mm/sl[aou]b: Move freeing of kmem_cache structure to common code
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4 89#include <linux/slab.h>
97d06609 90#include "slab.h"
1da177e4 91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
8f9f8d9e 118#include <linux/memory.h>
268bb0ce 119#include <linux/prefetch.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
1da177e4 131/*
50953fe9 132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141#ifdef CONFIG_DEBUG_SLAB
142#define DEBUG 1
143#define STATS 1
144#define FORCED_DEBUG 1
145#else
146#define DEBUG 0
147#define STATS 0
148#define FORCED_DEBUG 0
149#endif
150
1da177e4
LT
151/* Shouldn't this be in a header file somewhere? */
152#define BYTES_PER_WORD sizeof(void *)
87a927c7 153#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 154
1da177e4
LT
155#ifndef ARCH_KMALLOC_FLAGS
156#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157#endif
158
072bb0aa
MG
159/*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163static bool pfmemalloc_active __read_mostly;
164
1da177e4
LT
165/* Legal flag mask for kmem_cache_create(). */
166#if DEBUG
50953fe9 167# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 168 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 169 SLAB_CACHE_DMA | \
5af60839 170 SLAB_STORE_USER | \
1da177e4 171 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 172 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 173 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 174#else
ac2b898c 175# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 176 SLAB_CACHE_DMA | \
1da177e4 177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 179 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
180#endif
181
182/*
183 * kmem_bufctl_t:
184 *
185 * Bufctl's are used for linking objs within a slab
186 * linked offsets.
187 *
188 * This implementation relies on "struct page" for locating the cache &
189 * slab an object belongs to.
190 * This allows the bufctl structure to be small (one int), but limits
191 * the number of objects a slab (not a cache) can contain when off-slab
192 * bufctls are used. The limit is the size of the largest general cache
193 * that does not use off-slab slabs.
194 * For 32bit archs with 4 kB pages, is this 56.
195 * This is not serious, as it is only for large objects, when it is unwise
196 * to have too many per slab.
197 * Note: This limit can be raised by introducing a general cache whose size
198 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
199 */
200
fa5b08d5 201typedef unsigned int kmem_bufctl_t;
1da177e4
LT
202#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
203#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
204#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
205#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 206
1da177e4
LT
207/*
208 * struct slab_rcu
209 *
210 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
211 * arrange for kmem_freepages to be called via RCU. This is useful if
212 * we need to approach a kernel structure obliquely, from its address
213 * obtained without the usual locking. We can lock the structure to
214 * stabilize it and check it's still at the given address, only if we
215 * can be sure that the memory has not been meanwhile reused for some
216 * other kind of object (which our subsystem's lock might corrupt).
217 *
218 * rcu_read_lock before reading the address, then rcu_read_unlock after
219 * taking the spinlock within the structure expected at that address.
1da177e4
LT
220 */
221struct slab_rcu {
b28a02de 222 struct rcu_head head;
343e0d7a 223 struct kmem_cache *cachep;
b28a02de 224 void *addr;
1da177e4
LT
225};
226
5bfe53a7
LJ
227/*
228 * struct slab
229 *
230 * Manages the objs in a slab. Placed either at the beginning of mem allocated
231 * for a slab, or allocated from an general cache.
232 * Slabs are chained into three list: fully used, partial, fully free slabs.
233 */
234struct slab {
235 union {
236 struct {
237 struct list_head list;
238 unsigned long colouroff;
239 void *s_mem; /* including colour offset */
240 unsigned int inuse; /* num of objs active in slab */
241 kmem_bufctl_t free;
242 unsigned short nodeid;
243 };
244 struct slab_rcu __slab_cover_slab_rcu;
245 };
246};
247
1da177e4
LT
248/*
249 * struct array_cache
250 *
1da177e4
LT
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
e498be7d 265 spinlock_t lock;
bda5b655 266 void *entry[]; /*
a737b3e2
AM
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
072bb0aa
MG
270 *
271 * Entries should not be directly dereferenced as
272 * entries belonging to slabs marked pfmemalloc will
273 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 274 */
1da177e4
LT
275};
276
072bb0aa
MG
277#define SLAB_OBJ_PFMEMALLOC 1
278static inline bool is_obj_pfmemalloc(void *objp)
279{
280 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
281}
282
283static inline void set_obj_pfmemalloc(void **objp)
284{
285 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
286 return;
287}
288
289static inline void clear_obj_pfmemalloc(void **objp)
290{
291 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
292}
293
a737b3e2
AM
294/*
295 * bootstrap: The caches do not work without cpuarrays anymore, but the
296 * cpuarrays are allocated from the generic caches...
1da177e4
LT
297 */
298#define BOOT_CPUCACHE_ENTRIES 1
299struct arraycache_init {
300 struct array_cache cache;
b28a02de 301 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
302};
303
304/*
e498be7d 305 * The slab lists for all objects.
1da177e4
LT
306 */
307struct kmem_list3 {
b28a02de
PE
308 struct list_head slabs_partial; /* partial list first, better asm code */
309 struct list_head slabs_full;
310 struct list_head slabs_free;
311 unsigned long free_objects;
b28a02de 312 unsigned int free_limit;
2e1217cf 313 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
314 spinlock_t list_lock;
315 struct array_cache *shared; /* shared per node */
316 struct array_cache **alien; /* on other nodes */
35386e3b
CL
317 unsigned long next_reap; /* updated without locking */
318 int free_touched; /* updated without locking */
1da177e4
LT
319};
320
e498be7d
CL
321/*
322 * Need this for bootstrapping a per node allocator.
323 */
556a169d 324#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 325static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 326#define CACHE_CACHE 0
556a169d
PE
327#define SIZE_AC MAX_NUMNODES
328#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 329
ed11d9eb
CL
330static int drain_freelist(struct kmem_cache *cache,
331 struct kmem_list3 *l3, int tofree);
332static void free_block(struct kmem_cache *cachep, void **objpp, int len,
333 int node);
83b519e8 334static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 335static void cache_reap(struct work_struct *unused);
ed11d9eb 336
e498be7d 337/*
a737b3e2
AM
338 * This function must be completely optimized away if a constant is passed to
339 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 340 */
7243cc05 341static __always_inline int index_of(const size_t size)
e498be7d 342{
5ec8a847
SR
343 extern void __bad_size(void);
344
e498be7d
CL
345 if (__builtin_constant_p(size)) {
346 int i = 0;
347
348#define CACHE(x) \
349 if (size <=x) \
350 return i; \
351 else \
352 i++;
1c61fc40 353#include <linux/kmalloc_sizes.h>
e498be7d 354#undef CACHE
5ec8a847 355 __bad_size();
7243cc05 356 } else
5ec8a847 357 __bad_size();
e498be7d
CL
358 return 0;
359}
360
e0a42726
IM
361static int slab_early_init = 1;
362
e498be7d
CL
363#define INDEX_AC index_of(sizeof(struct arraycache_init))
364#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 365
5295a74c 366static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
367{
368 INIT_LIST_HEAD(&parent->slabs_full);
369 INIT_LIST_HEAD(&parent->slabs_partial);
370 INIT_LIST_HEAD(&parent->slabs_free);
371 parent->shared = NULL;
372 parent->alien = NULL;
2e1217cf 373 parent->colour_next = 0;
e498be7d
CL
374 spin_lock_init(&parent->list_lock);
375 parent->free_objects = 0;
376 parent->free_touched = 0;
377}
378
a737b3e2
AM
379#define MAKE_LIST(cachep, listp, slab, nodeid) \
380 do { \
381 INIT_LIST_HEAD(listp); \
382 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
383 } while (0)
384
a737b3e2
AM
385#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
386 do { \
e498be7d
CL
387 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
388 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
389 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
390 } while (0)
1da177e4 391
1da177e4
LT
392#define CFLGS_OFF_SLAB (0x80000000UL)
393#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
394
395#define BATCHREFILL_LIMIT 16
a737b3e2
AM
396/*
397 * Optimization question: fewer reaps means less probability for unnessary
398 * cpucache drain/refill cycles.
1da177e4 399 *
dc6f3f27 400 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
401 * which could lock up otherwise freeable slabs.
402 */
403#define REAPTIMEOUT_CPUC (2*HZ)
404#define REAPTIMEOUT_LIST3 (4*HZ)
405
406#if STATS
407#define STATS_INC_ACTIVE(x) ((x)->num_active++)
408#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
409#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
410#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 411#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
412#define STATS_SET_HIGH(x) \
413 do { \
414 if ((x)->num_active > (x)->high_mark) \
415 (x)->high_mark = (x)->num_active; \
416 } while (0)
1da177e4
LT
417#define STATS_INC_ERR(x) ((x)->errors++)
418#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 419#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 420#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
421#define STATS_SET_FREEABLE(x, i) \
422 do { \
423 if ((x)->max_freeable < i) \
424 (x)->max_freeable = i; \
425 } while (0)
1da177e4
LT
426#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
427#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
428#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
429#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
430#else
431#define STATS_INC_ACTIVE(x) do { } while (0)
432#define STATS_DEC_ACTIVE(x) do { } while (0)
433#define STATS_INC_ALLOCED(x) do { } while (0)
434#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 435#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
436#define STATS_SET_HIGH(x) do { } while (0)
437#define STATS_INC_ERR(x) do { } while (0)
438#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 439#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 440#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 441#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
442#define STATS_INC_ALLOCHIT(x) do { } while (0)
443#define STATS_INC_ALLOCMISS(x) do { } while (0)
444#define STATS_INC_FREEHIT(x) do { } while (0)
445#define STATS_INC_FREEMISS(x) do { } while (0)
446#endif
447
448#if DEBUG
1da177e4 449
a737b3e2
AM
450/*
451 * memory layout of objects:
1da177e4 452 * 0 : objp
3dafccf2 453 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
454 * the end of an object is aligned with the end of the real
455 * allocation. Catches writes behind the end of the allocation.
3dafccf2 456 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 457 * redzone word.
3dafccf2 458 * cachep->obj_offset: The real object.
3b0efdfa
CL
459 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
460 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 461 * [BYTES_PER_WORD long]
1da177e4 462 */
343e0d7a 463static int obj_offset(struct kmem_cache *cachep)
1da177e4 464{
3dafccf2 465 return cachep->obj_offset;
1da177e4
LT
466}
467
b46b8f19 468static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
469{
470 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
471 return (unsigned long long*) (objp + obj_offset(cachep) -
472 sizeof(unsigned long long));
1da177e4
LT
473}
474
b46b8f19 475static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
476{
477 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
478 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 479 return (unsigned long long *)(objp + cachep->size -
b46b8f19 480 sizeof(unsigned long long) -
87a927c7 481 REDZONE_ALIGN);
3b0efdfa 482 return (unsigned long long *) (objp + cachep->size -
b46b8f19 483 sizeof(unsigned long long));
1da177e4
LT
484}
485
343e0d7a 486static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
487{
488 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 489 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
490}
491
492#else
493
3dafccf2 494#define obj_offset(x) 0
b46b8f19
DW
495#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
496#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
497#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
498
499#endif
500
0f24f128 501#ifdef CONFIG_TRACING
36555751
EGM
502size_t slab_buffer_size(struct kmem_cache *cachep)
503{
3b0efdfa 504 return cachep->size;
36555751
EGM
505}
506EXPORT_SYMBOL(slab_buffer_size);
507#endif
508
1da177e4 509/*
3df1cccd
DR
510 * Do not go above this order unless 0 objects fit into the slab or
511 * overridden on the command line.
1da177e4 512 */
543585cc
DR
513#define SLAB_MAX_ORDER_HI 1
514#define SLAB_MAX_ORDER_LO 0
515static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 516static bool slab_max_order_set __initdata;
1da177e4 517
6ed5eb22
PE
518static inline struct kmem_cache *virt_to_cache(const void *obj)
519{
b49af68f 520 struct page *page = virt_to_head_page(obj);
35026088 521 return page->slab_cache;
6ed5eb22
PE
522}
523
524static inline struct slab *virt_to_slab(const void *obj)
525{
b49af68f 526 struct page *page = virt_to_head_page(obj);
35026088
CL
527
528 VM_BUG_ON(!PageSlab(page));
529 return page->slab_page;
6ed5eb22
PE
530}
531
8fea4e96
PE
532static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
533 unsigned int idx)
534{
3b0efdfa 535 return slab->s_mem + cache->size * idx;
8fea4e96
PE
536}
537
6a2d7a95 538/*
3b0efdfa
CL
539 * We want to avoid an expensive divide : (offset / cache->size)
540 * Using the fact that size is a constant for a particular cache,
541 * we can replace (offset / cache->size) by
6a2d7a95
ED
542 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
543 */
544static inline unsigned int obj_to_index(const struct kmem_cache *cache,
545 const struct slab *slab, void *obj)
8fea4e96 546{
6a2d7a95
ED
547 u32 offset = (obj - slab->s_mem);
548 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
549}
550
a737b3e2
AM
551/*
552 * These are the default caches for kmalloc. Custom caches can have other sizes.
553 */
1da177e4
LT
554struct cache_sizes malloc_sizes[] = {
555#define CACHE(x) { .cs_size = (x) },
556#include <linux/kmalloc_sizes.h>
557 CACHE(ULONG_MAX)
558#undef CACHE
559};
560EXPORT_SYMBOL(malloc_sizes);
561
562/* Must match cache_sizes above. Out of line to keep cache footprint low. */
563struct cache_names {
564 char *name;
565 char *name_dma;
566};
567
568static struct cache_names __initdata cache_names[] = {
569#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
570#include <linux/kmalloc_sizes.h>
b28a02de 571 {NULL,}
1da177e4
LT
572#undef CACHE
573};
574
575static struct arraycache_init initarray_cache __initdata =
b28a02de 576 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 577static struct arraycache_init initarray_generic =
b28a02de 578 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
579
580/* internal cache of cache description objs */
9b030cb8
CL
581static struct kmem_list3 *kmem_cache_nodelists[MAX_NUMNODES];
582static struct kmem_cache kmem_cache_boot = {
583 .nodelists = kmem_cache_nodelists,
b28a02de
PE
584 .batchcount = 1,
585 .limit = BOOT_CPUCACHE_ENTRIES,
586 .shared = 1,
3b0efdfa 587 .size = sizeof(struct kmem_cache),
b28a02de 588 .name = "kmem_cache",
1da177e4
LT
589};
590
056c6241
RT
591#define BAD_ALIEN_MAGIC 0x01020304ul
592
f1aaee53
AV
593#ifdef CONFIG_LOCKDEP
594
595/*
596 * Slab sometimes uses the kmalloc slabs to store the slab headers
597 * for other slabs "off slab".
598 * The locking for this is tricky in that it nests within the locks
599 * of all other slabs in a few places; to deal with this special
600 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
601 *
602 * We set lock class for alien array caches which are up during init.
603 * The lock annotation will be lost if all cpus of a node goes down and
604 * then comes back up during hotplug
f1aaee53 605 */
056c6241
RT
606static struct lock_class_key on_slab_l3_key;
607static struct lock_class_key on_slab_alc_key;
608
83835b3d
PZ
609static struct lock_class_key debugobj_l3_key;
610static struct lock_class_key debugobj_alc_key;
611
612static void slab_set_lock_classes(struct kmem_cache *cachep,
613 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
614 int q)
615{
616 struct array_cache **alc;
617 struct kmem_list3 *l3;
618 int r;
619
620 l3 = cachep->nodelists[q];
621 if (!l3)
622 return;
623
624 lockdep_set_class(&l3->list_lock, l3_key);
625 alc = l3->alien;
626 /*
627 * FIXME: This check for BAD_ALIEN_MAGIC
628 * should go away when common slab code is taught to
629 * work even without alien caches.
630 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
631 * for alloc_alien_cache,
632 */
633 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
634 return;
635 for_each_node(r) {
636 if (alc[r])
637 lockdep_set_class(&alc[r]->lock, alc_key);
638 }
639}
640
641static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
642{
643 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
644}
645
646static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
647{
648 int node;
649
650 for_each_online_node(node)
651 slab_set_debugobj_lock_classes_node(cachep, node);
652}
653
ce79ddc8 654static void init_node_lock_keys(int q)
f1aaee53 655{
056c6241
RT
656 struct cache_sizes *s = malloc_sizes;
657
97d06609 658 if (slab_state < UP)
ce79ddc8
PE
659 return;
660
661 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
ce79ddc8 662 struct kmem_list3 *l3;
ce79ddc8
PE
663
664 l3 = s->cs_cachep->nodelists[q];
665 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 666 continue;
83835b3d
PZ
667
668 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
669 &on_slab_alc_key, q);
f1aaee53
AV
670 }
671}
ce79ddc8
PE
672
673static inline void init_lock_keys(void)
674{
675 int node;
676
677 for_each_node(node)
678 init_node_lock_keys(node);
679}
f1aaee53 680#else
ce79ddc8
PE
681static void init_node_lock_keys(int q)
682{
683}
684
056c6241 685static inline void init_lock_keys(void)
f1aaee53
AV
686{
687}
83835b3d
PZ
688
689static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
690{
691}
692
693static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
694{
695}
f1aaee53
AV
696#endif
697
1871e52c 698static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 699
343e0d7a 700static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
701{
702 return cachep->array[smp_processor_id()];
703}
704
a737b3e2
AM
705static inline struct kmem_cache *__find_general_cachep(size_t size,
706 gfp_t gfpflags)
1da177e4
LT
707{
708 struct cache_sizes *csizep = malloc_sizes;
709
710#if DEBUG
711 /* This happens if someone tries to call
b28a02de
PE
712 * kmem_cache_create(), or __kmalloc(), before
713 * the generic caches are initialized.
714 */
c7e43c78 715 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 716#endif
6cb8f913
CL
717 if (!size)
718 return ZERO_SIZE_PTR;
719
1da177e4
LT
720 while (size > csizep->cs_size)
721 csizep++;
722
723 /*
0abf40c1 724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
727 */
4b51d669 728#ifdef CONFIG_ZONE_DMA
1da177e4
LT
729 if (unlikely(gfpflags & GFP_DMA))
730 return csizep->cs_dmacachep;
4b51d669 731#endif
1da177e4
LT
732 return csizep->cs_cachep;
733}
734
b221385b 735static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
736{
737 return __find_general_cachep(size, gfpflags);
738}
97e2bde4 739
fbaccacf 740static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 741{
fbaccacf
SR
742 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
743}
1da177e4 744
a737b3e2
AM
745/*
746 * Calculate the number of objects and left-over bytes for a given buffer size.
