabs_free);
3479 else {
1da177e4
LT
3480 /* Unconditionally move a slab to the end of the
3481 * partial list on free - maximum time for the
3482 * other objects to be freed, too.
3483 */
8456a648 3484 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3485 }
3486 }
6052b788
JK
3487
3488 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3489 n->free_objects -= cachep->num;
3490
3491 page = list_last_entry(&n->slabs_free, struct page, lru);
3492 list_del(&page->lru);
3493 list_add(&page->lru, list);
3494 }
1da177e4
LT
3495}
3496
343e0d7a 3497static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3498{
3499 int batchcount;
ce8eb6c4 3500 struct kmem_cache_node *n;
7d6e6d09 3501 int node = numa_mem_id();
97654dfa 3502 LIST_HEAD(list);
1da177e4
LT
3503
3504 batchcount = ac->batchcount;
260b61dd 3505
1da177e4 3506 check_irq_off();
18bf8541 3507 n = get_node(cachep, node);
ce8eb6c4
CL
3508 spin_lock(&n->list_lock);
3509 if (n->shared) {
3510 struct array_cache *shared_array = n->shared;
b28a02de 3511 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3512 if (max) {
3513 if (batchcount > max)
3514 batchcount = max;
e498be7d 3515 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3516 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3517 shared_array->avail += batchcount;
3518 goto free_done;
3519 }
3520 }
3521
97654dfa 3522 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3523free_done:
1da177e4
LT
3524#if STATS
3525 {
3526 int i = 0;
73c0219d 3527 struct page *page;
1da177e4 3528
73c0219d 3529 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3530 BUG_ON(page->active);
1da177e4
LT
3531
3532 i++;
1da177e4
LT
3533 }
3534 STATS_SET_FREEABLE(cachep, i);
3535 }
3536#endif
ce8eb6c4 3537 spin_unlock(&n->list_lock);
97654dfa 3538 slabs_destroy(cachep, &list);
1da177e4 3539 ac->avail -= batchcount;
a737b3e2 3540 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3541}
3542
3543/*
a737b3e2
AM
3544 * Release an obj back to its cache. If the obj has a constructed state, it must
3545 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3546 */
a947eb95 3547static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3548 unsigned long caller)
1da177e4 3549{
55834c59
AP
3550 /* Put the object into the quarantine, don't touch it for now. */
3551 if (kasan_slab_free(cachep, objp))
3552 return;
3553
3554 ___cache_free(cachep, objp, caller);
3555}
1da177e4 3556
55834c59
AP
3557void ___cache_free(struct kmem_cache *cachep, void *objp,
3558 unsigned long caller)
3559{
3560 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3561
1da177e4 3562 check_irq_off();
d5cff635 3563 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3564 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3565
8c138bc0 3566 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3567
1807a1aa
SS
3568 /*
3569 * Skip calling cache_free_alien() when the platform is not numa.
3570 * This will avoid cache misses that happen while accessing slabp (which
3571 * is per page memory reference) to get nodeid. Instead use a global
3572 * variable to skip the call, which is mostly likely to be present in
3573 * the cache.
3574 */
b6e68bc1 3575 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3576 return;
3577
3d880194 3578 if (ac->avail < ac->limit) {
1da177e4 3579 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3580 } else {
3581 STATS_INC_FREEMISS(cachep);
3582 cache_flusharray(cachep, ac);
1da177e4 3583 }
42c8c99c 3584
f68f8ddd
JK
3585 if (sk_memalloc_socks()) {
3586 struct page *page = virt_to_head_page(objp);
3587
3588 if (unlikely(PageSlabPfmemalloc(page))) {
3589 cache_free_pfmemalloc(cachep, page, objp);
3590 return;
3591 }
3592 }
3593
3594 ac->entry[ac->avail++] = objp;
1da177e4
LT
3595}
3596
3597/**
3598 * kmem_cache_alloc - Allocate an object
3599 * @cachep: The cache to allocate from.
3600 * @flags: See kmalloc().
3601 *
3602 * Allocate an object from this cache. The flags are only relevant
3603 * if the cache has no available objects.
