slab: Common Kmalloc cache determination
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
072bb0aa
MG
160/*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164static bool pfmemalloc_active __read_mostly;
165
1da177e4
LT
166/*
167 * kmem_bufctl_t:
168 *
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
171 *
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183 */
184
fa5b08d5 185typedef unsigned int kmem_bufctl_t;
1da177e4
LT
186#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
188#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 190
1da177e4
LT
191/*
192 * struct slab_rcu
193 *
194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195 * arrange for kmem_freepages to be called via RCU. This is useful if
196 * we need to approach a kernel structure obliquely, from its address
197 * obtained without the usual locking. We can lock the structure to
198 * stabilize it and check it's still at the given address, only if we
199 * can be sure that the memory has not been meanwhile reused for some
200 * other kind of object (which our subsystem's lock might corrupt).
201 *
202 * rcu_read_lock before reading the address, then rcu_read_unlock after
203 * taking the spinlock within the structure expected at that address.
1da177e4
LT
204 */
205struct slab_rcu {
b28a02de 206 struct rcu_head head;
343e0d7a 207 struct kmem_cache *cachep;
b28a02de 208 void *addr;
1da177e4
LT
209};
210
5bfe53a7
LJ
211/*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218struct slab {
219 union {
220 struct {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228 struct slab_rcu __slab_cover_slab_rcu;
229 };
230};
231
1da177e4
LT
232/*
233 * struct array_cache
234 *
1da177e4
LT
235 * Purpose:
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
239 *
240 * The limit is stored in the per-cpu structure to reduce the data cache
241 * footprint.
242 *
243 */
244struct array_cache {
245 unsigned int avail;
246 unsigned int limit;
247 unsigned int batchcount;
248 unsigned int touched;
e498be7d 249 spinlock_t lock;
bda5b655 250 void *entry[]; /*
a737b3e2
AM
251 * Must have this definition in here for the proper
252 * alignment of array_cache. Also simplifies accessing
253 * the entries.
072bb0aa
MG
254 *
255 * Entries should not be directly dereferenced as
256 * entries belonging to slabs marked pfmemalloc will
257 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 258 */
1da177e4
LT
259};
260
072bb0aa
MG
261#define SLAB_OBJ_PFMEMALLOC 1
262static inline bool is_obj_pfmemalloc(void *objp)
263{
264 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
265}
266
267static inline void set_obj_pfmemalloc(void **objp)
268{
269 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
270 return;
271}
272
273static inline void clear_obj_pfmemalloc(void **objp)
274{
275 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
276}
277
a737b3e2
AM
278/*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
1da177e4
LT
281 */
282#define BOOT_CPUCACHE_ENTRIES 1
283struct arraycache_init {
284 struct array_cache cache;
b28a02de 285 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
286};
287
288/*
e498be7d 289 * The slab lists for all objects.
1da177e4 290 */
6744f087 291struct kmem_cache_node {
b28a02de
PE
292 struct list_head slabs_partial; /* partial list first, better asm code */
293 struct list_head slabs_full;
294 struct list_head slabs_free;
295 unsigned long free_objects;
b28a02de 296 unsigned int free_limit;
2e1217cf 297 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
35386e3b
CL
301 unsigned long next_reap; /* updated without locking */
302 int free_touched; /* updated without locking */
1da177e4
LT
303};
304
e498be7d
CL
305/*
306 * Need this for bootstrapping a per node allocator.
307 */
556a169d 308#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
6744f087 309static struct kmem_cache_node __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 310#define CACHE_CACHE 0
556a169d
PE
311#define SIZE_AC MAX_NUMNODES
312#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 313
ed11d9eb 314static int drain_freelist(struct kmem_cache *cache,
6744f087 315 struct kmem_cache_node *l3, int tofree);
ed11d9eb
CL
316static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317 int node);
83b519e8 318static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 319static void cache_reap(struct work_struct *unused);
ed11d9eb 320
e0a42726
IM
321static int slab_early_init = 1;
322
e3366016 323#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
6744f087 324#define INDEX_L3 kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 325
6744f087 326static void kmem_list3_init(struct kmem_cache_node *parent)
e498be7d
CL
327{
328 INIT_LIST_HEAD(&parent->slabs_full);
329 INIT_LIST_HEAD(&parent->slabs_partial);
330 INIT_LIST_HEAD(&parent->slabs_free);
331 parent->shared = NULL;
332 parent->alien = NULL;
2e1217cf 333 parent->colour_next = 0;
e498be7d
CL
334 spin_lock_init(&parent->list_lock);
335 parent->free_objects = 0;
336 parent->free_touched = 0;
337}
338
a737b3e2
AM
339#define MAKE_LIST(cachep, listp, slab, nodeid) \
340 do { \
341 INIT_LIST_HEAD(listp); \
6a67368c 342 list_splice(&(cachep->node[nodeid]->slab), listp); \
e498be7d
CL
343 } while (0)
344
a737b3e2
AM
345#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
346 do { \
e498be7d
CL
347 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
348 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
349 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
350 } while (0)
1da177e4 351
1da177e4
LT
352#define CFLGS_OFF_SLAB (0x80000000UL)
353#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
354
355#define BATCHREFILL_LIMIT 16
a737b3e2
AM
356/*
357 * Optimization question: fewer reaps means less probability for unnessary
358 * cpucache drain/refill cycles.
1da177e4 359 *
dc6f3f27 360 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
361 * which could lock up otherwise freeable slabs.
362 */
363#define REAPTIMEOUT_CPUC (2*HZ)
364#define REAPTIMEOUT_LIST3 (4*HZ)
365
366#if STATS
367#define STATS_INC_ACTIVE(x) ((x)->num_active++)
368#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
369#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
370#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 371#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
372#define STATS_SET_HIGH(x) \
373 do { \
374 if ((x)->num_active > (x)->high_mark) \
375 (x)->high_mark = (x)->num_active; \
376 } while (0)
1da177e4
LT
377#define STATS_INC_ERR(x) ((x)->errors++)
378#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 379#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 380#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
381#define STATS_SET_FREEABLE(x, i) \
382 do { \
383 if ((x)->max_freeable < i) \
384 (x)->max_freeable = i; \
385 } while (0)
1da177e4
LT
386#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
387#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
388#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
389#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
390#else
391#define STATS_INC_ACTIVE(x) do { } while (0)
392#define STATS_DEC_ACTIVE(x) do { } while (0)
393#define STATS_INC_ALLOCED(x) do { } while (0)
394#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 395#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
396#define STATS_SET_HIGH(x) do { } while (0)
397#define STATS_INC_ERR(x) do { } while (0)
398#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 399#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 400#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 401#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
402#define STATS_INC_ALLOCHIT(x) do { } while (0)
403#define STATS_INC_ALLOCMISS(x) do { } while (0)
404#define STATS_INC_FREEHIT(x) do { } while (0)
405#define STATS_INC_FREEMISS(x) do { } while (0)
406#endif
407
408#if DEBUG
1da177e4 409
a737b3e2
AM
410/*
411 * memory layout of objects:
1da177e4 412 * 0 : objp
3dafccf2 413 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
414 * the end of an object is aligned with the end of the real
415 * allocation. Catches writes behind the end of the allocation.
3dafccf2 416 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 417 * redzone word.
3dafccf2 418 * cachep->obj_offset: The real object.
3b0efdfa
CL
419 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
420 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 421 * [BYTES_PER_WORD long]
1da177e4 422 */
343e0d7a 423static int obj_offset(struct kmem_cache *cachep)
1da177e4 424{
3dafccf2 425 return cachep->obj_offset;
1da177e4
LT
426}
427
b46b8f19 428static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
429{
430 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
431 return (unsigned long long*) (objp + obj_offset(cachep) -
432 sizeof(unsigned long long));
1da177e4
LT
433}
434
b46b8f19 435static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
436{
437 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
438 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 439 return (unsigned long long *)(objp + cachep->size -
b46b8f19 440 sizeof(unsigned long long) -
87a927c7 441 REDZONE_ALIGN);
3b0efdfa 442 return (unsigned long long *) (objp + cachep->size -
b46b8f19 443 sizeof(unsigned long long));
1da177e4
LT
444}
445
343e0d7a 446static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
447{
448 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 449 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
450}
451
452#else
453
3dafccf2 454#define obj_offset(x) 0
b46b8f19
DW
455#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
456#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
457#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
458
459#endif
460
1da177e4 461/*
3df1cccd
DR
462 * Do not go above this order unless 0 objects fit into the slab or
463 * overridden on the command line.
1da177e4 464 */
543585cc
DR
465#define SLAB_MAX_ORDER_HI 1
466#define SLAB_MAX_ORDER_LO 0
467static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 468static bool slab_max_order_set __initdata;
1da177e4 469
6ed5eb22
PE
470static inline struct kmem_cache *virt_to_cache(const void *obj)
471{
b49af68f 472 struct page *page = virt_to_head_page(obj);
35026088 473 return page->slab_cache;
6ed5eb22
PE
474}
475
476static inline struct slab *virt_to_slab(const void *obj)
477{
b49af68f 478 struct page *page = virt_to_head_page(obj);
35026088
CL
479
480 VM_BUG_ON(!PageSlab(page));
481 return page->slab_page;
6ed5eb22
PE
482}
483
8fea4e96
PE
484static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
485 unsigned int idx)
486{
3b0efdfa 487 return slab->s_mem + cache->size * idx;
8fea4e96
PE
488}
489
6a2d7a95 490/*
3b0efdfa
CL
491 * We want to avoid an expensive divide : (offset / cache->size)
492 * Using the fact that size is a constant for a particular cache,
493 * we can replace (offset / cache->size) by
6a2d7a95
ED
494 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
495 */
496static inline unsigned int obj_to_index(const struct kmem_cache *cache,
497 const struct slab *slab, void *obj)
8fea4e96 498{
6a2d7a95
ED
499 u32 offset = (obj - slab->s_mem);
500 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
501}
502
1da177e4 503static struct arraycache_init initarray_generic =
b28a02de 504 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
505
506/* internal cache of cache description objs */
9b030cb8 507static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
508 .batchcount = 1,
509 .limit = BOOT_CPUCACHE_ENTRIES,
510 .shared = 1,
3b0efdfa 511 .size = sizeof(struct kmem_cache),
b28a02de 512 .name = "kmem_cache",
1da177e4
LT
513};
514
056c6241
RT
515#define BAD_ALIEN_MAGIC 0x01020304ul
516
f1aaee53
AV
517#ifdef CONFIG_LOCKDEP
518
519/*
520 * Slab sometimes uses the kmalloc slabs to store the slab headers
521 * for other slabs "off slab".
522 * The locking for this is tricky in that it nests within the locks
523 * of all other slabs in a few places; to deal with this special
524 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
525 *
526 * We set lock class for alien array caches which are up during init.
527 * The lock annotation will be lost if all cpus of a node goes down and
528 * then comes back up during hotplug
f1aaee53 529 */
056c6241
RT
530static struct lock_class_key on_slab_l3_key;
531static struct lock_class_key on_slab_alc_key;
532
83835b3d
PZ
533static struct lock_class_key debugobj_l3_key;
534static struct lock_class_key debugobj_alc_key;
535
536static void slab_set_lock_classes(struct kmem_cache *cachep,
537 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
538 int q)
539{
540 struct array_cache **alc;
6744f087 541 struct kmem_cache_node *l3;
83835b3d
PZ
542 int r;
543
6a67368c 544 l3 = cachep->node[q];
83835b3d
PZ
545 if (!l3)
546 return;
547
548 lockdep_set_class(&l3->list_lock, l3_key);
549 alc = l3->alien;
550 /*
551 * FIXME: This check for BAD_ALIEN_MAGIC
552 * should go away when common slab code is taught to
553 * work even without alien caches.
554 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
555 * for alloc_alien_cache,
556 */
557 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
558 return;
559 for_each_node(r) {
560 if (alc[r])
561 lockdep_set_class(&alc[r]->lock, alc_key);
562 }
563}
564
565static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
566{
567 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
568}
569
570static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
571{
572 int node;
573
574 for_each_online_node(node)
575 slab_set_debugobj_lock_classes_node(cachep, node);
576}
577
ce79ddc8 578static void init_node_lock_keys(int q)
f1aaee53 579{
e3366016 580 int i;
056c6241 581
97d06609 582 if (slab_state < UP)
ce79ddc8
PE
583 return;
584
e3366016 585 for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
6744f087 586 struct kmem_cache_node *l3;
e3366016
CL
587 struct kmem_cache *cache = kmalloc_caches[i];
588
589 if (!cache)
590 continue;
ce79ddc8 591
6a67368c 592 l3 = cache->node[q];
e3366016 593 if (!l3 || OFF_SLAB(cache))
00afa758 594 continue;
83835b3d 595
e3366016 596 slab_set_lock_classes(cache, &on_slab_l3_key,
83835b3d 597 &on_slab_alc_key, q);
f1aaee53
AV
598 }
599}
ce79ddc8 600
6ccfb5bc
GC
601static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
602{
6a67368c 603 if (!cachep->node[q])
6ccfb5bc
GC
604 return;
605
606 slab_set_lock_classes(cachep, &on_slab_l3_key,
607 &on_slab_alc_key, q);
608}
609
610static inline void on_slab_lock_classes(struct kmem_cache *cachep)
611{
612 int node;
613
614 VM_BUG_ON(OFF_SLAB(cachep));
615 for_each_node(node)
616 on_slab_lock_classes_node(cachep, node);
617}
618
ce79ddc8
PE
619static inline void init_lock_keys(void)
620{
621 int node;
622
623 for_each_node(node)
624 init_node_lock_keys(node);
625}
f1aaee53 626#else
ce79ddc8
PE
627static void init_node_lock_keys(int q)
628{
629}
630
056c6241 631static inline void init_lock_keys(void)
f1aaee53
AV
632{
633}
83835b3d 634
6ccfb5bc
GC
635static inline void on_slab_lock_classes(struct kmem_cache *cachep)
636{
637}
638
639static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
640{
641}
642
83835b3d
PZ
643static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
644{
645}
646
647static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
648{
649}
f1aaee53
AV
650#endif
651
1871e52c 652static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 653
343e0d7a 654static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
655{
656 return cachep->array[smp_processor_id()];
657}
658
fbaccacf 659static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 660{
fbaccacf
SR
661 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
662}
1da177e4 663
a737b3e2
AM
664/*
665 * Calculate the number of objects and left-over bytes for a given buffer size.
666 */
fbaccacf
SR
667static void cache_estimate(unsigned long gfporder, size_t buffer_size,
668 size_t align, int flags, size_t *left_over,
669 unsigned int *num)
670{
671 int nr_objs;
672 size_t mgmt_size;
673 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 674
fbaccacf
SR
675 /*
676 * The slab management structure can be either off the slab or
677 * on it. For the latter case, the memory allocated for a
678 * slab is used for:
679 *
680 * - The struct slab
681 * - One kmem_bufctl_t for each object
682 * - Padding to respect alignment of @align
683 * - @buffer_size bytes for each object
684 *
685 * If the slab management structure is off the slab, then the
686 * alignment will already be calculated into the size. Because
687 * the slabs are all pages aligned, the objects will be at the
688 * correct alignment when allocated.
689 */
690 if (flags & CFLGS_OFF_SLAB) {
691 mgmt_size = 0;
692 nr_objs = slab_size / buffer_size;
693
694 if (nr_objs > SLAB_LIMIT)
695 nr_objs = SLAB_LIMIT;
696 } else {
697 /*
698 * Ignore padding for the initial guess. The padding
699 * is at most @align-1 bytes, and @buffer_size is at
700 * least @align. In the worst case, this result will
701 * be one greater than the number of objects that fit
702 * into the memory allocation when taking the padding
703 * into account.
704 */
705 nr_objs = (slab_size - sizeof(struct slab)) /
706 (buffer_size + sizeof(kmem_bufctl_t));
707
708 /*
709 * This calculated number will be either the right
710 * amount, or one greater than what we want.
711 */
712 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
713 > slab_size)
714 nr_objs--;
715
716 if (nr_objs > SLAB_LIMIT)
717 nr_objs = SLAB_LIMIT;
718
719 mgmt_size = slab_mgmt_size(nr_objs, align);
720 }
721 *num = nr_objs;
722 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
723}
724
f28510d3 725#if DEBUG
d40cee24 726#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 727
a737b3e2
AM
728static void __slab_error(const char *function, struct kmem_cache *cachep,
729 char *msg)
1da177e4
LT
730{
731 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 732 function, cachep->name, msg);
1da177e4 733 dump_stack();
645df230 734 add_taint(TAINT_BAD_PAGE);
1da177e4 735}
f28510d3 736#endif
1da177e4 737
3395ee05
PM
738/*
739 * By default on NUMA we use alien caches to stage the freeing of
740 * objects allocated from other nodes. This causes massive memory
741 * inefficiencies when using fake NUMA setup to split memory into a
742 * large number of small nodes, so it can be disabled on the command
743 * line
744 */
745
746static int use_alien_caches __read_mostly = 1;
747static int __init noaliencache_setup(char *s)
748{
749 use_alien_caches = 0;
750 return 1;
751}
752__setup("noaliencache", noaliencache_setup);
753
3df1cccd
DR
754static int __init slab_max_order_setup(char *str)
755{
756 get_option(&str, &slab_max_order);
757 slab_max_order = slab_max_order < 0 ? 0 :
758 min(slab_max_order, MAX_ORDER - 1);
759 slab_max_order_set = true;
760
761 return 1;
762}
763__setup("slab_max_order=", slab_max_order_setup);
764
8fce4d8e
CL
765#ifdef CONFIG_NUMA
766/*
767 * Special reaping functions for NUMA systems called from cache_reap().
