[PATCH] fix update_mmu_cache in fremap.c
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
e498be7d 106#include <linux/nodemask.h>
dc85da15 107#include <linux/mempolicy.h>
fc0abb14 108#include <linux/mutex.h>
1da177e4
LT
109
110#include <asm/uaccess.h>
111#include <asm/cacheflush.h>
112#include <asm/tlbflush.h>
113#include <asm/page.h>
114
115/*
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
119 *
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
124 */
125
126#ifdef CONFIG_DEBUG_SLAB
127#define DEBUG 1
128#define STATS 1
129#define FORCED_DEBUG 1
130#else
131#define DEBUG 0
132#define STATS 0
133#define FORCED_DEBUG 0
134#endif
135
1da177e4
LT
136/* Shouldn't this be in a header file somewhere? */
137#define BYTES_PER_WORD sizeof(void *)
138
139#ifndef cache_line_size
140#define cache_line_size() L1_CACHE_BYTES
141#endif
142
143#ifndef ARCH_KMALLOC_MINALIGN
144/*
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
151 */
152#define ARCH_KMALLOC_MINALIGN 0
153#endif
154
155#ifndef ARCH_SLAB_MINALIGN
156/*
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
162 */
163#define ARCH_SLAB_MINALIGN 0
164#endif
165
166#ifndef ARCH_KMALLOC_FLAGS
167#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168#endif
169
170/* Legal flag mask for kmem_cache_create(). */
171#if DEBUG
172# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 174 SLAB_CACHE_DMA | \
1da177e4
LT
175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 178#else
ac2b898c 179# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
183#endif
184
185/*
186 * kmem_bufctl_t:
187 *
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
190 *
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 */
203
fa5b08d5 204typedef unsigned int kmem_bufctl_t;
1da177e4
LT
205#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
207#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 209
1da177e4
LT
210/*
211 * struct slab
212 *
213 * Manages the objs in a slab. Placed either at the beginning of mem allocated
214 * for a slab, or allocated from an general cache.
215 * Slabs are chained into three list: fully used, partial, fully free slabs.
216 */
217struct slab {
b28a02de
PE
218 struct list_head list;
219 unsigned long colouroff;
220 void *s_mem; /* including colour offset */
221 unsigned int inuse; /* num of objs active in slab */
222 kmem_bufctl_t free;
223 unsigned short nodeid;
1da177e4
LT
224};
225
226/*
227 * struct slab_rcu
228 *
229 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
230 * arrange for kmem_freepages to be called via RCU. This is useful if
231 * we need to approach a kernel structure obliquely, from its address
232 * obtained without the usual locking. We can lock the structure to
233 * stabilize it and check it's still at the given address, only if we
234 * can be sure that the memory has not been meanwhile reused for some
235 * other kind of object (which our subsystem's lock might corrupt).
236 *
237 * rcu_read_lock before reading the address, then rcu_read_unlock after
238 * taking the spinlock within the structure expected at that address.
239 *
240 * We assume struct slab_rcu can overlay struct slab when destroying.
241 */
242struct slab_rcu {
b28a02de 243 struct rcu_head head;
343e0d7a 244 struct kmem_cache *cachep;
b28a02de 245 void *addr;
1da177e4
LT
246};
247
248/*
249 * struct array_cache
250 *
1da177e4
LT
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
e498be7d 265 spinlock_t lock;
a737b3e2
AM
266 void *entry[0]; /*
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
270 * [0] is for gcc 2.95. It should really be [].
271 */
1da177e4
LT
272};
273
a737b3e2
AM
274/*
275 * bootstrap: The caches do not work without cpuarrays anymore, but the
276 * cpuarrays are allocated from the generic caches...
1da177e4
LT
277 */
278#define BOOT_CPUCACHE_ENTRIES 1
279struct arraycache_init {
280 struct array_cache cache;
b28a02de 281 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
282};
283
284/*
e498be7d 285 * The slab lists for all objects.
1da177e4
LT
286 */
287struct kmem_list3 {
b28a02de
PE
288 struct list_head slabs_partial; /* partial list first, better asm code */
289 struct list_head slabs_full;
290 struct list_head slabs_free;
291 unsigned long free_objects;
b28a02de 292 unsigned int free_limit;
2e1217cf 293 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
294 spinlock_t list_lock;
295 struct array_cache *shared; /* shared per node */
296 struct array_cache **alien; /* on other nodes */
35386e3b
CL
297 unsigned long next_reap; /* updated without locking */
298 int free_touched; /* updated without locking */
1da177e4
LT
299};
300
e498be7d
CL
301/*
302 * Need this for bootstrapping a per node allocator.
303 */
304#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
305struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
306#define CACHE_CACHE 0
307#define SIZE_AC 1
308#define SIZE_L3 (1 + MAX_NUMNODES)
309
310/*
a737b3e2
AM
311 * This function must be completely optimized away if a constant is passed to
312 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 313 */
7243cc05 314static __always_inline int index_of(const size_t size)
e498be7d 315{
5ec8a847
SR
316 extern void __bad_size(void);
317
e498be7d
CL
318 if (__builtin_constant_p(size)) {
319 int i = 0;
320
321#define CACHE(x) \
322 if (size <=x) \
323 return i; \
324 else \
325 i++;
326#include "linux/kmalloc_sizes.h"
327#undef CACHE
5ec8a847 328 __bad_size();
7243cc05 329 } else
5ec8a847 330 __bad_size();
e498be7d
CL
331 return 0;
332}
333
334#define INDEX_AC index_of(sizeof(struct arraycache_init))
335#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 336
5295a74c 337static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
338{
339 INIT_LIST_HEAD(&parent->slabs_full);
340 INIT_LIST_HEAD(&parent->slabs_partial);
341 INIT_LIST_HEAD(&parent->slabs_free);
342 parent->shared = NULL;
343 parent->alien = NULL;
2e1217cf 344 parent->colour_next = 0;
e498be7d
CL
345 spin_lock_init(&parent->list_lock);
346 parent->free_objects = 0;
347 parent->free_touched = 0;
348}
349
a737b3e2
AM
350#define MAKE_LIST(cachep, listp, slab, nodeid) \
351 do { \
352 INIT_LIST_HEAD(listp); \
353 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
354 } while (0)
355
a737b3e2
AM
356#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
357 do { \
e498be7d
CL
358 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
359 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
360 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
361 } while (0)
1da177e4
LT
362
363/*
343e0d7a 364 * struct kmem_cache
1da177e4
LT
365 *
366 * manages a cache.
367 */
b28a02de 368
2109a2d1 369struct kmem_cache {
1da177e4 370/* 1) per-cpu data, touched during every alloc/free */
b28a02de 371 struct array_cache *array[NR_CPUS];
b5d8ca7c 372/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
373 unsigned int batchcount;
374 unsigned int limit;
375 unsigned int shared;
b5d8ca7c 376
3dafccf2 377 unsigned int buffer_size;
b5d8ca7c 378/* 3) touched by every alloc & free from the backend */
b28a02de 379 struct kmem_list3 *nodelists[MAX_NUMNODES];
b5d8ca7c 380
a737b3e2
AM
381 unsigned int flags; /* constant flags */
382 unsigned int num; /* # of objs per slab */
1da177e4 383
b5d8ca7c 384/* 4) cache_grow/shrink */
1da177e4 385 /* order of pgs per slab (2^n) */
b28a02de 386 unsigned int gfporder;
1da177e4
LT
387
388 /* force GFP flags, e.g. GFP_DMA */
b28a02de 389 gfp_t gfpflags;
1da177e4 390
a737b3e2 391 size_t colour; /* cache colouring range */
b28a02de 392 unsigned int colour_off; /* colour offset */
343e0d7a 393 struct kmem_cache *slabp_cache;
b28a02de 394 unsigned int slab_size;
a737b3e2 395 unsigned int dflags; /* dynamic flags */
1da177e4
LT
396
397 /* constructor func */
343e0d7a 398 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
399
400 /* de-constructor func */
343e0d7a 401 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 402
b5d8ca7c 403/* 5) cache creation/removal */
b28a02de
PE
404 const char *name;
405 struct list_head next;
1da177e4 406
b5d8ca7c 407/* 6) statistics */
1da177e4 408#if STATS
b28a02de
PE
409 unsigned long num_active;
410 unsigned long num_allocations;
411 unsigned long high_mark;
412 unsigned long grown;
413 unsigned long reaped;
414 unsigned long errors;
415 unsigned long max_freeable;
416 unsigned long node_allocs;
417 unsigned long node_frees;
fb7faf33 418 unsigned long node_overflow;
b28a02de
PE
419 atomic_t allochit;
420 atomic_t allocmiss;
421 atomic_t freehit;
422 atomic_t freemiss;
1da177e4
LT
423#endif
424#if DEBUG
3dafccf2
MS
425 /*
426 * If debugging is enabled, then the allocator can add additional
427 * fields and/or padding to every object. buffer_size contains the total
428 * object size including these internal fields, the following two
429 * variables contain the offset to the user object and its size.
430 */
431 int obj_offset;
432 int obj_size;
1da177e4
LT
433#endif
434};
435
436#define CFLGS_OFF_SLAB (0x80000000UL)
437#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
438
439#define BATCHREFILL_LIMIT 16
a737b3e2
AM
440/*
441 * Optimization question: fewer reaps means less probability for unnessary
442 * cpucache drain/refill cycles.
1da177e4 443 *
dc6f3f27 444 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
445 * which could lock up otherwise freeable slabs.
446 */
447#define REAPTIMEOUT_CPUC (2*HZ)
448#define REAPTIMEOUT_LIST3 (4*HZ)
449
450#if STATS
451#define STATS_INC_ACTIVE(x) ((x)->num_active++)
452#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
453#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
454#define STATS_INC_GROWN(x) ((x)->grown++)
455#define STATS_INC_REAPED(x) ((x)->reaped++)
a737b3e2
AM
456#define STATS_SET_HIGH(x) \
457 do { \
458 if ((x)->num_active > (x)->high_mark) \
459 (x)->high_mark = (x)->num_active; \
460 } while (0)
1da177e4
LT
461#define STATS_INC_ERR(x) ((x)->errors++)
462#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 463#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 464#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
465#define STATS_SET_FREEABLE(x, i) \
466 do { \
467 if ((x)->max_freeable < i) \
468 (x)->max_freeable = i; \
469 } while (0)
1da177e4
LT
470#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
471#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
472#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
473#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
474#else
475#define STATS_INC_ACTIVE(x) do { } while (0)
476#define STATS_DEC_ACTIVE(x) do { } while (0)
477#define STATS_INC_ALLOCED(x) do { } while (0)
478#define STATS_INC_GROWN(x) do { } while (0)
479#define STATS_INC_REAPED(x) do { } while (0)
480#define STATS_SET_HIGH(x) do { } while (0)
481#define STATS_INC_ERR(x) do { } while (0)
482#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 483#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 484#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 485#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
486#define STATS_INC_ALLOCHIT(x) do { } while (0)
487#define STATS_INC_ALLOCMISS(x) do { } while (0)
488#define STATS_INC_FREEHIT(x) do { } while (0)
489#define STATS_INC_FREEMISS(x) do { } while (0)
490#endif
491
492#if DEBUG
a737b3e2
AM
493/*
494 * Magic nums for obj red zoning.
1da177e4
LT
495 * Placed in the first word before and the first word after an obj.
496 */
497#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
498#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
499
500/* ...and for poisoning */
501#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
502#define POISON_FREE 0x6b /* for use-after-free poisoning */
503#define POISON_END 0xa5 /* end-byte of poisoning */
504
a737b3e2
AM
505/*
506 * memory layout of objects:
1da177e4 507 * 0 : objp
3dafccf2 508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
3dafccf2 511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 512 * redzone word.
3dafccf2
MS
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
1da177e4 517 */
343e0d7a 518static int obj_offset(struct kmem_cache *cachep)
1da177e4 519{
3dafccf2 520 return cachep->obj_offset;
1da177e4
LT
521}
522
343e0d7a 523static int obj_size(struct kmem_cache *cachep)
1da177e4 524{
3dafccf2 525 return cachep->obj_size;
1da177e4
LT
526}
527
343e0d7a 528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
532}
533
343e0d7a 534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 538 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 539 2 * BYTES_PER_WORD);
3dafccf2 540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
541}
542
343e0d7a 543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
547}
548
549#else
550
3dafccf2
MS
551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
a737b3e2
AM
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
1da177e4
LT
562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
a737b3e2
AM
581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
1da177e4 585 */
065d41cb
PE
586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
84097518
NP
593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
ddc2e812 595 BUG_ON(!PageSlab(page));
065d41cb
PE
596 return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601 page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
84097518
NP
606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
ddc2e812 608 BUG_ON(!PageSlab(page));
065d41cb
PE
609 return (struct slab *)page->lru.prev;
610}
1da177e4 611
6ed5eb22
PE
612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
622}
623
8fea4e96
PE
624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626{
627 return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632{
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
a737b3e2
AM
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
1da177e4
LT
639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649 char *name;
650 char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
b28a02de 656 {NULL,}
1da177e4
LT
657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
b28a02de 661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 662static struct arraycache_init initarray_generic =
b28a02de 663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
664
665/* internal cache of cache description objs */
343e0d7a 666static struct kmem_cache cache_cache = {
b28a02de
PE
667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
343e0d7a 670 .buffer_size = sizeof(struct kmem_cache),
b28a02de 671 .name = "kmem_cache",
1da177e4 672#if DEBUG
343e0d7a 673 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
674#endif
675};
676
677/* Guard access to the cache-chain. */
fc0abb14 678static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
679static struct list_head cache_chain;
680
681/*
a737b3e2
AM
682 * vm_enough_memory() looks at this to determine how many slab-allocated pages
683 * are possibly freeable under pressure
1da177e4
LT
684 *
685 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
686 */
687atomic_t slab_reclaim_pages;
1da177e4
LT
688
689/*
690 * chicken and egg problem: delay the per-cpu array allocation
691 * until the general caches are up.
692 */
693static enum {
694 NONE,
e498be7d
CL
695 PARTIAL_AC,
696 PARTIAL_L3,
1da177e4
LT
697 FULL
698} g_cpucache_up;
699
39d24e64
MK
700/*
701 * used by boot code to determine if it can use slab based allocator
702 */
703int slab_is_available(void)
704{
705 return g_cpucache_up == FULL;
706}
707
1da177e4
LT
708static DEFINE_PER_CPU(struct work_struct, reap_work);
709
a737b3e2
AM
710static void free_block(struct kmem_cache *cachep, void **objpp, int len,
711 int node);
343e0d7a 712static void enable_cpucache(struct kmem_cache *cachep);
b28a02de 713static void cache_reap(void *unused);
343e0d7a 714static int __node_shrink(struct kmem_cache *cachep, int node);
1da177e4 715
343e0d7a 716static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
717{
718 return cachep->array[smp_processor_id()];
719}
720
a737b3e2
AM
721static inline struct kmem_cache *__find_general_cachep(size_t size,
722 gfp_t gfpflags)
1da177e4
LT
723{
724 struct cache_sizes *csizep = malloc_sizes;
725
726#if DEBUG
727 /* This happens if someone tries to call
b28a02de
PE
728 * kmem_cache_create(), or __kmalloc(), before
729 * the generic caches are initialized.
730 */
c7e43c78 731 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
732#endif
733 while (size > csizep->cs_size)
734 csizep++;
735
736 /*
0abf40c1 737 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
738 * has cs_{dma,}cachep==NULL. Thus no special case
739 * for large kmalloc calls required.
740 */
741 if (unlikely(gfpflags & GFP_DMA))
742 return csizep->cs_dmacachep;
743 return csizep->cs_cachep;
744}
745
343e0d7a 746struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
747{
748 return __find_general_cachep(size, gfpflags);
749}
750EXPORT_SYMBOL(kmem_find_general_cachep);
751
fbaccacf 752static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 753{
fbaccacf
SR
754 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
755}
1da177e4 756
a737b3e2
AM
757/*
758 * Calculate the number of objects and left-over bytes for a given buffer size.