3604 */
343e0d7a 3605void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3606{
48356303 3607 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3608
505f5dcb 3609 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3610 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3611 cachep->object_size, cachep->size, flags);
36555751
EGM
3612
3613 return ret;
1da177e4
LT
3614}
3615EXPORT_SYMBOL(kmem_cache_alloc);
3616
7b0501dd
JDB
3617static __always_inline void
3618cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3619 size_t size, void **p, unsigned long caller)
3620{
3621 size_t i;
3622
3623 for (i = 0; i < size; i++)
3624 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3625}
3626
865762a8 3627int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3628 void **p)
484748f0 3629{
2a777eac
JDB
3630 size_t i;
3631
3632 s = slab_pre_alloc_hook(s, flags);
3633 if (!s)
3634 return 0;
3635
3636 cache_alloc_debugcheck_before(s, flags);
3637
3638 local_irq_disable();
3639 for (i = 0; i < size; i++) {
3640 void *objp = __do_cache_alloc(s, flags);
3641
2a777eac
JDB
3642 if (unlikely(!objp))
3643 goto error;
3644 p[i] = objp;
3645 }
3646 local_irq_enable();
3647
7b0501dd
JDB
3648 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3649
2a777eac
JDB
3650 /* Clear memory outside IRQ disabled section */
3651 if (unlikely(flags & __GFP_ZERO))
3652 for (i = 0; i < size; i++)
3653 memset(p[i], 0, s->object_size);
3654
3655 slab_post_alloc_hook(s, flags, size, p);
3656 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3657 return size;
3658error:
3659 local_irq_enable();
7b0501dd 3660 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3661 slab_post_alloc_hook(s, flags, i, p);
3662 __kmem_cache_free_bulk(s, i, p);
3663 return 0;
484748f0
CL
3664}
3665EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3666
0f24f128 3667#ifdef CONFIG_TRACING
85beb586 3668void *
4052147c 3669kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3670{
85beb586
SR
3671 void *ret;
3672
48356303 3673 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3674
505f5dcb 3675 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3676 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3677 size, cachep->size, flags);
85beb586 3678 return ret;
36555751 3679}
85beb586 3680EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3681#endif
3682
1da177e4 3683#ifdef CONFIG_NUMA
d0d04b78
ZL
3684/**
3685 * kmem_cache_alloc_node - Allocate an object on the specified node
3686 * @cachep: The cache to allocate from.
3687 * @flags: See kmalloc().
3688 * @nodeid: node number of the target node.
3689 *
3690 * Identical to kmem_cache_alloc but it will allocate memory on the given
3691 * node, which can improve the performance for cpu bound structures.
3692 *
3693 * Fallback to other node is possible if __GFP_THISNODE is not set.
3694 */
8b98c169
CH
3695void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3696{
48356303 3697 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3698
505f5dcb 3699 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3700 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3701 cachep->object_size, cachep->size,
ca2b84cb 3702 flags, nodeid);
36555751
EGM
3703
3704 return ret;
8b98c169 3705}
1da177e4
LT
3706EXPORT_SYMBOL(kmem_cache_alloc_node);
3707
0f24f128 3708#ifdef CONFIG_TRACING
4052147c 3709void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3710 gfp_t flags,
4052147c
EG
3711 int nodeid,
3712 size_t size)
36555751 3713{
85beb586
SR
3714 void *ret;
3715
592f4145 3716 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3717
3718 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3719 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3720 size, cachep->size,
85beb586
SR
3721 flags, nodeid);
3722 return ret;
36555751 3723}
85beb586 3724EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3725#endif
3726
8b98c169 3727static __always_inline void *
7c0cb9c6 3728__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3729{
343e0d7a 3730 struct kmem_cache *cachep;
7ed2f9e6 3731 void *ret;
97e2bde4 3732
2c59dd65 3733 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3734 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3735 return cachep;
7ed2f9e6 3736 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3737 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3738
3739 return ret;
97e2bde4 3740}
8b98c169 3741
8b98c169
CH
3742void *__kmalloc_node(size_t size, gfp_t flags, int node)
3743{
7c0cb9c6 3744 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3745}
dbe5e69d 3746EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3747
3748void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3749 int node, unsigned long caller)
8b98c169 3750{
7c0cb9c6 3751 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3752}
3753EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3754#endif /* CONFIG_NUMA */
1da177e4
LT
3755
3756/**
800590f5 3757 * __do_kmalloc - allocate memory
1da177e4 3758 * @size: how many bytes of memory are required.