768 * These take care of doing round robin flushing of alien caches (containing
769 * objects freed on different nodes from which they were allocated) and the
770 * flushing of remote pcps by calling drain_node_pages.
771 */
1871e52c 772static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
773
774static void init_reap_node(int cpu)
775{
776 int node;
777
7d6e6d09 778 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 779 if (node == MAX_NUMNODES)
442295c9 780 node = first_node(node_online_map);
8fce4d8e 781
1871e52c 782 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
783}
784
785static void next_reap_node(void)
786{
909ea964 787 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 788
8fce4d8e
CL
789 node = next_node(node, node_online_map);
790 if (unlikely(node >= MAX_NUMNODES))
791 node = first_node(node_online_map);
909ea964 792 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
793}
794
795#else
796#define init_reap_node(cpu) do { } while (0)
797#define next_reap_node(void) do { } while (0)
798#endif
799
1da177e4
LT
800/*
801 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
802 * via the workqueue/eventd.
803 * Add the CPU number into the expiration time to minimize the possibility of
804 * the CPUs getting into lockstep and contending for the global cache chain
805 * lock.
806 */
897e679b 807static void __cpuinit start_cpu_timer(int cpu)
1da177e4 808{
1871e52c 809 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
810
811 /*
812 * When this gets called from do_initcalls via cpucache_init(),
813 * init_workqueues() has already run, so keventd will be setup
814 * at that time.
815 */
52bad64d 816 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 817 init_reap_node(cpu);
203b42f7 818 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
819 schedule_delayed_work_on(cpu, reap_work,
820 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
821 }
822}
823
e498be7d 824static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 825 int batchcount, gfp_t gfp)
1da177e4 826{
b28a02de 827 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
828 struct array_cache *nc = NULL;
829
83b519e8 830 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
831 /*
832 * The array_cache structures contain pointers to free object.
25985edc 833 * However, when such objects are allocated or transferred to another
d5cff635
CM
834 * cache the pointers are not cleared and they could be counted as
835 * valid references during a kmemleak scan. Therefore, kmemleak must
836 * not scan such objects.
837 */
838 kmemleak_no_scan(nc);
1da177e4
LT
839 if (nc) {
840 nc->avail = 0;
841 nc->limit = entries;
842 nc->batchcount = batchcount;
843 nc->touched = 0;
e498be7d 844 spin_lock_init(&nc->lock);
1da177e4
LT
845 }
846 return nc;
847}
848
072bb0aa
MG
849static inline bool is_slab_pfmemalloc(struct slab *slabp)
850{
851 struct page *page = virt_to_page(slabp->s_mem);
852
853 return PageSlabPfmemalloc(page);
854}
855
856/* Clears pfmemalloc_active if no slabs have pfmalloc set */
857static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
858 struct array_cache *ac)
859{
6a67368c 860 struct kmem_cache_node *l3 = cachep->node[numa_mem_id()];
072bb0aa
MG
861 struct slab *slabp;
862 unsigned long flags;
863
864 if (!pfmemalloc_active)
865 return;
866
867 spin_lock_irqsave(&l3->list_lock, flags);
868 list_for_each_entry(slabp, &l3->slabs_full, list)
869 if (is_slab_pfmemalloc(slabp))
870 goto out;
871
872 list_for_each_entry(slabp, &l3->slabs_partial, list)
873 if (is_slab_pfmemalloc(slabp))
874 goto out;
875
876 list_for_each_entry(slabp, &l3->slabs_free, list)
877 if (is_slab_pfmemalloc(slabp))
878 goto out;
879
880 pfmemalloc_active = false;
881out:
882 spin_unlock_irqrestore(&l3->list_lock, flags);
883}
884
381760ea 885static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
886 gfp_t flags, bool force_refill)
887{
888 int i;
889 void *objp = ac->entry[--ac->avail];
890
891 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
892 if (unlikely(is_obj_pfmemalloc(objp))) {
6744f087 893 struct kmem_cache_node *l3;
072bb0aa
MG
894
895 if (gfp_pfmemalloc_allowed(flags)) {
896 clear_obj_pfmemalloc(&objp);
897 return objp;
898 }
899
900 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 901 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
902 /* If a !PFMEMALLOC object is found, swap them */
903 if (!is_obj_pfmemalloc(ac->entry[i])) {
904 objp = ac->entry[i];
905 ac->entry[i] = ac->entry[ac->avail];
906 ac->entry[ac->avail] = objp;
907 return objp;
908 }
909 }
910
911 /*
912 * If there are empty slabs on the slabs_free list and we are
913 * being forced to refill the cache, mark this one !pfmemalloc.
914 */
6a67368c 915 l3 = cachep->node[numa_mem_id()];
072bb0aa
MG
916 if (!list_empty(&l3->slabs_free) && force_refill) {
917 struct slab *slabp = virt_to_slab(objp);
30c29bea 918 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
072bb0aa
MG
919 clear_obj_pfmemalloc(&objp);
920 recheck_pfmemalloc_active(cachep, ac);
921 return objp;
922 }
923
924 /* No !PFMEMALLOC objects available */
925 ac->avail++;
926 objp = NULL;
927 }
928
929 return objp;
930}
931
381760ea
MG
932static inline void *ac_get_obj(struct kmem_cache *cachep,
933 struct array_cache *ac, gfp_t flags, bool force_refill)
934{
935 void *objp;
936
937 if (unlikely(sk_memalloc_socks()))
938 objp = __ac_get_obj(cachep, ac, flags, force_refill);
939 else
940 objp = ac->entry[--ac->avail];
941
942 return objp;
943}
944
945static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
946 void *objp)
947{
948 if (unlikely(pfmemalloc_active)) {
949 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 950 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
951 if (PageSlabPfmemalloc(page))
952 set_obj_pfmemalloc(&objp);
953 }
954
381760ea
MG
955 return objp;
956}
957
958static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
959 void *objp)
960{
961 if (unlikely(sk_memalloc_socks()))
962 objp = __ac_put_obj(cachep, ac, objp);
963
072bb0aa
MG
964 ac->entry[ac->avail++] = objp;
965}
966
3ded175a
CL
967/*
968 * Transfer objects in one arraycache to another.
969 * Locking must be handled by the caller.
970 *
971 * Return the number of entries transferred.
972 */
973static int transfer_objects(struct array_cache *to,
974 struct array_cache *from, unsigned int max)
975{
976 /* Figure out how many entries to transfer */
732eacc0 977 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
978
979 if (!nr)
980 return 0;
981
982 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
983 sizeof(void *) *nr);
984
985 from->avail -= nr;
986 to->avail += nr;
3ded175a
CL
987 return nr;
988}
989
765c4507
CL
990#ifndef CONFIG_NUMA
991
992#define drain_alien_cache(cachep, alien) do { } while (0)
993#define reap_alien(cachep, l3) do { } while (0)
994
83b519e8 995static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
996{
997 return (struct array_cache **)BAD_ALIEN_MAGIC;
998}
999
1000static inline void free_alien_cache(struct array_cache **ac_ptr)
1001{
1002}
1003
1004static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1005{
1006 return 0;
1007}
1008
1009static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1010 gfp_t flags)
1011{
1012 return NULL;
1013}
1014
8b98c169 1015static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1016 gfp_t flags, int nodeid)
1017{
1018 return NULL;
1019}
1020
1021#else /* CONFIG_NUMA */
1022
8b98c169 1023static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1024static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1025
83b519e8 1026static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1027{
1028 struct array_cache **ac_ptr;
8ef82866 1029 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1030 int i;
1031
1032 if (limit > 1)
1033 limit = 12;
f3186a9c 1034 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1035 if (ac_ptr) {
1036 for_each_node(i) {
f3186a9c 1037 if (i == node || !node_online(i))
e498be7d 1038 continue;
83b519e8 1039 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1040 if (!ac_ptr[i]) {
cc550def 1041 for (i--; i >= 0; i--)
e498be7d
CL
1042 kfree(ac_ptr[i]);
1043 kfree(ac_ptr);
1044 return NULL;
1045 }
1046 }
1047 }
1048 return ac_ptr;
1049}
1050
5295a74c 1051static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1052{
1053 int i;
1054
1055 if (!ac_ptr)
1056 return;
e498be7d 1057 for_each_node(i)
b28a02de 1058 kfree(ac_ptr[i]);
e498be7d
CL
1059 kfree(ac_ptr);
1060}
1061
343e0d7a 1062static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1063 struct array_cache *ac, int node)
e498be7d 1064{
6a67368c 1065 struct kmem_cache_node *rl3 = cachep->node[node];
e498be7d
CL
1066
1067 if (ac->avail) {
1068 spin_lock(&rl3->list_lock);
e00946fe
CL
1069 /*
1070 * Stuff objects into the remote nodes shared array first.
1071 * That way we could avoid the overhead of putting the objects
1072 * into the free lists and getting them back later.
1073 */
693f7d36 1074 if (rl3->shared)
1075 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1076
ff69416e 1077 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1078 ac->avail = 0;
1079 spin_unlock(&rl3->list_lock);
1080 }
1081}
1082
8fce4d8e
CL
1083/*
1084 * Called from cache_reap() to regularly drain alien caches round robin.
1085 */
6744f087 1086static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *l3)
8fce4d8e 1087{
909ea964 1088 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1089
1090 if (l3->alien) {
1091 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1092
1093 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1094 __drain_alien_cache(cachep, ac, node);
1095 spin_unlock_irq(&ac->lock);
1096 }
1097 }
1098}
1099
a737b3e2
AM
1100static void drain_alien_cache(struct kmem_cache *cachep,
1101 struct array_cache **alien)
e498be7d 1102{
b28a02de 1103 int i = 0;
e498be7d
CL
1104 struct array_cache *ac;
1105 unsigned long flags;
1106
1107 for_each_online_node(i) {
4484ebf1 1108 ac = alien[i];
e498be7d
CL
1109 if (ac) {
1110 spin_lock_irqsave(&ac->lock, flags);
1111 __drain_alien_cache(cachep, ac, i);
1112 spin_unlock_irqrestore(&ac->lock, flags);
1113 }
1114 }
1115}
729bd0b7 1116
873623df 1117static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1118{
1119 struct slab *slabp = virt_to_slab(objp);
1120 int nodeid = slabp->nodeid;
6744f087 1121 struct kmem_cache_node *l3;
729bd0b7 1122 struct array_cache *alien = NULL;
1ca4cb24
PE
1123 int node;
1124
7d6e6d09 1125 node = numa_mem_id();
729bd0b7
PE
1126
1127 /*
1128 * Make sure we are not freeing a object from another node to the array
1129 * cache on this cpu.
1130 */
62918a03 1131 if (likely(slabp->nodeid == node))
729bd0b7
PE
1132 return 0;
1133
6a67368c 1134 l3 = cachep->node[node];
729bd0b7
PE
1135 STATS_INC_NODEFREES(cachep);
1136 if (l3->alien && l3->alien[nodeid]) {
1137 alien = l3->alien[nodeid];
873623df 1138 spin_lock(&alien->lock);
729bd0b7
PE
1139 if (unlikely(alien->avail == alien->limit)) {
1140 STATS_INC_ACOVERFLOW(cachep);
1141 __drain_alien_cache(cachep, alien, nodeid);
1142 }
072bb0aa 1143 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1144 spin_unlock(&alien->lock);
1145 } else {
6a67368c 1146 spin_lock(&(cachep->node[nodeid])->list_lock);
729bd0b7 1147 free_block(cachep, &objp, 1, nodeid);
6a67368c 1148 spin_unlock(&(cachep->node[nodeid])->list_lock);
729bd0b7
PE
1149 }
1150 return 1;
1151}
e498be7d
CL
1152#endif
1153
8f9f8d9e 1154/*
6a67368c 1155 * Allocates and initializes node for a node on each slab cache, used for
8f9f8d9e
DR
1156 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1157 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1158 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1159 * already in use.
1160 *
18004c5d 1161 * Must hold slab_mutex.
8f9f8d9e 1162 */
6a67368c 1163static int init_cache_node_node(int node)
8f9f8d9e
DR
1164{
1165 struct kmem_cache *cachep;
6744f087
CL
1166 struct kmem_cache_node *l3;
1167 const int memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1168
18004c5d 1169 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1170 /*
1171 * Set up the size64 kmemlist for cpu before we can
1172 * begin anything. Make sure some other cpu on this
1173 * node has not already allocated this
1174 */
6a67368c 1175 if (!cachep->node[node]) {
8f9f8d9e
DR
1176 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1177 if (!l3)
1178 return -ENOMEM;
1179 kmem_list3_init(l3);
1180 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1181 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1182
1183 /*
1184 * The l3s don't come and go as CPUs come and
18004c5d 1185 * go. slab_mutex is sufficient
8f9f8d9e
DR
1186 * protection here.
1187 */
6a67368c 1188 cachep->node[node] = l3;
8f9f8d9e
DR
1189 }
1190
6a67368c
CL
1191 spin_lock_irq(&cachep->node[node]->list_lock);
1192 cachep->node[node]->free_limit =
8f9f8d9e
DR
1193 (1 + nr_cpus_node(node)) *
1194 cachep->batchcount + cachep->num;
6a67368c 1195 spin_unlock_irq(&cachep->node[node]->list_lock);
8f9f8d9e
DR
1196 }
1197 return 0;
1198}
1199
fbf1e473
AM
1200static void __cpuinit cpuup_canceled(long cpu)
1201{
1202 struct kmem_cache *cachep;
6744f087 1203 struct kmem_cache_node *l3 = NULL;
7d6e6d09 1204 int node = cpu_to_mem(cpu);
a70f7302 1205 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1206
18004c5d 1207 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1208 struct array_cache *nc;
1209 struct array_cache *shared;
1210 struct array_cache **alien;
fbf1e473 1211
fbf1e473
AM
1212 /* cpu is dead; no one can alloc from it. */
1213 nc = cachep->array[cpu];
1214 cachep->array[cpu] = NULL;
6a67368c 1215 l3 = cachep->node[node];
fbf1e473
AM
1216
1217 if (!l3)
1218 goto free_array_cache;
1219
1220 spin_lock_irq(&l3->list_lock);
1221
1222 /* Free limit for this kmem_list3 */
1223 l3->free_limit -= cachep->batchcount;
1224 if (nc)
1225 free_block(cachep, nc->entry, nc->avail, node);
1226
58463c1f 1227 if (!cpumask_empty(mask)) {
fbf1e473
AM
1228 spin_unlock_irq(&l3->list_lock);
1229 goto free_array_cache;
1230 }
1231
1232 shared = l3->shared;
1233 if (shared) {
1234 free_block(cachep, shared->entry,
1235 shared->avail, node);
1236 l3->shared = NULL;
1237 }
1238
1239 alien = l3->alien;
1240 l3->alien = NULL;
1241
1242 spin_unlock_irq(&l3->list_lock);
1243
1244 kfree(shared);
1245 if (alien) {
1246 drain_alien_cache(cachep, alien);
1247 free_alien_cache(alien);
1248 }
1249free_array_cache:
1250 kfree(nc);
1251 }
1252 /*
1253 * In the previous loop, all the objects were freed to
1254 * the respective cache's slabs, now we can go ahead and
1255 * shrink each nodelist to its limit.
1256 */
18004c5d 1257 list_for_each_entry(cachep, &slab_caches, list) {
6a67368c 1258 l3 = cachep->node[node];
fbf1e473
AM
1259 if (!l3)
1260 continue;
1261 drain_freelist(cachep, l3, l3->free_objects);
1262 }
1263}
1264
1265static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1266{
343e0d7a 1267 struct kmem_cache *cachep;
6744f087 1268 struct kmem_cache_node *l3 = NULL;
7d6e6d09 1269 int node = cpu_to_mem(cpu);
8f9f8d9e 1270 int err;
1da177e4 1271
fbf1e473
AM
1272 /*
1273 * We need to do this right in the beginning since
1274 * alloc_arraycache's are going to use this list.
