mm: softdirty: addresses before VMAs in PTE holes aren't softdirty
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
072bb0aa
MG
171/*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175static bool pfmemalloc_active __read_mostly;
176
1da177e4
LT
177/*
178 * struct array_cache
179 *
1da177e4
LT
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
bda5b655 194 void *entry[]; /*
a737b3e2
AM
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
072bb0aa
MG
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 202 */
1da177e4
LT
203};
204
c8522a3a
JK
205struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208};
209
072bb0aa
MG
210#define SLAB_OBJ_PFMEMALLOC 1
211static inline bool is_obj_pfmemalloc(void *objp)
212{
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214}
215
216static inline void set_obj_pfmemalloc(void **objp)
217{
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220}
221
222static inline void clear_obj_pfmemalloc(void **objp)
223{
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225}
226
a737b3e2
AM
227/*
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
1da177e4
LT
230 */
231#define BOOT_CPUCACHE_ENTRIES 1
232struct arraycache_init {
233 struct array_cache cache;
b28a02de 234 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
235};
236
e498be7d
CL
237/*
238 * Need this for bootstrapping a per node allocator.
239 */
556a169d 240#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
ce8eb6c4 241static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 242#define CACHE_CACHE 0
556a169d 243#define SIZE_AC MAX_NUMNODES
ce8eb6c4 244#define SIZE_NODE (2 * MAX_NUMNODES)
e498be7d 245
ed11d9eb 246static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 247 struct kmem_cache_node *n, int tofree);
ed11d9eb 248static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
249 int node, struct list_head *list);
250static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 251static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 252static void cache_reap(struct work_struct *unused);
ed11d9eb 253
e0a42726
IM
254static int slab_early_init = 1;
255
e3366016 256#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
ce8eb6c4 257#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 258
ce8eb6c4 259static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
260{
261 INIT_LIST_HEAD(&parent->slabs_full);
262 INIT_LIST_HEAD(&parent->slabs_partial);
263 INIT_LIST_HEAD(&parent->slabs_free);
264 parent->shared = NULL;
265 parent->alien = NULL;
2e1217cf 266 parent->colour_next = 0;
e498be7d
CL
267 spin_lock_init(&parent->list_lock);
268 parent->free_objects = 0;
269 parent->free_touched = 0;
270}
271
a737b3e2
AM
272#define MAKE_LIST(cachep, listp, slab, nodeid) \
273 do { \
274 INIT_LIST_HEAD(listp); \
18bf8541 275 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
276 } while (0)
277
a737b3e2
AM
278#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
279 do { \
e498be7d
CL
280 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
281 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
282 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
283 } while (0)
1da177e4 284
1da177e4
LT
285#define CFLGS_OFF_SLAB (0x80000000UL)
286#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
287
288#define BATCHREFILL_LIMIT 16
a737b3e2
AM
289/*
290 * Optimization question: fewer reaps means less probability for unnessary
291 * cpucache drain/refill cycles.
1da177e4 292 *
dc6f3f27 293 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
294 * which could lock up otherwise freeable slabs.
295 */
5f0985bb
JZ
296#define REAPTIMEOUT_AC (2*HZ)
297#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
298
299#if STATS
300#define STATS_INC_ACTIVE(x) ((x)->num_active++)
301#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
302#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
303#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 304#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
305#define STATS_SET_HIGH(x) \
306 do { \
307 if ((x)->num_active > (x)->high_mark) \
308 (x)->high_mark = (x)->num_active; \
309 } while (0)
1da177e4
LT
310#define STATS_INC_ERR(x) ((x)->errors++)
311#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 312#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 313#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
314#define STATS_SET_FREEABLE(x, i) \
315 do { \
316 if ((x)->max_freeable < i) \
317 (x)->max_freeable = i; \
318 } while (0)
1da177e4
LT
319#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
320#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
321#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
322#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
323#else
324#define STATS_INC_ACTIVE(x) do { } while (0)
325#define STATS_DEC_ACTIVE(x) do { } while (0)
326#define STATS_INC_ALLOCED(x) do { } while (0)
327#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 328#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
329#define STATS_SET_HIGH(x) do { } while (0)
330#define STATS_INC_ERR(x) do { } while (0)
331#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 332#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 333#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 334#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
335#define STATS_INC_ALLOCHIT(x) do { } while (0)
336#define STATS_INC_ALLOCMISS(x) do { } while (0)
337#define STATS_INC_FREEHIT(x) do { } while (0)
338#define STATS_INC_FREEMISS(x) do { } while (0)
339#endif
340
341#if DEBUG
1da177e4 342
a737b3e2
AM
343/*
344 * memory layout of objects:
1da177e4 345 * 0 : objp
3dafccf2 346 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
347 * the end of an object is aligned with the end of the real
348 * allocation. Catches writes behind the end of the allocation.
3dafccf2 349 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 350 * redzone word.
3dafccf2 351 * cachep->obj_offset: The real object.
3b0efdfa
CL
352 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
353 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 354 * [BYTES_PER_WORD long]
1da177e4 355 */
343e0d7a 356static int obj_offset(struct kmem_cache *cachep)
1da177e4 357{
3dafccf2 358 return cachep->obj_offset;
1da177e4
LT
359}
360
b46b8f19 361static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
362{
363 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
364 return (unsigned long long*) (objp + obj_offset(cachep) -
365 sizeof(unsigned long long));
1da177e4
LT
366}
367
b46b8f19 368static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
369{
370 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
371 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 372 return (unsigned long long *)(objp + cachep->size -
b46b8f19 373 sizeof(unsigned long long) -
87a927c7 374 REDZONE_ALIGN);
3b0efdfa 375 return (unsigned long long *) (objp + cachep->size -
b46b8f19 376 sizeof(unsigned long long));
1da177e4
LT
377}
378
343e0d7a 379static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
380{
381 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 382 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
383}
384
385#else
386
3dafccf2 387#define obj_offset(x) 0
b46b8f19
DW
388#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
389#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
390#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
391
392#endif
393
03787301
JK
394#define OBJECT_FREE (0)
395#define OBJECT_ACTIVE (1)
396
397#ifdef CONFIG_DEBUG_SLAB_LEAK
398
399static void set_obj_status(struct page *page, int idx, int val)
400{
401 int freelist_size;
402 char *status;
403 struct kmem_cache *cachep = page->slab_cache;
404
405 freelist_size = cachep->num * sizeof(freelist_idx_t);
406 status = (char *)page->freelist + freelist_size;
407 status[idx] = val;
408}
409
410static inline unsigned int get_obj_status(struct page *page, int idx)
411{
412 int freelist_size;
413 char *status;
414 struct kmem_cache *cachep = page->slab_cache;
415
416 freelist_size = cachep->num * sizeof(freelist_idx_t);
417 status = (char *)page->freelist + freelist_size;
418
419 return status[idx];
420}
421
422#else
423static inline void set_obj_status(struct page *page, int idx, int val) {}
424
425#endif
426
1da177e4 427/*
3df1cccd
DR
428 * Do not go above this order unless 0 objects fit into the slab or
429 * overridden on the command line.
1da177e4 430 */
543585cc
DR
431#define SLAB_MAX_ORDER_HI 1
432#define SLAB_MAX_ORDER_LO 0
433static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 434static bool slab_max_order_set __initdata;
1da177e4 435
6ed5eb22
PE
436static inline struct kmem_cache *virt_to_cache(const void *obj)
437{
b49af68f 438 struct page *page = virt_to_head_page(obj);
35026088 439 return page->slab_cache;
6ed5eb22
PE
440}
441
8456a648 442static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
443 unsigned int idx)
444{
8456a648 445 return page->s_mem + cache->size * idx;
8fea4e96
PE
446}
447
6a2d7a95 448/*
3b0efdfa
CL
449 * We want to avoid an expensive divide : (offset / cache->size)
450 * Using the fact that size is a constant for a particular cache,
451 * we can replace (offset / cache->size) by
6a2d7a95
ED
452 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
453 */
454static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 455 const struct page *page, void *obj)
8fea4e96 456{
8456a648 457 u32 offset = (obj - page->s_mem);
6a2d7a95 458 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
459}
460
1da177e4 461static struct arraycache_init initarray_generic =
b28a02de 462 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
463
464/* internal cache of cache description objs */
9b030cb8 465static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
466 .batchcount = 1,
467 .limit = BOOT_CPUCACHE_ENTRIES,
468 .shared = 1,
3b0efdfa 469 .size = sizeof(struct kmem_cache),
b28a02de 470 .name = "kmem_cache",
1da177e4
LT
471};
472
edcad250
JK
473#define BAD_ALIEN_MAGIC 0x01020304ul
474
1871e52c 475static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 476
343e0d7a 477static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
478{
479 return cachep->array[smp_processor_id()];
480}
481
03787301
JK
482static size_t calculate_freelist_size(int nr_objs, size_t align)
483{
484 size_t freelist_size;
485
486 freelist_size = nr_objs * sizeof(freelist_idx_t);
487 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
488 freelist_size += nr_objs * sizeof(char);
489
490 if (align)
491 freelist_size = ALIGN(freelist_size, align);
492
493 return freelist_size;
494}
495
9cef2e2b
JK
496static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
497 size_t idx_size, size_t align)
1da177e4 498{
9cef2e2b 499 int nr_objs;
03787301 500 size_t remained_size;
9cef2e2b 501 size_t freelist_size;
03787301 502 int extra_space = 0;
9cef2e2b 503
03787301
JK
504 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
505 extra_space = sizeof(char);
9cef2e2b
JK
506 /*
507 * Ignore padding for the initial guess. The padding
508 * is at most @align-1 bytes, and @buffer_size is at
509 * least @align. In the worst case, this result will
510 * be one greater than the number of objects that fit
511 * into the memory allocation when taking the padding
512 * into account.
513 */
03787301 514 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
9cef2e2b
JK
515
516 /*
517 * This calculated number will be either the right
518 * amount, or one greater than what we want.
519 */
03787301
JK
520 remained_size = slab_size - nr_objs * buffer_size;
521 freelist_size = calculate_freelist_size(nr_objs, align);
522 if (remained_size < freelist_size)
9cef2e2b
JK
523 nr_objs--;
524
525 return nr_objs;
fbaccacf 526}
1da177e4 527
a737b3e2
AM
528/*
529 * Calculate the number of objects and left-over bytes for a given buffer size.
530 */
fbaccacf
SR
531static void cache_estimate(unsigned long gfporder, size_t buffer_size,
532 size_t align, int flags, size_t *left_over,
533 unsigned int *num)
534{
535 int nr_objs;
536 size_t mgmt_size;
537 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 538
fbaccacf
SR
539 /*
540 * The slab management structure can be either off the slab or
541 * on it. For the latter case, the memory allocated for a
542 * slab is used for:
543 *
16025177 544 * - One unsigned int for each object
fbaccacf
SR
545 * - Padding to respect alignment of @align
546 * - @buffer_size bytes for each object
547 *
548 * If the slab management structure is off the slab, then the
549 * alignment will already be calculated into the size. Because
550 * the slabs are all pages aligned, the objects will be at the
551 * correct alignment when allocated.
552 */
553 if (flags & CFLGS_OFF_SLAB) {
554 mgmt_size = 0;
555 nr_objs = slab_size / buffer_size;
556
fbaccacf 557 } else {
9cef2e2b 558 nr_objs = calculate_nr_objs(slab_size, buffer_size,
a41adfaa 559 sizeof(freelist_idx_t), align);
03787301 560 mgmt_size = calculate_freelist_size(nr_objs, align);
fbaccacf
SR
561 }
562 *num = nr_objs;
563 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
564}
565
f28510d3 566#if DEBUG
d40cee24 567#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 568
a737b3e2
AM
569static void __slab_error(const char *function, struct kmem_cache *cachep,
570 char *msg)
1da177e4
LT
571{
572 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 573 function, cachep->name, msg);
1da177e4 574 dump_stack();
373d4d09 575 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 576}
f28510d3 577#endif
1da177e4 578
3395ee05
PM
579/*
580 * By default on NUMA we use alien caches to stage the freeing of
581 * objects allocated from other nodes. This causes massive memory
582 * inefficiencies when using fake NUMA setup to split memory into a
583 * large number of small nodes, so it can be disabled on the command
584 * line
585 */
586
587static int use_alien_caches __read_mostly = 1;
588static int __init noaliencache_setup(char *s)
589{
590 use_alien_caches = 0;
591 return 1;
592}
593__setup("noaliencache", noaliencache_setup);
594
3df1cccd
DR
595static int __init slab_max_order_setup(char *str)
596{
597 get_option(&str, &slab_max_order);
598 slab_max_order = slab_max_order < 0 ? 0 :
599 min(slab_max_order, MAX_ORDER - 1);
600 slab_max_order_set = true;
601
602 return 1;
603}
604__setup("slab_max_order=", slab_max_order_setup);
605
8fce4d8e
CL
606#ifdef CONFIG_NUMA
607/*
608 * Special reaping functions for NUMA systems called from cache_reap().
609 * These take care of doing round robin flushing of alien caches (containing
610 * objects freed on different nodes from which they were allocated) and the
611 * flushing of remote pcps by calling drain_node_pages.
612 */
1871e52c 613static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
614
615static void init_reap_node(int cpu)
616{
617 int node;
618
7d6e6d09 619 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 620 if (node == MAX_NUMNODES)
442295c9 621 node = first_node(node_online_map);
8fce4d8e 622
1871e52c 623 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
624}
625
626static void next_reap_node(void)
627{
909ea964 628 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 629
8fce4d8e
CL
630 node = next_node(node, node_online_map);
631 if (unlikely(node >= MAX_NUMNODES))
632 node = first_node(node_online_map);
909ea964 633 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
634}
635
636#else
637#define init_reap_node(cpu) do { } while (0)
638#define next_reap_node(void) do { } while (0)
639#endif
640
1da177e4
LT
641/*
642 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
643 * via the workqueue/eventd.
644 * Add the CPU number into the expiration time to minimize the possibility of
645 * the CPUs getting into lockstep and contending for the global cache chain
646 * lock.
647 */
0db0628d 648static void start_cpu_timer(int cpu)
1da177e4 649{
1871e52c 650 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
651
652 /*
653 * When this gets called from do_initcalls via cpucache_init(),
654 * init_workqueues() has already run, so keventd will be setup
655 * at that time.
656 */
52bad64d 657 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 658 init_reap_node(cpu);
203b42f7 659 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
660 schedule_delayed_work_on(cpu, reap_work,
661 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
662 }
663}
664
1fe00d50 665static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 666{
d5cff635
CM
667 /*
668 * The array_cache structures contain pointers to free object.
25985edc 669 * However, when such objects are allocated or transferred to another
d5cff635
CM
670 * cache the pointers are not cleared and they could be counted as
671 * valid references during a kmemleak scan. Therefore, kmemleak must
672 * not scan such objects.
673 */
1fe00d50
JK
674 kmemleak_no_scan(ac);
675 if (ac) {
676 ac->avail = 0;
677 ac->limit = limit;
678 ac->batchcount = batch;
679 ac->touched = 0;
1da177e4 680 }
1fe00d50
JK
681}
682
683static struct array_cache *alloc_arraycache(int node, int entries,
684 int batchcount, gfp_t gfp)
685{
5e804789 686 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
687 struct array_cache *ac = NULL;
688
689 ac = kmalloc_node(memsize, gfp, node);
690 init_arraycache(ac, entries, batchcount);
691 return ac;
1da177e4
LT
692}
693
8456a648 694static inline bool is_slab_pfmemalloc(struct page *page)
072bb0aa 695{
072bb0aa
MG
696 return PageSlabPfmemalloc(page);
697}
698
699/* Clears pfmemalloc_active if no slabs have pfmalloc set */
700static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
701 struct array_cache *ac)
702{
18bf8541 703 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
8456a648 704 struct page *page;
072bb0aa
MG
705 unsigned long flags;
706
707 if (!pfmemalloc_active)
708 return;
709
ce8eb6c4 710 spin_lock_irqsave(&n->list_lock, flags);
8456a648
JK
711 list_for_each_entry(page, &n->slabs_full, lru)
712 if (is_slab_pfmemalloc(page))
072bb0aa
MG
713 goto out;
714
8456a648
JK
715 list_for_each_entry(page, &n->slabs_partial, lru)
716 if (is_slab_pfmemalloc(page))
072bb0aa
MG
717 goto out;
718
8456a648
JK
719 list_for_each_entry(page, &n->slabs_free, lru)
720 if (is_slab_pfmemalloc(page))
072bb0aa
MG
721 goto out;
722
723 pfmemalloc_active = false;
724out:
ce8eb6c4 725 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
726}
727
381760ea 728static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
729 gfp_t flags, bool force_refill)
730{
731 int i;
732 void *objp = ac->entry[--ac->avail];
733
734 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
735 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 736 struct kmem_cache_node *n;
072bb0aa
MG
737
738 if (gfp_pfmemalloc_allowed(flags)) {
739 clear_obj_pfmemalloc(&objp);
740 return objp;
741 }
742
743 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 744 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
745 /* If a !PFMEMALLOC object is found, swap them */
746 if (!is_obj_pfmemalloc(ac->entry[i])) {
747 objp = ac->entry[i];
748 ac->entry[i] = ac->entry[ac->avail];
749 ac->entry[ac->avail] = objp;
750 return objp;
751 }
752 }
753
754 /*
755 * If there are empty slabs on the slabs_free list and we are
756 * being forced to refill the cache, mark this one !pfmemalloc.