800590f5 3759 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3760 * @caller: function caller for debug tracking of the caller
1da177e4 3761 */
7fd6b141 3762static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3763 unsigned long caller)
1da177e4 3764{
343e0d7a 3765 struct kmem_cache *cachep;
36555751 3766 void *ret;
1da177e4 3767
2c59dd65 3768 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3769 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3770 return cachep;
48356303 3771 ret = slab_alloc(cachep, flags, caller);
36555751 3772
505f5dcb 3773 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3774 trace_kmalloc(caller, ret,
3b0efdfa 3775 size, cachep->size, flags);
36555751
EGM
3776
3777 return ret;
7fd6b141
PE
3778}
3779
7fd6b141
PE
3780void *__kmalloc(size_t size, gfp_t flags)
3781{
7c0cb9c6 3782 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3783}
3784EXPORT_SYMBOL(__kmalloc);
3785
ce71e27c 3786void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3787{
7c0cb9c6 3788 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3789}
3790EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3791
1da177e4
LT
3792/**
3793 * kmem_cache_free - Deallocate an object
3794 * @cachep: The cache the allocation was from.
3795 * @objp: The previously allocated object.
3796 *
3797 * Free an object which was previously allocated from this
3798 * cache.
3799 */
343e0d7a 3800void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3801{
3802 unsigned long flags;
b9ce5ef4
GC
3803 cachep = cache_from_obj(cachep, objp);
3804 if (!cachep)
3805 return;
1da177e4
LT
3806
3807 local_irq_save(flags);
d97d476b 3808 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3809 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3810 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3811 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3812 local_irq_restore(flags);
36555751 3813
ca2b84cb 3814 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3815}
3816EXPORT_SYMBOL(kmem_cache_free);
3817
e6cdb58d
JDB
3818void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3819{
3820 struct kmem_cache *s;
3821 size_t i;
3822
3823 local_irq_disable();
3824 for (i = 0; i < size; i++) {
3825 void *objp = p[i];
3826
ca257195
JDB
3827 if (!orig_s) /* called via kfree_bulk */
3828 s = virt_to_cache(objp);
3829 else
3830 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3831
3832 debug_check_no_locks_freed(objp, s->object_size);
3833 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3834 debug_check_no_obj_freed(objp, s->object_size);
3835
3836 __cache_free(s, objp, _RET_IP_);
3837 }
3838 local_irq_enable();
3839
3840 /* FIXME: add tracing */
3841}
3842EXPORT_SYMBOL(kmem_cache_free_bulk);
3843
1da177e4
LT
3844/**
3845 * kfree - free previously allocated memory
3846 * @objp: pointer returned by kmalloc.
3847 *
80e93eff
PE
3848 * If @objp is NULL, no operation is performed.
3849 *
1da177e4
LT
3850 * Don't free memory not originally allocated by kmalloc()
3851 * or you will run into trouble.
3852 */
3853void kfree(const void *objp)
3854{
343e0d7a 3855 struct kmem_cache *c;
1da177e4
LT
3856 unsigned long flags;
3857
2121db74
PE
3858 trace_kfree(_RET_IP_, objp);
3859
6cb8f913 3860 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3861 return;
3862 local_irq_save(flags);
3863 kfree_debugcheck(objp);
6ed5eb22 3864 c = virt_to_cache(objp);
8c138bc0
CL
3865 debug_check_no_locks_freed(objp, c->object_size);
3866
3867 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3868 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3869 local_irq_restore(flags);
3870}
3871EXPORT_SYMBOL(kfree);
3872
e498be7d 3873/*
ce8eb6c4 3874 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3875 */
c3d332b6 3876static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3877{
c3d332b6 3878 int ret;
e498be7d 3879 int node;
ce8eb6c4 3880 struct kmem_cache_node *n;
e498be7d 3881
9c09a95c 3882 for_each_online_node(node) {
c3d332b6
JK
3883 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3884 if (ret)
e498be7d
CL
3885 goto fail;
3886
e498be7d 3887 }
c3d332b6 3888
cafeb02e 3889 return 0;