747 */
fbaccacf
SR
748static void cache_estimate(unsigned long gfporder, size_t buffer_size,
749 size_t align, int flags, size_t *left_over,
750 unsigned int *num)
751{
752 int nr_objs;
753 size_t mgmt_size;
754 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 755
fbaccacf
SR
756 /*
757 * The slab management structure can be either off the slab or
758 * on it. For the latter case, the memory allocated for a
759 * slab is used for:
760 *
761 * - The struct slab
762 * - One kmem_bufctl_t for each object
763 * - Padding to respect alignment of @align
764 * - @buffer_size bytes for each object
765 *
766 * If the slab management structure is off the slab, then the
767 * alignment will already be calculated into the size. Because
768 * the slabs are all pages aligned, the objects will be at the
769 * correct alignment when allocated.
770 */
771 if (flags & CFLGS_OFF_SLAB) {
772 mgmt_size = 0;
773 nr_objs = slab_size / buffer_size;
774
775 if (nr_objs > SLAB_LIMIT)
776 nr_objs = SLAB_LIMIT;
777 } else {
778 /*
779 * Ignore padding for the initial guess. The padding
780 * is at most @align-1 bytes, and @buffer_size is at
781 * least @align. In the worst case, this result will
782 * be one greater than the number of objects that fit
783 * into the memory allocation when taking the padding
784 * into account.
785 */
786 nr_objs = (slab_size - sizeof(struct slab)) /
787 (buffer_size + sizeof(kmem_bufctl_t));
788
789 /*
790 * This calculated number will be either the right
791 * amount, or one greater than what we want.
792 */
793 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
794 > slab_size)
795 nr_objs--;
796
797 if (nr_objs > SLAB_LIMIT)
798 nr_objs = SLAB_LIMIT;
799
800 mgmt_size = slab_mgmt_size(nr_objs, align);
801 }
802 *num = nr_objs;
803 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
804}
805
d40cee24 806#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 807
a737b3e2
AM
808static void __slab_error(const char *function, struct kmem_cache *cachep,
809 char *msg)
1da177e4
LT
810{
811 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 812 function, cachep->name, msg);
1da177e4
LT
813 dump_stack();
814}
815
3395ee05
PM
816/*
817 * By default on NUMA we use alien caches to stage the freeing of
818 * objects allocated from other nodes. This causes massive memory
819 * inefficiencies when using fake NUMA setup to split memory into a
820 * large number of small nodes, so it can be disabled on the command
821 * line
822 */
823
824static int use_alien_caches __read_mostly = 1;
825static int __init noaliencache_setup(char *s)
826{
827 use_alien_caches = 0;
828 return 1;
829}
830__setup("noaliencache", noaliencache_setup);
831
3df1cccd
DR
832static int __init slab_max_order_setup(char *str)
833{
834 get_option(&str, &slab_max_order);
835 slab_max_order = slab_max_order < 0 ? 0 :
836 min(slab_max_order, MAX_ORDER - 1);
837 slab_max_order_set = true;
838
839 return 1;
840}
841__setup("slab_max_order=", slab_max_order_setup);
842
8fce4d8e
CL
843#ifdef CONFIG_NUMA
844/*
845 * Special reaping functions for NUMA systems called from cache_reap().
846 * These take care of doing round robin flushing of alien caches (containing
847 * objects freed on different nodes from which they were allocated) and the
848 * flushing of remote pcps by calling drain_node_pages.
849 */
1871e52c 850static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
851
852static void init_reap_node(int cpu)
853{
854 int node;
855
7d6e6d09 856 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 857 if (node == MAX_NUMNODES)
442295c9 858 node = first_node(node_online_map);
8fce4d8e 859
1871e52c 860 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
861}
862
863static void next_reap_node(void)
864{
909ea964 865 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 866
8fce4d8e
CL
867 node = next_node(node, node_online_map);
868 if (unlikely(node >= MAX_NUMNODES))
869 node = first_node(node_online_map);
909ea964 870 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
871}
872
873#else
874#define init_reap_node(cpu) do { } while (0)
875#define next_reap_node(void) do { } while (0)
876#endif
877
1da177e4
LT
878/*
879 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
880 * via the workqueue/eventd.
881 * Add the CPU number into the expiration time to minimize the possibility of
882 * the CPUs getting into lockstep and contending for the global cache chain
883 * lock.
884 */
897e679b 885static void __cpuinit start_cpu_timer(int cpu)
1da177e4 886{
1871e52c 887 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
888
889 /*
890 * When this gets called from do_initcalls via cpucache_init(),
891 * init_workqueues() has already run, so keventd will be setup
892 * at that time.
893 */
52bad64d 894 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 895 init_reap_node(cpu);
78b43536 896 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
2b284214
AV
897 schedule_delayed_work_on(cpu, reap_work,
898 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
899 }
900}
901
e498be7d 902static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 903 int batchcount, gfp_t gfp)
1da177e4 904{
b28a02de 905 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
906 struct array_cache *nc = NULL;
907
83b519e8 908 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
909 /*
910 * The array_cache structures contain pointers to free object.
25985edc 911 * However, when such objects are allocated or transferred to another
d5cff635
CM
912 * cache the pointers are not cleared and they could be counted as
913 * valid references during a kmemleak scan. Therefore, kmemleak must
914 * not scan such objects.
915 */
916 kmemleak_no_scan(nc);
1da177e4
LT
917 if (nc) {
918 nc->avail = 0;
919 nc->limit = entries;
920 nc->batchcount = batchcount;
921 nc->touched = 0;
e498be7d 922 spin_lock_init(&nc->lock);
1da177e4
LT
923 }
924 return nc;
925}
926
072bb0aa
MG
927static inline bool is_slab_pfmemalloc(struct slab *slabp)
928{
929 struct page *page = virt_to_page(slabp->s_mem);
930
931 return PageSlabPfmemalloc(page);
932}
933
934/* Clears pfmemalloc_active if no slabs have pfmalloc set */
935static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
936 struct array_cache *ac)
937{
938 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
939 struct slab *slabp;
940 unsigned long flags;
941
942 if (!pfmemalloc_active)
943 return;
944
945 spin_lock_irqsave(&l3->list_lock, flags);
946 list_for_each_entry(slabp, &l3->slabs_full, list)
947 if (is_slab_pfmemalloc(slabp))
948 goto out;
949
950 list_for_each_entry(slabp, &l3->slabs_partial, list)
951 if (is_slab_pfmemalloc(slabp))
952 goto out;
953
954 list_for_each_entry(slabp, &l3->slabs_free, list)
955 if (is_slab_pfmemalloc(slabp))
956 goto out;
957
958 pfmemalloc_active = false;
959out:
960 spin_unlock_irqrestore(&l3->list_lock, flags);
961}
962
381760ea 963static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
964 gfp_t flags, bool force_refill)
965{
966 int i;
967 void *objp = ac->entry[--ac->avail];
968
969 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
970 if (unlikely(is_obj_pfmemalloc(objp))) {
971 struct kmem_list3 *l3;
972
973 if (gfp_pfmemalloc_allowed(flags)) {
974 clear_obj_pfmemalloc(&objp);
975 return objp;
976 }
977
978 /* The caller cannot use PFMEMALLOC objects, find another one */
979 for (i = 1; i < ac->avail; i++) {
980 /* If a !PFMEMALLOC object is found, swap them */
981 if (!is_obj_pfmemalloc(ac->entry[i])) {
982 objp = ac->entry[i];
983 ac->entry[i] = ac->entry[ac->avail];
984 ac->entry[ac->avail] = objp;
985 return objp;
986 }
987 }
988
989 /*
990 * If there are empty slabs on the slabs_free list and we are
991 * being forced to refill the cache, mark this one !pfmemalloc.
992 */
993 l3 = cachep->nodelists[numa_mem_id()];
994 if (!list_empty(&l3->slabs_free) && force_refill) {
995 struct slab *slabp = virt_to_slab(objp);
996 ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
997 clear_obj_pfmemalloc(&objp);
998 recheck_pfmemalloc_active(cachep, ac);
999 return objp;
1000 }
1001
1002 /* No !PFMEMALLOC objects available */
1003 ac->avail++;
1004 objp = NULL;
1005 }
1006
1007 return objp;
1008}
1009
381760ea
MG
1010static inline void *ac_get_obj(struct kmem_cache *cachep,
1011 struct array_cache *ac, gfp_t flags, bool force_refill)
1012{
1013 void *objp;
1014
1015 if (unlikely(sk_memalloc_socks()))
1016 objp = __ac_get_obj(cachep, ac, flags, force_refill);
1017 else
1018 objp = ac->entry[--ac->avail];
1019
1020 return objp;
1021}
1022
1023static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
1024 void *objp)
1025{
1026 if (unlikely(pfmemalloc_active)) {
1027 /* Some pfmemalloc slabs exist, check if this is one */
1028 struct page *page = virt_to_page(objp);
1029 if (PageSlabPfmemalloc(page))
1030 set_obj_pfmemalloc(&objp);
1031 }
1032
381760ea
MG
1033 return objp;
1034}
1035
1036static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1037 void *objp)
1038{
1039 if (unlikely(sk_memalloc_socks()))
1040 objp = __ac_put_obj(cachep, ac, objp);
1041
072bb0aa
MG
1042 ac->entry[ac->avail++] = objp;
1043}
1044
3ded175a
CL
1045/*
1046 * Transfer objects in one arraycache to another.
1047 * Locking must be handled by the caller.
1048 *
1049 * Return the number of entries transferred.
1050 */
1051static int transfer_objects(struct array_cache *to,
1052 struct array_cache *from, unsigned int max)
1053{
1054 /* Figure out how many entries to transfer */
732eacc0 1055 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
1056
1057 if (!nr)
1058 return 0;
1059
1060 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1061 sizeof(void *) *nr);
1062
1063 from->avail -= nr;
1064 to->avail += nr;
3ded175a
CL
1065 return nr;
1066}
1067
765c4507
CL
1068#ifndef CONFIG_NUMA
1069
1070#define drain_alien_cache(cachep, alien) do { } while (0)
1071#define reap_alien(cachep, l3) do { } while (0)
1072
83b519e8 1073static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
1074{
1075 return (struct array_cache **)BAD_ALIEN_MAGIC;
1076}
1077
1078static inline void free_alien_cache(struct array_cache **ac_ptr)
1079{
1080}
1081
1082static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1083{
1084 return 0;
1085}
1086
1087static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1088 gfp_t flags)
1089{
1090 return NULL;
1091}
1092
8b98c169 1093static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1094 gfp_t flags, int nodeid)
1095{
1096 return NULL;
1097}
1098
1099#else /* CONFIG_NUMA */
1100
8b98c169 1101static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1102static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1103
83b519e8 1104static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1105{
1106 struct array_cache **ac_ptr;
8ef82866 1107 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1108 int i;
1109
1110 if (limit > 1)
1111 limit = 12;
f3186a9c 1112 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1113 if (ac_ptr) {
1114 for_each_node(i) {
f3186a9c 1115 if (i == node || !node_online(i))
e498be7d 1116 continue;
83b519e8 1117 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1118 if (!ac_ptr[i]) {
cc550def 1119 for (i--; i >= 0; i--)
e498be7d
CL
1120 kfree(ac_ptr[i]);
1121 kfree(ac_ptr);
1122 return NULL;
1123 }
1124 }
1125 }
1126 return ac_ptr;
1127}
1128
5295a74c 1129static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1130{
1131 int i;
1132
1133 if (!ac_ptr)
1134 return;
e498be7d 1135 for_each_node(i)
b28a02de 1136 kfree(ac_ptr[i]);
e498be7d
CL
1137 kfree(ac_ptr);
1138}
1139
343e0d7a 1140static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1141 struct array_cache *ac, int node)
e498be7d
CL
1142{
1143 struct kmem_list3 *rl3 = cachep->nodelists[node];
1144
1145 if (ac->avail) {
1146 spin_lock(&rl3->list_lock);
e00946fe
CL
1147 /*
1148 * Stuff objects into the remote nodes shared array first.
1149 * That way we could avoid the overhead of putting the objects
1150 * into the free lists and getting them back later.
1151 */
693f7d36 1152 if (rl3->shared)
1153 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1154
ff69416e 1155 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1156 ac->avail = 0;
1157 spin_unlock(&rl3->list_lock);
1158 }
1159}
1160
8fce4d8e
CL
1161/*
1162 * Called from cache_reap() to regularly drain alien caches round robin.
1163 */
1164static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1165{
909ea964 1166 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1167
1168 if (l3->alien) {
1169 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1170
1171 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1172 __drain_alien_cache(cachep, ac, node);
1173 spin_unlock_irq(&ac->lock);
1174 }
1175 }
1176}
1177
a737b3e2
AM
1178static void drain_alien_cache(struct kmem_cache *cachep,
1179 struct array_cache **alien)
e498be7d 1180{
b28a02de 1181 int i = 0;
e498be7d
CL
1182 struct array_cache *ac;
1183 unsigned long flags;
1184
1185 for_each_online_node(i) {
4484ebf1 1186 ac = alien[i];
e498be7d
CL
1187 if (ac) {
1188 spin_lock_irqsave(&ac->lock, flags);
1189 __drain_alien_cache(cachep, ac, i);
1190 spin_unlock_irqrestore(&ac->lock, flags);
1191 }
1192 }
1193}
729bd0b7 1194
873623df 1195static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1196{
1197 struct slab *slabp = virt_to_slab(objp);
1198 int nodeid = slabp->nodeid;
1199 struct kmem_list3 *l3;
1200 struct array_cache *alien = NULL;
1ca4cb24
PE
1201 int node;
1202
7d6e6d09 1203 node = numa_mem_id();
729bd0b7
PE
1204
1205 /*
1206 * Make sure we are not freeing a object from another node to the array
1207 * cache on this cpu.
1208 */
62918a03 1209 if (likely(slabp->nodeid == node))
729bd0b7
PE
1210 return 0;
1211
1ca4cb24 1212 l3 = cachep->nodelists[node];
729bd0b7
PE
1213 STATS_INC_NODEFREES(cachep);
1214 if (l3->alien && l3->alien[nodeid]) {
1215 alien = l3->alien[nodeid];
873623df 1216 spin_lock(&alien->lock);
729bd0b7
PE
1217 if (unlikely(alien->avail == alien->limit)) {
1218 STATS_INC_ACOVERFLOW(cachep);
1219 __drain_alien_cache(cachep, alien, nodeid);
1220 }
072bb0aa 1221 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1222 spin_unlock(&alien->lock);
1223 } else {
1224 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1225 free_block(cachep, &objp, 1, nodeid);
1226 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1227 }
1228 return 1;
1229}
e498be7d
CL
1230#endif
1231
8f9f8d9e
DR
1232/*
1233 * Allocates and initializes nodelists for a node on each slab cache, used for
1234 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1235 * will be allocated off-node since memory is not yet online for the new node.
1236 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1237 * already in use.
1238 *
18004c5d 1239 * Must hold slab_mutex.
8f9f8d9e
DR
1240 */
1241static int init_cache_nodelists_node(int node)
1242{
1243 struct kmem_cache *cachep;
1244 struct kmem_list3 *l3;
1245 const int memsize = sizeof(struct kmem_list3);
1246
18004c5d 1247 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1248 /*
1249 * Set up the size64 kmemlist for cpu before we can
1250 * begin anything. Make sure some other cpu on this
1251 * node has not already allocated this
1252 */
1253 if (!cachep->nodelists[node]) {
1254 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1255 if (!l3)
1256 return -ENOMEM;
1257 kmem_list3_init(l3);
1258 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1259 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1260
1261 /*
1262 * The l3s don't come and go as CPUs come and
18004c5d 1263 * go. slab_mutex is sufficient
8f9f8d9e
DR
1264 * protection here.
1265 */
1266 cachep->nodelists[node] = l3;
1267 }
1268
1269 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1270 cachep->nodelists[node]->free_limit =
1271 (1 + nr_cpus_node(node)) *
1272 cachep->batchcount + cachep->num;
1273 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1274 }
1275 return 0;
1276}
1277
fbf1e473
AM
1278static void __cpuinit cpuup_canceled(long cpu)
1279{
1280 struct kmem_cache *cachep;
1281 struct kmem_list3 *l3 = NULL;
7d6e6d09 1282 int node = cpu_to_mem(cpu);
a70f7302 1283 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1284
18004c5d 1285 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1286 struct array_cache *nc;
1287 struct array_cache *shared;
1288 struct array_cache **alien;
fbf1e473 1289
fbf1e473
AM
1290 /* cpu is dead; no one can alloc from it. */
1291 nc = cachep->array[cpu];
1292 cachep->array[cpu] = NULL;
1293 l3 = cachep->nodelists[node];
1294
1295 if (!l3)
1296 goto free_array_cache;
1297
1298 spin_lock_irq(&l3->list_lock);
1299
1300 /* Free limit for this kmem_list3 */
1301 l3->free_limit -= cachep->batchcount;
1302 if (nc)
1303 free_block(cachep, nc->entry, nc->avail, node);
1304
58463c1f 1305 if (!cpumask_empty(mask)) {
fbf1e473
AM
1306 spin_unlock_irq(&l3->list_lock);
1307 goto free_array_cache;
1308 }
1309
1310 shared = l3->shared;
1311 if (shared) {
1312 free_block(cachep, shared->entry,
1313 shared->avail, node);
1314 l3->shared = NULL;
1315 }
1316
1317 alien = l3->alien;
1318 l3->alien = NULL;
1319
1320 spin_unlock_irq(&l3->list_lock);
1321
1322 kfree(shared);
1323 if (alien) {
1324 drain_alien_cache(cachep, alien);
1325 free_alien_cache(alien);
1326 }
1327free_array_cache:
1328 kfree(nc);
1329 }
1330 /*
1331 * In the previous loop, all the objects were freed to
1332 * the respective cache's slabs, now we can go ahead and
1333 * shrink each nodelist to its limit.
1334 */
18004c5d 1335 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1336 l3 = cachep->nodelists[node];
1337 if (!l3)
1338 continue;
1339 drain_freelist(cachep, l3, l3->free_objects);
1340 }
1341}
1342
1343static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1344{
343e0d7a 1345 struct kmem_cache *cachep;
e498be7d 1346 struct kmem_list3 *l3 = NULL;
7d6e6d09 1347 int node = cpu_to_mem(cpu);
8f9f8d9e 1348 int err;
1da177e4 1349
fbf1e473
AM
1350 /*
1351 * We need to do this right in the beginning since
1352 * alloc_arraycache's are going to use this list.
