mm, slab: Replace 'caller' type, void* -> unsigned long
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4 89#include <linux/slab.h>
97d06609 90#include "slab.h"
1da177e4 91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
8f9f8d9e 118#include <linux/memory.h>
268bb0ce 119#include <linux/prefetch.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
1da177e4 131/*
50953fe9 132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141#ifdef CONFIG_DEBUG_SLAB
142#define DEBUG 1
143#define STATS 1
144#define FORCED_DEBUG 1
145#else
146#define DEBUG 0
147#define STATS 0
148#define FORCED_DEBUG 0
149#endif
150
1da177e4
LT
151/* Shouldn't this be in a header file somewhere? */
152#define BYTES_PER_WORD sizeof(void *)
87a927c7 153#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 154
1da177e4
LT
155#ifndef ARCH_KMALLOC_FLAGS
156#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157#endif
158
072bb0aa
MG
159/*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163static bool pfmemalloc_active __read_mostly;
164
1da177e4
LT
165/* Legal flag mask for kmem_cache_create(). */
166#if DEBUG
50953fe9 167# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 168 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 169 SLAB_CACHE_DMA | \
5af60839 170 SLAB_STORE_USER | \
1da177e4 171 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 172 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 173 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 174#else
ac2b898c 175# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 176 SLAB_CACHE_DMA | \
1da177e4 177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 179 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
180#endif
181
182/*
183 * kmem_bufctl_t:
184 *
185 * Bufctl's are used for linking objs within a slab
186 * linked offsets.
187 *
188 * This implementation relies on "struct page" for locating the cache &
189 * slab an object belongs to.
190 * This allows the bufctl structure to be small (one int), but limits
191 * the number of objects a slab (not a cache) can contain when off-slab
192 * bufctls are used. The limit is the size of the largest general cache
193 * that does not use off-slab slabs.
194 * For 32bit archs with 4 kB pages, is this 56.
195 * This is not serious, as it is only for large objects, when it is unwise
196 * to have too many per slab.
197 * Note: This limit can be raised by introducing a general cache whose size
198 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
199 */
200
fa5b08d5 201typedef unsigned int kmem_bufctl_t;
1da177e4
LT
202#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
203#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
204#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
205#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 206
1da177e4
LT
207/*
208 * struct slab_rcu
209 *
210 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
211 * arrange for kmem_freepages to be called via RCU. This is useful if
212 * we need to approach a kernel structure obliquely, from its address
213 * obtained without the usual locking. We can lock the structure to
214 * stabilize it and check it's still at the given address, only if we
215 * can be sure that the memory has not been meanwhile reused for some
216 * other kind of object (which our subsystem's lock might corrupt).
217 *
218 * rcu_read_lock before reading the address, then rcu_read_unlock after
219 * taking the spinlock within the structure expected at that address.
1da177e4
LT
220 */
221struct slab_rcu {
b28a02de 222 struct rcu_head head;
343e0d7a 223 struct kmem_cache *cachep;
b28a02de 224 void *addr;
1da177e4
LT
225};
226
5bfe53a7
LJ
227/*
228 * struct slab
229 *
230 * Manages the objs in a slab. Placed either at the beginning of mem allocated
231 * for a slab, or allocated from an general cache.
232 * Slabs are chained into three list: fully used, partial, fully free slabs.
233 */
234struct slab {
235 union {
236 struct {
237 struct list_head list;
238 unsigned long colouroff;
239 void *s_mem; /* including colour offset */
240 unsigned int inuse; /* num of objs active in slab */
241 kmem_bufctl_t free;
242 unsigned short nodeid;
243 };
244 struct slab_rcu __slab_cover_slab_rcu;
245 };
246};
247
1da177e4
LT
248/*
249 * struct array_cache
250 *
1da177e4
LT
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
e498be7d 265 spinlock_t lock;
bda5b655 266 void *entry[]; /*
a737b3e2
AM
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
072bb0aa
MG
270 *
271 * Entries should not be directly dereferenced as
272 * entries belonging to slabs marked pfmemalloc will
273 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 274 */
1da177e4
LT
275};
276
072bb0aa
MG
277#define SLAB_OBJ_PFMEMALLOC 1
278static inline bool is_obj_pfmemalloc(void *objp)
279{
280 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
281}
282
283static inline void set_obj_pfmemalloc(void **objp)
284{
285 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
286 return;
287}
288
289static inline void clear_obj_pfmemalloc(void **objp)
290{
291 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
292}
293
a737b3e2
AM
294/*
295 * bootstrap: The caches do not work without cpuarrays anymore, but the
296 * cpuarrays are allocated from the generic caches...
1da177e4
LT
297 */
298#define BOOT_CPUCACHE_ENTRIES 1
299struct arraycache_init {
300 struct array_cache cache;
b28a02de 301 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
302};
303
304/*
e498be7d 305 * The slab lists for all objects.
1da177e4
LT
306 */
307struct kmem_list3 {
b28a02de
PE
308 struct list_head slabs_partial; /* partial list first, better asm code */
309 struct list_head slabs_full;
310 struct list_head slabs_free;
311 unsigned long free_objects;
b28a02de 312 unsigned int free_limit;
2e1217cf 313 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
314 spinlock_t list_lock;
315 struct array_cache *shared; /* shared per node */
316 struct array_cache **alien; /* on other nodes */
35386e3b
CL
317 unsigned long next_reap; /* updated without locking */
318 int free_touched; /* updated without locking */
1da177e4
LT
319};
320
e498be7d
CL
321/*
322 * Need this for bootstrapping a per node allocator.
323 */
556a169d 324#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 325static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 326#define CACHE_CACHE 0
556a169d
PE
327#define SIZE_AC MAX_NUMNODES
328#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 329
ed11d9eb
CL
330static int drain_freelist(struct kmem_cache *cache,
331 struct kmem_list3 *l3, int tofree);
332static void free_block(struct kmem_cache *cachep, void **objpp, int len,
333 int node);
83b519e8 334static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 335static void cache_reap(struct work_struct *unused);
ed11d9eb 336
e498be7d 337/*
a737b3e2
AM
338 * This function must be completely optimized away if a constant is passed to
339 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 340 */
7243cc05 341static __always_inline int index_of(const size_t size)
e498be7d 342{
5ec8a847
SR
343 extern void __bad_size(void);
344
e498be7d
CL
345 if (__builtin_constant_p(size)) {
346 int i = 0;
347
348#define CACHE(x) \
349 if (size <=x) \
350 return i; \
351 else \
352 i++;
1c61fc40 353#include <linux/kmalloc_sizes.h>
e498be7d 354#undef CACHE
5ec8a847 355 __bad_size();
7243cc05 356 } else
5ec8a847 357 __bad_size();
e498be7d
CL
358 return 0;
359}
360
e0a42726
IM
361static int slab_early_init = 1;
362
e498be7d
CL
363#define INDEX_AC index_of(sizeof(struct arraycache_init))
364#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 365
5295a74c 366static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
367{
368 INIT_LIST_HEAD(&parent->slabs_full);
369 INIT_LIST_HEAD(&parent->slabs_partial);
370 INIT_LIST_HEAD(&parent->slabs_free);
371 parent->shared = NULL;
372 parent->alien = NULL;
2e1217cf 373 parent->colour_next = 0;
e498be7d
CL
374 spin_lock_init(&parent->list_lock);
375 parent->free_objects = 0;
376 parent->free_touched = 0;
377}
378
a737b3e2
AM
379#define MAKE_LIST(cachep, listp, slab, nodeid) \
380 do { \
381 INIT_LIST_HEAD(listp); \
382 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
383 } while (0)
384
a737b3e2
AM
385#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
386 do { \
e498be7d
CL
387 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
388 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
389 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
390 } while (0)
1da177e4 391
1da177e4
LT
392#define CFLGS_OFF_SLAB (0x80000000UL)
393#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
394
395#define BATCHREFILL_LIMIT 16
a737b3e2
AM
396/*
397 * Optimization question: fewer reaps means less probability for unnessary
398 * cpucache drain/refill cycles.
1da177e4 399 *
dc6f3f27 400 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
401 * which could lock up otherwise freeable slabs.
402 */
403#define REAPTIMEOUT_CPUC (2*HZ)
404#define REAPTIMEOUT_LIST3 (4*HZ)
405
406#if STATS
407#define STATS_INC_ACTIVE(x) ((x)->num_active++)
408#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
409#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
410#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 411#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
412#define STATS_SET_HIGH(x) \
413 do { \
414 if ((x)->num_active > (x)->high_mark) \
415 (x)->high_mark = (x)->num_active; \
416 } while (0)
1da177e4
LT
417#define STATS_INC_ERR(x) ((x)->errors++)
418#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 419#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 420#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
421#define STATS_SET_FREEABLE(x, i) \
422 do { \
423 if ((x)->max_freeable < i) \
424 (x)->max_freeable = i; \
425 } while (0)
1da177e4
LT
426#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
427#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
428#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
429#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
430#else
431#define STATS_INC_ACTIVE(x) do { } while (0)
432#define STATS_DEC_ACTIVE(x) do { } while (0)
433#define STATS_INC_ALLOCED(x) do { } while (0)
434#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 435#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
436#define STATS_SET_HIGH(x) do { } while (0)
437#define STATS_INC_ERR(x) do { } while (0)
438#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 439#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 440#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 441#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
442#define STATS_INC_ALLOCHIT(x) do { } while (0)
443#define STATS_INC_ALLOCMISS(x) do { } while (0)
444#define STATS_INC_FREEHIT(x) do { } while (0)
445#define STATS_INC_FREEMISS(x) do { } while (0)
446#endif
447
448#if DEBUG
1da177e4 449
a737b3e2
AM
450/*
451 * memory layout of objects:
1da177e4 452 * 0 : objp
3dafccf2 453 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
454 * the end of an object is aligned with the end of the real
455 * allocation. Catches writes behind the end of the allocation.
3dafccf2 456 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 457 * redzone word.
3dafccf2 458 * cachep->obj_offset: The real object.
3b0efdfa
CL
459 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
460 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 461 * [BYTES_PER_WORD long]
1da177e4 462 */
343e0d7a 463static int obj_offset(struct kmem_cache *cachep)
1da177e4 464{
3dafccf2 465 return cachep->obj_offset;
1da177e4
LT
466}
467
b46b8f19 468static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
469{
470 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
471 return (unsigned long long*) (objp + obj_offset(cachep) -
472 sizeof(unsigned long long));
1da177e4
LT
473}
474
b46b8f19 475static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
476{
477 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
478 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 479 return (unsigned long long *)(objp + cachep->size -
b46b8f19 480 sizeof(unsigned long long) -
87a927c7 481 REDZONE_ALIGN);
3b0efdfa 482 return (unsigned long long *) (objp + cachep->size -
b46b8f19 483 sizeof(unsigned long long));
1da177e4
LT
484}
485
343e0d7a 486static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
487{
488 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 489 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
490}
491
492#else
493
3dafccf2 494#define obj_offset(x) 0
b46b8f19
DW
495#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
496#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
497#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
498
499#endif
500
1da177e4 501/*
3df1cccd
DR
502 * Do not go above this order unless 0 objects fit into the slab or
503 * overridden on the command line.
1da177e4 504 */
543585cc
DR
505#define SLAB_MAX_ORDER_HI 1
506#define SLAB_MAX_ORDER_LO 0
507static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 508static bool slab_max_order_set __initdata;
1da177e4 509
6ed5eb22
PE
510static inline struct kmem_cache *virt_to_cache(const void *obj)
511{
b49af68f 512 struct page *page = virt_to_head_page(obj);
35026088 513 return page->slab_cache;
6ed5eb22
PE
514}
515
516static inline struct slab *virt_to_slab(const void *obj)
517{
b49af68f 518 struct page *page = virt_to_head_page(obj);
35026088
CL
519
520 VM_BUG_ON(!PageSlab(page));
521 return page->slab_page;
6ed5eb22
PE
522}
523
8fea4e96
PE
524static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
525 unsigned int idx)
526{
3b0efdfa 527 return slab->s_mem + cache->size * idx;
8fea4e96
PE
528}
529
6a2d7a95 530/*
3b0efdfa
CL
531 * We want to avoid an expensive divide : (offset / cache->size)
532 * Using the fact that size is a constant for a particular cache,
533 * we can replace (offset / cache->size) by
6a2d7a95
ED
534 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
535 */
536static inline unsigned int obj_to_index(const struct kmem_cache *cache,
537 const struct slab *slab, void *obj)
8fea4e96 538{
6a2d7a95
ED
539 u32 offset = (obj - slab->s_mem);
540 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
541}
542
a737b3e2
AM
543/*
544 * These are the default caches for kmalloc. Custom caches can have other sizes.
545 */
1da177e4
LT
546struct cache_sizes malloc_sizes[] = {
547#define CACHE(x) { .cs_size = (x) },
548#include <linux/kmalloc_sizes.h>
549 CACHE(ULONG_MAX)
550#undef CACHE
551};
552EXPORT_SYMBOL(malloc_sizes);
553
554/* Must match cache_sizes above. Out of line to keep cache footprint low. */
555struct cache_names {
556 char *name;
557 char *name_dma;
558};
559
560static struct cache_names __initdata cache_names[] = {
561#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
562#include <linux/kmalloc_sizes.h>
b28a02de 563 {NULL,}
1da177e4
LT
564#undef CACHE
565};
566
567static struct arraycache_init initarray_cache __initdata =
b28a02de 568 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 569static struct arraycache_init initarray_generic =
b28a02de 570 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
571
572/* internal cache of cache description objs */
b56efcf0 573static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
343e0d7a 574static struct kmem_cache cache_cache = {
b56efcf0 575 .nodelists = cache_cache_nodelists,
b28a02de
PE
576 .batchcount = 1,
577 .limit = BOOT_CPUCACHE_ENTRIES,
578 .shared = 1,
3b0efdfa 579 .size = sizeof(struct kmem_cache),
b28a02de 580 .name = "kmem_cache",
1da177e4
LT
581};
582
056c6241
RT
583#define BAD_ALIEN_MAGIC 0x01020304ul
584
f1aaee53
AV
585#ifdef CONFIG_LOCKDEP
586
587/*
588 * Slab sometimes uses the kmalloc slabs to store the slab headers
589 * for other slabs "off slab".
590 * The locking for this is tricky in that it nests within the locks
591 * of all other slabs in a few places; to deal with this special
592 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
593 *
594 * We set lock class for alien array caches which are up during init.
595 * The lock annotation will be lost if all cpus of a node goes down and
596 * then comes back up during hotplug
f1aaee53 597 */
056c6241
RT
598static struct lock_class_key on_slab_l3_key;
599static struct lock_class_key on_slab_alc_key;
600
83835b3d
PZ
601static struct lock_class_key debugobj_l3_key;
602static struct lock_class_key debugobj_alc_key;
603
604static void slab_set_lock_classes(struct kmem_cache *cachep,
605 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
606 int q)
607{
608 struct array_cache **alc;
609 struct kmem_list3 *l3;
610 int r;
611
612 l3 = cachep->nodelists[q];
613 if (!l3)
614 return;
615
616 lockdep_set_class(&l3->list_lock, l3_key);
617 alc = l3->alien;
618 /*
619 * FIXME: This check for BAD_ALIEN_MAGIC
620 * should go away when common slab code is taught to
621 * work even without alien caches.
622 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
623 * for alloc_alien_cache,
624 */
625 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
626 return;
627 for_each_node(r) {
628 if (alc[r])
629 lockdep_set_class(&alc[r]->lock, alc_key);
630 }
631}
632
633static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
634{
635 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
636}
637
638static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
639{
640 int node;
641
642 for_each_online_node(node)
643 slab_set_debugobj_lock_classes_node(cachep, node);
644}
645
ce79ddc8 646static void init_node_lock_keys(int q)
f1aaee53 647{
056c6241
RT
648 struct cache_sizes *s = malloc_sizes;
649
97d06609 650 if (slab_state < UP)
ce79ddc8
PE
651 return;
652
653 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
ce79ddc8 654 struct kmem_list3 *l3;
ce79ddc8
PE
655
656 l3 = s->cs_cachep->nodelists[q];
657 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 658 continue;
83835b3d
PZ
659
660 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
661 &on_slab_alc_key, q);
f1aaee53
AV
662 }
663}
ce79ddc8
PE
664
665static inline void init_lock_keys(void)
666{
667 int node;
668
669 for_each_node(node)
670 init_node_lock_keys(node);
671}
f1aaee53 672#else
ce79ddc8
PE
673static void init_node_lock_keys(int q)
674{
675}
676
056c6241 677static inline void init_lock_keys(void)
f1aaee53
AV
678{
679}
83835b3d
PZ
680
681static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
682{
683}
684
685static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
686{
687}
f1aaee53
AV
688#endif
689
1871e52c 690static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 691
343e0d7a 692static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
693{
694 return cachep->array[smp_processor_id()];
695}
696
a737b3e2
AM
697static inline struct kmem_cache *__find_general_cachep(size_t size,
698 gfp_t gfpflags)
1da177e4
LT
699{
700 struct cache_sizes *csizep = malloc_sizes;
701
702#if DEBUG
703 /* This happens if someone tries to call
b28a02de
PE
704 * kmem_cache_create(), or __kmalloc(), before
705 * the generic caches are initialized.
706 */
c7e43c78 707 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 708#endif
6cb8f913
CL
709 if (!size)
710 return ZERO_SIZE_PTR;
711
1da177e4
LT
712 while (size > csizep->cs_size)
713 csizep++;
714
715 /*
0abf40c1 716 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
717 * has cs_{dma,}cachep==NULL. Thus no special case
718 * for large kmalloc calls required.
719 */
4b51d669 720#ifdef CONFIG_ZONE_DMA
1da177e4
LT
721 if (unlikely(gfpflags & GFP_DMA))
722 return csizep->cs_dmacachep;
4b51d669 723#endif
1da177e4
LT
724 return csizep->cs_cachep;
725}
726
b221385b 727static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
728{
729 return __find_general_cachep(size, gfpflags);
730}
97e2bde4 731
fbaccacf 732static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 733{
fbaccacf
SR
734 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
735}
1da177e4 736
a737b3e2
AM
737/*
738 * Calculate the number of objects and left-over bytes for a given buffer size.
