mm, kasan: SLAB support
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
1da177e4
LT
171/*
172 * struct array_cache
173 *
1da177e4
LT
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
bda5b655 188 void *entry[]; /*
a737b3e2
AM
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
a737b3e2 192 */
1da177e4
LT
193};
194
c8522a3a
JK
195struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198};
199
e498be7d
CL
200/*
201 * Need this for bootstrapping a per node allocator.
202 */
bf0dea23 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 205#define CACHE_CACHE 0
bf0dea23 206#define SIZE_NODE (MAX_NUMNODES)
e498be7d 207
ed11d9eb 208static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 209 struct kmem_cache_node *n, int tofree);
ed11d9eb 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
211 int node, struct list_head *list);
212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 214static void cache_reap(struct work_struct *unused);
ed11d9eb 215
e0a42726
IM
216static int slab_early_init = 1;
217
ce8eb6c4 218#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 219
ce8eb6c4 220static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
221{
222 INIT_LIST_HEAD(&parent->slabs_full);
223 INIT_LIST_HEAD(&parent->slabs_partial);
224 INIT_LIST_HEAD(&parent->slabs_free);
225 parent->shared = NULL;
226 parent->alien = NULL;
2e1217cf 227 parent->colour_next = 0;
e498be7d
CL
228 spin_lock_init(&parent->list_lock);
229 parent->free_objects = 0;
230 parent->free_touched = 0;
231}
232
a737b3e2
AM
233#define MAKE_LIST(cachep, listp, slab, nodeid) \
234 do { \
235 INIT_LIST_HEAD(listp); \
18bf8541 236 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
237 } while (0)
238
a737b3e2
AM
239#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
240 do { \
e498be7d
CL
241 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
242 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
243 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
244 } while (0)
1da177e4 245
b03a017b 246#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
1da177e4 247#define CFLGS_OFF_SLAB (0x80000000UL)
b03a017b 248#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
249#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
250
251#define BATCHREFILL_LIMIT 16
a737b3e2
AM
252/*
253 * Optimization question: fewer reaps means less probability for unnessary
254 * cpucache drain/refill cycles.
1da177e4 255 *
dc6f3f27 256 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
257 * which could lock up otherwise freeable slabs.
258 */
5f0985bb
JZ
259#define REAPTIMEOUT_AC (2*HZ)
260#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
261
262#if STATS
263#define STATS_INC_ACTIVE(x) ((x)->num_active++)
264#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
265#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
266#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 267#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
268#define STATS_SET_HIGH(x) \
269 do { \
270 if ((x)->num_active > (x)->high_mark) \
271 (x)->high_mark = (x)->num_active; \
272 } while (0)
1da177e4
LT
273#define STATS_INC_ERR(x) ((x)->errors++)
274#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 275#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 276#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
277#define STATS_SET_FREEABLE(x, i) \
278 do { \
279 if ((x)->max_freeable < i) \
280 (x)->max_freeable = i; \
281 } while (0)
1da177e4
LT
282#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
283#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
284#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
285#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
286#else
287#define STATS_INC_ACTIVE(x) do { } while (0)
288#define STATS_DEC_ACTIVE(x) do { } while (0)
289#define STATS_INC_ALLOCED(x) do { } while (0)
290#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 291#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
292#define STATS_SET_HIGH(x) do { } while (0)
293#define STATS_INC_ERR(x) do { } while (0)
294#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 295#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 296#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 297#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
298#define STATS_INC_ALLOCHIT(x) do { } while (0)
299#define STATS_INC_ALLOCMISS(x) do { } while (0)
300#define STATS_INC_FREEHIT(x) do { } while (0)
301#define STATS_INC_FREEMISS(x) do { } while (0)
302#endif
303
304#if DEBUG
1da177e4 305
a737b3e2
AM
306/*
307 * memory layout of objects:
1da177e4 308 * 0 : objp
3dafccf2 309 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
310 * the end of an object is aligned with the end of the real
311 * allocation. Catches writes behind the end of the allocation.
3dafccf2 312 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 313 * redzone word.
3dafccf2 314 * cachep->obj_offset: The real object.
