zap_other_threads: remove unneeded ->exit_signal change
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
138ae663 106#include <linux/uaccess.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
8a8b6502 110#include <linux/fault-inject.h>
e7eebaf6 111#include <linux/rtmutex.h>
6a2d7a95 112#include <linux/reciprocal_div.h>
1da177e4 113
1da177e4
LT
114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
50953fe9 119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
151 * alignment larger than the alignment of a 64-bit integer.
152 * ARCH_KMALLOC_MINALIGN allows that.
153 * Note that increasing this value may disable some debug features.
1da177e4 154 */
b46b8f19 155#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
156#endif
157
158#ifndef ARCH_SLAB_MINALIGN
159/*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166#define ARCH_SLAB_MINALIGN 0
167#endif
168
169#ifndef ARCH_KMALLOC_FLAGS
170#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171#endif
172
173/* Legal flag mask for kmem_cache_create(). */
174#if DEBUG
50953fe9 175# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 177 SLAB_CACHE_DMA | \
5af60839 178 SLAB_STORE_USER | \
1da177e4 179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 181#else
ac2b898c 182# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 183 SLAB_CACHE_DMA | \
1da177e4 184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
186#endif
187
188/*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
fa5b08d5 207typedef unsigned int kmem_bufctl_t;
1da177e4
LT
208#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
210#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 212
1da177e4
LT
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
b28a02de
PE
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
1da177e4
LT
227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
b28a02de 246 struct rcu_head head;
343e0d7a 247 struct kmem_cache *cachep;
b28a02de 248 void *addr;
1da177e4
LT
249};
250
251/*
252 * struct array_cache
253 *
1da177e4
LT
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
e498be7d 268 spinlock_t lock;
a737b3e2
AM
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
1da177e4
LT
275};
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
287/*
e498be7d 288 * The slab lists for all objects.
1da177e4
LT
289 */
290struct kmem_list3 {
b28a02de
PE
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
b28a02de 295 unsigned int free_limit;
2e1217cf 296 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
35386e3b
CL
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
1da177e4
LT
302};
303
e498be7d
CL
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
312
ed11d9eb
CL
313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
2ed3a4ef 317static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 318static void cache_reap(struct work_struct *unused);
ed11d9eb 319
e498be7d 320/*
a737b3e2
AM
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 323 */
7243cc05 324static __always_inline int index_of(const size_t size)
e498be7d 325{
5ec8a847
SR
326 extern void __bad_size(void);
327
e498be7d
CL
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336#include "linux/kmalloc_sizes.h"
337#undef CACHE
5ec8a847 338 __bad_size();
7243cc05 339 } else
5ec8a847 340 __bad_size();
e498be7d
CL
341 return 0;
342}
343
e0a42726
IM
344static int slab_early_init = 1;
345
e498be7d
CL
346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 348
5295a74c 349static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
2e1217cf 356 parent->colour_next = 0;
e498be7d
CL
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
a737b3e2
AM
362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
366 } while (0)
367
a737b3e2
AM
368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
e498be7d
CL
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
1da177e4
LT
374
375/*
343e0d7a 376 * struct kmem_cache
1da177e4
LT
377 *
378 * manages a cache.
379 */
b28a02de 380
2109a2d1 381struct kmem_cache {
1da177e4 382/* 1) per-cpu data, touched during every alloc/free */
b28a02de 383 struct array_cache *array[NR_CPUS];
b5d8ca7c 384/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
b5d8ca7c 388
3dafccf2 389 unsigned int buffer_size;
6a2d7a95 390 u32 reciprocal_buffer_size;
b5d8ca7c 391/* 3) touched by every alloc & free from the backend */
b5d8ca7c 392
a737b3e2
AM
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
1da177e4 395
b5d8ca7c 396/* 4) cache_grow/shrink */
1da177e4 397 /* order of pgs per slab (2^n) */
b28a02de 398 unsigned int gfporder;
1da177e4
LT
399
400 /* force GFP flags, e.g. GFP_DMA */
b28a02de 401 gfp_t gfpflags;
1da177e4 402
a737b3e2 403 size_t colour; /* cache colouring range */
b28a02de 404 unsigned int colour_off; /* colour offset */
343e0d7a 405 struct kmem_cache *slabp_cache;
b28a02de 406 unsigned int slab_size;
a737b3e2 407 unsigned int dflags; /* dynamic flags */
1da177e4
LT
408
409 /* constructor func */
343e0d7a 410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
411
412 /* de-constructor func */
343e0d7a 413 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 414
b5d8ca7c 415/* 5) cache creation/removal */
b28a02de
PE
416 const char *name;
417 struct list_head next;
1da177e4 418
b5d8ca7c 419/* 6) statistics */
1da177e4 420#if STATS
b28a02de
PE
421 unsigned long num_active;
422 unsigned long num_allocations;
423 unsigned long high_mark;
424 unsigned long grown;
425 unsigned long reaped;
426 unsigned long errors;
427 unsigned long max_freeable;
428 unsigned long node_allocs;
429 unsigned long node_frees;
fb7faf33 430 unsigned long node_overflow;
b28a02de
PE
431 atomic_t allochit;
432 atomic_t allocmiss;
433 atomic_t freehit;
434 atomic_t freemiss;
1da177e4
LT
435#endif
436#if DEBUG
3dafccf2
MS
437 /*
438 * If debugging is enabled, then the allocator can add additional
439 * fields and/or padding to every object. buffer_size contains the total
440 * object size including these internal fields, the following two
441 * variables contain the offset to the user object and its size.
442 */
443 int obj_offset;
444 int obj_size;
1da177e4 445#endif
8da3430d
ED
446 /*
447 * We put nodelists[] at the end of kmem_cache, because we want to size
448 * this array to nr_node_ids slots instead of MAX_NUMNODES
449 * (see kmem_cache_init())
450 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
451 * is statically defined, so we reserve the max number of nodes.
452 */
453 struct kmem_list3 *nodelists[MAX_NUMNODES];
454 /*
455 * Do not add fields after nodelists[]
456 */
1da177e4
LT
457};
458
459#define CFLGS_OFF_SLAB (0x80000000UL)
460#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
461
462#define BATCHREFILL_LIMIT 16
a737b3e2
AM
463/*
464 * Optimization question: fewer reaps means less probability for unnessary
465 * cpucache drain/refill cycles.
1da177e4 466 *
dc6f3f27 467 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
468 * which could lock up otherwise freeable slabs.
469 */
470#define REAPTIMEOUT_CPUC (2*HZ)
471#define REAPTIMEOUT_LIST3 (4*HZ)
472
473#if STATS
474#define STATS_INC_ACTIVE(x) ((x)->num_active++)
475#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
476#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
477#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 478#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
479#define STATS_SET_HIGH(x) \
480 do { \
481 if ((x)->num_active > (x)->high_mark) \
482 (x)->high_mark = (x)->num_active; \
483 } while (0)
1da177e4
LT
484#define STATS_INC_ERR(x) ((x)->errors++)
485#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 486#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 487#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
488#define STATS_SET_FREEABLE(x, i) \
489 do { \
490 if ((x)->max_freeable < i) \
491 (x)->max_freeable = i; \
492 } while (0)
1da177e4
LT
493#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
494#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
495#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
496#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
497#else
498#define STATS_INC_ACTIVE(x) do { } while (0)
499#define STATS_DEC_ACTIVE(x) do { } while (0)
500#define STATS_INC_ALLOCED(x) do { } while (0)
501#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 502#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
503#define STATS_SET_HIGH(x) do { } while (0)
504#define STATS_INC_ERR(x) do { } while (0)
505#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 506#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 507#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 508#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
509#define STATS_INC_ALLOCHIT(x) do { } while (0)
510#define STATS_INC_ALLOCMISS(x) do { } while (0)
511#define STATS_INC_FREEHIT(x) do { } while (0)
512#define STATS_INC_FREEMISS(x) do { } while (0)
513#endif
514
515#if DEBUG
1da177e4 516
a737b3e2
AM
517/*
518 * memory layout of objects:
1da177e4 519 * 0 : objp
3dafccf2 520 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
521 * the end of an object is aligned with the end of the real
522 * allocation. Catches writes behind the end of the allocation.
3dafccf2 523 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 524 * redzone word.
3dafccf2
MS
525 * cachep->obj_offset: The real object.
526 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
527 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
528 * [BYTES_PER_WORD long]
1da177e4 529 */
343e0d7a 530static int obj_offset(struct kmem_cache *cachep)
1da177e4 531{
3dafccf2 532 return cachep->obj_offset;
1da177e4
LT
533}
534
343e0d7a 535static int obj_size(struct kmem_cache *cachep)
1da177e4 536{
3dafccf2 537 return cachep->obj_size;
1da177e4
LT
538}
539
b46b8f19 540static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
541{
542 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
543 return (unsigned long long*) (objp + obj_offset(cachep) -
544 sizeof(unsigned long long));
1da177e4
LT
545}
546
b46b8f19 547static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
548{
549 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
550 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
551 return (unsigned long long *)(objp + cachep->buffer_size -
552 sizeof(unsigned long long) -
553 BYTES_PER_WORD);
554 return (unsigned long long *) (objp + cachep->buffer_size -
555 sizeof(unsigned long long));
1da177e4
LT
556}
557
343e0d7a 558static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
559{
560 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 561 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
562}
563
564#else
565
3dafccf2
MS
566#define obj_offset(x) 0
567#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
568#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
569#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
570#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
571
572#endif
573
574/*
a737b3e2
AM
575 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
576 * order.
1da177e4
LT
577 */
578#if defined(CONFIG_LARGE_ALLOCS)
579#define MAX_OBJ_ORDER 13 /* up to 32Mb */
580#define MAX_GFP_ORDER 13 /* up to 32Mb */
581#elif defined(CONFIG_MMU)
582#define MAX_OBJ_ORDER 5 /* 32 pages */
583#define MAX_GFP_ORDER 5 /* 32 pages */
584#else
585#define MAX_OBJ_ORDER 8 /* up to 1Mb */
586#define MAX_GFP_ORDER 8 /* up to 1Mb */
587#endif
588
589/*
590 * Do not go above this order unless 0 objects fit into the slab.
591 */
592#define BREAK_GFP_ORDER_HI 1
593#define BREAK_GFP_ORDER_LO 0
594static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
595
a737b3e2
AM
596/*
597 * Functions for storing/retrieving the cachep and or slab from the page
598 * allocator. These are used to find the slab an obj belongs to. With kfree(),
599 * these are used to find the cache which an obj belongs to.
1da177e4 600 */
065d41cb
PE
601static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
602{
603 page->lru.next = (struct list_head *)cache;
604}
605
606static inline struct kmem_cache *page_get_cache(struct page *page)
607{
d85f3385 608 page = compound_head(page);
ddc2e812 609 BUG_ON(!PageSlab(page));
065d41cb
PE
610 return (struct kmem_cache *)page->lru.next;
611}
612
613static inline void page_set_slab(struct page *page, struct slab *slab)
614{
615 page->lru.prev = (struct list_head *)slab;
616}
617
618static inline struct slab *page_get_slab(struct page *page)
619{
ddc2e812 620 BUG_ON(!PageSlab(page));
065d41cb
PE
621 return (struct slab *)page->lru.prev;
622}
1da177e4 623
6ed5eb22
PE
624static inline struct kmem_cache *virt_to_cache(const void *obj)
625{
b49af68f 626 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
627 return page_get_cache(page);
628}
629
630static inline struct slab *virt_to_slab(const void *obj)
631{
b49af68f 632 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
633 return page_get_slab(page);
634}
635
8fea4e96
PE
636static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
637 unsigned int idx)
638{
639 return slab->s_mem + cache->buffer_size * idx;
640}
641
6a2d7a95
ED
642/*
643 * We want to avoid an expensive divide : (offset / cache->buffer_size)
644 * Using the fact that buffer_size is a constant for a particular cache,
645 * we can replace (offset / cache->buffer_size) by
646 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
647 */
648static inline unsigned int obj_to_index(const struct kmem_cache *cache,
649 const struct slab *slab, void *obj)
8fea4e96 650{
6a2d7a95
ED
651 u32 offset = (obj - slab->s_mem);
652 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
653}
654
a737b3e2
AM
655/*
656 * These are the default caches for kmalloc. Custom caches can have other sizes.
657 */
1da177e4
LT
658struct cache_sizes malloc_sizes[] = {
659#define CACHE(x) { .cs_size = (x) },
660#include <linux/kmalloc_sizes.h>
661 CACHE(ULONG_MAX)
662#undef CACHE
663};
664EXPORT_SYMBOL(malloc_sizes);
665
666/* Must match cache_sizes above. Out of line to keep cache footprint low. */
667struct cache_names {
668 char *name;
669 char *name_dma;
670};
671
672static struct cache_names __initdata cache_names[] = {
673#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
674#include <linux/kmalloc_sizes.h>
b28a02de 675 {NULL,}
1da177e4
LT
676#undef CACHE
677};
678
679static struct arraycache_init initarray_cache __initdata =
b28a02de 680 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 681static struct arraycache_init initarray_generic =
b28a02de 682 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
683
684/* internal cache of cache description objs */
343e0d7a 685static struct kmem_cache cache_cache = {
b28a02de
PE
686 .batchcount = 1,
687 .limit = BOOT_CPUCACHE_ENTRIES,
688 .shared = 1,
343e0d7a 689 .buffer_size = sizeof(struct kmem_cache),
b28a02de 690 .name = "kmem_cache",
1da177e4
LT
691};
692
056c6241
RT
693#define BAD_ALIEN_MAGIC 0x01020304ul
694
f1aaee53
AV
695#ifdef CONFIG_LOCKDEP
696
697/*
698 * Slab sometimes uses the kmalloc slabs to store the slab headers
699 * for other slabs "off slab".
700 * The locking for this is tricky in that it nests within the locks
701 * of all other slabs in a few places; to deal with this special
702 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
703 *
704 * We set lock class for alien array caches which are up during init.
705 * The lock annotation will be lost if all cpus of a node goes down and
706 * then comes back up during hotplug
f1aaee53 707 */
056c6241
RT
708static struct lock_class_key on_slab_l3_key;
709static struct lock_class_key on_slab_alc_key;
710
711static inline void init_lock_keys(void)
f1aaee53 712
f1aaee53
AV
713{
714 int q;
056c6241
RT
715 struct cache_sizes *s = malloc_sizes;
716
717 while (s->cs_size != ULONG_MAX) {
718 for_each_node(q) {
719 struct array_cache **alc;
720 int r;
721 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
722 if (!l3 || OFF_SLAB(s->cs_cachep))
723 continue;
724 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
725 alc = l3->alien;
726 /*
727 * FIXME: This check for BAD_ALIEN_MAGIC
728 * should go away when common slab code is taught to
729 * work even without alien caches.
730 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
731 * for alloc_alien_cache,
732 */
733 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
734 continue;
735 for_each_node(r) {
736 if (alc[r])
737 lockdep_set_class(&alc[r]->lock,
738 &on_slab_alc_key);
739 }
740 }
741 s++;
f1aaee53
AV
742 }
743}
f1aaee53 744#else
056c6241 745static inline void init_lock_keys(void)
f1aaee53
AV
746{
747}
748#endif
749
8f5be20b
RT
750/*
751 * 1. Guard access to the cache-chain.
752 * 2. Protect sanity of cpu_online_map against cpu hotplug events
753 */
fc0abb14 754static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
755static struct list_head cache_chain;
756
1da177e4
LT
757/*
758 * chicken and egg problem: delay the per-cpu array allocation
759 * until the general caches are up.
760 */
761static enum {
762 NONE,
e498be7d
CL
763 PARTIAL_AC,
764 PARTIAL_L3,
1da177e4
LT
765 FULL
766} g_cpucache_up;
767
39d24e64
MK
768/*
769 * used by boot code to determine if it can use slab based allocator
770 */
771int slab_is_available(void)
772{
773 return g_cpucache_up == FULL;
774}
775
52bad64d 776static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 777
343e0d7a 778static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
779{
780 return cachep->array[smp_processor_id()];
781}
782
a737b3e2
AM
783static inline struct kmem_cache *__find_general_cachep(size_t size,
784 gfp_t gfpflags)
1da177e4
LT
785{
786 struct cache_sizes *csizep = malloc_sizes;
787
788#if DEBUG
789 /* This happens if someone tries to call
b28a02de
PE
790 * kmem_cache_create(), or __kmalloc(), before
791 * the generic caches are initialized.
792 */
c7e43c78 793 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
794#endif
795 while (size > csizep->cs_size)
796 csizep++;
797
798 /*
0abf40c1 799 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
800 * has cs_{dma,}cachep==NULL. Thus no special case
801 * for large kmalloc calls required.
802 */
4b51d669 803#ifdef CONFIG_ZONE_DMA
1da177e4
LT
804 if (unlikely(gfpflags & GFP_DMA))
805 return csizep->cs_dmacachep;
4b51d669 806#endif
1da177e4
LT
807 return csizep->cs_cachep;
808}
809
b221385b 810static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
811{
812 return __find_general_cachep(size, gfpflags);
813}
97e2bde4 814
fbaccacf 815static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 816{
fbaccacf
SR
817 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
818}
1da177e4 819
a737b3e2
AM
820/*
821 * Calculate the number of objects and left-over bytes for a given buffer size.