739 */
fbaccacf
SR
740static void cache_estimate(unsigned long gfporder, size_t buffer_size,
741 size_t align, int flags, size_t *left_over,
742 unsigned int *num)
743{
744 int nr_objs;
745 size_t mgmt_size;
746 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 747
fbaccacf
SR
748 /*
749 * The slab management structure can be either off the slab or
750 * on it. For the latter case, the memory allocated for a
751 * slab is used for:
752 *
753 * - The struct slab
754 * - One kmem_bufctl_t for each object
755 * - Padding to respect alignment of @align
756 * - @buffer_size bytes for each object
757 *
758 * If the slab management structure is off the slab, then the
759 * alignment will already be calculated into the size. Because
760 * the slabs are all pages aligned, the objects will be at the
761 * correct alignment when allocated.
762 */
763 if (flags & CFLGS_OFF_SLAB) {
764 mgmt_size = 0;
765 nr_objs = slab_size / buffer_size;
766
767 if (nr_objs > SLAB_LIMIT)
768 nr_objs = SLAB_LIMIT;
769 } else {
770 /*
771 * Ignore padding for the initial guess. The padding
772 * is at most @align-1 bytes, and @buffer_size is at
773 * least @align. In the worst case, this result will
774 * be one greater than the number of objects that fit
775 * into the memory allocation when taking the padding
776 * into account.
777 */
778 nr_objs = (slab_size - sizeof(struct slab)) /
779 (buffer_size + sizeof(kmem_bufctl_t));
780
781 /*
782 * This calculated number will be either the right
783 * amount, or one greater than what we want.
784 */
785 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
786 > slab_size)
787 nr_objs--;
788
789 if (nr_objs > SLAB_LIMIT)
790 nr_objs = SLAB_LIMIT;
791
792 mgmt_size = slab_mgmt_size(nr_objs, align);
793 }
794 *num = nr_objs;
795 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
796}
797
d40cee24 798#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 799
a737b3e2
AM
800static void __slab_error(const char *function, struct kmem_cache *cachep,
801 char *msg)
1da177e4
LT
802{
803 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 804 function, cachep->name, msg);
1da177e4 805 dump_stack();
645df230 806 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
807}
808
3395ee05
PM
809/*
810 * By default on NUMA we use alien caches to stage the freeing of
811 * objects allocated from other nodes. This causes massive memory
812 * inefficiencies when using fake NUMA setup to split memory into a
813 * large number of small nodes, so it can be disabled on the command
814 * line
815 */
816
817static int use_alien_caches __read_mostly = 1;
818static int __init noaliencache_setup(char *s)
819{
820 use_alien_caches = 0;
821 return 1;
822}
823__setup("noaliencache", noaliencache_setup);
824
3df1cccd
DR
825static int __init slab_max_order_setup(char *str)
826{
827 get_option(&str, &slab_max_order);
828 slab_max_order = slab_max_order < 0 ? 0 :
829 min(slab_max_order, MAX_ORDER - 1);
830 slab_max_order_set = true;
831
832 return 1;
833}
834__setup("slab_max_order=", slab_max_order_setup);
835
8fce4d8e
CL
836#ifdef CONFIG_NUMA
837/*
838 * Special reaping functions for NUMA systems called from cache_reap().
839 * These take care of doing round robin flushing of alien caches (containing
840 * objects freed on different nodes from which they were allocated) and the
841 * flushing of remote pcps by calling drain_node_pages.
842 */
1871e52c 843static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
844
845static void init_reap_node(int cpu)
846{
847 int node;
848
7d6e6d09 849 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 850 if (node == MAX_NUMNODES)
442295c9 851 node = first_node(node_online_map);
8fce4d8e 852
1871e52c 853 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
854}
855
856static void next_reap_node(void)
857{
909ea964 858 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 859
8fce4d8e
CL
860 node = next_node(node, node_online_map);
861 if (unlikely(node >= MAX_NUMNODES))
862 node = first_node(node_online_map);
909ea964 863 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
864}
865
866#else
867#define init_reap_node(cpu) do { } while (0)
868#define next_reap_node(void) do { } while (0)
869#endif
870
1da177e4
LT
871/*
872 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
873 * via the workqueue/eventd.
874 * Add the CPU number into the expiration time to minimize the possibility of
875 * the CPUs getting into lockstep and contending for the global cache chain
876 * lock.
877 */
897e679b 878static void __cpuinit start_cpu_timer(int cpu)
1da177e4 879{
1871e52c 880 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
881
882 /*
883 * When this gets called from do_initcalls via cpucache_init(),
884 * init_workqueues() has already run, so keventd will be setup
885 * at that time.
886 */
52bad64d 887 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 888 init_reap_node(cpu);
78b43536 889 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
2b284214
AV
890 schedule_delayed_work_on(cpu, reap_work,
891 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
892 }
893}
894
e498be7d 895static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 896 int batchcount, gfp_t gfp)
1da177e4 897{
b28a02de 898 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
899 struct array_cache *nc = NULL;
900
83b519e8 901 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
902 /*
903 * The array_cache structures contain pointers to free object.
25985edc 904 * However, when such objects are allocated or transferred to another
d5cff635
CM
905 * cache the pointers are not cleared and they could be counted as
906 * valid references during a kmemleak scan. Therefore, kmemleak must
907 * not scan such objects.
908 */
909 kmemleak_no_scan(nc);
1da177e4
LT
910 if (nc) {
911 nc->avail = 0;
912 nc->limit = entries;
913 nc->batchcount = batchcount;
914 nc->touched = 0;
e498be7d 915 spin_lock_init(&nc->lock);
1da177e4
LT
916 }
917 return nc;
918}
919
072bb0aa
MG
920static inline bool is_slab_pfmemalloc(struct slab *slabp)
921{
922 struct page *page = virt_to_page(slabp->s_mem);
923
924 return PageSlabPfmemalloc(page);
925}
926
927/* Clears pfmemalloc_active if no slabs have pfmalloc set */
928static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
929 struct array_cache *ac)
930{
931 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
932 struct slab *slabp;
933 unsigned long flags;
934
935 if (!pfmemalloc_active)
936 return;
937
938 spin_lock_irqsave(&l3->list_lock, flags);
939 list_for_each_entry(slabp, &l3->slabs_full, list)
940 if (is_slab_pfmemalloc(slabp))
941 goto out;
942
943 list_for_each_entry(slabp, &l3->slabs_partial, list)
944 if (is_slab_pfmemalloc(slabp))
945 goto out;
946
947 list_for_each_entry(slabp, &l3->slabs_free, list)
948 if (is_slab_pfmemalloc(slabp))
949 goto out;
950
951 pfmemalloc_active = false;
952out:
953 spin_unlock_irqrestore(&l3->list_lock, flags);
954}
955
381760ea 956static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
957 gfp_t flags, bool force_refill)
958{
959 int i;
960 void *objp = ac->entry[--ac->avail];
961
962 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
963 if (unlikely(is_obj_pfmemalloc(objp))) {
964 struct kmem_list3 *l3;
965
966 if (gfp_pfmemalloc_allowed(flags)) {
967 clear_obj_pfmemalloc(&objp);
968 return objp;
969 }
970
971 /* The caller cannot use PFMEMALLOC objects, find another one */
972 for (i = 1; i < ac->avail; i++) {
973 /* If a !PFMEMALLOC object is found, swap them */
974 if (!is_obj_pfmemalloc(ac->entry[i])) {
975 objp = ac->entry[i];
976 ac->entry[i] = ac->entry[ac->avail];
977 ac->entry[ac->avail] = objp;
978 return objp;
979 }
980 }
981
982 /*
983 * If there are empty slabs on the slabs_free list and we are
984 * being forced to refill the cache, mark this one !pfmemalloc.
985 */
986 l3 = cachep->nodelists[numa_mem_id()];
987 if (!list_empty(&l3->slabs_free) && force_refill) {
988 struct slab *slabp = virt_to_slab(objp);
989 ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
990 clear_obj_pfmemalloc(&objp);
991 recheck_pfmemalloc_active(cachep, ac);
992 return objp;
993 }
994
995 /* No !PFMEMALLOC objects available */
996 ac->avail++;
997 objp = NULL;
998 }
999
1000 return objp;
1001}
1002
381760ea
MG
1003static inline void *ac_get_obj(struct kmem_cache *cachep,
1004 struct array_cache *ac, gfp_t flags, bool force_refill)
1005{
1006 void *objp;
1007
1008 if (unlikely(sk_memalloc_socks()))
1009 objp = __ac_get_obj(cachep, ac, flags, force_refill);
1010 else
1011 objp = ac->entry[--ac->avail];
1012
1013 return objp;
1014}
1015
1016static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
1017 void *objp)
1018{
1019 if (unlikely(pfmemalloc_active)) {
1020 /* Some pfmemalloc slabs exist, check if this is one */
1021 struct page *page = virt_to_page(objp);
1022 if (PageSlabPfmemalloc(page))
1023 set_obj_pfmemalloc(&objp);
1024 }
1025
381760ea
MG
1026 return objp;
1027}
1028
1029static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1030 void *objp)
1031{
1032 if (unlikely(sk_memalloc_socks()))
1033 objp = __ac_put_obj(cachep, ac, objp);
1034
072bb0aa
MG
1035 ac->entry[ac->avail++] = objp;
1036}
1037
3ded175a
CL
1038/*
1039 * Transfer objects in one arraycache to another.
1040 * Locking must be handled by the caller.
1041 *
1042 * Return the number of entries transferred.
1043 */
1044static int transfer_objects(struct array_cache *to,
1045 struct array_cache *from, unsigned int max)
1046{
1047 /* Figure out how many entries to transfer */
732eacc0 1048 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
1049
1050 if (!nr)
1051 return 0;
1052
1053 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1054 sizeof(void *) *nr);
1055
1056 from->avail -= nr;
1057 to->avail += nr;
3ded175a
CL
1058 return nr;
1059}
1060
765c4507
CL
1061#ifndef CONFIG_NUMA
1062
1063#define drain_alien_cache(cachep, alien) do { } while (0)
1064#define reap_alien(cachep, l3) do { } while (0)
1065
83b519e8 1066static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
1067{
1068 return (struct array_cache **)BAD_ALIEN_MAGIC;
1069}
1070
1071static inline void free_alien_cache(struct array_cache **ac_ptr)
1072{
1073}
1074
1075static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1076{
1077 return 0;
1078}
1079
1080static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1081 gfp_t flags)
1082{
1083 return NULL;
1084}
1085
8b98c169 1086static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1087 gfp_t flags, int nodeid)
1088{
1089 return NULL;
1090}
1091
1092#else /* CONFIG_NUMA */
1093
8b98c169 1094static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1095static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1096
83b519e8 1097static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1098{
1099 struct array_cache **ac_ptr;
8ef82866 1100 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1101 int i;
1102
1103 if (limit > 1)
1104 limit = 12;
f3186a9c 1105 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1106 if (ac_ptr) {
1107 for_each_node(i) {
f3186a9c 1108 if (i == node || !node_online(i))
e498be7d 1109 continue;
83b519e8 1110 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1111 if (!ac_ptr[i]) {
cc550def 1112 for (i--; i >= 0; i--)
e498be7d
CL
1113 kfree(ac_ptr[i]);
1114 kfree(ac_ptr);
1115 return NULL;
1116 }
1117 }
1118 }
1119 return ac_ptr;
1120}
1121
5295a74c 1122static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1123{
1124 int i;
1125
1126 if (!ac_ptr)
1127 return;
e498be7d 1128 for_each_node(i)
b28a02de 1129 kfree(ac_ptr[i]);
e498be7d
CL
1130 kfree(ac_ptr);
1131}
1132
343e0d7a 1133static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1134 struct array_cache *ac, int node)
e498be7d
CL
1135{
1136 struct kmem_list3 *rl3 = cachep->nodelists[node];
1137
1138 if (ac->avail) {
1139 spin_lock(&rl3->list_lock);
e00946fe
CL
1140 /*
1141 * Stuff objects into the remote nodes shared array first.
1142 * That way we could avoid the overhead of putting the objects
1143 * into the free lists and getting them back later.
1144 */
693f7d36 1145 if (rl3->shared)
1146 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1147
ff69416e 1148 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1149 ac->avail = 0;
1150 spin_unlock(&rl3->list_lock);
1151 }
1152}
1153
8fce4d8e
CL
1154/*
1155 * Called from cache_reap() to regularly drain alien caches round robin.
1156 */
1157static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1158{
909ea964 1159 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1160
1161 if (l3->alien) {
1162 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1163
1164 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1165 __drain_alien_cache(cachep, ac, node);
1166 spin_unlock_irq(&ac->lock);
1167 }
1168 }
1169}
1170
a737b3e2
AM
1171static void drain_alien_cache(struct kmem_cache *cachep,
1172 struct array_cache **alien)
e498be7d 1173{
b28a02de 1174 int i = 0;
e498be7d
CL
1175 struct array_cache *ac;
1176 unsigned long flags;
1177
1178 for_each_online_node(i) {
4484ebf1 1179 ac = alien[i];
e498be7d
CL
1180 if (ac) {
1181 spin_lock_irqsave(&ac->lock, flags);
1182 __drain_alien_cache(cachep, ac, i);
1183 spin_unlock_irqrestore(&ac->lock, flags);
1184 }
1185 }
1186}
729bd0b7 1187
873623df 1188static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1189{
1190 struct slab *slabp = virt_to_slab(objp);
1191 int nodeid = slabp->nodeid;
1192 struct kmem_list3 *l3;
1193 struct array_cache *alien = NULL;
1ca4cb24
PE
1194 int node;
1195
7d6e6d09 1196 node = numa_mem_id();
729bd0b7
PE
1197
1198 /*
1199 * Make sure we are not freeing a object from another node to the array
1200 * cache on this cpu.
1201 */
62918a03 1202 if (likely(slabp->nodeid == node))
729bd0b7
PE
1203 return 0;
1204
1ca4cb24 1205 l3 = cachep->nodelists[node];
729bd0b7
PE
1206 STATS_INC_NODEFREES(cachep);
1207 if (l3->alien && l3->alien[nodeid]) {
1208 alien = l3->alien[nodeid];
873623df 1209 spin_lock(&alien->lock);
729bd0b7
PE
1210 if (unlikely(alien->avail == alien->limit)) {
1211 STATS_INC_ACOVERFLOW(cachep);
1212 __drain_alien_cache(cachep, alien, nodeid);
1213 }
072bb0aa 1214 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1215 spin_unlock(&alien->lock);
1216 } else {
1217 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1218 free_block(cachep, &objp, 1, nodeid);
1219 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1220 }
1221 return 1;
1222}
e498be7d
CL
1223#endif
1224
8f9f8d9e
DR
1225/*
1226 * Allocates and initializes nodelists for a node on each slab cache, used for
1227 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1228 * will be allocated off-node since memory is not yet online for the new node.
1229 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1230 * already in use.
1231 *
18004c5d 1232 * Must hold slab_mutex.
8f9f8d9e
DR
1233 */
1234static int init_cache_nodelists_node(int node)
1235{
1236 struct kmem_cache *cachep;
1237 struct kmem_list3 *l3;
1238 const int memsize = sizeof(struct kmem_list3);
1239
18004c5d 1240 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1241 /*
1242 * Set up the size64 kmemlist for cpu before we can
1243 * begin anything. Make sure some other cpu on this
1244 * node has not already allocated this
1245 */
1246 if (!cachep->nodelists[node]) {
1247 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1248 if (!l3)
1249 return -ENOMEM;
1250 kmem_list3_init(l3);
1251 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1252 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1253
1254 /*
1255 * The l3s don't come and go as CPUs come and
18004c5d 1256 * go. slab_mutex is sufficient
8f9f8d9e
DR
1257 * protection here.
1258 */
1259 cachep->nodelists[node] = l3;
1260 }
1261
1262 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1263 cachep->nodelists[node]->free_limit =
1264 (1 + nr_cpus_node(node)) *
1265 cachep->batchcount + cachep->num;
1266 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1267 }
1268 return 0;
1269}
1270
fbf1e473
AM
1271static void __cpuinit cpuup_canceled(long cpu)
1272{
1273 struct kmem_cache *cachep;
1274 struct kmem_list3 *l3 = NULL;
7d6e6d09 1275 int node = cpu_to_mem(cpu);
a70f7302 1276 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1277
18004c5d 1278 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1279 struct array_cache *nc;
1280 struct array_cache *shared;
1281 struct array_cache **alien;
fbf1e473 1282
fbf1e473
AM
1283 /* cpu is dead; no one can alloc from it. */
1284 nc = cachep->array[cpu];
1285 cachep->array[cpu] = NULL;
1286 l3 = cachep->nodelists[node];
1287
1288 if (!l3)
1289 goto free_array_cache;
1290
1291 spin_lock_irq(&l3->list_lock);
1292
1293 /* Free limit for this kmem_list3 */
1294 l3->free_limit -= cachep->batchcount;
1295 if (nc)
1296 free_block(cachep, nc->entry, nc->avail, node);
1297
58463c1f 1298 if (!cpumask_empty(mask)) {
fbf1e473
AM
1299 spin_unlock_irq(&l3->list_lock);
1300 goto free_array_cache;
1301 }
1302
1303 shared = l3->shared;
1304 if (shared) {
1305 free_block(cachep, shared->entry,
1306 shared->avail, node);
1307 l3->shared = NULL;
1308 }
1309
1310 alien = l3->alien;
1311 l3->alien = NULL;
1312
1313 spin_unlock_irq(&l3->list_lock);
1314
1315 kfree(shared);
1316 if (alien) {
1317 drain_alien_cache(cachep, alien);
1318 free_alien_cache(alien);
1319 }
1320free_array_cache:
1321 kfree(nc);
1322 }
1323 /*
1324 * In the previous loop, all the objects were freed to
1325 * the respective cache's slabs, now we can go ahead and
1326 * shrink each nodelist to its limit.
1327 */
18004c5d 1328 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1329 l3 = cachep->nodelists[node];
1330 if (!l3)
1331 continue;
1332 drain_freelist(cachep, l3, l3->free_objects);
1333 }
1334}
1335
1336static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1337{
343e0d7a 1338 struct kmem_cache *cachep;
e498be7d 1339 struct kmem_list3 *l3 = NULL;
7d6e6d09 1340 int node = cpu_to_mem(cpu);
8f9f8d9e 1341 int err;
1da177e4 1342
fbf1e473
AM
1343 /*
1344 * We need to do this right in the beginning since
1345 * alloc_arraycache's are going to use this list.