757 */
18bf8541 758 n = get_node(cachep, numa_mem_id());
ce8eb6c4 759 if (!list_empty(&n->slabs_free) && force_refill) {
8456a648 760 struct page *page = virt_to_head_page(objp);
7ecccf9d 761 ClearPageSlabPfmemalloc(page);
072bb0aa
MG
762 clear_obj_pfmemalloc(&objp);
763 recheck_pfmemalloc_active(cachep, ac);
764 return objp;
765 }
766
767 /* No !PFMEMALLOC objects available */
768 ac->avail++;
769 objp = NULL;
770 }
771
772 return objp;
773}
774
381760ea
MG
775static inline void *ac_get_obj(struct kmem_cache *cachep,
776 struct array_cache *ac, gfp_t flags, bool force_refill)
777{
778 void *objp;
779
780 if (unlikely(sk_memalloc_socks()))
781 objp = __ac_get_obj(cachep, ac, flags, force_refill);
782 else
783 objp = ac->entry[--ac->avail];
784
785 return objp;
786}
787
788static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
789 void *objp)
790{
791 if (unlikely(pfmemalloc_active)) {
792 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 793 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
794 if (PageSlabPfmemalloc(page))
795 set_obj_pfmemalloc(&objp);
796 }
797
381760ea
MG
798 return objp;
799}
800
801static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
802 void *objp)
803{
804 if (unlikely(sk_memalloc_socks()))
805 objp = __ac_put_obj(cachep, ac, objp);
806
072bb0aa
MG
807 ac->entry[ac->avail++] = objp;
808}
809
3ded175a
CL
810/*
811 * Transfer objects in one arraycache to another.
812 * Locking must be handled by the caller.
813 *
814 * Return the number of entries transferred.
815 */
816static int transfer_objects(struct array_cache *to,
817 struct array_cache *from, unsigned int max)
818{
819 /* Figure out how many entries to transfer */
732eacc0 820 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
821
822 if (!nr)
823 return 0;
824
825 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
826 sizeof(void *) *nr);
827
828 from->avail -= nr;
829 to->avail += nr;
3ded175a
CL
830 return nr;
831}
832
765c4507
CL
833#ifndef CONFIG_NUMA
834
835#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 836#define reap_alien(cachep, n) do { } while (0)
765c4507 837
c8522a3a
JK
838static inline struct alien_cache **alloc_alien_cache(int node,
839 int limit, gfp_t gfp)
765c4507 840{
edcad250 841 return (struct alien_cache **)BAD_ALIEN_MAGIC;
765c4507
CL
842}
843
c8522a3a 844static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
845{
846}
847
848static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
849{
850 return 0;
851}
852
853static inline void *alternate_node_alloc(struct kmem_cache *cachep,
854 gfp_t flags)
855{
856 return NULL;
857}
858
8b98c169 859static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
860 gfp_t flags, int nodeid)
861{
862 return NULL;
863}
864
865#else /* CONFIG_NUMA */
866
8b98c169 867static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 868static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 869
c8522a3a
JK
870static struct alien_cache *__alloc_alien_cache(int node, int entries,
871 int batch, gfp_t gfp)
872{
5e804789 873 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
874 struct alien_cache *alc = NULL;
875
876 alc = kmalloc_node(memsize, gfp, node);
877 init_arraycache(&alc->ac, entries, batch);
49dfc304 878 spin_lock_init(&alc->lock);
c8522a3a
JK
879 return alc;
880}
881
882static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 883{
c8522a3a 884 struct alien_cache **alc_ptr;
5e804789 885 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
886 int i;
887
888 if (limit > 1)
889 limit = 12;
c8522a3a
JK
890 alc_ptr = kzalloc_node(memsize, gfp, node);
891 if (!alc_ptr)
892 return NULL;
893
894 for_each_node(i) {
895 if (i == node || !node_online(i))
896 continue;
897 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
898 if (!alc_ptr[i]) {
899 for (i--; i >= 0; i--)
900 kfree(alc_ptr[i]);
901 kfree(alc_ptr);
902 return NULL;
e498be7d
CL
903 }
904 }
c8522a3a 905 return alc_ptr;
e498be7d
CL
906}
907
c8522a3a 908static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
909{
910 int i;
911
c8522a3a 912 if (!alc_ptr)
e498be7d 913 return;
e498be7d 914 for_each_node(i)
c8522a3a
JK
915 kfree(alc_ptr[i]);
916 kfree(alc_ptr);
e498be7d
CL
917}
918
343e0d7a 919static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
920 struct array_cache *ac, int node,
921 struct list_head *list)
e498be7d 922{
18bf8541 923 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
924
925 if (ac->avail) {
ce8eb6c4 926 spin_lock(&n->list_lock);
e00946fe
CL
927 /*
928 * Stuff objects into the remote nodes shared array first.
929 * That way we could avoid the overhead of putting the objects
930 * into the free lists and getting them back later.
931 */
ce8eb6c4
CL
932 if (n->shared)
933 transfer_objects(n->shared, ac, ac->limit);
e00946fe 934
833b706c 935 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 936 ac->avail = 0;
ce8eb6c4 937 spin_unlock(&n->list_lock);
e498be7d
CL
938 }
939}
940
8fce4d8e
CL
941/*
942 * Called from cache_reap() to regularly drain alien caches round robin.
943 */
ce8eb6c4 944static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 945{
909ea964 946 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 947
ce8eb6c4 948 if (n->alien) {
c8522a3a
JK
949 struct alien_cache *alc = n->alien[node];
950 struct array_cache *ac;
951
952 if (alc) {
953 ac = &alc->ac;
49dfc304 954 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
955 LIST_HEAD(list);
956
957 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 958 spin_unlock_irq(&alc->lock);
833b706c 959 slabs_destroy(cachep, &list);
c8522a3a 960 }
8fce4d8e
CL
961 }
962 }
963}
964
a737b3e2 965static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 966 struct alien_cache **alien)
e498be7d 967{
b28a02de 968 int i = 0;
c8522a3a 969 struct alien_cache *alc;
e498be7d
CL
970 struct array_cache *ac;
971 unsigned long flags;
972
973 for_each_online_node(i) {
c8522a3a
JK
974 alc = alien[i];
975 if (alc) {
833b706c
JK
976 LIST_HEAD(list);
977
c8522a3a 978 ac = &alc->ac;
49dfc304 979 spin_lock_irqsave(&alc->lock, flags);
833b706c 980 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 981 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 982 slabs_destroy(cachep, &list);
e498be7d
CL
983 }
984 }
985}
729bd0b7 986
873623df 987static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7 988{
1ea991b0 989 int nodeid = page_to_nid(virt_to_page(objp));
ce8eb6c4 990 struct kmem_cache_node *n;
c8522a3a
JK
991 struct alien_cache *alien = NULL;
992 struct array_cache *ac;
1ca4cb24 993 int node;
97654dfa 994 LIST_HEAD(list);
1ca4cb24 995
7d6e6d09 996 node = numa_mem_id();
729bd0b7
PE
997
998 /*
999 * Make sure we are not freeing a object from another node to the array
1000 * cache on this cpu.
1001 */
1ea991b0 1002 if (likely(nodeid == node))
729bd0b7
PE
1003 return 0;
1004
18bf8541 1005 n = get_node(cachep, node);
729bd0b7 1006 STATS_INC_NODEFREES(cachep);
ce8eb6c4
CL
1007 if (n->alien && n->alien[nodeid]) {
1008 alien = n->alien[nodeid];
c8522a3a 1009 ac = &alien->ac;
49dfc304 1010 spin_lock(&alien->lock);
c8522a3a 1011 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 1012 STATS_INC_ACOVERFLOW(cachep);
833b706c 1013 __drain_alien_cache(cachep, ac, nodeid, &list);
729bd0b7 1014 }
c8522a3a 1015 ac_put_obj(cachep, ac, objp);
49dfc304 1016 spin_unlock(&alien->lock);
833b706c 1017 slabs_destroy(cachep, &list);
729bd0b7 1018 } else {
18bf8541
CL
1019 n = get_node(cachep, nodeid);
1020 spin_lock(&n->list_lock);
97654dfa 1021 free_block(cachep, &objp, 1, nodeid, &list);
18bf8541 1022 spin_unlock(&n->list_lock);
97654dfa 1023 slabs_destroy(cachep, &list);
729bd0b7
PE
1024 }
1025 return 1;
1026}
e498be7d
CL
1027#endif
1028
8f9f8d9e 1029/*
6a67368c 1030 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1031 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1032 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1033 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1034 * already in use.
1035 *
18004c5d 1036 * Must hold slab_mutex.
8f9f8d9e 1037 */
6a67368c 1038static int init_cache_node_node(int node)
8f9f8d9e
DR
1039{
1040 struct kmem_cache *cachep;
ce8eb6c4 1041 struct kmem_cache_node *n;
5e804789 1042 const size_t memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1043
18004c5d 1044 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e 1045 /*
5f0985bb 1046 * Set up the kmem_cache_node for cpu before we can
8f9f8d9e
DR
1047 * begin anything. Make sure some other cpu on this
1048 * node has not already allocated this
1049 */
18bf8541
CL
1050 n = get_node(cachep, node);
1051 if (!n) {
ce8eb6c4
CL
1052 n = kmalloc_node(memsize, GFP_KERNEL, node);
1053 if (!n)
8f9f8d9e 1054 return -ENOMEM;
ce8eb6c4 1055 kmem_cache_node_init(n);
5f0985bb
JZ
1056 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1057 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
8f9f8d9e
DR
1058
1059 /*
5f0985bb
JZ
1060 * The kmem_cache_nodes don't come and go as CPUs
1061 * come and go. slab_mutex is sufficient
8f9f8d9e
DR
1062 * protection here.
1063 */
ce8eb6c4 1064 cachep->node[node] = n;
8f9f8d9e
DR
1065 }
1066
18bf8541
CL
1067 spin_lock_irq(&n->list_lock);
1068 n->free_limit =
8f9f8d9e
DR
1069 (1 + nr_cpus_node(node)) *
1070 cachep->batchcount + cachep->num;
18bf8541 1071 spin_unlock_irq(&n->list_lock);
8f9f8d9e
DR
1072 }
1073 return 0;
1074}
1075
0fa8103b
WL
1076static inline int slabs_tofree(struct kmem_cache *cachep,
1077 struct kmem_cache_node *n)
1078{
1079 return (n->free_objects + cachep->num - 1) / cachep->num;
1080}
1081
0db0628d 1082static void cpuup_canceled(long cpu)
fbf1e473
AM
1083{
1084 struct kmem_cache *cachep;
ce8eb6c4 1085 struct kmem_cache_node *n = NULL;
7d6e6d09 1086 int node = cpu_to_mem(cpu);
a70f7302 1087 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1088
18004c5d 1089 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1090 struct array_cache *nc;
1091 struct array_cache *shared;
c8522a3a 1092 struct alien_cache **alien;
97654dfa 1093 LIST_HEAD(list);
fbf1e473 1094
fbf1e473
AM
1095 /* cpu is dead; no one can alloc from it. */
1096 nc = cachep->array[cpu];
1097 cachep->array[cpu] = NULL;
18bf8541 1098 n = get_node(cachep, node);
fbf1e473 1099
ce8eb6c4 1100 if (!n)
fbf1e473
AM
1101 goto free_array_cache;
1102
ce8eb6c4 1103 spin_lock_irq(&n->list_lock);
fbf1e473 1104
ce8eb6c4
CL
1105 /* Free limit for this kmem_cache_node */
1106 n->free_limit -= cachep->batchcount;
fbf1e473 1107 if (nc)
97654dfa 1108 free_block(cachep, nc->entry, nc->avail, node, &list);
fbf1e473 1109
58463c1f 1110 if (!cpumask_empty(mask)) {
ce8eb6c4 1111 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1112 goto free_array_cache;
1113 }
1114
ce8eb6c4 1115 shared = n->shared;
fbf1e473
AM
1116 if (shared) {
1117 free_block(cachep, shared->entry,
97654dfa 1118 shared->avail, node, &list);
ce8eb6c4 1119 n->shared = NULL;
fbf1e473
AM
1120 }
1121
ce8eb6c4
CL
1122 alien = n->alien;
1123 n->alien = NULL;
fbf1e473 1124
ce8eb6c4 1125 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1126
1127 kfree(shared);
1128 if (alien) {
1129 drain_alien_cache(cachep, alien);
1130 free_alien_cache(alien);
1131 }
1132free_array_cache:
97654dfa 1133 slabs_destroy(cachep, &list);
fbf1e473
AM
1134 kfree(nc);
1135 }
1136 /*
1137 * In the previous loop, all the objects were freed to
1138 * the respective cache's slabs, now we can go ahead and
1139 * shrink each nodelist to its limit.
1140 */
18004c5d 1141 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1142 n = get_node(cachep, node);
ce8eb6c4 1143 if (!n)
fbf1e473 1144 continue;
0fa8103b 1145 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1146 }
1147}
1148
0db0628d 1149static int cpuup_prepare(long cpu)
1da177e4 1150{
343e0d7a 1151 struct kmem_cache *cachep;
ce8eb6c4 1152 struct kmem_cache_node *n = NULL;
7d6e6d09 1153 int node = cpu_to_mem(cpu);
8f9f8d9e 1154 int err;
1da177e4 1155
fbf1e473
AM
1156 /*
1157 * We need to do this right in the beginning since
1158 * alloc_arraycache's are going to use this list.
1159 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1160 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1161 */
6a67368c 1162 err = init_cache_node_node(node);
8f9f8d9e
DR
1163 if (err < 0)
1164 goto bad;
fbf1e473
AM
1165
1166 /*
1167 * Now we can go ahead with allocating the shared arrays and
1168 * array caches
1169 */
18004c5d 1170 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1171 struct array_cache *nc;
1172 struct array_cache *shared = NULL;
c8522a3a 1173 struct alien_cache **alien = NULL;
fbf1e473
AM
1174
1175 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1176 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1177 if (!nc)
1178 goto bad;
1179 if (cachep->shared) {
1180 shared = alloc_arraycache(node,
1181 cachep->shared * cachep->batchcount,
83b519e8 1182 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1183 if (!shared) {
1184 kfree(nc);
1da177e4 1185 goto bad;
12d00f6a 1186 }
fbf1e473
AM
1187 }
1188 if (use_alien_caches) {
83b519e8 1189 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1190 if (!alien) {
1191 kfree(shared);
1192 kfree(nc);
fbf1e473 1193 goto bad;
12d00f6a 1194 }
fbf1e473
AM
1195 }
1196 cachep->array[cpu] = nc;
18bf8541 1197 n = get_node(cachep, node);
ce8eb6c4 1198 BUG_ON(!n);
fbf1e473 1199
ce8eb6c4
CL
1200 spin_lock_irq(&n->list_lock);
1201 if (!n->shared) {
fbf1e473
AM
1202 /*
1203 * We are serialised from CPU_DEAD or
1204 * CPU_UP_CANCELLED by the cpucontrol lock
1205 */
ce8eb6c4 1206 n->shared = shared;
fbf1e473
AM
1207 shared = NULL;
1208 }
4484ebf1 1209#ifdef CONFIG_NUMA
ce8eb6c4
CL
1210 if (!n->alien) {
1211 n->alien = alien;
fbf1e473 1212 alien = NULL;
1da177e4 1213 }
fbf1e473 1214#endif
ce8eb6c4 1215 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1216 kfree(shared);
1217 free_alien_cache(alien);
1218 }
ce79ddc8 1219
fbf1e473
AM
1220 return 0;
1221bad:
12d00f6a 1222 cpuup_canceled(cpu);
fbf1e473
AM
1223 return -ENOMEM;
1224}
1225
0db0628d 1226static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1227 unsigned long action, void *hcpu)
1228{
1229 long cpu = (long)hcpu;
1230 int err = 0;
1231
1232 switch (action) {
fbf1e473
AM
1233 case CPU_UP_PREPARE:
1234 case CPU_UP_PREPARE_FROZEN:
18004c5d 1235 mutex_lock(&slab_mutex);
fbf1e473 1236 err = cpuup_prepare(cpu);
18004c5d 1237 mutex_unlock(&slab_mutex);
1da177e4
LT
1238 break;
1239 case CPU_ONLINE:
8bb78442 1240 case CPU_ONLINE_FROZEN:
1da177e4
LT
1241 start_cpu_timer(cpu);
1242 break;
1243#ifdef CONFIG_HOTPLUG_CPU
5830c590 1244 case CPU_DOWN_PREPARE:
8bb78442 1245 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1246 /*
18004c5d 1247 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1248 * held so that if cache_reap() is invoked it cannot do
1249 * anything expensive but will only modify reap_work
1250 * and reschedule the timer.
1251 */
afe2c511 1252 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1253 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1254 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1255 break;
1256 case CPU_DOWN_FAILED:
8bb78442 1257 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1258 start_cpu_timer(cpu);
1259 break;
1da177e4 1260 case CPU_DEAD:
8bb78442 1261 case CPU_DEAD_FROZEN:
4484ebf1
RT
1262 /*
1263 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1264 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1265 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1266 * memory from the node of the cpu going down. The node
4484ebf1
RT
1267 * structure is usually allocated from kmem_cache_create() and
1268 * gets destroyed at kmem_cache_destroy().