822 */
fbaccacf
SR
823static void cache_estimate(unsigned long gfporder, size_t buffer_size,
824 size_t align, int flags, size_t *left_over,
825 unsigned int *num)
826{
827 int nr_objs;
828 size_t mgmt_size;
829 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 830
fbaccacf
SR
831 /*
832 * The slab management structure can be either off the slab or
833 * on it. For the latter case, the memory allocated for a
834 * slab is used for:
835 *
836 * - The struct slab
837 * - One kmem_bufctl_t for each object
838 * - Padding to respect alignment of @align
839 * - @buffer_size bytes for each object
840 *
841 * If the slab management structure is off the slab, then the
842 * alignment will already be calculated into the size. Because
843 * the slabs are all pages aligned, the objects will be at the
844 * correct alignment when allocated.
845 */
846 if (flags & CFLGS_OFF_SLAB) {
847 mgmt_size = 0;
848 nr_objs = slab_size / buffer_size;
849
850 if (nr_objs > SLAB_LIMIT)
851 nr_objs = SLAB_LIMIT;
852 } else {
853 /*
854 * Ignore padding for the initial guess. The padding
855 * is at most @align-1 bytes, and @buffer_size is at
856 * least @align. In the worst case, this result will
857 * be one greater than the number of objects that fit
858 * into the memory allocation when taking the padding
859 * into account.
860 */
861 nr_objs = (slab_size - sizeof(struct slab)) /
862 (buffer_size + sizeof(kmem_bufctl_t));
863
864 /*
865 * This calculated number will be either the right
866 * amount, or one greater than what we want.
867 */
868 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
869 > slab_size)
870 nr_objs--;
871
872 if (nr_objs > SLAB_LIMIT)
873 nr_objs = SLAB_LIMIT;
874
875 mgmt_size = slab_mgmt_size(nr_objs, align);
876 }
877 *num = nr_objs;
878 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
879}
880
881#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
882
a737b3e2
AM
883static void __slab_error(const char *function, struct kmem_cache *cachep,
884 char *msg)
1da177e4
LT
885{
886 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 887 function, cachep->name, msg);
1da177e4
LT
888 dump_stack();
889}
890
3395ee05
PM
891/*
892 * By default on NUMA we use alien caches to stage the freeing of
893 * objects allocated from other nodes. This causes massive memory
894 * inefficiencies when using fake NUMA setup to split memory into a
895 * large number of small nodes, so it can be disabled on the command
896 * line
897 */
898
899static int use_alien_caches __read_mostly = 1;
900static int __init noaliencache_setup(char *s)
901{
902 use_alien_caches = 0;
903 return 1;
904}
905__setup("noaliencache", noaliencache_setup);
906
8fce4d8e
CL
907#ifdef CONFIG_NUMA
908/*
909 * Special reaping functions for NUMA systems called from cache_reap().
910 * These take care of doing round robin flushing of alien caches (containing
911 * objects freed on different nodes from which they were allocated) and the
912 * flushing of remote pcps by calling drain_node_pages.
913 */
914static DEFINE_PER_CPU(unsigned long, reap_node);
915
916static void init_reap_node(int cpu)
917{
918 int node;
919
920 node = next_node(cpu_to_node(cpu), node_online_map);
921 if (node == MAX_NUMNODES)
442295c9 922 node = first_node(node_online_map);
8fce4d8e 923
7f6b8876 924 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
925}
926
927static void next_reap_node(void)
928{
929 int node = __get_cpu_var(reap_node);
930
931 /*
932 * Also drain per cpu pages on remote zones
933 */
934 if (node != numa_node_id())
935 drain_node_pages(node);
936
937 node = next_node(node, node_online_map);
938 if (unlikely(node >= MAX_NUMNODES))
939 node = first_node(node_online_map);
940 __get_cpu_var(reap_node) = node;
941}
942
943#else
944#define init_reap_node(cpu) do { } while (0)
945#define next_reap_node(void) do { } while (0)
946#endif
947
1da177e4
LT
948/*
949 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
950 * via the workqueue/eventd.
951 * Add the CPU number into the expiration time to minimize the possibility of
952 * the CPUs getting into lockstep and contending for the global cache chain
953 * lock.
954 */
955static void __devinit start_cpu_timer(int cpu)
956{
52bad64d 957 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
958
959 /*
960 * When this gets called from do_initcalls via cpucache_init(),
961 * init_workqueues() has already run, so keventd will be setup
962 * at that time.
963 */
52bad64d 964 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 965 init_reap_node(cpu);
65f27f38 966 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
967 schedule_delayed_work_on(cpu, reap_work,
968 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
969 }
970}
971
e498be7d 972static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 973 int batchcount)
1da177e4 974{
b28a02de 975 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
976 struct array_cache *nc = NULL;
977
e498be7d 978 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
979 if (nc) {
980 nc->avail = 0;
981 nc->limit = entries;
982 nc->batchcount = batchcount;
983 nc->touched = 0;
e498be7d 984 spin_lock_init(&nc->lock);
1da177e4
LT
985 }
986 return nc;
987}
988
3ded175a
CL
989/*
990 * Transfer objects in one arraycache to another.
991 * Locking must be handled by the caller.
992 *
993 * Return the number of entries transferred.
994 */
995static int transfer_objects(struct array_cache *to,
996 struct array_cache *from, unsigned int max)
997{
998 /* Figure out how many entries to transfer */
999 int nr = min(min(from->avail, max), to->limit - to->avail);
1000
1001 if (!nr)
1002 return 0;
1003
1004 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1005 sizeof(void *) *nr);
1006
1007 from->avail -= nr;
1008 to->avail += nr;
1009 to->touched = 1;
1010 return nr;
1011}
1012
765c4507
CL
1013#ifndef CONFIG_NUMA
1014
1015#define drain_alien_cache(cachep, alien) do { } while (0)
1016#define reap_alien(cachep, l3) do { } while (0)
1017
1018static inline struct array_cache **alloc_alien_cache(int node, int limit)
1019{
1020 return (struct array_cache **)BAD_ALIEN_MAGIC;
1021}
1022
1023static inline void free_alien_cache(struct array_cache **ac_ptr)
1024{
1025}
1026
1027static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1028{
1029 return 0;
1030}
1031
1032static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1033 gfp_t flags)
1034{
1035 return NULL;
1036}
1037
8b98c169 1038static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1039 gfp_t flags, int nodeid)
1040{
1041 return NULL;
1042}
1043
1044#else /* CONFIG_NUMA */
1045
8b98c169 1046static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1047static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1048
5295a74c 1049static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1050{
1051 struct array_cache **ac_ptr;
8ef82866 1052 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1053 int i;
1054
1055 if (limit > 1)
1056 limit = 12;
1057 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1058 if (ac_ptr) {
1059 for_each_node(i) {
1060 if (i == node || !node_online(i)) {
1061 ac_ptr[i] = NULL;
1062 continue;
1063 }
1064 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1065 if (!ac_ptr[i]) {
b28a02de 1066 for (i--; i <= 0; i--)
e498be7d
CL
1067 kfree(ac_ptr[i]);
1068 kfree(ac_ptr);
1069 return NULL;
1070 }
1071 }
1072 }
1073 return ac_ptr;
1074}
1075
5295a74c 1076static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1077{
1078 int i;
1079
1080 if (!ac_ptr)
1081 return;
e498be7d 1082 for_each_node(i)
b28a02de 1083 kfree(ac_ptr[i]);
e498be7d
CL
1084 kfree(ac_ptr);
1085}
1086
343e0d7a 1087static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1088 struct array_cache *ac, int node)
e498be7d
CL
1089{
1090 struct kmem_list3 *rl3 = cachep->nodelists[node];
1091
1092 if (ac->avail) {
1093 spin_lock(&rl3->list_lock);
e00946fe
CL
1094 /*
1095 * Stuff objects into the remote nodes shared array first.
1096 * That way we could avoid the overhead of putting the objects
1097 * into the free lists and getting them back later.
1098 */
693f7d36 1099 if (rl3->shared)
1100 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1101
ff69416e 1102 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1103 ac->avail = 0;
1104 spin_unlock(&rl3->list_lock);
1105 }
1106}
1107
8fce4d8e
CL
1108/*
1109 * Called from cache_reap() to regularly drain alien caches round robin.
1110 */
1111static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1112{
1113 int node = __get_cpu_var(reap_node);
1114
1115 if (l3->alien) {
1116 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1117
1118 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1119 __drain_alien_cache(cachep, ac, node);
1120 spin_unlock_irq(&ac->lock);
1121 }
1122 }
1123}
1124
a737b3e2
AM
1125static void drain_alien_cache(struct kmem_cache *cachep,
1126 struct array_cache **alien)
e498be7d 1127{
b28a02de 1128 int i = 0;
e498be7d
CL
1129 struct array_cache *ac;
1130 unsigned long flags;
1131
1132 for_each_online_node(i) {
4484ebf1 1133 ac = alien[i];
e498be7d
CL
1134 if (ac) {
1135 spin_lock_irqsave(&ac->lock, flags);
1136 __drain_alien_cache(cachep, ac, i);
1137 spin_unlock_irqrestore(&ac->lock, flags);
1138 }
1139 }
1140}
729bd0b7 1141
873623df 1142static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1143{
1144 struct slab *slabp = virt_to_slab(objp);
1145 int nodeid = slabp->nodeid;
1146 struct kmem_list3 *l3;
1147 struct array_cache *alien = NULL;
1ca4cb24
PE
1148 int node;
1149
1150 node = numa_node_id();
729bd0b7
PE
1151
1152 /*
1153 * Make sure we are not freeing a object from another node to the array
1154 * cache on this cpu.
1155 */
62918a03 1156 if (likely(slabp->nodeid == node))
729bd0b7
PE
1157 return 0;
1158
1ca4cb24 1159 l3 = cachep->nodelists[node];
729bd0b7
PE
1160 STATS_INC_NODEFREES(cachep);
1161 if (l3->alien && l3->alien[nodeid]) {
1162 alien = l3->alien[nodeid];
873623df 1163 spin_lock(&alien->lock);
729bd0b7
PE
1164 if (unlikely(alien->avail == alien->limit)) {
1165 STATS_INC_ACOVERFLOW(cachep);
1166 __drain_alien_cache(cachep, alien, nodeid);
1167 }
1168 alien->entry[alien->avail++] = objp;
1169 spin_unlock(&alien->lock);
1170 } else {
1171 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1172 free_block(cachep, &objp, 1, nodeid);
1173 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1174 }
1175 return 1;
1176}
e498be7d
CL
1177#endif
1178
8c78f307 1179static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1180 unsigned long action, void *hcpu)
1da177e4
LT
1181{
1182 long cpu = (long)hcpu;
343e0d7a 1183 struct kmem_cache *cachep;
e498be7d
CL
1184 struct kmem_list3 *l3 = NULL;
1185 int node = cpu_to_node(cpu);
1186 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1187
1188 switch (action) {
38c3bd96 1189 case CPU_LOCK_ACQUIRE:
fc0abb14 1190 mutex_lock(&cache_chain_mutex);
38c3bd96
HC
1191 break;
1192 case CPU_UP_PREPARE:
a737b3e2
AM
1193 /*
1194 * We need to do this right in the beginning since
e498be7d
CL
1195 * alloc_arraycache's are going to use this list.
1196 * kmalloc_node allows us to add the slab to the right
1197 * kmem_list3 and not this cpu's kmem_list3
1198 */
1199
1da177e4 1200 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1201 /*
1202 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1203 * begin anything. Make sure some other cpu on this
1204 * node has not already allocated this
1205 */
1206 if (!cachep->nodelists[node]) {
a737b3e2
AM
1207 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1208 if (!l3)
e498be7d
CL
1209 goto bad;
1210 kmem_list3_init(l3);
1211 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1212 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1213
4484ebf1
RT
1214 /*
1215 * The l3s don't come and go as CPUs come and
1216 * go. cache_chain_mutex is sufficient
1217 * protection here.
1218 */
e498be7d
CL
1219 cachep->nodelists[node] = l3;
1220 }
1da177e4 1221
e498be7d
CL
1222 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1223 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1224 (1 + nr_cpus_node(node)) *
1225 cachep->batchcount + cachep->num;
e498be7d
CL
1226 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1227 }
1228
a737b3e2
AM
1229 /*
1230 * Now we can go ahead with allocating the shared arrays and
1231 * array caches
1232 */
e498be7d 1233 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1234 struct array_cache *nc;
63109846 1235 struct array_cache *shared = NULL;
3395ee05 1236 struct array_cache **alien = NULL;
cd105df4 1237
e498be7d 1238 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1239 cachep->batchcount);
1da177e4
LT
1240 if (!nc)
1241 goto bad;
63109846
ED
1242 if (cachep->shared) {
1243 shared = alloc_arraycache(node,
4484ebf1
RT
1244 cachep->shared * cachep->batchcount,
1245 0xbaadf00d);
63109846
ED
1246 if (!shared)
1247 goto bad;
1248 }
3395ee05
PM
1249 if (use_alien_caches) {
1250 alien = alloc_alien_cache(node, cachep->limit);
1251 if (!alien)
1252 goto bad;
1253 }
1da177e4 1254 cachep->array[cpu] = nc;
e498be7d
CL
1255 l3 = cachep->nodelists[node];
1256 BUG_ON(!l3);
e498be7d 1257
4484ebf1
RT
1258 spin_lock_irq(&l3->list_lock);
1259 if (!l3->shared) {
1260 /*
1261 * We are serialised from CPU_DEAD or
1262 * CPU_UP_CANCELLED by the cpucontrol lock
1263 */
1264 l3->shared = shared;
1265 shared = NULL;
e498be7d 1266 }
4484ebf1
RT
1267#ifdef CONFIG_NUMA
1268 if (!l3->alien) {
1269 l3->alien = alien;
1270 alien = NULL;
1271 }
1272#endif
1273 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1274 kfree(shared);
1275 free_alien_cache(alien);
1da177e4 1276 }
1da177e4
LT
1277 break;
1278 case CPU_ONLINE:
1279 start_cpu_timer(cpu);
1280 break;
1281#ifdef CONFIG_HOTPLUG_CPU
1282 case CPU_DEAD:
4484ebf1
RT
1283 /*
1284 * Even if all the cpus of a node are down, we don't free the
1285 * kmem_list3 of any cache. This to avoid a race between
1286 * cpu_down, and a kmalloc allocation from another cpu for
1287 * memory from the node of the cpu going down. The list3
1288 * structure is usually allocated from kmem_cache_create() and
1289 * gets destroyed at kmem_cache_destroy().
1290 */
1da177e4 1291 /* fall thru */
8f5be20b 1292#endif
1da177e4 1293 case CPU_UP_CANCELED:
1da177e4
LT
1294 list_for_each_entry(cachep, &cache_chain, next) {
1295 struct array_cache *nc;
4484ebf1
RT
1296 struct array_cache *shared;
1297 struct array_cache **alien;
e498be7d 1298 cpumask_t mask;
1da177e4 1299
e498be7d 1300 mask = node_to_cpumask(node);
1da177e4
LT
1301 /* cpu is dead; no one can alloc from it. */
1302 nc = cachep->array[cpu];
1303 cachep->array[cpu] = NULL;
e498be7d
CL
1304 l3 = cachep->nodelists[node];
1305
1306 if (!l3)
4484ebf1 1307 goto free_array_cache;
e498be7d 1308
ca3b9b91 1309 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1310
1311 /* Free limit for this kmem_list3 */
1312 l3->free_limit -= cachep->batchcount;
1313 if (nc)
ff69416e 1314 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1315
1316 if (!cpus_empty(mask)) {
ca3b9b91 1317 spin_unlock_irq(&l3->list_lock);
4484ebf1 1318 goto free_array_cache;
b28a02de 1319 }
e498be7d 1320
4484ebf1
RT
1321 shared = l3->shared;
1322 if (shared) {
63109846
ED
1323 free_block(cachep, shared->entry,
1324 shared->avail, node);
e498be7d
CL
1325 l3->shared = NULL;
1326 }
e498be7d 1327
4484ebf1
RT
1328 alien = l3->alien;
1329 l3->alien = NULL;
1330
1331 spin_unlock_irq(&l3->list_lock);
1332
1333 kfree(shared);
1334 if (alien) {
1335 drain_alien_cache(cachep, alien);
1336 free_alien_cache(alien);
e498be7d 1337 }
4484ebf1 1338free_array_cache:
1da177e4
LT
1339 kfree(nc);
1340 }
4484ebf1
RT
1341 /*
1342 * In the previous loop, all the objects were freed to
1343 * the respective cache's slabs, now we can go ahead and
1344 * shrink each nodelist to its limit.