1346 * kmalloc_node allows us to add the slab to the right
1347 * kmem_list3 and not this cpu's kmem_list3
1348 */
8f9f8d9e
DR
1349 err = init_cache_nodelists_node(node);
1350 if (err < 0)
1351 goto bad;
fbf1e473
AM
1352
1353 /*
1354 * Now we can go ahead with allocating the shared arrays and
1355 * array caches
1356 */
18004c5d 1357 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1358 struct array_cache *nc;
1359 struct array_cache *shared = NULL;
1360 struct array_cache **alien = NULL;
1361
1362 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1363 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1364 if (!nc)
1365 goto bad;
1366 if (cachep->shared) {
1367 shared = alloc_arraycache(node,
1368 cachep->shared * cachep->batchcount,
83b519e8 1369 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1370 if (!shared) {
1371 kfree(nc);
1da177e4 1372 goto bad;
12d00f6a 1373 }
fbf1e473
AM
1374 }
1375 if (use_alien_caches) {
83b519e8 1376 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1377 if (!alien) {
1378 kfree(shared);
1379 kfree(nc);
fbf1e473 1380 goto bad;
12d00f6a 1381 }
fbf1e473
AM
1382 }
1383 cachep->array[cpu] = nc;
1384 l3 = cachep->nodelists[node];
1385 BUG_ON(!l3);
1386
1387 spin_lock_irq(&l3->list_lock);
1388 if (!l3->shared) {
1389 /*
1390 * We are serialised from CPU_DEAD or
1391 * CPU_UP_CANCELLED by the cpucontrol lock
1392 */
1393 l3->shared = shared;
1394 shared = NULL;
1395 }
4484ebf1 1396#ifdef CONFIG_NUMA
fbf1e473
AM
1397 if (!l3->alien) {
1398 l3->alien = alien;
1399 alien = NULL;
1da177e4 1400 }
fbf1e473
AM
1401#endif
1402 spin_unlock_irq(&l3->list_lock);
1403 kfree(shared);
1404 free_alien_cache(alien);
83835b3d
PZ
1405 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1406 slab_set_debugobj_lock_classes_node(cachep, node);
fbf1e473 1407 }
ce79ddc8
PE
1408 init_node_lock_keys(node);
1409
fbf1e473
AM
1410 return 0;
1411bad:
12d00f6a 1412 cpuup_canceled(cpu);
fbf1e473
AM
1413 return -ENOMEM;
1414}
1415
1416static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1417 unsigned long action, void *hcpu)
1418{
1419 long cpu = (long)hcpu;
1420 int err = 0;
1421
1422 switch (action) {
fbf1e473
AM
1423 case CPU_UP_PREPARE:
1424 case CPU_UP_PREPARE_FROZEN:
18004c5d 1425 mutex_lock(&slab_mutex);
fbf1e473 1426 err = cpuup_prepare(cpu);
18004c5d 1427 mutex_unlock(&slab_mutex);
1da177e4
LT
1428 break;
1429 case CPU_ONLINE:
8bb78442 1430 case CPU_ONLINE_FROZEN:
1da177e4
LT
1431 start_cpu_timer(cpu);
1432 break;
1433#ifdef CONFIG_HOTPLUG_CPU
5830c590 1434 case CPU_DOWN_PREPARE:
8bb78442 1435 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1436 /*
18004c5d 1437 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1438 * held so that if cache_reap() is invoked it cannot do
1439 * anything expensive but will only modify reap_work
1440 * and reschedule the timer.
1441 */
afe2c511 1442 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1443 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1444 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1445 break;
1446 case CPU_DOWN_FAILED:
8bb78442 1447 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1448 start_cpu_timer(cpu);
1449 break;
1da177e4 1450 case CPU_DEAD:
8bb78442 1451 case CPU_DEAD_FROZEN:
4484ebf1
RT
1452 /*
1453 * Even if all the cpus of a node are down, we don't free the
1454 * kmem_list3 of any cache. This to avoid a race between
1455 * cpu_down, and a kmalloc allocation from another cpu for
1456 * memory from the node of the cpu going down. The list3
1457 * structure is usually allocated from kmem_cache_create() and
1458 * gets destroyed at kmem_cache_destroy().
1459 */
183ff22b 1460 /* fall through */
8f5be20b 1461#endif
1da177e4 1462 case CPU_UP_CANCELED:
8bb78442 1463 case CPU_UP_CANCELED_FROZEN:
18004c5d 1464 mutex_lock(&slab_mutex);
fbf1e473 1465 cpuup_canceled(cpu);
18004c5d 1466 mutex_unlock(&slab_mutex);
1da177e4 1467 break;
1da177e4 1468 }
eac40680 1469 return notifier_from_errno(err);
1da177e4
LT
1470}
1471
74b85f37
CS
1472static struct notifier_block __cpuinitdata cpucache_notifier = {
1473 &cpuup_callback, NULL, 0
1474};
1da177e4 1475
8f9f8d9e
DR
1476#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1477/*
1478 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1479 * Returns -EBUSY if all objects cannot be drained so that the node is not
1480 * removed.
1481 *
18004c5d 1482 * Must hold slab_mutex.
8f9f8d9e
DR
1483 */
1484static int __meminit drain_cache_nodelists_node(int node)
1485{
1486 struct kmem_cache *cachep;
1487 int ret = 0;
1488
18004c5d 1489 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1490 struct kmem_list3 *l3;
1491
1492 l3 = cachep->nodelists[node];
1493 if (!l3)
1494 continue;
1495
1496 drain_freelist(cachep, l3, l3->free_objects);
1497
1498 if (!list_empty(&l3->slabs_full) ||
1499 !list_empty(&l3->slabs_partial)) {
1500 ret = -EBUSY;
1501 break;
1502 }
1503 }
1504 return ret;
1505}
1506
1507static int __meminit slab_memory_callback(struct notifier_block *self,
1508 unsigned long action, void *arg)
1509{
1510 struct memory_notify *mnb = arg;
1511 int ret = 0;
1512 int nid;
1513
1514 nid = mnb->status_change_nid;
1515 if (nid < 0)
1516 goto out;
1517
1518 switch (action) {
1519 case MEM_GOING_ONLINE:
18004c5d 1520 mutex_lock(&slab_mutex);
8f9f8d9e 1521 ret = init_cache_nodelists_node(nid);
18004c5d 1522 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1523 break;
1524 case MEM_GOING_OFFLINE:
18004c5d 1525 mutex_lock(&slab_mutex);
8f9f8d9e 1526 ret = drain_cache_nodelists_node(nid);
18004c5d 1527 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1528 break;
1529 case MEM_ONLINE:
1530 case MEM_OFFLINE:
1531 case MEM_CANCEL_ONLINE:
1532 case MEM_CANCEL_OFFLINE:
1533 break;
1534 }
1535out:
5fda1bd5 1536 return notifier_from_errno(ret);
8f9f8d9e
DR
1537}
1538#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1539
e498be7d
CL
1540/*
1541 * swap the static kmem_list3 with kmalloced memory
1542 */
8f9f8d9e
DR
1543static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1544 int nodeid)
e498be7d
CL
1545{
1546 struct kmem_list3 *ptr;
1547
83b519e8 1548 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1549 BUG_ON(!ptr);
1550
e498be7d 1551 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1552 /*
1553 * Do not assume that spinlocks can be initialized via memcpy:
1554 */
1555 spin_lock_init(&ptr->list_lock);
1556
e498be7d
CL
1557 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1558 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1559}
1560
556a169d
PE
1561/*
1562 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1563 * size of kmem_list3.
1564 */
1565static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1566{
1567 int node;
1568
1569 for_each_online_node(node) {
1570 cachep->nodelists[node] = &initkmem_list3[index + node];
1571 cachep->nodelists[node]->next_reap = jiffies +
1572 REAPTIMEOUT_LIST3 +
1573 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1574 }
1575}
1576
a737b3e2
AM
1577/*
1578 * Initialisation. Called after the page allocator have been initialised and
1579 * before smp_init().
1da177e4
LT
1580 */
1581void __init kmem_cache_init(void)
1582{
1583 size_t left_over;
1584 struct cache_sizes *sizes;
1585 struct cache_names *names;
e498be7d 1586 int i;
07ed76b2 1587 int order;
1ca4cb24 1588 int node;
e498be7d 1589
b6e68bc1 1590 if (num_possible_nodes() == 1)
62918a03
SS
1591 use_alien_caches = 0;
1592
e498be7d
CL
1593 for (i = 0; i < NUM_INIT_LISTS; i++) {
1594 kmem_list3_init(&initkmem_list3[i]);
1595 if (i < MAX_NUMNODES)
1596 cache_cache.nodelists[i] = NULL;
1597 }
556a169d 1598 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1599
1600 /*
1601 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1602 * page orders on machines with more than 32MB of memory if
1603 * not overridden on the command line.
1da177e4 1604 */
3df1cccd 1605 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1606 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1607
1da177e4
LT
1608 /* Bootstrap is tricky, because several objects are allocated
1609 * from caches that do not exist yet:
a737b3e2
AM
1610 * 1) initialize the cache_cache cache: it contains the struct
1611 * kmem_cache structures of all caches, except cache_cache itself:
1612 * cache_cache is statically allocated.
e498be7d
CL
1613 * Initially an __init data area is used for the head array and the
1614 * kmem_list3 structures, it's replaced with a kmalloc allocated
1615 * array at the end of the bootstrap.
1da177e4 1616 * 2) Create the first kmalloc cache.
343e0d7a 1617 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1618 * An __init data area is used for the head array.
1619 * 3) Create the remaining kmalloc caches, with minimally sized
1620 * head arrays.
1da177e4
LT
1621 * 4) Replace the __init data head arrays for cache_cache and the first
1622 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1623 * 5) Replace the __init data for kmem_list3 for cache_cache and
1624 * the other cache's with kmalloc allocated memory.
1625 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1626 */
1627
7d6e6d09 1628 node = numa_mem_id();
1ca4cb24 1629
1da177e4 1630 /* 1) create the cache_cache */
18004c5d
CL
1631 INIT_LIST_HEAD(&slab_caches);
1632 list_add(&cache_cache.list, &slab_caches);
1da177e4
LT
1633 cache_cache.colour_off = cache_line_size();
1634 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1635 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1636
8da3430d 1637 /*
b56efcf0 1638 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1639 */
3b0efdfa 1640 cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
b56efcf0 1641 nr_node_ids * sizeof(struct kmem_list3 *);
3b0efdfa
CL
1642 cache_cache.object_size = cache_cache.size;
1643 cache_cache.size = ALIGN(cache_cache.size,
a737b3e2 1644 cache_line_size());
6a2d7a95 1645 cache_cache.reciprocal_buffer_size =
3b0efdfa 1646 reciprocal_value(cache_cache.size);
1da177e4 1647
07ed76b2 1648 for (order = 0; order < MAX_ORDER; order++) {
3b0efdfa 1649 cache_estimate(order, cache_cache.size,
07ed76b2
JS
1650 cache_line_size(), 0, &left_over, &cache_cache.num);
1651 if (cache_cache.num)
1652 break;
1653 }
40094fa6 1654 BUG_ON(!cache_cache.num);
07ed76b2 1655 cache_cache.gfporder = order;
b28a02de 1656 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1657 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1658 sizeof(struct slab), cache_line_size());
1da177e4
LT
1659
1660 /* 2+3) create the kmalloc caches */
1661 sizes = malloc_sizes;
1662 names = cache_names;
1663
a737b3e2
AM
1664 /*
1665 * Initialize the caches that provide memory for the array cache and the
1666 * kmem_list3 structures first. Without this, further allocations will
1667 * bug.
e498be7d
CL
1668 */
1669
039363f3 1670 sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1671 sizes[INDEX_AC].cs_size,
1672 ARCH_KMALLOC_MINALIGN,
1673 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1674 NULL);
e498be7d 1675
a737b3e2 1676 if (INDEX_AC != INDEX_L3) {
e498be7d 1677 sizes[INDEX_L3].cs_cachep =
039363f3 1678 __kmem_cache_create(names[INDEX_L3].name,
a737b3e2
AM
1679 sizes[INDEX_L3].cs_size,
1680 ARCH_KMALLOC_MINALIGN,
1681 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1682 NULL);
a737b3e2 1683 }
e498be7d 1684
e0a42726
IM
1685 slab_early_init = 0;
1686
1da177e4 1687 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1688 /*
1689 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1690 * This should be particularly beneficial on SMP boxes, as it
1691 * eliminates "false sharing".
1692 * Note for systems short on memory removing the alignment will
e498be7d
CL
1693 * allow tighter packing of the smaller caches.
1694 */
a737b3e2 1695 if (!sizes->cs_cachep) {
039363f3 1696 sizes->cs_cachep = __kmem_cache_create(names->name,
a737b3e2
AM
1697 sizes->cs_size,
1698 ARCH_KMALLOC_MINALIGN,
1699 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1700 NULL);
a737b3e2 1701 }
4b51d669 1702#ifdef CONFIG_ZONE_DMA
039363f3 1703 sizes->cs_dmacachep = __kmem_cache_create(
4b51d669 1704 names->name_dma,
a737b3e2
AM
1705 sizes->cs_size,
1706 ARCH_KMALLOC_MINALIGN,
1707 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1708 SLAB_PANIC,
20c2df83 1709 NULL);
4b51d669 1710#endif
1da177e4
LT
1711 sizes++;
1712 names++;
1713 }
1714 /* 4) Replace the bootstrap head arrays */
1715 {
2b2d5493 1716 struct array_cache *ptr;
e498be7d 1717
83b519e8 1718 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1719
9a2dba4b
PE
1720 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1721 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1722 sizeof(struct arraycache_init));
2b2d5493
IM
1723 /*
1724 * Do not assume that spinlocks can be initialized via memcpy:
1725 */
1726 spin_lock_init(&ptr->lock);
1727
1da177e4 1728 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1729
83b519e8 1730 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1731
9a2dba4b 1732 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1733 != &initarray_generic.cache);
9a2dba4b 1734 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1735 sizeof(struct arraycache_init));
2b2d5493
IM
1736 /*
1737 * Do not assume that spinlocks can be initialized via memcpy:
1738 */
1739 spin_lock_init(&ptr->lock);
1740
e498be7d 1741 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1742 ptr;
1da177e4 1743 }
e498be7d
CL
1744 /* 5) Replace the bootstrap kmem_list3's */
1745 {
1ca4cb24
PE
1746 int nid;
1747
9c09a95c 1748 for_each_online_node(nid) {
ec1f5eee 1749 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1750
e498be7d 1751 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1752 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1753
1754 if (INDEX_AC != INDEX_L3) {
1755 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1756 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1757 }
1758 }
1759 }
1da177e4 1760
97d06609 1761 slab_state = UP;
8429db5c
PE
1762}
1763
1764void __init kmem_cache_init_late(void)
1765{
1766 struct kmem_cache *cachep;
1767
97d06609 1768 slab_state = UP;
52cef189 1769
8429db5c 1770 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1771 mutex_lock(&slab_mutex);
1772 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1773 if (enable_cpucache(cachep, GFP_NOWAIT))
1774 BUG();
18004c5d 1775 mutex_unlock(&slab_mutex);
056c6241 1776
947ca185
MW
1777 /* Annotate slab for lockdep -- annotate the malloc caches */
1778 init_lock_keys();
1779
97d06609
CL
1780 /* Done! */
1781 slab_state = FULL;
1782
a737b3e2
AM
1783 /*
1784 * Register a cpu startup notifier callback that initializes
1785 * cpu_cache_get for all new cpus
1da177e4
LT
1786 */
1787 register_cpu_notifier(&cpucache_notifier);
1da177e4 1788
8f9f8d9e
DR
1789#ifdef CONFIG_NUMA
1790 /*
1791 * Register a memory hotplug callback that initializes and frees
1792 * nodelists.
1793 */
1794 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1795#endif
1796
a737b3e2
AM
1797 /*
1798 * The reap timers are started later, with a module init call: That part
1799 * of the kernel is not yet operational.
1da177e4
LT
1800 */
1801}
1802
1803static int __init cpucache_init(void)
1804{
1805 int cpu;
1806
a737b3e2
AM
1807 /*
1808 * Register the timers that return unneeded pages to the page allocator
1da177e4 1809 */
e498be7d 1810 for_each_online_cpu(cpu)
a737b3e2 1811 start_cpu_timer(cpu);
a164f896
GC
1812
1813 /* Done! */
97d06609 1814 slab_state = FULL;
1da177e4
LT
1815 return 0;
1816}
1da177e4
LT
1817__initcall(cpucache_init);
1818
8bdec192
RA
1819static noinline void
1820slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1821{
1822 struct kmem_list3 *l3;
1823 struct slab *slabp;
1824 unsigned long flags;
1825 int node;
1826
1827 printk(KERN_WARNING
1828 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1829 nodeid, gfpflags);
1830 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1831 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1832
1833 for_each_online_node(node) {
1834 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1835 unsigned long active_slabs = 0, num_slabs = 0;
1836
1837 l3 = cachep->nodelists[node];
1838 if (!l3)
1839 continue;
1840
1841 spin_lock_irqsave(&l3->list_lock, flags);
1842 list_for_each_entry(slabp, &l3->slabs_full, list) {
1843 active_objs += cachep->num;
1844 active_slabs++;
1845 }
1846 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1847 active_objs += slabp->inuse;
1848 active_slabs++;
1849 }
1850 list_for_each_entry(slabp, &l3->slabs_free, list)
1851 num_slabs++;
1852
1853 free_objects += l3->free_objects;
1854 spin_unlock_irqrestore(&l3->list_lock, flags);
1855
1856 num_slabs += active_slabs;
1857 num_objs = num_slabs * cachep->num;
1858 printk(KERN_WARNING
1859 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1860 node, active_slabs, num_slabs, active_objs, num_objs,
1861 free_objects);
1862 }
1863}
1864
1da177e4
LT
1865/*
1866 * Interface to system's page allocator. No need to hold the cache-lock.
1867 *
1868 * If we requested dmaable memory, we will get it. Even if we
1869 * did not request dmaable memory, we might get it, but that
1870 * would be relatively rare and ignorable.