1269 */
183ff22b 1270 /* fall through */
8f5be20b 1271#endif
1da177e4 1272 case CPU_UP_CANCELED:
8bb78442 1273 case CPU_UP_CANCELED_FROZEN:
18004c5d 1274 mutex_lock(&slab_mutex);
fbf1e473 1275 cpuup_canceled(cpu);
18004c5d 1276 mutex_unlock(&slab_mutex);
1da177e4 1277 break;
1da177e4 1278 }
eac40680 1279 return notifier_from_errno(err);
1da177e4
LT
1280}
1281
0db0628d 1282static struct notifier_block cpucache_notifier = {
74b85f37
CS
1283 &cpuup_callback, NULL, 0
1284};
1da177e4 1285
8f9f8d9e
DR
1286#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1287/*
1288 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1289 * Returns -EBUSY if all objects cannot be drained so that the node is not
1290 * removed.
1291 *
18004c5d 1292 * Must hold slab_mutex.
8f9f8d9e 1293 */
6a67368c 1294static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1295{
1296 struct kmem_cache *cachep;
1297 int ret = 0;
1298
18004c5d 1299 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1300 struct kmem_cache_node *n;
8f9f8d9e 1301
18bf8541 1302 n = get_node(cachep, node);
ce8eb6c4 1303 if (!n)
8f9f8d9e
DR
1304 continue;
1305
0fa8103b 1306 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1307
ce8eb6c4
CL
1308 if (!list_empty(&n->slabs_full) ||
1309 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1310 ret = -EBUSY;
1311 break;
1312 }
1313 }
1314 return ret;
1315}
1316
1317static int __meminit slab_memory_callback(struct notifier_block *self,
1318 unsigned long action, void *arg)
1319{
1320 struct memory_notify *mnb = arg;
1321 int ret = 0;
1322 int nid;
1323
1324 nid = mnb->status_change_nid;
1325 if (nid < 0)
1326 goto out;
1327
1328 switch (action) {
1329 case MEM_GOING_ONLINE:
18004c5d 1330 mutex_lock(&slab_mutex);
6a67368c 1331 ret = init_cache_node_node(nid);
18004c5d 1332 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1333 break;
1334 case MEM_GOING_OFFLINE:
18004c5d 1335 mutex_lock(&slab_mutex);
6a67368c 1336 ret = drain_cache_node_node(nid);
18004c5d 1337 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1338 break;
1339 case MEM_ONLINE:
1340 case MEM_OFFLINE:
1341 case MEM_CANCEL_ONLINE:
1342 case MEM_CANCEL_OFFLINE:
1343 break;
1344 }
1345out:
5fda1bd5 1346 return notifier_from_errno(ret);
8f9f8d9e
DR
1347}
1348#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1349
e498be7d 1350/*
ce8eb6c4 1351 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1352 */
6744f087 1353static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1354 int nodeid)
e498be7d 1355{
6744f087 1356 struct kmem_cache_node *ptr;
e498be7d 1357
6744f087 1358 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1359 BUG_ON(!ptr);
1360
6744f087 1361 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1362 /*
1363 * Do not assume that spinlocks can be initialized via memcpy:
1364 */
1365 spin_lock_init(&ptr->list_lock);
1366
e498be7d 1367 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1368 cachep->node[nodeid] = ptr;
e498be7d
CL
1369}
1370
556a169d 1371/*
ce8eb6c4
CL
1372 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1373 * size of kmem_cache_node.
556a169d 1374 */
ce8eb6c4 1375static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1376{
1377 int node;
1378
1379 for_each_online_node(node) {
ce8eb6c4 1380 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1381 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1382 REAPTIMEOUT_NODE +
1383 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1384 }
1385}
1386
3c583465
CL
1387/*
1388 * The memory after the last cpu cache pointer is used for the
6a67368c 1389 * the node pointer.
3c583465 1390 */
6a67368c 1391static void setup_node_pointer(struct kmem_cache *cachep)
3c583465 1392{
6a67368c 1393 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
3c583465
CL
1394}
1395
a737b3e2
AM
1396/*
1397 * Initialisation. Called after the page allocator have been initialised and
1398 * before smp_init().
1da177e4
LT
1399 */
1400void __init kmem_cache_init(void)
1401{
e498be7d
CL
1402 int i;
1403
68126702
JK
1404 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1405 sizeof(struct rcu_head));
9b030cb8 1406 kmem_cache = &kmem_cache_boot;
6a67368c 1407 setup_node_pointer(kmem_cache);
9b030cb8 1408
b6e68bc1 1409 if (num_possible_nodes() == 1)
62918a03
SS
1410 use_alien_caches = 0;
1411
3c583465 1412 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1413 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1414
ce8eb6c4 1415 set_up_node(kmem_cache, CACHE_CACHE);
1da177e4
LT
1416
1417 /*
1418 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1419 * page orders on machines with more than 32MB of memory if
1420 * not overridden on the command line.
1da177e4 1421 */
3df1cccd 1422 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1423 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1424
1da177e4
LT
1425 /* Bootstrap is tricky, because several objects are allocated
1426 * from caches that do not exist yet:
9b030cb8
CL
1427 * 1) initialize the kmem_cache cache: it contains the struct
1428 * kmem_cache structures of all caches, except kmem_cache itself:
1429 * kmem_cache is statically allocated.
e498be7d 1430 * Initially an __init data area is used for the head array and the
ce8eb6c4 1431 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1432 * array at the end of the bootstrap.
1da177e4 1433 * 2) Create the first kmalloc cache.
343e0d7a 1434 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1435 * An __init data area is used for the head array.
1436 * 3) Create the remaining kmalloc caches, with minimally sized
1437 * head arrays.
9b030cb8 1438 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1439 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1440 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1441 * the other cache's with kmalloc allocated memory.
1442 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1443 */
1444
9b030cb8 1445 /* 1) create the kmem_cache */
1da177e4 1446
8da3430d 1447 /*
b56efcf0 1448 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1449 */
2f9baa9f
CL
1450 create_boot_cache(kmem_cache, "kmem_cache",
1451 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
6744f087 1452 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1453 SLAB_HWCACHE_ALIGN);
1454 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1455
1456 /* 2+3) create the kmalloc caches */
1da177e4 1457
a737b3e2
AM
1458 /*
1459 * Initialize the caches that provide memory for the array cache and the
ce8eb6c4 1460 * kmem_cache_node structures first. Without this, further allocations will
a737b3e2 1461 * bug.
e498be7d
CL
1462 */
1463
e3366016
CL
1464 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1465 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44 1466
ce8eb6c4
CL
1467 if (INDEX_AC != INDEX_NODE)
1468 kmalloc_caches[INDEX_NODE] =
1469 create_kmalloc_cache("kmalloc-node",
1470 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
e498be7d 1471
e0a42726
IM
1472 slab_early_init = 0;
1473
1da177e4
LT
1474 /* 4) Replace the bootstrap head arrays */
1475 {
2b2d5493 1476 struct array_cache *ptr;
e498be7d 1477
83b519e8 1478 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1479
9b030cb8 1480 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1481 sizeof(struct arraycache_init));
2b2d5493 1482
9b030cb8 1483 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1484
83b519e8 1485 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1486
e3366016 1487 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1488 != &initarray_generic.cache);
e3366016 1489 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1490 sizeof(struct arraycache_init));
2b2d5493 1491
e3366016 1492 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1493 }
ce8eb6c4 1494 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1495 {
1ca4cb24
PE
1496 int nid;
1497
9c09a95c 1498 for_each_online_node(nid) {
ce8eb6c4 1499 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1500
e3366016 1501 init_list(kmalloc_caches[INDEX_AC],
ce8eb6c4 1502 &init_kmem_cache_node[SIZE_AC + nid], nid);
e498be7d 1503
ce8eb6c4
CL
1504 if (INDEX_AC != INDEX_NODE) {
1505 init_list(kmalloc_caches[INDEX_NODE],
1506 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1507 }
1508 }
1509 }
1da177e4 1510
f97d5f63 1511 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1512}
1513
1514void __init kmem_cache_init_late(void)
1515{
1516 struct kmem_cache *cachep;
1517
97d06609 1518 slab_state = UP;
52cef189 1519
8429db5c 1520 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1521 mutex_lock(&slab_mutex);
1522 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1523 if (enable_cpucache(cachep, GFP_NOWAIT))
1524 BUG();
18004c5d 1525 mutex_unlock(&slab_mutex);
056c6241 1526
97d06609
CL
1527 /* Done! */
1528 slab_state = FULL;
1529
a737b3e2
AM
1530 /*
1531 * Register a cpu startup notifier callback that initializes
1532 * cpu_cache_get for all new cpus
1da177e4
LT
1533 */
1534 register_cpu_notifier(&cpucache_notifier);
1da177e4 1535
8f9f8d9e
DR
1536#ifdef CONFIG_NUMA
1537 /*
1538 * Register a memory hotplug callback that initializes and frees
6a67368c 1539 * node.
8f9f8d9e
DR
1540 */
1541 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1542#endif
1543
a737b3e2
AM
1544 /*
1545 * The reap timers are started later, with a module init call: That part
1546 * of the kernel is not yet operational.
1da177e4
LT
1547 */
1548}
1549
1550static int __init cpucache_init(void)
1551{
1552 int cpu;
1553
a737b3e2
AM
1554 /*
1555 * Register the timers that return unneeded pages to the page allocator
1da177e4 1556 */
e498be7d 1557 for_each_online_cpu(cpu)
a737b3e2 1558 start_cpu_timer(cpu);
a164f896
GC
1559
1560 /* Done! */
97d06609 1561 slab_state = FULL;
1da177e4
LT
1562 return 0;
1563}
1da177e4
LT
1564__initcall(cpucache_init);
1565
8bdec192
RA
1566static noinline void
1567slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1568{
9a02d699 1569#if DEBUG
ce8eb6c4 1570 struct kmem_cache_node *n;
8456a648 1571 struct page *page;
8bdec192
RA
1572 unsigned long flags;
1573 int node;
9a02d699
DR
1574 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1575 DEFAULT_RATELIMIT_BURST);
1576
1577 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1578 return;
8bdec192
RA
1579
1580 printk(KERN_WARNING
1581 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1582 nodeid, gfpflags);
1583 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1584 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1585
18bf8541 1586 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1587 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1588 unsigned long active_slabs = 0, num_slabs = 0;
1589
ce8eb6c4 1590 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1591 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1592 active_objs += cachep->num;
1593 active_slabs++;
1594 }
8456a648
JK
1595 list_for_each_entry(page, &n->slabs_partial, lru) {
1596 active_objs += page->active;
8bdec192
RA
1597 active_slabs++;
1598 }
8456a648 1599 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1600 num_slabs++;
1601
ce8eb6c4
CL
1602 free_objects += n->free_objects;
1603 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1604
1605 num_slabs += active_slabs;
1606 num_objs = num_slabs * cachep->num;
1607 printk(KERN_WARNING
1608 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1609 node, active_slabs, num_slabs, active_objs, num_objs,
1610 free_objects);
1611 }
9a02d699 1612#endif
8bdec192
RA
1613}
1614
1da177e4 1615/*
8a7d9b43
WSH
1616 * Interface to system's page allocator. No need to hold the
1617 * kmem_cache_node ->list_lock.
1da177e4
LT
1618 *
1619 * If we requested dmaable memory, we will get it. Even if we
1620 * did not request dmaable memory, we might get it, but that
1621 * would be relatively rare and ignorable.
1622 */
0c3aa83e
JK
1623static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1624 int nodeid)
1da177e4
LT
1625{
1626 struct page *page;
e1b6aa6f 1627 int nr_pages;
765c4507 1628
a618e89f 1629 flags |= cachep->allocflags;
e12ba74d
MG
1630 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1631 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1632
5dfb4175
VD
1633 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1634 return NULL;
1635
517d0869 1636 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1637 if (!page) {
5dfb4175 1638 memcg_uncharge_slab(cachep, cachep->gfporder);
9a02d699 1639 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1640 return NULL;
8bdec192 1641 }
1da177e4 1642
b37f1dd0 1643 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1644 if (unlikely(page->pfmemalloc))
1645 pfmemalloc_active = true;
1646
e1b6aa6f 1647 nr_pages = (1 << cachep->gfporder);
1da177e4 1648 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1649 add_zone_page_state(page_zone(page),
1650 NR_SLAB_RECLAIMABLE, nr_pages);
1651 else
1652 add_zone_page_state(page_zone(page),
1653 NR_SLAB_UNRECLAIMABLE, nr_pages);
a57a4988
JK
1654 __SetPageSlab(page);
1655 if (page->pfmemalloc)
1656 SetPageSlabPfmemalloc(page);
072bb0aa 1657
b1eeab67
VN
1658 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1659 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1660
1661 if (cachep->ctor)
1662 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1663 else
1664 kmemcheck_mark_unallocated_pages(page, nr_pages);
1665 }
c175eea4 1666
0c3aa83e 1667 return page;
1da177e4
LT
1668}
1669
1670/*
1671 * Interface to system's page release.
1672 */
0c3aa83e 1673static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1674{
a57a4988 1675 const unsigned long nr_freed = (1 << cachep->gfporder);
1da177e4 1676
b1eeab67 1677 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1678
972d1a7b
CL
1679 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1680 sub_zone_page_state(page_zone(page),
1681 NR_SLAB_RECLAIMABLE, nr_freed);
1682 else
1683 sub_zone_page_state(page_zone(page),
1684 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1685
a57a4988 1686 BUG_ON(!PageSlab(page));
73293c2f 1687 __ClearPageSlabPfmemalloc(page);
a57a4988 1688 __ClearPageSlab(page);
8456a648
JK
1689 page_mapcount_reset(page);
1690 page->mapping = NULL;
1f458cbf 1691
1da177e4
LT
1692 if (current->reclaim_state)
1693 current->reclaim_state->reclaimed_slab += nr_freed;
5dfb4175
VD
1694 __free_pages(page, cachep->gfporder);
1695 memcg_uncharge_slab(cachep, cachep->gfporder);
1da177e4
LT
1696}
1697
1698static void kmem_rcu_free(struct rcu_head *head)
1699{
68126702
JK
1700 struct kmem_cache *cachep;
1701 struct page *page;
1da177e4 1702
68126702
JK
1703 page = container_of(head, struct page, rcu_head);
1704 cachep = page->slab_cache;
1705
1706 kmem_freepages(cachep, page);
1da177e4
LT
1707}
1708
1709#if DEBUG
1710
1711#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1712static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1713 unsigned long caller)
1da177e4 1714{
8c138bc0 1715 int size = cachep->object_size;
1da177e4 1716
3dafccf2 1717 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1718
b28a02de 1719 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1720 return;
1721
b28a02de
PE
1722 *addr++ = 0x12345678;
1723 *addr++ = caller;
1724 *addr++ = smp_processor_id();
1725 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1726 {
1727 unsigned long *sptr = &caller;
1728 unsigned long svalue;
1729
1730 while (!kstack_end(sptr)) {
1731 svalue = *sptr++;
1732 if (kernel_text_address(svalue)) {
b28a02de 1733 *addr++ = svalue;
1da177e4
LT
1734 size -= sizeof(unsigned long);
1735 if (size <= sizeof(unsigned long))
1736 break;
1737 }
1738 }
1739
1740 }
b28a02de 1741 *addr++ = 0x87654321;
1da177e4
LT
1742}
1743#endif
1744
343e0d7a 1745static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1746{
8c138bc0 1747 int size = cachep->object_size;
3dafccf2 1748 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1749
1750 memset(addr, val, size);
b28a02de 1751 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1752}
1753
1754static void dump_line(char *data, int offset, int limit)
1755{
1756 int i;
aa83aa40
DJ
1757 unsigned char error = 0;
1758 int bad_count = 0;
1759
fdde6abb 1760 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1761 for (i = 0; i < limit; i++) {
1762 if (data[offset + i] != POISON_FREE) {
1763 error = data[offset + i];
1764 bad_count++;
1765 }
aa83aa40 1766 }
fdde6abb
SAS
1767 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1768 &data[offset], limit, 1);
aa83aa40
DJ
1769
1770 if (bad_count == 1) {
1771 error ^= POISON_FREE;
1772 if (!(error & (error - 1))) {
1773 printk(KERN_ERR "Single bit error detected. Probably "
1774 "bad RAM.\n");
1775#ifdef CONFIG_X86
1776 printk(KERN_ERR "Run memtest86+ or a similar memory "
1777 "test tool.\n");
1778#else
1779 printk(KERN_ERR "Run a memory test tool.\n");
1780#endif
1781 }
1782 }
1da177e4
LT
1783}
1784#endif
1785
1786#if DEBUG
1787
343e0d7a 1788static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1789{
1790 int i, size;
1791 char *realobj;
1792
1793 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1794 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1795 *dbg_redzone1(cachep, objp),
1796 *dbg_redzone2(cachep, objp));
1da177e4
LT
1797 }
1798
1799 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1800 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1801 *dbg_userword(cachep, objp),
1802 *dbg_userword(cachep, objp));
1da177e4 1803 }
3dafccf2 1804 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1805 size = cachep->object_size;
b28a02de 1806 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1807 int limit;
1808 limit = 16;
b28a02de
PE
1809 if (i + limit > size)
1810 limit = size - i;
1da177e4
LT
1811 dump_line(realobj, i, limit);
1812 }
1813}
1814
343e0d7a 1815static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1816{
1817 char *realobj;
1818 int size, i;
1819 int lines = 0;
1820
3dafccf2 1821 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1822 size = cachep->object_size;
1da177e4 1823
b28a02de 1824 for (i = 0; i < size; i++) {
1da177e4 1825 char exp = POISON_FREE;
b28a02de 1826 if (i == size - 1)
1da177e4
LT
1827 exp = POISON_END;
1828 if (realobj[i] != exp) {
1829 int limit;
1830 /* Mismatch ! */
1831 /* Print header */
1832 if (lines == 0) {
b28a02de 1833 printk(KERN_ERR
face37f5
DJ
1834 "Slab corruption (%s): %s start=%p, len=%d\n",
1835 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1836 print_objinfo(cachep, objp, 0);
1837 }
1838 /* Hexdump the affected line */
b28a02de 1839 i = (i / 16) * 16;
1da177e4 1840 limit = 16;
b28a02de
PE
1841 if (i + limit > size)
1842 limit = size - i;
1da177e4
LT
1843 dump_line(realobj, i, limit);
1844 i += 16;
1845 lines++;
1846 /* Limit to 5 lines */
1847 if (lines > 5)
1848 break;
1849 }
1850 }
1851 if (lines != 0) {
1852 /* Print some data about the neighboring objects, if they
1853 * exist:
1854 */
8456a648 1855 struct page *page = virt_to_head_page(objp);
8fea4e96 1856 unsigned int objnr;
1da177e4 1857
8456a648 1858 objnr = obj_to_index(cachep, page, objp);
1da177e4 1859 if (objnr) {
8456a648 1860 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1861 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1862 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1863 realobj, size);
1da177e4
LT
1864 print_objinfo(cachep, objp, 2);
1865 }
b28a02de 1866 if (objnr + 1 < cachep->num) {
8456a648 1867 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1868 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1869 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1870 realobj, size);
1da177e4
LT
1871 print_objinfo(cachep, objp, 2);
1872 }
1873 }
1874}
1875#endif
1876
12dd36fa 1877#if DEBUG
8456a648
JK
1878static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1879 struct page *page)
1da177e4 1880{
1da177e4
LT
1881 int i;
1882 for (i = 0; i < cachep->num; i++) {
8456a648 1883 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1884
1885 if (cachep->flags & SLAB_POISON) {
1886#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 1887 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 1888 OFF_SLAB(cachep))
b28a02de 1889 kernel_map_pages(virt_to_page(objp),
3b0efdfa 1890 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
1891 else
1892 check_poison_obj(cachep, objp);
1893#else
1894 check_poison_obj(cachep, objp);
1895#endif
1896 }
1897 if (cachep->flags & SLAB_RED_ZONE) {
1898 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1899 slab_error(cachep, "start of a freed object "
b28a02de 1900 "was overwritten");
1da177e4
LT
1901 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1902 slab_error(cachep, "end of a freed object "
b28a02de 1903 "was overwritten");
1da177e4 1904 }
1da177e4 1905 }
12dd36fa 1906}
1da177e4 1907#else
8456a648
JK
1908static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1909 struct page *page)
12dd36fa 1910{
12dd36fa 1911}
1da177e4
LT
1912#endif
1913
911851e6
RD
1914/**
1915 * slab_destroy - destroy and release all objects in a slab
1916 * @cachep: cache pointer being destroyed
cb8ee1a3 1917 * @page: page pointer being destroyed
911851e6 1918 *
8a7d9b43
WSH
1919 * Destroy all the objs in a slab page, and release the mem back to the system.