1345 */
1346 list_for_each_entry(cachep, &cache_chain, next) {
1347 l3 = cachep->nodelists[node];
1348 if (!l3)
1349 continue;
ed11d9eb 1350 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1351 }
38c3bd96
HC
1352 break;
1353 case CPU_LOCK_RELEASE:
fc0abb14 1354 mutex_unlock(&cache_chain_mutex);
1da177e4 1355 break;
1da177e4
LT
1356 }
1357 return NOTIFY_OK;
a737b3e2 1358bad:
1da177e4
LT
1359 return NOTIFY_BAD;
1360}
1361
74b85f37
CS
1362static struct notifier_block __cpuinitdata cpucache_notifier = {
1363 &cpuup_callback, NULL, 0
1364};
1da177e4 1365
e498be7d
CL
1366/*
1367 * swap the static kmem_list3 with kmalloced memory
1368 */
a737b3e2
AM
1369static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1370 int nodeid)
e498be7d
CL
1371{
1372 struct kmem_list3 *ptr;
1373
e498be7d
CL
1374 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1375 BUG_ON(!ptr);
1376
1377 local_irq_disable();
1378 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1379 /*
1380 * Do not assume that spinlocks can be initialized via memcpy:
1381 */
1382 spin_lock_init(&ptr->list_lock);
1383
e498be7d
CL
1384 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1385 cachep->nodelists[nodeid] = ptr;
1386 local_irq_enable();
1387}
1388
a737b3e2
AM
1389/*
1390 * Initialisation. Called after the page allocator have been initialised and
1391 * before smp_init().
1da177e4
LT
1392 */
1393void __init kmem_cache_init(void)
1394{
1395 size_t left_over;
1396 struct cache_sizes *sizes;
1397 struct cache_names *names;
e498be7d 1398 int i;
07ed76b2 1399 int order;
1ca4cb24 1400 int node;
e498be7d 1401
62918a03
SS
1402 if (num_possible_nodes() == 1)
1403 use_alien_caches = 0;
1404
e498be7d
CL
1405 for (i = 0; i < NUM_INIT_LISTS; i++) {
1406 kmem_list3_init(&initkmem_list3[i]);
1407 if (i < MAX_NUMNODES)
1408 cache_cache.nodelists[i] = NULL;
1409 }
1da177e4
LT
1410
1411 /*
1412 * Fragmentation resistance on low memory - only use bigger
1413 * page orders on machines with more than 32MB of memory.
1414 */
1415 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1416 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1417
1da177e4
LT
1418 /* Bootstrap is tricky, because several objects are allocated
1419 * from caches that do not exist yet:
a737b3e2
AM
1420 * 1) initialize the cache_cache cache: it contains the struct
1421 * kmem_cache structures of all caches, except cache_cache itself:
1422 * cache_cache is statically allocated.
e498be7d
CL
1423 * Initially an __init data area is used for the head array and the
1424 * kmem_list3 structures, it's replaced with a kmalloc allocated
1425 * array at the end of the bootstrap.
1da177e4 1426 * 2) Create the first kmalloc cache.
343e0d7a 1427 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1428 * An __init data area is used for the head array.
1429 * 3) Create the remaining kmalloc caches, with minimally sized
1430 * head arrays.
1da177e4
LT
1431 * 4) Replace the __init data head arrays for cache_cache and the first
1432 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1433 * 5) Replace the __init data for kmem_list3 for cache_cache and
1434 * the other cache's with kmalloc allocated memory.
1435 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1436 */
1437
1ca4cb24
PE
1438 node = numa_node_id();
1439
1da177e4 1440 /* 1) create the cache_cache */
1da177e4
LT
1441 INIT_LIST_HEAD(&cache_chain);
1442 list_add(&cache_cache.next, &cache_chain);
1443 cache_cache.colour_off = cache_line_size();
1444 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1ca4cb24 1445 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1da177e4 1446
8da3430d
ED
1447 /*
1448 * struct kmem_cache size depends on nr_node_ids, which
1449 * can be less than MAX_NUMNODES.
1450 */
1451 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1452 nr_node_ids * sizeof(struct kmem_list3 *);
1453#if DEBUG
1454 cache_cache.obj_size = cache_cache.buffer_size;
1455#endif
a737b3e2
AM
1456 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1457 cache_line_size());
6a2d7a95
ED
1458 cache_cache.reciprocal_buffer_size =
1459 reciprocal_value(cache_cache.buffer_size);
1da177e4 1460
07ed76b2
JS
1461 for (order = 0; order < MAX_ORDER; order++) {
1462 cache_estimate(order, cache_cache.buffer_size,
1463 cache_line_size(), 0, &left_over, &cache_cache.num);
1464 if (cache_cache.num)
1465 break;
1466 }
40094fa6 1467 BUG_ON(!cache_cache.num);
07ed76b2 1468 cache_cache.gfporder = order;
b28a02de 1469 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1470 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1471 sizeof(struct slab), cache_line_size());
1da177e4
LT
1472
1473 /* 2+3) create the kmalloc caches */
1474 sizes = malloc_sizes;
1475 names = cache_names;
1476
a737b3e2
AM
1477 /*
1478 * Initialize the caches that provide memory for the array cache and the
1479 * kmem_list3 structures first. Without this, further allocations will
1480 * bug.
e498be7d
CL
1481 */
1482
1483 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1484 sizes[INDEX_AC].cs_size,
1485 ARCH_KMALLOC_MINALIGN,
1486 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1487 NULL, NULL);
e498be7d 1488
a737b3e2 1489 if (INDEX_AC != INDEX_L3) {
e498be7d 1490 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1491 kmem_cache_create(names[INDEX_L3].name,
1492 sizes[INDEX_L3].cs_size,
1493 ARCH_KMALLOC_MINALIGN,
1494 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1495 NULL, NULL);
1496 }
e498be7d 1497
e0a42726
IM
1498 slab_early_init = 0;
1499
1da177e4 1500 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1501 /*
1502 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1503 * This should be particularly beneficial on SMP boxes, as it
1504 * eliminates "false sharing".
1505 * Note for systems short on memory removing the alignment will
e498be7d
CL
1506 * allow tighter packing of the smaller caches.
1507 */
a737b3e2 1508 if (!sizes->cs_cachep) {
e498be7d 1509 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1510 sizes->cs_size,
1511 ARCH_KMALLOC_MINALIGN,
1512 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1513 NULL, NULL);
1514 }
4b51d669
CL
1515#ifdef CONFIG_ZONE_DMA
1516 sizes->cs_dmacachep = kmem_cache_create(
1517 names->name_dma,
a737b3e2
AM
1518 sizes->cs_size,
1519 ARCH_KMALLOC_MINALIGN,
1520 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1521 SLAB_PANIC,
1522 NULL, NULL);
4b51d669 1523#endif
1da177e4
LT
1524 sizes++;
1525 names++;
1526 }
1527 /* 4) Replace the bootstrap head arrays */
1528 {
2b2d5493 1529 struct array_cache *ptr;
e498be7d 1530
1da177e4 1531 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1532
1da177e4 1533 local_irq_disable();
9a2dba4b
PE
1534 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1535 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1536 sizeof(struct arraycache_init));
2b2d5493
IM
1537 /*
1538 * Do not assume that spinlocks can be initialized via memcpy:
1539 */
1540 spin_lock_init(&ptr->lock);
1541
1da177e4
LT
1542 cache_cache.array[smp_processor_id()] = ptr;
1543 local_irq_enable();
e498be7d 1544
1da177e4 1545 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1546
1da177e4 1547 local_irq_disable();
9a2dba4b 1548 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1549 != &initarray_generic.cache);
9a2dba4b 1550 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1551 sizeof(struct arraycache_init));
2b2d5493
IM
1552 /*
1553 * Do not assume that spinlocks can be initialized via memcpy:
1554 */
1555 spin_lock_init(&ptr->lock);
1556
e498be7d 1557 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1558 ptr;
1da177e4
LT
1559 local_irq_enable();
1560 }
e498be7d
CL
1561 /* 5) Replace the bootstrap kmem_list3's */
1562 {
1ca4cb24
PE
1563 int nid;
1564
e498be7d 1565 /* Replace the static kmem_list3 structures for the boot cpu */
1ca4cb24 1566 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
e498be7d 1567
1ca4cb24 1568 for_each_online_node(nid) {
e498be7d 1569 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1570 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1571
1572 if (INDEX_AC != INDEX_L3) {
1573 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1574 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1575 }
1576 }
1577 }
1da177e4 1578
e498be7d 1579 /* 6) resize the head arrays to their final sizes */
1da177e4 1580 {
343e0d7a 1581 struct kmem_cache *cachep;
fc0abb14 1582 mutex_lock(&cache_chain_mutex);
1da177e4 1583 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1584 if (enable_cpucache(cachep))
1585 BUG();
fc0abb14 1586 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1587 }
1588
056c6241
RT
1589 /* Annotate slab for lockdep -- annotate the malloc caches */
1590 init_lock_keys();
1591
1592
1da177e4
LT
1593 /* Done! */
1594 g_cpucache_up = FULL;
1595
a737b3e2
AM
1596 /*
1597 * Register a cpu startup notifier callback that initializes
1598 * cpu_cache_get for all new cpus
1da177e4
LT
1599 */
1600 register_cpu_notifier(&cpucache_notifier);
1da177e4 1601
a737b3e2
AM
1602 /*
1603 * The reap timers are started later, with a module init call: That part
1604 * of the kernel is not yet operational.
1da177e4
LT
1605 */
1606}
1607
1608static int __init cpucache_init(void)
1609{
1610 int cpu;
1611
a737b3e2
AM
1612 /*
1613 * Register the timers that return unneeded pages to the page allocator
1da177e4 1614 */
e498be7d 1615 for_each_online_cpu(cpu)
a737b3e2 1616 start_cpu_timer(cpu);
1da177e4
LT
1617 return 0;
1618}
1da177e4
LT
1619__initcall(cpucache_init);
1620
1621/*
1622 * Interface to system's page allocator. No need to hold the cache-lock.
1623 *
1624 * If we requested dmaable memory, we will get it. Even if we
1625 * did not request dmaable memory, we might get it, but that
1626 * would be relatively rare and ignorable.
1627 */
343e0d7a 1628static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1629{
1630 struct page *page;
e1b6aa6f 1631 int nr_pages;
1da177e4
LT
1632 int i;
1633
d6fef9da 1634#ifndef CONFIG_MMU
e1b6aa6f
CH
1635 /*
1636 * Nommu uses slab's for process anonymous memory allocations, and thus
1637 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1638 */
e1b6aa6f 1639 flags |= __GFP_COMP;
d6fef9da 1640#endif
765c4507 1641
3c517a61 1642 flags |= cachep->gfpflags;
e1b6aa6f
CH
1643
1644 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1645 if (!page)
1646 return NULL;
1da177e4 1647
e1b6aa6f 1648 nr_pages = (1 << cachep->gfporder);
1da177e4 1649 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1650 add_zone_page_state(page_zone(page),
1651 NR_SLAB_RECLAIMABLE, nr_pages);
1652 else
1653 add_zone_page_state(page_zone(page),
1654 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1655 for (i = 0; i < nr_pages; i++)
1656 __SetPageSlab(page + i);
1657 return page_address(page);
1da177e4
LT
1658}
1659
1660/*
1661 * Interface to system's page release.
1662 */
343e0d7a 1663static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1664{
b28a02de 1665 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1666 struct page *page = virt_to_page(addr);
1667 const unsigned long nr_freed = i;
1668
972d1a7b
CL
1669 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1670 sub_zone_page_state(page_zone(page),
1671 NR_SLAB_RECLAIMABLE, nr_freed);
1672 else
1673 sub_zone_page_state(page_zone(page),
1674 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1675 while (i--) {
f205b2fe
NP
1676 BUG_ON(!PageSlab(page));
1677 __ClearPageSlab(page);
1da177e4
LT
1678 page++;
1679 }
1da177e4
LT
1680 if (current->reclaim_state)
1681 current->reclaim_state->reclaimed_slab += nr_freed;
1682 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1683}
1684
1685static void kmem_rcu_free(struct rcu_head *head)
1686{
b28a02de 1687 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1688 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1689
1690 kmem_freepages(cachep, slab_rcu->addr);
1691 if (OFF_SLAB(cachep))
1692 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1693}
1694
1695#if DEBUG
1696
1697#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1698static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1699 unsigned long caller)
1da177e4 1700{
3dafccf2 1701 int size = obj_size(cachep);
1da177e4 1702
3dafccf2 1703 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1704
b28a02de 1705 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1706 return;
1707
b28a02de
PE
1708 *addr++ = 0x12345678;
1709 *addr++ = caller;
1710 *addr++ = smp_processor_id();
1711 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1712 {
1713 unsigned long *sptr = &caller;
1714 unsigned long svalue;
1715
1716 while (!kstack_end(sptr)) {
1717 svalue = *sptr++;
1718 if (kernel_text_address(svalue)) {
b28a02de 1719 *addr++ = svalue;
1da177e4
LT
1720 size -= sizeof(unsigned long);
1721 if (size <= sizeof(unsigned long))
1722 break;
1723 }
1724 }
1725
1726 }
b28a02de 1727 *addr++ = 0x87654321;
1da177e4
LT
1728}
1729#endif
1730
343e0d7a 1731static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1732{
3dafccf2
MS
1733 int size = obj_size(cachep);
1734 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1735
1736 memset(addr, val, size);
b28a02de 1737 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1738}
1739
1740static void dump_line(char *data, int offset, int limit)
1741{
1742 int i;
aa83aa40
DJ
1743 unsigned char error = 0;
1744 int bad_count = 0;
1745
1da177e4 1746 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1747 for (i = 0; i < limit; i++) {
1748 if (data[offset + i] != POISON_FREE) {
1749 error = data[offset + i];
1750 bad_count++;
1751 }
b28a02de 1752 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1753 }
1da177e4 1754 printk("\n");
aa83aa40
DJ
1755
1756 if (bad_count == 1) {
1757 error ^= POISON_FREE;
1758 if (!(error & (error - 1))) {
1759 printk(KERN_ERR "Single bit error detected. Probably "
1760 "bad RAM.\n");
1761#ifdef CONFIG_X86
1762 printk(KERN_ERR "Run memtest86+ or a similar memory "
1763 "test tool.\n");
1764#else
1765 printk(KERN_ERR "Run a memory test tool.\n");
1766#endif
1767 }
1768 }
1da177e4
LT
1769}
1770#endif
1771
1772#if DEBUG
1773
343e0d7a 1774static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1775{
1776 int i, size;
1777 char *realobj;
1778
1779 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1780 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1781 *dbg_redzone1(cachep, objp),
1782 *dbg_redzone2(cachep, objp));
1da177e4
LT
1783 }
1784
1785 if (cachep->flags & SLAB_STORE_USER) {
1786 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1787 *dbg_userword(cachep, objp));
1da177e4 1788 print_symbol("(%s)",
a737b3e2 1789 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1790 printk("\n");
1791 }
3dafccf2
MS
1792 realobj = (char *)objp + obj_offset(cachep);
1793 size = obj_size(cachep);
b28a02de 1794 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1795 int limit;
1796 limit = 16;
b28a02de
PE
1797 if (i + limit > size)
1798 limit = size - i;
1da177e4
LT
1799 dump_line(realobj, i, limit);
1800 }
1801}
1802
343e0d7a 1803static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1804{
1805 char *realobj;
1806 int size, i;
1807 int lines = 0;
1808
3dafccf2
MS
1809 realobj = (char *)objp + obj_offset(cachep);
1810 size = obj_size(cachep);
1da177e4 1811
b28a02de 1812 for (i = 0; i < size; i++) {
1da177e4 1813 char exp = POISON_FREE;
b28a02de 1814 if (i == size - 1)
1da177e4
LT
1815 exp = POISON_END;
1816 if (realobj[i] != exp) {
1817 int limit;
1818 /* Mismatch ! */
1819 /* Print header */
1820 if (lines == 0) {
b28a02de 1821 printk(KERN_ERR
e94a40c5
DH
1822 "Slab corruption: %s start=%p, len=%d\n",
1823 cachep->name, realobj, size);
1da177e4
LT
1824 print_objinfo(cachep, objp, 0);
1825 }
1826 /* Hexdump the affected line */
b28a02de 1827 i = (i / 16) * 16;
1da177e4 1828 limit = 16;
b28a02de
PE
1829 if (i + limit > size)
1830 limit = size - i;
1da177e4
LT
1831 dump_line(realobj, i, limit);
1832 i += 16;
1833 lines++;
1834 /* Limit to 5 lines */
1835 if (lines > 5)
1836 break;
1837 }
1838 }
1839 if (lines != 0) {
1840 /* Print some data about the neighboring objects, if they
1841 * exist:
1842 */
6ed5eb22 1843 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1844 unsigned int objnr;
1da177e4 1845
8fea4e96 1846 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1847 if (objnr) {
8fea4e96 1848 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1849 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1850 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1851 realobj, size);
1da177e4
LT
1852 print_objinfo(cachep, objp, 2);
1853 }
b28a02de 1854 if (objnr + 1 < cachep->num) {
8fea4e96 1855 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1856 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1857 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1858 realobj, size);
1da177e4
LT
1859 print_objinfo(cachep, objp, 2);
1860 }
1861 }
1862}
1863#endif
1864
12dd36fa
MD
1865#if DEBUG
1866/**
911851e6
RD
1867 * slab_destroy_objs - destroy a slab and its objects
1868 * @cachep: cache pointer being destroyed
1869 * @slabp: slab pointer being destroyed
1870 *
1871 * Call the registered destructor for each object in a slab that is being
1872 * destroyed.