1353 * kmalloc_node allows us to add the slab to the right
1354 * kmem_list3 and not this cpu's kmem_list3
1355 */
8f9f8d9e
DR
1356 err = init_cache_nodelists_node(node);
1357 if (err < 0)
1358 goto bad;
fbf1e473
AM
1359
1360 /*
1361 * Now we can go ahead with allocating the shared arrays and
1362 * array caches
1363 */
18004c5d 1364 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1365 struct array_cache *nc;
1366 struct array_cache *shared = NULL;
1367 struct array_cache **alien = NULL;
1368
1369 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1370 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1371 if (!nc)
1372 goto bad;
1373 if (cachep->shared) {
1374 shared = alloc_arraycache(node,
1375 cachep->shared * cachep->batchcount,
83b519e8 1376 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1377 if (!shared) {
1378 kfree(nc);
1da177e4 1379 goto bad;
12d00f6a 1380 }
fbf1e473
AM
1381 }
1382 if (use_alien_caches) {
83b519e8 1383 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1384 if (!alien) {
1385 kfree(shared);
1386 kfree(nc);
fbf1e473 1387 goto bad;
12d00f6a 1388 }
fbf1e473
AM
1389 }
1390 cachep->array[cpu] = nc;
1391 l3 = cachep->nodelists[node];
1392 BUG_ON(!l3);
1393
1394 spin_lock_irq(&l3->list_lock);
1395 if (!l3->shared) {
1396 /*
1397 * We are serialised from CPU_DEAD or
1398 * CPU_UP_CANCELLED by the cpucontrol lock
1399 */
1400 l3->shared = shared;
1401 shared = NULL;
1402 }
4484ebf1 1403#ifdef CONFIG_NUMA
fbf1e473
AM
1404 if (!l3->alien) {
1405 l3->alien = alien;
1406 alien = NULL;
1da177e4 1407 }
fbf1e473
AM
1408#endif
1409 spin_unlock_irq(&l3->list_lock);
1410 kfree(shared);
1411 free_alien_cache(alien);
83835b3d
PZ
1412 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1413 slab_set_debugobj_lock_classes_node(cachep, node);
fbf1e473 1414 }
ce79ddc8
PE
1415 init_node_lock_keys(node);
1416
fbf1e473
AM
1417 return 0;
1418bad:
12d00f6a 1419 cpuup_canceled(cpu);
fbf1e473
AM
1420 return -ENOMEM;
1421}
1422
1423static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1424 unsigned long action, void *hcpu)
1425{
1426 long cpu = (long)hcpu;
1427 int err = 0;
1428
1429 switch (action) {
fbf1e473
AM
1430 case CPU_UP_PREPARE:
1431 case CPU_UP_PREPARE_FROZEN:
18004c5d 1432 mutex_lock(&slab_mutex);
fbf1e473 1433 err = cpuup_prepare(cpu);
18004c5d 1434 mutex_unlock(&slab_mutex);
1da177e4
LT
1435 break;
1436 case CPU_ONLINE:
8bb78442 1437 case CPU_ONLINE_FROZEN:
1da177e4
LT
1438 start_cpu_timer(cpu);
1439 break;
1440#ifdef CONFIG_HOTPLUG_CPU
5830c590 1441 case CPU_DOWN_PREPARE:
8bb78442 1442 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1443 /*
18004c5d 1444 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1445 * held so that if cache_reap() is invoked it cannot do
1446 * anything expensive but will only modify reap_work
1447 * and reschedule the timer.
1448 */
afe2c511 1449 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1450 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1451 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1452 break;
1453 case CPU_DOWN_FAILED:
8bb78442 1454 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1455 start_cpu_timer(cpu);
1456 break;
1da177e4 1457 case CPU_DEAD:
8bb78442 1458 case CPU_DEAD_FROZEN:
4484ebf1
RT
1459 /*
1460 * Even if all the cpus of a node are down, we don't free the
1461 * kmem_list3 of any cache. This to avoid a race between
1462 * cpu_down, and a kmalloc allocation from another cpu for
1463 * memory from the node of the cpu going down. The list3
1464 * structure is usually allocated from kmem_cache_create() and
1465 * gets destroyed at kmem_cache_destroy().
1466 */
183ff22b 1467 /* fall through */
8f5be20b 1468#endif
1da177e4 1469 case CPU_UP_CANCELED:
8bb78442 1470 case CPU_UP_CANCELED_FROZEN:
18004c5d 1471 mutex_lock(&slab_mutex);
fbf1e473 1472 cpuup_canceled(cpu);
18004c5d 1473 mutex_unlock(&slab_mutex);
1da177e4 1474 break;
1da177e4 1475 }
eac40680 1476 return notifier_from_errno(err);
1da177e4
LT
1477}
1478
74b85f37
CS
1479static struct notifier_block __cpuinitdata cpucache_notifier = {
1480 &cpuup_callback, NULL, 0
1481};
1da177e4 1482
8f9f8d9e
DR
1483#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1484/*
1485 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1486 * Returns -EBUSY if all objects cannot be drained so that the node is not
1487 * removed.
1488 *
18004c5d 1489 * Must hold slab_mutex.
8f9f8d9e
DR
1490 */
1491static int __meminit drain_cache_nodelists_node(int node)
1492{
1493 struct kmem_cache *cachep;
1494 int ret = 0;
1495
18004c5d 1496 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1497 struct kmem_list3 *l3;
1498
1499 l3 = cachep->nodelists[node];
1500 if (!l3)
1501 continue;
1502
1503 drain_freelist(cachep, l3, l3->free_objects);
1504
1505 if (!list_empty(&l3->slabs_full) ||
1506 !list_empty(&l3->slabs_partial)) {
1507 ret = -EBUSY;
1508 break;
1509 }
1510 }
1511 return ret;
1512}
1513
1514static int __meminit slab_memory_callback(struct notifier_block *self,
1515 unsigned long action, void *arg)
1516{
1517 struct memory_notify *mnb = arg;
1518 int ret = 0;
1519 int nid;
1520
1521 nid = mnb->status_change_nid;
1522 if (nid < 0)
1523 goto out;
1524
1525 switch (action) {
1526 case MEM_GOING_ONLINE:
18004c5d 1527 mutex_lock(&slab_mutex);
8f9f8d9e 1528 ret = init_cache_nodelists_node(nid);
18004c5d 1529 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1530 break;
1531 case MEM_GOING_OFFLINE:
18004c5d 1532 mutex_lock(&slab_mutex);
8f9f8d9e 1533 ret = drain_cache_nodelists_node(nid);
18004c5d 1534 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1535 break;
1536 case MEM_ONLINE:
1537 case MEM_OFFLINE:
1538 case MEM_CANCEL_ONLINE:
1539 case MEM_CANCEL_OFFLINE:
1540 break;
1541 }
1542out:
5fda1bd5 1543 return notifier_from_errno(ret);
8f9f8d9e
DR
1544}
1545#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1546
e498be7d
CL
1547/*
1548 * swap the static kmem_list3 with kmalloced memory
1549 */
8f9f8d9e
DR
1550static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1551 int nodeid)
e498be7d
CL
1552{
1553 struct kmem_list3 *ptr;
1554
83b519e8 1555 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1556 BUG_ON(!ptr);
1557
e498be7d 1558 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1559 /*
1560 * Do not assume that spinlocks can be initialized via memcpy:
1561 */
1562 spin_lock_init(&ptr->list_lock);
1563
e498be7d
CL
1564 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1565 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1566}
1567
556a169d
PE
1568/*
1569 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1570 * size of kmem_list3.
1571 */
1572static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1573{
1574 int node;
1575
1576 for_each_online_node(node) {
1577 cachep->nodelists[node] = &initkmem_list3[index + node];
1578 cachep->nodelists[node]->next_reap = jiffies +
1579 REAPTIMEOUT_LIST3 +
1580 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1581 }
1582}
1583
a737b3e2
AM
1584/*
1585 * Initialisation. Called after the page allocator have been initialised and
1586 * before smp_init().
1da177e4
LT
1587 */
1588void __init kmem_cache_init(void)
1589{
1590 size_t left_over;
1591 struct cache_sizes *sizes;
1592 struct cache_names *names;
e498be7d 1593 int i;
07ed76b2 1594 int order;
1ca4cb24 1595 int node;
e498be7d 1596
9b030cb8
CL
1597 kmem_cache = &kmem_cache_boot;
1598
b6e68bc1 1599 if (num_possible_nodes() == 1)
62918a03
SS
1600 use_alien_caches = 0;
1601
e498be7d
CL
1602 for (i = 0; i < NUM_INIT_LISTS; i++) {
1603 kmem_list3_init(&initkmem_list3[i]);
1604 if (i < MAX_NUMNODES)
9b030cb8 1605 kmem_cache->nodelists[i] = NULL;
e498be7d 1606 }
9b030cb8 1607 set_up_list3s(kmem_cache, CACHE_CACHE);
1da177e4
LT
1608
1609 /*
1610 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1611 * page orders on machines with more than 32MB of memory if
1612 * not overridden on the command line.
1da177e4 1613 */
3df1cccd 1614 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1615 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1616
1da177e4
LT
1617 /* Bootstrap is tricky, because several objects are allocated
1618 * from caches that do not exist yet:
9b030cb8
CL
1619 * 1) initialize the kmem_cache cache: it contains the struct
1620 * kmem_cache structures of all caches, except kmem_cache itself:
1621 * kmem_cache is statically allocated.
e498be7d
CL
1622 * Initially an __init data area is used for the head array and the
1623 * kmem_list3 structures, it's replaced with a kmalloc allocated
1624 * array at the end of the bootstrap.
1da177e4 1625 * 2) Create the first kmalloc cache.
343e0d7a 1626 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1627 * An __init data area is used for the head array.
1628 * 3) Create the remaining kmalloc caches, with minimally sized
1629 * head arrays.
9b030cb8 1630 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1631 * kmalloc cache with kmalloc allocated arrays.
9b030cb8 1632 * 5) Replace the __init data for kmem_list3 for kmem_cache and
e498be7d
CL
1633 * the other cache's with kmalloc allocated memory.
1634 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1635 */
1636
7d6e6d09 1637 node = numa_mem_id();
1ca4cb24 1638
9b030cb8 1639 /* 1) create the kmem_cache */
18004c5d 1640 INIT_LIST_HEAD(&slab_caches);
9b030cb8
CL
1641 list_add(&kmem_cache->list, &slab_caches);
1642 kmem_cache->colour_off = cache_line_size();
1643 kmem_cache->array[smp_processor_id()] = &initarray_cache.cache;
1644 kmem_cache->nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1645
8da3430d 1646 /*
b56efcf0 1647 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1648 */
9b030cb8 1649 kmem_cache->size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
b56efcf0 1650 nr_node_ids * sizeof(struct kmem_list3 *);
9b030cb8
CL
1651 kmem_cache->object_size = kmem_cache->size;
1652 kmem_cache->size = ALIGN(kmem_cache->object_size,
a737b3e2 1653 cache_line_size());
9b030cb8
CL
1654 kmem_cache->reciprocal_buffer_size =
1655 reciprocal_value(kmem_cache->size);
1da177e4 1656
07ed76b2 1657 for (order = 0; order < MAX_ORDER; order++) {
9b030cb8
CL
1658 cache_estimate(order, kmem_cache->size,
1659 cache_line_size(), 0, &left_over, &kmem_cache->num);
1660 if (kmem_cache->num)
07ed76b2
JS
1661 break;
1662 }
9b030cb8
CL
1663 BUG_ON(!kmem_cache->num);
1664 kmem_cache->gfporder = order;
1665 kmem_cache->colour = left_over / kmem_cache->colour_off;
1666 kmem_cache->slab_size = ALIGN(kmem_cache->num * sizeof(kmem_bufctl_t) +
b28a02de 1667 sizeof(struct slab), cache_line_size());
1da177e4
LT
1668
1669 /* 2+3) create the kmalloc caches */
1670 sizes = malloc_sizes;
1671 names = cache_names;
1672
a737b3e2
AM
1673 /*
1674 * Initialize the caches that provide memory for the array cache and the
1675 * kmem_list3 structures first. Without this, further allocations will
1676 * bug.
e498be7d
CL
1677 */
1678
039363f3 1679 sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1680 sizes[INDEX_AC].cs_size,
1681 ARCH_KMALLOC_MINALIGN,
1682 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1683 NULL);
e498be7d 1684
7c9adf5a 1685 list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
a737b3e2 1686 if (INDEX_AC != INDEX_L3) {
e498be7d 1687 sizes[INDEX_L3].cs_cachep =
039363f3 1688 __kmem_cache_create(names[INDEX_L3].name,
a737b3e2
AM
1689 sizes[INDEX_L3].cs_size,
1690 ARCH_KMALLOC_MINALIGN,
1691 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1692 NULL);
7c9adf5a 1693 list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
a737b3e2 1694 }
e498be7d 1695
e0a42726
IM
1696 slab_early_init = 0;
1697
1da177e4 1698 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1699 /*
1700 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1701 * This should be particularly beneficial on SMP boxes, as it
1702 * eliminates "false sharing".
1703 * Note for systems short on memory removing the alignment will
e498be7d
CL
1704 * allow tighter packing of the smaller caches.
1705 */
a737b3e2 1706 if (!sizes->cs_cachep) {
039363f3 1707 sizes->cs_cachep = __kmem_cache_create(names->name,
a737b3e2
AM
1708 sizes->cs_size,
1709 ARCH_KMALLOC_MINALIGN,
1710 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1711 NULL);
7c9adf5a 1712 list_add(&sizes->cs_cachep->list, &slab_caches);
a737b3e2 1713 }
4b51d669 1714#ifdef CONFIG_ZONE_DMA
039363f3 1715 sizes->cs_dmacachep = __kmem_cache_create(
4b51d669 1716 names->name_dma,
a737b3e2
AM
1717 sizes->cs_size,
1718 ARCH_KMALLOC_MINALIGN,
1719 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1720 SLAB_PANIC,
20c2df83 1721 NULL);
7c9adf5a 1722 list_add(&sizes->cs_dmacachep->list, &slab_caches);
4b51d669 1723#endif
1da177e4
LT
1724 sizes++;
1725 names++;
1726 }
1727 /* 4) Replace the bootstrap head arrays */
1728 {
2b2d5493 1729 struct array_cache *ptr;
e498be7d 1730
83b519e8 1731 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1732
9b030cb8
CL
1733 BUG_ON(cpu_cache_get(kmem_cache) != &initarray_cache.cache);
1734 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1735 sizeof(struct arraycache_init));
2b2d5493
IM
1736 /*
1737 * Do not assume that spinlocks can be initialized via memcpy:
1738 */
1739 spin_lock_init(&ptr->lock);
1740
9b030cb8 1741 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1742
83b519e8 1743 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1744
9a2dba4b 1745 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1746 != &initarray_generic.cache);
9a2dba4b 1747 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1748 sizeof(struct arraycache_init));
2b2d5493
IM
1749 /*
1750 * Do not assume that spinlocks can be initialized via memcpy:
1751 */
1752 spin_lock_init(&ptr->lock);
1753
e498be7d 1754 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1755 ptr;
1da177e4 1756 }
e498be7d
CL
1757 /* 5) Replace the bootstrap kmem_list3's */
1758 {
1ca4cb24
PE
1759 int nid;
1760
9c09a95c 1761 for_each_online_node(nid) {
9b030cb8 1762 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1763
e498be7d 1764 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1765 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1766
1767 if (INDEX_AC != INDEX_L3) {
1768 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1769 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1770 }
1771 }
1772 }
1da177e4 1773
97d06609 1774 slab_state = UP;
8429db5c
PE
1775}
1776
1777void __init kmem_cache_init_late(void)
1778{
1779 struct kmem_cache *cachep;
1780
97d06609 1781 slab_state = UP;
52cef189 1782
30765b92
PZ
1783 /* Annotate slab for lockdep -- annotate the malloc caches */
1784 init_lock_keys();
1785
8429db5c 1786 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1787 mutex_lock(&slab_mutex);
1788 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1789 if (enable_cpucache(cachep, GFP_NOWAIT))
1790 BUG();
18004c5d 1791 mutex_unlock(&slab_mutex);
056c6241 1792
97d06609
CL
1793 /* Done! */
1794 slab_state = FULL;
1795
a737b3e2
AM
1796 /*
1797 * Register a cpu startup notifier callback that initializes
1798 * cpu_cache_get for all new cpus
1da177e4
LT
1799 */
1800 register_cpu_notifier(&cpucache_notifier);
1da177e4 1801
8f9f8d9e
DR
1802#ifdef CONFIG_NUMA
1803 /*
1804 * Register a memory hotplug callback that initializes and frees
1805 * nodelists.
1806 */
1807 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1808#endif
1809
a737b3e2
AM
1810 /*
1811 * The reap timers are started later, with a module init call: That part
1812 * of the kernel is not yet operational.
1da177e4
LT
1813 */
1814}
1815
1816static int __init cpucache_init(void)
1817{
1818 int cpu;
1819
a737b3e2
AM
1820 /*
1821 * Register the timers that return unneeded pages to the page allocator
1da177e4 1822 */
e498be7d 1823 for_each_online_cpu(cpu)
a737b3e2 1824 start_cpu_timer(cpu);
a164f896
GC
1825
1826 /* Done! */
97d06609 1827 slab_state = FULL;
1da177e4
LT
1828 return 0;
1829}
1da177e4
LT
1830__initcall(cpucache_init);
1831
8bdec192
RA
1832static noinline void
1833slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1834{
1835 struct kmem_list3 *l3;
1836 struct slab *slabp;
1837 unsigned long flags;
1838 int node;
1839
1840 printk(KERN_WARNING
1841 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1842 nodeid, gfpflags);
1843 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1844 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1845
1846 for_each_online_node(node) {
1847 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1848 unsigned long active_slabs = 0, num_slabs = 0;
1849
1850 l3 = cachep->nodelists[node];
1851 if (!l3)
1852 continue;
1853
1854 spin_lock_irqsave(&l3->list_lock, flags);
1855 list_for_each_entry(slabp, &l3->slabs_full, list) {
1856 active_objs += cachep->num;
1857 active_slabs++;
1858 }
1859 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1860 active_objs += slabp->inuse;
1861 active_slabs++;
1862 }
1863 list_for_each_entry(slabp, &l3->slabs_free, list)
1864 num_slabs++;
1865
1866 free_objects += l3->free_objects;
1867 spin_unlock_irqrestore(&l3->list_lock, flags);
1868
1869 num_slabs += active_slabs;
1870 num_objs = num_slabs * cachep->num;
1871 printk(KERN_WARNING
1872 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1873 node, active_slabs, num_slabs, active_objs, num_objs,
1874 free_objects);
1875 }
1876}
1877
1da177e4
LT
1878/*
1879 * Interface to system's page allocator. No need to hold the cache-lock.