0718dc2a 3890
a737b3e2 3891fail:
3b0efdfa 3892 if (!cachep->list.next) {
0718dc2a
CL
3893 /* Cache is not active yet. Roll back what we did */
3894 node--;
3895 while (node >= 0) {
18bf8541
CL
3896 n = get_node(cachep, node);
3897 if (n) {
ce8eb6c4
CL
3898 kfree(n->shared);
3899 free_alien_cache(n->alien);
3900 kfree(n);
6a67368c 3901 cachep->node[node] = NULL;
0718dc2a
CL
3902 }
3903 node--;
3904 }
3905 }
cafeb02e 3906 return -ENOMEM;
e498be7d
CL
3907}
3908
18004c5d 3909/* Always called with the slab_mutex held */
943a451a 3910static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3911 int batchcount, int shared, gfp_t gfp)
1da177e4 3912{
bf0dea23
JK
3913 struct array_cache __percpu *cpu_cache, *prev;
3914 int cpu;
1da177e4 3915
bf0dea23
JK
3916 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3917 if (!cpu_cache)
d2e7b7d0
SS
3918 return -ENOMEM;
3919
bf0dea23
JK
3920 prev = cachep->cpu_cache;
3921 cachep->cpu_cache = cpu_cache;
3922 kick_all_cpus_sync();
e498be7d 3923
1da177e4 3924 check_irq_on();
1da177e4
LT
3925 cachep->batchcount = batchcount;
3926 cachep->limit = limit;
e498be7d 3927 cachep->shared = shared;
1da177e4 3928
bf0dea23 3929 if (!prev)
c3d332b6 3930 goto setup_node;
bf0dea23
JK
3931
3932 for_each_online_cpu(cpu) {
97654dfa 3933 LIST_HEAD(list);
18bf8541
CL
3934 int node;
3935 struct kmem_cache_node *n;
bf0dea23 3936 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3937
bf0dea23 3938 node = cpu_to_mem(cpu);
18bf8541
CL
3939 n = get_node(cachep, node);
3940 spin_lock_irq(&n->list_lock);
bf0dea23 3941 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3942 spin_unlock_irq(&n->list_lock);
97654dfa 3943 slabs_destroy(cachep, &list);
1da177e4 3944 }
bf0dea23
JK
3945 free_percpu(prev);
3946
c3d332b6
JK
3947setup_node:
3948 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3949}
3950
943a451a
GC
3951static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3952 int batchcount, int shared, gfp_t gfp)
3953{
3954 int ret;
426589f5 3955 struct kmem_cache *c;
943a451a
GC
3956
3957 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3958
3959 if (slab_state < FULL)
3960 return ret;
3961
3962 if ((ret < 0) || !is_root_cache(cachep))
3963 return ret;
3964
426589f5
VD
3965 lockdep_assert_held(&slab_mutex);
3966 for_each_memcg_cache(c, cachep) {
3967 /* return value determined by the root cache only */
3968 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3969 }
3970
3971 return ret;
3972}
3973
18004c5d 3974/* Called with slab_mutex held always */
83b519e8 3975static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3976{
3977 int err;
943a451a
GC
3978 int limit = 0;
3979 int shared = 0;
3980 int batchcount = 0;
3981
c7ce4f60
TG
3982 err = cache_random_seq_create(cachep, gfp);
3983 if (err)
3984 goto end;
3985
943a451a
GC
3986 if (!is_root_cache(cachep)) {
3987 struct kmem_cache *root = memcg_root_cache(cachep);
3988 limit = root->limit;
3989 shared = root->shared;
3990 batchcount = root->batchcount;
3991 }
1da177e4 3992
943a451a
GC
3993 if (limit && shared && batchcount)
3994 goto skip_setup;
a737b3e2
AM
3995 /*
3996 * The head array serves three purposes:
1da177e4
LT
3997 * - create a LIFO ordering, i.e. return objects that are cache-warm
3998 * - reduce the number of spinlock operations.
a737b3e2 3999 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4000 * bufctl chains: array operations are cheaper.
4001 * The numbers are guessed, we should auto-tune as described by
4002 * Bonwick.
4003 */
3b0efdfa 4004 if (cachep->size > 131072)
1da177e4 4005 limit = 1;
3b0efdfa 4006 else if (cachep->size > PAGE_SIZE)
1da177e4 4007 limit = 8;
3b0efdfa 4008 else if (cachep->size > 1024)
1da177e4 4009 limit = 24;
3b0efdfa 4010 else if (cachep->size > 256)
1da177e4
LT
4011 limit = 54;
4012 else
4013 limit = 120;
4014
a737b3e2
AM
4015 /*
4016 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4017 * allocation behaviour: Most allocs on one cpu, most free operations
4018 * on another cpu. For these cases, an efficient object passing between
4019 * cpus is necessary. This is provided by a shared array. The array
4020 * replaces Bonwick's magazine layer.