3b0efdfa
CL
315 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
316 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 317 * [BYTES_PER_WORD long]
1da177e4 318 */
343e0d7a 319static int obj_offset(struct kmem_cache *cachep)
1da177e4 320{
3dafccf2 321 return cachep->obj_offset;
1da177e4
LT
322}
323
b46b8f19 324static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
325{
326 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
327 return (unsigned long long*) (objp + obj_offset(cachep) -
328 sizeof(unsigned long long));
1da177e4
LT
329}
330
b46b8f19 331static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
332{
333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 335 return (unsigned long long *)(objp + cachep->size -
b46b8f19 336 sizeof(unsigned long long) -
87a927c7 337 REDZONE_ALIGN);
3b0efdfa 338 return (unsigned long long *) (objp + cachep->size -
b46b8f19 339 sizeof(unsigned long long));
1da177e4
LT
340}
341
343e0d7a 342static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
343{
344 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 345 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
346}
347
348#else
349
3dafccf2 350#define obj_offset(x) 0
b46b8f19
DW
351#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
352#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
353#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
354
355#endif
356
03787301
JK
357#ifdef CONFIG_DEBUG_SLAB_LEAK
358
d31676df 359static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 360{
d31676df
JK
361 return atomic_read(&cachep->store_user_clean) == 1;
362}
03787301 363
d31676df
JK
364static inline void set_store_user_clean(struct kmem_cache *cachep)
365{
366 atomic_set(&cachep->store_user_clean, 1);
367}
03787301 368
d31676df
JK
369static inline void set_store_user_dirty(struct kmem_cache *cachep)
370{
371 if (is_store_user_clean(cachep))
372 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
373}
374
375#else
d31676df 376static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
377
378#endif
379
1da177e4 380/*
3df1cccd
DR
381 * Do not go above this order unless 0 objects fit into the slab or
382 * overridden on the command line.
1da177e4 383 */
543585cc
DR
384#define SLAB_MAX_ORDER_HI 1
385#define SLAB_MAX_ORDER_LO 0
386static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 387static bool slab_max_order_set __initdata;
1da177e4 388
6ed5eb22
PE
389static inline struct kmem_cache *virt_to_cache(const void *obj)
390{
b49af68f 391 struct page *page = virt_to_head_page(obj);
35026088 392 return page->slab_cache;
6ed5eb22
PE
393}
394
8456a648 395static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
396 unsigned int idx)
397{
8456a648 398 return page->s_mem + cache->size * idx;
8fea4e96
PE
399}
400
6a2d7a95 401/*
3b0efdfa
CL
402 * We want to avoid an expensive divide : (offset / cache->size)
403 * Using the fact that size is a constant for a particular cache,
404 * we can replace (offset / cache->size) by
6a2d7a95
ED
405 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
406 */
407static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 408 const struct page *page, void *obj)
8fea4e96 409{
8456a648 410 u32 offset = (obj - page->s_mem);
6a2d7a95 411 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
412}
413
6fb92430 414#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 415/* internal cache of cache description objs */
9b030cb8 416static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
417 .batchcount = 1,
418 .limit = BOOT_CPUCACHE_ENTRIES,
419 .shared = 1,
3b0efdfa 420 .size = sizeof(struct kmem_cache),
b28a02de 421 .name = "kmem_cache",
1da177e4
LT
422};
423
edcad250
JK
424#define BAD_ALIEN_MAGIC 0x01020304ul
425
1871e52c 426static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 427
343e0d7a 428static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 429{
bf0dea23 430 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
431}
432
a737b3e2
AM
433/*
434 * Calculate the number of objects and left-over bytes for a given buffer size.
435 */
70f75067
JK
436static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
437 unsigned long flags, size_t *left_over)
fbaccacf 438{
70f75067 439 unsigned int num;
fbaccacf 440 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 441
fbaccacf
SR
442 /*
443 * The slab management structure can be either off the slab or
444 * on it. For the latter case, the memory allocated for a
445 * slab is used for:
446 *
fbaccacf 447 * - @buffer_size bytes for each object
2e6b3602
JK
448 * - One freelist_idx_t for each object
449 *
450 * We don't need to consider alignment of freelist because
451 * freelist will be at the end of slab page. The objects will be
452 * at the correct alignment.
fbaccacf
SR
453 *
454 * If the slab management structure is off the slab, then the
455 * alignment will already be calculated into the size. Because
456 * the slabs are all pages aligned, the objects will be at the
457 * correct alignment when allocated.