1880 *
1881 * If we requested dmaable memory, we will get it. Even if we
1882 * did not request dmaable memory, we might get it, but that
1883 * would be relatively rare and ignorable.
1884 */
343e0d7a 1885static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1886{
1887 struct page *page;
e1b6aa6f 1888 int nr_pages;
1da177e4
LT
1889 int i;
1890
d6fef9da 1891#ifndef CONFIG_MMU
e1b6aa6f
CH
1892 /*
1893 * Nommu uses slab's for process anonymous memory allocations, and thus
1894 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1895 */
e1b6aa6f 1896 flags |= __GFP_COMP;
d6fef9da 1897#endif
765c4507 1898
a618e89f 1899 flags |= cachep->allocflags;
e12ba74d
MG
1900 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1901 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1902
517d0869 1903 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1904 if (!page) {
1905 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1906 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1907 return NULL;
8bdec192 1908 }
1da177e4 1909
b37f1dd0 1910 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1911 if (unlikely(page->pfmemalloc))
1912 pfmemalloc_active = true;
1913
e1b6aa6f 1914 nr_pages = (1 << cachep->gfporder);
1da177e4 1915 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1916 add_zone_page_state(page_zone(page),
1917 NR_SLAB_RECLAIMABLE, nr_pages);
1918 else
1919 add_zone_page_state(page_zone(page),
1920 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1921 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1922 __SetPageSlab(page + i);
c175eea4 1923
072bb0aa
MG
1924 if (page->pfmemalloc)
1925 SetPageSlabPfmemalloc(page + i);
1926 }
1927
b1eeab67
VN
1928 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1929 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1930
1931 if (cachep->ctor)
1932 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1933 else
1934 kmemcheck_mark_unallocated_pages(page, nr_pages);
1935 }
c175eea4 1936
e1b6aa6f 1937 return page_address(page);
1da177e4
LT
1938}
1939
1940/*
1941 * Interface to system's page release.
1942 */
343e0d7a 1943static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1944{
b28a02de 1945 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1946 struct page *page = virt_to_page(addr);
1947 const unsigned long nr_freed = i;
1948
b1eeab67 1949 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1950
972d1a7b
CL
1951 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1952 sub_zone_page_state(page_zone(page),
1953 NR_SLAB_RECLAIMABLE, nr_freed);
1954 else
1955 sub_zone_page_state(page_zone(page),
1956 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1957 while (i--) {
f205b2fe 1958 BUG_ON(!PageSlab(page));
072bb0aa 1959 __ClearPageSlabPfmemalloc(page);
f205b2fe 1960 __ClearPageSlab(page);
1da177e4
LT
1961 page++;
1962 }
1da177e4
LT
1963 if (current->reclaim_state)
1964 current->reclaim_state->reclaimed_slab += nr_freed;
1965 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1966}
1967
1968static void kmem_rcu_free(struct rcu_head *head)
1969{
b28a02de 1970 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1971 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1972
1973 kmem_freepages(cachep, slab_rcu->addr);
1974 if (OFF_SLAB(cachep))
1975 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1976}
1977
1978#if DEBUG
1979
1980#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1981static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1982 unsigned long caller)
1da177e4 1983{
8c138bc0 1984 int size = cachep->object_size;
1da177e4 1985
3dafccf2 1986 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1987
b28a02de 1988 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1989 return;
1990
b28a02de
PE
1991 *addr++ = 0x12345678;
1992 *addr++ = caller;
1993 *addr++ = smp_processor_id();
1994 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1995 {
1996 unsigned long *sptr = &caller;
1997 unsigned long svalue;
1998
1999 while (!kstack_end(sptr)) {
2000 svalue = *sptr++;
2001 if (kernel_text_address(svalue)) {
b28a02de 2002 *addr++ = svalue;
1da177e4
LT
2003 size -= sizeof(unsigned long);
2004 if (size <= sizeof(unsigned long))
2005 break;
2006 }
2007 }
2008
2009 }
b28a02de 2010 *addr++ = 0x87654321;
1da177e4
LT
2011}
2012#endif
2013
343e0d7a 2014static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 2015{
8c138bc0 2016 int size = cachep->object_size;
3dafccf2 2017 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
2018
2019 memset(addr, val, size);
b28a02de 2020 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
2021}
2022
2023static void dump_line(char *data, int offset, int limit)
2024{
2025 int i;
aa83aa40
DJ
2026 unsigned char error = 0;
2027 int bad_count = 0;
2028
fdde6abb 2029 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
2030 for (i = 0; i < limit; i++) {
2031 if (data[offset + i] != POISON_FREE) {
2032 error = data[offset + i];
2033 bad_count++;
2034 }
aa83aa40 2035 }
fdde6abb
SAS
2036 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2037 &data[offset], limit, 1);
aa83aa40
DJ
2038
2039 if (bad_count == 1) {
2040 error ^= POISON_FREE;
2041 if (!(error & (error - 1))) {
2042 printk(KERN_ERR "Single bit error detected. Probably "
2043 "bad RAM.\n");
2044#ifdef CONFIG_X86
2045 printk(KERN_ERR "Run memtest86+ or a similar memory "
2046 "test tool.\n");
2047#else
2048 printk(KERN_ERR "Run a memory test tool.\n");
2049#endif
2050 }
2051 }
1da177e4
LT
2052}
2053#endif
2054
2055#if DEBUG
2056
343e0d7a 2057static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
2058{
2059 int i, size;
2060 char *realobj;
2061
2062 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 2063 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
2064 *dbg_redzone1(cachep, objp),
2065 *dbg_redzone2(cachep, objp));
1da177e4
LT
2066 }
2067
2068 if (cachep->flags & SLAB_STORE_USER) {
2069 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 2070 *dbg_userword(cachep, objp));
1da177e4 2071 print_symbol("(%s)",
a737b3e2 2072 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
2073 printk("\n");
2074 }
3dafccf2 2075 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2076 size = cachep->object_size;
b28a02de 2077 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
2078 int limit;
2079 limit = 16;
b28a02de
PE
2080 if (i + limit > size)
2081 limit = size - i;
1da177e4
LT
2082 dump_line(realobj, i, limit);
2083 }
2084}
2085
343e0d7a 2086static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
2087{
2088 char *realobj;
2089 int size, i;
2090 int lines = 0;
2091
3dafccf2 2092 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2093 size = cachep->object_size;
1da177e4 2094
b28a02de 2095 for (i = 0; i < size; i++) {
1da177e4 2096 char exp = POISON_FREE;
b28a02de 2097 if (i == size - 1)
1da177e4
LT
2098 exp = POISON_END;
2099 if (realobj[i] != exp) {
2100 int limit;
2101 /* Mismatch ! */
2102 /* Print header */
2103 if (lines == 0) {
b28a02de 2104 printk(KERN_ERR
face37f5
DJ
2105 "Slab corruption (%s): %s start=%p, len=%d\n",
2106 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
2107 print_objinfo(cachep, objp, 0);
2108 }
2109 /* Hexdump the affected line */
b28a02de 2110 i = (i / 16) * 16;
1da177e4 2111 limit = 16;
b28a02de
PE
2112 if (i + limit > size)
2113 limit = size - i;
1da177e4
LT
2114 dump_line(realobj, i, limit);
2115 i += 16;
2116 lines++;
2117 /* Limit to 5 lines */
2118 if (lines > 5)
2119 break;
2120 }
2121 }
2122 if (lines != 0) {
2123 /* Print some data about the neighboring objects, if they
2124 * exist:
2125 */
6ed5eb22 2126 struct slab *slabp = virt_to_slab(objp);
8fea4e96 2127 unsigned int objnr;
1da177e4 2128
8fea4e96 2129 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 2130 if (objnr) {
8fea4e96 2131 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 2132 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2133 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 2134 realobj, size);
1da177e4
LT
2135 print_objinfo(cachep, objp, 2);
2136 }
b28a02de 2137 if (objnr + 1 < cachep->num) {
8fea4e96 2138 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 2139 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2140 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 2141 realobj, size);
1da177e4
LT
2142 print_objinfo(cachep, objp, 2);
2143 }
2144 }
2145}
2146#endif
2147
12dd36fa 2148#if DEBUG
e79aec29 2149static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2150{
1da177e4
LT
2151 int i;
2152 for (i = 0; i < cachep->num; i++) {
8fea4e96 2153 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2154
2155 if (cachep->flags & SLAB_POISON) {
2156#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2157 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2158 OFF_SLAB(cachep))
b28a02de 2159 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2160 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2161 else
2162 check_poison_obj(cachep, objp);
2163#else
2164 check_poison_obj(cachep, objp);
2165#endif
2166 }
2167 if (cachep->flags & SLAB_RED_ZONE) {
2168 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2169 slab_error(cachep, "start of a freed object "
b28a02de 2170 "was overwritten");
1da177e4
LT
2171 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2172 slab_error(cachep, "end of a freed object "
b28a02de 2173 "was overwritten");
1da177e4 2174 }
1da177e4 2175 }
12dd36fa 2176}
1da177e4 2177#else
e79aec29 2178static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2179{
12dd36fa 2180}
1da177e4
LT
2181#endif
2182
911851e6
RD
2183/**
2184 * slab_destroy - destroy and release all objects in a slab
2185 * @cachep: cache pointer being destroyed
2186 * @slabp: slab pointer being destroyed
2187 *
12dd36fa 2188 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2189 * Before calling the slab must have been unlinked from the cache. The
2190 * cache-lock is not held/needed.
12dd36fa 2191 */
343e0d7a 2192static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2193{
2194 void *addr = slabp->s_mem - slabp->colouroff;
2195
e79aec29 2196 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2197 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2198 struct slab_rcu *slab_rcu;
2199
b28a02de 2200 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2201 slab_rcu->cachep = cachep;
2202 slab_rcu->addr = addr;
2203 call_rcu(&slab_rcu->head, kmem_rcu_free);
2204 } else {
2205 kmem_freepages(cachep, addr);
873623df
IM
2206 if (OFF_SLAB(cachep))
2207 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2208 }
2209}
2210
945cf2b6 2211void __kmem_cache_destroy(struct kmem_cache *cachep)
117f6eb1
CL
2212{
2213 int i;
2214 struct kmem_list3 *l3;
2215
2216 for_each_online_cpu(i)
2217 kfree(cachep->array[i]);
2218
2219 /* NUMA: free the list3 structures */
2220 for_each_online_node(i) {
2221 l3 = cachep->nodelists[i];
2222 if (l3) {
2223 kfree(l3->shared);
2224 free_alien_cache(l3->alien);
2225 kfree(l3);
2226 }
2227 }
117f6eb1
CL
2228}
2229
2230
4d268eba 2231/**
a70773dd
RD
2232 * calculate_slab_order - calculate size (page order) of slabs
2233 * @cachep: pointer to the cache that is being created
2234 * @size: size of objects to be created in this cache.
2235 * @align: required alignment for the objects.
2236 * @flags: slab allocation flags
2237 *
2238 * Also calculates the number of objects per slab.
4d268eba
PE
2239 *
2240 * This could be made much more intelligent. For now, try to avoid using
2241 * high order pages for slabs. When the gfp() functions are more friendly
2242 * towards high-order requests, this should be changed.
2243 */
a737b3e2 2244static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2245 size_t size, size_t align, unsigned long flags)
4d268eba 2246{
b1ab41c4 2247 unsigned long offslab_limit;
4d268eba 2248 size_t left_over = 0;
9888e6fa 2249 int gfporder;
4d268eba 2250
0aa817f0 2251 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2252 unsigned int num;
2253 size_t remainder;
2254
9888e6fa 2255 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2256 if (!num)
2257 continue;
9888e6fa 2258
b1ab41c4
IM
2259 if (flags & CFLGS_OFF_SLAB) {
2260 /*
2261 * Max number of objs-per-slab for caches which
2262 * use off-slab slabs. Needed to avoid a possible
2263 * looping condition in cache_grow().
2264 */
2265 offslab_limit = size - sizeof(struct slab);
2266 offslab_limit /= sizeof(kmem_bufctl_t);
2267
2268 if (num > offslab_limit)
2269 break;
2270 }
4d268eba 2271
9888e6fa 2272 /* Found something acceptable - save it away */
4d268eba 2273 cachep->num = num;
9888e6fa 2274 cachep->gfporder = gfporder;
4d268eba
PE
2275 left_over = remainder;
2276
f78bb8ad
LT
2277 /*
2278 * A VFS-reclaimable slab tends to have most allocations
2279 * as GFP_NOFS and we really don't want to have to be allocating
2280 * higher-order pages when we are unable to shrink dcache.
2281 */
2282 if (flags & SLAB_RECLAIM_ACCOUNT)
2283 break;
2284
4d268eba
PE
2285 /*
2286 * Large number of objects is good, but very large slabs are
2287 * currently bad for the gfp()s.
2288 */
543585cc 2289 if (gfporder >= slab_max_order)
4d268eba
PE
2290 break;
2291
9888e6fa
LT
2292 /*
2293 * Acceptable internal fragmentation?
2294 */
a737b3e2 2295 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2296 break;
2297 }
2298 return left_over;
2299}
2300
83b519e8 2301static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2302{
97d06609 2303 if (slab_state >= FULL)
83b519e8 2304 return enable_cpucache(cachep, gfp);
2ed3a4ef 2305
97d06609 2306 if (slab_state == DOWN) {
f30cf7d1
PE
2307 /*
2308 * Note: the first kmem_cache_create must create the cache
2309 * that's used by kmalloc(24), otherwise the creation of
2310 * further caches will BUG().
2311 */
2312 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2313
2314 /*
2315 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2316 * the first cache, then we need to set up all its list3s,
2317 * otherwise the creation of further caches will BUG().
2318 */
2319 set_up_list3s(cachep, SIZE_AC);
2320 if (INDEX_AC == INDEX_L3)
97d06609 2321 slab_state = PARTIAL_L3;
f30cf7d1 2322 else
97d06609 2323 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1
PE
2324 } else {
2325 cachep->array[smp_processor_id()] =
83b519e8 2326 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2327
97d06609 2328 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2329 set_up_list3s(cachep, SIZE_L3);
97d06609 2330 slab_state = PARTIAL_L3;
f30cf7d1
PE
2331 } else {
2332 int node;
556a169d 2333 for_each_online_node(node) {
f30cf7d1
PE
2334 cachep->nodelists[node] =
2335 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2336 gfp, node);
f30cf7d1
PE
2337 BUG_ON(!cachep->nodelists[node]);
2338 kmem_list3_init(cachep->nodelists[node]);
2339 }
2340 }
2341 }
7d6e6d09 2342 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2343 jiffies + REAPTIMEOUT_LIST3 +
2344 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2345
2346 cpu_cache_get(cachep)->avail = 0;
2347 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2348 cpu_cache_get(cachep)->batchcount = 1;
2349 cpu_cache_get(cachep)->touched = 0;
2350 cachep->batchcount = 1;
2351 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2352 return 0;
f30cf7d1
PE
2353}
2354
1da177e4 2355/**
039363f3 2356 * __kmem_cache_create - Create a cache.
1da177e4
LT
2357 * @name: A string which is used in /proc/slabinfo to identify this cache.
2358 * @size: The size of objects to be created in this cache.
2359 * @align: The required alignment for the objects.
2360 * @flags: SLAB flags
2361 * @ctor: A constructor for the objects.
1da177e4
LT
2362 *
2363 * Returns a ptr to the cache on success, NULL on failure.
2364 * Cannot be called within a int, but can be interrupted.
20c2df83 2365 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2366 *
2367 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2368 * the module calling this has to destroy the cache before getting unloaded.
2369 *
1da177e4
LT
2370 * The flags are
2371 *
2372 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2373 * to catch references to uninitialised memory.
2374 *
2375 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2376 * for buffer overruns.
2377 *
1da177e4
LT
2378 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2379 * cacheline. This can be beneficial if you're counting cycles as closely
2380 * as davem.
2381 */
343e0d7a 2382struct kmem_cache *
039363f3 2383__kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2384 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2385{
2386 size_t left_over, slab_size, ralign;
20cea968 2387 struct kmem_cache *cachep = NULL;
83b519e8 2388 gfp_t gfp;
1da177e4 2389
1da177e4 2390#if DEBUG
1da177e4
LT
2391#if FORCED_DEBUG
2392 /*
2393 * Enable redzoning and last user accounting, except for caches with
2394 * large objects, if the increased size would increase the object size
2395 * above the next power of two: caches with object sizes just above a
2396 * power of two have a significant amount of internal fragmentation.
2397 */
87a927c7
DW
2398 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2399 2 * sizeof(unsigned long long)))
b28a02de 2400 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2401 if (!(flags & SLAB_DESTROY_BY_RCU))
2402 flags |= SLAB_POISON;
2403#endif
2404 if (flags & SLAB_DESTROY_BY_RCU)
2405 BUG_ON(flags & SLAB_POISON);
2406#endif
1da177e4 2407 /*
a737b3e2
AM
2408 * Always checks flags, a caller might be expecting debug support which
2409 * isn't available.
1da177e4 2410 */
40094fa6 2411 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2412
a737b3e2
AM
2413 /*
2414 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2415 * unaligned accesses for some archs when redzoning is used, and makes
2416 * sure any on-slab bufctl's are also correctly aligned.
2417 */
b28a02de
PE
2418 if (size & (BYTES_PER_WORD - 1)) {
2419 size += (BYTES_PER_WORD - 1);
2420 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2421 }
2422
a737b3e2
AM
2423 /* calculate the final buffer alignment: */
2424
1da177e4
LT
2425 /* 1) arch recommendation: can be overridden for debug */
2426 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2427 /*
2428 * Default alignment: as specified by the arch code. Except if
2429 * an object is really small, then squeeze multiple objects into
2430 * one cacheline.
1da177e4
LT
2431 */
2432 ralign = cache_line_size();
b28a02de 2433 while (size <= ralign / 2)
1da177e4
LT
2434 ralign /= 2;
2435 } else {
2436 ralign = BYTES_PER_WORD;
2437 }
ca5f9703
PE
2438
2439 /*
87a927c7
DW
2440 * Redzoning and user store require word alignment or possibly larger.