1da177e4 1873 */
343e0d7a 1874static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1875{
1da177e4
LT
1876 int i;
1877 for (i = 0; i < cachep->num; i++) {
8fea4e96 1878 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1879
1880 if (cachep->flags & SLAB_POISON) {
1881#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1882 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1883 OFF_SLAB(cachep))
b28a02de 1884 kernel_map_pages(virt_to_page(objp),
a737b3e2 1885 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1886 else
1887 check_poison_obj(cachep, objp);
1888#else
1889 check_poison_obj(cachep, objp);
1890#endif
1891 }
1892 if (cachep->flags & SLAB_RED_ZONE) {
1893 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1894 slab_error(cachep, "start of a freed object "
b28a02de 1895 "was overwritten");
1da177e4
LT
1896 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1897 slab_error(cachep, "end of a freed object "
b28a02de 1898 "was overwritten");
1da177e4
LT
1899 }
1900 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1901 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1902 }
12dd36fa 1903}
1da177e4 1904#else
343e0d7a 1905static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1906{
1da177e4
LT
1907 if (cachep->dtor) {
1908 int i;
1909 for (i = 0; i < cachep->num; i++) {
8fea4e96 1910 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1911 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1912 }
1913 }
12dd36fa 1914}
1da177e4
LT
1915#endif
1916
911851e6
RD
1917/**
1918 * slab_destroy - destroy and release all objects in a slab
1919 * @cachep: cache pointer being destroyed
1920 * @slabp: slab pointer being destroyed
1921 *
12dd36fa 1922 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1923 * Before calling the slab must have been unlinked from the cache. The
1924 * cache-lock is not held/needed.
12dd36fa 1925 */
343e0d7a 1926static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1927{
1928 void *addr = slabp->s_mem - slabp->colouroff;
1929
1930 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1931 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1932 struct slab_rcu *slab_rcu;
1933
b28a02de 1934 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1935 slab_rcu->cachep = cachep;
1936 slab_rcu->addr = addr;
1937 call_rcu(&slab_rcu->head, kmem_rcu_free);
1938 } else {
1939 kmem_freepages(cachep, addr);
873623df
IM
1940 if (OFF_SLAB(cachep))
1941 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1942 }
1943}
1944
a737b3e2
AM
1945/*
1946 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1947 * size of kmem_list3.
1948 */
a3a02be7 1949static void __init set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1950{
1951 int node;
1952
1953 for_each_online_node(node) {
b28a02de 1954 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1955 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1956 REAPTIMEOUT_LIST3 +
1957 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1958 }
1959}
1960
117f6eb1
CL
1961static void __kmem_cache_destroy(struct kmem_cache *cachep)
1962{
1963 int i;
1964 struct kmem_list3 *l3;
1965
1966 for_each_online_cpu(i)
1967 kfree(cachep->array[i]);
1968
1969 /* NUMA: free the list3 structures */
1970 for_each_online_node(i) {
1971 l3 = cachep->nodelists[i];
1972 if (l3) {
1973 kfree(l3->shared);
1974 free_alien_cache(l3->alien);
1975 kfree(l3);
1976 }
1977 }
1978 kmem_cache_free(&cache_cache, cachep);
1979}
1980
1981
4d268eba 1982/**
a70773dd
RD
1983 * calculate_slab_order - calculate size (page order) of slabs
1984 * @cachep: pointer to the cache that is being created
1985 * @size: size of objects to be created in this cache.
1986 * @align: required alignment for the objects.
1987 * @flags: slab allocation flags
1988 *
1989 * Also calculates the number of objects per slab.
4d268eba
PE
1990 *
1991 * This could be made much more intelligent. For now, try to avoid using
1992 * high order pages for slabs. When the gfp() functions are more friendly
1993 * towards high-order requests, this should be changed.
1994 */
a737b3e2 1995static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1996 size_t size, size_t align, unsigned long flags)
4d268eba 1997{
b1ab41c4 1998 unsigned long offslab_limit;
4d268eba 1999 size_t left_over = 0;
9888e6fa 2000 int gfporder;
4d268eba 2001
a737b3e2 2002 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
2003 unsigned int num;
2004 size_t remainder;
2005
9888e6fa 2006 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2007 if (!num)
2008 continue;
9888e6fa 2009
b1ab41c4
IM
2010 if (flags & CFLGS_OFF_SLAB) {
2011 /*
2012 * Max number of objs-per-slab for caches which
2013 * use off-slab slabs. Needed to avoid a possible
2014 * looping condition in cache_grow().
2015 */
2016 offslab_limit = size - sizeof(struct slab);
2017 offslab_limit /= sizeof(kmem_bufctl_t);
2018
2019 if (num > offslab_limit)
2020 break;
2021 }
4d268eba 2022
9888e6fa 2023 /* Found something acceptable - save it away */
4d268eba 2024 cachep->num = num;
9888e6fa 2025 cachep->gfporder = gfporder;
4d268eba
PE
2026 left_over = remainder;
2027
f78bb8ad
LT
2028 /*
2029 * A VFS-reclaimable slab tends to have most allocations
2030 * as GFP_NOFS and we really don't want to have to be allocating
2031 * higher-order pages when we are unable to shrink dcache.
2032 */
2033 if (flags & SLAB_RECLAIM_ACCOUNT)
2034 break;
2035
4d268eba
PE
2036 /*
2037 * Large number of objects is good, but very large slabs are
2038 * currently bad for the gfp()s.
2039 */
9888e6fa 2040 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2041 break;
2042
9888e6fa
LT
2043 /*
2044 * Acceptable internal fragmentation?
2045 */
a737b3e2 2046 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2047 break;
2048 }
2049 return left_over;
2050}
2051
2ed3a4ef 2052static int setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2053{
2ed3a4ef
CL
2054 if (g_cpucache_up == FULL)
2055 return enable_cpucache(cachep);
2056
f30cf7d1
PE
2057 if (g_cpucache_up == NONE) {
2058 /*
2059 * Note: the first kmem_cache_create must create the cache
2060 * that's used by kmalloc(24), otherwise the creation of
2061 * further caches will BUG().
2062 */
2063 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2064
2065 /*
2066 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2067 * the first cache, then we need to set up all its list3s,
2068 * otherwise the creation of further caches will BUG().
2069 */
2070 set_up_list3s(cachep, SIZE_AC);
2071 if (INDEX_AC == INDEX_L3)
2072 g_cpucache_up = PARTIAL_L3;
2073 else
2074 g_cpucache_up = PARTIAL_AC;
2075 } else {
2076 cachep->array[smp_processor_id()] =
2077 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2078
2079 if (g_cpucache_up == PARTIAL_AC) {
2080 set_up_list3s(cachep, SIZE_L3);
2081 g_cpucache_up = PARTIAL_L3;
2082 } else {
2083 int node;
2084 for_each_online_node(node) {
2085 cachep->nodelists[node] =
2086 kmalloc_node(sizeof(struct kmem_list3),
2087 GFP_KERNEL, node);
2088 BUG_ON(!cachep->nodelists[node]);
2089 kmem_list3_init(cachep->nodelists[node]);
2090 }
2091 }
2092 }
2093 cachep->nodelists[numa_node_id()]->next_reap =
2094 jiffies + REAPTIMEOUT_LIST3 +
2095 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2096
2097 cpu_cache_get(cachep)->avail = 0;
2098 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2099 cpu_cache_get(cachep)->batchcount = 1;
2100 cpu_cache_get(cachep)->touched = 0;
2101 cachep->batchcount = 1;
2102 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2103 return 0;
f30cf7d1
PE
2104}
2105
1da177e4
LT
2106/**
2107 * kmem_cache_create - Create a cache.
2108 * @name: A string which is used in /proc/slabinfo to identify this cache.
2109 * @size: The size of objects to be created in this cache.
2110 * @align: The required alignment for the objects.
2111 * @flags: SLAB flags
2112 * @ctor: A constructor for the objects.
2113 * @dtor: A destructor for the objects.
2114 *
2115 * Returns a ptr to the cache on success, NULL on failure.
2116 * Cannot be called within a int, but can be interrupted.
2117 * The @ctor is run when new pages are allocated by the cache
2118 * and the @dtor is run before the pages are handed back.
2119 *
2120 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2121 * the module calling this has to destroy the cache before getting unloaded.
2122 *
1da177e4
LT
2123 * The flags are
2124 *
2125 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2126 * to catch references to uninitialised memory.
2127 *
2128 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2129 * for buffer overruns.
2130 *
1da177e4
LT
2131 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2132 * cacheline. This can be beneficial if you're counting cycles as closely
2133 * as davem.
2134 */
343e0d7a 2135struct kmem_cache *
1da177e4 2136kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
2137 unsigned long flags,
2138 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 2139 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
2140{
2141 size_t left_over, slab_size, ralign;
7a7c381d 2142 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2143
2144 /*
2145 * Sanity checks... these are all serious usage bugs.
2146 */
a737b3e2 2147 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 2148 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
2149 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2150 name);
b28a02de
PE
2151 BUG();
2152 }
1da177e4 2153
f0188f47 2154 /*
8f5be20b
RT
2155 * We use cache_chain_mutex to ensure a consistent view of
2156 * cpu_online_map as well. Please see cpuup_callback
f0188f47 2157 */
fc0abb14 2158 mutex_lock(&cache_chain_mutex);
4f12bb4f 2159
7a7c381d 2160 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2161 char tmp;
2162 int res;
2163
2164 /*
2165 * This happens when the module gets unloaded and doesn't
2166 * destroy its slab cache and no-one else reuses the vmalloc
2167 * area of the module. Print a warning.
2168 */
138ae663 2169 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2170 if (res) {
b4169525 2171 printk(KERN_ERR
2172 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2173 pc->buffer_size);
4f12bb4f
AM
2174 continue;
2175 }
2176
b28a02de 2177 if (!strcmp(pc->name, name)) {
b4169525 2178 printk(KERN_ERR
2179 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2180 dump_stack();
2181 goto oops;
2182 }
2183 }
2184
1da177e4
LT
2185#if DEBUG
2186 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2187#if FORCED_DEBUG
2188 /*
2189 * Enable redzoning and last user accounting, except for caches with
2190 * large objects, if the increased size would increase the object size
2191 * above the next power of two: caches with object sizes just above a
2192 * power of two have a significant amount of internal fragmentation.
2193 */
a737b3e2 2194 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2195 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2196 if (!(flags & SLAB_DESTROY_BY_RCU))
2197 flags |= SLAB_POISON;
2198#endif
2199 if (flags & SLAB_DESTROY_BY_RCU)
2200 BUG_ON(flags & SLAB_POISON);
2201#endif
2202 if (flags & SLAB_DESTROY_BY_RCU)
2203 BUG_ON(dtor);
2204
2205 /*
a737b3e2
AM
2206 * Always checks flags, a caller might be expecting debug support which
2207 * isn't available.
1da177e4 2208 */
40094fa6 2209 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2210
a737b3e2
AM
2211 /*
2212 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2213 * unaligned accesses for some archs when redzoning is used, and makes
2214 * sure any on-slab bufctl's are also correctly aligned.
2215 */
b28a02de
PE
2216 if (size & (BYTES_PER_WORD - 1)) {
2217 size += (BYTES_PER_WORD - 1);
2218 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2219 }
2220
a737b3e2
AM
2221 /* calculate the final buffer alignment: */
2222
1da177e4
LT
2223 /* 1) arch recommendation: can be overridden for debug */
2224 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2225 /*
2226 * Default alignment: as specified by the arch code. Except if
2227 * an object is really small, then squeeze multiple objects into
2228 * one cacheline.
1da177e4
LT
2229 */
2230 ralign = cache_line_size();
b28a02de 2231 while (size <= ralign / 2)
1da177e4
LT
2232 ralign /= 2;
2233 } else {
2234 ralign = BYTES_PER_WORD;
2235 }
ca5f9703
PE
2236
2237 /*
2238 * Redzoning and user store require word alignment. Note this will be
2239 * overridden by architecture or caller mandated alignment if either
2240 * is greater than BYTES_PER_WORD.
2241 */
2242 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
b46b8f19 2243 ralign = __alignof__(unsigned long long);
ca5f9703 2244
a44b56d3 2245 /* 2) arch mandated alignment */
1da177e4
LT
2246 if (ralign < ARCH_SLAB_MINALIGN) {
2247 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2248 }
a44b56d3 2249 /* 3) caller mandated alignment */
1da177e4
LT
2250 if (ralign < align) {
2251 ralign = align;
1da177e4 2252 }
a44b56d3 2253 /* disable debug if necessary */
b46b8f19 2254 if (ralign > __alignof__(unsigned long long))
a44b56d3 2255 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2256 /*
ca5f9703 2257 * 4) Store it.
1da177e4
LT
2258 */
2259 align = ralign;
2260
2261 /* Get cache's description obj. */
e94b1766 2262 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
1da177e4 2263 if (!cachep)
4f12bb4f 2264 goto oops;
1da177e4
LT
2265
2266#if DEBUG
3dafccf2 2267 cachep->obj_size = size;
1da177e4 2268
ca5f9703
PE
2269 /*
2270 * Both debugging options require word-alignment which is calculated
2271 * into align above.
2272 */
1da177e4 2273 if (flags & SLAB_RED_ZONE) {
1da177e4 2274 /* add space for red zone words */
b46b8f19
DW
2275 cachep->obj_offset += sizeof(unsigned long long);
2276 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2277 }
2278 if (flags & SLAB_STORE_USER) {
ca5f9703
PE
2279 /* user store requires one word storage behind the end of
2280 * the real object.
1da177e4 2281 */
1da177e4
LT
2282 size += BYTES_PER_WORD;
2283 }
2284#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2285 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2286 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2287 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2288 size = PAGE_SIZE;
2289 }
2290#endif
2291#endif
2292
e0a42726
IM
2293 /*
2294 * Determine if the slab management is 'on' or 'off' slab.
2295 * (bootstrapping cannot cope with offslab caches so don't do
2296 * it too early on.)
2297 */
2298 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2299 /*
2300 * Size is large, assume best to place the slab management obj
2301 * off-slab (should allow better packing of objs).
2302 */
2303 flags |= CFLGS_OFF_SLAB;
2304
2305 size = ALIGN(size, align);
2306
f78bb8ad 2307 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2308
2309 if (!cachep->num) {
b4169525 2310 printk(KERN_ERR
2311 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2312 kmem_cache_free(&cache_cache, cachep);
2313 cachep = NULL;
4f12bb4f 2314 goto oops;
1da177e4 2315 }
b28a02de
PE
2316 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2317 + sizeof(struct slab), align);
1da177e4
LT
2318
2319 /*
2320 * If the slab has been placed off-slab, and we have enough space then
2321 * move it on-slab. This is at the expense of any extra colouring.
2322 */
2323 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2324 flags &= ~CFLGS_OFF_SLAB;
2325 left_over -= slab_size;
2326 }
2327
2328 if (flags & CFLGS_OFF_SLAB) {
2329 /* really off slab. No need for manual alignment */
b28a02de
PE
2330 slab_size =
2331 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2332 }
2333
2334 cachep->colour_off = cache_line_size();
2335 /* Offset must be a multiple of the alignment. */
2336 if (cachep->colour_off < align)
2337 cachep->colour_off = align;
b28a02de 2338 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2339 cachep->slab_size = slab_size;
2340 cachep->flags = flags;
2341 cachep->gfpflags = 0;
4b51d669 2342 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2343 cachep->gfpflags |= GFP_DMA;
3dafccf2 2344 cachep->buffer_size = size;
6a2d7a95 2345 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2346
e5ac9c5a 2347 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2348 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2349 /*
2350 * This is a possibility for one of the malloc_sizes caches.
2351 * But since we go off slab only for object size greater than
2352 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2353 * this should not happen at all.
2354 * But leave a BUG_ON for some lucky dude.
2355 */
2356 BUG_ON(!cachep->slabp_cache);
2357 }
1da177e4
LT
2358 cachep->ctor = ctor;
2359 cachep->dtor = dtor;
2360 cachep->name = name;
2361
2ed3a4ef
CL
2362 if (setup_cpu_cache(cachep)) {
2363 __kmem_cache_destroy(cachep);
2364 cachep = NULL;
2365 goto oops;
2366 }
1da177e4 2367
1da177e4
LT
2368 /* cache setup completed, link it into the list */
2369 list_add(&cachep->next, &cache_chain);
a737b3e2 2370oops:
1da177e4
LT
2371 if (!cachep && (flags & SLAB_PANIC))
2372 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2373 name);
fc0abb14 2374 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2375 return cachep;
2376}
2377EXPORT_SYMBOL(kmem_cache_create);
2378
2379#if DEBUG
2380static void check_irq_off(void)
2381{
2382 BUG_ON(!irqs_disabled());
2383}
2384
2385static void check_irq_on(void)
2386{
2387 BUG_ON(irqs_disabled());
2388}
2389
343e0d7a 2390static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2391{
2392#ifdef CONFIG_SMP
2393 check_irq_off();
e498be7d 2394 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2395#endif
2396}
e498be7d 2397
343e0d7a 2398static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2399{
2400#ifdef CONFIG_SMP
2401 check_irq_off();
2402 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2403#endif
2404}
2405
1da177e4
LT
2406#else
2407#define check_irq_off() do { } while(0)
2408#define check_irq_on() do { } while(0)
2409#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2410#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2411#endif
2412
aab2207c
CL
2413static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2414 struct array_cache *ac,
2415 int force, int node);
2416
1da177e4
LT
2417static void do_drain(void *arg)
2418{
a737b3e2 2419 struct kmem_cache *cachep = arg;
1da177e4 2420 struct array_cache *ac;
ff69416e 2421 int node = numa_node_id();
1da177e4
LT
2422
2423 check_irq_off();
9a2dba4b 2424 ac = cpu_cache_get(cachep);
ff69416e
CL
2425 spin_lock(&cachep->nodelists[node]->list_lock);
2426 free_block(cachep, ac->entry, ac->avail, node);
2427 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2428 ac->avail = 0;
2429}
2430
343e0d7a 2431static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2432{
e498be7d
CL
2433 struct kmem_list3 *l3;
2434 int node;
2435
a07fa394 2436 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2437 check_irq_on();
b28a02de 2438 for_each_online_node(node) {
e498be7d 2439 l3 = cachep->nodelists[node];
a4523a8b
RD
2440 if (l3 && l3->alien)
2441 drain_alien_cache(cachep, l3->alien);
2442 }
2443
2444 for_each_online_node(node) {
2445 l3 = cachep->nodelists[node];
2446 if (l3)
aab2207c 2447 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2448 }
1da177e4
LT
2449}
2450
ed11d9eb
CL
2451/*
2452 * Remove slabs from the list of free slabs.