4021 * On uniprocessor, it's functionally equivalent (but less efficient)
4022 * to a larger limit. Thus disabled by default.
4023 */
4024 shared = 0;
3b0efdfa 4025 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4026 shared = 8;
1da177e4
LT
4027
4028#if DEBUG
a737b3e2
AM
4029 /*
4030 * With debugging enabled, large batchcount lead to excessively long
4031 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4032 */
4033 if (limit > 32)
4034 limit = 32;
4035#endif
943a451a
GC
4036 batchcount = (limit + 1) / 2;
4037skip_setup:
4038 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 4039end:
1da177e4 4040 if (err)
1170532b 4041 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 4042 cachep->name, -err);
2ed3a4ef 4043 return err;
1da177e4
LT
4044}
4045
1b55253a 4046/*
ce8eb6c4
CL
4047 * Drain an array if it contains any elements taking the node lock only if
4048 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 4049 * if drain_array() is used on the shared array.
1b55253a 4050 */
ce8eb6c4 4051static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 4052 struct array_cache *ac, int node)
1da177e4 4053{
97654dfa 4054 LIST_HEAD(list);
18726ca8
JK
4055
4056 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4057 check_mutex_acquired();
1da177e4 4058
1b55253a
CL
4059 if (!ac || !ac->avail)
4060 return;
18726ca8
JK
4061
4062 if (ac->touched) {
1da177e4 4063 ac->touched = 0;
18726ca8 4064 return;
1da177e4 4065 }
18726ca8
JK
4066
4067 spin_lock_irq(&n->list_lock);
4068 drain_array_locked(cachep, ac, node, false, &list);
4069 spin_unlock_irq(&n->list_lock);
4070
4071 slabs_destroy(cachep, &list);
1da177e4
LT
4072}
4073
4074/**
4075 * cache_reap - Reclaim memory from caches.
05fb6bf0 4076 * @w: work descriptor
1da177e4
LT
4077 *
4078 * Called from workqueue/eventd every few seconds.
4079 * Purpose:
4080 * - clear the per-cpu caches for this CPU.
4081 * - return freeable pages to the main free memory pool.
4082 *
a737b3e2
AM
4083 * If we cannot acquire the cache chain mutex then just give up - we'll try
4084 * again on the next iteration.
1da177e4 4085 */
7c5cae36 4086static void cache_reap(struct work_struct *w)
1da177e4 4087{
7a7c381d 4088 struct kmem_cache *searchp;
ce8eb6c4 4089 struct kmem_cache_node *n;
7d6e6d09 4090 int node = numa_mem_id();
bf6aede7 4091 struct delayed_work *work = to_delayed_work(w);
1da177e4 4092
18004c5d 4093 if (!mutex_trylock(&slab_mutex))
1da177e4 4094 /* Give up. Setup the next iteration. */
7c5cae36 4095 goto out;
1da177e4 4096
18004c5d 4097 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4098 check_irq_on();
4099
35386e3b 4100 /*
ce8eb6c4 4101 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4102 * have established with reasonable certainty that
4103 * we can do some work if the lock was obtained.
4104 */
18bf8541 4105 n = get_node(searchp, node);
35386e3b 4106
ce8eb6c4 4107 reap_alien(searchp, n);
1da177e4 4108
18726ca8 4109 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4110
35386e3b
CL
4111 /*
4112 * These are racy checks but it does not matter
4113 * if we skip one check or scan twice.