2441 * Note this will be overridden by architecture or caller mandated
2442 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2443 */
87a927c7
DW
2444 if (flags & SLAB_STORE_USER)
2445 ralign = BYTES_PER_WORD;
2446
2447 if (flags & SLAB_RED_ZONE) {
2448 ralign = REDZONE_ALIGN;
2449 /* If redzoning, ensure that the second redzone is suitably
2450 * aligned, by adjusting the object size accordingly. */
2451 size += REDZONE_ALIGN - 1;
2452 size &= ~(REDZONE_ALIGN - 1);
2453 }
ca5f9703 2454
a44b56d3 2455 /* 2) arch mandated alignment */
1da177e4
LT
2456 if (ralign < ARCH_SLAB_MINALIGN) {
2457 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2458 }
a44b56d3 2459 /* 3) caller mandated alignment */
1da177e4
LT
2460 if (ralign < align) {
2461 ralign = align;
1da177e4 2462 }
3ff84a7f
PE
2463 /* disable debug if necessary */
2464 if (ralign > __alignof__(unsigned long long))
a44b56d3 2465 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2466 /*
ca5f9703 2467 * 4) Store it.
1da177e4
LT
2468 */
2469 align = ralign;
2470
83b519e8
PE
2471 if (slab_is_available())
2472 gfp = GFP_KERNEL;
2473 else
2474 gfp = GFP_NOWAIT;
2475
1da177e4 2476 /* Get cache's description obj. */
9b030cb8 2477 cachep = kmem_cache_zalloc(kmem_cache, gfp);
1da177e4 2478 if (!cachep)
039363f3 2479 return NULL;
1da177e4 2480
b56efcf0 2481 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
3b0efdfa
CL
2482 cachep->object_size = size;
2483 cachep->align = align;
1da177e4 2484#if DEBUG
1da177e4 2485
ca5f9703
PE
2486 /*
2487 * Both debugging options require word-alignment which is calculated
2488 * into align above.
2489 */
1da177e4 2490 if (flags & SLAB_RED_ZONE) {
1da177e4 2491 /* add space for red zone words */
3ff84a7f
PE
2492 cachep->obj_offset += sizeof(unsigned long long);
2493 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2494 }
2495 if (flags & SLAB_STORE_USER) {
ca5f9703 2496 /* user store requires one word storage behind the end of
87a927c7
DW
2497 * the real object. But if the second red zone needs to be
2498 * aligned to 64 bits, we must allow that much space.
1da177e4 2499 */
87a927c7
DW
2500 if (flags & SLAB_RED_ZONE)
2501 size += REDZONE_ALIGN;
2502 else
2503 size += BYTES_PER_WORD;
1da177e4
LT
2504 }
2505#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2506 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3b0efdfa 2507 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
1ab335d8 2508 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2509 size = PAGE_SIZE;
2510 }
2511#endif
2512#endif
2513
e0a42726
IM
2514 /*
2515 * Determine if the slab management is 'on' or 'off' slab.
2516 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2517 * it too early on. Always use on-slab management when
2518 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2519 */
e7cb55b9
CM
2520 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2521 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2522 /*
2523 * Size is large, assume best to place the slab management obj
2524 * off-slab (should allow better packing of objs).
2525 */
2526 flags |= CFLGS_OFF_SLAB;
2527
2528 size = ALIGN(size, align);
2529
f78bb8ad 2530 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2531
2532 if (!cachep->num) {
b4169525 2533 printk(KERN_ERR
2534 "kmem_cache_create: couldn't create cache %s.\n", name);
9b030cb8 2535 kmem_cache_free(kmem_cache, cachep);
039363f3 2536 return NULL;
1da177e4 2537 }
b28a02de
PE
2538 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2539 + sizeof(struct slab), align);
1da177e4
LT
2540
2541 /*
2542 * If the slab has been placed off-slab, and we have enough space then
2543 * move it on-slab. This is at the expense of any extra colouring.
2544 */
2545 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2546 flags &= ~CFLGS_OFF_SLAB;
2547 left_over -= slab_size;
2548 }
2549
2550 if (flags & CFLGS_OFF_SLAB) {
2551 /* really off slab. No need for manual alignment */
b28a02de
PE
2552 slab_size =
2553 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2554
2555#ifdef CONFIG_PAGE_POISONING
2556 /* If we're going to use the generic kernel_map_pages()
2557 * poisoning, then it's going to smash the contents of
2558 * the redzone and userword anyhow, so switch them off.
2559 */
2560 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2561 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2562#endif
1da177e4
LT
2563 }
2564
2565 cachep->colour_off = cache_line_size();
2566 /* Offset must be a multiple of the alignment. */
2567 if (cachep->colour_off < align)
2568 cachep->colour_off = align;
b28a02de 2569 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2570 cachep->slab_size = slab_size;
2571 cachep->flags = flags;
a618e89f 2572 cachep->allocflags = 0;
4b51d669 2573 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2574 cachep->allocflags |= GFP_DMA;
3b0efdfa 2575 cachep->size = size;
6a2d7a95 2576 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2577
e5ac9c5a 2578 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2579 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2580 /*
2581 * This is a possibility for one of the malloc_sizes caches.
2582 * But since we go off slab only for object size greater than
2583 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2584 * this should not happen at all.
2585 * But leave a BUG_ON for some lucky dude.
2586 */
6cb8f913 2587 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2588 }
1da177e4 2589 cachep->ctor = ctor;
1da177e4 2590 cachep->name = name;
7c9adf5a 2591 cachep->refcount = 1;
1da177e4 2592
83b519e8 2593 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef 2594 __kmem_cache_destroy(cachep);
039363f3 2595 return NULL;
2ed3a4ef 2596 }
1da177e4 2597
83835b3d
PZ
2598 if (flags & SLAB_DEBUG_OBJECTS) {
2599 /*
2600 * Would deadlock through slab_destroy()->call_rcu()->
2601 * debug_object_activate()->kmem_cache_alloc().
2602 */
2603 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2604
2605 slab_set_debugobj_lock_classes(cachep);
2606 }
2607
1da177e4
LT
2608 return cachep;
2609}
1da177e4
LT
2610
2611#if DEBUG
2612static void check_irq_off(void)
2613{
2614 BUG_ON(!irqs_disabled());
2615}
2616
2617static void check_irq_on(void)
2618{
2619 BUG_ON(irqs_disabled());
2620}
2621
343e0d7a 2622static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2623{
2624#ifdef CONFIG_SMP
2625 check_irq_off();
7d6e6d09 2626 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2627#endif
2628}
e498be7d 2629
343e0d7a 2630static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2631{
2632#ifdef CONFIG_SMP
2633 check_irq_off();
2634 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2635#endif
2636}
2637
1da177e4
LT
2638#else
2639#define check_irq_off() do { } while(0)
2640#define check_irq_on() do { } while(0)
2641#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2642#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2643#endif
2644
aab2207c
CL
2645static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2646 struct array_cache *ac,
2647 int force, int node);
2648
1da177e4
LT
2649static void do_drain(void *arg)
2650{
a737b3e2 2651 struct kmem_cache *cachep = arg;
1da177e4 2652 struct array_cache *ac;
7d6e6d09 2653 int node = numa_mem_id();
1da177e4
LT
2654
2655 check_irq_off();
9a2dba4b 2656 ac = cpu_cache_get(cachep);
ff69416e
CL
2657 spin_lock(&cachep->nodelists[node]->list_lock);
2658 free_block(cachep, ac->entry, ac->avail, node);
2659 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2660 ac->avail = 0;
2661}
2662
343e0d7a 2663static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2664{
e498be7d
CL
2665 struct kmem_list3 *l3;
2666 int node;
2667
15c8b6c1 2668 on_each_cpu(do_drain, cachep, 1);
1da177e4 2669 check_irq_on();
b28a02de 2670 for_each_online_node(node) {
e498be7d 2671 l3 = cachep->nodelists[node];
a4523a8b
RD
2672 if (l3 && l3->alien)
2673 drain_alien_cache(cachep, l3->alien);
2674 }
2675
2676 for_each_online_node(node) {
2677 l3 = cachep->nodelists[node];
2678 if (l3)
aab2207c 2679 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2680 }
1da177e4
LT
2681}
2682
ed11d9eb
CL
2683/*
2684 * Remove slabs from the list of free slabs.
2685 * Specify the number of slabs to drain in tofree.
2686 *
2687 * Returns the actual number of slabs released.
2688 */
2689static int drain_freelist(struct kmem_cache *cache,
2690 struct kmem_list3 *l3, int tofree)
1da177e4 2691{
ed11d9eb
CL
2692 struct list_head *p;
2693 int nr_freed;
1da177e4 2694 struct slab *slabp;
1da177e4 2695
ed11d9eb
CL
2696 nr_freed = 0;
2697 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2698
ed11d9eb 2699 spin_lock_irq(&l3->list_lock);
e498be7d 2700 p = l3->slabs_free.prev;
ed11d9eb
CL
2701 if (p == &l3->slabs_free) {
2702 spin_unlock_irq(&l3->list_lock);
2703 goto out;
2704 }
1da177e4 2705
ed11d9eb 2706 slabp = list_entry(p, struct slab, list);
1da177e4 2707#if DEBUG
40094fa6 2708 BUG_ON(slabp->inuse);
1da177e4
LT
2709#endif
2710 list_del(&slabp->list);
ed11d9eb
CL
2711 /*
2712 * Safe to drop the lock. The slab is no longer linked
2713 * to the cache.
2714 */
2715 l3->free_objects -= cache->num;
e498be7d 2716 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2717 slab_destroy(cache, slabp);
2718 nr_freed++;
1da177e4 2719 }
ed11d9eb
CL
2720out:
2721 return nr_freed;
1da177e4
LT
2722}
2723
18004c5d 2724/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2725static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2726{
2727 int ret = 0, i = 0;
2728 struct kmem_list3 *l3;
2729
2730 drain_cpu_caches(cachep);
2731
2732 check_irq_on();
2733 for_each_online_node(i) {
2734 l3 = cachep->nodelists[i];
ed11d9eb
CL
2735 if (!l3)
2736 continue;
2737
2738 drain_freelist(cachep, l3, l3->free_objects);
2739
2740 ret += !list_empty(&l3->slabs_full) ||
2741 !list_empty(&l3->slabs_partial);
e498be7d
CL
2742 }
2743 return (ret ? 1 : 0);
2744}
2745
1da177e4
LT
2746/**
2747 * kmem_cache_shrink - Shrink a cache.
2748 * @cachep: The cache to shrink.
2749 *
2750 * Releases as many slabs as possible for a cache.
2751 * To help debugging, a zero exit status indicates all slabs were released.
2752 */
343e0d7a 2753int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2754{
8f5be20b 2755 int ret;
40094fa6 2756 BUG_ON(!cachep || in_interrupt());
1da177e4 2757
95402b38 2758 get_online_cpus();
18004c5d 2759 mutex_lock(&slab_mutex);
8f5be20b 2760 ret = __cache_shrink(cachep);
18004c5d 2761 mutex_unlock(&slab_mutex);
95402b38 2762 put_online_cpus();
8f5be20b 2763 return ret;
1da177e4
LT
2764}
2765EXPORT_SYMBOL(kmem_cache_shrink);
2766
945cf2b6 2767int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2768{
945cf2b6 2769 return __cache_shrink(cachep);
1da177e4 2770}
1da177e4 2771
e5ac9c5a
RT
2772/*
2773 * Get the memory for a slab management obj.
2774 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2775 * always come from malloc_sizes caches. The slab descriptor cannot
2776 * come from the same cache which is getting created because,
2777 * when we are searching for an appropriate cache for these
2778 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2779 * If we are creating a malloc_sizes cache here it would not be visible to
2780 * kmem_find_general_cachep till the initialization is complete.
2781 * Hence we cannot have slabp_cache same as the original cache.
2782 */
343e0d7a 2783static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2784 int colour_off, gfp_t local_flags,
2785 int nodeid)
1da177e4
LT
2786{
2787 struct slab *slabp;
b28a02de 2788
1da177e4
LT
2789 if (OFF_SLAB(cachep)) {
2790 /* Slab management obj is off-slab. */
5b74ada7 2791 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2792 local_flags, nodeid);
d5cff635
CM
2793 /*
2794 * If the first object in the slab is leaked (it's allocated
2795 * but no one has a reference to it), we want to make sure
2796 * kmemleak does not treat the ->s_mem pointer as a reference
2797 * to the object. Otherwise we will not report the leak.
2798 */
c017b4be
CM
2799 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2800 local_flags);
1da177e4
LT
2801 if (!slabp)
2802 return NULL;
2803 } else {
b28a02de 2804 slabp = objp + colour_off;
1da177e4
LT
2805 colour_off += cachep->slab_size;
2806 }
2807 slabp->inuse = 0;
2808 slabp->colouroff = colour_off;
b28a02de 2809 slabp->s_mem = objp + colour_off;
5b74ada7 2810 slabp->nodeid = nodeid;
e51bfd0a 2811 slabp->free = 0;
1da177e4
LT
2812 return slabp;
2813}
2814
2815static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2816{
b28a02de 2817 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2818}
2819
343e0d7a 2820static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2821 struct slab *slabp)
1da177e4
LT
2822{
2823 int i;
2824
2825 for (i = 0; i < cachep->num; i++) {
8fea4e96 2826 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2827#if DEBUG
2828 /* need to poison the objs? */
2829 if (cachep->flags & SLAB_POISON)
2830 poison_obj(cachep, objp, POISON_FREE);
2831 if (cachep->flags & SLAB_STORE_USER)
2832 *dbg_userword(cachep, objp) = NULL;
2833
2834 if (cachep->flags & SLAB_RED_ZONE) {
2835 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2836 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2837 }
2838 /*
a737b3e2
AM
2839 * Constructors are not allowed to allocate memory from the same
2840 * cache which they are a constructor for. Otherwise, deadlock.
2841 * They must also be threaded.
1da177e4
LT
2842 */
2843 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2844 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2845
2846 if (cachep->flags & SLAB_RED_ZONE) {
2847 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2848 slab_error(cachep, "constructor overwrote the"
b28a02de 2849 " end of an object");
1da177e4
LT
2850 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2851 slab_error(cachep, "constructor overwrote the"
b28a02de 2852 " start of an object");
1da177e4 2853 }
3b0efdfa 2854 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2855 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2856 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2857 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2858#else
2859 if (cachep->ctor)
51cc5068 2860 cachep->ctor(objp);
1da177e4 2861#endif
b28a02de 2862 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2863 }
b28a02de 2864 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2865}
2866
343e0d7a 2867static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2868{
4b51d669
CL
2869 if (CONFIG_ZONE_DMA_FLAG) {
2870 if (flags & GFP_DMA)
a618e89f 2871 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2872 else
a618e89f 2873 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2874 }
1da177e4
LT
2875}
2876
a737b3e2
AM
2877static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2878 int nodeid)
78d382d7 2879{
8fea4e96 2880 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2881 kmem_bufctl_t next;
2882
2883 slabp->inuse++;
2884 next = slab_bufctl(slabp)[slabp->free];
2885#if DEBUG
2886 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2887 WARN_ON(slabp->nodeid != nodeid);
2888#endif
2889 slabp->free = next;
2890
2891 return objp;
2892}
2893
a737b3e2
AM
2894static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2895 void *objp, int nodeid)
78d382d7 2896{
8fea4e96 2897 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2898
2899#if DEBUG
2900 /* Verify that the slab belongs to the intended node */
2901 WARN_ON(slabp->nodeid != nodeid);
2902
871751e2 2903 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2904 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2905 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2906 BUG();
2907 }
2908#endif
2909 slab_bufctl(slabp)[objnr] = slabp->free;
2910 slabp->free = objnr;
2911 slabp->inuse--;
2912}
2913
4776874f
PE
2914/*
2915 * Map pages beginning at addr to the given cache and slab. This is required
2916 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2917 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2918 */
2919static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2920 void *addr)
1da177e4 2921{
4776874f 2922 int nr_pages;
1da177e4
LT
2923 struct page *page;
2924
4776874f 2925 page = virt_to_page(addr);
84097518 2926
4776874f 2927 nr_pages = 1;
84097518 2928 if (likely(!PageCompound(page)))
4776874f
PE
2929 nr_pages <<= cache->gfporder;
2930
1da177e4 2931 do {
35026088
CL
2932 page->slab_cache = cache;
2933 page->slab_page = slab;
1da177e4 2934 page++;
4776874f 2935 } while (--nr_pages);
1da177e4
LT
2936}
2937
2938/*
2939 * Grow (by 1) the number of slabs within a cache. This is called by
2940 * kmem_cache_alloc() when there are no active objs left in a cache.
2941 */
3c517a61
CL
2942static int cache_grow(struct kmem_cache *cachep,
2943 gfp_t flags, int nodeid, void *objp)
1da177e4 2944{
b28a02de 2945 struct slab *slabp;
b28a02de
PE
2946 size_t offset;
2947 gfp_t local_flags;
e498be7d 2948 struct kmem_list3 *l3;
1da177e4 2949
a737b3e2
AM
2950 /*
2951 * Be lazy and only check for valid flags here, keeping it out of the
2952 * critical path in kmem_cache_alloc().
1da177e4 2953 */
6cb06229
CL
2954 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2955 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2956
2e1217cf 2957 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2958 check_irq_off();
2e1217cf
RT
2959 l3 = cachep->nodelists[nodeid];
2960 spin_lock(&l3->list_lock);
1da177e4
LT
2961
2962 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2963 offset = l3->colour_next;
2964 l3->colour_next++;
2965 if (l3->colour_next >= cachep->colour)
2966 l3->colour_next = 0;
2967 spin_unlock(&l3->list_lock);
1da177e4 2968
2e1217cf 2969 offset *= cachep->colour_off;
1da177e4
LT
2970
2971 if (local_flags & __GFP_WAIT)
2972 local_irq_enable();
2973
2974 /*
2975 * The test for missing atomic flag is performed here, rather than
2976 * the more obvious place, simply to reduce the critical path length
2977 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2978 * will eventually be caught here (where it matters).