2453 * Specify the number of slabs to drain in tofree.
2454 *
2455 * Returns the actual number of slabs released.
2456 */
2457static int drain_freelist(struct kmem_cache *cache,
2458 struct kmem_list3 *l3, int tofree)
1da177e4 2459{
ed11d9eb
CL
2460 struct list_head *p;
2461 int nr_freed;
1da177e4 2462 struct slab *slabp;
1da177e4 2463
ed11d9eb
CL
2464 nr_freed = 0;
2465 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2466
ed11d9eb 2467 spin_lock_irq(&l3->list_lock);
e498be7d 2468 p = l3->slabs_free.prev;
ed11d9eb
CL
2469 if (p == &l3->slabs_free) {
2470 spin_unlock_irq(&l3->list_lock);
2471 goto out;
2472 }
1da177e4 2473
ed11d9eb 2474 slabp = list_entry(p, struct slab, list);
1da177e4 2475#if DEBUG
40094fa6 2476 BUG_ON(slabp->inuse);
1da177e4
LT
2477#endif
2478 list_del(&slabp->list);
ed11d9eb
CL
2479 /*
2480 * Safe to drop the lock. The slab is no longer linked
2481 * to the cache.
2482 */
2483 l3->free_objects -= cache->num;
e498be7d 2484 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2485 slab_destroy(cache, slabp);
2486 nr_freed++;
1da177e4 2487 }
ed11d9eb
CL
2488out:
2489 return nr_freed;
1da177e4
LT
2490}
2491
8f5be20b 2492/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2493static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2494{
2495 int ret = 0, i = 0;
2496 struct kmem_list3 *l3;
2497
2498 drain_cpu_caches(cachep);
2499
2500 check_irq_on();
2501 for_each_online_node(i) {
2502 l3 = cachep->nodelists[i];
ed11d9eb
CL
2503 if (!l3)
2504 continue;
2505
2506 drain_freelist(cachep, l3, l3->free_objects);
2507
2508 ret += !list_empty(&l3->slabs_full) ||
2509 !list_empty(&l3->slabs_partial);
e498be7d
CL
2510 }
2511 return (ret ? 1 : 0);
2512}
2513
1da177e4
LT
2514/**
2515 * kmem_cache_shrink - Shrink a cache.
2516 * @cachep: The cache to shrink.
2517 *
2518 * Releases as many slabs as possible for a cache.
2519 * To help debugging, a zero exit status indicates all slabs were released.
2520 */
343e0d7a 2521int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2522{
8f5be20b 2523 int ret;
40094fa6 2524 BUG_ON(!cachep || in_interrupt());
1da177e4 2525
8f5be20b
RT
2526 mutex_lock(&cache_chain_mutex);
2527 ret = __cache_shrink(cachep);
2528 mutex_unlock(&cache_chain_mutex);
2529 return ret;
1da177e4
LT
2530}
2531EXPORT_SYMBOL(kmem_cache_shrink);
2532
2533/**
2534 * kmem_cache_destroy - delete a cache
2535 * @cachep: the cache to destroy
2536 *
72fd4a35 2537 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2538 *
2539 * It is expected this function will be called by a module when it is
2540 * unloaded. This will remove the cache completely, and avoid a duplicate
2541 * cache being allocated each time a module is loaded and unloaded, if the
2542 * module doesn't have persistent in-kernel storage across loads and unloads.
2543 *
2544 * The cache must be empty before calling this function.
2545 *
2546 * The caller must guarantee that noone will allocate memory from the cache
2547 * during the kmem_cache_destroy().
2548 */
133d205a 2549void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2550{
40094fa6 2551 BUG_ON(!cachep || in_interrupt());
1da177e4 2552
1da177e4 2553 /* Find the cache in the chain of caches. */
fc0abb14 2554 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2555 /*
2556 * the chain is never empty, cache_cache is never destroyed
2557 */
2558 list_del(&cachep->next);
1da177e4
LT
2559 if (__cache_shrink(cachep)) {
2560 slab_error(cachep, "Can't free all objects");
b28a02de 2561 list_add(&cachep->next, &cache_chain);
fc0abb14 2562 mutex_unlock(&cache_chain_mutex);
133d205a 2563 return;
1da177e4
LT
2564 }
2565
2566 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2567 synchronize_rcu();
1da177e4 2568
117f6eb1 2569 __kmem_cache_destroy(cachep);
8f5be20b 2570 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2571}
2572EXPORT_SYMBOL(kmem_cache_destroy);
2573
e5ac9c5a
RT
2574/*
2575 * Get the memory for a slab management obj.
2576 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2577 * always come from malloc_sizes caches. The slab descriptor cannot
2578 * come from the same cache which is getting created because,
2579 * when we are searching for an appropriate cache for these
2580 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2581 * If we are creating a malloc_sizes cache here it would not be visible to
2582 * kmem_find_general_cachep till the initialization is complete.
2583 * Hence we cannot have slabp_cache same as the original cache.
2584 */
343e0d7a 2585static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2586 int colour_off, gfp_t local_flags,
2587 int nodeid)
1da177e4
LT
2588{
2589 struct slab *slabp;
b28a02de 2590
1da177e4
LT
2591 if (OFF_SLAB(cachep)) {
2592 /* Slab management obj is off-slab. */
5b74ada7 2593 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
3c517a61 2594 local_flags & ~GFP_THISNODE, nodeid);
1da177e4
LT
2595 if (!slabp)
2596 return NULL;
2597 } else {
b28a02de 2598 slabp = objp + colour_off;
1da177e4
LT
2599 colour_off += cachep->slab_size;
2600 }
2601 slabp->inuse = 0;
2602 slabp->colouroff = colour_off;
b28a02de 2603 slabp->s_mem = objp + colour_off;
5b74ada7 2604 slabp->nodeid = nodeid;
1da177e4
LT
2605 return slabp;
2606}
2607
2608static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2609{
b28a02de 2610 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2611}
2612
343e0d7a 2613static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2614 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2615{
2616 int i;
2617
2618 for (i = 0; i < cachep->num; i++) {
8fea4e96 2619 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2620#if DEBUG
2621 /* need to poison the objs? */
2622 if (cachep->flags & SLAB_POISON)
2623 poison_obj(cachep, objp, POISON_FREE);
2624 if (cachep->flags & SLAB_STORE_USER)
2625 *dbg_userword(cachep, objp) = NULL;
2626
2627 if (cachep->flags & SLAB_RED_ZONE) {
2628 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2629 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2630 }
2631 /*
a737b3e2
AM
2632 * Constructors are not allowed to allocate memory from the same
2633 * cache which they are a constructor for. Otherwise, deadlock.
2634 * They must also be threaded.
1da177e4
LT
2635 */
2636 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2637 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2638 ctor_flags);
1da177e4
LT
2639
2640 if (cachep->flags & SLAB_RED_ZONE) {
2641 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2642 slab_error(cachep, "constructor overwrote the"
b28a02de 2643 " end of an object");
1da177e4
LT
2644 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2645 slab_error(cachep, "constructor overwrote the"
b28a02de 2646 " start of an object");
1da177e4 2647 }
a737b3e2
AM
2648 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2649 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2650 kernel_map_pages(virt_to_page(objp),
3dafccf2 2651 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2652#else
2653 if (cachep->ctor)
2654 cachep->ctor(objp, cachep, ctor_flags);
2655#endif
b28a02de 2656 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2657 }
b28a02de 2658 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2659 slabp->free = 0;
2660}
2661
343e0d7a 2662static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2663{
4b51d669
CL
2664 if (CONFIG_ZONE_DMA_FLAG) {
2665 if (flags & GFP_DMA)
2666 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2667 else
2668 BUG_ON(cachep->gfpflags & GFP_DMA);
2669 }
1da177e4
LT
2670}
2671
a737b3e2
AM
2672static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2673 int nodeid)
78d382d7 2674{
8fea4e96 2675 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2676 kmem_bufctl_t next;
2677
2678 slabp->inuse++;
2679 next = slab_bufctl(slabp)[slabp->free];
2680#if DEBUG
2681 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2682 WARN_ON(slabp->nodeid != nodeid);
2683#endif
2684 slabp->free = next;
2685
2686 return objp;
2687}
2688
a737b3e2
AM
2689static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2690 void *objp, int nodeid)
78d382d7 2691{
8fea4e96 2692 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2693
2694#if DEBUG
2695 /* Verify that the slab belongs to the intended node */
2696 WARN_ON(slabp->nodeid != nodeid);
2697
871751e2 2698 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2699 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2700 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2701 BUG();
2702 }
2703#endif
2704 slab_bufctl(slabp)[objnr] = slabp->free;
2705 slabp->free = objnr;
2706 slabp->inuse--;
2707}
2708
4776874f
PE
2709/*
2710 * Map pages beginning at addr to the given cache and slab. This is required
2711 * for the slab allocator to be able to lookup the cache and slab of a
2712 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2713 */
2714static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2715 void *addr)
1da177e4 2716{
4776874f 2717 int nr_pages;
1da177e4
LT
2718 struct page *page;
2719
4776874f 2720 page = virt_to_page(addr);
84097518 2721
4776874f 2722 nr_pages = 1;
84097518 2723 if (likely(!PageCompound(page)))
4776874f
PE
2724 nr_pages <<= cache->gfporder;
2725
1da177e4 2726 do {
4776874f
PE
2727 page_set_cache(page, cache);
2728 page_set_slab(page, slab);
1da177e4 2729 page++;
4776874f 2730 } while (--nr_pages);
1da177e4
LT
2731}
2732
2733/*
2734 * Grow (by 1) the number of slabs within a cache. This is called by
2735 * kmem_cache_alloc() when there are no active objs left in a cache.
2736 */
3c517a61
CL
2737static int cache_grow(struct kmem_cache *cachep,
2738 gfp_t flags, int nodeid, void *objp)
1da177e4 2739{
b28a02de 2740 struct slab *slabp;
b28a02de
PE
2741 size_t offset;
2742 gfp_t local_flags;
2743 unsigned long ctor_flags;
e498be7d 2744 struct kmem_list3 *l3;
1da177e4 2745
a737b3e2
AM
2746 /*
2747 * Be lazy and only check for valid flags here, keeping it out of the
2748 * critical path in kmem_cache_alloc().
1da177e4 2749 */
cfce6604 2750 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
1da177e4
LT
2751
2752 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
a06d72c1 2753 local_flags = (flags & GFP_LEVEL_MASK);
2e1217cf 2754 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2755 check_irq_off();
2e1217cf
RT
2756 l3 = cachep->nodelists[nodeid];
2757 spin_lock(&l3->list_lock);
1da177e4
LT
2758
2759 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2760 offset = l3->colour_next;
2761 l3->colour_next++;
2762 if (l3->colour_next >= cachep->colour)
2763 l3->colour_next = 0;
2764 spin_unlock(&l3->list_lock);
1da177e4 2765
2e1217cf 2766 offset *= cachep->colour_off;
1da177e4
LT
2767
2768 if (local_flags & __GFP_WAIT)
2769 local_irq_enable();
2770
2771 /*
2772 * The test for missing atomic flag is performed here, rather than
2773 * the more obvious place, simply to reduce the critical path length
2774 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2775 * will eventually be caught here (where it matters).
2776 */
2777 kmem_flagcheck(cachep, flags);
2778
a737b3e2
AM
2779 /*
2780 * Get mem for the objs. Attempt to allocate a physical page from
2781 * 'nodeid'.
e498be7d 2782 */
3c517a61
CL
2783 if (!objp)
2784 objp = kmem_getpages(cachep, flags, nodeid);
a737b3e2 2785 if (!objp)
1da177e4
LT
2786 goto failed;
2787
2788 /* Get slab management. */
3c517a61
CL
2789 slabp = alloc_slabmgmt(cachep, objp, offset,
2790 local_flags & ~GFP_THISNODE, nodeid);
a737b3e2 2791 if (!slabp)
1da177e4
LT
2792 goto opps1;
2793
e498be7d 2794 slabp->nodeid = nodeid;
4776874f 2795 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2796
2797 cache_init_objs(cachep, slabp, ctor_flags);
2798
2799 if (local_flags & __GFP_WAIT)
2800 local_irq_disable();
2801 check_irq_off();
e498be7d 2802 spin_lock(&l3->list_lock);
1da177e4
LT
2803
2804 /* Make slab active. */
e498be7d 2805 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2806 STATS_INC_GROWN(cachep);
e498be7d
CL
2807 l3->free_objects += cachep->num;
2808 spin_unlock(&l3->list_lock);
1da177e4 2809 return 1;
a737b3e2 2810opps1:
1da177e4 2811 kmem_freepages(cachep, objp);
a737b3e2 2812failed:
1da177e4
LT
2813 if (local_flags & __GFP_WAIT)
2814 local_irq_disable();
2815 return 0;
2816}
2817
2818#if DEBUG
2819
2820/*
2821 * Perform extra freeing checks:
2822 * - detect bad pointers.
2823 * - POISON/RED_ZONE checking
2824 * - destructor calls, for caches with POISON+dtor
2825 */
2826static void kfree_debugcheck(const void *objp)
2827{
1da177e4
LT
2828 if (!virt_addr_valid(objp)) {
2829 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2830 (unsigned long)objp);
2831 BUG();
1da177e4 2832 }
1da177e4
LT
2833}
2834
58ce1fd5
PE
2835static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2836{
b46b8f19 2837 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2838
2839 redzone1 = *dbg_redzone1(cache, obj);
2840 redzone2 = *dbg_redzone2(cache, obj);
2841
2842 /*
2843 * Redzone is ok.
2844 */
2845 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2846 return;
2847
2848 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2849 slab_error(cache, "double free detected");
2850 else
2851 slab_error(cache, "memory outside object was overwritten");
2852
b46b8f19 2853 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2854 obj, redzone1, redzone2);
2855}
2856
343e0d7a 2857static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2858 void *caller)
1da177e4
LT
2859{
2860 struct page *page;
2861 unsigned int objnr;
2862 struct slab *slabp;
2863
3dafccf2 2864 objp -= obj_offset(cachep);
1da177e4 2865 kfree_debugcheck(objp);
b49af68f 2866 page = virt_to_head_page(objp);
1da177e4 2867
065d41cb 2868 slabp = page_get_slab(page);
1da177e4
LT
2869
2870 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2871 verify_redzone_free(cachep, objp);
1da177e4
LT
2872 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2873 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2874 }
2875 if (cachep->flags & SLAB_STORE_USER)
2876 *dbg_userword(cachep, objp) = caller;
2877
8fea4e96 2878 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2879
2880 BUG_ON(objnr >= cachep->num);
8fea4e96 2881 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2882
1da177e4
LT
2883 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2884 /* we want to cache poison the object,
2885 * call the destruction callback
2886 */
3dafccf2 2887 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2888 }
871751e2
AV
2889#ifdef CONFIG_DEBUG_SLAB_LEAK
2890 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2891#endif
1da177e4
LT
2892 if (cachep->flags & SLAB_POISON) {
2893#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2894 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2895 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2896 kernel_map_pages(virt_to_page(objp),
3dafccf2 2897 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2898 } else {
2899 poison_obj(cachep, objp, POISON_FREE);
2900 }
2901#else
2902 poison_obj(cachep, objp, POISON_FREE);
2903#endif
2904 }
2905 return objp;
2906}
2907
343e0d7a 2908static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2909{
2910 kmem_bufctl_t i;
2911 int entries = 0;
b28a02de 2912
1da177e4
LT
2913 /* Check slab's freelist to see if this obj is there. */
2914 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2915 entries++;
2916 if (entries > cachep->num || i >= cachep->num)
2917 goto bad;
2918 }
2919 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2920bad:
2921 printk(KERN_ERR "slab: Internal list corruption detected in "
2922 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2923 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2924 for (i = 0;
264132bc 2925 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2926 i++) {
a737b3e2 2927 if (i % 16 == 0)
1da177e4 2928 printk("\n%03x:", i);
b28a02de 2929 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2930 }
2931 printk("\n");
2932 BUG();
2933 }
2934}
2935#else
2936#define kfree_debugcheck(x) do { } while(0)
2937#define cache_free_debugcheck(x,objp,z) (objp)
2938#define check_slabp(x,y) do { } while(0)
2939#endif
2940
343e0d7a 2941static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2942{
2943 int batchcount;
2944 struct kmem_list3 *l3;
2945 struct array_cache *ac;
1ca4cb24
PE
2946 int node;
2947
2948 node = numa_node_id();
1da177e4
LT
2949
2950 check_irq_off();
9a2dba4b 2951 ac = cpu_cache_get(cachep);
a737b3e2 2952retry:
1da177e4
LT
2953 batchcount = ac->batchcount;
2954 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2955 /*
2956 * If there was little recent activity on this cache, then
2957 * perform only a partial refill. Otherwise we could generate
2958 * refill bouncing.