1871 */
343e0d7a 1872static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1873{
1874 struct page *page;
e1b6aa6f 1875 int nr_pages;
1da177e4
LT
1876 int i;
1877
d6fef9da 1878#ifndef CONFIG_MMU
e1b6aa6f
CH
1879 /*
1880 * Nommu uses slab's for process anonymous memory allocations, and thus
1881 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1882 */
e1b6aa6f 1883 flags |= __GFP_COMP;
d6fef9da 1884#endif
765c4507 1885
a618e89f 1886 flags |= cachep->allocflags;
e12ba74d
MG
1887 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1888 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1889
517d0869 1890 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1891 if (!page) {
1892 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1893 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1894 return NULL;
8bdec192 1895 }
1da177e4 1896
b37f1dd0 1897 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1898 if (unlikely(page->pfmemalloc))
1899 pfmemalloc_active = true;
1900
e1b6aa6f 1901 nr_pages = (1 << cachep->gfporder);
1da177e4 1902 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1903 add_zone_page_state(page_zone(page),
1904 NR_SLAB_RECLAIMABLE, nr_pages);
1905 else
1906 add_zone_page_state(page_zone(page),
1907 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1908 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1909 __SetPageSlab(page + i);
c175eea4 1910
072bb0aa
MG
1911 if (page->pfmemalloc)
1912 SetPageSlabPfmemalloc(page + i);
1913 }
1914
b1eeab67
VN
1915 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1916 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1917
1918 if (cachep->ctor)
1919 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1920 else
1921 kmemcheck_mark_unallocated_pages(page, nr_pages);
1922 }
c175eea4 1923
e1b6aa6f 1924 return page_address(page);
1da177e4
LT
1925}
1926
1927/*
1928 * Interface to system's page release.
1929 */
343e0d7a 1930static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1931{
b28a02de 1932 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1933 struct page *page = virt_to_page(addr);
1934 const unsigned long nr_freed = i;
1935
b1eeab67 1936 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1937
972d1a7b
CL
1938 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1939 sub_zone_page_state(page_zone(page),
1940 NR_SLAB_RECLAIMABLE, nr_freed);
1941 else
1942 sub_zone_page_state(page_zone(page),
1943 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1944 while (i--) {
f205b2fe 1945 BUG_ON(!PageSlab(page));
072bb0aa 1946 __ClearPageSlabPfmemalloc(page);
f205b2fe 1947 __ClearPageSlab(page);
1da177e4
LT
1948 page++;
1949 }
1da177e4
LT
1950 if (current->reclaim_state)
1951 current->reclaim_state->reclaimed_slab += nr_freed;
1952 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1953}
1954
1955static void kmem_rcu_free(struct rcu_head *head)
1956{
b28a02de 1957 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1958 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1959
1960 kmem_freepages(cachep, slab_rcu->addr);
1961 if (OFF_SLAB(cachep))
1962 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1963}
1964
1965#if DEBUG
1966
1967#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1968static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1969 unsigned long caller)
1da177e4 1970{
8c138bc0 1971 int size = cachep->object_size;
1da177e4 1972
3dafccf2 1973 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1974
b28a02de 1975 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1976 return;
1977
b28a02de
PE
1978 *addr++ = 0x12345678;
1979 *addr++ = caller;
1980 *addr++ = smp_processor_id();
1981 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1982 {
1983 unsigned long *sptr = &caller;
1984 unsigned long svalue;
1985
1986 while (!kstack_end(sptr)) {
1987 svalue = *sptr++;
1988 if (kernel_text_address(svalue)) {
b28a02de 1989 *addr++ = svalue;
1da177e4
LT
1990 size -= sizeof(unsigned long);
1991 if (size <= sizeof(unsigned long))
1992 break;
1993 }
1994 }
1995
1996 }
b28a02de 1997 *addr++ = 0x87654321;
1da177e4
LT
1998}
1999#endif
2000
343e0d7a 2001static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 2002{
8c138bc0 2003 int size = cachep->object_size;
3dafccf2 2004 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
2005
2006 memset(addr, val, size);
b28a02de 2007 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
2008}
2009
2010static void dump_line(char *data, int offset, int limit)
2011{
2012 int i;
aa83aa40
DJ
2013 unsigned char error = 0;
2014 int bad_count = 0;
2015
fdde6abb 2016 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
2017 for (i = 0; i < limit; i++) {
2018 if (data[offset + i] != POISON_FREE) {
2019 error = data[offset + i];
2020 bad_count++;
2021 }
aa83aa40 2022 }
fdde6abb
SAS
2023 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2024 &data[offset], limit, 1);
aa83aa40
DJ
2025
2026 if (bad_count == 1) {
2027 error ^= POISON_FREE;
2028 if (!(error & (error - 1))) {
2029 printk(KERN_ERR "Single bit error detected. Probably "
2030 "bad RAM.\n");
2031#ifdef CONFIG_X86
2032 printk(KERN_ERR "Run memtest86+ or a similar memory "
2033 "test tool.\n");
2034#else
2035 printk(KERN_ERR "Run a memory test tool.\n");
2036#endif
2037 }
2038 }
1da177e4
LT
2039}
2040#endif
2041
2042#if DEBUG
2043
343e0d7a 2044static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
2045{
2046 int i, size;
2047 char *realobj;
2048
2049 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 2050 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
2051 *dbg_redzone1(cachep, objp),
2052 *dbg_redzone2(cachep, objp));
1da177e4
LT
2053 }
2054
2055 if (cachep->flags & SLAB_STORE_USER) {
2056 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 2057 *dbg_userword(cachep, objp));
1da177e4 2058 print_symbol("(%s)",
a737b3e2 2059 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
2060 printk("\n");
2061 }
3dafccf2 2062 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2063 size = cachep->object_size;
b28a02de 2064 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
2065 int limit;
2066 limit = 16;
b28a02de
PE
2067 if (i + limit > size)
2068 limit = size - i;
1da177e4
LT
2069 dump_line(realobj, i, limit);
2070 }
2071}
2072
343e0d7a 2073static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
2074{
2075 char *realobj;
2076 int size, i;
2077 int lines = 0;
2078
3dafccf2 2079 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2080 size = cachep->object_size;
1da177e4 2081
b28a02de 2082 for (i = 0; i < size; i++) {
1da177e4 2083 char exp = POISON_FREE;
b28a02de 2084 if (i == size - 1)
1da177e4
LT
2085 exp = POISON_END;
2086 if (realobj[i] != exp) {
2087 int limit;
2088 /* Mismatch ! */
2089 /* Print header */
2090 if (lines == 0) {
b28a02de 2091 printk(KERN_ERR
face37f5
DJ
2092 "Slab corruption (%s): %s start=%p, len=%d\n",
2093 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
2094 print_objinfo(cachep, objp, 0);
2095 }
2096 /* Hexdump the affected line */
b28a02de 2097 i = (i / 16) * 16;
1da177e4 2098 limit = 16;
b28a02de
PE
2099 if (i + limit > size)
2100 limit = size - i;
1da177e4
LT
2101 dump_line(realobj, i, limit);
2102 i += 16;
2103 lines++;
2104 /* Limit to 5 lines */
2105 if (lines > 5)
2106 break;
2107 }
2108 }
2109 if (lines != 0) {
2110 /* Print some data about the neighboring objects, if they
2111 * exist:
2112 */
6ed5eb22 2113 struct slab *slabp = virt_to_slab(objp);
8fea4e96 2114 unsigned int objnr;
1da177e4 2115
8fea4e96 2116 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 2117 if (objnr) {
8fea4e96 2118 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 2119 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2120 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 2121 realobj, size);
1da177e4
LT
2122 print_objinfo(cachep, objp, 2);
2123 }
b28a02de 2124 if (objnr + 1 < cachep->num) {
8fea4e96 2125 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 2126 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2127 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 2128 realobj, size);
1da177e4
LT
2129 print_objinfo(cachep, objp, 2);
2130 }
2131 }
2132}
2133#endif
2134
12dd36fa 2135#if DEBUG
e79aec29 2136static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2137{
1da177e4
LT
2138 int i;
2139 for (i = 0; i < cachep->num; i++) {
8fea4e96 2140 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2141
2142 if (cachep->flags & SLAB_POISON) {
2143#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2144 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2145 OFF_SLAB(cachep))
b28a02de 2146 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2147 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2148 else
2149 check_poison_obj(cachep, objp);
2150#else
2151 check_poison_obj(cachep, objp);
2152#endif
2153 }
2154 if (cachep->flags & SLAB_RED_ZONE) {
2155 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2156 slab_error(cachep, "start of a freed object "
b28a02de 2157 "was overwritten");
1da177e4
LT
2158 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2159 slab_error(cachep, "end of a freed object "
b28a02de 2160 "was overwritten");
1da177e4 2161 }
1da177e4 2162 }
12dd36fa 2163}
1da177e4 2164#else
e79aec29 2165static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2166{
12dd36fa 2167}
1da177e4
LT
2168#endif
2169
911851e6
RD
2170/**
2171 * slab_destroy - destroy and release all objects in a slab
2172 * @cachep: cache pointer being destroyed
2173 * @slabp: slab pointer being destroyed
2174 *
12dd36fa 2175 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2176 * Before calling the slab must have been unlinked from the cache. The
2177 * cache-lock is not held/needed.
12dd36fa 2178 */
343e0d7a 2179static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2180{
2181 void *addr = slabp->s_mem - slabp->colouroff;
2182
e79aec29 2183 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2184 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2185 struct slab_rcu *slab_rcu;
2186
b28a02de 2187 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2188 slab_rcu->cachep = cachep;
2189 slab_rcu->addr = addr;
2190 call_rcu(&slab_rcu->head, kmem_rcu_free);
2191 } else {
2192 kmem_freepages(cachep, addr);
873623df
IM
2193 if (OFF_SLAB(cachep))
2194 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2195 }
2196}
2197
117f6eb1
CL
2198static void __kmem_cache_destroy(struct kmem_cache *cachep)
2199{
2200 int i;
2201 struct kmem_list3 *l3;
2202
2203 for_each_online_cpu(i)
2204 kfree(cachep->array[i]);
2205
2206 /* NUMA: free the list3 structures */
2207 for_each_online_node(i) {
2208 l3 = cachep->nodelists[i];
2209 if (l3) {
2210 kfree(l3->shared);
2211 free_alien_cache(l3->alien);
2212 kfree(l3);
2213 }
2214 }
2215 kmem_cache_free(&cache_cache, cachep);
2216}
2217
2218
4d268eba 2219/**
a70773dd
RD
2220 * calculate_slab_order - calculate size (page order) of slabs
2221 * @cachep: pointer to the cache that is being created
2222 * @size: size of objects to be created in this cache.
2223 * @align: required alignment for the objects.
2224 * @flags: slab allocation flags
2225 *
2226 * Also calculates the number of objects per slab.
4d268eba
PE
2227 *
2228 * This could be made much more intelligent. For now, try to avoid using
2229 * high order pages for slabs. When the gfp() functions are more friendly
2230 * towards high-order requests, this should be changed.
2231 */
a737b3e2 2232static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2233 size_t size, size_t align, unsigned long flags)
4d268eba 2234{
b1ab41c4 2235 unsigned long offslab_limit;
4d268eba 2236 size_t left_over = 0;
9888e6fa 2237 int gfporder;
4d268eba 2238
0aa817f0 2239 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2240 unsigned int num;
2241 size_t remainder;
2242
9888e6fa 2243 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2244 if (!num)
2245 continue;
9888e6fa 2246
b1ab41c4
IM
2247 if (flags & CFLGS_OFF_SLAB) {
2248 /*
2249 * Max number of objs-per-slab for caches which
2250 * use off-slab slabs. Needed to avoid a possible
2251 * looping condition in cache_grow().
2252 */
2253 offslab_limit = size - sizeof(struct slab);
2254 offslab_limit /= sizeof(kmem_bufctl_t);
2255
2256 if (num > offslab_limit)
2257 break;
2258 }
4d268eba 2259
9888e6fa 2260 /* Found something acceptable - save it away */
4d268eba 2261 cachep->num = num;
9888e6fa 2262 cachep->gfporder = gfporder;
4d268eba
PE
2263 left_over = remainder;
2264
f78bb8ad
LT
2265 /*
2266 * A VFS-reclaimable slab tends to have most allocations
2267 * as GFP_NOFS and we really don't want to have to be allocating
2268 * higher-order pages when we are unable to shrink dcache.
2269 */
2270 if (flags & SLAB_RECLAIM_ACCOUNT)
2271 break;
2272
4d268eba
PE
2273 /*
2274 * Large number of objects is good, but very large slabs are
2275 * currently bad for the gfp()s.
2276 */
543585cc 2277 if (gfporder >= slab_max_order)
4d268eba
PE
2278 break;
2279
9888e6fa
LT
2280 /*
2281 * Acceptable internal fragmentation?
2282 */
a737b3e2 2283 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2284 break;
2285 }
2286 return left_over;
2287}
2288
83b519e8 2289static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2290{
97d06609 2291 if (slab_state >= FULL)
83b519e8 2292 return enable_cpucache(cachep, gfp);
2ed3a4ef 2293
97d06609 2294 if (slab_state == DOWN) {
f30cf7d1
PE
2295 /*
2296 * Note: the first kmem_cache_create must create the cache
2297 * that's used by kmalloc(24), otherwise the creation of
2298 * further caches will BUG().
2299 */
2300 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2301
2302 /*
2303 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2304 * the first cache, then we need to set up all its list3s,
2305 * otherwise the creation of further caches will BUG().
2306 */
2307 set_up_list3s(cachep, SIZE_AC);
2308 if (INDEX_AC == INDEX_L3)
97d06609 2309 slab_state = PARTIAL_L3;
f30cf7d1 2310 else
97d06609 2311 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1
PE
2312 } else {
2313 cachep->array[smp_processor_id()] =
83b519e8 2314 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2315
97d06609 2316 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2317 set_up_list3s(cachep, SIZE_L3);
97d06609 2318 slab_state = PARTIAL_L3;
f30cf7d1
PE
2319 } else {
2320 int node;
556a169d 2321 for_each_online_node(node) {
f30cf7d1
PE
2322 cachep->nodelists[node] =
2323 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2324 gfp, node);
f30cf7d1
PE
2325 BUG_ON(!cachep->nodelists[node]);
2326 kmem_list3_init(cachep->nodelists[node]);
2327 }
2328 }
2329 }
7d6e6d09 2330 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2331 jiffies + REAPTIMEOUT_LIST3 +
2332 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2333
2334 cpu_cache_get(cachep)->avail = 0;
2335 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2336 cpu_cache_get(cachep)->batchcount = 1;
2337 cpu_cache_get(cachep)->touched = 0;
2338 cachep->batchcount = 1;
2339 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2340 return 0;
f30cf7d1
PE
2341}
2342
1da177e4 2343/**
039363f3 2344 * __kmem_cache_create - Create a cache.
1da177e4
LT
2345 * @name: A string which is used in /proc/slabinfo to identify this cache.
2346 * @size: The size of objects to be created in this cache.
2347 * @align: The required alignment for the objects.
2348 * @flags: SLAB flags
2349 * @ctor: A constructor for the objects.
1da177e4
LT
2350 *
2351 * Returns a ptr to the cache on success, NULL on failure.
2352 * Cannot be called within a int, but can be interrupted.
20c2df83 2353 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2354 *
2355 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2356 * the module calling this has to destroy the cache before getting unloaded.
2357 *
1da177e4
LT
2358 * The flags are
2359 *
2360 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2361 * to catch references to uninitialised memory.
2362 *
2363 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2364 * for buffer overruns.
2365 *
1da177e4
LT
2366 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2367 * cacheline. This can be beneficial if you're counting cycles as closely
2368 * as davem.
2369 */
343e0d7a 2370struct kmem_cache *
039363f3 2371__kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2372 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2373{
2374 size_t left_over, slab_size, ralign;
20cea968 2375 struct kmem_cache *cachep = NULL;
83b519e8 2376 gfp_t gfp;
1da177e4 2377
1da177e4 2378#if DEBUG
1da177e4
LT
2379#if FORCED_DEBUG
2380 /*
2381 * Enable redzoning and last user accounting, except for caches with
2382 * large objects, if the increased size would increase the object size
2383 * above the next power of two: caches with object sizes just above a
2384 * power of two have a significant amount of internal fragmentation.
2385 */
87a927c7
DW
2386 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2387 2 * sizeof(unsigned long long)))
b28a02de 2388 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2389 if (!(flags & SLAB_DESTROY_BY_RCU))
2390 flags |= SLAB_POISON;
2391#endif
2392 if (flags & SLAB_DESTROY_BY_RCU)
2393 BUG_ON(flags & SLAB_POISON);
2394#endif
1da177e4 2395 /*
a737b3e2
AM
2396 * Always checks flags, a caller might be expecting debug support which
2397 * isn't available.
1da177e4 2398 */
40094fa6 2399 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2400
a737b3e2
AM
2401 /*
2402 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2403 * unaligned accesses for some archs when redzoning is used, and makes
2404 * sure any on-slab bufctl's are also correctly aligned.
2405 */
b28a02de
PE
2406 if (size & (BYTES_PER_WORD - 1)) {
2407 size += (BYTES_PER_WORD - 1);
2408 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2409 }
2410
a737b3e2
AM
2411 /* calculate the final buffer alignment: */
2412
1da177e4
LT
2413 /* 1) arch recommendation: can be overridden for debug */
2414 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2415 /*
2416 * Default alignment: as specified by the arch code. Except if
2417 * an object is really small, then squeeze multiple objects into
2418 * one cacheline.
1da177e4
LT
2419 */
2420 ralign = cache_line_size();
b28a02de 2421 while (size <= ralign / 2)
1da177e4
LT
2422 ralign /= 2;
2423 } else {
2424 ralign = BYTES_PER_WORD;
2425 }
ca5f9703
PE
2426
2427 /*
87a927c7
DW
2428 * Redzoning and user store require word alignment or possibly larger.
2429 * Note this will be overridden by architecture or caller mandated
2430 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2431 */
87a927c7
DW
2432 if (flags & SLAB_STORE_USER)
2433 ralign = BYTES_PER_WORD;
2434
2435 if (flags & SLAB_RED_ZONE) {
2436 ralign = REDZONE_ALIGN;
2437 /* If redzoning, ensure that the second redzone is suitably
2438 * aligned, by adjusting the object size accordingly. */
2439 size += REDZONE_ALIGN - 1;
2440 size &= ~(REDZONE_ALIGN - 1);
2441 }
ca5f9703 2442
a44b56d3 2443 /* 2) arch mandated alignment */
1da177e4
LT
2444 if (ralign < ARCH_SLAB_MINALIGN) {
2445 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2446 }
a44b56d3 2447 /* 3) caller mandated alignment */
1da177e4
LT
2448 if (ralign < align) {
2449 ralign = align;
1da177e4 2450 }
3ff84a7f
PE
2451 /* disable debug if necessary */
2452 if (ralign > __alignof__(unsigned long long))
a44b56d3 2453 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2454 /*
ca5f9703 2455 * 4) Store it.