2979 */
2980 kmem_flagcheck(cachep, flags);
2981
a737b3e2
AM
2982 /*
2983 * Get mem for the objs. Attempt to allocate a physical page from
2984 * 'nodeid'.
e498be7d 2985 */
3c517a61 2986 if (!objp)
b8c1c5da 2987 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2988 if (!objp)
1da177e4
LT
2989 goto failed;
2990
2991 /* Get slab management. */
3c517a61 2992 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2993 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2994 if (!slabp)
1da177e4
LT
2995 goto opps1;
2996
4776874f 2997 slab_map_pages(cachep, slabp, objp);
1da177e4 2998
a35afb83 2999 cache_init_objs(cachep, slabp);
1da177e4
LT
3000
3001 if (local_flags & __GFP_WAIT)
3002 local_irq_disable();
3003 check_irq_off();
e498be7d 3004 spin_lock(&l3->list_lock);
1da177e4
LT
3005
3006 /* Make slab active. */
e498be7d 3007 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 3008 STATS_INC_GROWN(cachep);
e498be7d
CL
3009 l3->free_objects += cachep->num;
3010 spin_unlock(&l3->list_lock);
1da177e4 3011 return 1;
a737b3e2 3012opps1:
1da177e4 3013 kmem_freepages(cachep, objp);
a737b3e2 3014failed:
1da177e4
LT
3015 if (local_flags & __GFP_WAIT)
3016 local_irq_disable();
3017 return 0;
3018}
3019
3020#if DEBUG
3021
3022/*
3023 * Perform extra freeing checks:
3024 * - detect bad pointers.
3025 * - POISON/RED_ZONE checking
1da177e4
LT
3026 */
3027static void kfree_debugcheck(const void *objp)
3028{
1da177e4
LT
3029 if (!virt_addr_valid(objp)) {
3030 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
3031 (unsigned long)objp);
3032 BUG();
1da177e4 3033 }
1da177e4
LT
3034}
3035
58ce1fd5
PE
3036static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3037{
b46b8f19 3038 unsigned long long redzone1, redzone2;
58ce1fd5
PE
3039
3040 redzone1 = *dbg_redzone1(cache, obj);
3041 redzone2 = *dbg_redzone2(cache, obj);
3042
3043 /*
3044 * Redzone is ok.
3045 */
3046 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3047 return;
3048
3049 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3050 slab_error(cache, "double free detected");
3051 else
3052 slab_error(cache, "memory outside object was overwritten");
3053
b46b8f19 3054 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
3055 obj, redzone1, redzone2);
3056}
3057
343e0d7a 3058static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 3059 void *caller)
1da177e4
LT
3060{
3061 struct page *page;
3062 unsigned int objnr;
3063 struct slab *slabp;
3064
80cbd911
MW
3065 BUG_ON(virt_to_cache(objp) != cachep);
3066
3dafccf2 3067 objp -= obj_offset(cachep);
1da177e4 3068 kfree_debugcheck(objp);
b49af68f 3069 page = virt_to_head_page(objp);
1da177e4 3070
35026088 3071 slabp = page->slab_page;
1da177e4
LT
3072
3073 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 3074 verify_redzone_free(cachep, objp);
1da177e4
LT
3075 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3076 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3077 }
3078 if (cachep->flags & SLAB_STORE_USER)
3079 *dbg_userword(cachep, objp) = caller;
3080
8fea4e96 3081 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3082
3083 BUG_ON(objnr >= cachep->num);
8fea4e96 3084 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3085
871751e2
AV
3086#ifdef CONFIG_DEBUG_SLAB_LEAK
3087 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3088#endif
1da177e4
LT
3089 if (cachep->flags & SLAB_POISON) {
3090#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3091 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 3092 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 3093 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3094 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
3095 } else {
3096 poison_obj(cachep, objp, POISON_FREE);
3097 }
3098#else
3099 poison_obj(cachep, objp, POISON_FREE);
3100#endif
3101 }
3102 return objp;
3103}
3104
343e0d7a 3105static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3106{
3107 kmem_bufctl_t i;
3108 int entries = 0;
b28a02de 3109
1da177e4
LT
3110 /* Check slab's freelist to see if this obj is there. */
3111 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3112 entries++;
3113 if (entries > cachep->num || i >= cachep->num)
3114 goto bad;
3115 }
3116 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3117bad:
3118 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
3119 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3120 cachep->name, cachep->num, slabp, slabp->inuse,
3121 print_tainted());
fdde6abb
SAS
3122 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3123 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3124 1);
1da177e4
LT
3125 BUG();
3126 }
3127}
3128#else
3129#define kfree_debugcheck(x) do { } while(0)
3130#define cache_free_debugcheck(x,objp,z) (objp)
3131#define check_slabp(x,y) do { } while(0)
3132#endif
3133
072bb0aa
MG
3134static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3135 bool force_refill)
1da177e4
LT
3136{
3137 int batchcount;
3138 struct kmem_list3 *l3;
3139 struct array_cache *ac;
1ca4cb24
PE
3140 int node;
3141
1da177e4 3142 check_irq_off();
7d6e6d09 3143 node = numa_mem_id();
072bb0aa
MG
3144 if (unlikely(force_refill))
3145 goto force_grow;
3146retry:
9a2dba4b 3147 ac = cpu_cache_get(cachep);
1da177e4
LT
3148 batchcount = ac->batchcount;
3149 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3150 /*
3151 * If there was little recent activity on this cache, then
3152 * perform only a partial refill. Otherwise we could generate
3153 * refill bouncing.
1da177e4
LT
3154 */
3155 batchcount = BATCHREFILL_LIMIT;
3156 }
1ca4cb24 3157 l3 = cachep->nodelists[node];
e498be7d
CL
3158
3159 BUG_ON(ac->avail > 0 || !l3);
3160 spin_lock(&l3->list_lock);
1da177e4 3161
3ded175a 3162 /* See if we can refill from the shared array */
44b57f1c
NP
3163 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3164 l3->shared->touched = 1;
3ded175a 3165 goto alloc_done;
44b57f1c 3166 }
3ded175a 3167
1da177e4
LT
3168 while (batchcount > 0) {
3169 struct list_head *entry;
3170 struct slab *slabp;
3171 /* Get slab alloc is to come from. */
3172 entry = l3->slabs_partial.next;
3173 if (entry == &l3->slabs_partial) {
3174 l3->free_touched = 1;
3175 entry = l3->slabs_free.next;
3176 if (entry == &l3->slabs_free)
3177 goto must_grow;
3178 }
3179
3180 slabp = list_entry(entry, struct slab, list);
3181 check_slabp(cachep, slabp);
3182 check_spinlock_acquired(cachep);
714b8171
PE
3183
3184 /*
3185 * The slab was either on partial or free list so
3186 * there must be at least one object available for
3187 * allocation.
3188 */
249b9f33 3189 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3190
1da177e4 3191 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3192 STATS_INC_ALLOCED(cachep);
3193 STATS_INC_ACTIVE(cachep);
3194 STATS_SET_HIGH(cachep);
3195
072bb0aa
MG
3196 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3197 node));
1da177e4
LT
3198 }
3199 check_slabp(cachep, slabp);
3200
3201 /* move slabp to correct slabp list: */
3202 list_del(&slabp->list);
3203 if (slabp->free == BUFCTL_END)
3204 list_add(&slabp->list, &l3->slabs_full);
3205 else
3206 list_add(&slabp->list, &l3->slabs_partial);
3207 }
3208
a737b3e2 3209must_grow:
1da177e4 3210 l3->free_objects -= ac->avail;
a737b3e2 3211alloc_done:
e498be7d 3212 spin_unlock(&l3->list_lock);
1da177e4
LT
3213
3214 if (unlikely(!ac->avail)) {
3215 int x;
072bb0aa 3216force_grow:
3c517a61 3217 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3218
a737b3e2 3219 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3220 ac = cpu_cache_get(cachep);
072bb0aa
MG
3221
3222 /* no objects in sight? abort */
3223 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3224 return NULL;
3225
a737b3e2 3226 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3227 goto retry;
3228 }
3229 ac->touched = 1;
072bb0aa
MG
3230
3231 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3232}
3233
a737b3e2
AM
3234static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3235 gfp_t flags)
1da177e4
LT
3236{
3237 might_sleep_if(flags & __GFP_WAIT);
3238#if DEBUG
3239 kmem_flagcheck(cachep, flags);
3240#endif
3241}
3242
3243#if DEBUG
a737b3e2
AM
3244static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3245 gfp_t flags, void *objp, void *caller)
1da177e4 3246{
b28a02de 3247 if (!objp)
1da177e4 3248 return objp;
b28a02de 3249 if (cachep->flags & SLAB_POISON) {
1da177e4 3250#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3251 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3252 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3253 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3254 else
3255 check_poison_obj(cachep, objp);
3256#else
3257 check_poison_obj(cachep, objp);
3258#endif
3259 poison_obj(cachep, objp, POISON_INUSE);
3260 }
3261 if (cachep->flags & SLAB_STORE_USER)
3262 *dbg_userword(cachep, objp) = caller;
3263
3264 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3265 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3266 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3267 slab_error(cachep, "double free, or memory outside"
3268 " object was overwritten");
b28a02de 3269 printk(KERN_ERR
b46b8f19 3270 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3271 objp, *dbg_redzone1(cachep, objp),
3272 *dbg_redzone2(cachep, objp));
1da177e4
LT
3273 }
3274 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3275 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3276 }
871751e2
AV
3277#ifdef CONFIG_DEBUG_SLAB_LEAK
3278 {
3279 struct slab *slabp;
3280 unsigned objnr;
3281
35026088 3282 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3283 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3284 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3285 }
3286#endif
3dafccf2 3287 objp += obj_offset(cachep);
4f104934 3288 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3289 cachep->ctor(objp);
7ea466f2
TH
3290 if (ARCH_SLAB_MINALIGN &&
3291 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3292 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3293 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3294 }
1da177e4
LT
3295 return objp;
3296}
3297#else
3298#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3299#endif
3300
773ff60e 3301static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3302{
9b030cb8 3303 if (cachep == kmem_cache)
773ff60e 3304 return false;
8a8b6502 3305
8c138bc0 3306 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3307}
3308
343e0d7a 3309static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3310{
b28a02de 3311 void *objp;
1da177e4 3312 struct array_cache *ac;
072bb0aa 3313 bool force_refill = false;
1da177e4 3314
5c382300 3315 check_irq_off();
8a8b6502 3316
9a2dba4b 3317 ac = cpu_cache_get(cachep);
1da177e4 3318 if (likely(ac->avail)) {
1da177e4 3319 ac->touched = 1;
072bb0aa
MG
3320 objp = ac_get_obj(cachep, ac, flags, false);
3321
ddbf2e83 3322 /*
072bb0aa
MG
3323 * Allow for the possibility all avail objects are not allowed
3324 * by the current flags
ddbf2e83 3325 */
072bb0aa
MG
3326 if (objp) {
3327 STATS_INC_ALLOCHIT(cachep);
3328 goto out;
3329 }
3330 force_refill = true;
1da177e4 3331 }
072bb0aa
MG
3332
3333 STATS_INC_ALLOCMISS(cachep);
3334 objp = cache_alloc_refill(cachep, flags, force_refill);
3335 /*
3336 * the 'ac' may be updated by cache_alloc_refill(),
3337 * and kmemleak_erase() requires its correct value.
3338 */
3339 ac = cpu_cache_get(cachep);
3340
3341out:
d5cff635
CM
3342 /*
3343 * To avoid a false negative, if an object that is in one of the
3344 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3345 * treat the array pointers as a reference to the object.
3346 */
f3d8b53a
O
3347 if (objp)
3348 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3349 return objp;
3350}
3351
e498be7d 3352#ifdef CONFIG_NUMA
c61afb18 3353/*
b2455396 3354 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3355 *
3356 * If we are in_interrupt, then process context, including cpusets and
3357 * mempolicy, may not apply and should not be used for allocation policy.
3358 */
3359static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3360{
3361 int nid_alloc, nid_here;
3362
765c4507 3363 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3364 return NULL;
7d6e6d09 3365 nid_alloc = nid_here = numa_mem_id();
c61afb18 3366 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3367 nid_alloc = cpuset_slab_spread_node();
c61afb18 3368 else if (current->mempolicy)
e7b691b0 3369 nid_alloc = slab_node();
c61afb18 3370 if (nid_alloc != nid_here)
8b98c169 3371 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3372 return NULL;
3373}
3374
765c4507
CL
3375/*
3376 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3377 * certain node and fall back is permitted. First we scan all the
3378 * available nodelists for available objects. If that fails then we
3379 * perform an allocation without specifying a node. This allows the page
3380 * allocator to do its reclaim / fallback magic. We then insert the
3381 * slab into the proper nodelist and then allocate from it.
765c4507 3382 */
8c8cc2c1 3383static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3384{
8c8cc2c1
PE
3385 struct zonelist *zonelist;
3386 gfp_t local_flags;
dd1a239f 3387 struct zoneref *z;
54a6eb5c
MG
3388 struct zone *zone;
3389 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3390 void *obj = NULL;
3c517a61 3391 int nid;
cc9a6c87 3392 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3393
3394 if (flags & __GFP_THISNODE)
3395 return NULL;
3396
6cb06229 3397 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3398
cc9a6c87
MG
3399retry_cpuset:
3400 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3401 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3402
3c517a61
CL
3403retry:
3404 /*
3405 * Look through allowed nodes for objects available
3406 * from existing per node queues.
3407 */
54a6eb5c
MG
3408 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3409 nid = zone_to_nid(zone);
aedb0eb1 3410
54a6eb5c 3411 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3412 cache->nodelists[nid] &&
481c5346 3413 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3414 obj = ____cache_alloc_node(cache,
3415 flags | GFP_THISNODE, nid);
481c5346
CL
3416 if (obj)
3417 break;
3418 }
3c517a61
CL
3419 }
3420
cfce6604 3421 if (!obj) {
3c517a61
CL
3422 /*
3423 * This allocation will be performed within the constraints
3424 * of the current cpuset / memory policy requirements.
3425 * We may trigger various forms of reclaim on the allowed
3426 * set and go into memory reserves if necessary.
3427 */
dd47ea75
CL
3428 if (local_flags & __GFP_WAIT)
3429 local_irq_enable();
3430 kmem_flagcheck(cache, flags);
7d6e6d09 3431 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3432 if (local_flags & __GFP_WAIT)
3433 local_irq_disable();
3c517a61
CL
3434 if (obj) {
3435 /*
3436 * Insert into the appropriate per node queues
3437 */
3438 nid = page_to_nid(virt_to_page(obj));
3439 if (cache_grow(cache, flags, nid, obj)) {
3440 obj = ____cache_alloc_node(cache,
3441 flags | GFP_THISNODE, nid);
3442 if (!obj)
3443 /*
3444 * Another processor may allocate the
3445 * objects in the slab since we are
3446 * not holding any locks.
3447 */
3448 goto retry;
3449 } else {
b6a60451 3450 /* cache_grow already freed obj */
3c517a61
CL
3451 obj = NULL;
3452 }
3453 }
aedb0eb1 3454 }
cc9a6c87
MG
3455
3456 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3457 goto retry_cpuset;
765c4507
CL
3458 return obj;
3459}
3460
e498be7d
CL
3461/*
3462 * A interface to enable slab creation on nodeid
1da177e4 3463 */
8b98c169 3464static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3465 int nodeid)
e498be7d
CL
3466{
3467 struct list_head *entry;
b28a02de
PE
3468 struct slab *slabp;
3469 struct kmem_list3 *l3;
3470 void *obj;
b28a02de
PE
3471 int x;
3472
3473 l3 = cachep->nodelists[nodeid];
3474 BUG_ON(!l3);
3475
a737b3e2 3476retry:
ca3b9b91 3477 check_irq_off();
b28a02de
PE
3478 spin_lock(&l3->list_lock);
3479 entry = l3->slabs_partial.next;
3480 if (entry == &l3->slabs_partial) {
3481 l3->free_touched = 1;
3482 entry = l3->slabs_free.next;
3483 if (entry == &l3->slabs_free)
3484 goto must_grow;
3485 }
3486
3487 slabp = list_entry(entry, struct slab, list);
3488 check_spinlock_acquired_node(cachep, nodeid);
3489 check_slabp(cachep, slabp);
3490
3491 STATS_INC_NODEALLOCS(cachep);
3492 STATS_INC_ACTIVE(cachep);
3493 STATS_SET_HIGH(cachep);
3494
3495 BUG_ON(slabp->inuse == cachep->num);
3496
78d382d7 3497 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3498 check_slabp(cachep, slabp);
3499 l3->free_objects--;
3500 /* move slabp to correct slabp list: */
3501 list_del(&slabp->list);
3502
a737b3e2 3503 if (slabp->free == BUFCTL_END)
b28a02de 3504 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3505 else
b28a02de 3506 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3507
b28a02de
PE
3508 spin_unlock(&l3->list_lock);
3509 goto done;
e498be7d 3510
a737b3e2 3511must_grow:
b28a02de 3512 spin_unlock(&l3->list_lock);
3c517a61 3513 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3514 if (x)
3515 goto retry;
1da177e4 3516
8c8cc2c1 3517 return fallback_alloc(cachep, flags);
e498be7d 3518
a737b3e2 3519done:
b28a02de 3520 return obj;
e498be7d 3521}
8c8cc2c1
PE
3522
3523/**
3524 * kmem_cache_alloc_node - Allocate an object on the specified node
3525 * @cachep: The cache to allocate from.
3526 * @flags: See kmalloc().
3527 * @nodeid: node number of the target node.
3528 * @caller: return address of caller, used for debug information
3529 *
3530 * Identical to kmem_cache_alloc but it will allocate memory on the given
3531 * node, which can improve the performance for cpu bound structures.
3532 *
3533 * Fallback to other node is possible if __GFP_THISNODE is not set.
3534 */
3535static __always_inline void *
3536__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3537 void *caller)
3538{
3539 unsigned long save_flags;
3540 void *ptr;
7d6e6d09 3541 int slab_node = numa_mem_id();
8c8cc2c1 3542
dcce284a 3543 flags &= gfp_allowed_mask;
7e85ee0c 3544
cf40bd16
NP
3545 lockdep_trace_alloc(flags);
3546
773ff60e 3547 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3548 return NULL;
3549
8c8cc2c1
PE
3550 cache_alloc_debugcheck_before(cachep, flags);
3551 local_irq_save(save_flags);
3552
eacbbae3 3553 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3554 nodeid = slab_node;
8c8cc2c1
PE
3555
3556 if (unlikely(!cachep->nodelists[nodeid])) {
3557 /* Node not bootstrapped yet */
3558 ptr = fallback_alloc(cachep, flags);
3559 goto out;
3560 }
3561
7d6e6d09 3562 if (nodeid == slab_node) {
8c8cc2c1
PE
3563 /*
3564 * Use the locally cached objects if possible.
3565 * However ____cache_alloc does not allow fallback
3566 * to other nodes. It may fail while we still have
3567 * objects on other nodes available.