1920 * Before calling the slab page must have been unlinked from the cache. The
1921 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1922 */
8456a648 1923static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1924{
7e007355 1925 void *freelist;
12dd36fa 1926
8456a648
JK
1927 freelist = page->freelist;
1928 slab_destroy_debugcheck(cachep, page);
1da177e4 1929 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
68126702
JK
1930 struct rcu_head *head;
1931
1932 /*
1933 * RCU free overloads the RCU head over the LRU.
1934 * slab_page has been overloeaded over the LRU,
1935 * however it is not used from now on so that
1936 * we can use it safely.
1937 */
1938 head = (void *)&page->rcu_head;
1939 call_rcu(head, kmem_rcu_free);
1da177e4 1940
1da177e4 1941 } else {
0c3aa83e 1942 kmem_freepages(cachep, page);
1da177e4 1943 }
68126702
JK
1944
1945 /*
8456a648 1946 * From now on, we don't use freelist
68126702
JK
1947 * although actual page can be freed in rcu context
1948 */
1949 if (OFF_SLAB(cachep))
8456a648 1950 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1951}
1952
97654dfa
JK
1953static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1954{
1955 struct page *page, *n;
1956
1957 list_for_each_entry_safe(page, n, list, lru) {
1958 list_del(&page->lru);
1959 slab_destroy(cachep, page);
1960 }
1961}
1962
4d268eba 1963/**
a70773dd
RD
1964 * calculate_slab_order - calculate size (page order) of slabs
1965 * @cachep: pointer to the cache that is being created
1966 * @size: size of objects to be created in this cache.
1967 * @align: required alignment for the objects.
1968 * @flags: slab allocation flags
1969 *
1970 * Also calculates the number of objects per slab.
4d268eba
PE
1971 *
1972 * This could be made much more intelligent. For now, try to avoid using
1973 * high order pages for slabs. When the gfp() functions are more friendly
1974 * towards high-order requests, this should be changed.
1975 */
a737b3e2 1976static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1977 size_t size, size_t align, unsigned long flags)
4d268eba 1978{
b1ab41c4 1979 unsigned long offslab_limit;
4d268eba 1980 size_t left_over = 0;
9888e6fa 1981 int gfporder;
4d268eba 1982
0aa817f0 1983 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1984 unsigned int num;
1985 size_t remainder;
1986
9888e6fa 1987 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1988 if (!num)
1989 continue;
9888e6fa 1990
f315e3fa
JK
1991 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1992 if (num > SLAB_OBJ_MAX_NUM)
1993 break;
1994
b1ab41c4 1995 if (flags & CFLGS_OFF_SLAB) {
03787301 1996 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
b1ab41c4
IM
1997 /*
1998 * Max number of objs-per-slab for caches which
1999 * use off-slab slabs. Needed to avoid a possible
2000 * looping condition in cache_grow().
2001 */
03787301
JK
2002 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
2003 freelist_size_per_obj += sizeof(char);
8456a648 2004 offslab_limit = size;
03787301 2005 offslab_limit /= freelist_size_per_obj;
b1ab41c4
IM
2006
2007 if (num > offslab_limit)
2008 break;
2009 }
4d268eba 2010
9888e6fa 2011 /* Found something acceptable - save it away */
4d268eba 2012 cachep->num = num;
9888e6fa 2013 cachep->gfporder = gfporder;
4d268eba
PE
2014 left_over = remainder;
2015
f78bb8ad
LT
2016 /*
2017 * A VFS-reclaimable slab tends to have most allocations
2018 * as GFP_NOFS and we really don't want to have to be allocating
2019 * higher-order pages when we are unable to shrink dcache.
2020 */
2021 if (flags & SLAB_RECLAIM_ACCOUNT)
2022 break;
2023
4d268eba
PE
2024 /*
2025 * Large number of objects is good, but very large slabs are
2026 * currently bad for the gfp()s.
2027 */
543585cc 2028 if (gfporder >= slab_max_order)
4d268eba
PE
2029 break;
2030
9888e6fa
LT
2031 /*
2032 * Acceptable internal fragmentation?
2033 */
a737b3e2 2034 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2035 break;
2036 }
2037 return left_over;
2038}
2039
83b519e8 2040static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2041{
97d06609 2042 if (slab_state >= FULL)
83b519e8 2043 return enable_cpucache(cachep, gfp);
2ed3a4ef 2044
97d06609 2045 if (slab_state == DOWN) {
f30cf7d1 2046 /*
2f9baa9f 2047 * Note: Creation of first cache (kmem_cache).
ce8eb6c4 2048 * The setup_node is taken care
2f9baa9f
CL
2049 * of by the caller of __kmem_cache_create
2050 */
2051 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2052 slab_state = PARTIAL;
2053 } else if (slab_state == PARTIAL) {
2054 /*
2055 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2056 * that's used by kmalloc(24), otherwise the creation of
2057 * further caches will BUG().
2058 */
2059 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2060
2061 /*
ce8eb6c4
CL
2062 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2063 * the second cache, then we need to set up all its node/,
f30cf7d1
PE
2064 * otherwise the creation of further caches will BUG().
2065 */
ce8eb6c4
CL
2066 set_up_node(cachep, SIZE_AC);
2067 if (INDEX_AC == INDEX_NODE)
2068 slab_state = PARTIAL_NODE;
f30cf7d1 2069 else
97d06609 2070 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2071 } else {
2f9baa9f 2072 /* Remaining boot caches */
f30cf7d1 2073 cachep->array[smp_processor_id()] =
83b519e8 2074 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2075
97d06609 2076 if (slab_state == PARTIAL_ARRAYCACHE) {
ce8eb6c4
CL
2077 set_up_node(cachep, SIZE_NODE);
2078 slab_state = PARTIAL_NODE;
f30cf7d1
PE
2079 } else {
2080 int node;
556a169d 2081 for_each_online_node(node) {
6a67368c 2082 cachep->node[node] =
6744f087 2083 kmalloc_node(sizeof(struct kmem_cache_node),
eb91f1d0 2084 gfp, node);
6a67368c 2085 BUG_ON(!cachep->node[node]);
ce8eb6c4 2086 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2087 }
2088 }
2089 }
6a67368c 2090 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
2091 jiffies + REAPTIMEOUT_NODE +
2092 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
2093
2094 cpu_cache_get(cachep)->avail = 0;
2095 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2096 cpu_cache_get(cachep)->batchcount = 1;
2097 cpu_cache_get(cachep)->touched = 0;
2098 cachep->batchcount = 1;
2099 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2100 return 0;
f30cf7d1
PE
2101}
2102
1da177e4 2103/**
039363f3 2104 * __kmem_cache_create - Create a cache.
a755b76a 2105 * @cachep: cache management descriptor
1da177e4 2106 * @flags: SLAB flags
1da177e4
LT
2107 *
2108 * Returns a ptr to the cache on success, NULL on failure.
2109 * Cannot be called within a int, but can be interrupted.
20c2df83 2110 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2111 *
1da177e4
LT
2112 * The flags are
2113 *
2114 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2115 * to catch references to uninitialised memory.
2116 *
2117 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2118 * for buffer overruns.
2119 *
1da177e4
LT
2120 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2121 * cacheline. This can be beneficial if you're counting cycles as closely
2122 * as davem.
2123 */
278b1bb1 2124int
8a13a4cc 2125__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2126{
8456a648 2127 size_t left_over, freelist_size, ralign;
83b519e8 2128 gfp_t gfp;
278b1bb1 2129 int err;
8a13a4cc 2130 size_t size = cachep->size;
1da177e4 2131
1da177e4 2132#if DEBUG
1da177e4
LT
2133#if FORCED_DEBUG
2134 /*
2135 * Enable redzoning and last user accounting, except for caches with
2136 * large objects, if the increased size would increase the object size
2137 * above the next power of two: caches with object sizes just above a
2138 * power of two have a significant amount of internal fragmentation.
2139 */
87a927c7
DW
2140 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2141 2 * sizeof(unsigned long long)))
b28a02de 2142 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2143 if (!(flags & SLAB_DESTROY_BY_RCU))
2144 flags |= SLAB_POISON;
2145#endif
2146 if (flags & SLAB_DESTROY_BY_RCU)
2147 BUG_ON(flags & SLAB_POISON);
2148#endif
1da177e4 2149
a737b3e2
AM
2150 /*
2151 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2152 * unaligned accesses for some archs when redzoning is used, and makes
2153 * sure any on-slab bufctl's are also correctly aligned.
2154 */
b28a02de
PE
2155 if (size & (BYTES_PER_WORD - 1)) {
2156 size += (BYTES_PER_WORD - 1);
2157 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2158 }
2159
ca5f9703 2160 /*
87a927c7
DW
2161 * Redzoning and user store require word alignment or possibly larger.
2162 * Note this will be overridden by architecture or caller mandated
2163 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2164 */
87a927c7
DW
2165 if (flags & SLAB_STORE_USER)
2166 ralign = BYTES_PER_WORD;
2167
2168 if (flags & SLAB_RED_ZONE) {
2169 ralign = REDZONE_ALIGN;
2170 /* If redzoning, ensure that the second redzone is suitably
2171 * aligned, by adjusting the object size accordingly. */
2172 size += REDZONE_ALIGN - 1;
2173 size &= ~(REDZONE_ALIGN - 1);
2174 }
ca5f9703 2175
a44b56d3 2176 /* 3) caller mandated alignment */
8a13a4cc
CL
2177 if (ralign < cachep->align) {
2178 ralign = cachep->align;
1da177e4 2179 }
3ff84a7f
PE
2180 /* disable debug if necessary */
2181 if (ralign > __alignof__(unsigned long long))
a44b56d3 2182 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2183 /*
ca5f9703 2184 * 4) Store it.
1da177e4 2185 */
8a13a4cc 2186 cachep->align = ralign;
1da177e4 2187
83b519e8
PE
2188 if (slab_is_available())
2189 gfp = GFP_KERNEL;
2190 else
2191 gfp = GFP_NOWAIT;
2192
6a67368c 2193 setup_node_pointer(cachep);
1da177e4 2194#if DEBUG
1da177e4 2195
ca5f9703
PE
2196 /*
2197 * Both debugging options require word-alignment which is calculated
2198 * into align above.
2199 */
1da177e4 2200 if (flags & SLAB_RED_ZONE) {
1da177e4 2201 /* add space for red zone words */
3ff84a7f
PE
2202 cachep->obj_offset += sizeof(unsigned long long);
2203 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2204 }
2205 if (flags & SLAB_STORE_USER) {
ca5f9703 2206 /* user store requires one word storage behind the end of
87a927c7
DW
2207 * the real object. But if the second red zone needs to be
2208 * aligned to 64 bits, we must allow that much space.
1da177e4 2209 */
87a927c7
DW
2210 if (flags & SLAB_RED_ZONE)
2211 size += REDZONE_ALIGN;
2212 else
2213 size += BYTES_PER_WORD;
1da177e4
LT
2214 }
2215#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
ce8eb6c4 2216 if (size >= kmalloc_size(INDEX_NODE + 1)
608da7e3
TH
2217 && cachep->object_size > cache_line_size()
2218 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2219 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2220 size = PAGE_SIZE;
2221 }
2222#endif
2223#endif
2224
e0a42726
IM
2225 /*
2226 * Determine if the slab management is 'on' or 'off' slab.
2227 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2228 * it too early on. Always use on-slab management when
2229 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2230 */
8fc9cf42 2231 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
e7cb55b9 2232 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2233 /*
2234 * Size is large, assume best to place the slab management obj
2235 * off-slab (should allow better packing of objs).
2236 */
2237 flags |= CFLGS_OFF_SLAB;
2238
8a13a4cc 2239 size = ALIGN(size, cachep->align);
f315e3fa
JK
2240 /*
2241 * We should restrict the number of objects in a slab to implement
2242 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2243 */
2244 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2245 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
1da177e4 2246
8a13a4cc 2247 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2248
8a13a4cc 2249 if (!cachep->num)
278b1bb1 2250 return -E2BIG;
1da177e4 2251
03787301 2252 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
1da177e4
LT
2253
2254 /*
2255 * If the slab has been placed off-slab, and we have enough space then
2256 * move it on-slab. This is at the expense of any extra colouring.
2257 */
8456a648 2258 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
1da177e4 2259 flags &= ~CFLGS_OFF_SLAB;
8456a648 2260 left_over -= freelist_size;
1da177e4
LT
2261 }
2262
2263 if (flags & CFLGS_OFF_SLAB) {
2264 /* really off slab. No need for manual alignment */
03787301 2265 freelist_size = calculate_freelist_size(cachep->num, 0);
67461365
RL
2266
2267#ifdef CONFIG_PAGE_POISONING
2268 /* If we're going to use the generic kernel_map_pages()
2269 * poisoning, then it's going to smash the contents of
2270 * the redzone and userword anyhow, so switch them off.
2271 */
2272 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2273 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2274#endif
1da177e4
LT
2275 }
2276
2277 cachep->colour_off = cache_line_size();
2278 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2279 if (cachep->colour_off < cachep->align)
2280 cachep->colour_off = cachep->align;
b28a02de 2281 cachep->colour = left_over / cachep->colour_off;
8456a648 2282 cachep->freelist_size = freelist_size;
1da177e4 2283 cachep->flags = flags;
a57a4988 2284 cachep->allocflags = __GFP_COMP;
4b51d669 2285 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2286 cachep->allocflags |= GFP_DMA;
3b0efdfa 2287 cachep->size = size;
6a2d7a95 2288 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2289
e5ac9c5a 2290 if (flags & CFLGS_OFF_SLAB) {
8456a648 2291 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
e5ac9c5a 2292 /*
5f0985bb 2293 * This is a possibility for one of the kmalloc_{dma,}_caches.
e5ac9c5a 2294 * But since we go off slab only for object size greater than
5f0985bb
JZ
2295 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2296 * in ascending order,this should not happen at all.
e5ac9c5a
RT
2297 * But leave a BUG_ON for some lucky dude.