1da177e4
LT
2959 */
2960 batchcount = BATCHREFILL_LIMIT;
2961 }
1ca4cb24 2962 l3 = cachep->nodelists[node];
e498be7d
CL
2963
2964 BUG_ON(ac->avail > 0 || !l3);
2965 spin_lock(&l3->list_lock);
1da177e4 2966
3ded175a
CL
2967 /* See if we can refill from the shared array */
2968 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2969 goto alloc_done;
2970
1da177e4
LT
2971 while (batchcount > 0) {
2972 struct list_head *entry;
2973 struct slab *slabp;
2974 /* Get slab alloc is to come from. */
2975 entry = l3->slabs_partial.next;
2976 if (entry == &l3->slabs_partial) {
2977 l3->free_touched = 1;
2978 entry = l3->slabs_free.next;
2979 if (entry == &l3->slabs_free)
2980 goto must_grow;
2981 }
2982
2983 slabp = list_entry(entry, struct slab, list);
2984 check_slabp(cachep, slabp);
2985 check_spinlock_acquired(cachep);
714b8171
PE
2986
2987 /*
2988 * The slab was either on partial or free list so
2989 * there must be at least one object available for
2990 * allocation.
2991 */
2992 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2993
1da177e4 2994 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2995 STATS_INC_ALLOCED(cachep);
2996 STATS_INC_ACTIVE(cachep);
2997 STATS_SET_HIGH(cachep);
2998
78d382d7 2999 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3000 node);
1da177e4
LT
3001 }
3002 check_slabp(cachep, slabp);
3003
3004 /* move slabp to correct slabp list: */
3005 list_del(&slabp->list);
3006 if (slabp->free == BUFCTL_END)
3007 list_add(&slabp->list, &l3->slabs_full);
3008 else
3009 list_add(&slabp->list, &l3->slabs_partial);
3010 }
3011
a737b3e2 3012must_grow:
1da177e4 3013 l3->free_objects -= ac->avail;
a737b3e2 3014alloc_done:
e498be7d 3015 spin_unlock(&l3->list_lock);
1da177e4
LT
3016
3017 if (unlikely(!ac->avail)) {
3018 int x;
3c517a61 3019 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3020
a737b3e2 3021 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3022 ac = cpu_cache_get(cachep);
a737b3e2 3023 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3024 return NULL;
3025
a737b3e2 3026 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3027 goto retry;
3028 }
3029 ac->touched = 1;
e498be7d 3030 return ac->entry[--ac->avail];
1da177e4
LT
3031}
3032
a737b3e2
AM
3033static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3034 gfp_t flags)
1da177e4
LT
3035{
3036 might_sleep_if(flags & __GFP_WAIT);
3037#if DEBUG
3038 kmem_flagcheck(cachep, flags);
3039#endif
3040}
3041
3042#if DEBUG
a737b3e2
AM
3043static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3044 gfp_t flags, void *objp, void *caller)
1da177e4 3045{
b28a02de 3046 if (!objp)
1da177e4 3047 return objp;
b28a02de 3048 if (cachep->flags & SLAB_POISON) {
1da177e4 3049#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3050 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3051 kernel_map_pages(virt_to_page(objp),
3dafccf2 3052 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3053 else
3054 check_poison_obj(cachep, objp);
3055#else
3056 check_poison_obj(cachep, objp);
3057#endif
3058 poison_obj(cachep, objp, POISON_INUSE);
3059 }
3060 if (cachep->flags & SLAB_STORE_USER)
3061 *dbg_userword(cachep, objp) = caller;
3062
3063 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3064 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3065 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3066 slab_error(cachep, "double free, or memory outside"
3067 " object was overwritten");
b28a02de 3068 printk(KERN_ERR
b46b8f19 3069 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3070 objp, *dbg_redzone1(cachep, objp),
3071 *dbg_redzone2(cachep, objp));
1da177e4
LT
3072 }
3073 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3074 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3075 }
871751e2
AV
3076#ifdef CONFIG_DEBUG_SLAB_LEAK
3077 {
3078 struct slab *slabp;
3079 unsigned objnr;
3080
b49af68f 3081 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3082 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3083 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3084 }
3085#endif
3dafccf2 3086 objp += obj_offset(cachep);
4f104934
CL
3087 if (cachep->ctor && cachep->flags & SLAB_POISON)
3088 cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
a44b56d3
KH
3089#if ARCH_SLAB_MINALIGN
3090 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3091 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3092 objp, ARCH_SLAB_MINALIGN);
3093 }
3094#endif
1da177e4
LT
3095 return objp;
3096}
3097#else
3098#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3099#endif
3100
8a8b6502
AM
3101#ifdef CONFIG_FAILSLAB
3102
3103static struct failslab_attr {
3104
3105 struct fault_attr attr;
3106
3107 u32 ignore_gfp_wait;
3108#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3109 struct dentry *ignore_gfp_wait_file;
3110#endif
3111
3112} failslab = {
3113 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4 3114 .ignore_gfp_wait = 1,
8a8b6502
AM
3115};
3116
3117static int __init setup_failslab(char *str)
3118{
3119 return setup_fault_attr(&failslab.attr, str);
3120}
3121__setup("failslab=", setup_failslab);
3122
3123static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3124{
3125 if (cachep == &cache_cache)
3126 return 0;
3127 if (flags & __GFP_NOFAIL)
3128 return 0;
3129 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3130 return 0;
3131
3132 return should_fail(&failslab.attr, obj_size(cachep));
3133}
3134
3135#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3136
3137static int __init failslab_debugfs(void)
3138{
3139 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3140 struct dentry *dir;
3141 int err;
3142
824ebef1 3143 err = init_fault_attr_dentries(&failslab.attr, "failslab");
8a8b6502
AM
3144 if (err)
3145 return err;
3146 dir = failslab.attr.dentries.dir;
3147
3148 failslab.ignore_gfp_wait_file =
3149 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3150 &failslab.ignore_gfp_wait);
3151
3152 if (!failslab.ignore_gfp_wait_file) {
3153 err = -ENOMEM;
3154 debugfs_remove(failslab.ignore_gfp_wait_file);
3155 cleanup_fault_attr_dentries(&failslab.attr);
3156 }
3157
3158 return err;
3159}
3160
3161late_initcall(failslab_debugfs);
3162
3163#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3164
3165#else /* CONFIG_FAILSLAB */
3166
3167static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3168{
3169 return 0;
3170}
3171
3172#endif /* CONFIG_FAILSLAB */
3173
343e0d7a 3174static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3175{
b28a02de 3176 void *objp;
1da177e4
LT
3177 struct array_cache *ac;
3178
5c382300 3179 check_irq_off();
8a8b6502 3180
9a2dba4b 3181 ac = cpu_cache_get(cachep);
1da177e4
LT
3182 if (likely(ac->avail)) {
3183 STATS_INC_ALLOCHIT(cachep);
3184 ac->touched = 1;
e498be7d 3185 objp = ac->entry[--ac->avail];
1da177e4
LT
3186 } else {
3187 STATS_INC_ALLOCMISS(cachep);
3188 objp = cache_alloc_refill(cachep, flags);
3189 }
5c382300
AK
3190 return objp;
3191}
3192
e498be7d 3193#ifdef CONFIG_NUMA
c61afb18 3194/*
b2455396 3195 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3196 *
3197 * If we are in_interrupt, then process context, including cpusets and
3198 * mempolicy, may not apply and should not be used for allocation policy.
3199 */
3200static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3201{
3202 int nid_alloc, nid_here;
3203
765c4507 3204 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3205 return NULL;
3206 nid_alloc = nid_here = numa_node_id();
3207 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3208 nid_alloc = cpuset_mem_spread_node();
3209 else if (current->mempolicy)
3210 nid_alloc = slab_node(current->mempolicy);
3211 if (nid_alloc != nid_here)
8b98c169 3212 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3213 return NULL;
3214}
3215
765c4507
CL
3216/*
3217 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3218 * certain node and fall back is permitted. First we scan all the
3219 * available nodelists for available objects. If that fails then we
3220 * perform an allocation without specifying a node. This allows the page
3221 * allocator to do its reclaim / fallback magic. We then insert the
3222 * slab into the proper nodelist and then allocate from it.
765c4507 3223 */
8c8cc2c1 3224static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3225{
8c8cc2c1
PE
3226 struct zonelist *zonelist;
3227 gfp_t local_flags;
765c4507
CL
3228 struct zone **z;
3229 void *obj = NULL;
3c517a61 3230 int nid;
8c8cc2c1
PE
3231
3232 if (flags & __GFP_THISNODE)
3233 return NULL;
3234
3235 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3236 ->node_zonelists[gfp_zone(flags)];
3237 local_flags = (flags & GFP_LEVEL_MASK);
765c4507 3238
3c517a61
CL
3239retry:
3240 /*
3241 * Look through allowed nodes for objects available
3242 * from existing per node queues.
3243 */
aedb0eb1 3244 for (z = zonelist->zones; *z && !obj; z++) {
3c517a61 3245 nid = zone_to_nid(*z);
aedb0eb1 3246
02a0e53d 3247 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3c517a61
CL
3248 cache->nodelists[nid] &&
3249 cache->nodelists[nid]->free_objects)
3250 obj = ____cache_alloc_node(cache,
3251 flags | GFP_THISNODE, nid);
3252 }
3253
cfce6604 3254 if (!obj) {
3c517a61
CL
3255 /*
3256 * This allocation will be performed within the constraints
3257 * of the current cpuset / memory policy requirements.
3258 * We may trigger various forms of reclaim on the allowed
3259 * set and go into memory reserves if necessary.
3260 */
dd47ea75
CL
3261 if (local_flags & __GFP_WAIT)
3262 local_irq_enable();
3263 kmem_flagcheck(cache, flags);
3c517a61 3264 obj = kmem_getpages(cache, flags, -1);
dd47ea75
CL
3265 if (local_flags & __GFP_WAIT)
3266 local_irq_disable();
3c517a61
CL
3267 if (obj) {
3268 /*
3269 * Insert into the appropriate per node queues
3270 */
3271 nid = page_to_nid(virt_to_page(obj));
3272 if (cache_grow(cache, flags, nid, obj)) {
3273 obj = ____cache_alloc_node(cache,
3274 flags | GFP_THISNODE, nid);
3275 if (!obj)
3276 /*
3277 * Another processor may allocate the
3278 * objects in the slab since we are
3279 * not holding any locks.
3280 */
3281 goto retry;
3282 } else {
b6a60451 3283 /* cache_grow already freed obj */
3c517a61
CL
3284 obj = NULL;
3285 }
3286 }
aedb0eb1 3287 }
765c4507
CL
3288 return obj;
3289}
3290
e498be7d
CL
3291/*
3292 * A interface to enable slab creation on nodeid
1da177e4 3293 */
8b98c169 3294static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3295 int nodeid)
e498be7d
CL
3296{
3297 struct list_head *entry;
b28a02de
PE
3298 struct slab *slabp;
3299 struct kmem_list3 *l3;
3300 void *obj;
b28a02de
PE
3301 int x;
3302
3303 l3 = cachep->nodelists[nodeid];
3304 BUG_ON(!l3);
3305
a737b3e2 3306retry:
ca3b9b91 3307 check_irq_off();
b28a02de
PE
3308 spin_lock(&l3->list_lock);
3309 entry = l3->slabs_partial.next;
3310 if (entry == &l3->slabs_partial) {
3311 l3->free_touched = 1;
3312 entry = l3->slabs_free.next;
3313 if (entry == &l3->slabs_free)
3314 goto must_grow;
3315 }
3316
3317 slabp = list_entry(entry, struct slab, list);
3318 check_spinlock_acquired_node(cachep, nodeid);
3319 check_slabp(cachep, slabp);
3320
3321 STATS_INC_NODEALLOCS(cachep);
3322 STATS_INC_ACTIVE(cachep);
3323 STATS_SET_HIGH(cachep);
3324
3325 BUG_ON(slabp->inuse == cachep->num);
3326
78d382d7 3327 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3328 check_slabp(cachep, slabp);
3329 l3->free_objects--;
3330 /* move slabp to correct slabp list: */
3331 list_del(&slabp->list);
3332
a737b3e2 3333 if (slabp->free == BUFCTL_END)
b28a02de 3334 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3335 else
b28a02de 3336 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3337
b28a02de
PE
3338 spin_unlock(&l3->list_lock);
3339 goto done;
e498be7d 3340
a737b3e2 3341must_grow:
b28a02de 3342 spin_unlock(&l3->list_lock);
3c517a61 3343 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3344 if (x)
3345 goto retry;
1da177e4 3346
8c8cc2c1 3347 return fallback_alloc(cachep, flags);
e498be7d 3348
a737b3e2 3349done:
b28a02de 3350 return obj;
e498be7d 3351}
8c8cc2c1
PE
3352
3353/**
3354 * kmem_cache_alloc_node - Allocate an object on the specified node
3355 * @cachep: The cache to allocate from.
3356 * @flags: See kmalloc().
3357 * @nodeid: node number of the target node.
3358 * @caller: return address of caller, used for debug information
3359 *
3360 * Identical to kmem_cache_alloc but it will allocate memory on the given
3361 * node, which can improve the performance for cpu bound structures.
3362 *
3363 * Fallback to other node is possible if __GFP_THISNODE is not set.
3364 */
3365static __always_inline void *
3366__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3367 void *caller)
3368{
3369 unsigned long save_flags;
3370 void *ptr;
3371
824ebef1
AM
3372 if (should_failslab(cachep, flags))
3373 return NULL;
3374
8c8cc2c1
PE
3375 cache_alloc_debugcheck_before(cachep, flags);
3376 local_irq_save(save_flags);
3377
3378 if (unlikely(nodeid == -1))
3379 nodeid = numa_node_id();
3380
3381 if (unlikely(!cachep->nodelists[nodeid])) {
3382 /* Node not bootstrapped yet */
3383 ptr = fallback_alloc(cachep, flags);
3384 goto out;
3385 }
3386
3387 if (nodeid == numa_node_id()) {
3388 /*
3389 * Use the locally cached objects if possible.
3390 * However ____cache_alloc does not allow fallback
3391 * to other nodes. It may fail while we still have
3392 * objects on other nodes available.
3393 */
3394 ptr = ____cache_alloc(cachep, flags);
3395 if (ptr)
3396 goto out;
3397 }
3398 /* ___cache_alloc_node can fall back to other nodes */
3399 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3400 out:
3401 local_irq_restore(save_flags);
3402 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3403
3404 return ptr;
3405}
3406
3407static __always_inline void *
3408__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3409{
3410 void *objp;
3411
3412 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3413 objp = alternate_node_alloc(cache, flags);
3414 if (objp)
3415 goto out;
3416 }
3417 objp = ____cache_alloc(cache, flags);
3418
3419 /*
3420 * We may just have run out of memory on the local node.
3421 * ____cache_alloc_node() knows how to locate memory on other nodes
3422 */
3423 if (!objp)
3424 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3425
3426 out:
3427 return objp;
3428}
3429#else
3430
3431static __always_inline void *
3432__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3433{
3434 return ____cache_alloc(cachep, flags);
3435}
3436
3437#endif /* CONFIG_NUMA */
3438
3439static __always_inline void *
3440__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3441{
3442 unsigned long save_flags;
3443 void *objp;
3444
824ebef1
AM
3445 if (should_failslab(cachep, flags))
3446 return NULL;
3447
8c8cc2c1
PE
3448 cache_alloc_debugcheck_before(cachep, flags);
3449 local_irq_save(save_flags);
3450 objp = __do_cache_alloc(cachep, flags);
3451 local_irq_restore(save_flags);
3452 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3453 prefetchw(objp);
3454
3455 return objp;
3456}
e498be7d
CL
3457
3458/*
3459 * Caller needs to acquire correct kmem_list's list_lock
3460 */
343e0d7a 3461static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3462 int node)
1da177e4
LT
3463{
3464 int i;
e498be7d 3465 struct kmem_list3 *l3;
1da177e4
LT
3466
3467 for (i = 0; i < nr_objects; i++) {
3468 void *objp = objpp[i];
3469 struct slab *slabp;
1da177e4 3470
6ed5eb22 3471 slabp = virt_to_slab(objp);
ff69416e 3472 l3 = cachep->nodelists[node];
1da177e4 3473 list_del(&slabp->list);
ff69416e 3474 check_spinlock_acquired_node(cachep, node);
1da177e4 3475 check_slabp(cachep, slabp);
78d382d7 3476 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3477 STATS_DEC_ACTIVE(cachep);
e498be7d 3478 l3->free_objects++;
1da177e4
LT
3479 check_slabp(cachep, slabp);
3480
3481 /* fixup slab chains */
3482 if (slabp->inuse == 0) {
e498be7d
CL
3483 if (l3->free_objects > l3->free_limit) {
3484 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3485 /* No need to drop any previously held
3486 * lock here, even if we have a off-slab slab
3487 * descriptor it is guaranteed to come from
3488 * a different cache, refer to comments before
3489 * alloc_slabmgmt.