759 */
fbaccacf
SR
760static void cache_estimate(unsigned long gfporder, size_t buffer_size,
761 size_t align, int flags, size_t *left_over,
762 unsigned int *num)
763{
764 int nr_objs;
765 size_t mgmt_size;
766 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 767
fbaccacf
SR
768 /*
769 * The slab management structure can be either off the slab or
770 * on it. For the latter case, the memory allocated for a
771 * slab is used for:
772 *
773 * - The struct slab
774 * - One kmem_bufctl_t for each object
775 * - Padding to respect alignment of @align
776 * - @buffer_size bytes for each object
777 *
778 * If the slab management structure is off the slab, then the
779 * alignment will already be calculated into the size. Because
780 * the slabs are all pages aligned, the objects will be at the
781 * correct alignment when allocated.
782 */
783 if (flags & CFLGS_OFF_SLAB) {
784 mgmt_size = 0;
785 nr_objs = slab_size / buffer_size;
786
787 if (nr_objs > SLAB_LIMIT)
788 nr_objs = SLAB_LIMIT;
789 } else {
790 /*
791 * Ignore padding for the initial guess. The padding
792 * is at most @align-1 bytes, and @buffer_size is at
793 * least @align. In the worst case, this result will
794 * be one greater than the number of objects that fit
795 * into the memory allocation when taking the padding
796 * into account.
797 */
798 nr_objs = (slab_size - sizeof(struct slab)) /
799 (buffer_size + sizeof(kmem_bufctl_t));
800
801 /*
802 * This calculated number will be either the right
803 * amount, or one greater than what we want.
804 */
805 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
806 > slab_size)
807 nr_objs--;
808
809 if (nr_objs > SLAB_LIMIT)
810 nr_objs = SLAB_LIMIT;
811
812 mgmt_size = slab_mgmt_size(nr_objs, align);
813 }
814 *num = nr_objs;
815 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
816}
817
818#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
819
a737b3e2
AM
820static void __slab_error(const char *function, struct kmem_cache *cachep,
821 char *msg)
1da177e4
LT
822{
823 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 824 function, cachep->name, msg);
1da177e4
LT
825 dump_stack();
826}
827
8fce4d8e
CL
828#ifdef CONFIG_NUMA
829/*
830 * Special reaping functions for NUMA systems called from cache_reap().
831 * These take care of doing round robin flushing of alien caches (containing
832 * objects freed on different nodes from which they were allocated) and the
833 * flushing of remote pcps by calling drain_node_pages.
834 */
835static DEFINE_PER_CPU(unsigned long, reap_node);
836
837static void init_reap_node(int cpu)
838{
839 int node;
840
841 node = next_node(cpu_to_node(cpu), node_online_map);
842 if (node == MAX_NUMNODES)
442295c9 843 node = first_node(node_online_map);
8fce4d8e
CL
844
845 __get_cpu_var(reap_node) = node;
846}
847
848static void next_reap_node(void)
849{
850 int node = __get_cpu_var(reap_node);
851
852 /*
853 * Also drain per cpu pages on remote zones
854 */
855 if (node != numa_node_id())
856 drain_node_pages(node);
857
858 node = next_node(node, node_online_map);
859 if (unlikely(node >= MAX_NUMNODES))
860 node = first_node(node_online_map);
861 __get_cpu_var(reap_node) = node;
862}
863
864#else
865#define init_reap_node(cpu) do { } while (0)
866#define next_reap_node(void) do { } while (0)
867#endif
868
1da177e4
LT
869/*
870 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
871 * via the workqueue/eventd.
872 * Add the CPU number into the expiration time to minimize the possibility of
873 * the CPUs getting into lockstep and contending for the global cache chain
874 * lock.
875 */
876static void __devinit start_cpu_timer(int cpu)
877{
878 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
879
880 /*
881 * When this gets called from do_initcalls via cpucache_init(),
882 * init_workqueues() has already run, so keventd will be setup
883 * at that time.
884 */
885 if (keventd_up() && reap_work->func == NULL) {
8fce4d8e 886 init_reap_node(cpu);
1da177e4
LT
887 INIT_WORK(reap_work, cache_reap, NULL);
888 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
889 }
890}
891
e498be7d 892static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 893 int batchcount)
1da177e4 894{
b28a02de 895 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
896 struct array_cache *nc = NULL;
897
e498be7d 898 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
899 if (nc) {
900 nc->avail = 0;
901 nc->limit = entries;
902 nc->batchcount = batchcount;
903 nc->touched = 0;
e498be7d 904 spin_lock_init(&nc->lock);
1da177e4
LT
905 }
906 return nc;
907}
908
3ded175a
CL
909/*
910 * Transfer objects in one arraycache to another.
911 * Locking must be handled by the caller.
912 *
913 * Return the number of entries transferred.
914 */
915static int transfer_objects(struct array_cache *to,
916 struct array_cache *from, unsigned int max)
917{
918 /* Figure out how many entries to transfer */
919 int nr = min(min(from->avail, max), to->limit - to->avail);
920
921 if (!nr)
922 return 0;
923
924 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
925 sizeof(void *) *nr);
926
927 from->avail -= nr;
928 to->avail += nr;
929 to->touched = 1;
930 return nr;
931}
932
e498be7d 933#ifdef CONFIG_NUMA
343e0d7a 934static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 935static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 936
5295a74c 937static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
938{
939 struct array_cache **ac_ptr;
b28a02de 940 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
941 int i;
942
943 if (limit > 1)
944 limit = 12;
945 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
946 if (ac_ptr) {
947 for_each_node(i) {
948 if (i == node || !node_online(i)) {
949 ac_ptr[i] = NULL;
950 continue;
951 }
952 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
953 if (!ac_ptr[i]) {
b28a02de 954 for (i--; i <= 0; i--)
e498be7d
CL
955 kfree(ac_ptr[i]);
956 kfree(ac_ptr);
957 return NULL;
958 }
959 }
960 }
961 return ac_ptr;
962}
963
5295a74c 964static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
965{
966 int i;
967
968 if (!ac_ptr)
969 return;
e498be7d 970 for_each_node(i)
b28a02de 971 kfree(ac_ptr[i]);
e498be7d
CL
972 kfree(ac_ptr);
973}
974
343e0d7a 975static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 976 struct array_cache *ac, int node)
e498be7d
CL
977{
978 struct kmem_list3 *rl3 = cachep->nodelists[node];
979
980 if (ac->avail) {
981 spin_lock(&rl3->list_lock);
e00946fe
CL
982 /*
983 * Stuff objects into the remote nodes shared array first.
984 * That way we could avoid the overhead of putting the objects
985 * into the free lists and getting them back later.
986 */
693f7d36 987 if (rl3->shared)
988 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 989
ff69416e 990 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
991 ac->avail = 0;
992 spin_unlock(&rl3->list_lock);
993 }
994}
995
8fce4d8e
CL
996/*
997 * Called from cache_reap() to regularly drain alien caches round robin.
998 */
999static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1000{
1001 int node = __get_cpu_var(reap_node);
1002
1003 if (l3->alien) {
1004 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1005
1006 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1007 __drain_alien_cache(cachep, ac, node);
1008 spin_unlock_irq(&ac->lock);
1009 }
1010 }
1011}
1012
a737b3e2
AM
1013static void drain_alien_cache(struct kmem_cache *cachep,
1014 struct array_cache **alien)
e498be7d 1015{
b28a02de 1016 int i = 0;
e498be7d
CL
1017 struct array_cache *ac;
1018 unsigned long flags;
1019
1020 for_each_online_node(i) {
4484ebf1 1021 ac = alien[i];
e498be7d
CL
1022 if (ac) {
1023 spin_lock_irqsave(&ac->lock, flags);
1024 __drain_alien_cache(cachep, ac, i);
1025 spin_unlock_irqrestore(&ac->lock, flags);
1026 }
1027 }
1028}
729bd0b7
PE
1029
1030static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1031{
1032 struct slab *slabp = virt_to_slab(objp);
1033 int nodeid = slabp->nodeid;
1034 struct kmem_list3 *l3;
1035 struct array_cache *alien = NULL;
1036
1037 /*
1038 * Make sure we are not freeing a object from another node to the array
1039 * cache on this cpu.
1040 */
1041 if (likely(slabp->nodeid == numa_node_id()))
1042 return 0;
1043
1044 l3 = cachep->nodelists[numa_node_id()];
1045 STATS_INC_NODEFREES(cachep);
1046 if (l3->alien && l3->alien[nodeid]) {
1047 alien = l3->alien[nodeid];
1048 spin_lock(&alien->lock);
1049 if (unlikely(alien->avail == alien->limit)) {
1050 STATS_INC_ACOVERFLOW(cachep);
1051 __drain_alien_cache(cachep, alien, nodeid);
1052 }
1053 alien->entry[alien->avail++] = objp;
1054 spin_unlock(&alien->lock);
1055 } else {
1056 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1057 free_block(cachep, &objp, 1, nodeid);
1058 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1059 }
1060 return 1;
1061}
1062
e498be7d 1063#else
7a21ef6f 1064
4484ebf1 1065#define drain_alien_cache(cachep, alien) do { } while (0)
8fce4d8e 1066#define reap_alien(cachep, l3) do { } while (0)
4484ebf1 1067
7a21ef6f
LT
1068static inline struct array_cache **alloc_alien_cache(int node, int limit)
1069{
1070 return (struct array_cache **) 0x01020304ul;
1071}
1072
4484ebf1
RT
1073static inline void free_alien_cache(struct array_cache **ac_ptr)
1074{
1075}
7a21ef6f 1076
729bd0b7
PE
1077static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1078{
1079 return 0;
1080}
1081
e498be7d
CL
1082#endif
1083
83d722f7 1084static int cpuup_callback(struct notifier_block *nfb,
b28a02de 1085 unsigned long action, void *hcpu)
1da177e4
LT
1086{
1087 long cpu = (long)hcpu;
343e0d7a 1088 struct kmem_cache *cachep;
e498be7d
CL
1089 struct kmem_list3 *l3 = NULL;
1090 int node = cpu_to_node(cpu);
1091 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1092
1093 switch (action) {
1094 case CPU_UP_PREPARE:
fc0abb14 1095 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1096 /*
1097 * We need to do this right in the beginning since
e498be7d
CL
1098 * alloc_arraycache's are going to use this list.
1099 * kmalloc_node allows us to add the slab to the right
1100 * kmem_list3 and not this cpu's kmem_list3
1101 */
1102
1da177e4 1103 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1104 /*
1105 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1106 * begin anything. Make sure some other cpu on this
1107 * node has not already allocated this
1108 */
1109 if (!cachep->nodelists[node]) {
a737b3e2
AM
1110 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1111 if (!l3)
e498be7d
CL
1112 goto bad;
1113 kmem_list3_init(l3);
1114 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1115 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1116
4484ebf1
RT
1117 /*
1118 * The l3s don't come and go as CPUs come and
1119 * go. cache_chain_mutex is sufficient
1120 * protection here.
1121 */
e498be7d
CL
1122 cachep->nodelists[node] = l3;
1123 }
1da177e4 1124
e498be7d
CL
1125 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1126 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1127 (1 + nr_cpus_node(node)) *
1128 cachep->batchcount + cachep->num;
e498be7d
CL
1129 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1130 }
1131
a737b3e2
AM
1132 /*
1133 * Now we can go ahead with allocating the shared arrays and
1134 * array caches
1135 */
e498be7d 1136 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1137 struct array_cache *nc;
4484ebf1
RT
1138 struct array_cache *shared;
1139 struct array_cache **alien;
cd105df4 1140
e498be7d 1141 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1142 cachep->batchcount);
1da177e4
LT
1143 if (!nc)
1144 goto bad;
4484ebf1
RT
1145 shared = alloc_arraycache(node,
1146 cachep->shared * cachep->batchcount,
1147 0xbaadf00d);
1148 if (!shared)
1149 goto bad;
7a21ef6f 1150
4484ebf1
RT
1151 alien = alloc_alien_cache(node, cachep->limit);
1152 if (!alien)
1153 goto bad;
1da177e4 1154 cachep->array[cpu] = nc;
e498be7d
CL
1155 l3 = cachep->nodelists[node];
1156 BUG_ON(!l3);
e498be7d 1157
4484ebf1
RT
1158 spin_lock_irq(&l3->list_lock);
1159 if (!l3->shared) {
1160 /*
1161 * We are serialised from CPU_DEAD or
1162 * CPU_UP_CANCELLED by the cpucontrol lock
1163 */
1164 l3->shared = shared;
1165 shared = NULL;
e498be7d 1166 }
4484ebf1
RT
1167#ifdef CONFIG_NUMA
1168 if (!l3->alien) {
1169 l3->alien = alien;
1170 alien = NULL;
1171 }
1172#endif
1173 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1174 kfree(shared);
1175 free_alien_cache(alien);
1da177e4 1176 }
fc0abb14 1177 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1178 break;
1179 case CPU_ONLINE:
1180 start_cpu_timer(cpu);
1181 break;
1182#ifdef CONFIG_HOTPLUG_CPU
1183 case CPU_DEAD:
4484ebf1
RT
1184 /*
1185 * Even if all the cpus of a node are down, we don't free the
1186 * kmem_list3 of any cache. This to avoid a race between
1187 * cpu_down, and a kmalloc allocation from another cpu for
1188 * memory from the node of the cpu going down. The list3
1189 * structure is usually allocated from kmem_cache_create() and
1190 * gets destroyed at kmem_cache_destroy().
1191 */
1da177e4
LT
1192 /* fall thru */
1193 case CPU_UP_CANCELED:
fc0abb14 1194 mutex_lock(&cache_chain_mutex);
1da177e4
LT
1195 list_for_each_entry(cachep, &cache_chain, next) {
1196 struct array_cache *nc;
4484ebf1
RT
1197 struct array_cache *shared;
1198 struct array_cache **alien;
e498be7d 1199 cpumask_t mask;
1da177e4 1200
e498be7d 1201 mask = node_to_cpumask(node);
1da177e4
LT
1202 /* cpu is dead; no one can alloc from it. */
1203 nc = cachep->array[cpu];
1204 cachep->array[cpu] = NULL;
e498be7d
CL
1205 l3 = cachep->nodelists[node];
1206
1207 if (!l3)
4484ebf1 1208 goto free_array_cache;
e498be7d 1209
ca3b9b91 1210 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1211
1212 /* Free limit for this kmem_list3 */
1213 l3->free_limit -= cachep->batchcount;
1214 if (nc)
ff69416e 1215 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1216
1217 if (!cpus_empty(mask)) {
ca3b9b91 1218 spin_unlock_irq(&l3->list_lock);
4484ebf1 1219 goto free_array_cache;
b28a02de 1220 }
e498be7d 1221
4484ebf1
RT
1222 shared = l3->shared;
1223 if (shared) {
e498be7d 1224 free_block(cachep, l3->shared->entry,
b28a02de 1225 l3->shared->avail, node);
e498be7d
CL
1226 l3->shared = NULL;
1227 }
e498be7d 1228
4484ebf1
RT
1229 alien = l3->alien;
1230 l3->alien = NULL;
1231
1232 spin_unlock_irq(&l3->list_lock);
1233
1234 kfree(shared);
1235 if (alien) {
1236 drain_alien_cache(cachep, alien);
1237 free_alien_cache(alien);
e498be7d 1238 }
4484ebf1 1239free_array_cache:
1da177e4
LT
1240 kfree(nc);
1241 }
4484ebf1
RT
1242 /*
1243 * In the previous loop, all the objects were freed to
1244 * the respective cache's slabs, now we can go ahead and
1245 * shrink each nodelist to its limit.