1275 * kmalloc_node allows us to add the slab to the right
1276 * kmem_list3 and not this cpu's kmem_list3
1277 */
6a67368c 1278 err = init_cache_node_node(node);
8f9f8d9e
DR
1279 if (err < 0)
1280 goto bad;
fbf1e473
AM
1281
1282 /*
1283 * Now we can go ahead with allocating the shared arrays and
1284 * array caches
1285 */
18004c5d 1286 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1287 struct array_cache *nc;
1288 struct array_cache *shared = NULL;
1289 struct array_cache **alien = NULL;
1290
1291 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1292 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1293 if (!nc)
1294 goto bad;
1295 if (cachep->shared) {
1296 shared = alloc_arraycache(node,
1297 cachep->shared * cachep->batchcount,
83b519e8 1298 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1299 if (!shared) {
1300 kfree(nc);
1da177e4 1301 goto bad;
12d00f6a 1302 }
fbf1e473
AM
1303 }
1304 if (use_alien_caches) {
83b519e8 1305 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1306 if (!alien) {
1307 kfree(shared);
1308 kfree(nc);
fbf1e473 1309 goto bad;
12d00f6a 1310 }
fbf1e473
AM
1311 }
1312 cachep->array[cpu] = nc;
6a67368c 1313 l3 = cachep->node[node];
fbf1e473
AM
1314 BUG_ON(!l3);
1315
1316 spin_lock_irq(&l3->list_lock);
1317 if (!l3->shared) {
1318 /*
1319 * We are serialised from CPU_DEAD or
1320 * CPU_UP_CANCELLED by the cpucontrol lock
1321 */
1322 l3->shared = shared;
1323 shared = NULL;
1324 }
4484ebf1 1325#ifdef CONFIG_NUMA
fbf1e473
AM
1326 if (!l3->alien) {
1327 l3->alien = alien;
1328 alien = NULL;
1da177e4 1329 }
fbf1e473
AM
1330#endif
1331 spin_unlock_irq(&l3->list_lock);
1332 kfree(shared);
1333 free_alien_cache(alien);
83835b3d
PZ
1334 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1335 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1336 else if (!OFF_SLAB(cachep) &&
1337 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1338 on_slab_lock_classes_node(cachep, node);
fbf1e473 1339 }
ce79ddc8
PE
1340 init_node_lock_keys(node);
1341
fbf1e473
AM
1342 return 0;
1343bad:
12d00f6a 1344 cpuup_canceled(cpu);
fbf1e473
AM
1345 return -ENOMEM;
1346}
1347
1348static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1349 unsigned long action, void *hcpu)
1350{
1351 long cpu = (long)hcpu;
1352 int err = 0;
1353
1354 switch (action) {
fbf1e473
AM
1355 case CPU_UP_PREPARE:
1356 case CPU_UP_PREPARE_FROZEN:
18004c5d 1357 mutex_lock(&slab_mutex);
fbf1e473 1358 err = cpuup_prepare(cpu);
18004c5d 1359 mutex_unlock(&slab_mutex);
1da177e4
LT
1360 break;
1361 case CPU_ONLINE:
8bb78442 1362 case CPU_ONLINE_FROZEN:
1da177e4
LT
1363 start_cpu_timer(cpu);
1364 break;
1365#ifdef CONFIG_HOTPLUG_CPU
5830c590 1366 case CPU_DOWN_PREPARE:
8bb78442 1367 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1368 /*
18004c5d 1369 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1370 * held so that if cache_reap() is invoked it cannot do
1371 * anything expensive but will only modify reap_work
1372 * and reschedule the timer.
1373 */
afe2c511 1374 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1375 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1376 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1377 break;
1378 case CPU_DOWN_FAILED:
8bb78442 1379 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1380 start_cpu_timer(cpu);
1381 break;
1da177e4 1382 case CPU_DEAD:
8bb78442 1383 case CPU_DEAD_FROZEN:
4484ebf1
RT
1384 /*
1385 * Even if all the cpus of a node are down, we don't free the
1386 * kmem_list3 of any cache. This to avoid a race between
1387 * cpu_down, and a kmalloc allocation from another cpu for
1388 * memory from the node of the cpu going down. The list3
1389 * structure is usually allocated from kmem_cache_create() and
1390 * gets destroyed at kmem_cache_destroy().
1391 */
183ff22b 1392 /* fall through */
8f5be20b 1393#endif
1da177e4 1394 case CPU_UP_CANCELED:
8bb78442 1395 case CPU_UP_CANCELED_FROZEN:
18004c5d 1396 mutex_lock(&slab_mutex);
fbf1e473 1397 cpuup_canceled(cpu);
18004c5d 1398 mutex_unlock(&slab_mutex);
1da177e4 1399 break;
1da177e4 1400 }
eac40680 1401 return notifier_from_errno(err);
1da177e4
LT
1402}
1403
74b85f37
CS
1404static struct notifier_block __cpuinitdata cpucache_notifier = {
1405 &cpuup_callback, NULL, 0
1406};
1da177e4 1407
8f9f8d9e
DR
1408#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1409/*
1410 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1411 * Returns -EBUSY if all objects cannot be drained so that the node is not
1412 * removed.
1413 *
18004c5d 1414 * Must hold slab_mutex.
8f9f8d9e 1415 */
6a67368c 1416static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1417{
1418 struct kmem_cache *cachep;
1419 int ret = 0;
1420
18004c5d 1421 list_for_each_entry(cachep, &slab_caches, list) {
6744f087 1422 struct kmem_cache_node *l3;
8f9f8d9e 1423
6a67368c 1424 l3 = cachep->node[node];
8f9f8d9e
DR
1425 if (!l3)
1426 continue;
1427
1428 drain_freelist(cachep, l3, l3->free_objects);
1429
1430 if (!list_empty(&l3->slabs_full) ||
1431 !list_empty(&l3->slabs_partial)) {
1432 ret = -EBUSY;
1433 break;
1434 }
1435 }
1436 return ret;
1437}
1438
1439static int __meminit slab_memory_callback(struct notifier_block *self,
1440 unsigned long action, void *arg)
1441{
1442 struct memory_notify *mnb = arg;
1443 int ret = 0;
1444 int nid;
1445
1446 nid = mnb->status_change_nid;
1447 if (nid < 0)
1448 goto out;
1449
1450 switch (action) {
1451 case MEM_GOING_ONLINE:
18004c5d 1452 mutex_lock(&slab_mutex);
6a67368c 1453 ret = init_cache_node_node(nid);
18004c5d 1454 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1455 break;
1456 case MEM_GOING_OFFLINE:
18004c5d 1457 mutex_lock(&slab_mutex);
6a67368c 1458 ret = drain_cache_node_node(nid);
18004c5d 1459 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1460 break;
1461 case MEM_ONLINE:
1462 case MEM_OFFLINE:
1463 case MEM_CANCEL_ONLINE:
1464 case MEM_CANCEL_OFFLINE:
1465 break;
1466 }
1467out:
5fda1bd5 1468 return notifier_from_errno(ret);
8f9f8d9e
DR
1469}
1470#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1471
e498be7d
CL
1472/*
1473 * swap the static kmem_list3 with kmalloced memory
1474 */
6744f087 1475static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1476 int nodeid)
e498be7d 1477{
6744f087 1478 struct kmem_cache_node *ptr;
e498be7d 1479
6744f087 1480 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1481 BUG_ON(!ptr);
1482
6744f087 1483 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1484 /*
1485 * Do not assume that spinlocks can be initialized via memcpy:
1486 */
1487 spin_lock_init(&ptr->list_lock);
1488
e498be7d 1489 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1490 cachep->node[nodeid] = ptr;
e498be7d
CL
1491}
1492
556a169d
PE
1493/*
1494 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1495 * size of kmem_list3.
1496 */
1497static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1498{
1499 int node;
1500
1501 for_each_online_node(node) {
6a67368c
CL
1502 cachep->node[node] = &initkmem_list3[index + node];
1503 cachep->node[node]->next_reap = jiffies +
556a169d
PE
1504 REAPTIMEOUT_LIST3 +
1505 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1506 }
1507}
1508
3c583465
CL
1509/*
1510 * The memory after the last cpu cache pointer is used for the
6a67368c 1511 * the node pointer.
3c583465 1512 */
6a67368c 1513static void setup_node_pointer(struct kmem_cache *cachep)
3c583465 1514{
6a67368c 1515 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
3c583465
CL
1516}
1517
a737b3e2
AM
1518/*
1519 * Initialisation. Called after the page allocator have been initialised and
1520 * before smp_init().
1da177e4
LT
1521 */
1522void __init kmem_cache_init(void)
1523{
e498be7d
CL
1524 int i;
1525
9b030cb8 1526 kmem_cache = &kmem_cache_boot;
6a67368c 1527 setup_node_pointer(kmem_cache);
9b030cb8 1528
b6e68bc1 1529 if (num_possible_nodes() == 1)
62918a03
SS
1530 use_alien_caches = 0;
1531
3c583465 1532 for (i = 0; i < NUM_INIT_LISTS; i++)
e498be7d 1533 kmem_list3_init(&initkmem_list3[i]);
3c583465 1534
9b030cb8 1535 set_up_list3s(kmem_cache, CACHE_CACHE);
1da177e4
LT
1536
1537 /*
1538 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1539 * page orders on machines with more than 32MB of memory if
1540 * not overridden on the command line.
1da177e4 1541 */
3df1cccd 1542 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1543 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1544
1da177e4
LT
1545 /* Bootstrap is tricky, because several objects are allocated
1546 * from caches that do not exist yet:
9b030cb8
CL
1547 * 1) initialize the kmem_cache cache: it contains the struct
1548 * kmem_cache structures of all caches, except kmem_cache itself:
1549 * kmem_cache is statically allocated.
e498be7d
CL
1550 * Initially an __init data area is used for the head array and the
1551 * kmem_list3 structures, it's replaced with a kmalloc allocated
1552 * array at the end of the bootstrap.
1da177e4 1553 * 2) Create the first kmalloc cache.
343e0d7a 1554 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1555 * An __init data area is used for the head array.
1556 * 3) Create the remaining kmalloc caches, with minimally sized
1557 * head arrays.
9b030cb8 1558 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1559 * kmalloc cache with kmalloc allocated arrays.
9b030cb8 1560 * 5) Replace the __init data for kmem_list3 for kmem_cache and
e498be7d
CL
1561 * the other cache's with kmalloc allocated memory.
1562 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1563 */
1564
9b030cb8 1565 /* 1) create the kmem_cache */
1da177e4 1566
8da3430d 1567 /*
b56efcf0 1568 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1569 */
2f9baa9f
CL
1570 create_boot_cache(kmem_cache, "kmem_cache",
1571 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
6744f087 1572 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1573 SLAB_HWCACHE_ALIGN);
1574 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1575
1576 /* 2+3) create the kmalloc caches */
1da177e4 1577
a737b3e2
AM
1578 /*
1579 * Initialize the caches that provide memory for the array cache and the
1580 * kmem_list3 structures first. Without this, further allocations will
1581 * bug.
e498be7d
CL
1582 */
1583
e3366016
CL
1584 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1585 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44
CL
1586
1587 if (INDEX_AC != INDEX_L3)
e3366016
CL
1588 kmalloc_caches[INDEX_L3] =
1589 create_kmalloc_cache("kmalloc-l3",
1590 kmalloc_size(INDEX_L3), ARCH_KMALLOC_FLAGS);
e498be7d 1591
e0a42726
IM
1592 slab_early_init = 0;
1593
1da177e4
LT
1594 /* 4) Replace the bootstrap head arrays */
1595 {
2b2d5493 1596 struct array_cache *ptr;
e498be7d 1597
83b519e8 1598 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1599
9b030cb8 1600 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1601 sizeof(struct arraycache_init));
2b2d5493
IM
1602 /*
1603 * Do not assume that spinlocks can be initialized via memcpy:
1604 */
1605 spin_lock_init(&ptr->lock);
1606
9b030cb8 1607 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1608
83b519e8 1609 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1610
e3366016 1611 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1612 != &initarray_generic.cache);
e3366016 1613 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1614 sizeof(struct arraycache_init));
2b2d5493
IM
1615 /*
1616 * Do not assume that spinlocks can be initialized via memcpy:
1617 */
1618 spin_lock_init(&ptr->lock);
1619
e3366016 1620 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1621 }
e498be7d
CL
1622 /* 5) Replace the bootstrap kmem_list3's */
1623 {
1ca4cb24
PE
1624 int nid;
1625
9c09a95c 1626 for_each_online_node(nid) {
9b030cb8 1627 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1628
e3366016 1629 init_list(kmalloc_caches[INDEX_AC],
1ca4cb24 1630 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1631
1632 if (INDEX_AC != INDEX_L3) {
e3366016 1633 init_list(kmalloc_caches[INDEX_L3],
1ca4cb24 1634 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1635 }
1636 }
1637 }
1da177e4 1638
f97d5f63 1639 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1640}
1641
1642void __init kmem_cache_init_late(void)
1643{
1644 struct kmem_cache *cachep;
1645
97d06609 1646 slab_state = UP;
52cef189 1647
8429db5c 1648 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1649 mutex_lock(&slab_mutex);
1650 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1651 if (enable_cpucache(cachep, GFP_NOWAIT))
1652 BUG();
18004c5d 1653 mutex_unlock(&slab_mutex);
056c6241 1654
947ca185
MW
1655 /* Annotate slab for lockdep -- annotate the malloc caches */
1656 init_lock_keys();
1657
97d06609
CL
1658 /* Done! */
1659 slab_state = FULL;
1660
a737b3e2
AM
1661 /*
1662 * Register a cpu startup notifier callback that initializes
1663 * cpu_cache_get for all new cpus
1da177e4
LT
1664 */
1665 register_cpu_notifier(&cpucache_notifier);
1da177e4 1666
8f9f8d9e
DR
1667#ifdef CONFIG_NUMA
1668 /*
1669 * Register a memory hotplug callback that initializes and frees
6a67368c 1670 * node.
8f9f8d9e
DR
1671 */
1672 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1673#endif
1674
a737b3e2
AM
1675 /*
1676 * The reap timers are started later, with a module init call: That part
1677 * of the kernel is not yet operational.
1da177e4
LT
1678 */
1679}
1680
1681static int __init cpucache_init(void)
1682{
1683 int cpu;
1684
a737b3e2
AM
1685 /*
1686 * Register the timers that return unneeded pages to the page allocator
1da177e4 1687 */
e498be7d 1688 for_each_online_cpu(cpu)
a737b3e2 1689 start_cpu_timer(cpu);
a164f896
GC
1690
1691 /* Done! */
97d06609 1692 slab_state = FULL;
1da177e4
LT
1693 return 0;
1694}
1da177e4
LT
1695__initcall(cpucache_init);
1696
8bdec192
RA
1697static noinline void
1698slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1699{
6744f087 1700 struct kmem_cache_node *l3;
8bdec192
RA
1701 struct slab *slabp;
1702 unsigned long flags;
1703 int node;
1704
1705 printk(KERN_WARNING
1706 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1707 nodeid, gfpflags);
1708 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1709 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1710
1711 for_each_online_node(node) {
1712 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1713 unsigned long active_slabs = 0, num_slabs = 0;
1714
6a67368c 1715 l3 = cachep->node[node];
8bdec192
RA
1716 if (!l3)
1717 continue;
1718
1719 spin_lock_irqsave(&l3->list_lock, flags);
1720 list_for_each_entry(slabp, &l3->slabs_full, list) {
1721 active_objs += cachep->num;
1722 active_slabs++;
1723 }
1724 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1725 active_objs += slabp->inuse;
1726 active_slabs++;
1727 }
1728 list_for_each_entry(slabp, &l3->slabs_free, list)
1729 num_slabs++;
1730
1731 free_objects += l3->free_objects;
1732 spin_unlock_irqrestore(&l3->list_lock, flags);
1733
1734 num_slabs += active_slabs;
1735 num_objs = num_slabs * cachep->num;
1736 printk(KERN_WARNING
1737 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1738 node, active_slabs, num_slabs, active_objs, num_objs,
1739 free_objects);
1740 }
1741}
1742
1da177e4
LT
1743/*
1744 * Interface to system's page allocator. No need to hold the cache-lock.
1745 *
1746 * If we requested dmaable memory, we will get it. Even if we
1747 * did not request dmaable memory, we might get it, but that
1748 * would be relatively rare and ignorable.
1749 */
343e0d7a 1750static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1751{
1752 struct page *page;
e1b6aa6f 1753 int nr_pages;
1da177e4
LT
1754 int i;
1755
d6fef9da 1756#ifndef CONFIG_MMU
e1b6aa6f
CH
1757 /*
1758 * Nommu uses slab's for process anonymous memory allocations, and thus
1759 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1760 */
e1b6aa6f 1761 flags |= __GFP_COMP;
d6fef9da 1762#endif
765c4507 1763
a618e89f 1764 flags |= cachep->allocflags;
e12ba74d
MG
1765 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1766 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1767
517d0869 1768 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1769 if (!page) {
1770 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1771 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1772 return NULL;
8bdec192 1773 }
1da177e4 1774
b37f1dd0 1775 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1776 if (unlikely(page->pfmemalloc))
1777 pfmemalloc_active = true;
1778
e1b6aa6f 1779 nr_pages = (1 << cachep->gfporder);
1da177e4 1780 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1781 add_zone_page_state(page_zone(page),
1782 NR_SLAB_RECLAIMABLE, nr_pages);
1783 else
1784 add_zone_page_state(page_zone(page),
1785 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1786 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1787 __SetPageSlab(page + i);
c175eea4 1788
072bb0aa
MG
1789 if (page->pfmemalloc)
1790 SetPageSlabPfmemalloc(page + i);
1791 }
1f458cbf 1792 memcg_bind_pages(cachep, cachep->gfporder);
072bb0aa 1793
b1eeab67
VN
1794 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1795 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1796
1797 if (cachep->ctor)
1798 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1799 else
1800 kmemcheck_mark_unallocated_pages(page, nr_pages);
1801 }
c175eea4 1802
e1b6aa6f 1803 return page_address(page);
1da177e4
LT
1804}
1805
1806/*
1807 * Interface to system's page release.