3490 */
1da177e4
LT
3491 slab_destroy(cachep, slabp);
3492 } else {
e498be7d 3493 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3494 }
3495 } else {
3496 /* Unconditionally move a slab to the end of the
3497 * partial list on free - maximum time for the
3498 * other objects to be freed, too.
3499 */
e498be7d 3500 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3501 }
3502 }
3503}
3504
343e0d7a 3505static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3506{
3507 int batchcount;
e498be7d 3508 struct kmem_list3 *l3;
ff69416e 3509 int node = numa_node_id();
1da177e4
LT
3510
3511 batchcount = ac->batchcount;
3512#if DEBUG
3513 BUG_ON(!batchcount || batchcount > ac->avail);
3514#endif
3515 check_irq_off();
ff69416e 3516 l3 = cachep->nodelists[node];
873623df 3517 spin_lock(&l3->list_lock);
e498be7d
CL
3518 if (l3->shared) {
3519 struct array_cache *shared_array = l3->shared;
b28a02de 3520 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3521 if (max) {
3522 if (batchcount > max)
3523 batchcount = max;
e498be7d 3524 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3525 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3526 shared_array->avail += batchcount;
3527 goto free_done;
3528 }
3529 }
3530
ff69416e 3531 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3532free_done:
1da177e4
LT
3533#if STATS
3534 {
3535 int i = 0;
3536 struct list_head *p;
3537
e498be7d
CL
3538 p = l3->slabs_free.next;
3539 while (p != &(l3->slabs_free)) {
1da177e4
LT
3540 struct slab *slabp;
3541
3542 slabp = list_entry(p, struct slab, list);
3543 BUG_ON(slabp->inuse);
3544
3545 i++;
3546 p = p->next;
3547 }
3548 STATS_SET_FREEABLE(cachep, i);
3549 }
3550#endif
e498be7d 3551 spin_unlock(&l3->list_lock);
1da177e4 3552 ac->avail -= batchcount;
a737b3e2 3553 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3554}
3555
3556/*
a737b3e2
AM
3557 * Release an obj back to its cache. If the obj has a constructed state, it must
3558 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3559 */
873623df 3560static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3561{
9a2dba4b 3562 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3563
3564 check_irq_off();
3565 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3566
62918a03 3567 if (use_alien_caches && cache_free_alien(cachep, objp))
729bd0b7
PE
3568 return;
3569
1da177e4
LT
3570 if (likely(ac->avail < ac->limit)) {
3571 STATS_INC_FREEHIT(cachep);
e498be7d 3572 ac->entry[ac->avail++] = objp;
1da177e4
LT
3573 return;
3574 } else {
3575 STATS_INC_FREEMISS(cachep);
3576 cache_flusharray(cachep, ac);
e498be7d 3577 ac->entry[ac->avail++] = objp;
1da177e4
LT
3578 }
3579}
3580
3581/**
3582 * kmem_cache_alloc - Allocate an object
3583 * @cachep: The cache to allocate from.
3584 * @flags: See kmalloc().
3585 *
3586 * Allocate an object from this cache. The flags are only relevant
3587 * if the cache has no available objects.
3588 */
343e0d7a 3589void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3590{
7fd6b141 3591 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3592}
3593EXPORT_SYMBOL(kmem_cache_alloc);
3594
a8c0f9a4 3595/**
b8008b2b 3596 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
a8c0f9a4
PE
3597 * @cache: The cache to allocate from.
3598 * @flags: See kmalloc().
3599 *
3600 * Allocate an object from this cache and set the allocated memory to zero.
3601 * The flags are only relevant if the cache has no available objects.
3602 */
3603void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3604{
3605 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3606 if (ret)
3607 memset(ret, 0, obj_size(cache));
3608 return ret;
3609}
3610EXPORT_SYMBOL(kmem_cache_zalloc);
3611
1da177e4
LT
3612/**
3613 * kmem_ptr_validate - check if an untrusted pointer might
3614 * be a slab entry.
3615 * @cachep: the cache we're checking against
3616 * @ptr: pointer to validate
3617 *
3618 * This verifies that the untrusted pointer looks sane:
3619 * it is _not_ a guarantee that the pointer is actually
3620 * part of the slab cache in question, but it at least
3621 * validates that the pointer can be dereferenced and
3622 * looks half-way sane.
3623 *
3624 * Currently only used for dentry validation.
3625 */
b7f869a2 3626int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3627{
b28a02de 3628 unsigned long addr = (unsigned long)ptr;
1da177e4 3629 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3630 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3631 unsigned long size = cachep->buffer_size;
1da177e4
LT
3632 struct page *page;
3633
3634 if (unlikely(addr < min_addr))
3635 goto out;
3636 if (unlikely(addr > (unsigned long)high_memory - size))
3637 goto out;
3638 if (unlikely(addr & align_mask))
3639 goto out;
3640 if (unlikely(!kern_addr_valid(addr)))
3641 goto out;
3642 if (unlikely(!kern_addr_valid(addr + size - 1)))
3643 goto out;
3644 page = virt_to_page(ptr);
3645 if (unlikely(!PageSlab(page)))
3646 goto out;
065d41cb 3647 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3648 goto out;
3649 return 1;
a737b3e2 3650out:
1da177e4
LT
3651 return 0;
3652}
3653
3654#ifdef CONFIG_NUMA
8b98c169
CH
3655void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3656{
3657 return __cache_alloc_node(cachep, flags, nodeid,
3658 __builtin_return_address(0));
3659}
1da177e4
LT
3660EXPORT_SYMBOL(kmem_cache_alloc_node);
3661
8b98c169
CH
3662static __always_inline void *
3663__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3664{
343e0d7a 3665 struct kmem_cache *cachep;
97e2bde4
MS
3666
3667 cachep = kmem_find_general_cachep(size, flags);
3668 if (unlikely(cachep == NULL))
3669 return NULL;
3670 return kmem_cache_alloc_node(cachep, flags, node);
3671}
8b98c169
CH
3672
3673#ifdef CONFIG_DEBUG_SLAB
3674void *__kmalloc_node(size_t size, gfp_t flags, int node)
3675{
3676 return __do_kmalloc_node(size, flags, node,
3677 __builtin_return_address(0));
3678}
dbe5e69d 3679EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3680
3681void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3682 int node, void *caller)
3683{
3684 return __do_kmalloc_node(size, flags, node, caller);
3685}
3686EXPORT_SYMBOL(__kmalloc_node_track_caller);
3687#else
3688void *__kmalloc_node(size_t size, gfp_t flags, int node)
3689{
3690 return __do_kmalloc_node(size, flags, node, NULL);
3691}
3692EXPORT_SYMBOL(__kmalloc_node);
3693#endif /* CONFIG_DEBUG_SLAB */
3694#endif /* CONFIG_NUMA */
1da177e4
LT
3695
3696/**
800590f5 3697 * __do_kmalloc - allocate memory
1da177e4 3698 * @size: how many bytes of memory are required.
800590f5 3699 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3700 * @caller: function caller for debug tracking of the caller
1da177e4 3701 */
7fd6b141
PE
3702static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3703 void *caller)
1da177e4 3704{
343e0d7a 3705 struct kmem_cache *cachep;
1da177e4 3706
97e2bde4
MS
3707 /* If you want to save a few bytes .text space: replace
3708 * __ with kmem_.
3709 * Then kmalloc uses the uninlined functions instead of the inline
3710 * functions.
3711 */
3712 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3713 if (unlikely(cachep == NULL))
3714 return NULL;
7fd6b141
PE
3715 return __cache_alloc(cachep, flags, caller);
3716}
3717
7fd6b141 3718
1d2c8eea 3719#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3720void *__kmalloc(size_t size, gfp_t flags)
3721{
871751e2 3722 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3723}
3724EXPORT_SYMBOL(__kmalloc);
3725
7fd6b141
PE
3726void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3727{
3728 return __do_kmalloc(size, flags, caller);
3729}
3730EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3731
3732#else
3733void *__kmalloc(size_t size, gfp_t flags)
3734{
3735 return __do_kmalloc(size, flags, NULL);
3736}
3737EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3738#endif
3739
fd76bab2
PE
3740/**
3741 * krealloc - reallocate memory. The contents will remain unchanged.
fd76bab2
PE
3742 * @p: object to reallocate memory for.
3743 * @new_size: how many bytes of memory are required.
3744 * @flags: the type of memory to allocate.
3745 *
3746 * The contents of the object pointed to are preserved up to the
3747 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3748 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3749 * %NULL pointer, the object pointed to is freed.
3750 */
3751void *krealloc(const void *p, size_t new_size, gfp_t flags)
3752{
3753 struct kmem_cache *cache, *new_cache;
3754 void *ret;
3755
3756 if (unlikely(!p))
3757 return kmalloc_track_caller(new_size, flags);
3758
3759 if (unlikely(!new_size)) {
3760 kfree(p);
3761 return NULL;
3762 }
3763
3764 cache = virt_to_cache(p);
3765 new_cache = __find_general_cachep(new_size, flags);
3766
3767 /*
3768 * If new size fits in the current cache, bail out.
3769 */
3770 if (likely(cache == new_cache))
3771 return (void *)p;
3772
3773 /*
3774 * We are on the slow-path here so do not use __cache_alloc
3775 * because it bloats kernel text.
3776 */
3777 ret = kmalloc_track_caller(new_size, flags);
3778 if (ret) {
3779 memcpy(ret, p, min(new_size, ksize(p)));
3780 kfree(p);
3781 }
3782 return ret;
3783}
3784EXPORT_SYMBOL(krealloc);
3785
1da177e4
LT
3786/**
3787 * kmem_cache_free - Deallocate an object
3788 * @cachep: The cache the allocation was from.
3789 * @objp: The previously allocated object.
3790 *
3791 * Free an object which was previously allocated from this
3792 * cache.
3793 */
343e0d7a 3794void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3795{
3796 unsigned long flags;
3797
ddc2e812
PE
3798 BUG_ON(virt_to_cache(objp) != cachep);
3799
1da177e4 3800 local_irq_save(flags);
898552c9 3801 debug_check_no_locks_freed(objp, obj_size(cachep));
873623df 3802 __cache_free(cachep, objp);
1da177e4
LT
3803 local_irq_restore(flags);
3804}
3805EXPORT_SYMBOL(kmem_cache_free);
3806
1da177e4
LT
3807/**
3808 * kfree - free previously allocated memory
3809 * @objp: pointer returned by kmalloc.
3810 *
80e93eff
PE
3811 * If @objp is NULL, no operation is performed.
3812 *
1da177e4
LT
3813 * Don't free memory not originally allocated by kmalloc()
3814 * or you will run into trouble.
3815 */
3816void kfree(const void *objp)
3817{
343e0d7a 3818 struct kmem_cache *c;
1da177e4
LT
3819 unsigned long flags;
3820
3821 if (unlikely(!objp))
3822 return;
3823 local_irq_save(flags);
3824 kfree_debugcheck(objp);
6ed5eb22 3825 c = virt_to_cache(objp);
f9b8404c 3826 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3827 __cache_free(c, (void *)objp);
1da177e4
LT
3828 local_irq_restore(flags);
3829}
3830EXPORT_SYMBOL(kfree);
3831
343e0d7a 3832unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3833{
3dafccf2 3834 return obj_size(cachep);
1da177e4
LT
3835}
3836EXPORT_SYMBOL(kmem_cache_size);
3837
343e0d7a 3838const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3839{
3840 return cachep->name;
3841}
3842EXPORT_SYMBOL_GPL(kmem_cache_name);
3843
e498be7d 3844/*
0718dc2a 3845 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3846 */
343e0d7a 3847static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3848{
3849 int node;
3850 struct kmem_list3 *l3;
cafeb02e 3851 struct array_cache *new_shared;
3395ee05 3852 struct array_cache **new_alien = NULL;
e498be7d
CL
3853
3854 for_each_online_node(node) {
cafeb02e 3855
3395ee05
PM
3856 if (use_alien_caches) {
3857 new_alien = alloc_alien_cache(node, cachep->limit);
3858 if (!new_alien)
3859 goto fail;
3860 }
cafeb02e 3861
63109846
ED
3862 new_shared = NULL;
3863 if (cachep->shared) {
3864 new_shared = alloc_arraycache(node,
0718dc2a 3865 cachep->shared*cachep->batchcount,
a737b3e2 3866 0xbaadf00d);
63109846
ED
3867 if (!new_shared) {
3868 free_alien_cache(new_alien);
3869 goto fail;
3870 }
0718dc2a 3871 }
cafeb02e 3872
a737b3e2
AM
3873 l3 = cachep->nodelists[node];
3874 if (l3) {
cafeb02e
CL
3875 struct array_cache *shared = l3->shared;
3876
e498be7d
CL
3877 spin_lock_irq(&l3->list_lock);
3878
cafeb02e 3879 if (shared)
0718dc2a
CL
3880 free_block(cachep, shared->entry,
3881 shared->avail, node);
e498be7d 3882
cafeb02e
CL
3883 l3->shared = new_shared;
3884 if (!l3->alien) {
e498be7d
CL
3885 l3->alien = new_alien;
3886 new_alien = NULL;
3887 }
b28a02de 3888 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3889 cachep->batchcount + cachep->num;
e498be7d 3890 spin_unlock_irq(&l3->list_lock);
cafeb02e 3891 kfree(shared);
e498be7d
CL
3892 free_alien_cache(new_alien);
3893 continue;
3894 }
a737b3e2 3895 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3896 if (!l3) {
3897 free_alien_cache(new_alien);
3898 kfree(new_shared);
e498be7d 3899 goto fail;
0718dc2a 3900 }
e498be7d
CL
3901
3902 kmem_list3_init(l3);
3903 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3904 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3905 l3->shared = new_shared;
e498be7d 3906 l3->alien = new_alien;
b28a02de 3907 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3908 cachep->batchcount + cachep->num;
e498be7d
CL
3909 cachep->nodelists[node] = l3;
3910 }
cafeb02e 3911 return 0;
0718dc2a 3912
a737b3e2 3913fail:
0718dc2a
CL
3914 if (!cachep->next.next) {
3915 /* Cache is not active yet. Roll back what we did */
3916 node--;
3917 while (node >= 0) {
3918 if (cachep->nodelists[node]) {
3919 l3 = cachep->nodelists[node];
3920
3921 kfree(l3->shared);
3922 free_alien_cache(l3->alien);
3923 kfree(l3);
3924 cachep->nodelists[node] = NULL;
3925 }
3926 node--;
3927 }
3928 }
cafeb02e 3929 return -ENOMEM;
e498be7d
CL
3930}
3931
1da177e4 3932struct ccupdate_struct {
343e0d7a 3933 struct kmem_cache *cachep;
1da177e4
LT
3934 struct array_cache *new[NR_CPUS];
3935};
3936
3937static void do_ccupdate_local(void *info)
3938{
a737b3e2 3939 struct ccupdate_struct *new = info;
1da177e4
LT
3940 struct array_cache *old;
3941
3942 check_irq_off();
9a2dba4b 3943 old = cpu_cache_get(new->cachep);
e498be7d 3944
1da177e4
LT
3945 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3946 new->new[smp_processor_id()] = old;
3947}
3948
b5d8ca7c 3949/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3950static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3951 int batchcount, int shared)
1da177e4 3952{
d2e7b7d0 3953 struct ccupdate_struct *new;
2ed3a4ef 3954 int i;
1da177e4 3955
d2e7b7d0
SS
3956 new = kzalloc(sizeof(*new), GFP_KERNEL);
3957 if (!new)
3958 return -ENOMEM;
3959
e498be7d 3960 for_each_online_cpu(i) {
d2e7b7d0 3961 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3962 batchcount);
d2e7b7d0 3963 if (!new->new[i]) {
b28a02de 3964 for (i--; i >= 0; i--)
d2e7b7d0
SS
3965 kfree(new->new[i]);
3966 kfree(new);
e498be7d 3967 return -ENOMEM;
1da177e4
LT
3968 }
3969 }
d2e7b7d0 3970 new->cachep = cachep;
1da177e4 3971
d2e7b7d0 3972 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3973
1da177e4 3974 check_irq_on();
1da177e4
LT
3975 cachep->batchcount = batchcount;
3976 cachep->limit = limit;
e498be7d 3977 cachep->shared = shared;
1da177e4 3978
e498be7d 3979 for_each_online_cpu(i) {
d2e7b7d0 3980 struct array_cache *ccold = new->new[i];
1da177e4
LT
3981 if (!ccold)
3982 continue;
e498be7d 3983 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3984 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3985 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3986 kfree(ccold);
3987 }
d2e7b7d0 3988 kfree(new);
2ed3a4ef 3989 return alloc_kmemlist(cachep);
1da177e4
LT
3990}
3991
b5d8ca7c 3992/* Called with cache_chain_mutex held always */
2ed3a4ef 3993static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3994{
3995 int err;
3996 int limit, shared;
3997
a737b3e2
AM
3998 /*
3999 * The head array serves three purposes:
1da177e4
LT
4000 * - create a LIFO ordering, i.e. return objects that are cache-warm
4001 * - reduce the number of spinlock operations.
a737b3e2 4002 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4003 * bufctl chains: array operations are cheaper.