1246 */
1247 list_for_each_entry(cachep, &cache_chain, next) {
1248 l3 = cachep->nodelists[node];
1249 if (!l3)
1250 continue;
1251 spin_lock_irq(&l3->list_lock);
1252 /* free slabs belonging to this node */
1253 __node_shrink(cachep, node);
1254 spin_unlock_irq(&l3->list_lock);
1255 }
fc0abb14 1256 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1257 break;
1258#endif
1259 }
1260 return NOTIFY_OK;
a737b3e2 1261bad:
fc0abb14 1262 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1263 return NOTIFY_BAD;
1264}
1265
1266static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1267
e498be7d
CL
1268/*
1269 * swap the static kmem_list3 with kmalloced memory
1270 */
a737b3e2
AM
1271static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1272 int nodeid)
e498be7d
CL
1273{
1274 struct kmem_list3 *ptr;
1275
1276 BUG_ON(cachep->nodelists[nodeid] != list);
1277 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1278 BUG_ON(!ptr);
1279
1280 local_irq_disable();
1281 memcpy(ptr, list, sizeof(struct kmem_list3));
1282 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1283 cachep->nodelists[nodeid] = ptr;
1284 local_irq_enable();
1285}
1286
a737b3e2
AM
1287/*
1288 * Initialisation. Called after the page allocator have been initialised and
1289 * before smp_init().
1da177e4
LT
1290 */
1291void __init kmem_cache_init(void)
1292{
1293 size_t left_over;
1294 struct cache_sizes *sizes;
1295 struct cache_names *names;
e498be7d 1296 int i;
07ed76b2 1297 int order;
e498be7d
CL
1298
1299 for (i = 0; i < NUM_INIT_LISTS; i++) {
1300 kmem_list3_init(&initkmem_list3[i]);
1301 if (i < MAX_NUMNODES)
1302 cache_cache.nodelists[i] = NULL;
1303 }
1da177e4
LT
1304
1305 /*
1306 * Fragmentation resistance on low memory - only use bigger
1307 * page orders on machines with more than 32MB of memory.
1308 */
1309 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1310 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1311
1da177e4
LT
1312 /* Bootstrap is tricky, because several objects are allocated
1313 * from caches that do not exist yet:
a737b3e2
AM
1314 * 1) initialize the cache_cache cache: it contains the struct
1315 * kmem_cache structures of all caches, except cache_cache itself:
1316 * cache_cache is statically allocated.
e498be7d
CL
1317 * Initially an __init data area is used for the head array and the
1318 * kmem_list3 structures, it's replaced with a kmalloc allocated
1319 * array at the end of the bootstrap.
1da177e4 1320 * 2) Create the first kmalloc cache.
343e0d7a 1321 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1322 * An __init data area is used for the head array.
1323 * 3) Create the remaining kmalloc caches, with minimally sized
1324 * head arrays.
1da177e4
LT
1325 * 4) Replace the __init data head arrays for cache_cache and the first
1326 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1327 * 5) Replace the __init data for kmem_list3 for cache_cache and
1328 * the other cache's with kmalloc allocated memory.
1329 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1330 */
1331
1332 /* 1) create the cache_cache */
1da177e4
LT
1333 INIT_LIST_HEAD(&cache_chain);
1334 list_add(&cache_cache.next, &cache_chain);
1335 cache_cache.colour_off = cache_line_size();
1336 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1337 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1338
a737b3e2
AM
1339 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1340 cache_line_size());
1da177e4 1341
07ed76b2
JS
1342 for (order = 0; order < MAX_ORDER; order++) {
1343 cache_estimate(order, cache_cache.buffer_size,
1344 cache_line_size(), 0, &left_over, &cache_cache.num);
1345 if (cache_cache.num)
1346 break;
1347 }
40094fa6 1348 BUG_ON(!cache_cache.num);
07ed76b2 1349 cache_cache.gfporder = order;
b28a02de 1350 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1351 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1352 sizeof(struct slab), cache_line_size());
1da177e4
LT
1353
1354 /* 2+3) create the kmalloc caches */
1355 sizes = malloc_sizes;
1356 names = cache_names;
1357
a737b3e2
AM
1358 /*
1359 * Initialize the caches that provide memory for the array cache and the
1360 * kmem_list3 structures first. Without this, further allocations will
1361 * bug.
e498be7d
CL
1362 */
1363
1364 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1365 sizes[INDEX_AC].cs_size,
1366 ARCH_KMALLOC_MINALIGN,
1367 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1368 NULL, NULL);
e498be7d 1369
a737b3e2 1370 if (INDEX_AC != INDEX_L3) {
e498be7d 1371 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1372 kmem_cache_create(names[INDEX_L3].name,
1373 sizes[INDEX_L3].cs_size,
1374 ARCH_KMALLOC_MINALIGN,
1375 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1376 NULL, NULL);
1377 }
e498be7d 1378
1da177e4 1379 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1380 /*
1381 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1382 * This should be particularly beneficial on SMP boxes, as it
1383 * eliminates "false sharing".
1384 * Note for systems short on memory removing the alignment will
e498be7d
CL
1385 * allow tighter packing of the smaller caches.
1386 */
a737b3e2 1387 if (!sizes->cs_cachep) {
e498be7d 1388 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1389 sizes->cs_size,
1390 ARCH_KMALLOC_MINALIGN,
1391 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1392 NULL, NULL);
1393 }
1da177e4 1394
1da177e4 1395 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
a737b3e2
AM
1396 sizes->cs_size,
1397 ARCH_KMALLOC_MINALIGN,
1398 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1399 SLAB_PANIC,
1400 NULL, NULL);
1da177e4
LT
1401 sizes++;
1402 names++;
1403 }
1404 /* 4) Replace the bootstrap head arrays */
1405 {
b28a02de 1406 void *ptr;
e498be7d 1407
1da177e4 1408 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1409
1da177e4 1410 local_irq_disable();
9a2dba4b
PE
1411 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1412 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1413 sizeof(struct arraycache_init));
1da177e4
LT
1414 cache_cache.array[smp_processor_id()] = ptr;
1415 local_irq_enable();
e498be7d 1416
1da177e4 1417 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1418
1da177e4 1419 local_irq_disable();
9a2dba4b 1420 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1421 != &initarray_generic.cache);
9a2dba4b 1422 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1423 sizeof(struct arraycache_init));
e498be7d 1424 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1425 ptr;
1da177e4
LT
1426 local_irq_enable();
1427 }
e498be7d
CL
1428 /* 5) Replace the bootstrap kmem_list3's */
1429 {
1430 int node;
1431 /* Replace the static kmem_list3 structures for the boot cpu */
1432 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1433 numa_node_id());
e498be7d
CL
1434
1435 for_each_online_node(node) {
1436 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1437 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1438
1439 if (INDEX_AC != INDEX_L3) {
1440 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1441 &initkmem_list3[SIZE_L3 + node],
1442 node);
e498be7d
CL
1443 }
1444 }
1445 }
1da177e4 1446
e498be7d 1447 /* 6) resize the head arrays to their final sizes */
1da177e4 1448 {
343e0d7a 1449 struct kmem_cache *cachep;
fc0abb14 1450 mutex_lock(&cache_chain_mutex);
1da177e4 1451 list_for_each_entry(cachep, &cache_chain, next)
a737b3e2 1452 enable_cpucache(cachep);
fc0abb14 1453 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1454 }
1455
1456 /* Done! */
1457 g_cpucache_up = FULL;
1458
a737b3e2
AM
1459 /*
1460 * Register a cpu startup notifier callback that initializes
1461 * cpu_cache_get for all new cpus
1da177e4
LT
1462 */
1463 register_cpu_notifier(&cpucache_notifier);
1da177e4 1464
a737b3e2
AM
1465 /*
1466 * The reap timers are started later, with a module init call: That part
1467 * of the kernel is not yet operational.
1da177e4
LT
1468 */
1469}
1470
1471static int __init cpucache_init(void)
1472{
1473 int cpu;
1474
a737b3e2
AM
1475 /*
1476 * Register the timers that return unneeded pages to the page allocator
1da177e4 1477 */
e498be7d 1478 for_each_online_cpu(cpu)
a737b3e2 1479 start_cpu_timer(cpu);
1da177e4
LT
1480 return 0;
1481}
1da177e4
LT
1482__initcall(cpucache_init);
1483
1484/*
1485 * Interface to system's page allocator. No need to hold the cache-lock.
1486 *
1487 * If we requested dmaable memory, we will get it. Even if we
1488 * did not request dmaable memory, we might get it, but that
1489 * would be relatively rare and ignorable.
1490 */
343e0d7a 1491static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1492{
1493 struct page *page;
e1b6aa6f 1494 int nr_pages;
1da177e4
LT
1495 int i;
1496
d6fef9da 1497#ifndef CONFIG_MMU
e1b6aa6f
CH
1498 /*
1499 * Nommu uses slab's for process anonymous memory allocations, and thus
1500 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1501 */
e1b6aa6f 1502 flags |= __GFP_COMP;
d6fef9da 1503#endif
e1b6aa6f
CH
1504 flags |= cachep->gfpflags;
1505
1506 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1507 if (!page)
1508 return NULL;
1da177e4 1509
e1b6aa6f 1510 nr_pages = (1 << cachep->gfporder);
1da177e4 1511 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
e1b6aa6f
CH
1512 atomic_add(nr_pages, &slab_reclaim_pages);
1513 add_page_state(nr_slab, nr_pages);
1514 for (i = 0; i < nr_pages; i++)
1515 __SetPageSlab(page + i);
1516 return page_address(page);
1da177e4
LT
1517}
1518
1519/*
1520 * Interface to system's page release.
1521 */
343e0d7a 1522static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1523{
b28a02de 1524 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1525 struct page *page = virt_to_page(addr);
1526 const unsigned long nr_freed = i;
1527
1528 while (i--) {
f205b2fe
NP
1529 BUG_ON(!PageSlab(page));
1530 __ClearPageSlab(page);
1da177e4
LT
1531 page++;
1532 }
1533 sub_page_state(nr_slab, nr_freed);
1534 if (current->reclaim_state)
1535 current->reclaim_state->reclaimed_slab += nr_freed;
1536 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1537 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1538 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1539}
1540
1541static void kmem_rcu_free(struct rcu_head *head)
1542{
b28a02de 1543 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1544 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1545
1546 kmem_freepages(cachep, slab_rcu->addr);
1547 if (OFF_SLAB(cachep))
1548 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1549}
1550
1551#if DEBUG
1552
1553#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1554static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1555 unsigned long caller)
1da177e4 1556{
3dafccf2 1557 int size = obj_size(cachep);
1da177e4 1558
3dafccf2 1559 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1560
b28a02de 1561 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1562 return;
1563
b28a02de
PE
1564 *addr++ = 0x12345678;
1565 *addr++ = caller;
1566 *addr++ = smp_processor_id();
1567 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1568 {
1569 unsigned long *sptr = &caller;
1570 unsigned long svalue;
1571
1572 while (!kstack_end(sptr)) {
1573 svalue = *sptr++;
1574 if (kernel_text_address(svalue)) {
b28a02de 1575 *addr++ = svalue;
1da177e4
LT
1576 size -= sizeof(unsigned long);
1577 if (size <= sizeof(unsigned long))
1578 break;
1579 }
1580 }
1581
1582 }
b28a02de 1583 *addr++ = 0x87654321;
1da177e4
LT
1584}
1585#endif
1586
343e0d7a 1587static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1588{
3dafccf2
MS
1589 int size = obj_size(cachep);
1590 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1591
1592 memset(addr, val, size);
b28a02de 1593 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1594}
1595
1596static void dump_line(char *data, int offset, int limit)
1597{
1598 int i;
1599 printk(KERN_ERR "%03x:", offset);
a737b3e2 1600 for (i = 0; i < limit; i++)
b28a02de 1601 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1602 printk("\n");
1603}
1604#endif
1605
1606#if DEBUG
1607
343e0d7a 1608static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1609{
1610 int i, size;
1611 char *realobj;
1612
1613 if (cachep->flags & SLAB_RED_ZONE) {
1614 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1615 *dbg_redzone1(cachep, objp),
1616 *dbg_redzone2(cachep, objp));
1da177e4
LT
1617 }
1618
1619 if (cachep->flags & SLAB_STORE_USER) {
1620 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1621 *dbg_userword(cachep, objp));
1da177e4 1622 print_symbol("(%s)",
a737b3e2 1623 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1624 printk("\n");
1625 }
3dafccf2
MS
1626 realobj = (char *)objp + obj_offset(cachep);
1627 size = obj_size(cachep);
b28a02de 1628 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1629 int limit;
1630 limit = 16;
b28a02de
PE
1631 if (i + limit > size)
1632 limit = size - i;
1da177e4
LT
1633 dump_line(realobj, i, limit);
1634 }
1635}
1636
343e0d7a 1637static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1638{
1639 char *realobj;
1640 int size, i;
1641 int lines = 0;
1642
3dafccf2
MS
1643 realobj = (char *)objp + obj_offset(cachep);
1644 size = obj_size(cachep);
1da177e4 1645
b28a02de 1646 for (i = 0; i < size; i++) {
1da177e4 1647 char exp = POISON_FREE;
b28a02de 1648 if (i == size - 1)
1da177e4
LT
1649 exp = POISON_END;
1650 if (realobj[i] != exp) {
1651 int limit;
1652 /* Mismatch ! */
1653 /* Print header */
1654 if (lines == 0) {
b28a02de 1655 printk(KERN_ERR
a737b3e2
AM
1656 "Slab corruption: start=%p, len=%d\n",
1657 realobj, size);
1da177e4
LT
1658 print_objinfo(cachep, objp, 0);
1659 }
1660 /* Hexdump the affected line */
b28a02de 1661 i = (i / 16) * 16;
1da177e4 1662 limit = 16;
b28a02de
PE
1663 if (i + limit > size)
1664 limit = size - i;
1da177e4
LT
1665 dump_line(realobj, i, limit);
1666 i += 16;
1667 lines++;
1668 /* Limit to 5 lines */
1669 if (lines > 5)
1670 break;
1671 }
1672 }
1673 if (lines != 0) {
1674 /* Print some data about the neighboring objects, if they
1675 * exist:
1676 */
6ed5eb22 1677 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1678 unsigned int objnr;
1da177e4 1679
8fea4e96 1680 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1681 if (objnr) {
8fea4e96 1682 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1683 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1684 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1685 realobj, size);
1da177e4
LT
1686 print_objinfo(cachep, objp, 2);
1687 }
b28a02de 1688 if (objnr + 1 < cachep->num) {
8fea4e96 1689 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1690 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1691 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1692 realobj, size);
1da177e4
LT
1693 print_objinfo(cachep, objp, 2);
1694 }
1695 }
1696}
1697#endif
1698
12dd36fa
MD
1699#if DEBUG
1700/**
911851e6
RD
1701 * slab_destroy_objs - destroy a slab and its objects
1702 * @cachep: cache pointer being destroyed
1703 * @slabp: slab pointer being destroyed
1704 *
1705 * Call the registered destructor for each object in a slab that is being
1706 * destroyed.
1da177e4 1707 */
343e0d7a 1708static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1709{
1da177e4
LT
1710 int i;
1711 for (i = 0; i < cachep->num; i++) {
8fea4e96 1712 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1713
1714 if (cachep->flags & SLAB_POISON) {
1715#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1716 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1717 OFF_SLAB(cachep))
b28a02de 1718 kernel_map_pages(virt_to_page(objp),
a737b3e2 1719 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1720 else
1721 check_poison_obj(cachep, objp);
1722#else
1723 check_poison_obj(cachep, objp);
1724#endif
1725 }
1726 if (cachep->flags & SLAB_RED_ZONE) {
1727 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1728 slab_error(cachep, "start of a freed object "
b28a02de 1729 "was overwritten");
1da177e4
LT
1730 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1731 slab_error(cachep, "end of a freed object "
b28a02de 1732 "was overwritten");
1da177e4
LT
1733 }
1734 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1735 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1736 }
12dd36fa 1737}
1da177e4 1738#else
343e0d7a 1739static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1740{
1da177e4
LT
1741 if (cachep->dtor) {
1742 int i;
1743 for (i = 0; i < cachep->num; i++) {
8fea4e96 1744 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1745 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1746 }
1747 }
12dd36fa 1748}
1da177e4
LT
1749#endif
1750
911851e6
RD
1751/**
1752 * slab_destroy - destroy and release all objects in a slab
1753 * @cachep: cache pointer being destroyed
1754 * @slabp: slab pointer being destroyed
1755 *
12dd36fa 1756 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1757 * Before calling the slab must have been unlinked from the cache. The
1758 * cache-lock is not held/needed.