1808 */
343e0d7a 1809static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1810{
b28a02de 1811 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1812 struct page *page = virt_to_page(addr);
1813 const unsigned long nr_freed = i;
1814
b1eeab67 1815 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1816
972d1a7b
CL
1817 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1818 sub_zone_page_state(page_zone(page),
1819 NR_SLAB_RECLAIMABLE, nr_freed);
1820 else
1821 sub_zone_page_state(page_zone(page),
1822 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1823 while (i--) {
f205b2fe 1824 BUG_ON(!PageSlab(page));
072bb0aa 1825 __ClearPageSlabPfmemalloc(page);
f205b2fe 1826 __ClearPageSlab(page);
1da177e4
LT
1827 page++;
1828 }
1f458cbf
GC
1829
1830 memcg_release_pages(cachep, cachep->gfporder);
1da177e4
LT
1831 if (current->reclaim_state)
1832 current->reclaim_state->reclaimed_slab += nr_freed;
d79923fa 1833 free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1834}
1835
1836static void kmem_rcu_free(struct rcu_head *head)
1837{
b28a02de 1838 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1839 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1840
1841 kmem_freepages(cachep, slab_rcu->addr);
1842 if (OFF_SLAB(cachep))
1843 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1844}
1845
1846#if DEBUG
1847
1848#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1849static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1850 unsigned long caller)
1da177e4 1851{
8c138bc0 1852 int size = cachep->object_size;
1da177e4 1853
3dafccf2 1854 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1855
b28a02de 1856 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1857 return;
1858
b28a02de
PE
1859 *addr++ = 0x12345678;
1860 *addr++ = caller;
1861 *addr++ = smp_processor_id();
1862 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1863 {
1864 unsigned long *sptr = &caller;
1865 unsigned long svalue;
1866
1867 while (!kstack_end(sptr)) {
1868 svalue = *sptr++;
1869 if (kernel_text_address(svalue)) {
b28a02de 1870 *addr++ = svalue;
1da177e4
LT
1871 size -= sizeof(unsigned long);
1872 if (size <= sizeof(unsigned long))
1873 break;
1874 }
1875 }
1876
1877 }
b28a02de 1878 *addr++ = 0x87654321;
1da177e4
LT
1879}
1880#endif
1881
343e0d7a 1882static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1883{
8c138bc0 1884 int size = cachep->object_size;
3dafccf2 1885 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1886
1887 memset(addr, val, size);
b28a02de 1888 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1889}
1890
1891static void dump_line(char *data, int offset, int limit)
1892{
1893 int i;
aa83aa40
DJ
1894 unsigned char error = 0;
1895 int bad_count = 0;
1896
fdde6abb 1897 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1898 for (i = 0; i < limit; i++) {
1899 if (data[offset + i] != POISON_FREE) {
1900 error = data[offset + i];
1901 bad_count++;
1902 }
aa83aa40 1903 }
fdde6abb
SAS
1904 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1905 &data[offset], limit, 1);
aa83aa40
DJ
1906
1907 if (bad_count == 1) {
1908 error ^= POISON_FREE;
1909 if (!(error & (error - 1))) {
1910 printk(KERN_ERR "Single bit error detected. Probably "
1911 "bad RAM.\n");
1912#ifdef CONFIG_X86
1913 printk(KERN_ERR "Run memtest86+ or a similar memory "
1914 "test tool.\n");
1915#else
1916 printk(KERN_ERR "Run a memory test tool.\n");
1917#endif
1918 }
1919 }
1da177e4
LT
1920}
1921#endif
1922
1923#if DEBUG
1924
343e0d7a 1925static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1926{
1927 int i, size;
1928 char *realobj;
1929
1930 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1931 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1932 *dbg_redzone1(cachep, objp),
1933 *dbg_redzone2(cachep, objp));
1da177e4
LT
1934 }
1935
1936 if (cachep->flags & SLAB_STORE_USER) {
1937 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1938 *dbg_userword(cachep, objp));
1da177e4 1939 print_symbol("(%s)",
a737b3e2 1940 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1941 printk("\n");
1942 }
3dafccf2 1943 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1944 size = cachep->object_size;
b28a02de 1945 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1946 int limit;
1947 limit = 16;
b28a02de
PE
1948 if (i + limit > size)
1949 limit = size - i;
1da177e4
LT
1950 dump_line(realobj, i, limit);
1951 }
1952}
1953
343e0d7a 1954static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1955{
1956 char *realobj;
1957 int size, i;
1958 int lines = 0;
1959
3dafccf2 1960 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1961 size = cachep->object_size;
1da177e4 1962
b28a02de 1963 for (i = 0; i < size; i++) {
1da177e4 1964 char exp = POISON_FREE;
b28a02de 1965 if (i == size - 1)
1da177e4
LT
1966 exp = POISON_END;
1967 if (realobj[i] != exp) {
1968 int limit;
1969 /* Mismatch ! */
1970 /* Print header */
1971 if (lines == 0) {
b28a02de 1972 printk(KERN_ERR
face37f5
DJ
1973 "Slab corruption (%s): %s start=%p, len=%d\n",
1974 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1975 print_objinfo(cachep, objp, 0);
1976 }
1977 /* Hexdump the affected line */
b28a02de 1978 i = (i / 16) * 16;
1da177e4 1979 limit = 16;
b28a02de
PE
1980 if (i + limit > size)
1981 limit = size - i;
1da177e4
LT
1982 dump_line(realobj, i, limit);
1983 i += 16;
1984 lines++;
1985 /* Limit to 5 lines */
1986 if (lines > 5)
1987 break;
1988 }
1989 }
1990 if (lines != 0) {
1991 /* Print some data about the neighboring objects, if they
1992 * exist:
1993 */
6ed5eb22 1994 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1995 unsigned int objnr;
1da177e4 1996
8fea4e96 1997 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1998 if (objnr) {
8fea4e96 1999 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 2000 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2001 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 2002 realobj, size);
1da177e4
LT
2003 print_objinfo(cachep, objp, 2);
2004 }
b28a02de 2005 if (objnr + 1 < cachep->num) {
8fea4e96 2006 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 2007 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2008 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 2009 realobj, size);
1da177e4
LT
2010 print_objinfo(cachep, objp, 2);
2011 }
2012 }
2013}
2014#endif
2015
12dd36fa 2016#if DEBUG
e79aec29 2017static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2018{
1da177e4
LT
2019 int i;
2020 for (i = 0; i < cachep->num; i++) {
8fea4e96 2021 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2022
2023 if (cachep->flags & SLAB_POISON) {
2024#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2025 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2026 OFF_SLAB(cachep))
b28a02de 2027 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2028 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2029 else
2030 check_poison_obj(cachep, objp);
2031#else
2032 check_poison_obj(cachep, objp);
2033#endif
2034 }
2035 if (cachep->flags & SLAB_RED_ZONE) {
2036 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2037 slab_error(cachep, "start of a freed object "
b28a02de 2038 "was overwritten");
1da177e4
LT
2039 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2040 slab_error(cachep, "end of a freed object "
b28a02de 2041 "was overwritten");
1da177e4 2042 }
1da177e4 2043 }
12dd36fa 2044}
1da177e4 2045#else
e79aec29 2046static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2047{
12dd36fa 2048}
1da177e4
LT
2049#endif
2050
911851e6
RD
2051/**
2052 * slab_destroy - destroy and release all objects in a slab
2053 * @cachep: cache pointer being destroyed
2054 * @slabp: slab pointer being destroyed
2055 *
12dd36fa 2056 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2057 * Before calling the slab must have been unlinked from the cache. The
2058 * cache-lock is not held/needed.
12dd36fa 2059 */
343e0d7a 2060static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2061{
2062 void *addr = slabp->s_mem - slabp->colouroff;
2063
e79aec29 2064 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2065 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2066 struct slab_rcu *slab_rcu;
2067
b28a02de 2068 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2069 slab_rcu->cachep = cachep;
2070 slab_rcu->addr = addr;
2071 call_rcu(&slab_rcu->head, kmem_rcu_free);
2072 } else {
2073 kmem_freepages(cachep, addr);
873623df
IM
2074 if (OFF_SLAB(cachep))
2075 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2076 }
2077}
2078
4d268eba 2079/**
a70773dd
RD
2080 * calculate_slab_order - calculate size (page order) of slabs
2081 * @cachep: pointer to the cache that is being created
2082 * @size: size of objects to be created in this cache.
2083 * @align: required alignment for the objects.
2084 * @flags: slab allocation flags
2085 *
2086 * Also calculates the number of objects per slab.
4d268eba
PE
2087 *
2088 * This could be made much more intelligent. For now, try to avoid using
2089 * high order pages for slabs. When the gfp() functions are more friendly
2090 * towards high-order requests, this should be changed.
2091 */
a737b3e2 2092static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2093 size_t size, size_t align, unsigned long flags)
4d268eba 2094{
b1ab41c4 2095 unsigned long offslab_limit;
4d268eba 2096 size_t left_over = 0;
9888e6fa 2097 int gfporder;
4d268eba 2098
0aa817f0 2099 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2100 unsigned int num;
2101 size_t remainder;
2102
9888e6fa 2103 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2104 if (!num)
2105 continue;
9888e6fa 2106
b1ab41c4
IM
2107 if (flags & CFLGS_OFF_SLAB) {
2108 /*
2109 * Max number of objs-per-slab for caches which
2110 * use off-slab slabs. Needed to avoid a possible
2111 * looping condition in cache_grow().
2112 */
2113 offslab_limit = size - sizeof(struct slab);
2114 offslab_limit /= sizeof(kmem_bufctl_t);
2115
2116 if (num > offslab_limit)
2117 break;
2118 }
4d268eba 2119
9888e6fa 2120 /* Found something acceptable - save it away */
4d268eba 2121 cachep->num = num;
9888e6fa 2122 cachep->gfporder = gfporder;
4d268eba
PE
2123 left_over = remainder;
2124
f78bb8ad
LT
2125 /*
2126 * A VFS-reclaimable slab tends to have most allocations
2127 * as GFP_NOFS and we really don't want to have to be allocating
2128 * higher-order pages when we are unable to shrink dcache.
2129 */
2130 if (flags & SLAB_RECLAIM_ACCOUNT)
2131 break;
2132
4d268eba
PE
2133 /*
2134 * Large number of objects is good, but very large slabs are
2135 * currently bad for the gfp()s.
2136 */
543585cc 2137 if (gfporder >= slab_max_order)
4d268eba
PE
2138 break;
2139
9888e6fa
LT
2140 /*
2141 * Acceptable internal fragmentation?
2142 */
a737b3e2 2143 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2144 break;
2145 }
2146 return left_over;
2147}
2148
83b519e8 2149static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2150{
97d06609 2151 if (slab_state >= FULL)
83b519e8 2152 return enable_cpucache(cachep, gfp);
2ed3a4ef 2153
97d06609 2154 if (slab_state == DOWN) {
f30cf7d1 2155 /*
2f9baa9f
CL
2156 * Note: Creation of first cache (kmem_cache).
2157 * The setup_list3s is taken care
2158 * of by the caller of __kmem_cache_create
2159 */
2160 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2161 slab_state = PARTIAL;
2162 } else if (slab_state == PARTIAL) {
2163 /*
2164 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2165 * that's used by kmalloc(24), otherwise the creation of
2166 * further caches will BUG().
2167 */
2168 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2169
2170 /*
2171 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2f9baa9f 2172 * the second cache, then we need to set up all its list3s,
f30cf7d1
PE
2173 * otherwise the creation of further caches will BUG().
2174 */
2175 set_up_list3s(cachep, SIZE_AC);
2176 if (INDEX_AC == INDEX_L3)
97d06609 2177 slab_state = PARTIAL_L3;
f30cf7d1 2178 else
97d06609 2179 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2180 } else {
2f9baa9f 2181 /* Remaining boot caches */
f30cf7d1 2182 cachep->array[smp_processor_id()] =
83b519e8 2183 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2184
97d06609 2185 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2186 set_up_list3s(cachep, SIZE_L3);
97d06609 2187 slab_state = PARTIAL_L3;
f30cf7d1
PE
2188 } else {
2189 int node;
556a169d 2190 for_each_online_node(node) {
6a67368c 2191 cachep->node[node] =
6744f087 2192 kmalloc_node(sizeof(struct kmem_cache_node),
eb91f1d0 2193 gfp, node);
6a67368c
CL
2194 BUG_ON(!cachep->node[node]);
2195 kmem_list3_init(cachep->node[node]);
f30cf7d1
PE
2196 }
2197 }
2198 }
6a67368c 2199 cachep->node[numa_mem_id()]->next_reap =
f30cf7d1
PE
2200 jiffies + REAPTIMEOUT_LIST3 +
2201 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2202
2203 cpu_cache_get(cachep)->avail = 0;
2204 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2205 cpu_cache_get(cachep)->batchcount = 1;
2206 cpu_cache_get(cachep)->touched = 0;
2207 cachep->batchcount = 1;
2208 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2209 return 0;
f30cf7d1
PE
2210}
2211
1da177e4 2212/**
039363f3 2213 * __kmem_cache_create - Create a cache.
a755b76a 2214 * @cachep: cache management descriptor
1da177e4 2215 * @flags: SLAB flags
1da177e4
LT
2216 *
2217 * Returns a ptr to the cache on success, NULL on failure.
2218 * Cannot be called within a int, but can be interrupted.
20c2df83 2219 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2220 *
1da177e4
LT
2221 * The flags are
2222 *
2223 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2224 * to catch references to uninitialised memory.
2225 *
2226 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2227 * for buffer overruns.
2228 *
1da177e4
LT
2229 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2230 * cacheline. This can be beneficial if you're counting cycles as closely
2231 * as davem.
2232 */
278b1bb1 2233int
8a13a4cc 2234__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4
LT
2235{
2236 size_t left_over, slab_size, ralign;
83b519e8 2237 gfp_t gfp;
278b1bb1 2238 int err;
8a13a4cc 2239 size_t size = cachep->size;
1da177e4 2240
1da177e4 2241#if DEBUG
1da177e4
LT
2242#if FORCED_DEBUG
2243 /*
2244 * Enable redzoning and last user accounting, except for caches with
2245 * large objects, if the increased size would increase the object size
2246 * above the next power of two: caches with object sizes just above a
2247 * power of two have a significant amount of internal fragmentation.
2248 */
87a927c7
DW
2249 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2250 2 * sizeof(unsigned long long)))
b28a02de 2251 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2252 if (!(flags & SLAB_DESTROY_BY_RCU))
2253 flags |= SLAB_POISON;
2254#endif
2255 if (flags & SLAB_DESTROY_BY_RCU)
2256 BUG_ON(flags & SLAB_POISON);
2257#endif
1da177e4 2258
a737b3e2
AM
2259 /*
2260 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2261 * unaligned accesses for some archs when redzoning is used, and makes
2262 * sure any on-slab bufctl's are also correctly aligned.
2263 */
b28a02de
PE
2264 if (size & (BYTES_PER_WORD - 1)) {
2265 size += (BYTES_PER_WORD - 1);
2266 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2267 }
2268
ca5f9703 2269 /*
87a927c7
DW
2270 * Redzoning and user store require word alignment or possibly larger.
2271 * Note this will be overridden by architecture or caller mandated
2272 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2273 */
87a927c7
DW
2274 if (flags & SLAB_STORE_USER)
2275 ralign = BYTES_PER_WORD;
2276
2277 if (flags & SLAB_RED_ZONE) {
2278 ralign = REDZONE_ALIGN;
2279 /* If redzoning, ensure that the second redzone is suitably
2280 * aligned, by adjusting the object size accordingly. */
2281 size += REDZONE_ALIGN - 1;
2282 size &= ~(REDZONE_ALIGN - 1);
2283 }
ca5f9703 2284
a44b56d3 2285 /* 3) caller mandated alignment */
8a13a4cc
CL
2286 if (ralign < cachep->align) {
2287 ralign = cachep->align;
1da177e4 2288 }
3ff84a7f
PE
2289 /* disable debug if necessary */
2290 if (ralign > __alignof__(unsigned long long))
a44b56d3 2291 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2292 /*
ca5f9703 2293 * 4) Store it.
1da177e4 2294 */
8a13a4cc 2295 cachep->align = ralign;
1da177e4 2296
83b519e8
PE
2297 if (slab_is_available())
2298 gfp = GFP_KERNEL;
2299 else
2300 gfp = GFP_NOWAIT;
2301
6a67368c 2302 setup_node_pointer(cachep);
1da177e4 2303#if DEBUG
1da177e4 2304
ca5f9703
PE
2305 /*
2306 * Both debugging options require word-alignment which is calculated
2307 * into align above.
2308 */
1da177e4 2309 if (flags & SLAB_RED_ZONE) {
1da177e4 2310 /* add space for red zone words */
3ff84a7f
PE
2311 cachep->obj_offset += sizeof(unsigned long long);
2312 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2313 }
2314 if (flags & SLAB_STORE_USER) {
ca5f9703 2315 /* user store requires one word storage behind the end of
87a927c7
DW
2316 * the real object. But if the second red zone needs to be
2317 * aligned to 64 bits, we must allow that much space.
1da177e4 2318 */
87a927c7
DW
2319 if (flags & SLAB_RED_ZONE)
2320 size += REDZONE_ALIGN;
2321 else
2322 size += BYTES_PER_WORD;
1da177e4
LT
2323 }
2324#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
e3366016
CL
2325 if (size >= kmalloc_size(INDEX_L3 + 1)
2326 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2327 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2328 size = PAGE_SIZE;
2329 }
2330#endif
2331#endif
2332
e0a42726
IM
2333 /*
2334 * Determine if the slab management is 'on' or 'off' slab.
2335 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2336 * it too early on. Always use on-slab management when
2337 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2338 */
e7cb55b9
CM
2339 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2340 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2341 /*
2342 * Size is large, assume best to place the slab management obj
2343 * off-slab (should allow better packing of objs).
2344 */
2345 flags |= CFLGS_OFF_SLAB;
2346
8a13a4cc 2347 size = ALIGN(size, cachep->align);
1da177e4 2348
8a13a4cc 2349 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2350
8a13a4cc 2351 if (!cachep->num)
278b1bb1 2352 return -E2BIG;
1da177e4 2353
b28a02de 2354 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
8a13a4cc 2355 + sizeof(struct slab), cachep->align);
1da177e4
LT
2356
2357 /*
2358 * If the slab has been placed off-slab, and we have enough space then
2359 * move it on-slab. This is at the expense of any extra colouring.