3568 */
3569 ptr = ____cache_alloc(cachep, flags);
3570 if (ptr)
3571 goto out;
3572 }
3573 /* ___cache_alloc_node can fall back to other nodes */
3574 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3575 out:
3576 local_irq_restore(save_flags);
3577 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3578 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3579 flags);
8c8cc2c1 3580
c175eea4 3581 if (likely(ptr))
8c138bc0 3582 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3583
d07dbea4 3584 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3585 memset(ptr, 0, cachep->object_size);
d07dbea4 3586
8c8cc2c1
PE
3587 return ptr;
3588}
3589
3590static __always_inline void *
3591__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3592{
3593 void *objp;
3594
3595 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3596 objp = alternate_node_alloc(cache, flags);
3597 if (objp)
3598 goto out;
3599 }
3600 objp = ____cache_alloc(cache, flags);
3601
3602 /*
3603 * We may just have run out of memory on the local node.
3604 * ____cache_alloc_node() knows how to locate memory on other nodes
3605 */
7d6e6d09
LS
3606 if (!objp)
3607 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3608
3609 out:
3610 return objp;
3611}
3612#else
3613
3614static __always_inline void *
3615__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3616{
3617 return ____cache_alloc(cachep, flags);
3618}
3619
3620#endif /* CONFIG_NUMA */
3621
3622static __always_inline void *
3623__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3624{
3625 unsigned long save_flags;
3626 void *objp;
3627
dcce284a 3628 flags &= gfp_allowed_mask;
7e85ee0c 3629
cf40bd16
NP
3630 lockdep_trace_alloc(flags);
3631
773ff60e 3632 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3633 return NULL;
3634
8c8cc2c1
PE
3635 cache_alloc_debugcheck_before(cachep, flags);
3636 local_irq_save(save_flags);
3637 objp = __do_cache_alloc(cachep, flags);
3638 local_irq_restore(save_flags);
3639 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3640 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3641 flags);
8c8cc2c1
PE
3642 prefetchw(objp);
3643
c175eea4 3644 if (likely(objp))
8c138bc0 3645 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3646
d07dbea4 3647 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3648 memset(objp, 0, cachep->object_size);
d07dbea4 3649
8c8cc2c1
PE
3650 return objp;
3651}
e498be7d
CL
3652
3653/*
3654 * Caller needs to acquire correct kmem_list's list_lock
3655 */
343e0d7a 3656static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3657 int node)
1da177e4
LT
3658{
3659 int i;
e498be7d 3660 struct kmem_list3 *l3;
1da177e4
LT
3661
3662 for (i = 0; i < nr_objects; i++) {
072bb0aa 3663 void *objp;
1da177e4 3664 struct slab *slabp;
1da177e4 3665
072bb0aa
MG
3666 clear_obj_pfmemalloc(&objpp[i]);
3667 objp = objpp[i];
3668
6ed5eb22 3669 slabp = virt_to_slab(objp);
ff69416e 3670 l3 = cachep->nodelists[node];
1da177e4 3671 list_del(&slabp->list);
ff69416e 3672 check_spinlock_acquired_node(cachep, node);
1da177e4 3673 check_slabp(cachep, slabp);
78d382d7 3674 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3675 STATS_DEC_ACTIVE(cachep);
e498be7d 3676 l3->free_objects++;
1da177e4
LT
3677 check_slabp(cachep, slabp);
3678
3679 /* fixup slab chains */
3680 if (slabp->inuse == 0) {
e498be7d
CL
3681 if (l3->free_objects > l3->free_limit) {
3682 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3683 /* No need to drop any previously held
3684 * lock here, even if we have a off-slab slab
3685 * descriptor it is guaranteed to come from
3686 * a different cache, refer to comments before
3687 * alloc_slabmgmt.
3688 */
1da177e4
LT
3689 slab_destroy(cachep, slabp);
3690 } else {
e498be7d 3691 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3692 }
3693 } else {
3694 /* Unconditionally move a slab to the end of the
3695 * partial list on free - maximum time for the
3696 * other objects to be freed, too.
3697 */
e498be7d 3698 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3699 }
3700 }
3701}
3702
343e0d7a 3703static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3704{
3705 int batchcount;
e498be7d 3706 struct kmem_list3 *l3;
7d6e6d09 3707 int node = numa_mem_id();
1da177e4
LT
3708
3709 batchcount = ac->batchcount;
3710#if DEBUG
3711 BUG_ON(!batchcount || batchcount > ac->avail);
3712#endif
3713 check_irq_off();
ff69416e 3714 l3 = cachep->nodelists[node];
873623df 3715 spin_lock(&l3->list_lock);
e498be7d
CL
3716 if (l3->shared) {
3717 struct array_cache *shared_array = l3->shared;
b28a02de 3718 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3719 if (max) {
3720 if (batchcount > max)
3721 batchcount = max;
e498be7d 3722 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3723 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3724 shared_array->avail += batchcount;
3725 goto free_done;
3726 }
3727 }
3728
ff69416e 3729 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3730free_done:
1da177e4
LT
3731#if STATS
3732 {
3733 int i = 0;
3734 struct list_head *p;
3735
e498be7d
CL
3736 p = l3->slabs_free.next;
3737 while (p != &(l3->slabs_free)) {
1da177e4
LT
3738 struct slab *slabp;
3739
3740 slabp = list_entry(p, struct slab, list);
3741 BUG_ON(slabp->inuse);
3742
3743 i++;
3744 p = p->next;
3745 }
3746 STATS_SET_FREEABLE(cachep, i);
3747 }
3748#endif
e498be7d 3749 spin_unlock(&l3->list_lock);
1da177e4 3750 ac->avail -= batchcount;
a737b3e2 3751 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3752}
3753
3754/*
a737b3e2
AM
3755 * Release an obj back to its cache. If the obj has a constructed state, it must
3756 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3757 */
a947eb95
SS
3758static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3759 void *caller)
1da177e4 3760{
9a2dba4b 3761 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3762
3763 check_irq_off();
d5cff635 3764 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3765 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3766
8c138bc0 3767 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3768
1807a1aa
SS
3769 /*
3770 * Skip calling cache_free_alien() when the platform is not numa.
3771 * This will avoid cache misses that happen while accessing slabp (which
3772 * is per page memory reference) to get nodeid. Instead use a global
3773 * variable to skip the call, which is mostly likely to be present in
3774 * the cache.
3775 */
b6e68bc1 3776 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3777 return;
3778
1da177e4
LT
3779 if (likely(ac->avail < ac->limit)) {
3780 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3781 } else {
3782 STATS_INC_FREEMISS(cachep);
3783 cache_flusharray(cachep, ac);
1da177e4 3784 }
42c8c99c 3785
072bb0aa 3786 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3787}
3788
3789/**
3790 * kmem_cache_alloc - Allocate an object
3791 * @cachep: The cache to allocate from.
3792 * @flags: See kmalloc().
3793 *
3794 * Allocate an object from this cache. The flags are only relevant
3795 * if the cache has no available objects.
3796 */
343e0d7a 3797void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3798{
36555751
EGM
3799 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3800
ca2b84cb 3801 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3802 cachep->object_size, cachep->size, flags);
36555751
EGM
3803
3804 return ret;
1da177e4
LT
3805}
3806EXPORT_SYMBOL(kmem_cache_alloc);
3807
0f24f128 3808#ifdef CONFIG_TRACING
85beb586
SR
3809void *
3810kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
36555751 3811{
85beb586
SR
3812 void *ret;
3813
3814 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3815
3816 trace_kmalloc(_RET_IP_, ret,
3817 size, slab_buffer_size(cachep), flags);
3818 return ret;
36555751 3819}
85beb586 3820EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3821#endif
3822
1da177e4 3823#ifdef CONFIG_NUMA
8b98c169
CH
3824void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3825{
36555751
EGM
3826 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3827 __builtin_return_address(0));
3828
ca2b84cb 3829 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3830 cachep->object_size, cachep->size,
ca2b84cb 3831 flags, nodeid);
36555751
EGM
3832
3833 return ret;
8b98c169 3834}
1da177e4
LT
3835EXPORT_SYMBOL(kmem_cache_alloc_node);
3836
0f24f128 3837#ifdef CONFIG_TRACING
85beb586
SR
3838void *kmem_cache_alloc_node_trace(size_t size,
3839 struct kmem_cache *cachep,
3840 gfp_t flags,
3841 int nodeid)
36555751 3842{
85beb586
SR
3843 void *ret;
3844
3845 ret = __cache_alloc_node(cachep, flags, nodeid,
36555751 3846 __builtin_return_address(0));
85beb586
SR
3847 trace_kmalloc_node(_RET_IP_, ret,
3848 size, slab_buffer_size(cachep),
3849 flags, nodeid);
3850 return ret;
36555751 3851}
85beb586 3852EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3853#endif
3854
8b98c169
CH
3855static __always_inline void *
3856__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3857{
343e0d7a 3858 struct kmem_cache *cachep;
97e2bde4
MS
3859
3860 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3861 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3862 return cachep;
85beb586 3863 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
97e2bde4 3864}
8b98c169 3865
0bb38a5c 3866#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3867void *__kmalloc_node(size_t size, gfp_t flags, int node)
3868{
3869 return __do_kmalloc_node(size, flags, node,
3870 __builtin_return_address(0));
3871}
dbe5e69d 3872EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3873
3874void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3875 int node, unsigned long caller)
8b98c169 3876{
ce71e27c 3877 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3878}
3879EXPORT_SYMBOL(__kmalloc_node_track_caller);
3880#else
3881void *__kmalloc_node(size_t size, gfp_t flags, int node)
3882{
3883 return __do_kmalloc_node(size, flags, node, NULL);
3884}
3885EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3886#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3887#endif /* CONFIG_NUMA */
1da177e4
LT
3888
3889/**
800590f5 3890 * __do_kmalloc - allocate memory
1da177e4 3891 * @size: how many bytes of memory are required.
800590f5 3892 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3893 * @caller: function caller for debug tracking of the caller
1da177e4 3894 */
7fd6b141
PE
3895static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3896 void *caller)
1da177e4 3897{
343e0d7a 3898 struct kmem_cache *cachep;
36555751 3899 void *ret;
1da177e4 3900
97e2bde4
MS
3901 /* If you want to save a few bytes .text space: replace
3902 * __ with kmem_.
3903 * Then kmalloc uses the uninlined functions instead of the inline
3904 * functions.
3905 */
3906 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3907 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3908 return cachep;
36555751
EGM
3909 ret = __cache_alloc(cachep, flags, caller);
3910
ca2b84cb 3911 trace_kmalloc((unsigned long) caller, ret,
3b0efdfa 3912 size, cachep->size, flags);
36555751
EGM
3913
3914 return ret;
7fd6b141
PE
3915}
3916
7fd6b141 3917
0bb38a5c 3918#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3919void *__kmalloc(size_t size, gfp_t flags)
3920{
871751e2 3921 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3922}
3923EXPORT_SYMBOL(__kmalloc);
3924
ce71e27c 3925void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3926{
ce71e27c 3927 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3928}
3929EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3930
3931#else
3932void *__kmalloc(size_t size, gfp_t flags)
3933{
3934 return __do_kmalloc(size, flags, NULL);
3935}
3936EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3937#endif
3938
1da177e4
LT
3939/**
3940 * kmem_cache_free - Deallocate an object
3941 * @cachep: The cache the allocation was from.
3942 * @objp: The previously allocated object.
3943 *
3944 * Free an object which was previously allocated from this
3945 * cache.
3946 */
343e0d7a 3947void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3948{
3949 unsigned long flags;
3950
3951 local_irq_save(flags);
d97d476b 3952 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3953 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3954 debug_check_no_obj_freed(objp, cachep->object_size);
a947eb95 3955 __cache_free(cachep, objp, __builtin_return_address(0));
1da177e4 3956 local_irq_restore(flags);
36555751 3957
ca2b84cb 3958 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3959}
3960EXPORT_SYMBOL(kmem_cache_free);
3961
1da177e4
LT
3962/**
3963 * kfree - free previously allocated memory
3964 * @objp: pointer returned by kmalloc.
3965 *
80e93eff
PE
3966 * If @objp is NULL, no operation is performed.
3967 *
1da177e4
LT
3968 * Don't free memory not originally allocated by kmalloc()
3969 * or you will run into trouble.
3970 */
3971void kfree(const void *objp)
3972{
343e0d7a 3973 struct kmem_cache *c;
1da177e4
LT
3974 unsigned long flags;
3975
2121db74
PE
3976 trace_kfree(_RET_IP_, objp);
3977
6cb8f913 3978 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3979 return;
3980 local_irq_save(flags);
3981 kfree_debugcheck(objp);
6ed5eb22 3982 c = virt_to_cache(objp);
8c138bc0
CL
3983 debug_check_no_locks_freed(objp, c->object_size);
3984
3985 debug_check_no_obj_freed(objp, c->object_size);
a947eb95 3986 __cache_free(c, (void *)objp, __builtin_return_address(0));
1da177e4
LT
3987 local_irq_restore(flags);
3988}
3989EXPORT_SYMBOL(kfree);
3990
343e0d7a 3991unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3992{
8c138bc0 3993 return cachep->object_size;
1da177e4
LT
3994}
3995EXPORT_SYMBOL(kmem_cache_size);
3996
e498be7d 3997/*
183ff22b 3998 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3999 */
83b519e8 4000static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
4001{
4002 int node;
4003 struct kmem_list3 *l3;
cafeb02e 4004 struct array_cache *new_shared;
3395ee05 4005 struct array_cache **new_alien = NULL;
e498be7d 4006
9c09a95c 4007 for_each_online_node(node) {
cafeb02e 4008
3395ee05 4009 if (use_alien_caches) {
83b519e8 4010 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
4011 if (!new_alien)
4012 goto fail;
4013 }
cafeb02e 4014
63109846
ED
4015 new_shared = NULL;
4016 if (cachep->shared) {
4017 new_shared = alloc_arraycache(node,
0718dc2a 4018 cachep->shared*cachep->batchcount,
83b519e8 4019 0xbaadf00d, gfp);
63109846
ED
4020 if (!new_shared) {
4021 free_alien_cache(new_alien);
4022 goto fail;
4023 }
0718dc2a 4024 }
cafeb02e 4025
a737b3e2
AM
4026 l3 = cachep->nodelists[node];
4027 if (l3) {
cafeb02e
CL
4028 struct array_cache *shared = l3->shared;
4029
e498be7d
CL
4030 spin_lock_irq(&l3->list_lock);
4031
cafeb02e 4032 if (shared)
0718dc2a
CL
4033 free_block(cachep, shared->entry,
4034 shared->avail, node);
e498be7d 4035
cafeb02e
CL
4036 l3->shared = new_shared;
4037 if (!l3->alien) {
e498be7d
CL
4038 l3->alien = new_alien;
4039 new_alien = NULL;
4040 }
b28a02de 4041 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4042 cachep->batchcount + cachep->num;
e498be7d 4043 spin_unlock_irq(&l3->list_lock);
cafeb02e 4044 kfree(shared);
e498be7d
CL
4045 free_alien_cache(new_alien);
4046 continue;
4047 }
83b519e8 4048 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
4049 if (!l3) {
4050 free_alien_cache(new_alien);
4051 kfree(new_shared);
e498be7d 4052 goto fail;
0718dc2a 4053 }
e498be7d
CL
4054
4055 kmem_list3_init(l3);
4056 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 4057 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 4058 l3->shared = new_shared;
e498be7d 4059 l3->alien = new_alien;
b28a02de 4060 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4061 cachep->batchcount + cachep->num;
e498be7d
CL
4062 cachep->nodelists[node] = l3;
4063 }
cafeb02e 4064 return 0;
0718dc2a 4065
a737b3e2 4066fail:
3b0efdfa 4067 if (!cachep->list.next) {
0718dc2a
CL
4068 /* Cache is not active yet. Roll back what we did */
4069 node--;
4070 while (node >= 0) {
4071 if (cachep->nodelists[node]) {
4072 l3 = cachep->nodelists[node];
4073
4074 kfree(l3->shared);
4075 free_alien_cache(l3->alien);
4076 kfree(l3);
4077 cachep->nodelists[node] = NULL;
4078 }
4079 node--;
4080 }
4081 }
cafeb02e 4082 return -ENOMEM;
e498be7d
CL
4083}
4084
1da177e4 4085struct ccupdate_struct {
343e0d7a 4086 struct kmem_cache *cachep;
acfe7d74 4087 struct array_cache *new[0];
1da177e4
LT
4088};
4089
4090static void do_ccupdate_local(void *info)
4091{
a737b3e2 4092 struct ccupdate_struct *new = info;
1da177e4
LT
4093 struct array_cache *old;
4094
4095 check_irq_off();
9a2dba4b 4096 old = cpu_cache_get(new->cachep);
e498be7d 4097
1da177e4
LT
4098 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4099 new->new[smp_processor_id()] = old;
4100}
4101
18004c5d 4102/* Always called with the slab_mutex held */
a737b3e2 4103static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4104 int batchcount, int shared, gfp_t gfp)
1da177e4 4105{
d2e7b7d0 4106 struct ccupdate_struct *new;
2ed3a4ef 4107 int i;
1da177e4 4108
acfe7d74
ED
4109 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4110 gfp);
d2e7b7d0
SS
4111 if (!new)
4112 return -ENOMEM;
4113
e498be7d 4114 for_each_online_cpu(i) {
7d6e6d09 4115 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4116 batchcount, gfp);
d2e7b7d0 4117 if (!new->new[i]) {
b28a02de 4118 for (i--; i >= 0; i--)
d2e7b7d0
SS
4119 kfree(new->new[i]);
4120 kfree(new);
e498be7d 4121 return -ENOMEM;
1da177e4
LT
4122 }
4123 }
d2e7b7d0 4124 new->cachep = cachep;
1da177e4 4125
15c8b6c1 4126 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4127
1da177e4 4128 check_irq_on();
1da177e4
LT
4129 cachep->batchcount = batchcount;
4130 cachep->limit = limit;
e498be7d 4131 cachep->shared = shared;
1da177e4 4132
e498be7d 4133 for_each_online_cpu(i) {
d2e7b7d0 4134 struct array_cache *ccold = new->new[i];
1da177e4
LT
4135 if (!ccold)
4136 continue;
7d6e6d09
LS
4137 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4138 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4139 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4140 kfree(ccold);
4141 }
d2e7b7d0 4142 kfree(new);
83b519e8 4143 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4144}
4145
18004c5d 4146/* Called with slab_mutex held always */
83b519e8 4147static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4148{
4149 int err;
4150 int limit, shared;
4151
a737b3e2
AM
4152 /*
4153 * The head array serves three purposes:
1da177e4
LT
4154 * - create a LIFO ordering, i.e. return objects that are cache-warm
4155 * - reduce the number of spinlock operations.
a737b3e2 4156 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4157 * bufctl chains: array operations are cheaper.