4114 */
ce8eb6c4 4115 if (time_after(n->next_reap, jiffies))
35386e3b 4116 goto next;
1da177e4 4117
5f0985bb 4118 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4119
18726ca8 4120 drain_array(searchp, n, n->shared, node);
1da177e4 4121
ce8eb6c4
CL
4122 if (n->free_touched)
4123 n->free_touched = 0;
ed11d9eb
CL
4124 else {
4125 int freed;
1da177e4 4126
ce8eb6c4 4127 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4128 5 * searchp->num - 1) / (5 * searchp->num));
4129 STATS_ADD_REAPED(searchp, freed);
4130 }
35386e3b 4131next:
1da177e4
LT
4132 cond_resched();
4133 }
4134 check_irq_on();
18004c5d 4135 mutex_unlock(&slab_mutex);
8fce4d8e 4136 next_reap_node();
7c5cae36 4137out:
a737b3e2 4138 /* Set up the next iteration */
5f0985bb 4139 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4140}
4141
158a9624 4142#ifdef CONFIG_SLABINFO
0d7561c6 4143void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4144{
8456a648 4145 struct page *page;
b28a02de
PE
4146 unsigned long active_objs;
4147 unsigned long num_objs;
4148 unsigned long active_slabs = 0;
4149 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4150 const char *name;
1da177e4 4151 char *error = NULL;
e498be7d 4152 int node;
ce8eb6c4 4153 struct kmem_cache_node *n;
1da177e4 4154
1da177e4
LT
4155 active_objs = 0;
4156 num_slabs = 0;
18bf8541 4157 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 4158
ca3b9b91 4159 check_irq_on();
ce8eb6c4 4160 spin_lock_irq(&n->list_lock);
e498be7d 4161
8456a648
JK
4162 list_for_each_entry(page, &n->slabs_full, lru) {
4163 if (page->active != cachep->num && !error)
e498be7d
CL
4164 error = "slabs_full accounting error";
4165 active_objs += cachep->num;
4166 active_slabs++;
4167 }
8456a648
JK
4168 list_for_each_entry(page, &n->slabs_partial, lru) {
4169 if (page->active == cachep->num && !error)
106a74e1 4170 error = "slabs_partial accounting error";
8456a648 4171 if (!page->active && !error)
106a74e1 4172 error = "slabs_partial accounting error";
8456a648 4173 active_objs += page->active;
e498be7d
CL
4174 active_slabs++;
4175 }
8456a648
JK
4176 list_for_each_entry(page, &n->slabs_free, lru) {
4177 if (page->active && !error)
106a74e1 4178 error = "slabs_free accounting error";
e498be7d
CL
4179 num_slabs++;
4180 }
ce8eb6c4
CL
4181 free_objects += n->free_objects;
4182 if (n->shared)
4183 shared_avail += n->shared->avail;
e498be7d 4184
ce8eb6c4 4185 spin_unlock_irq(&n->list_lock);
1da177e4 4186 }
b28a02de
PE
4187 num_slabs += active_slabs;
4188 num_objs = num_slabs * cachep->num;
e498be7d 4189 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4190 error = "free_objects accounting error";
4191
b28a02de 4192 name = cachep->name;
1da177e4 4193 if (error)
1170532b 4194 pr_err("slab: cache %s error: %s\n", name, error);
1da177e4 4195
0d7561c6
GC
4196 sinfo->active_objs = active_objs;
4197 sinfo->num_objs = num_objs;
4198 sinfo->active_slabs = active_slabs;
4199 sinfo->num_slabs = num_slabs;
4200 sinfo->shared_avail = shared_avail;
4201 sinfo->limit = cachep->limit;
4202 sinfo->batchcount = cachep->batchcount;
4203 sinfo->shared = cachep->shared;
4204 sinfo->objects_per_slab = cachep->num;
4205 sinfo->cache_order = cachep->gfporder;
4206}
4207
4208void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4209{
1da177e4 4210#if STATS
ce8eb6c4 4211 { /* node stats */
1da177e4
LT
4212 unsigned long high = cachep->high_mark;
4213 unsigned long allocs = cachep->num_allocations;
4214 unsigned long grown = cachep->grown;
4215 unsigned long reaped = cachep->reaped;
4216 unsigned long errors = cachep->errors;
4217 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4218 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4219 unsigned long node_frees = cachep->node_frees;
fb7faf33 4220 unsigned long overflows = cachep->node_overflow;
1da177e4 4221
756a025f 4222 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4223 allocs, high, grown,
4224 reaped, errors, max_freeable, node_allocs,
4225 node_frees, overflows);
1da177e4
LT
4226 }
4227 /* cpu stats */
4228 {
4229 unsigned long allochit = atomic_read(&cachep->allochit);
4230 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4231 unsigned long freehit = atomic_read(&cachep->freehit);
4232 unsigned long freemiss = atomic_read(&cachep->freemiss);
4233