1da177e4
LT
2456 */
2457 align = ralign;
2458
83b519e8
PE
2459 if (slab_is_available())
2460 gfp = GFP_KERNEL;
2461 else
2462 gfp = GFP_NOWAIT;
2463
1da177e4 2464 /* Get cache's description obj. */
83b519e8 2465 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2466 if (!cachep)
039363f3 2467 return NULL;
1da177e4 2468
b56efcf0 2469 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
3b0efdfa
CL
2470 cachep->object_size = size;
2471 cachep->align = align;
1da177e4 2472#if DEBUG
1da177e4 2473
ca5f9703
PE
2474 /*
2475 * Both debugging options require word-alignment which is calculated
2476 * into align above.
2477 */
1da177e4 2478 if (flags & SLAB_RED_ZONE) {
1da177e4 2479 /* add space for red zone words */
3ff84a7f
PE
2480 cachep->obj_offset += sizeof(unsigned long long);
2481 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2482 }
2483 if (flags & SLAB_STORE_USER) {
ca5f9703 2484 /* user store requires one word storage behind the end of
87a927c7
DW
2485 * the real object. But if the second red zone needs to be
2486 * aligned to 64 bits, we must allow that much space.
1da177e4 2487 */
87a927c7
DW
2488 if (flags & SLAB_RED_ZONE)
2489 size += REDZONE_ALIGN;
2490 else
2491 size += BYTES_PER_WORD;
1da177e4
LT
2492 }
2493#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2494 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3b0efdfa 2495 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
1ab335d8 2496 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2497 size = PAGE_SIZE;
2498 }
2499#endif
2500#endif
2501
e0a42726
IM
2502 /*
2503 * Determine if the slab management is 'on' or 'off' slab.
2504 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2505 * it too early on. Always use on-slab management when
2506 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2507 */
e7cb55b9
CM
2508 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2509 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2510 /*
2511 * Size is large, assume best to place the slab management obj
2512 * off-slab (should allow better packing of objs).
2513 */
2514 flags |= CFLGS_OFF_SLAB;
2515
2516 size = ALIGN(size, align);
2517
f78bb8ad 2518 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2519
2520 if (!cachep->num) {
b4169525 2521 printk(KERN_ERR
2522 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4 2523 kmem_cache_free(&cache_cache, cachep);
039363f3 2524 return NULL;
1da177e4 2525 }
b28a02de
PE
2526 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2527 + sizeof(struct slab), align);
1da177e4
LT
2528
2529 /*
2530 * If the slab has been placed off-slab, and we have enough space then
2531 * move it on-slab. This is at the expense of any extra colouring.
2532 */
2533 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2534 flags &= ~CFLGS_OFF_SLAB;
2535 left_over -= slab_size;
2536 }
2537
2538 if (flags & CFLGS_OFF_SLAB) {
2539 /* really off slab. No need for manual alignment */
b28a02de
PE
2540 slab_size =
2541 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2542
2543#ifdef CONFIG_PAGE_POISONING
2544 /* If we're going to use the generic kernel_map_pages()
2545 * poisoning, then it's going to smash the contents of
2546 * the redzone and userword anyhow, so switch them off.
2547 */
2548 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2549 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2550#endif
1da177e4
LT
2551 }
2552
2553 cachep->colour_off = cache_line_size();
2554 /* Offset must be a multiple of the alignment. */
2555 if (cachep->colour_off < align)
2556 cachep->colour_off = align;
b28a02de 2557 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2558 cachep->slab_size = slab_size;
2559 cachep->flags = flags;
a618e89f 2560 cachep->allocflags = 0;
4b51d669 2561 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2562 cachep->allocflags |= GFP_DMA;
3b0efdfa 2563 cachep->size = size;
6a2d7a95 2564 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2565
e5ac9c5a 2566 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2567 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2568 /*
2569 * This is a possibility for one of the malloc_sizes caches.
2570 * But since we go off slab only for object size greater than
2571 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2572 * this should not happen at all.
2573 * But leave a BUG_ON for some lucky dude.
2574 */
6cb8f913 2575 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2576 }
1da177e4 2577 cachep->ctor = ctor;
1da177e4
LT
2578 cachep->name = name;
2579
83b519e8 2580 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef 2581 __kmem_cache_destroy(cachep);
039363f3 2582 return NULL;
2ed3a4ef 2583 }
1da177e4 2584
83835b3d
PZ
2585 if (flags & SLAB_DEBUG_OBJECTS) {
2586 /*
2587 * Would deadlock through slab_destroy()->call_rcu()->
2588 * debug_object_activate()->kmem_cache_alloc().
2589 */
2590 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2591
2592 slab_set_debugobj_lock_classes(cachep);
2593 }
2594
1da177e4 2595 /* cache setup completed, link it into the list */
18004c5d 2596 list_add(&cachep->list, &slab_caches);
1da177e4
LT
2597 return cachep;
2598}
1da177e4
LT
2599
2600#if DEBUG
2601static void check_irq_off(void)
2602{
2603 BUG_ON(!irqs_disabled());
2604}
2605
2606static void check_irq_on(void)
2607{
2608 BUG_ON(irqs_disabled());
2609}
2610
343e0d7a 2611static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2612{
2613#ifdef CONFIG_SMP
2614 check_irq_off();
7d6e6d09 2615 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2616#endif
2617}
e498be7d 2618
343e0d7a 2619static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2620{
2621#ifdef CONFIG_SMP
2622 check_irq_off();
2623 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2624#endif
2625}
2626
1da177e4
LT
2627#else
2628#define check_irq_off() do { } while(0)
2629#define check_irq_on() do { } while(0)
2630#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2631#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2632#endif
2633
aab2207c
CL
2634static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2635 struct array_cache *ac,
2636 int force, int node);
2637
1da177e4
LT
2638static void do_drain(void *arg)
2639{
a737b3e2 2640 struct kmem_cache *cachep = arg;
1da177e4 2641 struct array_cache *ac;
7d6e6d09 2642 int node = numa_mem_id();
1da177e4
LT
2643
2644 check_irq_off();
9a2dba4b 2645 ac = cpu_cache_get(cachep);
ff69416e
CL
2646 spin_lock(&cachep->nodelists[node]->list_lock);
2647 free_block(cachep, ac->entry, ac->avail, node);
2648 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2649 ac->avail = 0;
2650}
2651
343e0d7a 2652static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2653{
e498be7d
CL
2654 struct kmem_list3 *l3;
2655 int node;
2656
15c8b6c1 2657 on_each_cpu(do_drain, cachep, 1);
1da177e4 2658 check_irq_on();
b28a02de 2659 for_each_online_node(node) {
e498be7d 2660 l3 = cachep->nodelists[node];
a4523a8b
RD
2661 if (l3 && l3->alien)
2662 drain_alien_cache(cachep, l3->alien);
2663 }
2664
2665 for_each_online_node(node) {
2666 l3 = cachep->nodelists[node];
2667 if (l3)
aab2207c 2668 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2669 }
1da177e4
LT
2670}
2671
ed11d9eb
CL
2672/*
2673 * Remove slabs from the list of free slabs.
2674 * Specify the number of slabs to drain in tofree.
2675 *
2676 * Returns the actual number of slabs released.
2677 */
2678static int drain_freelist(struct kmem_cache *cache,
2679 struct kmem_list3 *l3, int tofree)
1da177e4 2680{
ed11d9eb
CL
2681 struct list_head *p;
2682 int nr_freed;
1da177e4 2683 struct slab *slabp;
1da177e4 2684
ed11d9eb
CL
2685 nr_freed = 0;
2686 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2687
ed11d9eb 2688 spin_lock_irq(&l3->list_lock);
e498be7d 2689 p = l3->slabs_free.prev;
ed11d9eb
CL
2690 if (p == &l3->slabs_free) {
2691 spin_unlock_irq(&l3->list_lock);
2692 goto out;
2693 }
1da177e4 2694
ed11d9eb 2695 slabp = list_entry(p, struct slab, list);
1da177e4 2696#if DEBUG
40094fa6 2697 BUG_ON(slabp->inuse);
1da177e4
LT
2698#endif
2699 list_del(&slabp->list);
ed11d9eb
CL
2700 /*
2701 * Safe to drop the lock. The slab is no longer linked
2702 * to the cache.
2703 */
2704 l3->free_objects -= cache->num;
e498be7d 2705 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2706 slab_destroy(cache, slabp);
2707 nr_freed++;
1da177e4 2708 }
ed11d9eb
CL
2709out:
2710 return nr_freed;
1da177e4
LT
2711}
2712
18004c5d 2713/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2714static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2715{
2716 int ret = 0, i = 0;
2717 struct kmem_list3 *l3;
2718
2719 drain_cpu_caches(cachep);
2720
2721 check_irq_on();
2722 for_each_online_node(i) {
2723 l3 = cachep->nodelists[i];
ed11d9eb
CL
2724 if (!l3)
2725 continue;
2726
2727 drain_freelist(cachep, l3, l3->free_objects);
2728
2729 ret += !list_empty(&l3->slabs_full) ||
2730 !list_empty(&l3->slabs_partial);
e498be7d
CL
2731 }
2732 return (ret ? 1 : 0);
2733}
2734
1da177e4
LT
2735/**
2736 * kmem_cache_shrink - Shrink a cache.
2737 * @cachep: The cache to shrink.
2738 *
2739 * Releases as many slabs as possible for a cache.
2740 * To help debugging, a zero exit status indicates all slabs were released.
2741 */
343e0d7a 2742int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2743{
8f5be20b 2744 int ret;
40094fa6 2745 BUG_ON(!cachep || in_interrupt());
1da177e4 2746
95402b38 2747 get_online_cpus();
18004c5d 2748 mutex_lock(&slab_mutex);
8f5be20b 2749 ret = __cache_shrink(cachep);
18004c5d 2750 mutex_unlock(&slab_mutex);
95402b38 2751 put_online_cpus();
8f5be20b 2752 return ret;
1da177e4
LT
2753}
2754EXPORT_SYMBOL(kmem_cache_shrink);
2755
2756/**
2757 * kmem_cache_destroy - delete a cache
2758 * @cachep: the cache to destroy
2759 *
72fd4a35 2760 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2761 *
2762 * It is expected this function will be called by a module when it is
2763 * unloaded. This will remove the cache completely, and avoid a duplicate
2764 * cache being allocated each time a module is loaded and unloaded, if the
2765 * module doesn't have persistent in-kernel storage across loads and unloads.
2766 *
2767 * The cache must be empty before calling this function.
2768 *
25985edc 2769 * The caller must guarantee that no one will allocate memory from the cache
1da177e4
LT
2770 * during the kmem_cache_destroy().
2771 */
133d205a 2772void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2773{
40094fa6 2774 BUG_ON(!cachep || in_interrupt());
1da177e4 2775
1da177e4 2776 /* Find the cache in the chain of caches. */
95402b38 2777 get_online_cpus();
18004c5d 2778 mutex_lock(&slab_mutex);
1da177e4
LT
2779 /*
2780 * the chain is never empty, cache_cache is never destroyed
2781 */
3b0efdfa 2782 list_del(&cachep->list);
1da177e4
LT
2783 if (__cache_shrink(cachep)) {
2784 slab_error(cachep, "Can't free all objects");
18004c5d
CL
2785 list_add(&cachep->list, &slab_caches);
2786 mutex_unlock(&slab_mutex);
95402b38 2787 put_online_cpus();
133d205a 2788 return;
1da177e4
LT
2789 }
2790
2791 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
7ed9f7e5 2792 rcu_barrier();
1da177e4 2793
117f6eb1 2794 __kmem_cache_destroy(cachep);
18004c5d 2795 mutex_unlock(&slab_mutex);
95402b38 2796 put_online_cpus();
1da177e4
LT
2797}
2798EXPORT_SYMBOL(kmem_cache_destroy);
2799
e5ac9c5a
RT
2800/*
2801 * Get the memory for a slab management obj.
2802 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2803 * always come from malloc_sizes caches. The slab descriptor cannot
2804 * come from the same cache which is getting created because,
2805 * when we are searching for an appropriate cache for these
2806 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2807 * If we are creating a malloc_sizes cache here it would not be visible to
2808 * kmem_find_general_cachep till the initialization is complete.
2809 * Hence we cannot have slabp_cache same as the original cache.
2810 */
343e0d7a 2811static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2812 int colour_off, gfp_t local_flags,
2813 int nodeid)
1da177e4
LT
2814{
2815 struct slab *slabp;
b28a02de 2816
1da177e4
LT
2817 if (OFF_SLAB(cachep)) {
2818 /* Slab management obj is off-slab. */
5b74ada7 2819 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2820 local_flags, nodeid);
d5cff635
CM
2821 /*
2822 * If the first object in the slab is leaked (it's allocated
2823 * but no one has a reference to it), we want to make sure
2824 * kmemleak does not treat the ->s_mem pointer as a reference
2825 * to the object. Otherwise we will not report the leak.
2826 */
c017b4be
CM
2827 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2828 local_flags);
1da177e4
LT
2829 if (!slabp)
2830 return NULL;
2831 } else {
b28a02de 2832 slabp = objp + colour_off;
1da177e4
LT
2833 colour_off += cachep->slab_size;
2834 }
2835 slabp->inuse = 0;
2836 slabp->colouroff = colour_off;
b28a02de 2837 slabp->s_mem = objp + colour_off;
5b74ada7 2838 slabp->nodeid = nodeid;
e51bfd0a 2839 slabp->free = 0;
1da177e4
LT
2840 return slabp;
2841}
2842
2843static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2844{
b28a02de 2845 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2846}
2847
343e0d7a 2848static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2849 struct slab *slabp)
1da177e4
LT
2850{
2851 int i;
2852
2853 for (i = 0; i < cachep->num; i++) {
8fea4e96 2854 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2855#if DEBUG
2856 /* need to poison the objs? */
2857 if (cachep->flags & SLAB_POISON)
2858 poison_obj(cachep, objp, POISON_FREE);
2859 if (cachep->flags & SLAB_STORE_USER)
2860 *dbg_userword(cachep, objp) = NULL;
2861
2862 if (cachep->flags & SLAB_RED_ZONE) {
2863 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2864 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2865 }
2866 /*
a737b3e2
AM
2867 * Constructors are not allowed to allocate memory from the same
2868 * cache which they are a constructor for. Otherwise, deadlock.
2869 * They must also be threaded.
1da177e4
LT
2870 */
2871 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2872 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2873
2874 if (cachep->flags & SLAB_RED_ZONE) {
2875 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2876 slab_error(cachep, "constructor overwrote the"
b28a02de 2877 " end of an object");
1da177e4
LT
2878 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2879 slab_error(cachep, "constructor overwrote the"
b28a02de 2880 " start of an object");
1da177e4 2881 }
3b0efdfa 2882 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2883 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2884 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2885 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2886#else
2887 if (cachep->ctor)
51cc5068 2888 cachep->ctor(objp);
1da177e4 2889#endif
b28a02de 2890 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2891 }
b28a02de 2892 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2893}
2894
343e0d7a 2895static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2896{
4b51d669
CL
2897 if (CONFIG_ZONE_DMA_FLAG) {
2898 if (flags & GFP_DMA)
a618e89f 2899 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2900 else
a618e89f 2901 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2902 }
1da177e4
LT
2903}
2904
a737b3e2
AM
2905static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2906 int nodeid)
78d382d7 2907{
8fea4e96 2908 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2909 kmem_bufctl_t next;
2910
2911 slabp->inuse++;
2912 next = slab_bufctl(slabp)[slabp->free];
2913#if DEBUG
2914 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2915 WARN_ON(slabp->nodeid != nodeid);
2916#endif
2917 slabp->free = next;
2918
2919 return objp;
2920}
2921
a737b3e2
AM
2922static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2923 void *objp, int nodeid)
78d382d7 2924{
8fea4e96 2925 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2926
2927#if DEBUG
2928 /* Verify that the slab belongs to the intended node */
2929 WARN_ON(slabp->nodeid != nodeid);
2930
871751e2 2931 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2932 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2933 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2934 BUG();
2935 }
2936#endif
2937 slab_bufctl(slabp)[objnr] = slabp->free;
2938 slabp->free = objnr;
2939 slabp->inuse--;
2940}
2941
4776874f
PE
2942/*
2943 * Map pages beginning at addr to the given cache and slab. This is required
2944 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2945 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2946 */
2947static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2948 void *addr)
1da177e4 2949{
4776874f 2950 int nr_pages;
1da177e4
LT
2951 struct page *page;
2952
4776874f 2953 page = virt_to_page(addr);
84097518 2954
4776874f 2955 nr_pages = 1;
84097518 2956 if (likely(!PageCompound(page)))
4776874f
PE
2957 nr_pages <<= cache->gfporder;
2958
1da177e4 2959 do {
35026088
CL
2960 page->slab_cache = cache;
2961 page->slab_page = slab;
1da177e4 2962 page++;
4776874f 2963 } while (--nr_pages);
1da177e4
LT
2964}
2965
2966/*
2967 * Grow (by 1) the number of slabs within a cache. This is called by
2968 * kmem_cache_alloc() when there are no active objs left in a cache.
2969 */
3c517a61
CL
2970static int cache_grow(struct kmem_cache *cachep,
2971 gfp_t flags, int nodeid, void *objp)
1da177e4 2972{
b28a02de 2973 struct slab *slabp;
b28a02de
PE
2974 size_t offset;
2975 gfp_t local_flags;
e498be7d 2976 struct kmem_list3 *l3;
1da177e4 2977
a737b3e2
AM
2978 /*
2979 * Be lazy and only check for valid flags here, keeping it out of the
2980 * critical path in kmem_cache_alloc().
1da177e4 2981 */
6cb06229
CL
2982 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2983 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2984
2e1217cf 2985 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2986 check_irq_off();
2e1217cf
RT
2987 l3 = cachep->nodelists[nodeid];
2988 spin_lock(&l3->list_lock);
1da177e4
LT
2989
2990 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2991 offset = l3->colour_next;
2992 l3->colour_next++;
2993 if (l3->colour_next >= cachep->colour)
2994 l3->colour_next = 0;
2995 spin_unlock(&l3->list_lock);
1da177e4 2996
2e1217cf 2997 offset *= cachep->colour_off;
1da177e4
LT
2998
2999 if (local_flags & __GFP_WAIT)
3000 local_irq_enable();
3001
3002 /*
3003 * The test for missing atomic flag is performed here, rather than
3004 * the more obvious place, simply to reduce the critical path length
3005 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
3006 * will eventually be caught here (where it matters).