12dd36fa 1759 */
343e0d7a 1760static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1761{
1762 void *addr = slabp->s_mem - slabp->colouroff;
1763
1764 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1765 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1766 struct slab_rcu *slab_rcu;
1767
b28a02de 1768 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1769 slab_rcu->cachep = cachep;
1770 slab_rcu->addr = addr;
1771 call_rcu(&slab_rcu->head, kmem_rcu_free);
1772 } else {
1773 kmem_freepages(cachep, addr);
1774 if (OFF_SLAB(cachep))
1775 kmem_cache_free(cachep->slabp_cache, slabp);
1776 }
1777}
1778
a737b3e2
AM
1779/*
1780 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1781 * size of kmem_list3.
1782 */
343e0d7a 1783static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1784{
1785 int node;
1786
1787 for_each_online_node(node) {
b28a02de 1788 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1789 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1790 REAPTIMEOUT_LIST3 +
1791 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1792 }
1793}
1794
4d268eba 1795/**
a70773dd
RD
1796 * calculate_slab_order - calculate size (page order) of slabs
1797 * @cachep: pointer to the cache that is being created
1798 * @size: size of objects to be created in this cache.
1799 * @align: required alignment for the objects.
1800 * @flags: slab allocation flags
1801 *
1802 * Also calculates the number of objects per slab.
4d268eba
PE
1803 *
1804 * This could be made much more intelligent. For now, try to avoid using
1805 * high order pages for slabs. When the gfp() functions are more friendly
1806 * towards high-order requests, this should be changed.
1807 */
a737b3e2 1808static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1809 size_t size, size_t align, unsigned long flags)
4d268eba 1810{
b1ab41c4 1811 unsigned long offslab_limit;
4d268eba 1812 size_t left_over = 0;
9888e6fa 1813 int gfporder;
4d268eba 1814
a737b3e2 1815 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1816 unsigned int num;
1817 size_t remainder;
1818
9888e6fa 1819 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1820 if (!num)
1821 continue;
9888e6fa 1822
b1ab41c4
IM
1823 if (flags & CFLGS_OFF_SLAB) {
1824 /*
1825 * Max number of objs-per-slab for caches which
1826 * use off-slab slabs. Needed to avoid a possible
1827 * looping condition in cache_grow().
1828 */
1829 offslab_limit = size - sizeof(struct slab);
1830 offslab_limit /= sizeof(kmem_bufctl_t);
1831
1832 if (num > offslab_limit)
1833 break;
1834 }
4d268eba 1835
9888e6fa 1836 /* Found something acceptable - save it away */
4d268eba 1837 cachep->num = num;
9888e6fa 1838 cachep->gfporder = gfporder;
4d268eba
PE
1839 left_over = remainder;
1840
f78bb8ad
LT
1841 /*
1842 * A VFS-reclaimable slab tends to have most allocations
1843 * as GFP_NOFS and we really don't want to have to be allocating
1844 * higher-order pages when we are unable to shrink dcache.
1845 */
1846 if (flags & SLAB_RECLAIM_ACCOUNT)
1847 break;
1848
4d268eba
PE
1849 /*
1850 * Large number of objects is good, but very large slabs are
1851 * currently bad for the gfp()s.
1852 */
9888e6fa 1853 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1854 break;
1855
9888e6fa
LT
1856 /*
1857 * Acceptable internal fragmentation?
1858 */
a737b3e2 1859 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1860 break;
1861 }
1862 return left_over;
1863}
1864
f30cf7d1
PE
1865static void setup_cpu_cache(struct kmem_cache *cachep)
1866{
1867 if (g_cpucache_up == FULL) {
1868 enable_cpucache(cachep);
1869 return;
1870 }
1871 if (g_cpucache_up == NONE) {
1872 /*
1873 * Note: the first kmem_cache_create must create the cache
1874 * that's used by kmalloc(24), otherwise the creation of
1875 * further caches will BUG().
1876 */
1877 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1878
1879 /*
1880 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1881 * the first cache, then we need to set up all its list3s,
1882 * otherwise the creation of further caches will BUG().
1883 */
1884 set_up_list3s(cachep, SIZE_AC);
1885 if (INDEX_AC == INDEX_L3)
1886 g_cpucache_up = PARTIAL_L3;
1887 else
1888 g_cpucache_up = PARTIAL_AC;
1889 } else {
1890 cachep->array[smp_processor_id()] =
1891 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1892
1893 if (g_cpucache_up == PARTIAL_AC) {
1894 set_up_list3s(cachep, SIZE_L3);
1895 g_cpucache_up = PARTIAL_L3;
1896 } else {
1897 int node;
1898 for_each_online_node(node) {
1899 cachep->nodelists[node] =
1900 kmalloc_node(sizeof(struct kmem_list3),
1901 GFP_KERNEL, node);
1902 BUG_ON(!cachep->nodelists[node]);
1903 kmem_list3_init(cachep->nodelists[node]);
1904 }
1905 }
1906 }
1907 cachep->nodelists[numa_node_id()]->next_reap =
1908 jiffies + REAPTIMEOUT_LIST3 +
1909 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1910
1911 cpu_cache_get(cachep)->avail = 0;
1912 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1913 cpu_cache_get(cachep)->batchcount = 1;
1914 cpu_cache_get(cachep)->touched = 0;
1915 cachep->batchcount = 1;
1916 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1917}
1918
1da177e4
LT
1919/**
1920 * kmem_cache_create - Create a cache.
1921 * @name: A string which is used in /proc/slabinfo to identify this cache.
1922 * @size: The size of objects to be created in this cache.
1923 * @align: The required alignment for the objects.
1924 * @flags: SLAB flags
1925 * @ctor: A constructor for the objects.
1926 * @dtor: A destructor for the objects.
1927 *
1928 * Returns a ptr to the cache on success, NULL on failure.
1929 * Cannot be called within a int, but can be interrupted.
1930 * The @ctor is run when new pages are allocated by the cache
1931 * and the @dtor is run before the pages are handed back.
1932 *
1933 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
1934 * the module calling this has to destroy the cache before getting unloaded.
1935 *
1da177e4
LT
1936 * The flags are
1937 *
1938 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1939 * to catch references to uninitialised memory.
1940 *
1941 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1942 * for buffer overruns.
1943 *
1da177e4
LT
1944 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1945 * cacheline. This can be beneficial if you're counting cycles as closely
1946 * as davem.
1947 */
343e0d7a 1948struct kmem_cache *
1da177e4 1949kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
1950 unsigned long flags,
1951 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 1952 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
1953{
1954 size_t left_over, slab_size, ralign;
7a7c381d 1955 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
1956
1957 /*
1958 * Sanity checks... these are all serious usage bugs.
1959 */
a737b3e2 1960 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 1961 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
1962 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1963 name);
b28a02de
PE
1964 BUG();
1965 }
1da177e4 1966
f0188f47
RT
1967 /*
1968 * Prevent CPUs from coming and going.
1969 * lock_cpu_hotplug() nests outside cache_chain_mutex
1970 */
1971 lock_cpu_hotplug();
1972
fc0abb14 1973 mutex_lock(&cache_chain_mutex);
4f12bb4f 1974
7a7c381d 1975 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
1976 mm_segment_t old_fs = get_fs();
1977 char tmp;
1978 int res;
1979
1980 /*
1981 * This happens when the module gets unloaded and doesn't
1982 * destroy its slab cache and no-one else reuses the vmalloc
1983 * area of the module. Print a warning.
1984 */
1985 set_fs(KERNEL_DS);
1986 res = __get_user(tmp, pc->name);
1987 set_fs(old_fs);
1988 if (res) {
1989 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 1990 pc->buffer_size);
4f12bb4f
AM
1991 continue;
1992 }
1993
b28a02de 1994 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
1995 printk("kmem_cache_create: duplicate cache %s\n", name);
1996 dump_stack();
1997 goto oops;
1998 }
1999 }
2000
1da177e4
LT
2001#if DEBUG
2002 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2003 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2004 /* No constructor, but inital state check requested */
2005 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 2006 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
2007 flags &= ~SLAB_DEBUG_INITIAL;
2008 }
1da177e4
LT
2009#if FORCED_DEBUG
2010 /*
2011 * Enable redzoning and last user accounting, except for caches with
2012 * large objects, if the increased size would increase the object size
2013 * above the next power of two: caches with object sizes just above a
2014 * power of two have a significant amount of internal fragmentation.
2015 */
a737b3e2 2016 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2017 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2018 if (!(flags & SLAB_DESTROY_BY_RCU))
2019 flags |= SLAB_POISON;
2020#endif
2021 if (flags & SLAB_DESTROY_BY_RCU)
2022 BUG_ON(flags & SLAB_POISON);
2023#endif
2024 if (flags & SLAB_DESTROY_BY_RCU)
2025 BUG_ON(dtor);
2026
2027 /*
a737b3e2
AM
2028 * Always checks flags, a caller might be expecting debug support which
2029 * isn't available.
1da177e4 2030 */
40094fa6 2031 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2032
a737b3e2
AM
2033 /*
2034 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2035 * unaligned accesses for some archs when redzoning is used, and makes
2036 * sure any on-slab bufctl's are also correctly aligned.
2037 */
b28a02de
PE
2038 if (size & (BYTES_PER_WORD - 1)) {
2039 size += (BYTES_PER_WORD - 1);
2040 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2041 }
2042
a737b3e2
AM
2043 /* calculate the final buffer alignment: */
2044
1da177e4
LT
2045 /* 1) arch recommendation: can be overridden for debug */
2046 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2047 /*
2048 * Default alignment: as specified by the arch code. Except if
2049 * an object is really small, then squeeze multiple objects into
2050 * one cacheline.
1da177e4
LT
2051 */
2052 ralign = cache_line_size();
b28a02de 2053 while (size <= ralign / 2)
1da177e4
LT
2054 ralign /= 2;
2055 } else {
2056 ralign = BYTES_PER_WORD;
2057 }
2058 /* 2) arch mandated alignment: disables debug if necessary */
2059 if (ralign < ARCH_SLAB_MINALIGN) {
2060 ralign = ARCH_SLAB_MINALIGN;
2061 if (ralign > BYTES_PER_WORD)
b28a02de 2062 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
2063 }
2064 /* 3) caller mandated alignment: disables debug if necessary */
2065 if (ralign < align) {
2066 ralign = align;
2067 if (ralign > BYTES_PER_WORD)
b28a02de 2068 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4 2069 }
a737b3e2
AM
2070 /*
2071 * 4) Store it. Note that the debug code below can reduce
1da177e4
LT
2072 * the alignment to BYTES_PER_WORD.
2073 */
2074 align = ralign;
2075
2076 /* Get cache's description obj. */
c5e3b83e 2077 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
1da177e4 2078 if (!cachep)
4f12bb4f 2079 goto oops;
1da177e4
LT
2080
2081#if DEBUG
3dafccf2 2082 cachep->obj_size = size;
1da177e4
LT
2083
2084 if (flags & SLAB_RED_ZONE) {
2085 /* redzoning only works with word aligned caches */
2086 align = BYTES_PER_WORD;
2087
2088 /* add space for red zone words */
3dafccf2 2089 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2090 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2091 }
2092 if (flags & SLAB_STORE_USER) {
2093 /* user store requires word alignment and
2094 * one word storage behind the end of the real
2095 * object.
2096 */
2097 align = BYTES_PER_WORD;
2098 size += BYTES_PER_WORD;
2099 }
2100#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2101 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2102 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2103 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2104 size = PAGE_SIZE;
2105 }
2106#endif
2107#endif
2108
2109 /* Determine if the slab management is 'on' or 'off' slab. */
b28a02de 2110 if (size >= (PAGE_SIZE >> 3))
1da177e4
LT
2111 /*
2112 * Size is large, assume best to place the slab management obj
2113 * off-slab (should allow better packing of objs).
2114 */
2115 flags |= CFLGS_OFF_SLAB;
2116
2117 size = ALIGN(size, align);
2118
f78bb8ad 2119 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2120
2121 if (!cachep->num) {
2122 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2123 kmem_cache_free(&cache_cache, cachep);
2124 cachep = NULL;
4f12bb4f 2125 goto oops;
1da177e4 2126 }
b28a02de
PE
2127 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2128 + sizeof(struct slab), align);
1da177e4
LT
2129
2130 /*
2131 * If the slab has been placed off-slab, and we have enough space then
2132 * move it on-slab. This is at the expense of any extra colouring.
2133 */
2134 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2135 flags &= ~CFLGS_OFF_SLAB;
2136 left_over -= slab_size;
2137 }
2138
2139 if (flags & CFLGS_OFF_SLAB) {
2140 /* really off slab. No need for manual alignment */
b28a02de
PE
2141 slab_size =
2142 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2143 }
2144
2145 cachep->colour_off = cache_line_size();
2146 /* Offset must be a multiple of the alignment. */
2147 if (cachep->colour_off < align)
2148 cachep->colour_off = align;
b28a02de 2149 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2150 cachep->slab_size = slab_size;
2151 cachep->flags = flags;
2152 cachep->gfpflags = 0;
2153 if (flags & SLAB_CACHE_DMA)
2154 cachep->gfpflags |= GFP_DMA;
3dafccf2 2155 cachep->buffer_size = size;
1da177e4
LT
2156
2157 if (flags & CFLGS_OFF_SLAB)
b2d55073 2158 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1da177e4
LT
2159 cachep->ctor = ctor;
2160 cachep->dtor = dtor;
2161 cachep->name = name;
2162
1da177e4 2163
f30cf7d1 2164 setup_cpu_cache(cachep);
1da177e4 2165
1da177e4
LT
2166 /* cache setup completed, link it into the list */
2167 list_add(&cachep->next, &cache_chain);
a737b3e2 2168oops:
1da177e4
LT
2169 if (!cachep && (flags & SLAB_PANIC))
2170 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2171 name);
fc0abb14 2172 mutex_unlock(&cache_chain_mutex);
f0188f47 2173 unlock_cpu_hotplug();
1da177e4
LT
2174 return cachep;
2175}
2176EXPORT_SYMBOL(kmem_cache_create);
2177
2178#if DEBUG
2179static void check_irq_off(void)
2180{
2181 BUG_ON(!irqs_disabled());
2182}
2183
2184static void check_irq_on(void)
2185{
2186 BUG_ON(irqs_disabled());
2187}
2188
343e0d7a 2189static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2190{
2191#ifdef CONFIG_SMP
2192 check_irq_off();
e498be7d 2193 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2194#endif
2195}
e498be7d 2196
343e0d7a 2197static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2198{
2199#ifdef CONFIG_SMP
2200 check_irq_off();
2201 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2202#endif
2203}
2204
1da177e4
LT
2205#else
2206#define check_irq_off() do { } while(0)
2207#define check_irq_on() do { } while(0)
2208#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2209#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2210#endif
2211
aab2207c
CL
2212static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2213 struct array_cache *ac,
2214 int force, int node);
2215
1da177e4
LT
2216static void do_drain(void *arg)
2217{
a737b3e2 2218 struct kmem_cache *cachep = arg;
1da177e4 2219 struct array_cache *ac;
ff69416e 2220 int node = numa_node_id();
1da177e4
LT
2221
2222 check_irq_off();
9a2dba4b 2223 ac = cpu_cache_get(cachep);
ff69416e
CL
2224 spin_lock(&cachep->nodelists[node]->list_lock);
2225 free_block(cachep, ac->entry, ac->avail, node);
2226 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2227 ac->avail = 0;
2228}
2229
343e0d7a 2230static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2231{
e498be7d
CL
2232 struct kmem_list3 *l3;
2233 int node;
2234
a07fa394 2235 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2236 check_irq_on();
b28a02de 2237 for_each_online_node(node) {
e498be7d 2238 l3 = cachep->nodelists[node];
a4523a8b
RD
2239 if (l3 && l3->alien)
2240 drain_alien_cache(cachep, l3->alien);
2241 }
2242
2243 for_each_online_node(node) {
2244 l3 = cachep->nodelists[node];
2245 if (l3)
aab2207c 2246 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2247 }
1da177e4
LT
2248}
2249
343e0d7a 2250static int __node_shrink(struct kmem_cache *cachep, int node)
1da177e4
LT
2251{
2252 struct slab *slabp;
e498be7d 2253 struct kmem_list3 *l3 = cachep->nodelists[node];
1da177e4
LT
2254 int ret;
2255
e498be7d 2256 for (;;) {
1da177e4
LT
2257 struct list_head *p;
2258
e498be7d
CL
2259 p = l3->slabs_free.prev;
2260 if (p == &l3->slabs_free)
1da177e4
LT
2261 break;
2262
e498be7d 2263 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1da177e4 2264#if DEBUG
40094fa6 2265 BUG_ON(slabp->inuse);
1da177e4
LT
2266#endif
2267 list_del(&slabp->list);
2268
e498be7d
CL
2269 l3->free_objects -= cachep->num;
2270 spin_unlock_irq(&l3->list_lock);
1da177e4 2271 slab_destroy(cachep, slabp);
e498be7d 2272 spin_lock_irq(&l3->list_lock);
1da177e4 2273 }
b28a02de 2274 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
1da177e4
LT
2275 return ret;
2276}
2277
343e0d7a 2278static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2279{
2280 int ret = 0, i = 0;
2281 struct kmem_list3 *l3;
2282
2283 drain_cpu_caches(cachep);
2284
2285 check_irq_on();
2286 for_each_online_node(i) {
2287 l3 = cachep->nodelists[i];
2288 if (l3) {
2289 spin_lock_irq(&l3->list_lock);
2290 ret += __node_shrink(cachep, i);
2291 spin_unlock_irq(&l3->list_lock);
2292 }
2293 }
2294 return (ret ? 1 : 0);
2295}
2296
1da177e4
LT
2297/**
2298 * kmem_cache_shrink - Shrink a cache.