4234 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4235 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4236 }
4237#endif
1da177e4
LT
4238}
4239
1da177e4
LT
4240#define MAX_SLABINFO_WRITE 128
4241/**
4242 * slabinfo_write - Tuning for the slab allocator
4243 * @file: unused
4244 * @buffer: user buffer
4245 * @count: data length
4246 * @ppos: unused
4247 */
b7454ad3 4248ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4249 size_t count, loff_t *ppos)
1da177e4 4250{
b28a02de 4251 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4252 int limit, batchcount, shared, res;
7a7c381d 4253 struct kmem_cache *cachep;
b28a02de 4254
1da177e4
LT
4255 if (count > MAX_SLABINFO_WRITE)
4256 return -EINVAL;
4257 if (copy_from_user(&kbuf, buffer, count))
4258 return -EFAULT;
b28a02de 4259 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4260
4261 tmp = strchr(kbuf, ' ');
4262 if (!tmp)
4263 return -EINVAL;
4264 *tmp = '\0';
4265 tmp++;
4266 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4267 return -EINVAL;
4268
4269 /* Find the cache in the chain of caches. */
18004c5d 4270 mutex_lock(&slab_mutex);
1da177e4 4271 res = -EINVAL;
18004c5d 4272 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4273 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4274 if (limit < 1 || batchcount < 1 ||
4275 batchcount > limit || shared < 0) {
e498be7d 4276 res = 0;
1da177e4 4277 } else {
e498be7d 4278 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4279 batchcount, shared,
4280 GFP_KERNEL);
1da177e4
LT
4281 }
4282 break;
4283 }
4284 }
18004c5d 4285 mutex_unlock(&slab_mutex);
1da177e4
LT
4286 if (res >= 0)
4287 res = count;
4288 return res;
4289}
871751e2
AV
4290
4291#ifdef CONFIG_DEBUG_SLAB_LEAK
4292
871751e2
AV
4293static inline int add_caller(unsigned long *n, unsigned long v)
4294{
4295 unsigned long *p;
4296 int l;
4297 if (!v)
4298 return 1;
4299 l = n[1];
4300 p = n + 2;
4301 while (l) {
4302 int i = l/2;
4303 unsigned long *q = p + 2 * i;
4304 if (*q == v) {
4305 q[1]++;
4306 return 1;
4307 }
4308 if (*q > v) {
4309 l = i;
4310 } else {
4311 p = q + 2;
4312 l -= i + 1;
4313 }
4314 }
4315 if (++n[1] == n[0])
4316 return 0;
4317 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4318 p[0] = v;
4319 p[1] = 1;
4320 return 1;
4321}
4322
8456a648
JK
4323static void handle_slab(unsigned long *n, struct kmem_cache *c,
4324 struct page *page)
871751e2
AV
4325{
4326 void *p;
d31676df
JK
4327 int i, j;
4328 unsigned long v;
b1cb0982 4329
871751e2
AV
4330 if (n[0] == n[1])
4331 return;
8456a648 4332 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4333 bool active = true;
4334
4335 for (j = page->active; j < c->num; j++) {
4336 if (get_free_obj(page, j) == i) {
4337 active = false;
4338 break;
4339 }
4340 }
4341
4342 if (!active)
871751e2 4343 continue;
b1cb0982 4344
d31676df
JK
4345 /*
4346 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4347 * mapping is established when actual object allocation and
4348 * we could mistakenly access the unmapped object in the cpu
4349 * cache.
4350 */
4351 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4352 continue;
4353
4354 if (!add_caller(n, v))
871751e2
AV
4355 return;
4356 }
4357}
4358
4359static void show_symbol(struct seq_file *m, unsigned long address)
4360{
4361#ifdef CONFIG_KALLSYMS
871751e2 4362 unsigned long offset, size;
9281acea 4363 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4364
a5c43dae 4365 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4366 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4367 if (modname[0])
871751e2
AV
4368 seq_printf(m, " [%s]", modname);
4369 return;
4370 }
4371#endif
4372 seq_printf(m, "%p", (void *)address);
4373}
4374
4375static int leaks_show(struct seq_file *m, void *p)
4376{
0672aa7c 4377 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4378 struct page *page;
ce8eb6c4 4379 struct kmem_cache_node *n;
871751e2 4380 const char *name;
db845067 4381 unsigned long *x = m->private;
871751e2
AV
4382 int node;
4383 int i;
4384
4385 if (!(cachep->flags & SLAB_STORE_USER))
4386 return 0;
4387 if (!(cachep->flags & SLAB_RED_ZONE))
4388 return 0;
4389
d31676df
JK
4390 /*
4391 * Set store_user_clean and start to grab stored user information
4392 * for all objects on this cache. If some alloc/free requests comes
4393 * during the processing, information would be wrong so restart
4394 * whole processing.