3007 */
3008 kmem_flagcheck(cachep, flags);
3009
a737b3e2
AM
3010 /*
3011 * Get mem for the objs. Attempt to allocate a physical page from
3012 * 'nodeid'.
e498be7d 3013 */
3c517a61 3014 if (!objp)
b8c1c5da 3015 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 3016 if (!objp)
1da177e4
LT
3017 goto failed;
3018
3019 /* Get slab management. */
3c517a61 3020 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 3021 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 3022 if (!slabp)
1da177e4
LT
3023 goto opps1;
3024
4776874f 3025 slab_map_pages(cachep, slabp, objp);
1da177e4 3026
a35afb83 3027 cache_init_objs(cachep, slabp);
1da177e4
LT
3028
3029 if (local_flags & __GFP_WAIT)
3030 local_irq_disable();
3031 check_irq_off();
e498be7d 3032 spin_lock(&l3->list_lock);
1da177e4
LT
3033
3034 /* Make slab active. */
e498be7d 3035 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 3036 STATS_INC_GROWN(cachep);
e498be7d
CL
3037 l3->free_objects += cachep->num;
3038 spin_unlock(&l3->list_lock);
1da177e4 3039 return 1;
a737b3e2 3040opps1:
1da177e4 3041 kmem_freepages(cachep, objp);
a737b3e2 3042failed:
1da177e4
LT
3043 if (local_flags & __GFP_WAIT)
3044 local_irq_disable();
3045 return 0;
3046}
3047
3048#if DEBUG
3049
3050/*
3051 * Perform extra freeing checks:
3052 * - detect bad pointers.
3053 * - POISON/RED_ZONE checking
1da177e4
LT
3054 */
3055static void kfree_debugcheck(const void *objp)
3056{
1da177e4
LT
3057 if (!virt_addr_valid(objp)) {
3058 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
3059 (unsigned long)objp);
3060 BUG();
1da177e4 3061 }
1da177e4
LT
3062}
3063
58ce1fd5
PE
3064static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3065{
b46b8f19 3066 unsigned long long redzone1, redzone2;
58ce1fd5
PE
3067
3068 redzone1 = *dbg_redzone1(cache, obj);
3069 redzone2 = *dbg_redzone2(cache, obj);
3070
3071 /*
3072 * Redzone is ok.
3073 */
3074 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3075 return;
3076
3077 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3078 slab_error(cache, "double free detected");
3079 else
3080 slab_error(cache, "memory outside object was overwritten");
3081
b46b8f19 3082 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
3083 obj, redzone1, redzone2);
3084}
3085
343e0d7a 3086static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3087 unsigned long caller)
1da177e4
LT
3088{
3089 struct page *page;
3090 unsigned int objnr;
3091 struct slab *slabp;
3092
80cbd911
MW
3093 BUG_ON(virt_to_cache(objp) != cachep);
3094
3dafccf2 3095 objp -= obj_offset(cachep);
1da177e4 3096 kfree_debugcheck(objp);
b49af68f 3097 page = virt_to_head_page(objp);
1da177e4 3098
35026088 3099 slabp = page->slab_page;
1da177e4
LT
3100
3101 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 3102 verify_redzone_free(cachep, objp);
1da177e4
LT
3103 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3104 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3105 }
3106 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3107 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 3108
8fea4e96 3109 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3110
3111 BUG_ON(objnr >= cachep->num);
8fea4e96 3112 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3113
871751e2
AV
3114#ifdef CONFIG_DEBUG_SLAB_LEAK
3115 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3116#endif
1da177e4
LT
3117 if (cachep->flags & SLAB_POISON) {
3118#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3119 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 3120 store_stackinfo(cachep, objp, caller);
b28a02de 3121 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3122 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
3123 } else {
3124 poison_obj(cachep, objp, POISON_FREE);
3125 }
3126#else
3127 poison_obj(cachep, objp, POISON_FREE);
3128#endif
3129 }
3130 return objp;
3131}
3132
343e0d7a 3133static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3134{
3135 kmem_bufctl_t i;
3136 int entries = 0;
b28a02de 3137
1da177e4
LT
3138 /* Check slab's freelist to see if this obj is there. */
3139 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3140 entries++;
3141 if (entries > cachep->num || i >= cachep->num)
3142 goto bad;
3143 }
3144 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3145bad:
3146 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
3147 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3148 cachep->name, cachep->num, slabp, slabp->inuse,
3149 print_tainted());
fdde6abb
SAS
3150 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3151 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3152 1);
1da177e4
LT
3153 BUG();
3154 }
3155}
3156#else
3157#define kfree_debugcheck(x) do { } while(0)
3158#define cache_free_debugcheck(x,objp,z) (objp)
3159#define check_slabp(x,y) do { } while(0)
3160#endif
3161
072bb0aa
MG
3162static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3163 bool force_refill)
1da177e4
LT
3164{
3165 int batchcount;
3166 struct kmem_list3 *l3;
3167 struct array_cache *ac;
1ca4cb24
PE
3168 int node;
3169
1da177e4 3170 check_irq_off();
7d6e6d09 3171 node = numa_mem_id();
072bb0aa
MG
3172 if (unlikely(force_refill))
3173 goto force_grow;
3174retry:
9a2dba4b 3175 ac = cpu_cache_get(cachep);
1da177e4
LT
3176 batchcount = ac->batchcount;
3177 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3178 /*
3179 * If there was little recent activity on this cache, then
3180 * perform only a partial refill. Otherwise we could generate
3181 * refill bouncing.
1da177e4
LT
3182 */
3183 batchcount = BATCHREFILL_LIMIT;
3184 }
1ca4cb24 3185 l3 = cachep->nodelists[node];
e498be7d
CL
3186
3187 BUG_ON(ac->avail > 0 || !l3);
3188 spin_lock(&l3->list_lock);
1da177e4 3189
3ded175a 3190 /* See if we can refill from the shared array */
44b57f1c
NP
3191 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3192 l3->shared->touched = 1;
3ded175a 3193 goto alloc_done;
44b57f1c 3194 }
3ded175a 3195
1da177e4
LT
3196 while (batchcount > 0) {
3197 struct list_head *entry;
3198 struct slab *slabp;
3199 /* Get slab alloc is to come from. */
3200 entry = l3->slabs_partial.next;
3201 if (entry == &l3->slabs_partial) {
3202 l3->free_touched = 1;
3203 entry = l3->slabs_free.next;
3204 if (entry == &l3->slabs_free)
3205 goto must_grow;
3206 }
3207
3208 slabp = list_entry(entry, struct slab, list);
3209 check_slabp(cachep, slabp);
3210 check_spinlock_acquired(cachep);
714b8171
PE
3211
3212 /*
3213 * The slab was either on partial or free list so
3214 * there must be at least one object available for
3215 * allocation.
3216 */
249b9f33 3217 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3218
1da177e4 3219 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3220 STATS_INC_ALLOCED(cachep);
3221 STATS_INC_ACTIVE(cachep);
3222 STATS_SET_HIGH(cachep);
3223
072bb0aa
MG
3224 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3225 node));
1da177e4
LT
3226 }
3227 check_slabp(cachep, slabp);
3228
3229 /* move slabp to correct slabp list: */
3230 list_del(&slabp->list);
3231 if (slabp->free == BUFCTL_END)
3232 list_add(&slabp->list, &l3->slabs_full);
3233 else
3234 list_add(&slabp->list, &l3->slabs_partial);
3235 }
3236
a737b3e2 3237must_grow:
1da177e4 3238 l3->free_objects -= ac->avail;
a737b3e2 3239alloc_done:
e498be7d 3240 spin_unlock(&l3->list_lock);
1da177e4
LT
3241
3242 if (unlikely(!ac->avail)) {
3243 int x;
072bb0aa 3244force_grow:
3c517a61 3245 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3246
a737b3e2 3247 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3248 ac = cpu_cache_get(cachep);
072bb0aa
MG
3249
3250 /* no objects in sight? abort */
3251 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3252 return NULL;
3253
a737b3e2 3254 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3255 goto retry;
3256 }
3257 ac->touched = 1;
072bb0aa
MG
3258
3259 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3260}
3261
a737b3e2
AM
3262static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3263 gfp_t flags)
1da177e4
LT
3264{
3265 might_sleep_if(flags & __GFP_WAIT);
3266#if DEBUG
3267 kmem_flagcheck(cachep, flags);
3268#endif
3269}
3270
3271#if DEBUG
a737b3e2 3272static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3273 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3274{
b28a02de 3275 if (!objp)
1da177e4 3276 return objp;
b28a02de 3277 if (cachep->flags & SLAB_POISON) {
1da177e4 3278#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3279 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3280 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3281 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3282 else
3283 check_poison_obj(cachep, objp);
3284#else
3285 check_poison_obj(cachep, objp);
3286#endif
3287 poison_obj(cachep, objp, POISON_INUSE);
3288 }
3289 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3290 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3291
3292 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3293 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3294 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3295 slab_error(cachep, "double free, or memory outside"
3296 " object was overwritten");
b28a02de 3297 printk(KERN_ERR
b46b8f19 3298 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3299 objp, *dbg_redzone1(cachep, objp),
3300 *dbg_redzone2(cachep, objp));
1da177e4
LT
3301 }
3302 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3303 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3304 }
871751e2
AV
3305#ifdef CONFIG_DEBUG_SLAB_LEAK
3306 {
3307 struct slab *slabp;
3308 unsigned objnr;
3309
35026088 3310 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3311 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3312 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3313 }
3314#endif
3dafccf2 3315 objp += obj_offset(cachep);
4f104934 3316 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3317 cachep->ctor(objp);
7ea466f2
TH
3318 if (ARCH_SLAB_MINALIGN &&
3319 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3320 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3321 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3322 }
1da177e4
LT
3323 return objp;
3324}
3325#else
3326#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3327#endif
3328
773ff60e 3329static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3330{
3331 if (cachep == &cache_cache)
773ff60e 3332 return false;
8a8b6502 3333
8c138bc0 3334 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3335}
3336
343e0d7a 3337static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3338{
b28a02de 3339 void *objp;
1da177e4 3340 struct array_cache *ac;
072bb0aa 3341 bool force_refill = false;
1da177e4 3342
5c382300 3343 check_irq_off();
8a8b6502 3344
9a2dba4b 3345 ac = cpu_cache_get(cachep);
1da177e4 3346 if (likely(ac->avail)) {
1da177e4 3347 ac->touched = 1;
072bb0aa
MG
3348 objp = ac_get_obj(cachep, ac, flags, false);
3349
ddbf2e83 3350 /*
072bb0aa
MG
3351 * Allow for the possibility all avail objects are not allowed
3352 * by the current flags
ddbf2e83 3353 */
072bb0aa
MG
3354 if (objp) {
3355 STATS_INC_ALLOCHIT(cachep);
3356 goto out;
3357 }
3358 force_refill = true;
1da177e4 3359 }
072bb0aa
MG
3360
3361 STATS_INC_ALLOCMISS(cachep);
3362 objp = cache_alloc_refill(cachep, flags, force_refill);
3363 /*
3364 * the 'ac' may be updated by cache_alloc_refill(),
3365 * and kmemleak_erase() requires its correct value.
3366 */
3367 ac = cpu_cache_get(cachep);
3368
3369out:
d5cff635
CM
3370 /*
3371 * To avoid a false negative, if an object that is in one of the
3372 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3373 * treat the array pointers as a reference to the object.
3374 */
f3d8b53a
O
3375 if (objp)
3376 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3377 return objp;
3378}
3379
e498be7d 3380#ifdef CONFIG_NUMA
c61afb18 3381/*
b2455396 3382 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3383 *
3384 * If we are in_interrupt, then process context, including cpusets and
3385 * mempolicy, may not apply and should not be used for allocation policy.
3386 */
3387static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3388{
3389 int nid_alloc, nid_here;
3390
765c4507 3391 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3392 return NULL;
7d6e6d09 3393 nid_alloc = nid_here = numa_mem_id();
c61afb18 3394 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3395 nid_alloc = cpuset_slab_spread_node();
c61afb18 3396 else if (current->mempolicy)
e7b691b0 3397 nid_alloc = slab_node();
c61afb18 3398 if (nid_alloc != nid_here)
8b98c169 3399 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3400 return NULL;
3401}
3402
765c4507
CL
3403/*
3404 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3405 * certain node and fall back is permitted. First we scan all the
3406 * available nodelists for available objects. If that fails then we
3407 * perform an allocation without specifying a node. This allows the page
3408 * allocator to do its reclaim / fallback magic. We then insert the
3409 * slab into the proper nodelist and then allocate from it.
765c4507 3410 */
8c8cc2c1 3411static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3412{
8c8cc2c1
PE
3413 struct zonelist *zonelist;
3414 gfp_t local_flags;
dd1a239f 3415 struct zoneref *z;
54a6eb5c
MG
3416 struct zone *zone;
3417 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3418 void *obj = NULL;
3c517a61 3419 int nid;
cc9a6c87 3420 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3421
3422 if (flags & __GFP_THISNODE)
3423 return NULL;
3424
6cb06229 3425 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3426
cc9a6c87
MG
3427retry_cpuset:
3428 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3429 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3430
3c517a61
CL
3431retry:
3432 /*
3433 * Look through allowed nodes for objects available
3434 * from existing per node queues.
3435 */
54a6eb5c
MG
3436 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3437 nid = zone_to_nid(zone);
aedb0eb1 3438
54a6eb5c 3439 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3440 cache->nodelists[nid] &&
481c5346 3441 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3442 obj = ____cache_alloc_node(cache,
3443 flags | GFP_THISNODE, nid);
481c5346
CL
3444 if (obj)
3445 break;
3446 }
3c517a61
CL
3447 }
3448
cfce6604 3449 if (!obj) {
3c517a61
CL
3450 /*
3451 * This allocation will be performed within the constraints
3452 * of the current cpuset / memory policy requirements.
3453 * We may trigger various forms of reclaim on the allowed
3454 * set and go into memory reserves if necessary.
3455 */
dd47ea75
CL
3456 if (local_flags & __GFP_WAIT)
3457 local_irq_enable();
3458 kmem_flagcheck(cache, flags);
7d6e6d09 3459 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3460 if (local_flags & __GFP_WAIT)
3461 local_irq_disable();
3c517a61
CL
3462 if (obj) {
3463 /*
3464 * Insert into the appropriate per node queues
3465 */
3466 nid = page_to_nid(virt_to_page(obj));
3467 if (cache_grow(cache, flags, nid, obj)) {
3468 obj = ____cache_alloc_node(cache,
3469 flags | GFP_THISNODE, nid);
3470 if (!obj)
3471 /*
3472 * Another processor may allocate the
3473 * objects in the slab since we are
3474 * not holding any locks.
3475 */
3476 goto retry;
3477 } else {
b6a60451 3478 /* cache_grow already freed obj */
3c517a61
CL
3479 obj = NULL;
3480 }
3481 }
aedb0eb1 3482 }
cc9a6c87
MG
3483
3484 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3485 goto retry_cpuset;
765c4507
CL
3486 return obj;
3487}
3488
e498be7d
CL
3489/*
3490 * A interface to enable slab creation on nodeid
1da177e4 3491 */
8b98c169 3492static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3493 int nodeid)
e498be7d
CL
3494{
3495 struct list_head *entry;
b28a02de
PE
3496 struct slab *slabp;
3497 struct kmem_list3 *l3;
3498 void *obj;
b28a02de
PE
3499 int x;
3500
3501 l3 = cachep->nodelists[nodeid];
3502 BUG_ON(!l3);
3503
a737b3e2 3504retry:
ca3b9b91 3505 check_irq_off();
b28a02de
PE
3506 spin_lock(&l3->list_lock);
3507 entry = l3->slabs_partial.next;
3508 if (entry == &l3->slabs_partial) {
3509 l3->free_touched = 1;
3510 entry = l3->slabs_free.next;
3511 if (entry == &l3->slabs_free)
3512 goto must_grow;
3513 }
3514
3515 slabp = list_entry(entry, struct slab, list);
3516 check_spinlock_acquired_node(cachep, nodeid);
3517 check_slabp(cachep, slabp);
3518
3519 STATS_INC_NODEALLOCS(cachep);
3520 STATS_INC_ACTIVE(cachep);
3521 STATS_SET_HIGH(cachep);
3522
3523 BUG_ON(slabp->inuse == cachep->num);
3524
78d382d7 3525 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3526 check_slabp(cachep, slabp);
3527 l3->free_objects--;
3528 /* move slabp to correct slabp list: */
3529 list_del(&slabp->list);
3530
a737b3e2 3531 if (slabp->free == BUFCTL_END)
b28a02de 3532 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3533 else
b28a02de 3534 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3535
b28a02de
PE
3536 spin_unlock(&l3->list_lock);
3537 goto done;
e498be7d 3538
a737b3e2 3539must_grow:
b28a02de 3540 spin_unlock(&l3->list_lock);
3c517a61 3541 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3542 if (x)
3543 goto retry;
1da177e4 3544
8c8cc2c1 3545 return fallback_alloc(cachep, flags);
e498be7d 3546
a737b3e2 3547done:
b28a02de 3548 return obj;
e498be7d 3549}
8c8cc2c1
PE
3550
3551/**
3552 * kmem_cache_alloc_node - Allocate an object on the specified node
3553 * @cachep: The cache to allocate from.
3554 * @flags: See kmalloc().
3555 * @nodeid: node number of the target node.
3556 * @caller: return address of caller, used for debug information
3557 *
3558 * Identical to kmem_cache_alloc but it will allocate memory on the given
3559 * node, which can improve the performance for cpu bound structures.
3560 *
3561 * Fallback to other node is possible if __GFP_THISNODE is not set.
3562 */
3563static __always_inline void *
3564__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3565 unsigned long caller)
8c8cc2c1
PE
3566{
3567 unsigned long save_flags;
3568 void *ptr;
7d6e6d09 3569 int slab_node = numa_mem_id();
8c8cc2c1 3570
dcce284a 3571 flags &= gfp_allowed_mask;
7e85ee0c 3572
cf40bd16
NP
3573 lockdep_trace_alloc(flags);
3574
773ff60e 3575 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3576 return NULL;
3577
8c8cc2c1
PE
3578 cache_alloc_debugcheck_before(cachep, flags);
3579 local_irq_save(save_flags);
3580
eacbbae3 3581 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3582 nodeid = slab_node;
8c8cc2c1
PE
3583
3584 if (unlikely(!cachep->nodelists[nodeid])) {
3585 /* Node not bootstrapped yet */
3586 ptr = fallback_alloc(cachep, flags);
3587 goto out;
3588 }
3589
7d6e6d09 3590 if (nodeid == slab_node) {
8c8cc2c1
PE
3591 /*
3592 * Use the locally cached objects if possible.