2360 */
2361 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2362 flags &= ~CFLGS_OFF_SLAB;
2363 left_over -= slab_size;
2364 }
2365
2366 if (flags & CFLGS_OFF_SLAB) {
2367 /* really off slab. No need for manual alignment */
b28a02de
PE
2368 slab_size =
2369 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2370
2371#ifdef CONFIG_PAGE_POISONING
2372 /* If we're going to use the generic kernel_map_pages()
2373 * poisoning, then it's going to smash the contents of
2374 * the redzone and userword anyhow, so switch them off.
2375 */
2376 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2377 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2378#endif
1da177e4
LT
2379 }
2380
2381 cachep->colour_off = cache_line_size();
2382 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2383 if (cachep->colour_off < cachep->align)
2384 cachep->colour_off = cachep->align;
b28a02de 2385 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2386 cachep->slab_size = slab_size;
2387 cachep->flags = flags;
a618e89f 2388 cachep->allocflags = 0;
4b51d669 2389 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2390 cachep->allocflags |= GFP_DMA;
3b0efdfa 2391 cachep->size = size;
6a2d7a95 2392 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2393
e5ac9c5a 2394 if (flags & CFLGS_OFF_SLAB) {
2c59dd65 2395 cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
e5ac9c5a
RT
2396 /*
2397 * This is a possibility for one of the malloc_sizes caches.
2398 * But since we go off slab only for object size greater than
2399 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2400 * this should not happen at all.
2401 * But leave a BUG_ON for some lucky dude.
2402 */
6cb8f913 2403 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2404 }
1da177e4 2405
278b1bb1
CL
2406 err = setup_cpu_cache(cachep, gfp);
2407 if (err) {
12c3667f 2408 __kmem_cache_shutdown(cachep);
278b1bb1 2409 return err;
2ed3a4ef 2410 }
1da177e4 2411
83835b3d
PZ
2412 if (flags & SLAB_DEBUG_OBJECTS) {
2413 /*
2414 * Would deadlock through slab_destroy()->call_rcu()->
2415 * debug_object_activate()->kmem_cache_alloc().
2416 */
2417 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2418
2419 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2420 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2421 on_slab_lock_classes(cachep);
83835b3d 2422
278b1bb1 2423 return 0;
1da177e4 2424}
1da177e4
LT
2425
2426#if DEBUG
2427static void check_irq_off(void)
2428{
2429 BUG_ON(!irqs_disabled());
2430}
2431
2432static void check_irq_on(void)
2433{
2434 BUG_ON(irqs_disabled());
2435}
2436
343e0d7a 2437static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2438{
2439#ifdef CONFIG_SMP
2440 check_irq_off();
6a67368c 2441 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
1da177e4
LT
2442#endif
2443}
e498be7d 2444
343e0d7a 2445static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2446{
2447#ifdef CONFIG_SMP
2448 check_irq_off();
6a67368c 2449 assert_spin_locked(&cachep->node[node]->list_lock);
e498be7d
CL
2450#endif
2451}
2452
1da177e4
LT
2453#else
2454#define check_irq_off() do { } while(0)
2455#define check_irq_on() do { } while(0)
2456#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2457#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2458#endif
2459
6744f087 2460static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *l3,
aab2207c
CL
2461 struct array_cache *ac,
2462 int force, int node);
2463
1da177e4
LT
2464static void do_drain(void *arg)
2465{
a737b3e2 2466 struct kmem_cache *cachep = arg;
1da177e4 2467 struct array_cache *ac;
7d6e6d09 2468 int node = numa_mem_id();
1da177e4
LT
2469
2470 check_irq_off();
9a2dba4b 2471 ac = cpu_cache_get(cachep);
6a67368c 2472 spin_lock(&cachep->node[node]->list_lock);
ff69416e 2473 free_block(cachep, ac->entry, ac->avail, node);
6a67368c 2474 spin_unlock(&cachep->node[node]->list_lock);
1da177e4
LT
2475 ac->avail = 0;
2476}
2477
343e0d7a 2478static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2479{
6744f087 2480 struct kmem_cache_node *l3;
e498be7d
CL
2481 int node;
2482
15c8b6c1 2483 on_each_cpu(do_drain, cachep, 1);
1da177e4 2484 check_irq_on();
b28a02de 2485 for_each_online_node(node) {
6a67368c 2486 l3 = cachep->node[node];
a4523a8b
RD
2487 if (l3 && l3->alien)
2488 drain_alien_cache(cachep, l3->alien);
2489 }
2490
2491 for_each_online_node(node) {
6a67368c 2492 l3 = cachep->node[node];
a4523a8b 2493 if (l3)
aab2207c 2494 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2495 }
1da177e4
LT
2496}
2497
ed11d9eb
CL
2498/*
2499 * Remove slabs from the list of free slabs.
2500 * Specify the number of slabs to drain in tofree.
2501 *
2502 * Returns the actual number of slabs released.
2503 */
2504static int drain_freelist(struct kmem_cache *cache,
6744f087 2505 struct kmem_cache_node *l3, int tofree)
1da177e4 2506{
ed11d9eb
CL
2507 struct list_head *p;
2508 int nr_freed;
1da177e4 2509 struct slab *slabp;
1da177e4 2510
ed11d9eb
CL
2511 nr_freed = 0;
2512 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2513
ed11d9eb 2514 spin_lock_irq(&l3->list_lock);
e498be7d 2515 p = l3->slabs_free.prev;
ed11d9eb
CL
2516 if (p == &l3->slabs_free) {
2517 spin_unlock_irq(&l3->list_lock);
2518 goto out;
2519 }
1da177e4 2520
ed11d9eb 2521 slabp = list_entry(p, struct slab, list);
1da177e4 2522#if DEBUG
40094fa6 2523 BUG_ON(slabp->inuse);
1da177e4
LT
2524#endif
2525 list_del(&slabp->list);
ed11d9eb
CL
2526 /*
2527 * Safe to drop the lock. The slab is no longer linked
2528 * to the cache.
2529 */
2530 l3->free_objects -= cache->num;
e498be7d 2531 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2532 slab_destroy(cache, slabp);
2533 nr_freed++;
1da177e4 2534 }
ed11d9eb
CL
2535out:
2536 return nr_freed;
1da177e4
LT
2537}
2538
18004c5d 2539/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2540static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2541{
2542 int ret = 0, i = 0;
6744f087 2543 struct kmem_cache_node *l3;
e498be7d
CL
2544
2545 drain_cpu_caches(cachep);
2546
2547 check_irq_on();
2548 for_each_online_node(i) {
6a67368c 2549 l3 = cachep->node[i];
ed11d9eb
CL
2550 if (!l3)
2551 continue;
2552
2553 drain_freelist(cachep, l3, l3->free_objects);
2554
2555 ret += !list_empty(&l3->slabs_full) ||
2556 !list_empty(&l3->slabs_partial);
e498be7d
CL
2557 }
2558 return (ret ? 1 : 0);
2559}
2560
1da177e4
LT
2561/**
2562 * kmem_cache_shrink - Shrink a cache.
2563 * @cachep: The cache to shrink.
2564 *
2565 * Releases as many slabs as possible for a cache.
2566 * To help debugging, a zero exit status indicates all slabs were released.
2567 */
343e0d7a 2568int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2569{
8f5be20b 2570 int ret;
40094fa6 2571 BUG_ON(!cachep || in_interrupt());
1da177e4 2572
95402b38 2573 get_online_cpus();
18004c5d 2574 mutex_lock(&slab_mutex);
8f5be20b 2575 ret = __cache_shrink(cachep);
18004c5d 2576 mutex_unlock(&slab_mutex);
95402b38 2577 put_online_cpus();
8f5be20b 2578 return ret;
1da177e4
LT
2579}
2580EXPORT_SYMBOL(kmem_cache_shrink);
2581
945cf2b6 2582int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2583{
12c3667f 2584 int i;
6744f087 2585 struct kmem_cache_node *l3;
12c3667f 2586 int rc = __cache_shrink(cachep);
1da177e4 2587
12c3667f
CL
2588 if (rc)
2589 return rc;
1da177e4 2590
12c3667f
CL
2591 for_each_online_cpu(i)
2592 kfree(cachep->array[i]);
1da177e4 2593
12c3667f
CL
2594 /* NUMA: free the list3 structures */
2595 for_each_online_node(i) {
6a67368c 2596 l3 = cachep->node[i];
12c3667f
CL
2597 if (l3) {
2598 kfree(l3->shared);
2599 free_alien_cache(l3->alien);
2600 kfree(l3);
2601 }
2602 }
2603 return 0;
1da177e4 2604}
1da177e4 2605
e5ac9c5a
RT
2606/*
2607 * Get the memory for a slab management obj.
2608 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2609 * always come from malloc_sizes caches. The slab descriptor cannot
2610 * come from the same cache which is getting created because,
2611 * when we are searching for an appropriate cache for these
2612 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2613 * If we are creating a malloc_sizes cache here it would not be visible to
2614 * kmem_find_general_cachep till the initialization is complete.
2615 * Hence we cannot have slabp_cache same as the original cache.
2616 */
343e0d7a 2617static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2618 int colour_off, gfp_t local_flags,
2619 int nodeid)
1da177e4
LT
2620{
2621 struct slab *slabp;
b28a02de 2622
1da177e4
LT
2623 if (OFF_SLAB(cachep)) {
2624 /* Slab management obj is off-slab. */
5b74ada7 2625 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2626 local_flags, nodeid);
d5cff635
CM
2627 /*
2628 * If the first object in the slab is leaked (it's allocated
2629 * but no one has a reference to it), we want to make sure
2630 * kmemleak does not treat the ->s_mem pointer as a reference
2631 * to the object. Otherwise we will not report the leak.
2632 */
c017b4be
CM
2633 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2634 local_flags);
1da177e4
LT
2635 if (!slabp)
2636 return NULL;
2637 } else {
b28a02de 2638 slabp = objp + colour_off;
1da177e4
LT
2639 colour_off += cachep->slab_size;
2640 }
2641 slabp->inuse = 0;
2642 slabp->colouroff = colour_off;
b28a02de 2643 slabp->s_mem = objp + colour_off;
5b74ada7 2644 slabp->nodeid = nodeid;
e51bfd0a 2645 slabp->free = 0;
1da177e4
LT
2646 return slabp;
2647}
2648
2649static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2650{
b28a02de 2651 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2652}
2653
343e0d7a 2654static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2655 struct slab *slabp)
1da177e4
LT
2656{
2657 int i;
2658
2659 for (i = 0; i < cachep->num; i++) {
8fea4e96 2660 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2661#if DEBUG
2662 /* need to poison the objs? */
2663 if (cachep->flags & SLAB_POISON)
2664 poison_obj(cachep, objp, POISON_FREE);
2665 if (cachep->flags & SLAB_STORE_USER)
2666 *dbg_userword(cachep, objp) = NULL;
2667
2668 if (cachep->flags & SLAB_RED_ZONE) {
2669 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2670 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2671 }
2672 /*
a737b3e2
AM
2673 * Constructors are not allowed to allocate memory from the same
2674 * cache which they are a constructor for. Otherwise, deadlock.
2675 * They must also be threaded.
1da177e4
LT
2676 */
2677 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2678 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2679
2680 if (cachep->flags & SLAB_RED_ZONE) {
2681 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2682 slab_error(cachep, "constructor overwrote the"
b28a02de 2683 " end of an object");
1da177e4
LT
2684 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2685 slab_error(cachep, "constructor overwrote the"
b28a02de 2686 " start of an object");
1da177e4 2687 }
3b0efdfa 2688 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2689 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2690 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2691 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2692#else
2693 if (cachep->ctor)
51cc5068 2694 cachep->ctor(objp);
1da177e4 2695#endif
b28a02de 2696 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2697 }
b28a02de 2698 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2699}
2700
343e0d7a 2701static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2702{
4b51d669
CL
2703 if (CONFIG_ZONE_DMA_FLAG) {
2704 if (flags & GFP_DMA)
a618e89f 2705 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2706 else
a618e89f 2707 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2708 }
1da177e4
LT
2709}
2710
a737b3e2
AM
2711static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2712 int nodeid)
78d382d7 2713{
8fea4e96 2714 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2715 kmem_bufctl_t next;
2716
2717 slabp->inuse++;
2718 next = slab_bufctl(slabp)[slabp->free];
2719#if DEBUG
2720 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2721 WARN_ON(slabp->nodeid != nodeid);
2722#endif
2723 slabp->free = next;
2724
2725 return objp;
2726}
2727
a737b3e2
AM
2728static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2729 void *objp, int nodeid)
78d382d7 2730{
8fea4e96 2731 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2732
2733#if DEBUG
2734 /* Verify that the slab belongs to the intended node */
2735 WARN_ON(slabp->nodeid != nodeid);
2736
871751e2 2737 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2738 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2739 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2740 BUG();
2741 }
2742#endif
2743 slab_bufctl(slabp)[objnr] = slabp->free;
2744 slabp->free = objnr;
2745 slabp->inuse--;
2746}
2747
4776874f
PE
2748/*
2749 * Map pages beginning at addr to the given cache and slab. This is required
2750 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2751 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2752 */
2753static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2754 void *addr)
1da177e4 2755{
4776874f 2756 int nr_pages;
1da177e4
LT
2757 struct page *page;
2758
4776874f 2759 page = virt_to_page(addr);
84097518 2760
4776874f 2761 nr_pages = 1;
84097518 2762 if (likely(!PageCompound(page)))
4776874f
PE
2763 nr_pages <<= cache->gfporder;
2764
1da177e4 2765 do {
35026088
CL
2766 page->slab_cache = cache;
2767 page->slab_page = slab;
1da177e4 2768 page++;
4776874f 2769 } while (--nr_pages);
1da177e4
LT
2770}
2771
2772/*
2773 * Grow (by 1) the number of slabs within a cache. This is called by
2774 * kmem_cache_alloc() when there are no active objs left in a cache.
2775 */
3c517a61
CL
2776static int cache_grow(struct kmem_cache *cachep,
2777 gfp_t flags, int nodeid, void *objp)
1da177e4 2778{
b28a02de 2779 struct slab *slabp;
b28a02de
PE
2780 size_t offset;
2781 gfp_t local_flags;
6744f087 2782 struct kmem_cache_node *l3;
1da177e4 2783
a737b3e2
AM
2784 /*
2785 * Be lazy and only check for valid flags here, keeping it out of the
2786 * critical path in kmem_cache_alloc().
1da177e4 2787 */
6cb06229
CL
2788 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2789 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2790
2e1217cf 2791 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2792 check_irq_off();
6a67368c 2793 l3 = cachep->node[nodeid];
2e1217cf 2794 spin_lock(&l3->list_lock);
1da177e4
LT
2795
2796 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2797 offset = l3->colour_next;
2798 l3->colour_next++;
2799 if (l3->colour_next >= cachep->colour)
2800 l3->colour_next = 0;
2801 spin_unlock(&l3->list_lock);
1da177e4 2802
2e1217cf 2803 offset *= cachep->colour_off;
1da177e4
LT
2804
2805 if (local_flags & __GFP_WAIT)
2806 local_irq_enable();
2807
2808 /*
2809 * The test for missing atomic flag is performed here, rather than
2810 * the more obvious place, simply to reduce the critical path length
2811 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2812 * will eventually be caught here (where it matters).
2813 */
2814 kmem_flagcheck(cachep, flags);
2815
a737b3e2
AM
2816 /*
2817 * Get mem for the objs. Attempt to allocate a physical page from
2818 * 'nodeid'.
e498be7d 2819 */
3c517a61 2820 if (!objp)
b8c1c5da 2821 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2822 if (!objp)
1da177e4
LT
2823 goto failed;
2824
2825 /* Get slab management. */
3c517a61 2826 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2827 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2828 if (!slabp)
1da177e4
LT
2829 goto opps1;
2830
4776874f 2831 slab_map_pages(cachep, slabp, objp);
1da177e4 2832
a35afb83 2833 cache_init_objs(cachep, slabp);
1da177e4
LT
2834
2835 if (local_flags & __GFP_WAIT)
2836 local_irq_disable();
2837 check_irq_off();
e498be7d 2838 spin_lock(&l3->list_lock);
1da177e4
LT
2839
2840 /* Make slab active. */
e498be7d 2841 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2842 STATS_INC_GROWN(cachep);
e498be7d
CL
2843 l3->free_objects += cachep->num;
2844 spin_unlock(&l3->list_lock);
1da177e4 2845 return 1;
a737b3e2 2846opps1:
1da177e4 2847 kmem_freepages(cachep, objp);
a737b3e2 2848failed:
1da177e4
LT
2849 if (local_flags & __GFP_WAIT)
2850 local_irq_disable();
2851 return 0;
2852}
2853
2854#if DEBUG
2855
2856/*
2857 * Perform extra freeing checks:
2858 * - detect bad pointers.
2859 * - POISON/RED_ZONE checking
1da177e4
LT
2860 */
2861static void kfree_debugcheck(const void *objp)
2862{
1da177e4
LT
2863 if (!virt_addr_valid(objp)) {
2864 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2865 (unsigned long)objp);
2866 BUG();
1da177e4 2867 }
1da177e4
LT
2868}
2869
58ce1fd5
PE
2870static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2871{
b46b8f19 2872 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2873
2874 redzone1 = *dbg_redzone1(cache, obj);
2875 redzone2 = *dbg_redzone2(cache, obj);
2876
2877 /*
2878 * Redzone is ok.