4004 * The numbers are guessed, we should auto-tune as described by
4005 * Bonwick.
4006 */
3dafccf2 4007 if (cachep->buffer_size > 131072)
1da177e4 4008 limit = 1;
3dafccf2 4009 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 4010 limit = 8;
3dafccf2 4011 else if (cachep->buffer_size > 1024)
1da177e4 4012 limit = 24;
3dafccf2 4013 else if (cachep->buffer_size > 256)
1da177e4
LT
4014 limit = 54;
4015 else
4016 limit = 120;
4017
a737b3e2
AM
4018 /*
4019 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4020 * allocation behaviour: Most allocs on one cpu, most free operations
4021 * on another cpu. For these cases, an efficient object passing between
4022 * cpus is necessary. This is provided by a shared array. The array
4023 * replaces Bonwick's magazine layer.
4024 * On uniprocessor, it's functionally equivalent (but less efficient)
4025 * to a larger limit. Thus disabled by default.
4026 */
4027 shared = 0;
364fbb29 4028 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4029 shared = 8;
1da177e4
LT
4030
4031#if DEBUG
a737b3e2
AM
4032 /*
4033 * With debugging enabled, large batchcount lead to excessively long
4034 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4035 */
4036 if (limit > 32)
4037 limit = 32;
4038#endif
b28a02de 4039 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
4040 if (err)
4041 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4042 cachep->name, -err);
2ed3a4ef 4043 return err;
1da177e4
LT
4044}
4045
1b55253a
CL
4046/*
4047 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4048 * necessary. Note that the l3 listlock also protects the array_cache
4049 * if drain_array() is used on the shared array.
1b55253a
CL
4050 */
4051void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4052 struct array_cache *ac, int force, int node)
1da177e4
LT
4053{
4054 int tofree;
4055
1b55253a
CL
4056 if (!ac || !ac->avail)
4057 return;
1da177e4
LT
4058 if (ac->touched && !force) {
4059 ac->touched = 0;
b18e7e65 4060 } else {
1b55253a 4061 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4062 if (ac->avail) {
4063 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4064 if (tofree > ac->avail)
4065 tofree = (ac->avail + 1) / 2;
4066 free_block(cachep, ac->entry, tofree, node);
4067 ac->avail -= tofree;
4068 memmove(ac->entry, &(ac->entry[tofree]),
4069 sizeof(void *) * ac->avail);
4070 }
1b55253a 4071 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4072 }
4073}
4074
4075/**
4076 * cache_reap - Reclaim memory from caches.
05fb6bf0 4077 * @w: work descriptor
1da177e4
LT
4078 *
4079 * Called from workqueue/eventd every few seconds.
4080 * Purpose:
4081 * - clear the per-cpu caches for this CPU.
4082 * - return freeable pages to the main free memory pool.
4083 *
a737b3e2
AM
4084 * If we cannot acquire the cache chain mutex then just give up - we'll try
4085 * again on the next iteration.
1da177e4 4086 */
7c5cae36 4087static void cache_reap(struct work_struct *w)
1da177e4 4088{
7a7c381d 4089 struct kmem_cache *searchp;
e498be7d 4090 struct kmem_list3 *l3;
aab2207c 4091 int node = numa_node_id();
7c5cae36
CL
4092 struct delayed_work *work =
4093 container_of(w, struct delayed_work, work);
1da177e4 4094
7c5cae36 4095 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4096 /* Give up. Setup the next iteration. */
7c5cae36 4097 goto out;
1da177e4 4098
7a7c381d 4099 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4100 check_irq_on();
4101
35386e3b
CL
4102 /*
4103 * We only take the l3 lock if absolutely necessary and we
4104 * have established with reasonable certainty that
4105 * we can do some work if the lock was obtained.
4106 */
aab2207c 4107 l3 = searchp->nodelists[node];
35386e3b 4108
8fce4d8e 4109 reap_alien(searchp, l3);
1da177e4 4110
aab2207c 4111 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4112
35386e3b
CL
4113 /*
4114 * These are racy checks but it does not matter
4115 * if we skip one check or scan twice.
4116 */
e498be7d 4117 if (time_after(l3->next_reap, jiffies))
35386e3b 4118 goto next;
1da177e4 4119
e498be7d 4120 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4121
aab2207c 4122 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4123
ed11d9eb 4124 if (l3->free_touched)
e498be7d 4125 l3->free_touched = 0;
ed11d9eb
CL
4126 else {
4127 int freed;
1da177e4 4128
ed11d9eb
CL
4129 freed = drain_freelist(searchp, l3, (l3->free_limit +
4130 5 * searchp->num - 1) / (5 * searchp->num));
4131 STATS_ADD_REAPED(searchp, freed);
4132 }
35386e3b 4133next:
1da177e4
LT
4134 cond_resched();
4135 }
4136 check_irq_on();
fc0abb14 4137 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4138 next_reap_node();
2244b95a 4139 refresh_cpu_vm_stats(smp_processor_id());
7c5cae36 4140out:
a737b3e2 4141 /* Set up the next iteration */
7c5cae36 4142 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4143}
4144
4145#ifdef CONFIG_PROC_FS
4146
85289f98 4147static void print_slabinfo_header(struct seq_file *m)
1da177e4 4148{
85289f98
PE
4149 /*
4150 * Output format version, so at least we can change it
4151 * without _too_ many complaints.
4152 */
1da177e4 4153#if STATS
85289f98 4154 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4155#else
85289f98 4156 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4157#endif
85289f98
PE
4158 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4159 "<objperslab> <pagesperslab>");
4160 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4161 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4162#if STATS
85289f98 4163 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4164 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4165 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4166#endif
85289f98
PE
4167 seq_putc(m, '\n');
4168}
4169
4170static void *s_start(struct seq_file *m, loff_t *pos)
4171{
4172 loff_t n = *pos;
4173 struct list_head *p;
4174
fc0abb14 4175 mutex_lock(&cache_chain_mutex);
85289f98
PE
4176 if (!n)
4177 print_slabinfo_header(m);
1da177e4
LT
4178 p = cache_chain.next;
4179 while (n--) {
4180 p = p->next;
4181 if (p == &cache_chain)
4182 return NULL;
4183 }
343e0d7a 4184 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
4185}
4186
4187static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4188{
343e0d7a 4189 struct kmem_cache *cachep = p;
1da177e4 4190 ++*pos;
a737b3e2
AM
4191 return cachep->next.next == &cache_chain ?
4192 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
4193}
4194
4195static void s_stop(struct seq_file *m, void *p)
4196{
fc0abb14 4197 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4198}
4199
4200static int s_show(struct seq_file *m, void *p)
4201{
343e0d7a 4202 struct kmem_cache *cachep = p;
b28a02de
PE
4203 struct slab *slabp;
4204 unsigned long active_objs;
4205 unsigned long num_objs;
4206 unsigned long active_slabs = 0;
4207 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4208 const char *name;
1da177e4 4209 char *error = NULL;
e498be7d
CL
4210 int node;
4211 struct kmem_list3 *l3;
1da177e4 4212
1da177e4
LT
4213 active_objs = 0;
4214 num_slabs = 0;
e498be7d
CL
4215 for_each_online_node(node) {
4216 l3 = cachep->nodelists[node];
4217 if (!l3)
4218 continue;
4219
ca3b9b91
RT
4220 check_irq_on();
4221 spin_lock_irq(&l3->list_lock);
e498be7d 4222
7a7c381d 4223 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4224 if (slabp->inuse != cachep->num && !error)
4225 error = "slabs_full accounting error";
4226 active_objs += cachep->num;
4227 active_slabs++;
4228 }
7a7c381d 4229 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4230 if (slabp->inuse == cachep->num && !error)
4231 error = "slabs_partial inuse accounting error";
4232 if (!slabp->inuse && !error)
4233 error = "slabs_partial/inuse accounting error";
4234 active_objs += slabp->inuse;
4235 active_slabs++;
4236 }
7a7c381d 4237 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4238 if (slabp->inuse && !error)
4239 error = "slabs_free/inuse accounting error";
4240 num_slabs++;
4241 }
4242 free_objects += l3->free_objects;
4484ebf1
RT
4243 if (l3->shared)
4244 shared_avail += l3->shared->avail;
e498be7d 4245
ca3b9b91 4246 spin_unlock_irq(&l3->list_lock);
1da177e4 4247 }
b28a02de
PE
4248 num_slabs += active_slabs;
4249 num_objs = num_slabs * cachep->num;
e498be7d 4250 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4251 error = "free_objects accounting error";
4252
b28a02de 4253 name = cachep->name;
1da177e4
LT
4254 if (error)
4255 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4256
4257 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4258 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4259 cachep->num, (1 << cachep->gfporder));
1da177e4 4260 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4261 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4262 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4263 active_slabs, num_slabs, shared_avail);
1da177e4 4264#if STATS
b28a02de 4265 { /* list3 stats */
1da177e4
LT
4266 unsigned long high = cachep->high_mark;
4267 unsigned long allocs = cachep->num_allocations;
4268 unsigned long grown = cachep->grown;
4269 unsigned long reaped = cachep->reaped;
4270 unsigned long errors = cachep->errors;
4271 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4272 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4273 unsigned long node_frees = cachep->node_frees;
fb7faf33 4274 unsigned long overflows = cachep->node_overflow;
1da177e4 4275
e498be7d 4276 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4277 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4278 reaped, errors, max_freeable, node_allocs,
fb7faf33 4279 node_frees, overflows);
1da177e4
LT
4280 }
4281 /* cpu stats */
4282 {
4283 unsigned long allochit = atomic_read(&cachep->allochit);
4284 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4285 unsigned long freehit = atomic_read(&cachep->freehit);
4286 unsigned long freemiss = atomic_read(&cachep->freemiss);
4287
4288 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4289 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4290 }
4291#endif
4292 seq_putc(m, '\n');
1da177e4
LT
4293 return 0;
4294}
4295
4296/*
4297 * slabinfo_op - iterator that generates /proc/slabinfo
4298 *
4299 * Output layout:
4300 * cache-name
4301 * num-active-objs
4302 * total-objs
4303 * object size
4304 * num-active-slabs
4305 * total-slabs
4306 * num-pages-per-slab
4307 * + further values on SMP and with statistics enabled
4308 */
4309
15ad7cdc 4310const struct seq_operations slabinfo_op = {
b28a02de
PE
4311 .start = s_start,
4312 .next = s_next,
4313 .stop = s_stop,
4314 .show = s_show,
1da177e4
LT
4315};
4316
4317#define MAX_SLABINFO_WRITE 128
4318/**
4319 * slabinfo_write - Tuning for the slab allocator
4320 * @file: unused
4321 * @buffer: user buffer
4322 * @count: data length
4323 * @ppos: unused
4324 */
b28a02de
PE
4325ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4326 size_t count, loff_t *ppos)
1da177e4 4327{
b28a02de 4328 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4329 int limit, batchcount, shared, res;
7a7c381d 4330 struct kmem_cache *cachep;
b28a02de 4331
1da177e4
LT
4332 if (count > MAX_SLABINFO_WRITE)
4333 return -EINVAL;
4334 if (copy_from_user(&kbuf, buffer, count))
4335 return -EFAULT;
b28a02de 4336 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4337
4338 tmp = strchr(kbuf, ' ');
4339 if (!tmp)
4340 return -EINVAL;
4341 *tmp = '\0';
4342 tmp++;
4343 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4344 return -EINVAL;
4345
4346 /* Find the cache in the chain of caches. */
fc0abb14 4347 mutex_lock(&cache_chain_mutex);
1da177e4 4348 res = -EINVAL;
7a7c381d 4349 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4350 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4351 if (limit < 1 || batchcount < 1 ||
4352 batchcount > limit || shared < 0) {
e498be7d 4353 res = 0;
1da177e4 4354 } else {
e498be7d 4355 res = do_tune_cpucache(cachep, limit,
b28a02de 4356 batchcount, shared);
1da177e4
LT
4357 }
4358 break;
4359 }
4360 }
fc0abb14 4361 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4362 if (res >= 0)
4363 res = count;
4364 return res;
4365}
871751e2
AV
4366
4367#ifdef CONFIG_DEBUG_SLAB_LEAK
4368
4369static void *leaks_start(struct seq_file *m, loff_t *pos)
4370{
4371 loff_t n = *pos;
4372 struct list_head *p;
4373
4374 mutex_lock(&cache_chain_mutex);
4375 p = cache_chain.next;
4376 while (n--) {
4377 p = p->next;
4378 if (p == &cache_chain)
4379 return NULL;
4380 }
4381 return list_entry(p, struct kmem_cache, next);
4382}
4383
4384static inline int add_caller(unsigned long *n, unsigned long v)
4385{
4386 unsigned long *p;
4387 int l;
4388 if (!v)
4389 return 1;
4390 l = n[1];
4391 p = n + 2;
4392 while (l) {
4393 int i = l/2;
4394 unsigned long *q = p + 2 * i;
4395 if (*q == v) {
4396 q[1]++;
4397 return 1;
4398 }
4399 if (*q > v) {
4400 l = i;
4401 } else {
4402 p = q + 2;
4403 l -= i + 1;
4404 }
4405 }
4406 if (++n[1] == n[0])
4407 return 0;
4408 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4409 p[0] = v;
4410 p[1] = 1;
4411 return 1;
4412}
4413
4414static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4415{
4416 void *p;
4417 int i;
4418 if (n[0] == n[1])
4419 return;
4420 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4421 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4422 continue;
4423 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4424 return;
4425 }
4426}
4427
4428static void show_symbol(struct seq_file *m, unsigned long address)
4429{
4430#ifdef CONFIG_KALLSYMS
871751e2 4431 unsigned long offset, size;
a5c43dae 4432 char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
871751e2 4433
a5c43dae 4434 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4435 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4436 if (modname[0])
871751e2
AV
4437 seq_printf(m, " [%s]", modname);
4438 return;
4439 }
4440#endif
4441 seq_printf(m, "%p", (void *)address);
4442}
4443
4444static int leaks_show(struct seq_file *m, void *p)
4445{
4446 struct kmem_cache *cachep = p;
871751e2
AV
4447 struct slab *slabp;
4448 struct kmem_list3 *l3;
4449 const char *name;
4450 unsigned long *n = m->private;
4451 int node;
4452 int i;
4453
4454 if (!(cachep->flags & SLAB_STORE_USER))
4455 return 0;
4456 if (!(cachep->flags & SLAB_RED_ZONE))
4457 return 0;
4458
4459 /* OK, we can do it */
4460
4461 n[1] = 0;
4462
4463 for_each_online_node(node) {
4464 l3 = cachep->nodelists[node];
4465 if (!l3)
4466 continue;
4467
4468 check_irq_on();
4469 spin_lock_irq(&l3->list_lock);
4470
7a7c381d 4471 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4472 handle_slab(n, cachep, slabp);
7a7c381d 4473 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4474 handle_slab(n, cachep, slabp);
871751e2
AV
4475 spin_unlock_irq(&l3->list_lock);
4476 }
4477 name = cachep->name;
4478 if (n[0] == n[1]) {
4479 /* Increase the buffer size */
4480 mutex_unlock(&cache_chain_mutex);
4481 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4482 if (!m->private) {
4483 /* Too bad, we are really out */
4484 m->private = n;
4485 mutex_lock(&cache_chain_mutex);
4486 return -ENOMEM;
4487 }
4488 *(unsigned long *)m->private = n[0] * 2;
4489 kfree(n);
4490 mutex_lock(&cache_chain_mutex);
4491 /* Now make sure this entry will be retried */
4492 m->count = m->size;
4493 return 0;
4494 }
4495 for (i = 0; i < n[1]; i++) {
4496 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4497 show_symbol(m, n[2*i+2]);
4498 seq_putc(m, '\n');
4499 }
d2e7b7d0 4500
871751e2
AV
4501 return 0;
4502}
4503
15ad7cdc 4504const struct seq_operations slabstats_op = {
871751e2
AV
4505 .start = leaks_start,
4506 .next = s_next,
4507 .stop = s_stop,
4508 .show = leaks_show,
4509};
4510#endif
1da177e4
LT
4511#endif
4512
00e145b6
MS
4513/**
4514 * ksize - get the actual amount of memory allocated for a given object
4515 * @objp: Pointer to the object
4516 *
4517 * kmalloc may internally round up allocations and return more memory
4518 * than requested. ksize() can be used to determine the actual amount of
4519 * memory allocated. The caller may use this additional memory, even though
4520 * a smaller amount of memory was initially specified with the kmalloc call.
4521 * The caller must guarantee that objp points to a valid object previously
4522 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4523 * must not be freed during the duration of the call.
4524 */
fd76bab2 4525size_t ksize(const void *objp)
1da177e4 4526{
00e145b6
MS
4527 if (unlikely(objp == NULL))
4528 return 0;
1da177e4 4529
6ed5eb22 4530 return obj_size(virt_to_cache(objp));
1da177e4 4531}