3593 * However ____cache_alloc does not allow fallback
3594 * to other nodes. It may fail while we still have
3595 * objects on other nodes available.
3596 */
3597 ptr = ____cache_alloc(cachep, flags);
3598 if (ptr)
3599 goto out;
3600 }
3601 /* ___cache_alloc_node can fall back to other nodes */
3602 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3603 out:
3604 local_irq_restore(save_flags);
3605 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3606 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3607 flags);
8c8cc2c1 3608
c175eea4 3609 if (likely(ptr))
8c138bc0 3610 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3611
d07dbea4 3612 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3613 memset(ptr, 0, cachep->object_size);
d07dbea4 3614
8c8cc2c1
PE
3615 return ptr;
3616}
3617
3618static __always_inline void *
3619__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3620{
3621 void *objp;
3622
3623 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3624 objp = alternate_node_alloc(cache, flags);
3625 if (objp)
3626 goto out;
3627 }
3628 objp = ____cache_alloc(cache, flags);
3629
3630 /*
3631 * We may just have run out of memory on the local node.
3632 * ____cache_alloc_node() knows how to locate memory on other nodes
3633 */
7d6e6d09
LS
3634 if (!objp)
3635 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3636
3637 out:
3638 return objp;
3639}
3640#else
3641
3642static __always_inline void *
3643__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3644{
3645 return ____cache_alloc(cachep, flags);
3646}
3647
3648#endif /* CONFIG_NUMA */
3649
3650static __always_inline void *
7c0cb9c6 3651__cache_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3652{
3653 unsigned long save_flags;
3654 void *objp;
3655
dcce284a 3656 flags &= gfp_allowed_mask;
7e85ee0c 3657
cf40bd16
NP
3658 lockdep_trace_alloc(flags);
3659
773ff60e 3660 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3661 return NULL;
3662
8c8cc2c1
PE
3663 cache_alloc_debugcheck_before(cachep, flags);
3664 local_irq_save(save_flags);
3665 objp = __do_cache_alloc(cachep, flags);
3666 local_irq_restore(save_flags);
3667 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3668 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3669 flags);
8c8cc2c1
PE
3670 prefetchw(objp);
3671
c175eea4 3672 if (likely(objp))
8c138bc0 3673 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3674
d07dbea4 3675 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3676 memset(objp, 0, cachep->object_size);
d07dbea4 3677
8c8cc2c1
PE
3678 return objp;
3679}
e498be7d
CL
3680
3681/*
3682 * Caller needs to acquire correct kmem_list's list_lock
3683 */
343e0d7a 3684static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3685 int node)
1da177e4
LT
3686{
3687 int i;
e498be7d 3688 struct kmem_list3 *l3;
1da177e4
LT
3689
3690 for (i = 0; i < nr_objects; i++) {
072bb0aa 3691 void *objp;
1da177e4 3692 struct slab *slabp;
1da177e4 3693
072bb0aa
MG
3694 clear_obj_pfmemalloc(&objpp[i]);
3695 objp = objpp[i];
3696
6ed5eb22 3697 slabp = virt_to_slab(objp);
ff69416e 3698 l3 = cachep->nodelists[node];
1da177e4 3699 list_del(&slabp->list);
ff69416e 3700 check_spinlock_acquired_node(cachep, node);
1da177e4 3701 check_slabp(cachep, slabp);
78d382d7 3702 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3703 STATS_DEC_ACTIVE(cachep);
e498be7d 3704 l3->free_objects++;
1da177e4
LT
3705 check_slabp(cachep, slabp);
3706
3707 /* fixup slab chains */
3708 if (slabp->inuse == 0) {
e498be7d
CL
3709 if (l3->free_objects > l3->free_limit) {
3710 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3711 /* No need to drop any previously held
3712 * lock here, even if we have a off-slab slab
3713 * descriptor it is guaranteed to come from
3714 * a different cache, refer to comments before
3715 * alloc_slabmgmt.
3716 */
1da177e4
LT
3717 slab_destroy(cachep, slabp);
3718 } else {
e498be7d 3719 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3720 }
3721 } else {
3722 /* Unconditionally move a slab to the end of the
3723 * partial list on free - maximum time for the
3724 * other objects to be freed, too.
3725 */
e498be7d 3726 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3727 }
3728 }
3729}
3730
343e0d7a 3731static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3732{
3733 int batchcount;
e498be7d 3734 struct kmem_list3 *l3;
7d6e6d09 3735 int node = numa_mem_id();
1da177e4
LT
3736
3737 batchcount = ac->batchcount;
3738#if DEBUG
3739 BUG_ON(!batchcount || batchcount > ac->avail);
3740#endif
3741 check_irq_off();
ff69416e 3742 l3 = cachep->nodelists[node];
873623df 3743 spin_lock(&l3->list_lock);
e498be7d
CL
3744 if (l3->shared) {
3745 struct array_cache *shared_array = l3->shared;
b28a02de 3746 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3747 if (max) {
3748 if (batchcount > max)
3749 batchcount = max;
e498be7d 3750 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3751 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3752 shared_array->avail += batchcount;
3753 goto free_done;
3754 }
3755 }
3756
ff69416e 3757 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3758free_done:
1da177e4
LT
3759#if STATS
3760 {
3761 int i = 0;
3762 struct list_head *p;
3763
e498be7d
CL
3764 p = l3->slabs_free.next;
3765 while (p != &(l3->slabs_free)) {
1da177e4
LT
3766 struct slab *slabp;
3767
3768 slabp = list_entry(p, struct slab, list);
3769 BUG_ON(slabp->inuse);
3770
3771 i++;
3772 p = p->next;
3773 }
3774 STATS_SET_FREEABLE(cachep, i);
3775 }
3776#endif
e498be7d 3777 spin_unlock(&l3->list_lock);
1da177e4 3778 ac->avail -= batchcount;
a737b3e2 3779 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3780}
3781
3782/*
a737b3e2
AM
3783 * Release an obj back to its cache. If the obj has a constructed state, it must
3784 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3785 */
a947eb95 3786static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3787 unsigned long caller)
1da177e4 3788{
9a2dba4b 3789 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3790
3791 check_irq_off();
d5cff635 3792 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3793 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3794
8c138bc0 3795 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3796
1807a1aa
SS
3797 /*
3798 * Skip calling cache_free_alien() when the platform is not numa.
3799 * This will avoid cache misses that happen while accessing slabp (which
3800 * is per page memory reference) to get nodeid. Instead use a global
3801 * variable to skip the call, which is mostly likely to be present in
3802 * the cache.
3803 */
b6e68bc1 3804 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3805 return;
3806
1da177e4
LT
3807 if (likely(ac->avail < ac->limit)) {
3808 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3809 } else {
3810 STATS_INC_FREEMISS(cachep);
3811 cache_flusharray(cachep, ac);
1da177e4 3812 }
42c8c99c 3813
072bb0aa 3814 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3815}
3816
3817/**
3818 * kmem_cache_alloc - Allocate an object
3819 * @cachep: The cache to allocate from.
3820 * @flags: See kmalloc().
3821 *
3822 * Allocate an object from this cache. The flags are only relevant
3823 * if the cache has no available objects.
3824 */
343e0d7a 3825void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3826{
7c0cb9c6 3827 void *ret = __cache_alloc(cachep, flags, _RET_IP_);
36555751 3828
ca2b84cb 3829 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3830 cachep->object_size, cachep->size, flags);
36555751
EGM
3831
3832 return ret;
1da177e4
LT
3833}
3834EXPORT_SYMBOL(kmem_cache_alloc);
3835
0f24f128 3836#ifdef CONFIG_TRACING
85beb586
SR
3837void *
3838kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
36555751 3839{
85beb586
SR
3840 void *ret;
3841
7c0cb9c6 3842 ret = __cache_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3843
3844 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3845 size, cachep->size, flags);
85beb586 3846 return ret;
36555751 3847}
85beb586 3848EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3849#endif
3850
1da177e4 3851#ifdef CONFIG_NUMA
8b98c169
CH
3852void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3853{
7c0cb9c6 3854 void *ret = __cache_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3855
ca2b84cb 3856 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3857 cachep->object_size, cachep->size,
ca2b84cb 3858 flags, nodeid);
36555751
EGM
3859
3860 return ret;
8b98c169 3861}
1da177e4
LT
3862EXPORT_SYMBOL(kmem_cache_alloc_node);
3863
0f24f128 3864#ifdef CONFIG_TRACING
85beb586
SR
3865void *kmem_cache_alloc_node_trace(size_t size,
3866 struct kmem_cache *cachep,
3867 gfp_t flags,
3868 int nodeid)
36555751 3869{
85beb586
SR
3870 void *ret;
3871
7c0cb9c6
EG
3872 ret = __cache_alloc_node(cachep, flags, nodeid, _RET_IP);
3873
85beb586 3874 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3875 size, cachep->size,
85beb586
SR
3876 flags, nodeid);
3877 return ret;
36555751 3878}
85beb586 3879EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3880#endif
3881
8b98c169 3882static __always_inline void *
7c0cb9c6 3883__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3884{
343e0d7a 3885 struct kmem_cache *cachep;
97e2bde4
MS
3886
3887 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3888 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3889 return cachep;
85beb586 3890 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
97e2bde4 3891}
8b98c169 3892
0bb38a5c 3893#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3894void *__kmalloc_node(size_t size, gfp_t flags, int node)
3895{
7c0cb9c6 3896 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3897}
dbe5e69d 3898EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3899
3900void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3901 int node, unsigned long caller)
8b98c169 3902{
7c0cb9c6 3903 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3904}
3905EXPORT_SYMBOL(__kmalloc_node_track_caller);
3906#else
3907void *__kmalloc_node(size_t size, gfp_t flags, int node)
3908{
7c0cb9c6 3909 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3910}
3911EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3912#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3913#endif /* CONFIG_NUMA */
1da177e4
LT
3914
3915/**
800590f5 3916 * __do_kmalloc - allocate memory
1da177e4 3917 * @size: how many bytes of memory are required.
800590f5 3918 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3919 * @caller: function caller for debug tracking of the caller
1da177e4 3920 */
7fd6b141 3921static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3922 unsigned long caller)
1da177e4 3923{
343e0d7a 3924 struct kmem_cache *cachep;
36555751 3925 void *ret;
1da177e4 3926
97e2bde4
MS
3927 /* If you want to save a few bytes .text space: replace
3928 * __ with kmem_.
3929 * Then kmalloc uses the uninlined functions instead of the inline
3930 * functions.
3931 */
3932 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3933 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3934 return cachep;
36555751
EGM
3935 ret = __cache_alloc(cachep, flags, caller);
3936
7c0cb9c6 3937 trace_kmalloc(caller, ret,
3b0efdfa 3938 size, cachep->size, flags);
36555751
EGM
3939
3940 return ret;
7fd6b141
PE
3941}
3942
7fd6b141 3943
0bb38a5c 3944#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3945void *__kmalloc(size_t size, gfp_t flags)
3946{
7c0cb9c6 3947 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3948}
3949EXPORT_SYMBOL(__kmalloc);
3950
ce71e27c 3951void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3952{
7c0cb9c6 3953 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3954}
3955EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3956
3957#else
3958void *__kmalloc(size_t size, gfp_t flags)
3959{
7c0cb9c6 3960 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3961}
3962EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3963#endif
3964
1da177e4
LT
3965/**
3966 * kmem_cache_free - Deallocate an object
3967 * @cachep: The cache the allocation was from.
3968 * @objp: The previously allocated object.
3969 *
3970 * Free an object which was previously allocated from this
3971 * cache.
3972 */
343e0d7a 3973void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3974{
3975 unsigned long flags;
3976
3977 local_irq_save(flags);
d97d476b 3978 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3979 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3980 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3981 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3982 local_irq_restore(flags);
36555751 3983
ca2b84cb 3984 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3985}
3986EXPORT_SYMBOL(kmem_cache_free);
3987
1da177e4
LT
3988/**
3989 * kfree - free previously allocated memory
3990 * @objp: pointer returned by kmalloc.
3991 *
80e93eff
PE
3992 * If @objp is NULL, no operation is performed.
3993 *
1da177e4
LT
3994 * Don't free memory not originally allocated by kmalloc()
3995 * or you will run into trouble.
3996 */
3997void kfree(const void *objp)
3998{
343e0d7a 3999 struct kmem_cache *c;
1da177e4
LT
4000 unsigned long flags;
4001
2121db74
PE
4002 trace_kfree(_RET_IP_, objp);
4003
6cb8f913 4004 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
4005 return;
4006 local_irq_save(flags);
4007 kfree_debugcheck(objp);
6ed5eb22 4008 c = virt_to_cache(objp);
8c138bc0
CL
4009 debug_check_no_locks_freed(objp, c->object_size);
4010
4011 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 4012 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
4013 local_irq_restore(flags);
4014}
4015EXPORT_SYMBOL(kfree);
4016
343e0d7a 4017unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 4018{
8c138bc0 4019 return cachep->object_size;
1da177e4
LT
4020}
4021EXPORT_SYMBOL(kmem_cache_size);
4022
e498be7d 4023/*
183ff22b 4024 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 4025 */
83b519e8 4026static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
4027{
4028 int node;
4029 struct kmem_list3 *l3;
cafeb02e 4030 struct array_cache *new_shared;
3395ee05 4031 struct array_cache **new_alien = NULL;
e498be7d 4032
9c09a95c 4033 for_each_online_node(node) {
cafeb02e 4034
3395ee05 4035 if (use_alien_caches) {
83b519e8 4036 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
4037 if (!new_alien)
4038 goto fail;
4039 }
cafeb02e 4040
63109846
ED
4041 new_shared = NULL;
4042 if (cachep->shared) {
4043 new_shared = alloc_arraycache(node,
0718dc2a 4044 cachep->shared*cachep->batchcount,
83b519e8 4045 0xbaadf00d, gfp);
63109846
ED
4046 if (!new_shared) {
4047 free_alien_cache(new_alien);
4048 goto fail;
4049 }
0718dc2a 4050 }
cafeb02e 4051
a737b3e2
AM
4052 l3 = cachep->nodelists[node];
4053 if (l3) {
cafeb02e
CL
4054 struct array_cache *shared = l3->shared;
4055
e498be7d
CL
4056 spin_lock_irq(&l3->list_lock);
4057
cafeb02e 4058 if (shared)
0718dc2a
CL
4059 free_block(cachep, shared->entry,
4060 shared->avail, node);
e498be7d 4061
cafeb02e
CL
4062 l3->shared = new_shared;
4063 if (!l3->alien) {
e498be7d
CL
4064 l3->alien = new_alien;
4065 new_alien = NULL;
4066 }
b28a02de 4067 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4068 cachep->batchcount + cachep->num;
e498be7d 4069 spin_unlock_irq(&l3->list_lock);
cafeb02e 4070 kfree(shared);
e498be7d
CL
4071 free_alien_cache(new_alien);
4072 continue;
4073 }
83b519e8 4074 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
4075 if (!l3) {
4076 free_alien_cache(new_alien);
4077 kfree(new_shared);
e498be7d 4078 goto fail;
0718dc2a 4079 }
e498be7d
CL
4080
4081 kmem_list3_init(l3);
4082 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 4083 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 4084 l3->shared = new_shared;
e498be7d 4085 l3->alien = new_alien;
b28a02de 4086 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4087 cachep->batchcount + cachep->num;
e498be7d
CL
4088 cachep->nodelists[node] = l3;
4089 }
cafeb02e 4090 return 0;
0718dc2a 4091
a737b3e2 4092fail:
3b0efdfa 4093 if (!cachep->list.next) {
0718dc2a
CL
4094 /* Cache is not active yet. Roll back what we did */
4095 node--;
4096 while (node >= 0) {
4097 if (cachep->nodelists[node]) {
4098 l3 = cachep->nodelists[node];
4099
4100 kfree(l3->shared);
4101 free_alien_cache(l3->alien);
4102 kfree(l3);
4103 cachep->nodelists[node] = NULL;
4104 }
4105 node--;
4106 }
4107 }
cafeb02e 4108 return -ENOMEM;
e498be7d
CL
4109}
4110
1da177e4 4111struct ccupdate_struct {
343e0d7a 4112 struct kmem_cache *cachep;
acfe7d74 4113 struct array_cache *new[0];
1da177e4
LT
4114};
4115
4116static void do_ccupdate_local(void *info)
4117{
a737b3e2 4118 struct ccupdate_struct *new = info;
1da177e4
LT
4119 struct array_cache *old;
4120
4121 check_irq_off();
9a2dba4b 4122 old = cpu_cache_get(new->cachep);
e498be7d 4123
1da177e4
LT
4124 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4125 new->new[smp_processor_id()] = old;
4126}
4127
18004c5d 4128/* Always called with the slab_mutex held */
a737b3e2 4129static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4130 int batchcount, int shared, gfp_t gfp)
1da177e4 4131{
d2e7b7d0 4132 struct ccupdate_struct *new;
2ed3a4ef 4133 int i;
1da177e4 4134
acfe7d74
ED
4135 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4136 gfp);
d2e7b7d0
SS
4137 if (!new)
4138 return -ENOMEM;
4139
e498be7d 4140 for_each_online_cpu(i) {
7d6e6d09 4141 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4142 batchcount, gfp);
d2e7b7d0 4143 if (!new->new[i]) {
b28a02de 4144 for (i--; i >= 0; i--)
d2e7b7d0
SS
4145 kfree(new->new[i]);
4146 kfree(new);
e498be7d 4147 return -ENOMEM;
1da177e4
LT
4148 }
4149 }
d2e7b7d0 4150 new->cachep = cachep;
1da177e4 4151
15c8b6c1 4152 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4153
1da177e4 4154 check_irq_on();
1da177e4
LT
4155 cachep->batchcount = batchcount;
4156 cachep->limit = limit;
e498be7d 4157 cachep->shared = shared;
1da177e4 4158
e498be7d 4159 for_each_online_cpu(i) {
d2e7b7d0 4160 struct array_cache *ccold = new->new[i];
1da177e4
LT
4161 if (!ccold)
4162 continue;
7d6e6d09
LS
4163 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4164 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4165 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4166 kfree(ccold);
4167 }
d2e7b7d0 4168 kfree(new);
83b519e8 4169 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4170}
4171
18004c5d 4172/* Called with slab_mutex held always */
83b519e8 4173static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4174{
4175 int err;
4176 int limit, shared;
4177
a737b3e2
AM
4178 /*
4179 * The head array serves three purposes:
1da177e4
LT
4180 * - create a LIFO ordering, i.e. return objects that are cache-warm
4181 * - reduce the number of spinlock operations.
a737b3e2 4182 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4183 * bufctl chains: array operations are cheaper.