2879 */
2880 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2881 return;
2882
2883 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2884 slab_error(cache, "double free detected");
2885 else
2886 slab_error(cache, "memory outside object was overwritten");
2887
b46b8f19 2888 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2889 obj, redzone1, redzone2);
2890}
2891
343e0d7a 2892static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2893 unsigned long caller)
1da177e4
LT
2894{
2895 struct page *page;
2896 unsigned int objnr;
2897 struct slab *slabp;
2898
80cbd911
MW
2899 BUG_ON(virt_to_cache(objp) != cachep);
2900
3dafccf2 2901 objp -= obj_offset(cachep);
1da177e4 2902 kfree_debugcheck(objp);
b49af68f 2903 page = virt_to_head_page(objp);
1da177e4 2904
35026088 2905 slabp = page->slab_page;
1da177e4
LT
2906
2907 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2908 verify_redzone_free(cachep, objp);
1da177e4
LT
2909 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2910 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2911 }
2912 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2913 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2914
8fea4e96 2915 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2916
2917 BUG_ON(objnr >= cachep->num);
8fea4e96 2918 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2919
871751e2
AV
2920#ifdef CONFIG_DEBUG_SLAB_LEAK
2921 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2922#endif
1da177e4
LT
2923 if (cachep->flags & SLAB_POISON) {
2924#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2925 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2926 store_stackinfo(cachep, objp, caller);
b28a02de 2927 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2928 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2929 } else {
2930 poison_obj(cachep, objp, POISON_FREE);
2931 }
2932#else
2933 poison_obj(cachep, objp, POISON_FREE);
2934#endif
2935 }
2936 return objp;
2937}
2938
343e0d7a 2939static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2940{
2941 kmem_bufctl_t i;
2942 int entries = 0;
b28a02de 2943
1da177e4
LT
2944 /* Check slab's freelist to see if this obj is there. */
2945 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2946 entries++;
2947 if (entries > cachep->num || i >= cachep->num)
2948 goto bad;
2949 }
2950 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2951bad:
2952 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
2953 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
2954 cachep->name, cachep->num, slabp, slabp->inuse,
2955 print_tainted());
fdde6abb
SAS
2956 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
2957 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
2958 1);
1da177e4
LT
2959 BUG();
2960 }
2961}
2962#else
2963#define kfree_debugcheck(x) do { } while(0)
2964#define cache_free_debugcheck(x,objp,z) (objp)
2965#define check_slabp(x,y) do { } while(0)
2966#endif
2967
072bb0aa
MG
2968static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2969 bool force_refill)
1da177e4
LT
2970{
2971 int batchcount;
6744f087 2972 struct kmem_cache_node *l3;
1da177e4 2973 struct array_cache *ac;
1ca4cb24
PE
2974 int node;
2975
1da177e4 2976 check_irq_off();
7d6e6d09 2977 node = numa_mem_id();
072bb0aa
MG
2978 if (unlikely(force_refill))
2979 goto force_grow;
2980retry:
9a2dba4b 2981 ac = cpu_cache_get(cachep);
1da177e4
LT
2982 batchcount = ac->batchcount;
2983 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2984 /*
2985 * If there was little recent activity on this cache, then
2986 * perform only a partial refill. Otherwise we could generate
2987 * refill bouncing.
1da177e4
LT
2988 */
2989 batchcount = BATCHREFILL_LIMIT;
2990 }
6a67368c 2991 l3 = cachep->node[node];
e498be7d
CL
2992
2993 BUG_ON(ac->avail > 0 || !l3);
2994 spin_lock(&l3->list_lock);
1da177e4 2995
3ded175a 2996 /* See if we can refill from the shared array */
44b57f1c
NP
2997 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
2998 l3->shared->touched = 1;
3ded175a 2999 goto alloc_done;
44b57f1c 3000 }
3ded175a 3001
1da177e4
LT
3002 while (batchcount > 0) {
3003 struct list_head *entry;
3004 struct slab *slabp;
3005 /* Get slab alloc is to come from. */
3006 entry = l3->slabs_partial.next;
3007 if (entry == &l3->slabs_partial) {
3008 l3->free_touched = 1;
3009 entry = l3->slabs_free.next;
3010 if (entry == &l3->slabs_free)
3011 goto must_grow;
3012 }
3013
3014 slabp = list_entry(entry, struct slab, list);
3015 check_slabp(cachep, slabp);
3016 check_spinlock_acquired(cachep);
714b8171
PE
3017
3018 /*
3019 * The slab was either on partial or free list so
3020 * there must be at least one object available for
3021 * allocation.
3022 */
249b9f33 3023 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3024
1da177e4 3025 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3026 STATS_INC_ALLOCED(cachep);
3027 STATS_INC_ACTIVE(cachep);
3028 STATS_SET_HIGH(cachep);
3029
072bb0aa
MG
3030 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3031 node));
1da177e4
LT
3032 }
3033 check_slabp(cachep, slabp);
3034
3035 /* move slabp to correct slabp list: */
3036 list_del(&slabp->list);
3037 if (slabp->free == BUFCTL_END)
3038 list_add(&slabp->list, &l3->slabs_full);
3039 else
3040 list_add(&slabp->list, &l3->slabs_partial);
3041 }
3042
a737b3e2 3043must_grow:
1da177e4 3044 l3->free_objects -= ac->avail;
a737b3e2 3045alloc_done:
e498be7d 3046 spin_unlock(&l3->list_lock);
1da177e4
LT
3047
3048 if (unlikely(!ac->avail)) {
3049 int x;
072bb0aa 3050force_grow:
3c517a61 3051 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3052
a737b3e2 3053 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3054 ac = cpu_cache_get(cachep);
51cd8e6f 3055 node = numa_mem_id();
072bb0aa
MG
3056
3057 /* no objects in sight? abort */
3058 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3059 return NULL;
3060
a737b3e2 3061 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3062 goto retry;
3063 }
3064 ac->touched = 1;
072bb0aa
MG
3065
3066 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3067}
3068
a737b3e2
AM
3069static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3070 gfp_t flags)
1da177e4
LT
3071{
3072 might_sleep_if(flags & __GFP_WAIT);
3073#if DEBUG
3074 kmem_flagcheck(cachep, flags);
3075#endif
3076}
3077
3078#if DEBUG
a737b3e2 3079static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3080 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3081{
b28a02de 3082 if (!objp)
1da177e4 3083 return objp;
b28a02de 3084 if (cachep->flags & SLAB_POISON) {
1da177e4 3085#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3086 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3087 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3088 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3089 else
3090 check_poison_obj(cachep, objp);
3091#else
3092 check_poison_obj(cachep, objp);
3093#endif
3094 poison_obj(cachep, objp, POISON_INUSE);
3095 }
3096 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3097 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3098
3099 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3100 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3101 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3102 slab_error(cachep, "double free, or memory outside"
3103 " object was overwritten");
b28a02de 3104 printk(KERN_ERR
b46b8f19 3105 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3106 objp, *dbg_redzone1(cachep, objp),
3107 *dbg_redzone2(cachep, objp));
1da177e4
LT
3108 }
3109 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3110 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3111 }
871751e2
AV
3112#ifdef CONFIG_DEBUG_SLAB_LEAK
3113 {
3114 struct slab *slabp;
3115 unsigned objnr;
3116
35026088 3117 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3118 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3119 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3120 }
3121#endif
3dafccf2 3122 objp += obj_offset(cachep);
4f104934 3123 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3124 cachep->ctor(objp);
7ea466f2
TH
3125 if (ARCH_SLAB_MINALIGN &&
3126 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3127 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3128 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3129 }
1da177e4
LT
3130 return objp;
3131}
3132#else
3133#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3134#endif
3135
773ff60e 3136static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3137{
9b030cb8 3138 if (cachep == kmem_cache)
773ff60e 3139 return false;
8a8b6502 3140
8c138bc0 3141 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3142}
3143
343e0d7a 3144static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3145{
b28a02de 3146 void *objp;
1da177e4 3147 struct array_cache *ac;
072bb0aa 3148 bool force_refill = false;
1da177e4 3149
5c382300 3150 check_irq_off();
8a8b6502 3151
9a2dba4b 3152 ac = cpu_cache_get(cachep);
1da177e4 3153 if (likely(ac->avail)) {
1da177e4 3154 ac->touched = 1;
072bb0aa
MG
3155 objp = ac_get_obj(cachep, ac, flags, false);
3156
ddbf2e83 3157 /*
072bb0aa
MG
3158 * Allow for the possibility all avail objects are not allowed
3159 * by the current flags
ddbf2e83 3160 */
072bb0aa
MG
3161 if (objp) {
3162 STATS_INC_ALLOCHIT(cachep);
3163 goto out;
3164 }
3165 force_refill = true;
1da177e4 3166 }
072bb0aa
MG
3167
3168 STATS_INC_ALLOCMISS(cachep);
3169 objp = cache_alloc_refill(cachep, flags, force_refill);
3170 /*
3171 * the 'ac' may be updated by cache_alloc_refill(),
3172 * and kmemleak_erase() requires its correct value.
3173 */
3174 ac = cpu_cache_get(cachep);
3175
3176out:
d5cff635
CM
3177 /*
3178 * To avoid a false negative, if an object that is in one of the
3179 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3180 * treat the array pointers as a reference to the object.
3181 */
f3d8b53a
O
3182 if (objp)
3183 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3184 return objp;
3185}
3186
e498be7d 3187#ifdef CONFIG_NUMA
c61afb18 3188/*
b2455396 3189 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3190 *
3191 * If we are in_interrupt, then process context, including cpusets and
3192 * mempolicy, may not apply and should not be used for allocation policy.
3193 */
3194static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3195{
3196 int nid_alloc, nid_here;
3197
765c4507 3198 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3199 return NULL;
7d6e6d09 3200 nid_alloc = nid_here = numa_mem_id();
c61afb18 3201 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3202 nid_alloc = cpuset_slab_spread_node();
c61afb18 3203 else if (current->mempolicy)
e7b691b0 3204 nid_alloc = slab_node();
c61afb18 3205 if (nid_alloc != nid_here)
8b98c169 3206 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3207 return NULL;
3208}
3209
765c4507
CL
3210/*
3211 * Fallback function if there was no memory available and no objects on a
3c517a61 3212 * certain node and fall back is permitted. First we scan all the
6a67368c 3213 * available node for available objects. If that fails then we
3c517a61
CL
3214 * perform an allocation without specifying a node. This allows the page
3215 * allocator to do its reclaim / fallback magic. We then insert the
3216 * slab into the proper nodelist and then allocate from it.
765c4507 3217 */
8c8cc2c1 3218static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3219{
8c8cc2c1
PE
3220 struct zonelist *zonelist;
3221 gfp_t local_flags;
dd1a239f 3222 struct zoneref *z;
54a6eb5c
MG
3223 struct zone *zone;
3224 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3225 void *obj = NULL;
3c517a61 3226 int nid;
cc9a6c87 3227 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3228
3229 if (flags & __GFP_THISNODE)
3230 return NULL;
3231
6cb06229 3232 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3233
cc9a6c87
MG
3234retry_cpuset:
3235 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3236 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3237
3c517a61
CL
3238retry:
3239 /*
3240 * Look through allowed nodes for objects available
3241 * from existing per node queues.
3242 */
54a6eb5c
MG
3243 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3244 nid = zone_to_nid(zone);
aedb0eb1 3245
54a6eb5c 3246 if (cpuset_zone_allowed_hardwall(zone, flags) &&
6a67368c
CL
3247 cache->node[nid] &&
3248 cache->node[nid]->free_objects) {
3c517a61
CL
3249 obj = ____cache_alloc_node(cache,
3250 flags | GFP_THISNODE, nid);
481c5346
CL
3251 if (obj)
3252 break;
3253 }
3c517a61
CL
3254 }
3255
cfce6604 3256 if (!obj) {
3c517a61
CL
3257 /*
3258 * This allocation will be performed within the constraints
3259 * of the current cpuset / memory policy requirements.
3260 * We may trigger various forms of reclaim on the allowed
3261 * set and go into memory reserves if necessary.
3262 */
dd47ea75
CL
3263 if (local_flags & __GFP_WAIT)
3264 local_irq_enable();
3265 kmem_flagcheck(cache, flags);
7d6e6d09 3266 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3267 if (local_flags & __GFP_WAIT)
3268 local_irq_disable();
3c517a61
CL
3269 if (obj) {
3270 /*
3271 * Insert into the appropriate per node queues
3272 */
3273 nid = page_to_nid(virt_to_page(obj));
3274 if (cache_grow(cache, flags, nid, obj)) {
3275 obj = ____cache_alloc_node(cache,
3276 flags | GFP_THISNODE, nid);
3277 if (!obj)
3278 /*
3279 * Another processor may allocate the
3280 * objects in the slab since we are
3281 * not holding any locks.
3282 */
3283 goto retry;
3284 } else {
b6a60451 3285 /* cache_grow already freed obj */
3c517a61
CL
3286 obj = NULL;
3287 }
3288 }
aedb0eb1 3289 }
cc9a6c87
MG
3290
3291 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3292 goto retry_cpuset;
765c4507
CL
3293 return obj;
3294}
3295
e498be7d
CL
3296/*
3297 * A interface to enable slab creation on nodeid
1da177e4 3298 */
8b98c169 3299static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3300 int nodeid)
e498be7d
CL
3301{
3302 struct list_head *entry;
b28a02de 3303 struct slab *slabp;
6744f087 3304 struct kmem_cache_node *l3;
b28a02de 3305 void *obj;
b28a02de
PE
3306 int x;
3307
6a67368c 3308 l3 = cachep->node[nodeid];
b28a02de
PE
3309 BUG_ON(!l3);
3310
a737b3e2 3311retry:
ca3b9b91 3312 check_irq_off();
b28a02de
PE
3313 spin_lock(&l3->list_lock);
3314 entry = l3->slabs_partial.next;
3315 if (entry == &l3->slabs_partial) {
3316 l3->free_touched = 1;
3317 entry = l3->slabs_free.next;
3318 if (entry == &l3->slabs_free)
3319 goto must_grow;
3320 }
3321
3322 slabp = list_entry(entry, struct slab, list);
3323 check_spinlock_acquired_node(cachep, nodeid);
3324 check_slabp(cachep, slabp);
3325
3326 STATS_INC_NODEALLOCS(cachep);
3327 STATS_INC_ACTIVE(cachep);
3328 STATS_SET_HIGH(cachep);
3329
3330 BUG_ON(slabp->inuse == cachep->num);
3331
78d382d7 3332 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3333 check_slabp(cachep, slabp);
3334 l3->free_objects--;
3335 /* move slabp to correct slabp list: */
3336 list_del(&slabp->list);
3337
a737b3e2 3338 if (slabp->free == BUFCTL_END)
b28a02de 3339 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3340 else
b28a02de 3341 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3342
b28a02de
PE
3343 spin_unlock(&l3->list_lock);
3344 goto done;
e498be7d 3345
a737b3e2 3346must_grow:
b28a02de 3347 spin_unlock(&l3->list_lock);
3c517a61 3348 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3349 if (x)
3350 goto retry;
1da177e4 3351
8c8cc2c1 3352 return fallback_alloc(cachep, flags);
e498be7d 3353
a737b3e2 3354done:
b28a02de 3355 return obj;
e498be7d 3356}
8c8cc2c1
PE
3357
3358/**
3359 * kmem_cache_alloc_node - Allocate an object on the specified node
3360 * @cachep: The cache to allocate from.
3361 * @flags: See kmalloc().
3362 * @nodeid: node number of the target node.
3363 * @caller: return address of caller, used for debug information
3364 *
3365 * Identical to kmem_cache_alloc but it will allocate memory on the given
3366 * node, which can improve the performance for cpu bound structures.
3367 *
3368 * Fallback to other node is possible if __GFP_THISNODE is not set.
3369 */
3370static __always_inline void *
48356303 3371slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3372 unsigned long caller)
8c8cc2c1
PE
3373{
3374 unsigned long save_flags;
3375 void *ptr;
7d6e6d09 3376 int slab_node = numa_mem_id();
8c8cc2c1 3377
dcce284a 3378 flags &= gfp_allowed_mask;
7e85ee0c 3379
cf40bd16
NP
3380 lockdep_trace_alloc(flags);
3381
773ff60e 3382 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3383 return NULL;
3384
d79923fa
GC
3385 cachep = memcg_kmem_get_cache(cachep, flags);
3386
8c8cc2c1
PE
3387 cache_alloc_debugcheck_before(cachep, flags);
3388 local_irq_save(save_flags);
3389
eacbbae3 3390 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3391 nodeid = slab_node;
8c8cc2c1 3392
6a67368c 3393 if (unlikely(!cachep->node[nodeid])) {
8c8cc2c1
PE
3394 /* Node not bootstrapped yet */
3395 ptr = fallback_alloc(cachep, flags);
3396 goto out;
3397 }
3398
7d6e6d09 3399 if (nodeid == slab_node) {
8c8cc2c1
PE
3400 /*
3401 * Use the locally cached objects if possible.
3402 * However ____cache_alloc does not allow fallback
3403 * to other nodes. It may fail while we still have
3404 * objects on other nodes available.
3405 */
3406 ptr = ____cache_alloc(cachep, flags);
3407 if (ptr)
3408 goto out;
3409 }
3410 /* ___cache_alloc_node can fall back to other nodes */
3411 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3412 out:
3413 local_irq_restore(save_flags);
3414 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3415 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3416 flags);
8c8cc2c1 3417
c175eea4 3418 if (likely(ptr))
8c138bc0 3419 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3420
d07dbea4 3421 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3422 memset(ptr, 0, cachep->object_size);
d07dbea4 3423
8c8cc2c1
PE
3424 return ptr;
3425}
3426
3427static __always_inline void *
3428__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3429{
3430 void *objp;
3431
3432 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3433 objp = alternate_node_alloc(cache, flags);
3434 if (objp)
3435 goto out;
3436 }
3437 objp = ____cache_alloc(cache, flags);
3438
3439 /*
3440 * We may just have run out of memory on the local node.