2298 */
8456a648 2299 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
e5ac9c5a 2300 }
1da177e4 2301
278b1bb1
CL
2302 err = setup_cpu_cache(cachep, gfp);
2303 if (err) {
12c3667f 2304 __kmem_cache_shutdown(cachep);
278b1bb1 2305 return err;
2ed3a4ef 2306 }
1da177e4 2307
278b1bb1 2308 return 0;
1da177e4 2309}
1da177e4
LT
2310
2311#if DEBUG
2312static void check_irq_off(void)
2313{
2314 BUG_ON(!irqs_disabled());
2315}
2316
2317static void check_irq_on(void)
2318{
2319 BUG_ON(irqs_disabled());
2320}
2321
343e0d7a 2322static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2323{
2324#ifdef CONFIG_SMP
2325 check_irq_off();
18bf8541 2326 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2327#endif
2328}
e498be7d 2329
343e0d7a 2330static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2331{
2332#ifdef CONFIG_SMP
2333 check_irq_off();
18bf8541 2334 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2335#endif
2336}
2337
1da177e4
LT
2338#else
2339#define check_irq_off() do { } while(0)
2340#define check_irq_on() do { } while(0)
2341#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2342#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2343#endif
2344
ce8eb6c4 2345static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2346 struct array_cache *ac,
2347 int force, int node);
2348
1da177e4
LT
2349static void do_drain(void *arg)
2350{
a737b3e2 2351 struct kmem_cache *cachep = arg;
1da177e4 2352 struct array_cache *ac;
7d6e6d09 2353 int node = numa_mem_id();
18bf8541 2354 struct kmem_cache_node *n;
97654dfa 2355 LIST_HEAD(list);
1da177e4
LT
2356
2357 check_irq_off();
9a2dba4b 2358 ac = cpu_cache_get(cachep);
18bf8541
CL
2359 n = get_node(cachep, node);
2360 spin_lock(&n->list_lock);
97654dfa 2361 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2362 spin_unlock(&n->list_lock);
97654dfa 2363 slabs_destroy(cachep, &list);
1da177e4
LT
2364 ac->avail = 0;
2365}
2366
343e0d7a 2367static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2368{
ce8eb6c4 2369 struct kmem_cache_node *n;
e498be7d
CL
2370 int node;
2371
15c8b6c1 2372 on_each_cpu(do_drain, cachep, 1);
1da177e4 2373 check_irq_on();
18bf8541
CL
2374 for_each_kmem_cache_node(cachep, node, n)
2375 if (n->alien)
ce8eb6c4 2376 drain_alien_cache(cachep, n->alien);
a4523a8b 2377
18bf8541
CL
2378 for_each_kmem_cache_node(cachep, node, n)
2379 drain_array(cachep, n, n->shared, 1, node);
1da177e4
LT
2380}
2381
ed11d9eb
CL
2382/*
2383 * Remove slabs from the list of free slabs.
2384 * Specify the number of slabs to drain in tofree.
2385 *
2386 * Returns the actual number of slabs released.
2387 */
2388static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2389 struct kmem_cache_node *n, int tofree)
1da177e4 2390{
ed11d9eb
CL
2391 struct list_head *p;
2392 int nr_freed;
8456a648 2393 struct page *page;
1da177e4 2394
ed11d9eb 2395 nr_freed = 0;
ce8eb6c4 2396 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2397
ce8eb6c4
CL
2398 spin_lock_irq(&n->list_lock);
2399 p = n->slabs_free.prev;
2400 if (p == &n->slabs_free) {
2401 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2402 goto out;
2403 }
1da177e4 2404
8456a648 2405 page = list_entry(p, struct page, lru);
1da177e4 2406#if DEBUG
8456a648 2407 BUG_ON(page->active);
1da177e4 2408#endif
8456a648 2409 list_del(&page->lru);
ed11d9eb
CL
2410 /*
2411 * Safe to drop the lock. The slab is no longer linked
2412 * to the cache.
2413 */
ce8eb6c4
CL
2414 n->free_objects -= cache->num;
2415 spin_unlock_irq(&n->list_lock);
8456a648 2416 slab_destroy(cache, page);
ed11d9eb 2417 nr_freed++;
1da177e4 2418 }
ed11d9eb
CL
2419out:
2420 return nr_freed;
1da177e4
LT
2421}
2422
03afc0e2 2423int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2424{
18bf8541
CL
2425 int ret = 0;
2426 int node;
ce8eb6c4 2427 struct kmem_cache_node *n;
e498be7d
CL
2428
2429 drain_cpu_caches(cachep);
2430
2431 check_irq_on();
18bf8541 2432 for_each_kmem_cache_node(cachep, node, n) {
0fa8103b 2433 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2434
ce8eb6c4
CL
2435 ret += !list_empty(&n->slabs_full) ||
2436 !list_empty(&n->slabs_partial);
e498be7d
CL
2437 }
2438 return (ret ? 1 : 0);
2439}
2440
945cf2b6 2441int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2442{
12c3667f 2443 int i;
ce8eb6c4 2444 struct kmem_cache_node *n;
03afc0e2 2445 int rc = __kmem_cache_shrink(cachep);
1da177e4 2446
12c3667f
CL
2447 if (rc)
2448 return rc;
1da177e4 2449
12c3667f
CL
2450 for_each_online_cpu(i)
2451 kfree(cachep->array[i]);
1da177e4 2452
ce8eb6c4 2453 /* NUMA: free the node structures */
18bf8541
CL
2454 for_each_kmem_cache_node(cachep, i, n) {
2455 kfree(n->shared);
2456 free_alien_cache(n->alien);
2457 kfree(n);
2458 cachep->node[i] = NULL;
12c3667f
CL
2459 }
2460 return 0;
1da177e4 2461}
1da177e4 2462
e5ac9c5a
RT
2463/*
2464 * Get the memory for a slab management obj.
5f0985bb
JZ
2465 *
2466 * For a slab cache when the slab descriptor is off-slab, the
2467 * slab descriptor can't come from the same cache which is being created,
2468 * Because if it is the case, that means we defer the creation of
2469 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2470 * And we eventually call down to __kmem_cache_create(), which
2471 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2472 * This is a "chicken-and-egg" problem.
2473 *
2474 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2475 * which are all initialized during kmem_cache_init().
e5ac9c5a 2476 */
7e007355 2477static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2478 struct page *page, int colour_off,
2479 gfp_t local_flags, int nodeid)
1da177e4 2480{
7e007355 2481 void *freelist;
0c3aa83e 2482 void *addr = page_address(page);
b28a02de 2483
1da177e4
LT
2484 if (OFF_SLAB(cachep)) {
2485 /* Slab management obj is off-slab. */
8456a648 2486 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2487 local_flags, nodeid);
8456a648 2488 if (!freelist)
1da177e4
LT
2489 return NULL;
2490 } else {
8456a648
JK
2491 freelist = addr + colour_off;
2492 colour_off += cachep->freelist_size;
1da177e4 2493 }
8456a648
JK
2494 page->active = 0;
2495 page->s_mem = addr + colour_off;
2496 return freelist;
1da177e4
LT
2497}
2498
7cc68973 2499static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2500{
a41adfaa 2501 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2502}
2503
2504static inline void set_free_obj(struct page *page,
7cc68973 2505 unsigned int idx, freelist_idx_t val)
e5c58dfd 2506{
a41adfaa 2507 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2508}
2509
343e0d7a 2510static void cache_init_objs(struct kmem_cache *cachep,
8456a648 2511 struct page *page)
1da177e4
LT
2512{
2513 int i;
2514
2515 for (i = 0; i < cachep->num; i++) {
8456a648 2516 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
2517#if DEBUG
2518 /* need to poison the objs? */
2519 if (cachep->flags & SLAB_POISON)
2520 poison_obj(cachep, objp, POISON_FREE);
2521 if (cachep->flags & SLAB_STORE_USER)
2522 *dbg_userword(cachep, objp) = NULL;
2523
2524 if (cachep->flags & SLAB_RED_ZONE) {
2525 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2526 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2527 }
2528 /*
a737b3e2
AM
2529 * Constructors are not allowed to allocate memory from the same
2530 * cache which they are a constructor for. Otherwise, deadlock.
2531 * They must also be threaded.
1da177e4
LT
2532 */
2533 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2534 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2535
2536 if (cachep->flags & SLAB_RED_ZONE) {
2537 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2538 slab_error(cachep, "constructor overwrote the"
b28a02de 2539 " end of an object");
1da177e4
LT
2540 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2541 slab_error(cachep, "constructor overwrote the"
b28a02de 2542 " start of an object");
1da177e4 2543 }
3b0efdfa 2544 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2545 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2546 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2547 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2548#else
2549 if (cachep->ctor)
51cc5068 2550 cachep->ctor(objp);
1da177e4 2551#endif
03787301 2552 set_obj_status(page, i, OBJECT_FREE);
e5c58dfd 2553 set_free_obj(page, i, i);
1da177e4 2554 }
1da177e4
LT
2555}
2556
343e0d7a 2557static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2558{
4b51d669
CL
2559 if (CONFIG_ZONE_DMA_FLAG) {
2560 if (flags & GFP_DMA)
a618e89f 2561 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2562 else
a618e89f 2563 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2564 }
1da177e4
LT
2565}
2566
8456a648 2567static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2568 int nodeid)
78d382d7 2569{
b1cb0982 2570 void *objp;
78d382d7 2571
e5c58dfd 2572 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2573 page->active++;
78d382d7 2574#if DEBUG
1ea991b0 2575 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2576#endif
78d382d7
MD
2577
2578 return objp;
2579}
2580
8456a648 2581static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2582 void *objp, int nodeid)
78d382d7 2583{
8456a648 2584 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2585#if DEBUG
16025177 2586 unsigned int i;
b1cb0982 2587
78d382d7 2588 /* Verify that the slab belongs to the intended node */
1ea991b0 2589 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2590
b1cb0982 2591 /* Verify double free bug */
8456a648 2592 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2593 if (get_free_obj(page, i) == objnr) {
b1cb0982
JK
2594 printk(KERN_ERR "slab: double free detected in cache "
2595 "'%s', objp %p\n", cachep->name, objp);
2596 BUG();
2597 }
78d382d7
MD
2598 }
2599#endif
8456a648 2600 page->active--;
e5c58dfd 2601 set_free_obj(page, page->active, objnr);
78d382d7
MD
2602}
2603
4776874f
PE
2604/*
2605 * Map pages beginning at addr to the given cache and slab. This is required
2606 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2607 * virtual address for kfree, ksize, and slab debugging.
4776874f 2608 */
8456a648 2609static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2610 void *freelist)
1da177e4 2611{
a57a4988 2612 page->slab_cache = cache;
8456a648 2613 page->freelist = freelist;
1da177e4
LT
2614}
2615
2616/*
2617 * Grow (by 1) the number of slabs within a cache. This is called by
2618 * kmem_cache_alloc() when there are no active objs left in a cache.
2619 */
3c517a61 2620static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2621 gfp_t flags, int nodeid, struct page *page)
1da177e4 2622{
7e007355 2623 void *freelist;
b28a02de
PE
2624 size_t offset;
2625 gfp_t local_flags;
ce8eb6c4 2626 struct kmem_cache_node *n;
1da177e4 2627
a737b3e2
AM
2628 /*
2629 * Be lazy and only check for valid flags here, keeping it out of the
2630 * critical path in kmem_cache_alloc().
1da177e4 2631 */
6cb06229
CL
2632 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2633 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2634
ce8eb6c4 2635 /* Take the node list lock to change the colour_next on this node */
1da177e4 2636 check_irq_off();
18bf8541 2637 n = get_node(cachep, nodeid);
ce8eb6c4 2638 spin_lock(&n->list_lock);
1da177e4
LT
2639
2640 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2641 offset = n->colour_next;
2642 n->colour_next++;
2643 if (n->colour_next >= cachep->colour)
2644 n->colour_next = 0;
2645 spin_unlock(&n->list_lock);
1da177e4 2646
2e1217cf 2647 offset *= cachep->colour_off;
1da177e4
LT
2648
2649 if (local_flags & __GFP_WAIT)
2650 local_irq_enable();
2651
2652 /*
2653 * The test for missing atomic flag is performed here, rather than
2654 * the more obvious place, simply to reduce the critical path length
2655 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2656 * will eventually be caught here (where it matters).
2657 */
2658 kmem_flagcheck(cachep, flags);
2659
a737b3e2
AM
2660 /*
2661 * Get mem for the objs. Attempt to allocate a physical page from
2662 * 'nodeid'.
e498be7d 2663 */
0c3aa83e
JK
2664 if (!page)
2665 page = kmem_getpages(cachep, local_flags, nodeid);
2666 if (!page)
1da177e4
LT
2667 goto failed;
2668
2669 /* Get slab management. */
8456a648 2670 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2671 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
8456a648 2672 if (!freelist)
1da177e4
LT
2673 goto opps1;
2674
8456a648 2675 slab_map_pages(cachep, page, freelist);
1da177e4 2676
8456a648 2677 cache_init_objs(cachep, page);
1da177e4
LT
2678
2679 if (local_flags & __GFP_WAIT)
2680 local_irq_disable();
2681 check_irq_off();
ce8eb6c4 2682 spin_lock(&n->list_lock);
1da177e4
LT
2683
2684 /* Make slab active. */
8456a648 2685 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2686 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2687 n->free_objects += cachep->num;
2688 spin_unlock(&n->list_lock);
1da177e4 2689 return 1;
a737b3e2 2690opps1:
0c3aa83e 2691 kmem_freepages(cachep, page);
a737b3e2 2692failed:
1da177e4
LT
2693 if (local_flags & __GFP_WAIT)
2694 local_irq_disable();
2695 return 0;
2696}
2697
2698#if DEBUG
2699
2700/*
2701 * Perform extra freeing checks:
2702 * - detect bad pointers.
2703 * - POISON/RED_ZONE checking
1da177e4
LT
2704 */
2705static void kfree_debugcheck(const void *objp)
2706{
1da177e4
LT
2707 if (!virt_addr_valid(objp)) {
2708 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2709 (unsigned long)objp);
2710 BUG();
1da177e4 2711 }
1da177e4
LT
2712}
2713
58ce1fd5
PE
2714static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2715{
b46b8f19 2716 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2717
2718 redzone1 = *dbg_redzone1(cache, obj);
2719 redzone2 = *dbg_redzone2(cache, obj);
2720
2721 /*
2722 * Redzone is ok.
2723 */
2724 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2725 return;
2726
2727 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2728 slab_error(cache, "double free detected");
2729 else
2730 slab_error(cache, "memory outside object was overwritten");
2731
b46b8f19 2732 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2733 obj, redzone1, redzone2);
2734}
2735
343e0d7a 2736static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2737 unsigned long caller)
1da177e4 2738{
1da177e4 2739 unsigned int objnr;
8456a648 2740 struct page *page;
1da177e4 2741
80cbd911
MW
2742 BUG_ON(virt_to_cache(objp) != cachep);
2743
3dafccf2 2744 objp -= obj_offset(cachep);
1da177e4 2745 kfree_debugcheck(objp);
b49af68f 2746 page = virt_to_head_page(objp);
1da177e4 2747
1da177e4 2748 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2749 verify_redzone_free(cachep, objp);
1da177e4
LT
2750 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2751 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2752 }
2753 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2754 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2755
8456a648 2756 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2757
2758 BUG_ON(objnr >= cachep->num);
8456a648 2759 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2760
03787301 2761 set_obj_status(page, objnr, OBJECT_FREE);
1da177e4
LT
2762 if (cachep->flags & SLAB_POISON) {
2763#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2764 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2765 store_stackinfo(cachep, objp, caller);
b28a02de 2766 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2767 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2768 } else {
2769 poison_obj(cachep, objp, POISON_FREE);
2770 }
2771#else
2772 poison_obj(cachep, objp, POISON_FREE);
2773#endif
2774 }
2775 return objp;
2776}
2777
1da177e4
LT
2778#else
2779#define kfree_debugcheck(x) do { } while(0)
2780#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2781#endif
2782
072bb0aa
MG
2783static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2784 bool force_refill)
1da177e4
LT
2785{
2786 int batchcount;
ce8eb6c4 2787 struct kmem_cache_node *n;
1da177e4 2788 struct array_cache *ac;
1ca4cb24
PE
2789 int node;
2790
1da177e4 2791 check_irq_off();
7d6e6d09 2792 node = numa_mem_id();
072bb0aa
MG
2793 if (unlikely(force_refill))
2794 goto force_grow;
2795retry:
9a2dba4b 2796 ac = cpu_cache_get(cachep);
1da177e4
LT
2797 batchcount = ac->batchcount;
2798 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2799 /*
2800 * If there was little recent activity on this cache, then
2801 * perform only a partial refill. Otherwise we could generate
2802 * refill bouncing.