458 */
b03a017b 459 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 460 num = slab_size / buffer_size;
2e6b3602 461 *left_over = slab_size % buffer_size;
fbaccacf 462 } else {
70f75067 463 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
464 *left_over = slab_size %
465 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 466 }
70f75067
JK
467
468 return num;
1da177e4
LT
469}
470
f28510d3 471#if DEBUG
d40cee24 472#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 473
a737b3e2
AM
474static void __slab_error(const char *function, struct kmem_cache *cachep,
475 char *msg)
1da177e4 476{
1170532b 477 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 478 function, cachep->name, msg);
1da177e4 479 dump_stack();
373d4d09 480 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 481}
f28510d3 482#endif
1da177e4 483
3395ee05
PM
484/*
485 * By default on NUMA we use alien caches to stage the freeing of
486 * objects allocated from other nodes. This causes massive memory
487 * inefficiencies when using fake NUMA setup to split memory into a
488 * large number of small nodes, so it can be disabled on the command
489 * line
490 */
491
492static int use_alien_caches __read_mostly = 1;
493static int __init noaliencache_setup(char *s)
494{
495 use_alien_caches = 0;
496 return 1;
497}
498__setup("noaliencache", noaliencache_setup);
499
3df1cccd
DR
500static int __init slab_max_order_setup(char *str)
501{
502 get_option(&str, &slab_max_order);
503 slab_max_order = slab_max_order < 0 ? 0 :
504 min(slab_max_order, MAX_ORDER - 1);
505 slab_max_order_set = true;
506
507 return 1;
508}
509__setup("slab_max_order=", slab_max_order_setup);
510
8fce4d8e
CL
511#ifdef CONFIG_NUMA
512/*
513 * Special reaping functions for NUMA systems called from cache_reap().
514 * These take care of doing round robin flushing of alien caches (containing
515 * objects freed on different nodes from which they were allocated) and the
516 * flushing of remote pcps by calling drain_node_pages.
517 */
1871e52c 518static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
519
520static void init_reap_node(int cpu)
521{
522 int node;
523
7d6e6d09 524 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 525 if (node == MAX_NUMNODES)
442295c9 526 node = first_node(node_online_map);
8fce4d8e 527
1871e52c 528 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
529}
530
531static void next_reap_node(void)
532{
909ea964 533 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 534
8fce4d8e
CL
535 node = next_node(node, node_online_map);
536 if (unlikely(node >= MAX_NUMNODES))
537 node = first_node(node_online_map);
909ea964 538 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
539}
540
541#else
542#define init_reap_node(cpu) do { } while (0)
543#define next_reap_node(void) do { } while (0)
544#endif
545
1da177e4
LT
546/*
547 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
548 * via the workqueue/eventd.
549 * Add the CPU number into the expiration time to minimize the possibility of
550 * the CPUs getting into lockstep and contending for the global cache chain
551 * lock.
552 */
0db0628d 553static void start_cpu_timer(int cpu)
1da177e4 554{
1871e52c 555 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
556
557 /*
558 * When this gets called from do_initcalls via cpucache_init(),
559 * init_workqueues() has already run, so keventd will be setup
560 * at that time.
561 */
52bad64d 562 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 563 init_reap_node(cpu);
203b42f7 564 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
565 schedule_delayed_work_on(cpu, reap_work,
566 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
567 }
568}
569
1fe00d50 570static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 571{
d5cff635
CM
572 /*
573 * The array_cache structures contain pointers to free object.
25985edc 574 * However, when such objects are allocated or transferred to another
d5cff635
CM
575 * cache the pointers are not cleared and they could be counted as
576 * valid references during a kmemleak scan. Therefore, kmemleak must
577 * not scan such objects.
578 */
1fe00d50
JK
579 kmemleak_no_scan(ac);
580 if (ac) {
581 ac->avail = 0;
582 ac->limit = limit;
583 ac->batchcount = batch;
584 ac->touched = 0;
1da177e4 585 }
1fe00d50
JK
586}
587
588static struct array_cache *alloc_arraycache(int node, int entries,
589 int batchcount, gfp_t gfp)
590{
5e804789 591 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
592 struct array_cache *ac = NULL;
593
594 ac = kmalloc_node(memsize, gfp, node);
595 init_arraycache(ac, entries, batchcount);
596 return ac;
1da177e4
LT
597}
598
f68f8ddd
JK
599static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
600 struct page *page, void *objp)
072bb0aa 601{
f68f8ddd
JK
602 struct kmem_cache_node *n;
603 int page_node;
604 LIST_HEAD(list);
072bb0aa 605
f68f8ddd
JK
606 page_node = page_to_nid(page);
607 n = get_node(cachep, page_node);
381760ea 608
f68f8ddd
JK
609 spin_lock(&n->list_lock);
610 free_block(cachep, &objp, 1, page_node, &list);
611 spin_unlock(&n->list_lock);
381760ea 612
f68f8ddd 613 slabs_destroy(cachep, &list);
072bb0aa
MG
614}
615
3ded175a
CL
616/*
617 * Transfer objects in one arraycache to another.