2299 * @cachep: The cache to shrink.
2300 *
2301 * Releases as many slabs as possible for a cache.
2302 * To help debugging, a zero exit status indicates all slabs were released.
2303 */
343e0d7a 2304int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2305{
40094fa6 2306 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2307
2308 return __cache_shrink(cachep);
2309}
2310EXPORT_SYMBOL(kmem_cache_shrink);
2311
2312/**
2313 * kmem_cache_destroy - delete a cache
2314 * @cachep: the cache to destroy
2315 *
343e0d7a 2316 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2317 * Returns 0 on success.
2318 *
2319 * It is expected this function will be called by a module when it is
2320 * unloaded. This will remove the cache completely, and avoid a duplicate
2321 * cache being allocated each time a module is loaded and unloaded, if the
2322 * module doesn't have persistent in-kernel storage across loads and unloads.
2323 *
2324 * The cache must be empty before calling this function.
2325 *
2326 * The caller must guarantee that noone will allocate memory from the cache
2327 * during the kmem_cache_destroy().
2328 */
343e0d7a 2329int kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4
LT
2330{
2331 int i;
e498be7d 2332 struct kmem_list3 *l3;
1da177e4 2333
40094fa6 2334 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2335
2336 /* Don't let CPUs to come and go */
2337 lock_cpu_hotplug();
2338
2339 /* Find the cache in the chain of caches. */
fc0abb14 2340 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2341 /*
2342 * the chain is never empty, cache_cache is never destroyed
2343 */
2344 list_del(&cachep->next);
fc0abb14 2345 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2346
2347 if (__cache_shrink(cachep)) {
2348 slab_error(cachep, "Can't free all objects");
fc0abb14 2349 mutex_lock(&cache_chain_mutex);
b28a02de 2350 list_add(&cachep->next, &cache_chain);
fc0abb14 2351 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2352 unlock_cpu_hotplug();
2353 return 1;
2354 }
2355
2356 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2357 synchronize_rcu();
1da177e4 2358
e498be7d 2359 for_each_online_cpu(i)
b28a02de 2360 kfree(cachep->array[i]);
1da177e4
LT
2361
2362 /* NUMA: free the list3 structures */
e498be7d 2363 for_each_online_node(i) {
a737b3e2
AM
2364 l3 = cachep->nodelists[i];
2365 if (l3) {
e498be7d
CL
2366 kfree(l3->shared);
2367 free_alien_cache(l3->alien);
2368 kfree(l3);
2369 }
2370 }
1da177e4 2371 kmem_cache_free(&cache_cache, cachep);
1da177e4 2372 unlock_cpu_hotplug();
1da177e4
LT
2373 return 0;
2374}
2375EXPORT_SYMBOL(kmem_cache_destroy);
2376
2377/* Get the memory for a slab management obj. */
343e0d7a 2378static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2379 int colour_off, gfp_t local_flags,
2380 int nodeid)
1da177e4
LT
2381{
2382 struct slab *slabp;
b28a02de 2383
1da177e4
LT
2384 if (OFF_SLAB(cachep)) {
2385 /* Slab management obj is off-slab. */
5b74ada7
RT
2386 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2387 local_flags, nodeid);
1da177e4
LT
2388 if (!slabp)
2389 return NULL;
2390 } else {
b28a02de 2391 slabp = objp + colour_off;
1da177e4
LT
2392 colour_off += cachep->slab_size;
2393 }
2394 slabp->inuse = 0;
2395 slabp->colouroff = colour_off;
b28a02de 2396 slabp->s_mem = objp + colour_off;
5b74ada7 2397 slabp->nodeid = nodeid;
1da177e4
LT
2398 return slabp;
2399}
2400
2401static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2402{
b28a02de 2403 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2404}
2405
343e0d7a 2406static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2407 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2408{
2409 int i;
2410
2411 for (i = 0; i < cachep->num; i++) {
8fea4e96 2412 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2413#if DEBUG
2414 /* need to poison the objs? */
2415 if (cachep->flags & SLAB_POISON)
2416 poison_obj(cachep, objp, POISON_FREE);
2417 if (cachep->flags & SLAB_STORE_USER)
2418 *dbg_userword(cachep, objp) = NULL;
2419
2420 if (cachep->flags & SLAB_RED_ZONE) {
2421 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2422 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2423 }
2424 /*
a737b3e2
AM
2425 * Constructors are not allowed to allocate memory from the same
2426 * cache which they are a constructor for. Otherwise, deadlock.
2427 * They must also be threaded.
1da177e4
LT
2428 */
2429 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2430 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2431 ctor_flags);
1da177e4
LT
2432
2433 if (cachep->flags & SLAB_RED_ZONE) {
2434 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2435 slab_error(cachep, "constructor overwrote the"
b28a02de 2436 " end of an object");
1da177e4
LT
2437 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2438 slab_error(cachep, "constructor overwrote the"
b28a02de 2439 " start of an object");
1da177e4 2440 }
a737b3e2
AM
2441 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2442 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2443 kernel_map_pages(virt_to_page(objp),
3dafccf2 2444 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2445#else
2446 if (cachep->ctor)
2447 cachep->ctor(objp, cachep, ctor_flags);
2448#endif
b28a02de 2449 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2450 }
b28a02de 2451 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2452 slabp->free = 0;
2453}
2454
343e0d7a 2455static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2456{
a737b3e2
AM
2457 if (flags & SLAB_DMA)
2458 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2459 else
2460 BUG_ON(cachep->gfpflags & GFP_DMA);
1da177e4
LT
2461}
2462
a737b3e2
AM
2463static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2464 int nodeid)
78d382d7 2465{
8fea4e96 2466 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2467 kmem_bufctl_t next;
2468
2469 slabp->inuse++;
2470 next = slab_bufctl(slabp)[slabp->free];
2471#if DEBUG
2472 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2473 WARN_ON(slabp->nodeid != nodeid);
2474#endif
2475 slabp->free = next;
2476
2477 return objp;
2478}
2479
a737b3e2
AM
2480static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2481 void *objp, int nodeid)
78d382d7 2482{
8fea4e96 2483 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2484
2485#if DEBUG
2486 /* Verify that the slab belongs to the intended node */
2487 WARN_ON(slabp->nodeid != nodeid);
2488
871751e2 2489 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2490 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2491 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2492 BUG();
2493 }
2494#endif
2495 slab_bufctl(slabp)[objnr] = slabp->free;
2496 slabp->free = objnr;
2497 slabp->inuse--;
2498}
2499
4776874f
PE
2500/*
2501 * Map pages beginning at addr to the given cache and slab. This is required
2502 * for the slab allocator to be able to lookup the cache and slab of a
2503 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2504 */
2505static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2506 void *addr)
1da177e4 2507{
4776874f 2508 int nr_pages;
1da177e4
LT
2509 struct page *page;
2510
4776874f 2511 page = virt_to_page(addr);
84097518 2512
4776874f 2513 nr_pages = 1;
84097518 2514 if (likely(!PageCompound(page)))
4776874f
PE
2515 nr_pages <<= cache->gfporder;
2516
1da177e4 2517 do {
4776874f
PE
2518 page_set_cache(page, cache);
2519 page_set_slab(page, slab);
1da177e4 2520 page++;
4776874f 2521 } while (--nr_pages);
1da177e4
LT
2522}
2523
2524/*
2525 * Grow (by 1) the number of slabs within a cache. This is called by
2526 * kmem_cache_alloc() when there are no active objs left in a cache.
2527 */
343e0d7a 2528static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2529{
b28a02de
PE
2530 struct slab *slabp;
2531 void *objp;
2532 size_t offset;
2533 gfp_t local_flags;
2534 unsigned long ctor_flags;
e498be7d 2535 struct kmem_list3 *l3;
1da177e4 2536
a737b3e2
AM
2537 /*
2538 * Be lazy and only check for valid flags here, keeping it out of the
2539 * critical path in kmem_cache_alloc().
1da177e4 2540 */
40094fa6 2541 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
1da177e4
LT
2542 if (flags & SLAB_NO_GROW)
2543 return 0;
2544
2545 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2546 local_flags = (flags & SLAB_LEVEL_MASK);
2547 if (!(local_flags & __GFP_WAIT))
2548 /*
2549 * Not allowed to sleep. Need to tell a constructor about
2550 * this - it might need to know...
2551 */
2552 ctor_flags |= SLAB_CTOR_ATOMIC;
2553
2e1217cf 2554 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2555 check_irq_off();
2e1217cf
RT
2556 l3 = cachep->nodelists[nodeid];
2557 spin_lock(&l3->list_lock);
1da177e4
LT
2558
2559 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2560 offset = l3->colour_next;
2561 l3->colour_next++;
2562 if (l3->colour_next >= cachep->colour)
2563 l3->colour_next = 0;
2564 spin_unlock(&l3->list_lock);
1da177e4 2565
2e1217cf 2566 offset *= cachep->colour_off;
1da177e4
LT
2567
2568 if (local_flags & __GFP_WAIT)
2569 local_irq_enable();
2570
2571 /*
2572 * The test for missing atomic flag is performed here, rather than
2573 * the more obvious place, simply to reduce the critical path length
2574 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2575 * will eventually be caught here (where it matters).
2576 */
2577 kmem_flagcheck(cachep, flags);
2578
a737b3e2
AM
2579 /*
2580 * Get mem for the objs. Attempt to allocate a physical page from
2581 * 'nodeid'.
e498be7d 2582 */
a737b3e2
AM
2583 objp = kmem_getpages(cachep, flags, nodeid);
2584 if (!objp)
1da177e4
LT
2585 goto failed;
2586
2587 /* Get slab management. */
5b74ada7 2588 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
a737b3e2 2589 if (!slabp)
1da177e4
LT
2590 goto opps1;
2591
e498be7d 2592 slabp->nodeid = nodeid;
4776874f 2593 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2594
2595 cache_init_objs(cachep, slabp, ctor_flags);
2596
2597 if (local_flags & __GFP_WAIT)
2598 local_irq_disable();
2599 check_irq_off();
e498be7d 2600 spin_lock(&l3->list_lock);
1da177e4
LT
2601
2602 /* Make slab active. */
e498be7d 2603 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2604 STATS_INC_GROWN(cachep);
e498be7d
CL
2605 l3->free_objects += cachep->num;
2606 spin_unlock(&l3->list_lock);
1da177e4 2607 return 1;
a737b3e2 2608opps1:
1da177e4 2609 kmem_freepages(cachep, objp);
a737b3e2 2610failed:
1da177e4
LT
2611 if (local_flags & __GFP_WAIT)
2612 local_irq_disable();
2613 return 0;
2614}
2615
2616#if DEBUG
2617
2618/*
2619 * Perform extra freeing checks:
2620 * - detect bad pointers.
2621 * - POISON/RED_ZONE checking
2622 * - destructor calls, for caches with POISON+dtor
2623 */
2624static void kfree_debugcheck(const void *objp)
2625{
2626 struct page *page;
2627
2628 if (!virt_addr_valid(objp)) {
2629 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2630 (unsigned long)objp);
2631 BUG();
1da177e4
LT
2632 }
2633 page = virt_to_page(objp);
2634 if (!PageSlab(page)) {
b28a02de
PE
2635 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2636 (unsigned long)objp);
1da177e4
LT
2637 BUG();
2638 }
2639}
2640
58ce1fd5
PE
2641static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2642{
2643 unsigned long redzone1, redzone2;
2644
2645 redzone1 = *dbg_redzone1(cache, obj);
2646 redzone2 = *dbg_redzone2(cache, obj);
2647
2648 /*
2649 * Redzone is ok.
2650 */
2651 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2652 return;
2653
2654 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2655 slab_error(cache, "double free detected");
2656 else
2657 slab_error(cache, "memory outside object was overwritten");
2658
2659 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2660 obj, redzone1, redzone2);
2661}
2662
343e0d7a 2663static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2664 void *caller)
1da177e4
LT
2665{
2666 struct page *page;
2667 unsigned int objnr;
2668 struct slab *slabp;
2669
3dafccf2 2670 objp -= obj_offset(cachep);
1da177e4
LT
2671 kfree_debugcheck(objp);
2672 page = virt_to_page(objp);
2673
065d41cb 2674 slabp = page_get_slab(page);
1da177e4
LT
2675
2676 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2677 verify_redzone_free(cachep, objp);
1da177e4
LT
2678 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2679 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2680 }
2681 if (cachep->flags & SLAB_STORE_USER)
2682 *dbg_userword(cachep, objp) = caller;
2683
8fea4e96 2684 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2685
2686 BUG_ON(objnr >= cachep->num);
8fea4e96 2687 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2688
2689 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2690 /*
2691 * Need to call the slab's constructor so the caller can
2692 * perform a verify of its state (debugging). Called without
2693 * the cache-lock held.