4395 */
4396 do {
4397 set_store_user_clean(cachep);
4398 drain_cpu_caches(cachep);
4399
4400 x[1] = 0;
871751e2 4401
d31676df 4402 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4403
d31676df
JK
4404 check_irq_on();
4405 spin_lock_irq(&n->list_lock);
871751e2 4406
d31676df
JK
4407 list_for_each_entry(page, &n->slabs_full, lru)
4408 handle_slab(x, cachep, page);
4409 list_for_each_entry(page, &n->slabs_partial, lru)
4410 handle_slab(x, cachep, page);
4411 spin_unlock_irq(&n->list_lock);
4412 }
4413 } while (!is_store_user_clean(cachep));
871751e2 4414
871751e2 4415 name = cachep->name;
db845067 4416 if (x[0] == x[1]) {
871751e2 4417 /* Increase the buffer size */
18004c5d 4418 mutex_unlock(&slab_mutex);
db845067 4419 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4420 if (!m->private) {
4421 /* Too bad, we are really out */
db845067 4422 m->private = x;
18004c5d 4423 mutex_lock(&slab_mutex);
871751e2
AV
4424 return -ENOMEM;
4425 }
db845067
CL
4426 *(unsigned long *)m->private = x[0] * 2;
4427 kfree(x);
18004c5d 4428 mutex_lock(&slab_mutex);
871751e2
AV
4429 /* Now make sure this entry will be retried */
4430 m->count = m->size;
4431 return 0;
4432 }
db845067
CL
4433 for (i = 0; i < x[1]; i++) {
4434 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4435 show_symbol(m, x[2*i+2]);
871751e2
AV
4436 seq_putc(m, '\n');
4437 }
d2e7b7d0 4438
871751e2
AV
4439 return 0;
4440}
4441
a0ec95a8 4442static const struct seq_operations slabstats_op = {
1df3b26f 4443 .start = slab_start,
276a2439
WL
4444 .next = slab_next,
4445 .stop = slab_stop,
871751e2
AV
4446 .show = leaks_show,
4447};
a0ec95a8
AD
4448
4449static int slabstats_open(struct inode *inode, struct file *file)
4450{
b208ce32
RJ
4451 unsigned long *n;
4452
4453 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4454 if (!n)
4455 return -ENOMEM;
4456
4457 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4458
4459 return 0;
a0ec95a8
AD
4460}
4461
4462static const struct file_operations proc_slabstats_operations = {
4463 .open = slabstats_open,
4464 .read = seq_read,
4465 .llseek = seq_lseek,
4466 .release = seq_release_private,
4467};
4468#endif
4469
4470static int __init slab_proc_init(void)
4471{
4472#ifdef CONFIG_DEBUG_SLAB_LEAK
4473 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4474#endif
a0ec95a8
AD
4475 return 0;
4476}
4477module_init(slab_proc_init);
1da177e4
LT
4478#endif
4479
00e145b6
MS
4480/**
4481 * ksize - get the actual amount of memory allocated for a given object
4482 * @objp: Pointer to the object
4483 *
4484 * kmalloc may internally round up allocations and return more memory
4485 * than requested. ksize() can be used to determine the actual amount of
4486 * memory allocated. The caller may use this additional memory, even though
4487 * a smaller amount of memory was initially specified with the kmalloc call.
4488 * The caller must guarantee that objp points to a valid object previously
4489 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4490 * must not be freed during the duration of the call.
4491 */
fd76bab2 4492size_t ksize(const void *objp)
1da177e4 4493{
7ed2f9e6
AP
4494 size_t size;
4495
ef8b4520
CL
4496 BUG_ON(!objp);
4497 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4498 return 0;
1da177e4 4499
7ed2f9e6
AP
4500 size = virt_to_cache(objp)->object_size;
4501 /* We assume that ksize callers could use the whole allocated area,
4502 * so we need to unpoison this area.
4503 */
4ebb31a4 4504 kasan_unpoison_shadow(objp, size);
7ed2f9e6
AP
4505
4506 return size;
1da177e4 4507}
b1aabecd 4508EXPORT_SYMBOL(ksize);