1da177e4
LT
2803 */
2804 batchcount = BATCHREFILL_LIMIT;
2805 }
18bf8541 2806 n = get_node(cachep, node);
e498be7d 2807
ce8eb6c4
CL
2808 BUG_ON(ac->avail > 0 || !n);
2809 spin_lock(&n->list_lock);
1da177e4 2810
3ded175a 2811 /* See if we can refill from the shared array */
ce8eb6c4
CL
2812 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2813 n->shared->touched = 1;
3ded175a 2814 goto alloc_done;
44b57f1c 2815 }
3ded175a 2816
1da177e4
LT
2817 while (batchcount > 0) {
2818 struct list_head *entry;
8456a648 2819 struct page *page;
1da177e4 2820 /* Get slab alloc is to come from. */
ce8eb6c4
CL
2821 entry = n->slabs_partial.next;
2822 if (entry == &n->slabs_partial) {
2823 n->free_touched = 1;
2824 entry = n->slabs_free.next;
2825 if (entry == &n->slabs_free)
1da177e4
LT
2826 goto must_grow;
2827 }
2828
8456a648 2829 page = list_entry(entry, struct page, lru);
1da177e4 2830 check_spinlock_acquired(cachep);
714b8171
PE
2831
2832 /*
2833 * The slab was either on partial or free list so
2834 * there must be at least one object available for
2835 * allocation.
2836 */
8456a648 2837 BUG_ON(page->active >= cachep->num);
714b8171 2838
8456a648 2839 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2840 STATS_INC_ALLOCED(cachep);
2841 STATS_INC_ACTIVE(cachep);
2842 STATS_SET_HIGH(cachep);
2843
8456a648 2844 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
072bb0aa 2845 node));
1da177e4 2846 }
1da177e4
LT
2847
2848 /* move slabp to correct slabp list: */
8456a648
JK
2849 list_del(&page->lru);
2850 if (page->active == cachep->num)
34bf6ef9 2851 list_add(&page->lru, &n->slabs_full);
1da177e4 2852 else
34bf6ef9 2853 list_add(&page->lru, &n->slabs_partial);
1da177e4
LT
2854 }
2855
a737b3e2 2856must_grow:
ce8eb6c4 2857 n->free_objects -= ac->avail;
a737b3e2 2858alloc_done:
ce8eb6c4 2859 spin_unlock(&n->list_lock);
1da177e4
LT
2860
2861 if (unlikely(!ac->avail)) {
2862 int x;
072bb0aa 2863force_grow:
3c517a61 2864 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 2865
a737b3e2 2866 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2867 ac = cpu_cache_get(cachep);
51cd8e6f 2868 node = numa_mem_id();
072bb0aa
MG
2869
2870 /* no objects in sight? abort */
2871 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
2872 return NULL;
2873
a737b3e2 2874 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2875 goto retry;
2876 }
2877 ac->touched = 1;
072bb0aa
MG
2878
2879 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
2880}
2881
a737b3e2
AM
2882static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2883 gfp_t flags)
1da177e4
LT
2884{
2885 might_sleep_if(flags & __GFP_WAIT);
2886#if DEBUG
2887 kmem_flagcheck(cachep, flags);
2888#endif
2889}
2890
2891#if DEBUG
a737b3e2 2892static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2893 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2894{
03787301
JK
2895 struct page *page;
2896
b28a02de 2897 if (!objp)
1da177e4 2898 return objp;
b28a02de 2899 if (cachep->flags & SLAB_POISON) {
1da177e4 2900#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2901 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2902 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2903 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2904 else
2905 check_poison_obj(cachep, objp);
2906#else
2907 check_poison_obj(cachep, objp);
2908#endif
2909 poison_obj(cachep, objp, POISON_INUSE);
2910 }
2911 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2912 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2913
2914 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2915 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2916 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2917 slab_error(cachep, "double free, or memory outside"
2918 " object was overwritten");
b28a02de 2919 printk(KERN_ERR
b46b8f19 2920 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
2921 objp, *dbg_redzone1(cachep, objp),
2922 *dbg_redzone2(cachep, objp));
1da177e4
LT
2923 }
2924 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2925 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2926 }
03787301
JK
2927
2928 page = virt_to_head_page(objp);
2929 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
3dafccf2 2930 objp += obj_offset(cachep);
4f104934 2931 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2932 cachep->ctor(objp);
7ea466f2
TH
2933 if (ARCH_SLAB_MINALIGN &&
2934 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 2935 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2936 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2937 }
1da177e4
LT
2938 return objp;
2939}
2940#else
2941#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2942#endif
2943
773ff60e 2944static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 2945{
8a9c61d4 2946 if (unlikely(cachep == kmem_cache))
773ff60e 2947 return false;
8a8b6502 2948
8c138bc0 2949 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
2950}
2951
343e0d7a 2952static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2953{
b28a02de 2954 void *objp;
1da177e4 2955 struct array_cache *ac;
072bb0aa 2956 bool force_refill = false;
1da177e4 2957
5c382300 2958 check_irq_off();
8a8b6502 2959
9a2dba4b 2960 ac = cpu_cache_get(cachep);
1da177e4 2961 if (likely(ac->avail)) {
1da177e4 2962 ac->touched = 1;
072bb0aa
MG
2963 objp = ac_get_obj(cachep, ac, flags, false);
2964
ddbf2e83 2965 /*
072bb0aa
MG
2966 * Allow for the possibility all avail objects are not allowed
2967 * by the current flags
ddbf2e83 2968 */
072bb0aa
MG
2969 if (objp) {
2970 STATS_INC_ALLOCHIT(cachep);
2971 goto out;
2972 }
2973 force_refill = true;
1da177e4 2974 }
072bb0aa
MG
2975
2976 STATS_INC_ALLOCMISS(cachep);
2977 objp = cache_alloc_refill(cachep, flags, force_refill);
2978 /*
2979 * the 'ac' may be updated by cache_alloc_refill(),
2980 * and kmemleak_erase() requires its correct value.
2981 */
2982 ac = cpu_cache_get(cachep);
2983
2984out:
d5cff635
CM
2985 /*
2986 * To avoid a false negative, if an object that is in one of the
2987 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2988 * treat the array pointers as a reference to the object.
2989 */
f3d8b53a
O
2990 if (objp)
2991 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
2992 return objp;
2993}
2994
e498be7d 2995#ifdef CONFIG_NUMA
c61afb18 2996/*
f0432d15 2997 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
2998 *
2999 * If we are in_interrupt, then process context, including cpusets and
3000 * mempolicy, may not apply and should not be used for allocation policy.
3001 */
3002static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3003{
3004 int nid_alloc, nid_here;
3005
765c4507 3006 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3007 return NULL;
7d6e6d09 3008 nid_alloc = nid_here = numa_mem_id();
c61afb18 3009 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3010 nid_alloc = cpuset_slab_spread_node();
c61afb18 3011 else if (current->mempolicy)
2a389610 3012 nid_alloc = mempolicy_slab_node();
c61afb18 3013 if (nid_alloc != nid_here)
8b98c169 3014 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3015 return NULL;
3016}
3017
765c4507
CL
3018/*
3019 * Fallback function if there was no memory available and no objects on a
3c517a61 3020 * certain node and fall back is permitted. First we scan all the
6a67368c 3021 * available node for available objects. If that fails then we
3c517a61
CL
3022 * perform an allocation without specifying a node. This allows the page
3023 * allocator to do its reclaim / fallback magic. We then insert the
3024 * slab into the proper nodelist and then allocate from it.
765c4507 3025 */
8c8cc2c1 3026static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3027{
8c8cc2c1
PE
3028 struct zonelist *zonelist;
3029 gfp_t local_flags;
dd1a239f 3030 struct zoneref *z;
54a6eb5c
MG
3031 struct zone *zone;
3032 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3033 void *obj = NULL;
3c517a61 3034 int nid;
cc9a6c87 3035 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3036
3037 if (flags & __GFP_THISNODE)
3038 return NULL;
3039
6cb06229 3040 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3041
cc9a6c87 3042retry_cpuset:
d26914d1 3043 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3044 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3045
3c517a61
CL
3046retry:
3047 /*
3048 * Look through allowed nodes for objects available
3049 * from existing per node queues.
3050 */
54a6eb5c
MG
3051 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3052 nid = zone_to_nid(zone);
aedb0eb1 3053
54a6eb5c 3054 if (cpuset_zone_allowed_hardwall(zone, flags) &&
18bf8541
CL
3055 get_node(cache, nid) &&
3056 get_node(cache, nid)->free_objects) {
3c517a61
CL
3057 obj = ____cache_alloc_node(cache,
3058 flags | GFP_THISNODE, nid);
481c5346
CL
3059 if (obj)
3060 break;
3061 }
3c517a61
CL
3062 }
3063
cfce6604 3064 if (!obj) {
3c517a61
CL
3065 /*
3066 * This allocation will be performed within the constraints
3067 * of the current cpuset / memory policy requirements.
3068 * We may trigger various forms of reclaim on the allowed
3069 * set and go into memory reserves if necessary.
3070 */
0c3aa83e
JK
3071 struct page *page;
3072
dd47ea75
CL
3073 if (local_flags & __GFP_WAIT)
3074 local_irq_enable();
3075 kmem_flagcheck(cache, flags);
0c3aa83e 3076 page = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3077 if (local_flags & __GFP_WAIT)
3078 local_irq_disable();
0c3aa83e 3079 if (page) {
3c517a61
CL
3080 /*
3081 * Insert into the appropriate per node queues
3082 */
0c3aa83e
JK
3083 nid = page_to_nid(page);
3084 if (cache_grow(cache, flags, nid, page)) {
3c517a61
CL
3085 obj = ____cache_alloc_node(cache,
3086 flags | GFP_THISNODE, nid);
3087 if (!obj)
3088 /*
3089 * Another processor may allocate the
3090 * objects in the slab since we are
3091 * not holding any locks.
3092 */
3093 goto retry;
3094 } else {
b6a60451 3095 /* cache_grow already freed obj */
3c517a61
CL
3096 obj = NULL;
3097 }
3098 }
aedb0eb1 3099 }
cc9a6c87 3100
d26914d1 3101 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3102 goto retry_cpuset;
765c4507
CL
3103 return obj;
3104}
3105
e498be7d
CL
3106/*
3107 * A interface to enable slab creation on nodeid
1da177e4 3108 */
8b98c169 3109static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3110 int nodeid)
e498be7d
CL
3111{
3112 struct list_head *entry;
8456a648 3113 struct page *page;
ce8eb6c4 3114 struct kmem_cache_node *n;
b28a02de 3115 void *obj;
b28a02de
PE
3116 int x;
3117
14e50c6a 3118 VM_BUG_ON(nodeid > num_online_nodes());
18bf8541 3119 n = get_node(cachep, nodeid);
ce8eb6c4 3120 BUG_ON(!n);
b28a02de 3121
a737b3e2 3122retry:
ca3b9b91 3123 check_irq_off();
ce8eb6c4
CL
3124 spin_lock(&n->list_lock);
3125 entry = n->slabs_partial.next;
3126 if (entry == &n->slabs_partial) {
3127 n->free_touched = 1;
3128 entry = n->slabs_free.next;
3129 if (entry == &n->slabs_free)
b28a02de
PE
3130 goto must_grow;
3131 }
3132
8456a648 3133 page = list_entry(entry, struct page, lru);
b28a02de 3134 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3135
3136 STATS_INC_NODEALLOCS(cachep);
3137 STATS_INC_ACTIVE(cachep);
3138 STATS_SET_HIGH(cachep);
3139
8456a648 3140 BUG_ON(page->active == cachep->num);
b28a02de 3141
8456a648 3142 obj = slab_get_obj(cachep, page, nodeid);
ce8eb6c4 3143 n->free_objects--;
b28a02de 3144 /* move slabp to correct slabp list: */
8456a648 3145 list_del(&page->lru);
b28a02de 3146
8456a648
JK
3147 if (page->active == cachep->num)
3148 list_add(&page->lru, &n->slabs_full);
a737b3e2 3149 else
8456a648 3150 list_add(&page->lru, &n->slabs_partial);
e498be7d 3151
ce8eb6c4 3152 spin_unlock(&n->list_lock);
b28a02de 3153 goto done;
e498be7d 3154
a737b3e2 3155must_grow:
ce8eb6c4 3156 spin_unlock(&n->list_lock);
3c517a61 3157 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3158 if (x)
3159 goto retry;
1da177e4 3160
8c8cc2c1 3161 return fallback_alloc(cachep, flags);
e498be7d 3162
a737b3e2 3163done:
b28a02de 3164 return obj;
e498be7d 3165}
8c8cc2c1 3166
8c8cc2c1 3167static __always_inline void *
48356303 3168slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3169 unsigned long caller)
8c8cc2c1
PE
3170{
3171 unsigned long save_flags;
3172 void *ptr;
7d6e6d09 3173 int slab_node = numa_mem_id();
8c8cc2c1 3174
dcce284a 3175 flags &= gfp_allowed_mask;
7e85ee0c 3176
cf40bd16
NP
3177 lockdep_trace_alloc(flags);
3178
773ff60e 3179 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3180 return NULL;
3181
d79923fa
GC
3182 cachep = memcg_kmem_get_cache(cachep, flags);
3183
8c8cc2c1
PE
3184 cache_alloc_debugcheck_before(cachep, flags);
3185 local_irq_save(save_flags);
3186
eacbbae3 3187 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3188 nodeid = slab_node;
8c8cc2c1 3189
18bf8541 3190 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3191 /* Node not bootstrapped yet */
3192 ptr = fallback_alloc(cachep, flags);
3193 goto out;
3194 }
3195
7d6e6d09 3196 if (nodeid == slab_node) {
8c8cc2c1
PE
3197 /*
3198 * Use the locally cached objects if possible.
3199 * However ____cache_alloc does not allow fallback
3200 * to other nodes. It may fail while we still have
3201 * objects on other nodes available.
3202 */
3203 ptr = ____cache_alloc(cachep, flags);
3204 if (ptr)
3205 goto out;
3206 }
3207 /* ___cache_alloc_node can fall back to other nodes */
3208 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3209 out:
3210 local_irq_restore(save_flags);
3211 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3212 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3213 flags);
8c8cc2c1 3214
5087c822 3215 if (likely(ptr)) {
8c138bc0 3216 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
5087c822
JP
3217 if (unlikely(flags & __GFP_ZERO))
3218 memset(ptr, 0, cachep->object_size);
3219 }
d07dbea4 3220
8c8cc2c1
PE
3221 return ptr;
3222}
3223
3224static __always_inline void *
3225__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3226{
3227 void *objp;
3228
f0432d15 3229 if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
8c8cc2c1
PE
3230 objp = alternate_node_alloc(cache, flags);
3231 if (objp)
3232 goto out;
3233 }
3234 objp = ____cache_alloc(cache, flags);
3235
3236 /*
3237 * We may just have run out of memory on the local node.
3238 * ____cache_alloc_node() knows how to locate memory on other nodes
3239 */
7d6e6d09
LS
3240 if (!objp)
3241 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3242
3243 out:
3244 return objp;
3245}
3246#else
3247
3248static __always_inline void *
3249__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3250{
3251 return ____cache_alloc(cachep, flags);
3252}
3253
3254#endif /* CONFIG_NUMA */
3255
3256static __always_inline void *
48356303 3257slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3258{
3259 unsigned long save_flags;
3260 void *objp;
3261
dcce284a 3262 flags &= gfp_allowed_mask;
7e85ee0c 3263
cf40bd16
NP
3264 lockdep_trace_alloc(flags);
3265
773ff60e 3266 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3267 return NULL;
3268
d79923fa
GC
3269 cachep = memcg_kmem_get_cache(cachep, flags);
3270
8c8cc2c1
PE
3271 cache_alloc_debugcheck_before(cachep, flags);
3272 local_irq_save(save_flags);
3273 objp = __do_cache_alloc(cachep, flags);
3274 local_irq_restore(save_flags);
3275 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3276 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3277 flags);
8c8cc2c1
PE
3278 prefetchw(objp);
3279
5087c822 3280 if (likely(objp)) {
8c138bc0 3281 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
5087c822
JP
3282 if (unlikely(flags & __GFP_ZERO))
3283 memset(objp, 0, cachep->object_size);
3284 }
d07dbea4 3285
8c8cc2c1
PE
3286 return objp;
3287}
e498be7d
CL
3288
3289/*
5f0985bb 3290 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3291 * @list: List of detached free slabs should be freed by caller
e498be7d 3292 */
97654dfa
JK
3293static void free_block(struct kmem_cache *cachep, void **objpp,
3294 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3295{
3296 int i;
25c063fb 3297 struct kmem_cache_node *n = get_node(cachep, node);
1da177e4
LT
3298
3299 for (i = 0; i < nr_objects; i++) {
072bb0aa 3300 void *objp;
8456a648 3301 struct page *page;
1da177e4 3302
072bb0aa
MG
3303 clear_obj_pfmemalloc(&objpp[i]);
3304 objp = objpp[i];
3305
8456a648 3306 page = virt_to_head_page(objp);
8456a648 3307 list_del(&page->lru);
ff69416e 3308 check_spinlock_acquired_node(cachep, node);
8456a648 3309 slab_put_obj(cachep, page, objp, node);
1da177e4 3310 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3311 n->free_objects++;
1da177e4
LT
3312
3313 /* fixup slab chains */
8456a648 3314 if (page->active == 0) {
ce8eb6c4
CL
3315 if (n->free_objects > n->free_limit) {
3316 n->free_objects -= cachep->num;
97654dfa 3317 list_add_tail(&page->lru, list);
1da177e4 3318 } else {
8456a648 3319 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3320 }
3321 } else {
3322 /* Unconditionally move a slab to the end of the
3323 * partial list on free - maximum time for the
3324 * other objects to be freed, too.