4158 * The numbers are guessed, we should auto-tune as described by
4159 * Bonwick.
4160 */
3b0efdfa 4161 if (cachep->size > 131072)
1da177e4 4162 limit = 1;
3b0efdfa 4163 else if (cachep->size > PAGE_SIZE)
1da177e4 4164 limit = 8;
3b0efdfa 4165 else if (cachep->size > 1024)
1da177e4 4166 limit = 24;
3b0efdfa 4167 else if (cachep->size > 256)
1da177e4
LT
4168 limit = 54;
4169 else
4170 limit = 120;
4171
a737b3e2
AM
4172 /*
4173 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4174 * allocation behaviour: Most allocs on one cpu, most free operations
4175 * on another cpu. For these cases, an efficient object passing between
4176 * cpus is necessary. This is provided by a shared array. The array
4177 * replaces Bonwick's magazine layer.
4178 * On uniprocessor, it's functionally equivalent (but less efficient)
4179 * to a larger limit. Thus disabled by default.
4180 */
4181 shared = 0;
3b0efdfa 4182 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4183 shared = 8;
1da177e4
LT
4184
4185#if DEBUG
a737b3e2
AM
4186 /*
4187 * With debugging enabled, large batchcount lead to excessively long
4188 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4189 */
4190 if (limit > 32)
4191 limit = 32;
4192#endif
83b519e8 4193 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4194 if (err)
4195 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4196 cachep->name, -err);
2ed3a4ef 4197 return err;
1da177e4
LT
4198}
4199
1b55253a
CL
4200/*
4201 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4202 * necessary. Note that the l3 listlock also protects the array_cache
4203 * if drain_array() is used on the shared array.
1b55253a 4204 */
68a1b195 4205static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4206 struct array_cache *ac, int force, int node)
1da177e4
LT
4207{
4208 int tofree;
4209
1b55253a
CL
4210 if (!ac || !ac->avail)
4211 return;
1da177e4
LT
4212 if (ac->touched && !force) {
4213 ac->touched = 0;
b18e7e65 4214 } else {
1b55253a 4215 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4216 if (ac->avail) {
4217 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4218 if (tofree > ac->avail)
4219 tofree = (ac->avail + 1) / 2;
4220 free_block(cachep, ac->entry, tofree, node);
4221 ac->avail -= tofree;
4222 memmove(ac->entry, &(ac->entry[tofree]),
4223 sizeof(void *) * ac->avail);
4224 }
1b55253a 4225 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4226 }
4227}
4228
4229/**
4230 * cache_reap - Reclaim memory from caches.
05fb6bf0 4231 * @w: work descriptor
1da177e4
LT
4232 *
4233 * Called from workqueue/eventd every few seconds.
4234 * Purpose:
4235 * - clear the per-cpu caches for this CPU.
4236 * - return freeable pages to the main free memory pool.
4237 *
a737b3e2
AM
4238 * If we cannot acquire the cache chain mutex then just give up - we'll try
4239 * again on the next iteration.
1da177e4 4240 */
7c5cae36 4241static void cache_reap(struct work_struct *w)
1da177e4 4242{
7a7c381d 4243 struct kmem_cache *searchp;
e498be7d 4244 struct kmem_list3 *l3;
7d6e6d09 4245 int node = numa_mem_id();
bf6aede7 4246 struct delayed_work *work = to_delayed_work(w);
1da177e4 4247
18004c5d 4248 if (!mutex_trylock(&slab_mutex))
1da177e4 4249 /* Give up. Setup the next iteration. */
7c5cae36 4250 goto out;
1da177e4 4251
18004c5d 4252 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4253 check_irq_on();
4254
35386e3b
CL
4255 /*
4256 * We only take the l3 lock if absolutely necessary and we
4257 * have established with reasonable certainty that
4258 * we can do some work if the lock was obtained.
4259 */
aab2207c 4260 l3 = searchp->nodelists[node];
35386e3b 4261
8fce4d8e 4262 reap_alien(searchp, l3);
1da177e4 4263
aab2207c 4264 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4265
35386e3b
CL
4266 /*
4267 * These are racy checks but it does not matter
4268 * if we skip one check or scan twice.
4269 */
e498be7d 4270 if (time_after(l3->next_reap, jiffies))
35386e3b 4271 goto next;
1da177e4 4272
e498be7d 4273 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4274
aab2207c 4275 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4276
ed11d9eb 4277 if (l3->free_touched)
e498be7d 4278 l3->free_touched = 0;
ed11d9eb
CL
4279 else {
4280 int freed;
1da177e4 4281
ed11d9eb
CL
4282 freed = drain_freelist(searchp, l3, (l3->free_limit +
4283 5 * searchp->num - 1) / (5 * searchp->num));
4284 STATS_ADD_REAPED(searchp, freed);
4285 }
35386e3b 4286next:
1da177e4
LT
4287 cond_resched();
4288 }
4289 check_irq_on();
18004c5d 4290 mutex_unlock(&slab_mutex);
8fce4d8e 4291 next_reap_node();
7c5cae36 4292out:
a737b3e2 4293 /* Set up the next iteration */
7c5cae36 4294 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4295}
4296
158a9624 4297#ifdef CONFIG_SLABINFO
1da177e4 4298
85289f98 4299static void print_slabinfo_header(struct seq_file *m)
1da177e4 4300{
85289f98
PE
4301 /*
4302 * Output format version, so at least we can change it
4303 * without _too_ many complaints.
4304 */
1da177e4 4305#if STATS
85289f98 4306 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4307#else
85289f98 4308 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4309#endif
85289f98
PE
4310 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4311 "<objperslab> <pagesperslab>");
4312 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4313 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4314#if STATS
85289f98 4315 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4316 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4317 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4318#endif
85289f98
PE
4319 seq_putc(m, '\n');
4320}
4321
4322static void *s_start(struct seq_file *m, loff_t *pos)
4323{
4324 loff_t n = *pos;
85289f98 4325
18004c5d 4326 mutex_lock(&slab_mutex);
85289f98
PE
4327 if (!n)
4328 print_slabinfo_header(m);
b92151ba 4329
18004c5d 4330 return seq_list_start(&slab_caches, *pos);
1da177e4
LT
4331}
4332
4333static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4334{
18004c5d 4335 return seq_list_next(p, &slab_caches, pos);
1da177e4
LT
4336}
4337
4338static void s_stop(struct seq_file *m, void *p)
4339{
18004c5d 4340 mutex_unlock(&slab_mutex);
1da177e4
LT
4341}
4342
4343static int s_show(struct seq_file *m, void *p)
4344{
3b0efdfa 4345 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
b28a02de
PE
4346 struct slab *slabp;
4347 unsigned long active_objs;
4348 unsigned long num_objs;
4349 unsigned long active_slabs = 0;
4350 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4351 const char *name;
1da177e4 4352 char *error = NULL;
e498be7d
CL
4353 int node;
4354 struct kmem_list3 *l3;
1da177e4 4355
1da177e4
LT
4356 active_objs = 0;
4357 num_slabs = 0;
e498be7d
CL
4358 for_each_online_node(node) {
4359 l3 = cachep->nodelists[node];
4360 if (!l3)
4361 continue;
4362
ca3b9b91
RT
4363 check_irq_on();
4364 spin_lock_irq(&l3->list_lock);
e498be7d 4365
7a7c381d 4366 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4367 if (slabp->inuse != cachep->num && !error)
4368 error = "slabs_full accounting error";
4369 active_objs += cachep->num;
4370 active_slabs++;
4371 }
7a7c381d 4372 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4373 if (slabp->inuse == cachep->num && !error)
4374 error = "slabs_partial inuse accounting error";
4375 if (!slabp->inuse && !error)
4376 error = "slabs_partial/inuse accounting error";
4377 active_objs += slabp->inuse;
4378 active_slabs++;
4379 }
7a7c381d 4380 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4381 if (slabp->inuse && !error)
4382 error = "slabs_free/inuse accounting error";
4383 num_slabs++;
4384 }
4385 free_objects += l3->free_objects;
4484ebf1
RT
4386 if (l3->shared)
4387 shared_avail += l3->shared->avail;
e498be7d 4388
ca3b9b91 4389 spin_unlock_irq(&l3->list_lock);
1da177e4 4390 }
b28a02de
PE
4391 num_slabs += active_slabs;
4392 num_objs = num_slabs * cachep->num;
e498be7d 4393 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4394 error = "free_objects accounting error";
4395
b28a02de 4396 name = cachep->name;
1da177e4
LT
4397 if (error)
4398 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4399
4400 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3b0efdfa 4401 name, active_objs, num_objs, cachep->size,
b28a02de 4402 cachep->num, (1 << cachep->gfporder));
1da177e4 4403 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4404 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4405 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4406 active_slabs, num_slabs, shared_avail);
1da177e4 4407#if STATS
b28a02de 4408 { /* list3 stats */
1da177e4
LT
4409 unsigned long high = cachep->high_mark;
4410 unsigned long allocs = cachep->num_allocations;
4411 unsigned long grown = cachep->grown;
4412 unsigned long reaped = cachep->reaped;
4413 unsigned long errors = cachep->errors;
4414 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4415 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4416 unsigned long node_frees = cachep->node_frees;
fb7faf33 4417 unsigned long overflows = cachep->node_overflow;
1da177e4 4418
e92dd4fd
JP
4419 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4420 "%4lu %4lu %4lu %4lu %4lu",
4421 allocs, high, grown,
4422 reaped, errors, max_freeable, node_allocs,
4423 node_frees, overflows);
1da177e4
LT
4424 }
4425 /* cpu stats */
4426 {
4427 unsigned long allochit = atomic_read(&cachep->allochit);
4428 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4429 unsigned long freehit = atomic_read(&cachep->freehit);
4430 unsigned long freemiss = atomic_read(&cachep->freemiss);
4431
4432 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4433 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4434 }
4435#endif
4436 seq_putc(m, '\n');
1da177e4
LT
4437 return 0;
4438}
4439
4440/*
4441 * slabinfo_op - iterator that generates /proc/slabinfo
4442 *
4443 * Output layout:
4444 * cache-name
4445 * num-active-objs
4446 * total-objs
4447 * object size
4448 * num-active-slabs
4449 * total-slabs
4450 * num-pages-per-slab
4451 * + further values on SMP and with statistics enabled
4452 */
4453
7b3c3a50 4454static const struct seq_operations slabinfo_op = {
b28a02de
PE
4455 .start = s_start,
4456 .next = s_next,
4457 .stop = s_stop,
4458 .show = s_show,
1da177e4
LT
4459};
4460
4461#define MAX_SLABINFO_WRITE 128
4462/**
4463 * slabinfo_write - Tuning for the slab allocator
4464 * @file: unused
4465 * @buffer: user buffer
4466 * @count: data length
4467 * @ppos: unused
4468 */
68a1b195 4469static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4470 size_t count, loff_t *ppos)
1da177e4 4471{
b28a02de 4472 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4473 int limit, batchcount, shared, res;
7a7c381d 4474 struct kmem_cache *cachep;
b28a02de 4475
1da177e4
LT
4476 if (count > MAX_SLABINFO_WRITE)
4477 return -EINVAL;
4478 if (copy_from_user(&kbuf, buffer, count))
4479 return -EFAULT;
b28a02de 4480 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4481
4482 tmp = strchr(kbuf, ' ');
4483 if (!tmp)
4484 return -EINVAL;
4485 *tmp = '\0';
4486 tmp++;
4487 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4488 return -EINVAL;
4489
4490 /* Find the cache in the chain of caches. */
18004c5d 4491 mutex_lock(&slab_mutex);
1da177e4 4492 res = -EINVAL;
18004c5d 4493 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4494 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4495 if (limit < 1 || batchcount < 1 ||
4496 batchcount > limit || shared < 0) {
e498be7d 4497 res = 0;
1da177e4 4498 } else {
e498be7d 4499 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4500 batchcount, shared,
4501 GFP_KERNEL);
1da177e4
LT
4502 }
4503 break;
4504 }
4505 }
18004c5d 4506 mutex_unlock(&slab_mutex);
1da177e4
LT
4507 if (res >= 0)
4508 res = count;
4509 return res;
4510}
871751e2 4511
7b3c3a50
AD
4512static int slabinfo_open(struct inode *inode, struct file *file)
4513{
4514 return seq_open(file, &slabinfo_op);
4515}
4516
4517static const struct file_operations proc_slabinfo_operations = {
4518 .open = slabinfo_open,
4519 .read = seq_read,
4520 .write = slabinfo_write,
4521 .llseek = seq_lseek,
4522 .release = seq_release,
4523};
4524
871751e2
AV
4525#ifdef CONFIG_DEBUG_SLAB_LEAK
4526
4527static void *leaks_start(struct seq_file *m, loff_t *pos)
4528{
18004c5d
CL
4529 mutex_lock(&slab_mutex);
4530 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4531}
4532
4533static inline int add_caller(unsigned long *n, unsigned long v)
4534{
4535 unsigned long *p;
4536 int l;
4537 if (!v)
4538 return 1;
4539 l = n[1];
4540 p = n + 2;
4541 while (l) {
4542 int i = l/2;
4543 unsigned long *q = p + 2 * i;
4544 if (*q == v) {
4545 q[1]++;
4546 return 1;
4547 }
4548 if (*q > v) {
4549 l = i;
4550 } else {
4551 p = q + 2;
4552 l -= i + 1;
4553 }
4554 }
4555 if (++n[1] == n[0])
4556 return 0;
4557 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4558 p[0] = v;
4559 p[1] = 1;
4560 return 1;
4561}
4562
4563static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4564{
4565 void *p;
4566 int i;
4567 if (n[0] == n[1])
4568 return;
3b0efdfa 4569 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4570 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4571 continue;
4572 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4573 return;
4574 }
4575}
4576
4577static void show_symbol(struct seq_file *m, unsigned long address)
4578{
4579#ifdef CONFIG_KALLSYMS
871751e2 4580 unsigned long offset, size;
9281acea 4581 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4582
a5c43dae 4583 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4584 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4585 if (modname[0])
871751e2
AV
4586 seq_printf(m, " [%s]", modname);
4587 return;
4588 }
4589#endif
4590 seq_printf(m, "%p", (void *)address);
4591}
4592
4593static int leaks_show(struct seq_file *m, void *p)
4594{
0672aa7c 4595 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2
AV
4596 struct slab *slabp;
4597 struct kmem_list3 *l3;
4598 const char *name;
4599 unsigned long *n = m->private;
4600 int node;
4601 int i;
4602
4603 if (!(cachep->flags & SLAB_STORE_USER))
4604 return 0;
4605 if (!(cachep->flags & SLAB_RED_ZONE))
4606 return 0;
4607
4608 /* OK, we can do it */
4609
4610 n[1] = 0;
4611
4612 for_each_online_node(node) {
4613 l3 = cachep->nodelists[node];
4614 if (!l3)
4615 continue;
4616
4617 check_irq_on();
4618 spin_lock_irq(&l3->list_lock);
4619
7a7c381d 4620 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4621 handle_slab(n, cachep, slabp);
7a7c381d 4622 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4623 handle_slab(n, cachep, slabp);
871751e2
AV
4624 spin_unlock_irq(&l3->list_lock);
4625 }
4626 name = cachep->name;
4627 if (n[0] == n[1]) {
4628 /* Increase the buffer size */
18004c5d 4629 mutex_unlock(&slab_mutex);
871751e2
AV
4630 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4631 if (!m->private) {
4632 /* Too bad, we are really out */
4633 m->private = n;
18004c5d 4634 mutex_lock(&slab_mutex);
871751e2
AV
4635 return -ENOMEM;
4636 }
4637 *(unsigned long *)m->private = n[0] * 2;
4638 kfree(n);
18004c5d 4639 mutex_lock(&slab_mutex);
871751e2
AV
4640 /* Now make sure this entry will be retried */
4641 m->count = m->size;
4642 return 0;
4643 }
4644 for (i = 0; i < n[1]; i++) {
4645 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4646 show_symbol(m, n[2*i+2]);
4647 seq_putc(m, '\n');
4648 }
d2e7b7d0 4649
871751e2
AV
4650 return 0;
4651}
4652
a0ec95a8 4653static const struct seq_operations slabstats_op = {
871751e2
AV
4654 .start = leaks_start,
4655 .next = s_next,
4656 .stop = s_stop,
4657 .show = leaks_show,
4658};
a0ec95a8
AD
4659
4660static int slabstats_open(struct inode *inode, struct file *file)
4661{
4662 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4663 int ret = -ENOMEM;
4664 if (n) {
4665 ret = seq_open(file, &slabstats_op);
4666 if (!ret) {
4667 struct seq_file *m = file->private_data;
4668 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4669 m->private = n;
4670 n = NULL;
4671 }
4672 kfree(n);
4673 }
4674 return ret;
4675}
4676
4677static const struct file_operations proc_slabstats_operations = {
4678 .open = slabstats_open,
4679 .read = seq_read,
4680 .llseek = seq_lseek,
4681 .release = seq_release_private,
4682};
4683#endif
4684
4685static int __init slab_proc_init(void)
4686{
ab067e99 4687 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4688#ifdef CONFIG_DEBUG_SLAB_LEAK
4689 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4690#endif
a0ec95a8
AD
4691 return 0;
4692}
4693module_init(slab_proc_init);
1da177e4
LT
4694#endif
4695
00e145b6
MS
4696/**
4697 * ksize - get the actual amount of memory allocated for a given object
4698 * @objp: Pointer to the object
4699 *
4700 * kmalloc may internally round up allocations and return more memory
4701 * than requested. ksize() can be used to determine the actual amount of
4702 * memory allocated. The caller may use this additional memory, even though
4703 * a smaller amount of memory was initially specified with the kmalloc call.
4704 * The caller must guarantee that objp points to a valid object previously
4705 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4706 * must not be freed during the duration of the call.
4707 */
fd76bab2 4708size_t ksize(const void *objp)
1da177e4 4709{
ef8b4520
CL
4710 BUG_ON(!objp);
4711 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4712 return 0;
1da177e4 4713
8c138bc0 4714 return virt_to_cache(objp)->object_size;
1da177e4 4715}
b1aabecd 4716EXPORT_SYMBOL(ksize);