1da177e4 2694 */
3dafccf2 2695 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2696 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2697 }
2698 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2699 /* we want to cache poison the object,
2700 * call the destruction callback
2701 */
3dafccf2 2702 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2703 }
871751e2
AV
2704#ifdef CONFIG_DEBUG_SLAB_LEAK
2705 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2706#endif
1da177e4
LT
2707 if (cachep->flags & SLAB_POISON) {
2708#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2709 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2710 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2711 kernel_map_pages(virt_to_page(objp),
3dafccf2 2712 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2713 } else {
2714 poison_obj(cachep, objp, POISON_FREE);
2715 }
2716#else
2717 poison_obj(cachep, objp, POISON_FREE);
2718#endif
2719 }
2720 return objp;
2721}
2722
343e0d7a 2723static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2724{
2725 kmem_bufctl_t i;
2726 int entries = 0;
b28a02de 2727
1da177e4
LT
2728 /* Check slab's freelist to see if this obj is there. */
2729 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2730 entries++;
2731 if (entries > cachep->num || i >= cachep->num)
2732 goto bad;
2733 }
2734 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2735bad:
2736 printk(KERN_ERR "slab: Internal list corruption detected in "
2737 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2738 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2739 for (i = 0;
264132bc 2740 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2741 i++) {
a737b3e2 2742 if (i % 16 == 0)
1da177e4 2743 printk("\n%03x:", i);
b28a02de 2744 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2745 }
2746 printk("\n");
2747 BUG();
2748 }
2749}
2750#else
2751#define kfree_debugcheck(x) do { } while(0)
2752#define cache_free_debugcheck(x,objp,z) (objp)
2753#define check_slabp(x,y) do { } while(0)
2754#endif
2755
343e0d7a 2756static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2757{
2758 int batchcount;
2759 struct kmem_list3 *l3;
2760 struct array_cache *ac;
2761
2762 check_irq_off();
9a2dba4b 2763 ac = cpu_cache_get(cachep);
a737b3e2 2764retry:
1da177e4
LT
2765 batchcount = ac->batchcount;
2766 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2767 /*
2768 * If there was little recent activity on this cache, then
2769 * perform only a partial refill. Otherwise we could generate
2770 * refill bouncing.
1da177e4
LT
2771 */
2772 batchcount = BATCHREFILL_LIMIT;
2773 }
e498be7d
CL
2774 l3 = cachep->nodelists[numa_node_id()];
2775
2776 BUG_ON(ac->avail > 0 || !l3);
2777 spin_lock(&l3->list_lock);
1da177e4 2778
3ded175a
CL
2779 /* See if we can refill from the shared array */
2780 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2781 goto alloc_done;
2782
1da177e4
LT
2783 while (batchcount > 0) {
2784 struct list_head *entry;
2785 struct slab *slabp;
2786 /* Get slab alloc is to come from. */
2787 entry = l3->slabs_partial.next;
2788 if (entry == &l3->slabs_partial) {
2789 l3->free_touched = 1;
2790 entry = l3->slabs_free.next;
2791 if (entry == &l3->slabs_free)
2792 goto must_grow;
2793 }
2794
2795 slabp = list_entry(entry, struct slab, list);
2796 check_slabp(cachep, slabp);
2797 check_spinlock_acquired(cachep);
2798 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2799 STATS_INC_ALLOCED(cachep);
2800 STATS_INC_ACTIVE(cachep);
2801 STATS_SET_HIGH(cachep);
2802
78d382d7
MD
2803 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2804 numa_node_id());
1da177e4
LT
2805 }
2806 check_slabp(cachep, slabp);
2807
2808 /* move slabp to correct slabp list: */
2809 list_del(&slabp->list);
2810 if (slabp->free == BUFCTL_END)
2811 list_add(&slabp->list, &l3->slabs_full);
2812 else
2813 list_add(&slabp->list, &l3->slabs_partial);
2814 }
2815
a737b3e2 2816must_grow:
1da177e4 2817 l3->free_objects -= ac->avail;
a737b3e2 2818alloc_done:
e498be7d 2819 spin_unlock(&l3->list_lock);
1da177e4
LT
2820
2821 if (unlikely(!ac->avail)) {
2822 int x;
e498be7d
CL
2823 x = cache_grow(cachep, flags, numa_node_id());
2824
a737b3e2 2825 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2826 ac = cpu_cache_get(cachep);
a737b3e2 2827 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2828 return NULL;
2829
a737b3e2 2830 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2831 goto retry;
2832 }
2833 ac->touched = 1;
e498be7d 2834 return ac->entry[--ac->avail];
1da177e4
LT
2835}
2836
a737b3e2
AM
2837static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2838 gfp_t flags)
1da177e4
LT
2839{
2840 might_sleep_if(flags & __GFP_WAIT);
2841#if DEBUG
2842 kmem_flagcheck(cachep, flags);
2843#endif
2844}
2845
2846#if DEBUG
a737b3e2
AM
2847static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2848 gfp_t flags, void *objp, void *caller)
1da177e4 2849{
b28a02de 2850 if (!objp)
1da177e4 2851 return objp;
b28a02de 2852 if (cachep->flags & SLAB_POISON) {
1da177e4 2853#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2854 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2855 kernel_map_pages(virt_to_page(objp),
3dafccf2 2856 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2857 else
2858 check_poison_obj(cachep, objp);
2859#else
2860 check_poison_obj(cachep, objp);
2861#endif
2862 poison_obj(cachep, objp, POISON_INUSE);
2863 }
2864 if (cachep->flags & SLAB_STORE_USER)
2865 *dbg_userword(cachep, objp) = caller;
2866
2867 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2868 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2869 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2870 slab_error(cachep, "double free, or memory outside"
2871 " object was overwritten");
b28a02de 2872 printk(KERN_ERR
a737b3e2
AM
2873 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2874 objp, *dbg_redzone1(cachep, objp),
2875 *dbg_redzone2(cachep, objp));
1da177e4
LT
2876 }
2877 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2878 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2879 }
871751e2
AV
2880#ifdef CONFIG_DEBUG_SLAB_LEAK
2881 {
2882 struct slab *slabp;
2883 unsigned objnr;
2884
2885 slabp = page_get_slab(virt_to_page(objp));
2886 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2887 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2888 }
2889#endif
3dafccf2 2890 objp += obj_offset(cachep);
1da177e4 2891 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 2892 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
2893
2894 if (!(flags & __GFP_WAIT))
2895 ctor_flags |= SLAB_CTOR_ATOMIC;
2896
2897 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 2898 }
1da177e4
LT
2899 return objp;
2900}
2901#else
2902#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2903#endif
2904
343e0d7a 2905static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2906{
b28a02de 2907 void *objp;
1da177e4
LT
2908 struct array_cache *ac;
2909
dc85da15 2910#ifdef CONFIG_NUMA
b2455396 2911 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
c61afb18
PJ
2912 objp = alternate_node_alloc(cachep, flags);
2913 if (objp != NULL)
2914 return objp;
dc85da15
CL
2915 }
2916#endif
2917
5c382300 2918 check_irq_off();
9a2dba4b 2919 ac = cpu_cache_get(cachep);
1da177e4
LT
2920 if (likely(ac->avail)) {
2921 STATS_INC_ALLOCHIT(cachep);
2922 ac->touched = 1;
e498be7d 2923 objp = ac->entry[--ac->avail];
1da177e4
LT
2924 } else {
2925 STATS_INC_ALLOCMISS(cachep);
2926 objp = cache_alloc_refill(cachep, flags);
2927 }
5c382300
AK
2928 return objp;
2929}
2930
a737b3e2
AM
2931static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2932 gfp_t flags, void *caller)
5c382300
AK
2933{
2934 unsigned long save_flags;
b28a02de 2935 void *objp;
5c382300
AK
2936
2937 cache_alloc_debugcheck_before(cachep, flags);
2938
2939 local_irq_save(save_flags);
2940 objp = ____cache_alloc(cachep, flags);
1da177e4 2941 local_irq_restore(save_flags);
34342e86 2942 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 2943 caller);
34342e86 2944 prefetchw(objp);
1da177e4
LT
2945 return objp;
2946}
2947
e498be7d 2948#ifdef CONFIG_NUMA
c61afb18 2949/*
b2455396 2950 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
2951 *
2952 * If we are in_interrupt, then process context, including cpusets and
2953 * mempolicy, may not apply and should not be used for allocation policy.
2954 */
2955static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2956{
2957 int nid_alloc, nid_here;
2958
2959 if (in_interrupt())
2960 return NULL;
2961 nid_alloc = nid_here = numa_node_id();
2962 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2963 nid_alloc = cpuset_mem_spread_node();
2964 else if (current->mempolicy)
2965 nid_alloc = slab_node(current->mempolicy);
2966 if (nid_alloc != nid_here)
2967 return __cache_alloc_node(cachep, flags, nid_alloc);
2968 return NULL;
2969}
2970
e498be7d
CL
2971/*
2972 * A interface to enable slab creation on nodeid
1da177e4 2973 */
a737b3e2
AM
2974static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2975 int nodeid)
e498be7d
CL
2976{
2977 struct list_head *entry;
b28a02de
PE
2978 struct slab *slabp;
2979 struct kmem_list3 *l3;
2980 void *obj;
b28a02de
PE
2981 int x;
2982
2983 l3 = cachep->nodelists[nodeid];
2984 BUG_ON(!l3);
2985
a737b3e2 2986retry:
ca3b9b91 2987 check_irq_off();
b28a02de
PE
2988 spin_lock(&l3->list_lock);
2989 entry = l3->slabs_partial.next;
2990 if (entry == &l3->slabs_partial) {
2991 l3->free_touched = 1;
2992 entry = l3->slabs_free.next;
2993 if (entry == &l3->slabs_free)
2994 goto must_grow;
2995 }
2996
2997 slabp = list_entry(entry, struct slab, list);
2998 check_spinlock_acquired_node(cachep, nodeid);
2999 check_slabp(cachep, slabp);
3000
3001 STATS_INC_NODEALLOCS(cachep);
3002 STATS_INC_ACTIVE(cachep);
3003 STATS_SET_HIGH(cachep);
3004
3005 BUG_ON(slabp->inuse == cachep->num);
3006
78d382d7 3007 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3008 check_slabp(cachep, slabp);
3009 l3->free_objects--;
3010 /* move slabp to correct slabp list: */
3011 list_del(&slabp->list);
3012
a737b3e2 3013 if (slabp->free == BUFCTL_END)
b28a02de 3014 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3015 else
b28a02de 3016 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3017
b28a02de
PE
3018 spin_unlock(&l3->list_lock);
3019 goto done;
e498be7d 3020
a737b3e2 3021must_grow:
b28a02de
PE
3022 spin_unlock(&l3->list_lock);
3023 x = cache_grow(cachep, flags, nodeid);
1da177e4 3024
b28a02de
PE
3025 if (!x)
3026 return NULL;
e498be7d 3027
b28a02de 3028 goto retry;
a737b3e2 3029done:
b28a02de 3030 return obj;
e498be7d
CL
3031}
3032#endif
3033
3034/*
3035 * Caller needs to acquire correct kmem_list's list_lock
3036 */
343e0d7a 3037static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3038 int node)
1da177e4
LT
3039{
3040 int i;
e498be7d 3041 struct kmem_list3 *l3;
1da177e4
LT
3042
3043 for (i = 0; i < nr_objects; i++) {
3044 void *objp = objpp[i];
3045 struct slab *slabp;
1da177e4 3046
6ed5eb22 3047 slabp = virt_to_slab(objp);
ff69416e 3048 l3 = cachep->nodelists[node];
1da177e4 3049 list_del(&slabp->list);
ff69416e 3050 check_spinlock_acquired_node(cachep, node);
1da177e4 3051 check_slabp(cachep, slabp);
78d382d7 3052 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3053 STATS_DEC_ACTIVE(cachep);
e498be7d 3054 l3->free_objects++;
1da177e4
LT
3055 check_slabp(cachep, slabp);
3056
3057 /* fixup slab chains */
3058 if (slabp->inuse == 0) {
e498be7d
CL
3059 if (l3->free_objects > l3->free_limit) {
3060 l3->free_objects -= cachep->num;
1da177e4
LT
3061 slab_destroy(cachep, slabp);
3062 } else {
e498be7d 3063 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3064 }
3065 } else {
3066 /* Unconditionally move a slab to the end of the
3067 * partial list on free - maximum time for the
3068 * other objects to be freed, too.
3069 */
e498be7d 3070 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3071 }
3072 }
3073}
3074
343e0d7a 3075static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3076{
3077 int batchcount;
e498be7d 3078 struct kmem_list3 *l3;
ff69416e 3079 int node = numa_node_id();
1da177e4
LT
3080
3081 batchcount = ac->batchcount;
3082#if DEBUG
3083 BUG_ON(!batchcount || batchcount > ac->avail);
3084#endif
3085 check_irq_off();
ff69416e 3086 l3 = cachep->nodelists[node];
e498be7d
CL
3087 spin_lock(&l3->list_lock);
3088 if (l3->shared) {
3089 struct array_cache *shared_array = l3->shared;
b28a02de 3090 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3091 if (max) {
3092 if (batchcount > max)
3093 batchcount = max;
e498be7d 3094 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3095 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3096 shared_array->avail += batchcount;
3097 goto free_done;
3098 }
3099 }
3100
ff69416e 3101 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3102free_done:
1da177e4
LT
3103#if STATS
3104 {
3105 int i = 0;
3106 struct list_head *p;
3107
e498be7d
CL
3108 p = l3->slabs_free.next;
3109 while (p != &(l3->slabs_free)) {
1da177e4
LT
3110 struct slab *slabp;
3111
3112 slabp = list_entry(p, struct slab, list);
3113 BUG_ON(slabp->inuse);
3114
3115 i++;
3116 p = p->next;
3117 }
3118 STATS_SET_FREEABLE(cachep, i);
3119 }
3120#endif
e498be7d 3121 spin_unlock(&l3->list_lock);
1da177e4 3122 ac->avail -= batchcount;
a737b3e2 3123 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3124}
3125
3126/*
a737b3e2
AM
3127 * Release an obj back to its cache. If the obj has a constructed state, it must
3128 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3129 */
343e0d7a 3130static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3131{
9a2dba4b 3132 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3133
3134 check_irq_off();
3135 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3136
729bd0b7
PE
3137 if (cache_free_alien(cachep, objp))
3138 return;
3139
1da177e4
LT
3140 if (likely(ac->avail < ac->limit)) {
3141 STATS_INC_FREEHIT(cachep);
e498be7d 3142 ac->entry[ac->avail++] = objp;
1da177e4
LT
3143 return;
3144 } else {
3145 STATS_INC_FREEMISS(cachep);
3146 cache_flusharray(cachep, ac);
e498be7d 3147 ac->entry[ac->avail++] = objp;
1da177e4
LT
3148 }
3149}
3150
3151/**
3152 * kmem_cache_alloc - Allocate an object
3153 * @cachep: The cache to allocate from.
3154 * @flags: See kmalloc().
3155 *
3156 * Allocate an object from this cache. The flags are only relevant
3157 * if the cache has no available objects.
3158 */
343e0d7a 3159void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3160{
7fd6b141 3161 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3162}
3163EXPORT_SYMBOL(kmem_cache_alloc);
3164
a8c0f9a4
PE
3165/**
3166 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3167 * @cache: The cache to allocate from.
3168 * @flags: See kmalloc().
3169 *
3170 * Allocate an object from this cache and set the allocated memory to zero.
3171 * The flags are only relevant if the cache has no available objects.
3172 */
3173void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3174{
3175 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3176 if (ret)
3177 memset(ret, 0, obj_size(cache));
3178 return ret;
3179}
3180EXPORT_SYMBOL(kmem_cache_zalloc);
3181
1da177e4
LT
3182/**
3183 * kmem_ptr_validate - check if an untrusted pointer might
3184 * be a slab entry.
3185 * @cachep: the cache we're checking against
3186 * @ptr: pointer to validate
3187 *
3188 * This verifies that the untrusted pointer looks sane:
3189 * it is _not_ a guarantee that the pointer is actually
3190 * part of the slab cache in question, but it at least
3191 * validates that the pointer can be dereferenced and
3192 * looks half-way sane.
3193 *
3194 * Currently only used for dentry validation.
3195 */
343e0d7a 3196int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3197{
b28a02de 3198 unsigned long addr = (unsigned long)ptr;
1da177e4 3199 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3200 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3201 unsigned long size = cachep->buffer_size;
1da177e4
LT
3202 struct page *page;
3203
3204 if (unlikely(addr < min_addr))
3205 goto out;
3206 if (unlikely(addr > (unsigned long)high_memory - size))
3207 goto out;
3208 if (unlikely(addr & align_mask))
3209 goto out;
3210 if (unlikely(!kern_addr_valid(addr)))
3211 goto out;
3212 if (unlikely(!kern_addr_valid(addr + size - 1)))
3213 goto out;
3214 page = virt_to_page(ptr);
3215 if (unlikely(!PageSlab(page)))
3216 goto out;
065d41cb 3217 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3218 goto out;
3219 return 1;
a737b3e2 3220out:
1da177e4
LT
3221 return 0;
3222}
3223
3224#ifdef CONFIG_NUMA
3225/**
3226 * kmem_cache_alloc_node - Allocate an object on the specified node
3227 * @cachep: The cache to allocate from.