3441 * ____cache_alloc_node() knows how to locate memory on other nodes
3442 */
7d6e6d09
LS
3443 if (!objp)
3444 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3445
3446 out:
3447 return objp;
3448}
3449#else
3450
3451static __always_inline void *
3452__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3453{
3454 return ____cache_alloc(cachep, flags);
3455}
3456
3457#endif /* CONFIG_NUMA */
3458
3459static __always_inline void *
48356303 3460slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3461{
3462 unsigned long save_flags;
3463 void *objp;
3464
dcce284a 3465 flags &= gfp_allowed_mask;
7e85ee0c 3466
cf40bd16
NP
3467 lockdep_trace_alloc(flags);
3468
773ff60e 3469 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3470 return NULL;
3471
d79923fa
GC
3472 cachep = memcg_kmem_get_cache(cachep, flags);
3473
8c8cc2c1
PE
3474 cache_alloc_debugcheck_before(cachep, flags);
3475 local_irq_save(save_flags);
3476 objp = __do_cache_alloc(cachep, flags);
3477 local_irq_restore(save_flags);
3478 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3479 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3480 flags);
8c8cc2c1
PE
3481 prefetchw(objp);
3482
c175eea4 3483 if (likely(objp))
8c138bc0 3484 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3485
d07dbea4 3486 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3487 memset(objp, 0, cachep->object_size);
d07dbea4 3488
8c8cc2c1
PE
3489 return objp;
3490}
e498be7d
CL
3491
3492/*
3493 * Caller needs to acquire correct kmem_list's list_lock
3494 */
343e0d7a 3495static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3496 int node)
1da177e4
LT
3497{
3498 int i;
6744f087 3499 struct kmem_cache_node *l3;
1da177e4
LT
3500
3501 for (i = 0; i < nr_objects; i++) {
072bb0aa 3502 void *objp;
1da177e4 3503 struct slab *slabp;
1da177e4 3504
072bb0aa
MG
3505 clear_obj_pfmemalloc(&objpp[i]);
3506 objp = objpp[i];
3507
6ed5eb22 3508 slabp = virt_to_slab(objp);
6a67368c 3509 l3 = cachep->node[node];
1da177e4 3510 list_del(&slabp->list);
ff69416e 3511 check_spinlock_acquired_node(cachep, node);
1da177e4 3512 check_slabp(cachep, slabp);
78d382d7 3513 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3514 STATS_DEC_ACTIVE(cachep);
e498be7d 3515 l3->free_objects++;
1da177e4
LT
3516 check_slabp(cachep, slabp);
3517
3518 /* fixup slab chains */
3519 if (slabp->inuse == 0) {
e498be7d
CL
3520 if (l3->free_objects > l3->free_limit) {
3521 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3522 /* No need to drop any previously held
3523 * lock here, even if we have a off-slab slab
3524 * descriptor it is guaranteed to come from
3525 * a different cache, refer to comments before
3526 * alloc_slabmgmt.
3527 */
1da177e4
LT
3528 slab_destroy(cachep, slabp);
3529 } else {
e498be7d 3530 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3531 }
3532 } else {
3533 /* Unconditionally move a slab to the end of the
3534 * partial list on free - maximum time for the
3535 * other objects to be freed, too.
3536 */
e498be7d 3537 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3538 }
3539 }
3540}
3541
343e0d7a 3542static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3543{
3544 int batchcount;
6744f087 3545 struct kmem_cache_node *l3;
7d6e6d09 3546 int node = numa_mem_id();
1da177e4
LT
3547
3548 batchcount = ac->batchcount;
3549#if DEBUG
3550 BUG_ON(!batchcount || batchcount > ac->avail);
3551#endif
3552 check_irq_off();
6a67368c 3553 l3 = cachep->node[node];
873623df 3554 spin_lock(&l3->list_lock);
e498be7d
CL
3555 if (l3->shared) {
3556 struct array_cache *shared_array = l3->shared;
b28a02de 3557 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3558 if (max) {
3559 if (batchcount > max)
3560 batchcount = max;
e498be7d 3561 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3562 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3563 shared_array->avail += batchcount;
3564 goto free_done;
3565 }
3566 }
3567
ff69416e 3568 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3569free_done:
1da177e4
LT
3570#if STATS
3571 {
3572 int i = 0;
3573 struct list_head *p;
3574
e498be7d
CL
3575 p = l3->slabs_free.next;
3576 while (p != &(l3->slabs_free)) {
1da177e4
LT
3577 struct slab *slabp;
3578
3579 slabp = list_entry(p, struct slab, list);
3580 BUG_ON(slabp->inuse);
3581
3582 i++;
3583 p = p->next;
3584 }
3585 STATS_SET_FREEABLE(cachep, i);
3586 }
3587#endif
e498be7d 3588 spin_unlock(&l3->list_lock);
1da177e4 3589 ac->avail -= batchcount;
a737b3e2 3590 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3591}
3592
3593/*
a737b3e2
AM
3594 * Release an obj back to its cache. If the obj has a constructed state, it must
3595 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3596 */
a947eb95 3597static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3598 unsigned long caller)
1da177e4 3599{
9a2dba4b 3600 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3601
3602 check_irq_off();
d5cff635 3603 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3604 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3605
8c138bc0 3606 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3607
1807a1aa
SS
3608 /*
3609 * Skip calling cache_free_alien() when the platform is not numa.
3610 * This will avoid cache misses that happen while accessing slabp (which
3611 * is per page memory reference) to get nodeid. Instead use a global
3612 * variable to skip the call, which is mostly likely to be present in
3613 * the cache.
3614 */
b6e68bc1 3615 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3616 return;
3617
1da177e4
LT
3618 if (likely(ac->avail < ac->limit)) {
3619 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3620 } else {
3621 STATS_INC_FREEMISS(cachep);
3622 cache_flusharray(cachep, ac);
1da177e4 3623 }
42c8c99c 3624
072bb0aa 3625 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3626}
3627
3628/**
3629 * kmem_cache_alloc - Allocate an object
3630 * @cachep: The cache to allocate from.
3631 * @flags: See kmalloc().
3632 *
3633 * Allocate an object from this cache. The flags are only relevant
3634 * if the cache has no available objects.
3635 */
343e0d7a 3636void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3637{
48356303 3638 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3639
ca2b84cb 3640 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3641 cachep->object_size, cachep->size, flags);
36555751
EGM
3642
3643 return ret;
1da177e4
LT
3644}
3645EXPORT_SYMBOL(kmem_cache_alloc);
3646
0f24f128 3647#ifdef CONFIG_TRACING
85beb586 3648void *
4052147c 3649kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3650{
85beb586
SR
3651 void *ret;
3652
48356303 3653 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3654
3655 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3656 size, cachep->size, flags);
85beb586 3657 return ret;
36555751 3658}
85beb586 3659EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3660#endif
3661
1da177e4 3662#ifdef CONFIG_NUMA
8b98c169
CH
3663void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3664{
48356303 3665 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3666
ca2b84cb 3667 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3668 cachep->object_size, cachep->size,
ca2b84cb 3669 flags, nodeid);
36555751
EGM
3670
3671 return ret;
8b98c169 3672}
1da177e4
LT
3673EXPORT_SYMBOL(kmem_cache_alloc_node);
3674
0f24f128 3675#ifdef CONFIG_TRACING
4052147c 3676void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3677 gfp_t flags,
4052147c
EG
3678 int nodeid,
3679 size_t size)
36555751 3680{
85beb586
SR
3681 void *ret;
3682
592f4145 3683 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3684
85beb586 3685 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3686 size, cachep->size,
85beb586
SR
3687 flags, nodeid);
3688 return ret;
36555751 3689}
85beb586 3690EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3691#endif
3692
8b98c169 3693static __always_inline void *
7c0cb9c6 3694__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3695{
343e0d7a 3696 struct kmem_cache *cachep;
97e2bde4 3697
2c59dd65 3698 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3699 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3700 return cachep;
4052147c 3701 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3702}
8b98c169 3703
0bb38a5c 3704#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3705void *__kmalloc_node(size_t size, gfp_t flags, int node)
3706{
7c0cb9c6 3707 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3708}
dbe5e69d 3709EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3710
3711void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3712 int node, unsigned long caller)
8b98c169 3713{
7c0cb9c6 3714 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3715}
3716EXPORT_SYMBOL(__kmalloc_node_track_caller);
3717#else
3718void *__kmalloc_node(size_t size, gfp_t flags, int node)
3719{
7c0cb9c6 3720 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3721}
3722EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3723#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3724#endif /* CONFIG_NUMA */
1da177e4
LT
3725
3726/**
800590f5 3727 * __do_kmalloc - allocate memory
1da177e4 3728 * @size: how many bytes of memory are required.
800590f5 3729 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3730 * @caller: function caller for debug tracking of the caller
1da177e4 3731 */
7fd6b141 3732static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3733 unsigned long caller)
1da177e4 3734{
343e0d7a 3735 struct kmem_cache *cachep;
36555751 3736 void *ret;
1da177e4 3737
97e2bde4
MS
3738 /* If you want to save a few bytes .text space: replace
3739 * __ with kmem_.
3740 * Then kmalloc uses the uninlined functions instead of the inline
3741 * functions.
3742 */
2c59dd65 3743 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3744 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3745 return cachep;
48356303 3746 ret = slab_alloc(cachep, flags, caller);
36555751 3747
7c0cb9c6 3748 trace_kmalloc(caller, ret,
3b0efdfa 3749 size, cachep->size, flags);
36555751
EGM
3750
3751 return ret;
7fd6b141
PE
3752}
3753
7fd6b141 3754
0bb38a5c 3755#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3756void *__kmalloc(size_t size, gfp_t flags)
3757{
7c0cb9c6 3758 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3759}
3760EXPORT_SYMBOL(__kmalloc);
3761
ce71e27c 3762void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3763{
7c0cb9c6 3764 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3765}
3766EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3767
3768#else
3769void *__kmalloc(size_t size, gfp_t flags)
3770{
7c0cb9c6 3771 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3772}
3773EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3774#endif
3775
1da177e4
LT
3776/**
3777 * kmem_cache_free - Deallocate an object
3778 * @cachep: The cache the allocation was from.
3779 * @objp: The previously allocated object.
3780 *
3781 * Free an object which was previously allocated from this
3782 * cache.
3783 */
343e0d7a 3784void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3785{
3786 unsigned long flags;
b9ce5ef4
GC
3787 cachep = cache_from_obj(cachep, objp);
3788 if (!cachep)
3789 return;
1da177e4
LT
3790
3791 local_irq_save(flags);
d97d476b 3792 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3793 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3794 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3795 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3796 local_irq_restore(flags);
36555751 3797
ca2b84cb 3798 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3799}
3800EXPORT_SYMBOL(kmem_cache_free);
3801
1da177e4
LT
3802/**
3803 * kfree - free previously allocated memory
3804 * @objp: pointer returned by kmalloc.
3805 *
80e93eff
PE
3806 * If @objp is NULL, no operation is performed.
3807 *
1da177e4
LT
3808 * Don't free memory not originally allocated by kmalloc()
3809 * or you will run into trouble.
3810 */
3811void kfree(const void *objp)
3812{
343e0d7a 3813 struct kmem_cache *c;
1da177e4
LT
3814 unsigned long flags;
3815
2121db74
PE
3816 trace_kfree(_RET_IP_, objp);
3817
6cb8f913 3818 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3819 return;
3820 local_irq_save(flags);
3821 kfree_debugcheck(objp);
6ed5eb22 3822 c = virt_to_cache(objp);
8c138bc0
CL
3823 debug_check_no_locks_freed(objp, c->object_size);
3824
3825 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3826 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3827 local_irq_restore(flags);
3828}
3829EXPORT_SYMBOL(kfree);
3830
e498be7d 3831/*
183ff22b 3832 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3833 */
83b519e8 3834static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3835{
3836 int node;
6744f087 3837 struct kmem_cache_node *l3;
cafeb02e 3838 struct array_cache *new_shared;
3395ee05 3839 struct array_cache **new_alien = NULL;
e498be7d 3840
9c09a95c 3841 for_each_online_node(node) {
cafeb02e 3842
3395ee05 3843 if (use_alien_caches) {
83b519e8 3844 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3845 if (!new_alien)
3846 goto fail;
3847 }
cafeb02e 3848
63109846
ED
3849 new_shared = NULL;
3850 if (cachep->shared) {
3851 new_shared = alloc_arraycache(node,
0718dc2a 3852 cachep->shared*cachep->batchcount,
83b519e8 3853 0xbaadf00d, gfp);
63109846
ED
3854 if (!new_shared) {
3855 free_alien_cache(new_alien);
3856 goto fail;
3857 }
0718dc2a 3858 }
cafeb02e 3859
6a67368c 3860 l3 = cachep->node[node];
a737b3e2 3861 if (l3) {
cafeb02e
CL
3862 struct array_cache *shared = l3->shared;
3863
e498be7d
CL
3864 spin_lock_irq(&l3->list_lock);
3865
cafeb02e 3866 if (shared)
0718dc2a
CL
3867 free_block(cachep, shared->entry,
3868 shared->avail, node);
e498be7d 3869
cafeb02e
CL
3870 l3->shared = new_shared;
3871 if (!l3->alien) {
e498be7d
CL
3872 l3->alien = new_alien;
3873 new_alien = NULL;
3874 }
b28a02de 3875 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3876 cachep->batchcount + cachep->num;
e498be7d 3877 spin_unlock_irq(&l3->list_lock);
cafeb02e 3878 kfree(shared);
e498be7d
CL
3879 free_alien_cache(new_alien);
3880 continue;
3881 }
6744f087 3882 l3 = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
0718dc2a
CL
3883 if (!l3) {
3884 free_alien_cache(new_alien);
3885 kfree(new_shared);
e498be7d 3886 goto fail;
0718dc2a 3887 }
e498be7d
CL
3888
3889 kmem_list3_init(l3);
3890 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3891 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3892 l3->shared = new_shared;
e498be7d 3893 l3->alien = new_alien;
b28a02de 3894 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3895 cachep->batchcount + cachep->num;
6a67368c 3896 cachep->node[node] = l3;
e498be7d 3897 }
cafeb02e 3898 return 0;
0718dc2a 3899
a737b3e2 3900fail:
3b0efdfa 3901 if (!cachep->list.next) {
0718dc2a
CL
3902 /* Cache is not active yet. Roll back what we did */
3903 node--;
3904 while (node >= 0) {
6a67368c
CL
3905 if (cachep->node[node]) {
3906 l3 = cachep->node[node];
0718dc2a
CL
3907
3908 kfree(l3->shared);
3909 free_alien_cache(l3->alien);
3910 kfree(l3);
6a67368c 3911 cachep->node[node] = NULL;
0718dc2a
CL
3912 }
3913 node--;
3914 }
3915 }
cafeb02e 3916 return -ENOMEM;
e498be7d
CL
3917}
3918
1da177e4 3919struct ccupdate_struct {
343e0d7a 3920 struct kmem_cache *cachep;
acfe7d74 3921 struct array_cache *new[0];
1da177e4
LT
3922};
3923
3924static void do_ccupdate_local(void *info)
3925{
a737b3e2 3926 struct ccupdate_struct *new = info;
1da177e4
LT
3927 struct array_cache *old;
3928
3929 check_irq_off();
9a2dba4b 3930 old = cpu_cache_get(new->cachep);
e498be7d 3931
1da177e4
LT
3932 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3933 new->new[smp_processor_id()] = old;
3934}
3935
18004c5d 3936/* Always called with the slab_mutex held */
943a451a 3937static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3938 int batchcount, int shared, gfp_t gfp)
1da177e4 3939{
d2e7b7d0 3940 struct ccupdate_struct *new;
2ed3a4ef 3941 int i;
1da177e4 3942
acfe7d74
ED
3943 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3944 gfp);
d2e7b7d0
SS
3945 if (!new)
3946 return -ENOMEM;
3947
e498be7d 3948 for_each_online_cpu(i) {
7d6e6d09 3949 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3950 batchcount, gfp);
d2e7b7d0 3951 if (!new->new[i]) {
b28a02de 3952 for (i--; i >= 0; i--)
d2e7b7d0
SS
3953 kfree(new->new[i]);
3954 kfree(new);
e498be7d 3955 return -ENOMEM;
1da177e4
LT
3956 }
3957 }
d2e7b7d0 3958 new->cachep = cachep;
1da177e4 3959
15c8b6c1 3960 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3961
1da177e4 3962 check_irq_on();
1da177e4
LT
3963 cachep->batchcount = batchcount;
3964 cachep->limit = limit;
e498be7d 3965 cachep->shared = shared;
1da177e4 3966
e498be7d 3967 for_each_online_cpu(i) {
d2e7b7d0 3968 struct array_cache *ccold = new->new[i];
1da177e4
LT
3969 if (!ccold)
3970 continue;
6a67368c 3971 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
7d6e6d09 3972 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
6a67368c 3973 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
1da177e4
LT
3974 kfree(ccold);
3975 }
d2e7b7d0 3976 kfree(new);
83b519e8 3977 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3978}
3979
943a451a
GC
3980static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3981 int batchcount, int shared, gfp_t gfp)
3982{
3983 int ret;
3984 struct kmem_cache *c = NULL;
3985 int i = 0;
3986
3987 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3988
3989 if (slab_state < FULL)
3990 return ret;
3991
3992 if ((ret < 0) || !is_root_cache(cachep))
3993 return ret;
3994
ebe945c2 3995 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a
GC
3996 for_each_memcg_cache_index(i) {
3997 c = cache_from_memcg(cachep, i);
3998 if (c)
3999 /* return value determined by the parent cache only */
4000 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
4001 }
4002
4003 return ret;
4004}
4005
18004c5d 4006/* Called with slab_mutex held always */
83b519e8 4007static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4008{
4009 int err;
943a451a
GC
4010 int limit = 0;
4011 int shared = 0;
4012 int batchcount = 0;
4013
4014 if (!is_root_cache(cachep)) {
4015 struct kmem_cache *root = memcg_root_cache(cachep);
4016 limit = root->limit;
4017 shared = root->shared;
4018 batchcount = root->batchcount;
4019 }
1da177e4 4020
943a451a
GC
4021 if (limit && shared && batchcount)
4022 goto skip_setup;
a737b3e2
AM
4023 /*
4024 * The head array serves three purposes:
1da177e4
LT
4025 * - create a LIFO ordering, i.e. return objects that are cache-warm
4026 * - reduce the number of spinlock operations.
a737b3e2 4027 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4028 * bufctl chains: array operations are cheaper.