3325 */
8456a648 3326 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3327 }
3328 }
3329}
3330
343e0d7a 3331static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3332{
3333 int batchcount;
ce8eb6c4 3334 struct kmem_cache_node *n;
7d6e6d09 3335 int node = numa_mem_id();
97654dfa 3336 LIST_HEAD(list);
1da177e4
LT
3337
3338 batchcount = ac->batchcount;
3339#if DEBUG
3340 BUG_ON(!batchcount || batchcount > ac->avail);
3341#endif
3342 check_irq_off();
18bf8541 3343 n = get_node(cachep, node);
ce8eb6c4
CL
3344 spin_lock(&n->list_lock);
3345 if (n->shared) {
3346 struct array_cache *shared_array = n->shared;
b28a02de 3347 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3348 if (max) {
3349 if (batchcount > max)
3350 batchcount = max;
e498be7d 3351 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3352 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3353 shared_array->avail += batchcount;
3354 goto free_done;
3355 }
3356 }
3357
97654dfa 3358 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3359free_done:
1da177e4
LT
3360#if STATS
3361 {
3362 int i = 0;
3363 struct list_head *p;
3364
ce8eb6c4
CL
3365 p = n->slabs_free.next;
3366 while (p != &(n->slabs_free)) {
8456a648 3367 struct page *page;
1da177e4 3368
8456a648
JK
3369 page = list_entry(p, struct page, lru);
3370 BUG_ON(page->active);
1da177e4
LT
3371
3372 i++;
3373 p = p->next;
3374 }
3375 STATS_SET_FREEABLE(cachep, i);
3376 }
3377#endif
ce8eb6c4 3378 spin_unlock(&n->list_lock);
97654dfa 3379 slabs_destroy(cachep, &list);
1da177e4 3380 ac->avail -= batchcount;
a737b3e2 3381 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3382}
3383
3384/*
a737b3e2
AM
3385 * Release an obj back to its cache. If the obj has a constructed state, it must
3386 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3387 */
a947eb95 3388static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3389 unsigned long caller)
1da177e4 3390{
9a2dba4b 3391 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3392
3393 check_irq_off();
d5cff635 3394 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3395 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3396
8c138bc0 3397 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3398
1807a1aa
SS
3399 /*
3400 * Skip calling cache_free_alien() when the platform is not numa.
3401 * This will avoid cache misses that happen while accessing slabp (which
3402 * is per page memory reference) to get nodeid. Instead use a global
3403 * variable to skip the call, which is mostly likely to be present in
3404 * the cache.
3405 */
b6e68bc1 3406 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3407 return;
3408
1da177e4
LT
3409 if (likely(ac->avail < ac->limit)) {
3410 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3411 } else {
3412 STATS_INC_FREEMISS(cachep);
3413 cache_flusharray(cachep, ac);
1da177e4 3414 }
42c8c99c 3415
072bb0aa 3416 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3417}
3418
3419/**
3420 * kmem_cache_alloc - Allocate an object
3421 * @cachep: The cache to allocate from.
3422 * @flags: See kmalloc().
3423 *
3424 * Allocate an object from this cache. The flags are only relevant
3425 * if the cache has no available objects.
3426 */
343e0d7a 3427void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3428{
48356303 3429 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3430
ca2b84cb 3431 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3432 cachep->object_size, cachep->size, flags);
36555751
EGM
3433
3434 return ret;
1da177e4
LT
3435}
3436EXPORT_SYMBOL(kmem_cache_alloc);
3437
0f24f128 3438#ifdef CONFIG_TRACING
85beb586 3439void *
4052147c 3440kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3441{
85beb586
SR
3442 void *ret;
3443
48356303 3444 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3445
3446 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3447 size, cachep->size, flags);
85beb586 3448 return ret;
36555751 3449}
85beb586 3450EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3451#endif
3452
1da177e4 3453#ifdef CONFIG_NUMA
d0d04b78
ZL
3454/**
3455 * kmem_cache_alloc_node - Allocate an object on the specified node
3456 * @cachep: The cache to allocate from.
3457 * @flags: See kmalloc().
3458 * @nodeid: node number of the target node.
3459 *
3460 * Identical to kmem_cache_alloc but it will allocate memory on the given
3461 * node, which can improve the performance for cpu bound structures.
3462 *
3463 * Fallback to other node is possible if __GFP_THISNODE is not set.
3464 */
8b98c169
CH
3465void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3466{
48356303 3467 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3468
ca2b84cb 3469 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3470 cachep->object_size, cachep->size,
ca2b84cb 3471 flags, nodeid);
36555751
EGM
3472
3473 return ret;
8b98c169 3474}
1da177e4
LT
3475EXPORT_SYMBOL(kmem_cache_alloc_node);
3476
0f24f128 3477#ifdef CONFIG_TRACING
4052147c 3478void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3479 gfp_t flags,
4052147c
EG
3480 int nodeid,
3481 size_t size)
36555751 3482{
85beb586
SR
3483 void *ret;
3484
592f4145 3485 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3486
85beb586 3487 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3488 size, cachep->size,
85beb586
SR
3489 flags, nodeid);
3490 return ret;
36555751 3491}
85beb586 3492EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3493#endif
3494
8b98c169 3495static __always_inline void *
7c0cb9c6 3496__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3497{
343e0d7a 3498 struct kmem_cache *cachep;
97e2bde4 3499
2c59dd65 3500 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3501 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3502 return cachep;
4052147c 3503 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3504}
8b98c169 3505
0bb38a5c 3506#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3507void *__kmalloc_node(size_t size, gfp_t flags, int node)
3508{
7c0cb9c6 3509 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3510}
dbe5e69d 3511EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3512
3513void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3514 int node, unsigned long caller)
8b98c169 3515{
7c0cb9c6 3516 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3517}
3518EXPORT_SYMBOL(__kmalloc_node_track_caller);
3519#else
3520void *__kmalloc_node(size_t size, gfp_t flags, int node)
3521{
7c0cb9c6 3522 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3523}
3524EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3525#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3526#endif /* CONFIG_NUMA */
1da177e4
LT
3527
3528/**
800590f5 3529 * __do_kmalloc - allocate memory
1da177e4 3530 * @size: how many bytes of memory are required.
800590f5 3531 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3532 * @caller: function caller for debug tracking of the caller
1da177e4 3533 */
7fd6b141 3534static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3535 unsigned long caller)
1da177e4 3536{
343e0d7a 3537 struct kmem_cache *cachep;
36555751 3538 void *ret;
1da177e4 3539
2c59dd65 3540 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3541 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3542 return cachep;
48356303 3543 ret = slab_alloc(cachep, flags, caller);
36555751 3544
7c0cb9c6 3545 trace_kmalloc(caller, ret,
3b0efdfa 3546 size, cachep->size, flags);
36555751
EGM
3547
3548 return ret;
7fd6b141
PE
3549}
3550
7fd6b141 3551
0bb38a5c 3552#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3553void *__kmalloc(size_t size, gfp_t flags)
3554{
7c0cb9c6 3555 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3556}
3557EXPORT_SYMBOL(__kmalloc);
3558
ce71e27c 3559void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3560{
7c0cb9c6 3561 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3562}
3563EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3564
3565#else
3566void *__kmalloc(size_t size, gfp_t flags)
3567{
7c0cb9c6 3568 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3569}
3570EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3571#endif
3572
1da177e4
LT
3573/**
3574 * kmem_cache_free - Deallocate an object
3575 * @cachep: The cache the allocation was from.
3576 * @objp: The previously allocated object.
3577 *
3578 * Free an object which was previously allocated from this
3579 * cache.
3580 */
343e0d7a 3581void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3582{
3583 unsigned long flags;
b9ce5ef4
GC
3584 cachep = cache_from_obj(cachep, objp);
3585 if (!cachep)
3586 return;
1da177e4
LT
3587
3588 local_irq_save(flags);
d97d476b 3589 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3590 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3591 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3592 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3593 local_irq_restore(flags);
36555751 3594
ca2b84cb 3595 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3596}
3597EXPORT_SYMBOL(kmem_cache_free);
3598
1da177e4
LT
3599/**
3600 * kfree - free previously allocated memory
3601 * @objp: pointer returned by kmalloc.
3602 *
80e93eff
PE
3603 * If @objp is NULL, no operation is performed.
3604 *
1da177e4
LT
3605 * Don't free memory not originally allocated by kmalloc()
3606 * or you will run into trouble.
3607 */
3608void kfree(const void *objp)
3609{
343e0d7a 3610 struct kmem_cache *c;
1da177e4
LT
3611 unsigned long flags;
3612
2121db74
PE
3613 trace_kfree(_RET_IP_, objp);
3614
6cb8f913 3615 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3616 return;
3617 local_irq_save(flags);
3618 kfree_debugcheck(objp);
6ed5eb22 3619 c = virt_to_cache(objp);
8c138bc0
CL
3620 debug_check_no_locks_freed(objp, c->object_size);
3621
3622 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3623 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3624 local_irq_restore(flags);
3625}
3626EXPORT_SYMBOL(kfree);
3627
e498be7d 3628/*
ce8eb6c4 3629 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3630 */
5f0985bb 3631static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3632{
3633 int node;
ce8eb6c4 3634 struct kmem_cache_node *n;
cafeb02e 3635 struct array_cache *new_shared;
c8522a3a 3636 struct alien_cache **new_alien = NULL;
e498be7d 3637
9c09a95c 3638 for_each_online_node(node) {
cafeb02e 3639
3395ee05 3640 if (use_alien_caches) {
83b519e8 3641 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3642 if (!new_alien)
3643 goto fail;
3644 }
cafeb02e 3645
63109846
ED
3646 new_shared = NULL;
3647 if (cachep->shared) {
3648 new_shared = alloc_arraycache(node,
0718dc2a 3649 cachep->shared*cachep->batchcount,
83b519e8 3650 0xbaadf00d, gfp);
63109846
ED
3651 if (!new_shared) {
3652 free_alien_cache(new_alien);
3653 goto fail;
3654 }
0718dc2a 3655 }
cafeb02e 3656
18bf8541 3657 n = get_node(cachep, node);
ce8eb6c4
CL
3658 if (n) {
3659 struct array_cache *shared = n->shared;
97654dfa 3660 LIST_HEAD(list);
cafeb02e 3661
ce8eb6c4 3662 spin_lock_irq(&n->list_lock);
e498be7d 3663
cafeb02e 3664 if (shared)
0718dc2a 3665 free_block(cachep, shared->entry,
97654dfa 3666 shared->avail, node, &list);
e498be7d 3667
ce8eb6c4
CL
3668 n->shared = new_shared;
3669 if (!n->alien) {
3670 n->alien = new_alien;
e498be7d
CL
3671 new_alien = NULL;
3672 }
ce8eb6c4 3673 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3674 cachep->batchcount + cachep->num;
ce8eb6c4 3675 spin_unlock_irq(&n->list_lock);
97654dfa 3676 slabs_destroy(cachep, &list);
cafeb02e 3677 kfree(shared);
e498be7d
CL
3678 free_alien_cache(new_alien);
3679 continue;
3680 }
ce8eb6c4
CL
3681 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3682 if (!n) {
0718dc2a
CL
3683 free_alien_cache(new_alien);
3684 kfree(new_shared);
e498be7d 3685 goto fail;
0718dc2a 3686 }
e498be7d 3687
ce8eb6c4 3688 kmem_cache_node_init(n);
5f0985bb
JZ
3689 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3690 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
ce8eb6c4
CL
3691 n->shared = new_shared;
3692 n->alien = new_alien;
3693 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3694 cachep->batchcount + cachep->num;
ce8eb6c4 3695 cachep->node[node] = n;
e498be7d 3696 }
cafeb02e 3697 return 0;
0718dc2a 3698
a737b3e2 3699fail:
3b0efdfa 3700 if (!cachep->list.next) {
0718dc2a
CL
3701 /* Cache is not active yet. Roll back what we did */
3702 node--;
3703 while (node >= 0) {
18bf8541
CL
3704 n = get_node(cachep, node);
3705 if (n) {
ce8eb6c4
CL
3706 kfree(n->shared);
3707 free_alien_cache(n->alien);
3708 kfree(n);
6a67368c 3709 cachep->node[node] = NULL;
0718dc2a
CL
3710 }
3711 node--;
3712 }
3713 }
cafeb02e 3714 return -ENOMEM;
e498be7d
CL
3715}
3716
1da177e4 3717struct ccupdate_struct {
343e0d7a 3718 struct kmem_cache *cachep;
acfe7d74 3719 struct array_cache *new[0];
1da177e4
LT
3720};
3721
3722static void do_ccupdate_local(void *info)
3723{
a737b3e2 3724 struct ccupdate_struct *new = info;
1da177e4
LT
3725 struct array_cache *old;
3726
3727 check_irq_off();
9a2dba4b 3728 old = cpu_cache_get(new->cachep);
e498be7d 3729
1da177e4
LT
3730 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3731 new->new[smp_processor_id()] = old;
3732}
3733
18004c5d 3734/* Always called with the slab_mutex held */
943a451a 3735static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3736 int batchcount, int shared, gfp_t gfp)
1da177e4 3737{
d2e7b7d0 3738 struct ccupdate_struct *new;
2ed3a4ef 3739 int i;
1da177e4 3740
acfe7d74
ED
3741 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3742 gfp);
d2e7b7d0
SS
3743 if (!new)
3744 return -ENOMEM;
3745
e498be7d 3746 for_each_online_cpu(i) {
7d6e6d09 3747 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3748 batchcount, gfp);
d2e7b7d0 3749 if (!new->new[i]) {
b28a02de 3750 for (i--; i >= 0; i--)
d2e7b7d0
SS
3751 kfree(new->new[i]);
3752 kfree(new);
e498be7d 3753 return -ENOMEM;
1da177e4
LT
3754 }
3755 }
d2e7b7d0 3756 new->cachep = cachep;
1da177e4 3757
15c8b6c1 3758 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3759
1da177e4 3760 check_irq_on();
1da177e4
LT
3761 cachep->batchcount = batchcount;
3762 cachep->limit = limit;
e498be7d 3763 cachep->shared = shared;
1da177e4 3764
e498be7d 3765 for_each_online_cpu(i) {
97654dfa 3766 LIST_HEAD(list);
d2e7b7d0 3767 struct array_cache *ccold = new->new[i];
18bf8541
CL
3768 int node;
3769 struct kmem_cache_node *n;
3770
1da177e4
LT
3771 if (!ccold)
3772 continue;
18bf8541
CL
3773
3774 node = cpu_to_mem(i);
3775 n = get_node(cachep, node);
3776 spin_lock_irq(&n->list_lock);
97654dfa 3777 free_block(cachep, ccold->entry, ccold->avail, node, &list);
18bf8541 3778 spin_unlock_irq(&n->list_lock);
97654dfa 3779 slabs_destroy(cachep, &list);
1da177e4
LT
3780 kfree(ccold);
3781 }
d2e7b7d0 3782 kfree(new);
5f0985bb 3783 return alloc_kmem_cache_node(cachep, gfp);
1da177e4
LT
3784}
3785
943a451a
GC
3786static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3787 int batchcount, int shared, gfp_t gfp)
3788{
3789 int ret;
3790 struct kmem_cache *c = NULL;
3791 int i = 0;
3792
3793 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3794
3795 if (slab_state < FULL)
3796 return ret;
3797
3798 if ((ret < 0) || !is_root_cache(cachep))
3799 return ret;
3800
ebe945c2 3801 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a 3802 for_each_memcg_cache_index(i) {
2ade4de8 3803 c = cache_from_memcg_idx(cachep, i);
943a451a
GC
3804 if (c)
3805 /* return value determined by the parent cache only */
3806 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3807 }
3808
3809 return ret;
3810}
3811
18004c5d 3812/* Called with slab_mutex held always */
83b519e8 3813static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3814{
3815 int err;
943a451a
GC
3816 int limit = 0;
3817 int shared = 0;
3818 int batchcount = 0;
3819
3820 if (!is_root_cache(cachep)) {
3821 struct kmem_cache *root = memcg_root_cache(cachep);
3822 limit = root->limit;
3823 shared = root->shared;
3824 batchcount = root->batchcount;
3825 }
1da177e4 3826
943a451a
GC
3827 if (limit && shared && batchcount)
3828 goto skip_setup;
a737b3e2
AM
3829 /*
3830 * The head array serves three purposes:
1da177e4
LT
3831 * - create a LIFO ordering, i.e. return objects that are cache-warm
3832 * - reduce the number of spinlock operations.
a737b3e2 3833 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3834 * bufctl chains: array operations are cheaper.