3228 * @flags: See kmalloc().
3229 * @nodeid: node number of the target node.
3230 *
3231 * Identical to kmem_cache_alloc, except that this function is slow
3232 * and can sleep. And it will allocate memory on the given node, which
3233 * can improve the performance for cpu bound structures.
e498be7d
CL
3234 * New and improved: it will now make sure that the object gets
3235 * put on the correct node list so that there is no false sharing.
1da177e4 3236 */
343e0d7a 3237void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3238{
e498be7d
CL
3239 unsigned long save_flags;
3240 void *ptr;
1da177e4 3241
e498be7d
CL
3242 cache_alloc_debugcheck_before(cachep, flags);
3243 local_irq_save(save_flags);
18f820f6
CL
3244
3245 if (nodeid == -1 || nodeid == numa_node_id() ||
a737b3e2 3246 !cachep->nodelists[nodeid])
5c382300
AK
3247 ptr = ____cache_alloc(cachep, flags);
3248 else
3249 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3250 local_irq_restore(save_flags);
18f820f6
CL
3251
3252 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3253 __builtin_return_address(0));
1da177e4 3254
e498be7d 3255 return ptr;
1da177e4
LT
3256}
3257EXPORT_SYMBOL(kmem_cache_alloc_node);
3258
dd0fc66f 3259void *kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3260{
343e0d7a 3261 struct kmem_cache *cachep;
97e2bde4
MS
3262
3263 cachep = kmem_find_general_cachep(size, flags);
3264 if (unlikely(cachep == NULL))
3265 return NULL;
3266 return kmem_cache_alloc_node(cachep, flags, node);
3267}
3268EXPORT_SYMBOL(kmalloc_node);
1da177e4
LT
3269#endif
3270
3271/**
3272 * kmalloc - allocate memory
3273 * @size: how many bytes of memory are required.
3274 * @flags: the type of memory to allocate.
911851e6 3275 * @caller: function caller for debug tracking of the caller
1da177e4
LT
3276 *
3277 * kmalloc is the normal method of allocating memory
3278 * in the kernel.
3279 *
3280 * The @flags argument may be one of:
3281 *
3282 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3283 *
3284 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3285 *
3286 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3287 *
3288 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3289 * must be suitable for DMA. This can mean different things on different
3290 * platforms. For example, on i386, it means that the memory must come
3291 * from the first 16MB.
3292 */
7fd6b141
PE
3293static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3294 void *caller)
1da177e4 3295{
343e0d7a 3296 struct kmem_cache *cachep;
1da177e4 3297
97e2bde4
MS
3298 /* If you want to save a few bytes .text space: replace
3299 * __ with kmem_.
3300 * Then kmalloc uses the uninlined functions instead of the inline
3301 * functions.
3302 */
3303 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3304 if (unlikely(cachep == NULL))
3305 return NULL;
7fd6b141
PE
3306 return __cache_alloc(cachep, flags, caller);
3307}
3308
7fd6b141
PE
3309
3310void *__kmalloc(size_t size, gfp_t flags)
3311{
871751e2 3312#ifndef CONFIG_DEBUG_SLAB
7fd6b141 3313 return __do_kmalloc(size, flags, NULL);
871751e2
AV
3314#else
3315 return __do_kmalloc(size, flags, __builtin_return_address(0));
3316#endif
1da177e4
LT
3317}
3318EXPORT_SYMBOL(__kmalloc);
3319
871751e2 3320#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3321void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3322{
3323 return __do_kmalloc(size, flags, caller);
3324}
3325EXPORT_SYMBOL(__kmalloc_track_caller);
7fd6b141
PE
3326#endif
3327
1da177e4
LT
3328#ifdef CONFIG_SMP
3329/**
3330 * __alloc_percpu - allocate one copy of the object for every present
3331 * cpu in the system, zeroing them.
3332 * Objects should be dereferenced using the per_cpu_ptr macro only.
3333 *
3334 * @size: how many bytes of memory are required.
1da177e4 3335 */
f9f75005 3336void *__alloc_percpu(size_t size)
1da177e4
LT
3337{
3338 int i;
b28a02de 3339 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
1da177e4
LT
3340
3341 if (!pdata)
3342 return NULL;
3343
e498be7d
CL
3344 /*
3345 * Cannot use for_each_online_cpu since a cpu may come online
3346 * and we have no way of figuring out how to fix the array
3347 * that we have allocated then....
3348 */
0a945022 3349 for_each_possible_cpu(i) {
e498be7d
CL
3350 int node = cpu_to_node(i);
3351
3352 if (node_online(node))
3353 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3354 else
3355 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
1da177e4
LT
3356
3357 if (!pdata->ptrs[i])
3358 goto unwind_oom;
3359 memset(pdata->ptrs[i], 0, size);
3360 }
3361
3362 /* Catch derefs w/o wrappers */
b28a02de 3363 return (void *)(~(unsigned long)pdata);
1da177e4 3364
a737b3e2 3365unwind_oom:
1da177e4
LT
3366 while (--i >= 0) {
3367 if (!cpu_possible(i))
3368 continue;
3369 kfree(pdata->ptrs[i]);
3370 }
3371 kfree(pdata);
3372 return NULL;
3373}
3374EXPORT_SYMBOL(__alloc_percpu);
3375#endif
3376
3377/**
3378 * kmem_cache_free - Deallocate an object
3379 * @cachep: The cache the allocation was from.
3380 * @objp: The previously allocated object.
3381 *
3382 * Free an object which was previously allocated from this
3383 * cache.
3384 */
343e0d7a 3385void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3386{
3387 unsigned long flags;
3388
ddc2e812
PE
3389 BUG_ON(virt_to_cache(objp) != cachep);
3390
1da177e4
LT
3391 local_irq_save(flags);
3392 __cache_free(cachep, objp);
3393 local_irq_restore(flags);
3394}
3395EXPORT_SYMBOL(kmem_cache_free);
3396
1da177e4
LT
3397/**
3398 * kfree - free previously allocated memory
3399 * @objp: pointer returned by kmalloc.
3400 *
80e93eff
PE
3401 * If @objp is NULL, no operation is performed.
3402 *
1da177e4
LT
3403 * Don't free memory not originally allocated by kmalloc()
3404 * or you will run into trouble.
3405 */
3406void kfree(const void *objp)
3407{
343e0d7a 3408 struct kmem_cache *c;
1da177e4
LT
3409 unsigned long flags;
3410
3411 if (unlikely(!objp))
3412 return;
3413 local_irq_save(flags);
3414 kfree_debugcheck(objp);
6ed5eb22 3415 c = virt_to_cache(objp);
3dafccf2 3416 mutex_debug_check_no_locks_freed(objp, obj_size(c));
b28a02de 3417 __cache_free(c, (void *)objp);
1da177e4
LT
3418 local_irq_restore(flags);
3419}
3420EXPORT_SYMBOL(kfree);
3421
3422#ifdef CONFIG_SMP
3423/**
3424 * free_percpu - free previously allocated percpu memory
3425 * @objp: pointer returned by alloc_percpu.
3426 *
3427 * Don't free memory not originally allocated by alloc_percpu()
3428 * The complemented objp is to check for that.
3429 */
b28a02de 3430void free_percpu(const void *objp)
1da177e4
LT
3431{
3432 int i;
b28a02de 3433 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
1da177e4 3434
e498be7d
CL
3435 /*
3436 * We allocate for all cpus so we cannot use for online cpu here.
3437 */
0a945022 3438 for_each_possible_cpu(i)
b28a02de 3439 kfree(p->ptrs[i]);
1da177e4
LT
3440 kfree(p);
3441}
3442EXPORT_SYMBOL(free_percpu);
3443#endif
3444
343e0d7a 3445unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3446{
3dafccf2 3447 return obj_size(cachep);
1da177e4
LT
3448}
3449EXPORT_SYMBOL(kmem_cache_size);
3450
343e0d7a 3451const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3452{
3453 return cachep->name;
3454}
3455EXPORT_SYMBOL_GPL(kmem_cache_name);
3456
e498be7d 3457/*
0718dc2a 3458 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3459 */
343e0d7a 3460static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3461{
3462 int node;
3463 struct kmem_list3 *l3;
cafeb02e
CL
3464 struct array_cache *new_shared;
3465 struct array_cache **new_alien;
e498be7d
CL
3466
3467 for_each_online_node(node) {
cafeb02e 3468
a737b3e2
AM
3469 new_alien = alloc_alien_cache(node, cachep->limit);
3470 if (!new_alien)
e498be7d 3471 goto fail;
cafeb02e 3472
0718dc2a
CL
3473 new_shared = alloc_arraycache(node,
3474 cachep->shared*cachep->batchcount,
a737b3e2 3475 0xbaadf00d);
0718dc2a
CL
3476 if (!new_shared) {
3477 free_alien_cache(new_alien);
e498be7d 3478 goto fail;
0718dc2a 3479 }
cafeb02e 3480
a737b3e2
AM
3481 l3 = cachep->nodelists[node];
3482 if (l3) {
cafeb02e
CL
3483 struct array_cache *shared = l3->shared;
3484
e498be7d
CL
3485 spin_lock_irq(&l3->list_lock);
3486
cafeb02e 3487 if (shared)
0718dc2a
CL
3488 free_block(cachep, shared->entry,
3489 shared->avail, node);
e498be7d 3490
cafeb02e
CL
3491 l3->shared = new_shared;
3492 if (!l3->alien) {
e498be7d
CL
3493 l3->alien = new_alien;
3494 new_alien = NULL;
3495 }
b28a02de 3496 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3497 cachep->batchcount + cachep->num;
e498be7d 3498 spin_unlock_irq(&l3->list_lock);
cafeb02e 3499 kfree(shared);
e498be7d
CL
3500 free_alien_cache(new_alien);
3501 continue;
3502 }
a737b3e2 3503 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3504 if (!l3) {
3505 free_alien_cache(new_alien);
3506 kfree(new_shared);
e498be7d 3507 goto fail;
0718dc2a 3508 }
e498be7d
CL
3509
3510 kmem_list3_init(l3);
3511 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3512 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3513 l3->shared = new_shared;
e498be7d 3514 l3->alien = new_alien;
b28a02de 3515 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3516 cachep->batchcount + cachep->num;
e498be7d
CL
3517 cachep->nodelists[node] = l3;
3518 }
cafeb02e 3519 return 0;
0718dc2a 3520
a737b3e2 3521fail:
0718dc2a
CL
3522 if (!cachep->next.next) {
3523 /* Cache is not active yet. Roll back what we did */
3524 node--;
3525 while (node >= 0) {
3526 if (cachep->nodelists[node]) {
3527 l3 = cachep->nodelists[node];
3528
3529 kfree(l3->shared);
3530 free_alien_cache(l3->alien);
3531 kfree(l3);
3532 cachep->nodelists[node] = NULL;
3533 }
3534 node--;
3535 }
3536 }
cafeb02e 3537 return -ENOMEM;
e498be7d
CL
3538}
3539
1da177e4 3540struct ccupdate_struct {
343e0d7a 3541 struct kmem_cache *cachep;
1da177e4
LT
3542 struct array_cache *new[NR_CPUS];
3543};
3544
3545static void do_ccupdate_local(void *info)
3546{
a737b3e2 3547 struct ccupdate_struct *new = info;
1da177e4
LT
3548 struct array_cache *old;
3549
3550 check_irq_off();
9a2dba4b 3551 old = cpu_cache_get(new->cachep);
e498be7d 3552
1da177e4
LT
3553 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3554 new->new[smp_processor_id()] = old;
3555}
3556
b5d8ca7c 3557/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3558static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3559 int batchcount, int shared)
1da177e4
LT
3560{
3561 struct ccupdate_struct new;
e498be7d 3562 int i, err;
1da177e4 3563
b28a02de 3564 memset(&new.new, 0, sizeof(new.new));
e498be7d 3565 for_each_online_cpu(i) {
a737b3e2
AM
3566 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3567 batchcount);
e498be7d 3568 if (!new.new[i]) {
b28a02de
PE
3569 for (i--; i >= 0; i--)
3570 kfree(new.new[i]);
e498be7d 3571 return -ENOMEM;
1da177e4
LT
3572 }
3573 }
3574 new.cachep = cachep;
3575
a07fa394 3576 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
e498be7d 3577
1da177e4 3578 check_irq_on();
1da177e4
LT
3579 cachep->batchcount = batchcount;
3580 cachep->limit = limit;
e498be7d 3581 cachep->shared = shared;
1da177e4 3582
e498be7d 3583 for_each_online_cpu(i) {
1da177e4
LT
3584 struct array_cache *ccold = new.new[i];
3585 if (!ccold)
3586 continue;
e498be7d 3587 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3588 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3589 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3590 kfree(ccold);
3591 }
1da177e4 3592
e498be7d
CL
3593 err = alloc_kmemlist(cachep);
3594 if (err) {
3595 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
b28a02de 3596 cachep->name, -err);
e498be7d 3597 BUG();
1da177e4 3598 }
1da177e4
LT
3599 return 0;
3600}
3601
b5d8ca7c 3602/* Called with cache_chain_mutex held always */
343e0d7a 3603static void enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3604{
3605 int err;
3606 int limit, shared;
3607
a737b3e2
AM
3608 /*
3609 * The head array serves three purposes:
1da177e4
LT
3610 * - create a LIFO ordering, i.e. return objects that are cache-warm
3611 * - reduce the number of spinlock operations.
a737b3e2 3612 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3613 * bufctl chains: array operations are cheaper.
3614 * The numbers are guessed, we should auto-tune as described by
3615 * Bonwick.
3616 */
3dafccf2 3617 if (cachep->buffer_size > 131072)
1da177e4 3618 limit = 1;
3dafccf2 3619 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3620 limit = 8;
3dafccf2 3621 else if (cachep->buffer_size > 1024)
1da177e4 3622 limit = 24;
3dafccf2 3623 else if (cachep->buffer_size > 256)
1da177e4
LT
3624 limit = 54;
3625 else
3626 limit = 120;
3627
a737b3e2
AM
3628 /*
3629 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3630 * allocation behaviour: Most allocs on one cpu, most free operations
3631 * on another cpu. For these cases, an efficient object passing between
3632 * cpus is necessary. This is provided by a shared array. The array
3633 * replaces Bonwick's magazine layer.
3634 * On uniprocessor, it's functionally equivalent (but less efficient)
3635 * to a larger limit. Thus disabled by default.
3636 */
3637 shared = 0;
3638#ifdef CONFIG_SMP
3dafccf2 3639 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3640 shared = 8;
3641#endif
3642
3643#if DEBUG
a737b3e2
AM
3644 /*
3645 * With debugging enabled, large batchcount lead to excessively long
3646 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3647 */
3648 if (limit > 32)
3649 limit = 32;
3650#endif
b28a02de 3651 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3652 if (err)
3653 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3654 cachep->name, -err);
1da177e4
LT
3655}
3656
1b55253a
CL
3657/*
3658 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3659 * necessary. Note that the l3 listlock also protects the array_cache
3660 * if drain_array() is used on the shared array.