4029 * The numbers are guessed, we should auto-tune as described by
4030 * Bonwick.
4031 */
3b0efdfa 4032 if (cachep->size > 131072)
1da177e4 4033 limit = 1;
3b0efdfa 4034 else if (cachep->size > PAGE_SIZE)
1da177e4 4035 limit = 8;
3b0efdfa 4036 else if (cachep->size > 1024)
1da177e4 4037 limit = 24;
3b0efdfa 4038 else if (cachep->size > 256)
1da177e4
LT
4039 limit = 54;
4040 else
4041 limit = 120;
4042
a737b3e2
AM
4043 /*
4044 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4045 * allocation behaviour: Most allocs on one cpu, most free operations
4046 * on another cpu. For these cases, an efficient object passing between
4047 * cpus is necessary. This is provided by a shared array. The array
4048 * replaces Bonwick's magazine layer.
4049 * On uniprocessor, it's functionally equivalent (but less efficient)
4050 * to a larger limit. Thus disabled by default.
4051 */
4052 shared = 0;
3b0efdfa 4053 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4054 shared = 8;
1da177e4
LT
4055
4056#if DEBUG
a737b3e2
AM
4057 /*
4058 * With debugging enabled, large batchcount lead to excessively long
4059 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4060 */
4061 if (limit > 32)
4062 limit = 32;
4063#endif
943a451a
GC
4064 batchcount = (limit + 1) / 2;
4065skip_setup:
4066 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
4067 if (err)
4068 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4069 cachep->name, -err);
2ed3a4ef 4070 return err;
1da177e4
LT
4071}
4072
1b55253a
CL
4073/*
4074 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4075 * necessary. Note that the l3 listlock also protects the array_cache
4076 * if drain_array() is used on the shared array.
1b55253a 4077 */
6744f087 4078static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *l3,
1b55253a 4079 struct array_cache *ac, int force, int node)
1da177e4
LT
4080{
4081 int tofree;
4082
1b55253a
CL
4083 if (!ac || !ac->avail)
4084 return;
1da177e4
LT
4085 if (ac->touched && !force) {
4086 ac->touched = 0;
b18e7e65 4087 } else {
1b55253a 4088 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4089 if (ac->avail) {
4090 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4091 if (tofree > ac->avail)
4092 tofree = (ac->avail + 1) / 2;
4093 free_block(cachep, ac->entry, tofree, node);
4094 ac->avail -= tofree;
4095 memmove(ac->entry, &(ac->entry[tofree]),
4096 sizeof(void *) * ac->avail);
4097 }
1b55253a 4098 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4099 }
4100}
4101
4102/**
4103 * cache_reap - Reclaim memory from caches.
05fb6bf0 4104 * @w: work descriptor
1da177e4
LT
4105 *
4106 * Called from workqueue/eventd every few seconds.
4107 * Purpose:
4108 * - clear the per-cpu caches for this CPU.
4109 * - return freeable pages to the main free memory pool.
4110 *
a737b3e2
AM
4111 * If we cannot acquire the cache chain mutex then just give up - we'll try
4112 * again on the next iteration.
1da177e4 4113 */
7c5cae36 4114static void cache_reap(struct work_struct *w)
1da177e4 4115{
7a7c381d 4116 struct kmem_cache *searchp;
6744f087 4117 struct kmem_cache_node *l3;
7d6e6d09 4118 int node = numa_mem_id();
bf6aede7 4119 struct delayed_work *work = to_delayed_work(w);
1da177e4 4120
18004c5d 4121 if (!mutex_trylock(&slab_mutex))
1da177e4 4122 /* Give up. Setup the next iteration. */
7c5cae36 4123 goto out;
1da177e4 4124
18004c5d 4125 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4126 check_irq_on();
4127
35386e3b
CL
4128 /*
4129 * We only take the l3 lock if absolutely necessary and we
4130 * have established with reasonable certainty that
4131 * we can do some work if the lock was obtained.
4132 */
6a67368c 4133 l3 = searchp->node[node];
35386e3b 4134
8fce4d8e 4135 reap_alien(searchp, l3);
1da177e4 4136
aab2207c 4137 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4138
35386e3b
CL
4139 /*
4140 * These are racy checks but it does not matter
4141 * if we skip one check or scan twice.
4142 */
e498be7d 4143 if (time_after(l3->next_reap, jiffies))
35386e3b 4144 goto next;
1da177e4 4145
e498be7d 4146 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4147
aab2207c 4148 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4149
ed11d9eb 4150 if (l3->free_touched)
e498be7d 4151 l3->free_touched = 0;
ed11d9eb
CL
4152 else {
4153 int freed;
1da177e4 4154
ed11d9eb
CL
4155 freed = drain_freelist(searchp, l3, (l3->free_limit +
4156 5 * searchp->num - 1) / (5 * searchp->num));
4157 STATS_ADD_REAPED(searchp, freed);
4158 }
35386e3b 4159next:
1da177e4
LT
4160 cond_resched();
4161 }
4162 check_irq_on();
18004c5d 4163 mutex_unlock(&slab_mutex);
8fce4d8e 4164 next_reap_node();
7c5cae36 4165out:
a737b3e2 4166 /* Set up the next iteration */
7c5cae36 4167 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4168}
4169
158a9624 4170#ifdef CONFIG_SLABINFO
0d7561c6 4171void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4172{
b28a02de
PE
4173 struct slab *slabp;
4174 unsigned long active_objs;
4175 unsigned long num_objs;
4176 unsigned long active_slabs = 0;
4177 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4178 const char *name;
1da177e4 4179 char *error = NULL;
e498be7d 4180 int node;
6744f087 4181 struct kmem_cache_node *l3;
1da177e4 4182
1da177e4
LT
4183 active_objs = 0;
4184 num_slabs = 0;
e498be7d 4185 for_each_online_node(node) {
6a67368c 4186 l3 = cachep->node[node];
e498be7d
CL
4187 if (!l3)
4188 continue;
4189
ca3b9b91
RT
4190 check_irq_on();
4191 spin_lock_irq(&l3->list_lock);
e498be7d 4192
7a7c381d 4193 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4194 if (slabp->inuse != cachep->num && !error)
4195 error = "slabs_full accounting error";
4196 active_objs += cachep->num;
4197 active_slabs++;
4198 }
7a7c381d 4199 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4200 if (slabp->inuse == cachep->num && !error)
4201 error = "slabs_partial inuse accounting error";
4202 if (!slabp->inuse && !error)
4203 error = "slabs_partial/inuse accounting error";
4204 active_objs += slabp->inuse;
4205 active_slabs++;
4206 }
7a7c381d 4207 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4208 if (slabp->inuse && !error)
4209 error = "slabs_free/inuse accounting error";
4210 num_slabs++;
4211 }
4212 free_objects += l3->free_objects;
4484ebf1
RT
4213 if (l3->shared)
4214 shared_avail += l3->shared->avail;
e498be7d 4215
ca3b9b91 4216 spin_unlock_irq(&l3->list_lock);
1da177e4 4217 }
b28a02de
PE
4218 num_slabs += active_slabs;
4219 num_objs = num_slabs * cachep->num;
e498be7d 4220 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4221 error = "free_objects accounting error";
4222
b28a02de 4223 name = cachep->name;
1da177e4
LT
4224 if (error)
4225 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4226
0d7561c6
GC
4227 sinfo->active_objs = active_objs;
4228 sinfo->num_objs = num_objs;
4229 sinfo->active_slabs = active_slabs;
4230 sinfo->num_slabs = num_slabs;
4231 sinfo->shared_avail = shared_avail;
4232 sinfo->limit = cachep->limit;
4233 sinfo->batchcount = cachep->batchcount;
4234 sinfo->shared = cachep->shared;
4235 sinfo->objects_per_slab = cachep->num;
4236 sinfo->cache_order = cachep->gfporder;
4237}
4238
4239void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4240{
1da177e4 4241#if STATS
b28a02de 4242 { /* list3 stats */
1da177e4
LT
4243 unsigned long high = cachep->high_mark;
4244 unsigned long allocs = cachep->num_allocations;
4245 unsigned long grown = cachep->grown;
4246 unsigned long reaped = cachep->reaped;
4247 unsigned long errors = cachep->errors;
4248 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4249 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4250 unsigned long node_frees = cachep->node_frees;
fb7faf33 4251 unsigned long overflows = cachep->node_overflow;
1da177e4 4252
e92dd4fd
JP
4253 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4254 "%4lu %4lu %4lu %4lu %4lu",
4255 allocs, high, grown,
4256 reaped, errors, max_freeable, node_allocs,
4257 node_frees, overflows);
1da177e4
LT
4258 }
4259 /* cpu stats */
4260 {
4261 unsigned long allochit = atomic_read(&cachep->allochit);
4262 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4263 unsigned long freehit = atomic_read(&cachep->freehit);
4264 unsigned long freemiss = atomic_read(&cachep->freemiss);
4265
4266 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4267 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4268 }
4269#endif
1da177e4
LT
4270}
4271
1da177e4
LT
4272#define MAX_SLABINFO_WRITE 128
4273/**
4274 * slabinfo_write - Tuning for the slab allocator
4275 * @file: unused
4276 * @buffer: user buffer
4277 * @count: data length
4278 * @ppos: unused
4279 */
b7454ad3 4280ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4281 size_t count, loff_t *ppos)
1da177e4 4282{
b28a02de 4283 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4284 int limit, batchcount, shared, res;
7a7c381d 4285 struct kmem_cache *cachep;
b28a02de 4286
1da177e4
LT
4287 if (count > MAX_SLABINFO_WRITE)
4288 return -EINVAL;
4289 if (copy_from_user(&kbuf, buffer, count))
4290 return -EFAULT;
b28a02de 4291 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4292
4293 tmp = strchr(kbuf, ' ');
4294 if (!tmp)
4295 return -EINVAL;
4296 *tmp = '\0';
4297 tmp++;
4298 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4299 return -EINVAL;
4300
4301 /* Find the cache in the chain of caches. */
18004c5d 4302 mutex_lock(&slab_mutex);
1da177e4 4303 res = -EINVAL;
18004c5d 4304 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4305 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4306 if (limit < 1 || batchcount < 1 ||
4307 batchcount > limit || shared < 0) {
e498be7d 4308 res = 0;
1da177e4 4309 } else {
e498be7d 4310 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4311 batchcount, shared,
4312 GFP_KERNEL);
1da177e4
LT
4313 }
4314 break;
4315 }
4316 }
18004c5d 4317 mutex_unlock(&slab_mutex);
1da177e4
LT
4318 if (res >= 0)
4319 res = count;
4320 return res;
4321}
871751e2
AV
4322
4323#ifdef CONFIG_DEBUG_SLAB_LEAK
4324
4325static void *leaks_start(struct seq_file *m, loff_t *pos)
4326{
18004c5d
CL
4327 mutex_lock(&slab_mutex);
4328 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4329}
4330
4331static inline int add_caller(unsigned long *n, unsigned long v)
4332{
4333 unsigned long *p;
4334 int l;
4335 if (!v)
4336 return 1;
4337 l = n[1];
4338 p = n + 2;
4339 while (l) {
4340 int i = l/2;
4341 unsigned long *q = p + 2 * i;
4342 if (*q == v) {
4343 q[1]++;
4344 return 1;
4345 }
4346 if (*q > v) {
4347 l = i;
4348 } else {
4349 p = q + 2;
4350 l -= i + 1;
4351 }
4352 }
4353 if (++n[1] == n[0])
4354 return 0;
4355 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4356 p[0] = v;
4357 p[1] = 1;
4358 return 1;
4359}
4360
4361static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4362{
4363 void *p;
4364 int i;
4365 if (n[0] == n[1])
4366 return;
3b0efdfa 4367 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4368 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4369 continue;
4370 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4371 return;
4372 }
4373}
4374
4375static void show_symbol(struct seq_file *m, unsigned long address)
4376{
4377#ifdef CONFIG_KALLSYMS
871751e2 4378 unsigned long offset, size;
9281acea 4379 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4380
a5c43dae 4381 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4382 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4383 if (modname[0])
871751e2
AV
4384 seq_printf(m, " [%s]", modname);
4385 return;
4386 }
4387#endif
4388 seq_printf(m, "%p", (void *)address);
4389}
4390
4391static int leaks_show(struct seq_file *m, void *p)
4392{
0672aa7c 4393 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2 4394 struct slab *slabp;
6744f087 4395 struct kmem_cache_node *l3;
871751e2
AV
4396 const char *name;
4397 unsigned long *n = m->private;
4398 int node;
4399 int i;
4400
4401 if (!(cachep->flags & SLAB_STORE_USER))
4402 return 0;
4403 if (!(cachep->flags & SLAB_RED_ZONE))
4404 return 0;
4405
4406 /* OK, we can do it */
4407
4408 n[1] = 0;
4409
4410 for_each_online_node(node) {
6a67368c 4411 l3 = cachep->node[node];
871751e2
AV
4412 if (!l3)
4413 continue;
4414
4415 check_irq_on();
4416 spin_lock_irq(&l3->list_lock);
4417
7a7c381d 4418 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4419 handle_slab(n, cachep, slabp);
7a7c381d 4420 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4421 handle_slab(n, cachep, slabp);
871751e2
AV
4422 spin_unlock_irq(&l3->list_lock);
4423 }
4424 name = cachep->name;
4425 if (n[0] == n[1]) {
4426 /* Increase the buffer size */
18004c5d 4427 mutex_unlock(&slab_mutex);
871751e2
AV
4428 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4429 if (!m->private) {
4430 /* Too bad, we are really out */
4431 m->private = n;
18004c5d 4432 mutex_lock(&slab_mutex);
871751e2
AV
4433 return -ENOMEM;
4434 }
4435 *(unsigned long *)m->private = n[0] * 2;
4436 kfree(n);
18004c5d 4437 mutex_lock(&slab_mutex);
871751e2
AV
4438 /* Now make sure this entry will be retried */
4439 m->count = m->size;
4440 return 0;
4441 }
4442 for (i = 0; i < n[1]; i++) {
4443 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4444 show_symbol(m, n[2*i+2]);
4445 seq_putc(m, '\n');
4446 }
d2e7b7d0 4447
871751e2
AV
4448 return 0;
4449}
4450
b7454ad3
GC
4451static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4452{
4453 return seq_list_next(p, &slab_caches, pos);
4454}
4455
4456static void s_stop(struct seq_file *m, void *p)
4457{
4458 mutex_unlock(&slab_mutex);
4459}
4460
a0ec95a8 4461static const struct seq_operations slabstats_op = {
871751e2
AV
4462 .start = leaks_start,
4463 .next = s_next,
4464 .stop = s_stop,
4465 .show = leaks_show,
4466};
a0ec95a8
AD
4467
4468static int slabstats_open(struct inode *inode, struct file *file)
4469{
4470 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4471 int ret = -ENOMEM;
4472 if (n) {
4473 ret = seq_open(file, &slabstats_op);
4474 if (!ret) {
4475 struct seq_file *m = file->private_data;
4476 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4477 m->private = n;
4478 n = NULL;
4479 }
4480 kfree(n);
4481 }
4482 return ret;
4483}
4484
4485static const struct file_operations proc_slabstats_operations = {
4486 .open = slabstats_open,
4487 .read = seq_read,
4488 .llseek = seq_lseek,
4489 .release = seq_release_private,
4490};
4491#endif
4492
4493static int __init slab_proc_init(void)
4494{
4495#ifdef CONFIG_DEBUG_SLAB_LEAK
4496 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4497#endif
a0ec95a8
AD
4498 return 0;
4499}
4500module_init(slab_proc_init);
1da177e4
LT
4501#endif
4502
00e145b6
MS
4503/**
4504 * ksize - get the actual amount of memory allocated for a given object
4505 * @objp: Pointer to the object
4506 *
4507 * kmalloc may internally round up allocations and return more memory
4508 * than requested. ksize() can be used to determine the actual amount of
4509 * memory allocated. The caller may use this additional memory, even though
4510 * a smaller amount of memory was initially specified with the kmalloc call.
4511 * The caller must guarantee that objp points to a valid object previously
4512 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4513 * must not be freed during the duration of the call.
4514 */
fd76bab2 4515size_t ksize(const void *objp)
1da177e4 4516{
ef8b4520
CL
4517 BUG_ON(!objp);
4518 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4519 return 0;
1da177e4 4520
8c138bc0 4521 return virt_to_cache(objp)->object_size;
1da177e4 4522}
b1aabecd 4523EXPORT_SYMBOL(ksize);