3835 * The numbers are guessed, we should auto-tune as described by
3836 * Bonwick.
3837 */
3b0efdfa 3838 if (cachep->size > 131072)
1da177e4 3839 limit = 1;
3b0efdfa 3840 else if (cachep->size > PAGE_SIZE)
1da177e4 3841 limit = 8;
3b0efdfa 3842 else if (cachep->size > 1024)
1da177e4 3843 limit = 24;
3b0efdfa 3844 else if (cachep->size > 256)
1da177e4
LT
3845 limit = 54;
3846 else
3847 limit = 120;
3848
a737b3e2
AM
3849 /*
3850 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3851 * allocation behaviour: Most allocs on one cpu, most free operations
3852 * on another cpu. For these cases, an efficient object passing between
3853 * cpus is necessary. This is provided by a shared array. The array
3854 * replaces Bonwick's magazine layer.
3855 * On uniprocessor, it's functionally equivalent (but less efficient)
3856 * to a larger limit. Thus disabled by default.
3857 */
3858 shared = 0;
3b0efdfa 3859 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3860 shared = 8;
1da177e4
LT
3861
3862#if DEBUG
a737b3e2
AM
3863 /*
3864 * With debugging enabled, large batchcount lead to excessively long
3865 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3866 */
3867 if (limit > 32)
3868 limit = 32;
3869#endif
943a451a
GC
3870 batchcount = (limit + 1) / 2;
3871skip_setup:
3872 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
3873 if (err)
3874 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3875 cachep->name, -err);
2ed3a4ef 3876 return err;
1da177e4
LT
3877}
3878
1b55253a 3879/*
ce8eb6c4
CL
3880 * Drain an array if it contains any elements taking the node lock only if
3881 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3882 * if drain_array() is used on the shared array.
1b55253a 3883 */
ce8eb6c4 3884static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 3885 struct array_cache *ac, int force, int node)
1da177e4 3886{
97654dfa 3887 LIST_HEAD(list);
1da177e4
LT
3888 int tofree;
3889
1b55253a
CL
3890 if (!ac || !ac->avail)
3891 return;
1da177e4
LT
3892 if (ac->touched && !force) {
3893 ac->touched = 0;
b18e7e65 3894 } else {
ce8eb6c4 3895 spin_lock_irq(&n->list_lock);
b18e7e65
CL
3896 if (ac->avail) {
3897 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3898 if (tofree > ac->avail)
3899 tofree = (ac->avail + 1) / 2;
97654dfa 3900 free_block(cachep, ac->entry, tofree, node, &list);
b18e7e65
CL
3901 ac->avail -= tofree;
3902 memmove(ac->entry, &(ac->entry[tofree]),
3903 sizeof(void *) * ac->avail);
3904 }
ce8eb6c4 3905 spin_unlock_irq(&n->list_lock);
97654dfa 3906 slabs_destroy(cachep, &list);
1da177e4
LT
3907 }
3908}
3909
3910/**
3911 * cache_reap - Reclaim memory from caches.
05fb6bf0 3912 * @w: work descriptor
1da177e4
LT
3913 *
3914 * Called from workqueue/eventd every few seconds.
3915 * Purpose:
3916 * - clear the per-cpu caches for this CPU.
3917 * - return freeable pages to the main free memory pool.
3918 *
a737b3e2
AM
3919 * If we cannot acquire the cache chain mutex then just give up - we'll try
3920 * again on the next iteration.
1da177e4 3921 */
7c5cae36 3922static void cache_reap(struct work_struct *w)
1da177e4 3923{
7a7c381d 3924 struct kmem_cache *searchp;
ce8eb6c4 3925 struct kmem_cache_node *n;
7d6e6d09 3926 int node = numa_mem_id();
bf6aede7 3927 struct delayed_work *work = to_delayed_work(w);
1da177e4 3928
18004c5d 3929 if (!mutex_trylock(&slab_mutex))
1da177e4 3930 /* Give up. Setup the next iteration. */
7c5cae36 3931 goto out;
1da177e4 3932
18004c5d 3933 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3934 check_irq_on();
3935
35386e3b 3936 /*
ce8eb6c4 3937 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3938 * have established with reasonable certainty that
3939 * we can do some work if the lock was obtained.
3940 */
18bf8541 3941 n = get_node(searchp, node);
35386e3b 3942
ce8eb6c4 3943 reap_alien(searchp, n);
1da177e4 3944
ce8eb6c4 3945 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 3946
35386e3b
CL
3947 /*
3948 * These are racy checks but it does not matter
3949 * if we skip one check or scan twice.
3950 */
ce8eb6c4 3951 if (time_after(n->next_reap, jiffies))
35386e3b 3952 goto next;
1da177e4 3953
5f0985bb 3954 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 3955
ce8eb6c4 3956 drain_array(searchp, n, n->shared, 0, node);
1da177e4 3957
ce8eb6c4
CL
3958 if (n->free_touched)
3959 n->free_touched = 0;
ed11d9eb
CL
3960 else {
3961 int freed;
1da177e4 3962
ce8eb6c4 3963 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
3964 5 * searchp->num - 1) / (5 * searchp->num));
3965 STATS_ADD_REAPED(searchp, freed);
3966 }
35386e3b 3967next:
1da177e4
LT
3968 cond_resched();
3969 }
3970 check_irq_on();
18004c5d 3971 mutex_unlock(&slab_mutex);
8fce4d8e 3972 next_reap_node();
7c5cae36 3973out:
a737b3e2 3974 /* Set up the next iteration */
5f0985bb 3975 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
3976}
3977
158a9624 3978#ifdef CONFIG_SLABINFO
0d7561c6 3979void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 3980{
8456a648 3981 struct page *page;
b28a02de
PE
3982 unsigned long active_objs;
3983 unsigned long num_objs;
3984 unsigned long active_slabs = 0;
3985 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3986 const char *name;
1da177e4 3987 char *error = NULL;
e498be7d 3988 int node;
ce8eb6c4 3989 struct kmem_cache_node *n;
1da177e4 3990
1da177e4
LT
3991 active_objs = 0;
3992 num_slabs = 0;
18bf8541 3993 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 3994
ca3b9b91 3995 check_irq_on();
ce8eb6c4 3996 spin_lock_irq(&n->list_lock);
e498be7d 3997
8456a648
JK
3998 list_for_each_entry(page, &n->slabs_full, lru) {
3999 if (page->active != cachep->num && !error)
e498be7d
CL
4000 error = "slabs_full accounting error";
4001 active_objs += cachep->num;
4002 active_slabs++;
4003 }
8456a648
JK
4004 list_for_each_entry(page, &n->slabs_partial, lru) {
4005 if (page->active == cachep->num && !error)
106a74e1 4006 error = "slabs_partial accounting error";
8456a648 4007 if (!page->active && !error)
106a74e1 4008 error = "slabs_partial accounting error";
8456a648 4009 active_objs += page->active;
e498be7d
CL
4010 active_slabs++;
4011 }
8456a648
JK
4012 list_for_each_entry(page, &n->slabs_free, lru) {
4013 if (page->active && !error)
106a74e1 4014 error = "slabs_free accounting error";
e498be7d
CL
4015 num_slabs++;
4016 }
ce8eb6c4
CL
4017 free_objects += n->free_objects;
4018 if (n->shared)
4019 shared_avail += n->shared->avail;
e498be7d 4020
ce8eb6c4 4021 spin_unlock_irq(&n->list_lock);
1da177e4 4022 }
b28a02de
PE
4023 num_slabs += active_slabs;
4024 num_objs = num_slabs * cachep->num;
e498be7d 4025 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4026 error = "free_objects accounting error";
4027
b28a02de 4028 name = cachep->name;
1da177e4
LT
4029 if (error)
4030 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4031
0d7561c6
GC
4032 sinfo->active_objs = active_objs;
4033 sinfo->num_objs = num_objs;
4034 sinfo->active_slabs = active_slabs;
4035 sinfo->num_slabs = num_slabs;
4036 sinfo->shared_avail = shared_avail;
4037 sinfo->limit = cachep->limit;
4038 sinfo->batchcount = cachep->batchcount;
4039 sinfo->shared = cachep->shared;
4040 sinfo->objects_per_slab = cachep->num;
4041 sinfo->cache_order = cachep->gfporder;
4042}
4043
4044void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4045{
1da177e4 4046#if STATS
ce8eb6c4 4047 { /* node stats */
1da177e4
LT
4048 unsigned long high = cachep->high_mark;
4049 unsigned long allocs = cachep->num_allocations;
4050 unsigned long grown = cachep->grown;
4051 unsigned long reaped = cachep->reaped;
4052 unsigned long errors = cachep->errors;
4053 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4054 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4055 unsigned long node_frees = cachep->node_frees;
fb7faf33 4056 unsigned long overflows = cachep->node_overflow;
1da177e4 4057
e92dd4fd
JP
4058 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4059 "%4lu %4lu %4lu %4lu %4lu",
4060 allocs, high, grown,
4061 reaped, errors, max_freeable, node_allocs,
4062 node_frees, overflows);
1da177e4
LT
4063 }
4064 /* cpu stats */
4065 {
4066 unsigned long allochit = atomic_read(&cachep->allochit);
4067 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4068 unsigned long freehit = atomic_read(&cachep->freehit);
4069 unsigned long freemiss = atomic_read(&cachep->freemiss);
4070
4071 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4072 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4073 }
4074#endif
1da177e4
LT
4075}
4076
1da177e4
LT
4077#define MAX_SLABINFO_WRITE 128
4078/**
4079 * slabinfo_write - Tuning for the slab allocator
4080 * @file: unused
4081 * @buffer: user buffer
4082 * @count: data length
4083 * @ppos: unused
4084 */
b7454ad3 4085ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4086 size_t count, loff_t *ppos)
1da177e4 4087{
b28a02de 4088 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4089 int limit, batchcount, shared, res;
7a7c381d 4090 struct kmem_cache *cachep;
b28a02de 4091
1da177e4
LT
4092 if (count > MAX_SLABINFO_WRITE)
4093 return -EINVAL;
4094 if (copy_from_user(&kbuf, buffer, count))
4095 return -EFAULT;
b28a02de 4096 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4097
4098 tmp = strchr(kbuf, ' ');
4099 if (!tmp)
4100 return -EINVAL;
4101 *tmp = '\0';
4102 tmp++;
4103 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4104 return -EINVAL;
4105
4106 /* Find the cache in the chain of caches. */
18004c5d 4107 mutex_lock(&slab_mutex);
1da177e4 4108 res = -EINVAL;
18004c5d 4109 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4110 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4111 if (limit < 1 || batchcount < 1 ||
4112 batchcount > limit || shared < 0) {
e498be7d 4113 res = 0;
1da177e4 4114 } else {
e498be7d 4115 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4116 batchcount, shared,
4117 GFP_KERNEL);
1da177e4
LT
4118 }
4119 break;
4120 }
4121 }
18004c5d 4122 mutex_unlock(&slab_mutex);
1da177e4
LT
4123 if (res >= 0)
4124 res = count;
4125 return res;
4126}
871751e2
AV
4127
4128#ifdef CONFIG_DEBUG_SLAB_LEAK
4129
4130static void *leaks_start(struct seq_file *m, loff_t *pos)
4131{
18004c5d
CL
4132 mutex_lock(&slab_mutex);
4133 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4134}
4135
4136static inline int add_caller(unsigned long *n, unsigned long v)
4137{
4138 unsigned long *p;
4139 int l;
4140 if (!v)
4141 return 1;
4142 l = n[1];
4143 p = n + 2;
4144 while (l) {
4145 int i = l/2;
4146 unsigned long *q = p + 2 * i;
4147 if (*q == v) {
4148 q[1]++;
4149 return 1;
4150 }
4151 if (*q > v) {
4152 l = i;
4153 } else {
4154 p = q + 2;
4155 l -= i + 1;
4156 }
4157 }
4158 if (++n[1] == n[0])
4159 return 0;
4160 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4161 p[0] = v;
4162 p[1] = 1;
4163 return 1;
4164}
4165
8456a648
JK
4166static void handle_slab(unsigned long *n, struct kmem_cache *c,
4167 struct page *page)
871751e2
AV
4168{
4169 void *p;
03787301 4170 int i;
b1cb0982 4171
871751e2
AV
4172 if (n[0] == n[1])
4173 return;
8456a648 4174 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
03787301 4175 if (get_obj_status(page, i) != OBJECT_ACTIVE)
871751e2 4176 continue;
b1cb0982 4177
871751e2
AV
4178 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4179 return;
4180 }
4181}
4182
4183static void show_symbol(struct seq_file *m, unsigned long address)
4184{
4185#ifdef CONFIG_KALLSYMS
871751e2 4186 unsigned long offset, size;
9281acea 4187 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4188
a5c43dae 4189 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4190 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4191 if (modname[0])
871751e2
AV
4192 seq_printf(m, " [%s]", modname);
4193 return;
4194 }
4195#endif
4196 seq_printf(m, "%p", (void *)address);
4197}
4198
4199static int leaks_show(struct seq_file *m, void *p)
4200{
0672aa7c 4201 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4202 struct page *page;
ce8eb6c4 4203 struct kmem_cache_node *n;
871751e2 4204 const char *name;
db845067 4205 unsigned long *x = m->private;
871751e2
AV
4206 int node;
4207 int i;
4208
4209 if (!(cachep->flags & SLAB_STORE_USER))
4210 return 0;
4211 if (!(cachep->flags & SLAB_RED_ZONE))
4212 return 0;
4213
4214 /* OK, we can do it */
4215
db845067 4216 x[1] = 0;
871751e2 4217
18bf8541 4218 for_each_kmem_cache_node(cachep, node, n) {
871751e2
AV
4219
4220 check_irq_on();
ce8eb6c4 4221 spin_lock_irq(&n->list_lock);
871751e2 4222
8456a648
JK
4223 list_for_each_entry(page, &n->slabs_full, lru)
4224 handle_slab(x, cachep, page);
4225 list_for_each_entry(page, &n->slabs_partial, lru)
4226 handle_slab(x, cachep, page);
ce8eb6c4 4227 spin_unlock_irq(&n->list_lock);
871751e2
AV
4228 }
4229 name = cachep->name;
db845067 4230 if (x[0] == x[1]) {
871751e2 4231 /* Increase the buffer size */
18004c5d 4232 mutex_unlock(&slab_mutex);
db845067 4233 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4234 if (!m->private) {
4235 /* Too bad, we are really out */
db845067 4236 m->private = x;
18004c5d 4237 mutex_lock(&slab_mutex);
871751e2
AV
4238 return -ENOMEM;
4239 }
db845067
CL
4240 *(unsigned long *)m->private = x[0] * 2;
4241 kfree(x);
18004c5d 4242 mutex_lock(&slab_mutex);
871751e2
AV
4243 /* Now make sure this entry will be retried */
4244 m->count = m->size;
4245 return 0;
4246 }
db845067
CL
4247 for (i = 0; i < x[1]; i++) {
4248 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4249 show_symbol(m, x[2*i+2]);
871751e2
AV
4250 seq_putc(m, '\n');
4251 }
d2e7b7d0 4252
871751e2
AV
4253 return 0;
4254}
4255
a0ec95a8 4256static const struct seq_operations slabstats_op = {
871751e2 4257 .start = leaks_start,
276a2439
WL
4258 .next = slab_next,
4259 .stop = slab_stop,
871751e2
AV
4260 .show = leaks_show,
4261};
a0ec95a8
AD
4262
4263static int slabstats_open(struct inode *inode, struct file *file)
4264{
4265 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4266 int ret = -ENOMEM;
4267 if (n) {
4268 ret = seq_open(file, &slabstats_op);
4269 if (!ret) {
4270 struct seq_file *m = file->private_data;
4271 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4272 m->private = n;
4273 n = NULL;
4274 }
4275 kfree(n);
4276 }
4277 return ret;
4278}
4279
4280static const struct file_operations proc_slabstats_operations = {
4281 .open = slabstats_open,
4282 .read = seq_read,
4283 .llseek = seq_lseek,
4284 .release = seq_release_private,
4285};
4286#endif
4287
4288static int __init slab_proc_init(void)
4289{
4290#ifdef CONFIG_DEBUG_SLAB_LEAK
4291 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4292#endif
a0ec95a8
AD
4293 return 0;
4294}
4295module_init(slab_proc_init);
1da177e4
LT
4296#endif
4297
00e145b6
MS
4298/**
4299 * ksize - get the actual amount of memory allocated for a given object
4300 * @objp: Pointer to the object
4301 *
4302 * kmalloc may internally round up allocations and return more memory
4303 * than requested. ksize() can be used to determine the actual amount of
4304 * memory allocated. The caller may use this additional memory, even though
4305 * a smaller amount of memory was initially specified with the kmalloc call.
4306 * The caller must guarantee that objp points to a valid object previously
4307 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4308 * must not be freed during the duration of the call.
4309 */
fd76bab2 4310size_t ksize(const void *objp)
1da177e4 4311{
ef8b4520
CL
4312 BUG_ON(!objp);
4313 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4314 return 0;
1da177e4 4315
8c138bc0 4316 return virt_to_cache(objp)->object_size;
1da177e4 4317}
b1aabecd 4318EXPORT_SYMBOL(ksize);