1b55253a
CL
3661 */
3662void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3663 struct array_cache *ac, int force, int node)
1da177e4
LT
3664{
3665 int tofree;
3666
1b55253a
CL
3667 if (!ac || !ac->avail)
3668 return;
1da177e4
LT
3669 if (ac->touched && !force) {
3670 ac->touched = 0;
b18e7e65 3671 } else {
1b55253a 3672 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3673 if (ac->avail) {
3674 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3675 if (tofree > ac->avail)
3676 tofree = (ac->avail + 1) / 2;
3677 free_block(cachep, ac->entry, tofree, node);
3678 ac->avail -= tofree;
3679 memmove(ac->entry, &(ac->entry[tofree]),
3680 sizeof(void *) * ac->avail);
3681 }
1b55253a 3682 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3683 }
3684}
3685
3686/**
3687 * cache_reap - Reclaim memory from caches.
1e5d5331 3688 * @unused: unused parameter
1da177e4
LT
3689 *
3690 * Called from workqueue/eventd every few seconds.
3691 * Purpose:
3692 * - clear the per-cpu caches for this CPU.
3693 * - return freeable pages to the main free memory pool.
3694 *
a737b3e2
AM
3695 * If we cannot acquire the cache chain mutex then just give up - we'll try
3696 * again on the next iteration.
1da177e4
LT
3697 */
3698static void cache_reap(void *unused)
3699{
7a7c381d 3700 struct kmem_cache *searchp;
e498be7d 3701 struct kmem_list3 *l3;
aab2207c 3702 int node = numa_node_id();
1da177e4 3703
fc0abb14 3704 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3705 /* Give up. Setup the next iteration. */
b28a02de
PE
3706 schedule_delayed_work(&__get_cpu_var(reap_work),
3707 REAPTIMEOUT_CPUC);
1da177e4
LT
3708 return;
3709 }
3710
7a7c381d 3711 list_for_each_entry(searchp, &cache_chain, next) {
b28a02de 3712 struct list_head *p;
1da177e4
LT
3713 int tofree;
3714 struct slab *slabp;
3715
1da177e4
LT
3716 check_irq_on();
3717
35386e3b
CL
3718 /*
3719 * We only take the l3 lock if absolutely necessary and we
3720 * have established with reasonable certainty that
3721 * we can do some work if the lock was obtained.
3722 */
aab2207c 3723 l3 = searchp->nodelists[node];
35386e3b 3724
8fce4d8e 3725 reap_alien(searchp, l3);
1da177e4 3726
aab2207c 3727 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 3728
35386e3b
CL
3729 /*
3730 * These are racy checks but it does not matter
3731 * if we skip one check or scan twice.
3732 */
e498be7d 3733 if (time_after(l3->next_reap, jiffies))
35386e3b 3734 goto next;
1da177e4 3735
e498be7d 3736 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3737
aab2207c 3738 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 3739
e498be7d
CL
3740 if (l3->free_touched) {
3741 l3->free_touched = 0;
35386e3b 3742 goto next;
1da177e4
LT
3743 }
3744
a737b3e2
AM
3745 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3746 (5 * searchp->num);
1da177e4 3747 do {
35386e3b
CL
3748 /*
3749 * Do not lock if there are no free blocks.
3750 */
3751 if (list_empty(&l3->slabs_free))
3752 break;
3753
3754 spin_lock_irq(&l3->list_lock);
e498be7d 3755 p = l3->slabs_free.next;
35386e3b
CL
3756 if (p == &(l3->slabs_free)) {
3757 spin_unlock_irq(&l3->list_lock);
1da177e4 3758 break;
35386e3b 3759 }
1da177e4
LT
3760
3761 slabp = list_entry(p, struct slab, list);
3762 BUG_ON(slabp->inuse);
3763 list_del(&slabp->list);
3764 STATS_INC_REAPED(searchp);
3765
a737b3e2
AM
3766 /*
3767 * Safe to drop the lock. The slab is no longer linked
3768 * to the cache. searchp cannot disappear, we hold
1da177e4
LT
3769 * cache_chain_lock
3770 */
e498be7d
CL
3771 l3->free_objects -= searchp->num;
3772 spin_unlock_irq(&l3->list_lock);
1da177e4 3773 slab_destroy(searchp, slabp);
b28a02de 3774 } while (--tofree > 0);
35386e3b 3775next:
1da177e4
LT
3776 cond_resched();
3777 }
3778 check_irq_on();
fc0abb14 3779 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3780 next_reap_node();
a737b3e2 3781 /* Set up the next iteration */
cd61ef62 3782 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3783}
3784
3785#ifdef CONFIG_PROC_FS
3786
85289f98 3787static void print_slabinfo_header(struct seq_file *m)
1da177e4 3788{
85289f98
PE
3789 /*
3790 * Output format version, so at least we can change it
3791 * without _too_ many complaints.
3792 */
1da177e4 3793#if STATS
85289f98 3794 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3795#else
85289f98 3796 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3797#endif
85289f98
PE
3798 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3799 "<objperslab> <pagesperslab>");
3800 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3801 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3802#if STATS
85289f98 3803 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 3804 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 3805 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3806#endif
85289f98
PE
3807 seq_putc(m, '\n');
3808}
3809
3810static void *s_start(struct seq_file *m, loff_t *pos)
3811{
3812 loff_t n = *pos;
3813 struct list_head *p;
3814
fc0abb14 3815 mutex_lock(&cache_chain_mutex);
85289f98
PE
3816 if (!n)
3817 print_slabinfo_header(m);
1da177e4
LT
3818 p = cache_chain.next;
3819 while (n--) {
3820 p = p->next;
3821 if (p == &cache_chain)
3822 return NULL;
3823 }
343e0d7a 3824 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3825}
3826
3827static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3828{
343e0d7a 3829 struct kmem_cache *cachep = p;
1da177e4 3830 ++*pos;
a737b3e2
AM
3831 return cachep->next.next == &cache_chain ?
3832 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3833}
3834
3835static void s_stop(struct seq_file *m, void *p)
3836{
fc0abb14 3837 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3838}
3839
3840static int s_show(struct seq_file *m, void *p)
3841{
343e0d7a 3842 struct kmem_cache *cachep = p;
b28a02de
PE
3843 struct slab *slabp;
3844 unsigned long active_objs;
3845 unsigned long num_objs;
3846 unsigned long active_slabs = 0;
3847 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3848 const char *name;
1da177e4 3849 char *error = NULL;
e498be7d
CL
3850 int node;
3851 struct kmem_list3 *l3;
1da177e4 3852
1da177e4
LT
3853 active_objs = 0;
3854 num_slabs = 0;
e498be7d
CL
3855 for_each_online_node(node) {
3856 l3 = cachep->nodelists[node];
3857 if (!l3)
3858 continue;
3859
ca3b9b91
RT
3860 check_irq_on();
3861 spin_lock_irq(&l3->list_lock);
e498be7d 3862
7a7c381d 3863 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
3864 if (slabp->inuse != cachep->num && !error)
3865 error = "slabs_full accounting error";
3866 active_objs += cachep->num;
3867 active_slabs++;
3868 }
7a7c381d 3869 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
3870 if (slabp->inuse == cachep->num && !error)
3871 error = "slabs_partial inuse accounting error";
3872 if (!slabp->inuse && !error)
3873 error = "slabs_partial/inuse accounting error";
3874 active_objs += slabp->inuse;
3875 active_slabs++;
3876 }
7a7c381d 3877 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
3878 if (slabp->inuse && !error)
3879 error = "slabs_free/inuse accounting error";
3880 num_slabs++;
3881 }
3882 free_objects += l3->free_objects;
4484ebf1
RT
3883 if (l3->shared)
3884 shared_avail += l3->shared->avail;
e498be7d 3885
ca3b9b91 3886 spin_unlock_irq(&l3->list_lock);
1da177e4 3887 }
b28a02de
PE
3888 num_slabs += active_slabs;
3889 num_objs = num_slabs * cachep->num;
e498be7d 3890 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3891 error = "free_objects accounting error";
3892
b28a02de 3893 name = cachep->name;
1da177e4
LT
3894 if (error)
3895 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3896
3897 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3898 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3899 cachep->num, (1 << cachep->gfporder));
1da177e4 3900 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3901 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3902 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3903 active_slabs, num_slabs, shared_avail);
1da177e4 3904#if STATS
b28a02de 3905 { /* list3 stats */
1da177e4
LT
3906 unsigned long high = cachep->high_mark;
3907 unsigned long allocs = cachep->num_allocations;
3908 unsigned long grown = cachep->grown;
3909 unsigned long reaped = cachep->reaped;
3910 unsigned long errors = cachep->errors;
3911 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3912 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3913 unsigned long node_frees = cachep->node_frees;
fb7faf33 3914 unsigned long overflows = cachep->node_overflow;
1da177e4 3915
e498be7d 3916 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 3917 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 3918 reaped, errors, max_freeable, node_allocs,
fb7faf33 3919 node_frees, overflows);
1da177e4
LT
3920 }
3921 /* cpu stats */
3922 {
3923 unsigned long allochit = atomic_read(&cachep->allochit);
3924 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3925 unsigned long freehit = atomic_read(&cachep->freehit);
3926 unsigned long freemiss = atomic_read(&cachep->freemiss);
3927
3928 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3929 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3930 }
3931#endif
3932 seq_putc(m, '\n');
1da177e4
LT
3933 return 0;
3934}
3935
3936/*
3937 * slabinfo_op - iterator that generates /proc/slabinfo
3938 *
3939 * Output layout:
3940 * cache-name
3941 * num-active-objs
3942 * total-objs
3943 * object size
3944 * num-active-slabs
3945 * total-slabs
3946 * num-pages-per-slab
3947 * + further values on SMP and with statistics enabled
3948 */
3949
3950struct seq_operations slabinfo_op = {
b28a02de
PE
3951 .start = s_start,
3952 .next = s_next,
3953 .stop = s_stop,
3954 .show = s_show,
1da177e4
LT
3955};
3956
3957#define MAX_SLABINFO_WRITE 128
3958/**
3959 * slabinfo_write - Tuning for the slab allocator
3960 * @file: unused
3961 * @buffer: user buffer
3962 * @count: data length
3963 * @ppos: unused
3964 */
b28a02de
PE
3965ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3966 size_t count, loff_t *ppos)
1da177e4 3967{
b28a02de 3968 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 3969 int limit, batchcount, shared, res;
7a7c381d 3970 struct kmem_cache *cachep;
b28a02de 3971
1da177e4
LT
3972 if (count > MAX_SLABINFO_WRITE)
3973 return -EINVAL;
3974 if (copy_from_user(&kbuf, buffer, count))
3975 return -EFAULT;
b28a02de 3976 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3977
3978 tmp = strchr(kbuf, ' ');
3979 if (!tmp)
3980 return -EINVAL;
3981 *tmp = '\0';
3982 tmp++;
3983 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3984 return -EINVAL;
3985
3986 /* Find the cache in the chain of caches. */
fc0abb14 3987 mutex_lock(&cache_chain_mutex);
1da177e4 3988 res = -EINVAL;
7a7c381d 3989 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 3990 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
3991 if (limit < 1 || batchcount < 1 ||
3992 batchcount > limit || shared < 0) {
e498be7d 3993 res = 0;
1da177e4 3994 } else {
e498be7d 3995 res = do_tune_cpucache(cachep, limit,
b28a02de 3996 batchcount, shared);
1da177e4
LT
3997 }
3998 break;
3999 }
4000 }
fc0abb14 4001 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4002 if (res >= 0)
4003 res = count;
4004 return res;
4005}
871751e2
AV
4006
4007#ifdef CONFIG_DEBUG_SLAB_LEAK
4008
4009static void *leaks_start(struct seq_file *m, loff_t *pos)
4010{
4011 loff_t n = *pos;
4012 struct list_head *p;
4013
4014 mutex_lock(&cache_chain_mutex);
4015 p = cache_chain.next;
4016 while (n--) {
4017 p = p->next;
4018 if (p == &cache_chain)
4019 return NULL;
4020 }
4021 return list_entry(p, struct kmem_cache, next);
4022}
4023
4024static inline int add_caller(unsigned long *n, unsigned long v)
4025{
4026 unsigned long *p;
4027 int l;
4028 if (!v)
4029 return 1;
4030 l = n[1];
4031 p = n + 2;
4032 while (l) {
4033 int i = l/2;
4034 unsigned long *q = p + 2 * i;
4035 if (*q == v) {
4036 q[1]++;
4037 return 1;
4038 }
4039 if (*q > v) {
4040 l = i;
4041 } else {
4042 p = q + 2;
4043 l -= i + 1;
4044 }
4045 }
4046 if (++n[1] == n[0])
4047 return 0;
4048 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4049 p[0] = v;
4050 p[1] = 1;
4051 return 1;
4052}
4053
4054static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4055{
4056 void *p;
4057 int i;
4058 if (n[0] == n[1])
4059 return;
4060 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4061 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4062 continue;
4063 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4064 return;
4065 }
4066}
4067
4068static void show_symbol(struct seq_file *m, unsigned long address)
4069{
4070#ifdef CONFIG_KALLSYMS
4071 char *modname;
4072 const char *name;
4073 unsigned long offset, size;
4074 char namebuf[KSYM_NAME_LEN+1];
4075
4076 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4077
4078 if (name) {
4079 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4080 if (modname)
4081 seq_printf(m, " [%s]", modname);
4082 return;
4083 }
4084#endif
4085 seq_printf(m, "%p", (void *)address);
4086}
4087
4088static int leaks_show(struct seq_file *m, void *p)
4089{
4090 struct kmem_cache *cachep = p;
871751e2
AV
4091 struct slab *slabp;
4092 struct kmem_list3 *l3;
4093 const char *name;
4094 unsigned long *n = m->private;
4095 int node;
4096 int i;
4097
4098 if (!(cachep->flags & SLAB_STORE_USER))
4099 return 0;
4100 if (!(cachep->flags & SLAB_RED_ZONE))
4101 return 0;
4102
4103 /* OK, we can do it */
4104
4105 n[1] = 0;
4106
4107 for_each_online_node(node) {
4108 l3 = cachep->nodelists[node];
4109 if (!l3)
4110 continue;
4111
4112 check_irq_on();
4113 spin_lock_irq(&l3->list_lock);
4114
7a7c381d 4115 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4116 handle_slab(n, cachep, slabp);
7a7c381d 4117 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4118 handle_slab(n, cachep, slabp);
871751e2
AV
4119 spin_unlock_irq(&l3->list_lock);
4120 }
4121 name = cachep->name;
4122 if (n[0] == n[1]) {
4123 /* Increase the buffer size */
4124 mutex_unlock(&cache_chain_mutex);
4125 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4126 if (!m->private) {
4127 /* Too bad, we are really out */
4128 m->private = n;
4129 mutex_lock(&cache_chain_mutex);
4130 return -ENOMEM;
4131 }
4132 *(unsigned long *)m->private = n[0] * 2;
4133 kfree(n);
4134 mutex_lock(&cache_chain_mutex);
4135 /* Now make sure this entry will be retried */
4136 m->count = m->size;
4137 return 0;
4138 }
4139 for (i = 0; i < n[1]; i++) {
4140 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4141 show_symbol(m, n[2*i+2]);
4142 seq_putc(m, '\n');
4143 }
4144 return 0;
4145}
4146
4147struct seq_operations slabstats_op = {
4148 .start = leaks_start,
4149 .next = s_next,
4150 .stop = s_stop,
4151 .show = leaks_show,
4152};
4153#endif
1da177e4
LT
4154#endif
4155
00e145b6
MS
4156/**
4157 * ksize - get the actual amount of memory allocated for a given object
4158 * @objp: Pointer to the object
4159 *
4160 * kmalloc may internally round up allocations and return more memory
4161 * than requested. ksize() can be used to determine the actual amount of
4162 * memory allocated. The caller may use this additional memory, even though
4163 * a smaller amount of memory was initially specified with the kmalloc call.
4164 * The caller must guarantee that objp points to a valid object previously
4165 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4166 * must not be freed during the duration of the call.
4167 */
1da177e4
LT
4168unsigned int ksize(const void *objp)
4169{
00e145b6
MS
4170 if (unlikely(objp == NULL))
4171 return 0;
1da177e4 4172
6ed5eb22 4173 return obj_size(virt_to_cache(objp));
1da177e4 4174}