4184 * The numbers are guessed, we should auto-tune as described by
4185 * Bonwick.
4186 */
3b0efdfa 4187 if (cachep->size > 131072)
1da177e4 4188 limit = 1;
3b0efdfa 4189 else if (cachep->size > PAGE_SIZE)
1da177e4 4190 limit = 8;
3b0efdfa 4191 else if (cachep->size > 1024)
1da177e4 4192 limit = 24;
3b0efdfa 4193 else if (cachep->size > 256)
1da177e4
LT
4194 limit = 54;
4195 else
4196 limit = 120;
4197
a737b3e2
AM
4198 /*
4199 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4200 * allocation behaviour: Most allocs on one cpu, most free operations
4201 * on another cpu. For these cases, an efficient object passing between
4202 * cpus is necessary. This is provided by a shared array. The array
4203 * replaces Bonwick's magazine layer.
4204 * On uniprocessor, it's functionally equivalent (but less efficient)
4205 * to a larger limit. Thus disabled by default.
4206 */
4207 shared = 0;
3b0efdfa 4208 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4209 shared = 8;
1da177e4
LT
4210
4211#if DEBUG
a737b3e2
AM
4212 /*
4213 * With debugging enabled, large batchcount lead to excessively long
4214 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4215 */
4216 if (limit > 32)
4217 limit = 32;
4218#endif
83b519e8 4219 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4220 if (err)
4221 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4222 cachep->name, -err);
2ed3a4ef 4223 return err;
1da177e4
LT
4224}
4225
1b55253a
CL
4226/*
4227 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4228 * necessary. Note that the l3 listlock also protects the array_cache
4229 * if drain_array() is used on the shared array.
1b55253a 4230 */
68a1b195 4231static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4232 struct array_cache *ac, int force, int node)
1da177e4
LT
4233{
4234 int tofree;
4235
1b55253a
CL
4236 if (!ac || !ac->avail)
4237 return;
1da177e4
LT
4238 if (ac->touched && !force) {
4239 ac->touched = 0;
b18e7e65 4240 } else {
1b55253a 4241 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4242 if (ac->avail) {
4243 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4244 if (tofree > ac->avail)
4245 tofree = (ac->avail + 1) / 2;
4246 free_block(cachep, ac->entry, tofree, node);
4247 ac->avail -= tofree;
4248 memmove(ac->entry, &(ac->entry[tofree]),
4249 sizeof(void *) * ac->avail);
4250 }
1b55253a 4251 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4252 }
4253}
4254
4255/**
4256 * cache_reap - Reclaim memory from caches.
05fb6bf0 4257 * @w: work descriptor
1da177e4
LT
4258 *
4259 * Called from workqueue/eventd every few seconds.
4260 * Purpose:
4261 * - clear the per-cpu caches for this CPU.
4262 * - return freeable pages to the main free memory pool.
4263 *
a737b3e2
AM
4264 * If we cannot acquire the cache chain mutex then just give up - we'll try
4265 * again on the next iteration.
1da177e4 4266 */
7c5cae36 4267static void cache_reap(struct work_struct *w)
1da177e4 4268{
7a7c381d 4269 struct kmem_cache *searchp;
e498be7d 4270 struct kmem_list3 *l3;
7d6e6d09 4271 int node = numa_mem_id();
bf6aede7 4272 struct delayed_work *work = to_delayed_work(w);
1da177e4 4273
18004c5d 4274 if (!mutex_trylock(&slab_mutex))
1da177e4 4275 /* Give up. Setup the next iteration. */
7c5cae36 4276 goto out;
1da177e4 4277
18004c5d 4278 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4279 check_irq_on();
4280
35386e3b
CL
4281 /*
4282 * We only take the l3 lock if absolutely necessary and we
4283 * have established with reasonable certainty that
4284 * we can do some work if the lock was obtained.
4285 */
aab2207c 4286 l3 = searchp->nodelists[node];
35386e3b 4287
8fce4d8e 4288 reap_alien(searchp, l3);
1da177e4 4289
aab2207c 4290 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4291
35386e3b
CL
4292 /*
4293 * These are racy checks but it does not matter
4294 * if we skip one check or scan twice.
4295 */
e498be7d 4296 if (time_after(l3->next_reap, jiffies))
35386e3b 4297 goto next;
1da177e4 4298
e498be7d 4299 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4300
aab2207c 4301 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4302
ed11d9eb 4303 if (l3->free_touched)
e498be7d 4304 l3->free_touched = 0;
ed11d9eb
CL
4305 else {
4306 int freed;
1da177e4 4307
ed11d9eb
CL
4308 freed = drain_freelist(searchp, l3, (l3->free_limit +
4309 5 * searchp->num - 1) / (5 * searchp->num));
4310 STATS_ADD_REAPED(searchp, freed);
4311 }
35386e3b 4312next:
1da177e4
LT
4313 cond_resched();
4314 }
4315 check_irq_on();
18004c5d 4316 mutex_unlock(&slab_mutex);
8fce4d8e 4317 next_reap_node();
7c5cae36 4318out:
a737b3e2 4319 /* Set up the next iteration */
7c5cae36 4320 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4321}
4322
158a9624 4323#ifdef CONFIG_SLABINFO
1da177e4 4324
85289f98 4325static void print_slabinfo_header(struct seq_file *m)
1da177e4 4326{
85289f98
PE
4327 /*
4328 * Output format version, so at least we can change it
4329 * without _too_ many complaints.
4330 */
1da177e4 4331#if STATS
85289f98 4332 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4333#else
85289f98 4334 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4335#endif
85289f98
PE
4336 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4337 "<objperslab> <pagesperslab>");
4338 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4339 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4340#if STATS
85289f98 4341 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4342 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4343 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4344#endif
85289f98
PE
4345 seq_putc(m, '\n');
4346}
4347
4348static void *s_start(struct seq_file *m, loff_t *pos)
4349{
4350 loff_t n = *pos;
85289f98 4351
18004c5d 4352 mutex_lock(&slab_mutex);
85289f98
PE
4353 if (!n)
4354 print_slabinfo_header(m);
b92151ba 4355
18004c5d 4356 return seq_list_start(&slab_caches, *pos);
1da177e4
LT
4357}
4358
4359static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4360{
18004c5d 4361 return seq_list_next(p, &slab_caches, pos);
1da177e4
LT
4362}
4363
4364static void s_stop(struct seq_file *m, void *p)
4365{
18004c5d 4366 mutex_unlock(&slab_mutex);
1da177e4
LT
4367}
4368
4369static int s_show(struct seq_file *m, void *p)
4370{
3b0efdfa 4371 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
b28a02de
PE
4372 struct slab *slabp;
4373 unsigned long active_objs;
4374 unsigned long num_objs;
4375 unsigned long active_slabs = 0;
4376 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4377 const char *name;
1da177e4 4378 char *error = NULL;
e498be7d
CL
4379 int node;
4380 struct kmem_list3 *l3;
1da177e4 4381
1da177e4
LT
4382 active_objs = 0;
4383 num_slabs = 0;
e498be7d
CL
4384 for_each_online_node(node) {
4385 l3 = cachep->nodelists[node];
4386 if (!l3)
4387 continue;
4388
ca3b9b91
RT
4389 check_irq_on();
4390 spin_lock_irq(&l3->list_lock);
e498be7d 4391
7a7c381d 4392 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4393 if (slabp->inuse != cachep->num && !error)
4394 error = "slabs_full accounting error";
4395 active_objs += cachep->num;
4396 active_slabs++;
4397 }
7a7c381d 4398 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4399 if (slabp->inuse == cachep->num && !error)
4400 error = "slabs_partial inuse accounting error";
4401 if (!slabp->inuse && !error)
4402 error = "slabs_partial/inuse accounting error";
4403 active_objs += slabp->inuse;
4404 active_slabs++;
4405 }
7a7c381d 4406 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4407 if (slabp->inuse && !error)
4408 error = "slabs_free/inuse accounting error";
4409 num_slabs++;
4410 }
4411 free_objects += l3->free_objects;
4484ebf1
RT
4412 if (l3->shared)
4413 shared_avail += l3->shared->avail;
e498be7d 4414
ca3b9b91 4415 spin_unlock_irq(&l3->list_lock);
1da177e4 4416 }
b28a02de
PE
4417 num_slabs += active_slabs;
4418 num_objs = num_slabs * cachep->num;
e498be7d 4419 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4420 error = "free_objects accounting error";
4421
b28a02de 4422 name = cachep->name;
1da177e4
LT
4423 if (error)
4424 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4425
4426 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3b0efdfa 4427 name, active_objs, num_objs, cachep->size,
b28a02de 4428 cachep->num, (1 << cachep->gfporder));
1da177e4 4429 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4430 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4431 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4432 active_slabs, num_slabs, shared_avail);
1da177e4 4433#if STATS
b28a02de 4434 { /* list3 stats */
1da177e4
LT
4435 unsigned long high = cachep->high_mark;
4436 unsigned long allocs = cachep->num_allocations;
4437 unsigned long grown = cachep->grown;
4438 unsigned long reaped = cachep->reaped;
4439 unsigned long errors = cachep->errors;
4440 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4441 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4442 unsigned long node_frees = cachep->node_frees;
fb7faf33 4443 unsigned long overflows = cachep->node_overflow;
1da177e4 4444
e92dd4fd
JP
4445 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4446 "%4lu %4lu %4lu %4lu %4lu",
4447 allocs, high, grown,
4448 reaped, errors, max_freeable, node_allocs,
4449 node_frees, overflows);
1da177e4
LT
4450 }
4451 /* cpu stats */
4452 {
4453 unsigned long allochit = atomic_read(&cachep->allochit);
4454 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4455 unsigned long freehit = atomic_read(&cachep->freehit);
4456 unsigned long freemiss = atomic_read(&cachep->freemiss);
4457
4458 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4459 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4460 }
4461#endif
4462 seq_putc(m, '\n');
1da177e4
LT
4463 return 0;
4464}
4465
4466/*
4467 * slabinfo_op - iterator that generates /proc/slabinfo
4468 *
4469 * Output layout:
4470 * cache-name
4471 * num-active-objs
4472 * total-objs
4473 * object size
4474 * num-active-slabs
4475 * total-slabs
4476 * num-pages-per-slab
4477 * + further values on SMP and with statistics enabled
4478 */
4479
7b3c3a50 4480static const struct seq_operations slabinfo_op = {
b28a02de
PE
4481 .start = s_start,
4482 .next = s_next,
4483 .stop = s_stop,
4484 .show = s_show,
1da177e4
LT
4485};
4486
4487#define MAX_SLABINFO_WRITE 128
4488/**
4489 * slabinfo_write - Tuning for the slab allocator
4490 * @file: unused
4491 * @buffer: user buffer
4492 * @count: data length
4493 * @ppos: unused
4494 */
68a1b195 4495static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4496 size_t count, loff_t *ppos)
1da177e4 4497{
b28a02de 4498 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4499 int limit, batchcount, shared, res;
7a7c381d 4500 struct kmem_cache *cachep;
b28a02de 4501
1da177e4
LT
4502 if (count > MAX_SLABINFO_WRITE)
4503 return -EINVAL;
4504 if (copy_from_user(&kbuf, buffer, count))
4505 return -EFAULT;
b28a02de 4506 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4507
4508 tmp = strchr(kbuf, ' ');
4509 if (!tmp)
4510 return -EINVAL;
4511 *tmp = '\0';
4512 tmp++;
4513 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4514 return -EINVAL;
4515
4516 /* Find the cache in the chain of caches. */
18004c5d 4517 mutex_lock(&slab_mutex);
1da177e4 4518 res = -EINVAL;
18004c5d 4519 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4520 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4521 if (limit < 1 || batchcount < 1 ||
4522 batchcount > limit || shared < 0) {
e498be7d 4523 res = 0;
1da177e4 4524 } else {
e498be7d 4525 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4526 batchcount, shared,
4527 GFP_KERNEL);
1da177e4
LT
4528 }
4529 break;
4530 }
4531 }
18004c5d 4532 mutex_unlock(&slab_mutex);
1da177e4
LT
4533 if (res >= 0)
4534 res = count;
4535 return res;
4536}
871751e2 4537
7b3c3a50
AD
4538static int slabinfo_open(struct inode *inode, struct file *file)
4539{
4540 return seq_open(file, &slabinfo_op);
4541}
4542
4543static const struct file_operations proc_slabinfo_operations = {
4544 .open = slabinfo_open,
4545 .read = seq_read,
4546 .write = slabinfo_write,
4547 .llseek = seq_lseek,
4548 .release = seq_release,
4549};
4550
871751e2
AV
4551#ifdef CONFIG_DEBUG_SLAB_LEAK
4552
4553static void *leaks_start(struct seq_file *m, loff_t *pos)
4554{
18004c5d
CL
4555 mutex_lock(&slab_mutex);
4556 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4557}
4558
4559static inline int add_caller(unsigned long *n, unsigned long v)
4560{
4561 unsigned long *p;
4562 int l;
4563 if (!v)
4564 return 1;
4565 l = n[1];
4566 p = n + 2;
4567 while (l) {
4568 int i = l/2;
4569 unsigned long *q = p + 2 * i;
4570 if (*q == v) {
4571 q[1]++;
4572 return 1;
4573 }
4574 if (*q > v) {
4575 l = i;
4576 } else {
4577 p = q + 2;
4578 l -= i + 1;
4579 }
4580 }
4581 if (++n[1] == n[0])
4582 return 0;
4583 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4584 p[0] = v;
4585 p[1] = 1;
4586 return 1;
4587}
4588
4589static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4590{
4591 void *p;
4592 int i;
4593 if (n[0] == n[1])
4594 return;
3b0efdfa 4595 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4596 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4597 continue;
4598 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4599 return;
4600 }
4601}
4602
4603static void show_symbol(struct seq_file *m, unsigned long address)
4604{
4605#ifdef CONFIG_KALLSYMS
871751e2 4606 unsigned long offset, size;
9281acea 4607 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4608
a5c43dae 4609 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4610 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4611 if (modname[0])
871751e2
AV
4612 seq_printf(m, " [%s]", modname);
4613 return;
4614 }
4615#endif
4616 seq_printf(m, "%p", (void *)address);
4617}
4618
4619static int leaks_show(struct seq_file *m, void *p)
4620{
0672aa7c 4621 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2
AV
4622 struct slab *slabp;
4623 struct kmem_list3 *l3;
4624 const char *name;
4625 unsigned long *n = m->private;
4626 int node;
4627 int i;
4628
4629 if (!(cachep->flags & SLAB_STORE_USER))
4630 return 0;
4631 if (!(cachep->flags & SLAB_RED_ZONE))
4632 return 0;
4633
4634 /* OK, we can do it */
4635
4636 n[1] = 0;
4637
4638 for_each_online_node(node) {
4639 l3 = cachep->nodelists[node];
4640 if (!l3)
4641 continue;
4642
4643 check_irq_on();
4644 spin_lock_irq(&l3->list_lock);
4645
7a7c381d 4646 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4647 handle_slab(n, cachep, slabp);
7a7c381d 4648 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4649 handle_slab(n, cachep, slabp);
871751e2
AV
4650 spin_unlock_irq(&l3->list_lock);
4651 }
4652 name = cachep->name;
4653 if (n[0] == n[1]) {
4654 /* Increase the buffer size */
18004c5d 4655 mutex_unlock(&slab_mutex);
871751e2
AV
4656 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4657 if (!m->private) {
4658 /* Too bad, we are really out */
4659 m->private = n;
18004c5d 4660 mutex_lock(&slab_mutex);
871751e2
AV
4661 return -ENOMEM;
4662 }
4663 *(unsigned long *)m->private = n[0] * 2;
4664 kfree(n);
18004c5d 4665 mutex_lock(&slab_mutex);
871751e2
AV
4666 /* Now make sure this entry will be retried */
4667 m->count = m->size;
4668 return 0;
4669 }
4670 for (i = 0; i < n[1]; i++) {
4671 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4672 show_symbol(m, n[2*i+2]);
4673 seq_putc(m, '\n');
4674 }
d2e7b7d0 4675
871751e2
AV
4676 return 0;
4677}
4678
a0ec95a8 4679static const struct seq_operations slabstats_op = {
871751e2
AV
4680 .start = leaks_start,
4681 .next = s_next,
4682 .stop = s_stop,
4683 .show = leaks_show,
4684};
a0ec95a8
AD
4685
4686static int slabstats_open(struct inode *inode, struct file *file)
4687{
4688 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4689 int ret = -ENOMEM;
4690 if (n) {
4691 ret = seq_open(file, &slabstats_op);
4692 if (!ret) {
4693 struct seq_file *m = file->private_data;
4694 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4695 m->private = n;
4696 n = NULL;
4697 }
4698 kfree(n);
4699 }
4700 return ret;
4701}
4702
4703static const struct file_operations proc_slabstats_operations = {
4704 .open = slabstats_open,
4705 .read = seq_read,
4706 .llseek = seq_lseek,
4707 .release = seq_release_private,
4708};
4709#endif
4710
4711static int __init slab_proc_init(void)
4712{
ab067e99 4713 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4714#ifdef CONFIG_DEBUG_SLAB_LEAK
4715 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4716#endif
a0ec95a8
AD
4717 return 0;
4718}
4719module_init(slab_proc_init);
1da177e4
LT
4720#endif
4721
00e145b6
MS
4722/**
4723 * ksize - get the actual amount of memory allocated for a given object
4724 * @objp: Pointer to the object
4725 *
4726 * kmalloc may internally round up allocations and return more memory
4727 * than requested. ksize() can be used to determine the actual amount of
4728 * memory allocated. The caller may use this additional memory, even though
4729 * a smaller amount of memory was initially specified with the kmalloc call.
4730 * The caller must guarantee that objp points to a valid object previously
4731 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4732 * must not be freed during the duration of the call.
4733 */
fd76bab2 4734size_t ksize(const void *objp)
1da177e4 4735{
ef8b4520
CL
4736 BUG_ON(!objp);
4737 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4738 return 0;
1da177e4 4739
8c138bc0 4740 return virt_to_cache(objp)->object_size;
1da177e4 4741}
b1aabecd 4742EXPORT_SYMBOL(ksize);