618 * Locking must be handled by the caller.
619 *
620 * Return the number of entries transferred.
621 */
622static int transfer_objects(struct array_cache *to,
623 struct array_cache *from, unsigned int max)
624{
625 /* Figure out how many entries to transfer */
732eacc0 626 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
627
628 if (!nr)
629 return 0;
630
631 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
632 sizeof(void *) *nr);
633
634 from->avail -= nr;
635 to->avail += nr;
3ded175a
CL
636 return nr;
637}
638
765c4507
CL
639#ifndef CONFIG_NUMA
640
641#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 642#define reap_alien(cachep, n) do { } while (0)
765c4507 643
c8522a3a
JK
644static inline struct alien_cache **alloc_alien_cache(int node,
645 int limit, gfp_t gfp)
765c4507 646{
edcad250 647 return (struct alien_cache **)BAD_ALIEN_MAGIC;
765c4507
CL
648}
649
c8522a3a 650static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
651{
652}
653
654static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
655{
656 return 0;
657}
658
659static inline void *alternate_node_alloc(struct kmem_cache *cachep,
660 gfp_t flags)
661{
662 return NULL;
663}
664
8b98c169 665static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
666 gfp_t flags, int nodeid)
667{
668 return NULL;
669}
670
4167e9b2
DR
671static inline gfp_t gfp_exact_node(gfp_t flags)
672{
444eb2a4 673 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
674}
675
765c4507
CL
676#else /* CONFIG_NUMA */
677
8b98c169 678static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 679static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 680
c8522a3a
JK
681static struct alien_cache *__alloc_alien_cache(int node, int entries,
682 int batch, gfp_t gfp)
683{
5e804789 684 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
685 struct alien_cache *alc = NULL;
686
687 alc = kmalloc_node(memsize, gfp, node);
688 init_arraycache(&alc->ac, entries, batch);
49dfc304 689 spin_lock_init(&alc->lock);
c8522a3a
JK
690 return alc;
691}
692
693static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 694{
c8522a3a 695 struct alien_cache **alc_ptr;
5e804789 696 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
697 int i;
698
699 if (limit > 1)
700 limit = 12;
c8522a3a
JK
701 alc_ptr = kzalloc_node(memsize, gfp, node);
702 if (!alc_ptr)
703 return NULL;
704
705 for_each_node(i) {
706 if (i == node || !node_online(i))
707 continue;
708 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
709 if (!alc_ptr[i]) {
710 for (i--; i >= 0; i--)
711 kfree(alc_ptr[i]);
712 kfree(alc_ptr);
713 return NULL;
e498be7d
CL
714 }
715 }
c8522a3a 716 return alc_ptr;
e498be7d
CL
717}
718
c8522a3a 719static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
720{
721 int i;
722
c8522a3a 723 if (!alc_ptr)
e498be7d 724 return;
e498be7d 725 for_each_node(i)
c8522a3a
JK
726 kfree(alc_ptr[i]);
727 kfree(alc_ptr);
e498be7d
CL
728}
729
343e0d7a 730static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
731 struct array_cache *ac, int node,
732 struct list_head *list)
e498be7d 733{
18bf8541 734 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
735
736 if (ac->avail) {
ce8eb6c4 737 spin_lock(&n->list_lock);
e00946fe
CL
738 /*
739 * Stuff objects into the remote nodes shared array first.
740 * That way we could avoid the overhead of putting the objects
741 * into the free lists and getting them back later.
742 */
ce8eb6c4
CL
743 if (n->shared)
744 transfer_objects(n->shared, ac, ac->limit);
e00946fe 745
833b706c 746 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 747 ac->avail = 0;
ce8eb6c4 748 spin_unlock(&n->list_lock);
e498be7d
CL
749 }
750}
751
8fce4d8e
CL
752/*
753 * Called from cache_reap() to regularly drain alien caches round robin.
754 */
ce8eb6c4 755static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 756{
909ea964 757 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 758
ce8eb6c4 759 if (n->alien) {
c8522a3a
JK
760 struct alien_cache *alc = n->alien[node];
761 struct array_cache *ac;
762
763 if (alc) {
764 ac = &alc->ac;
49dfc304 765 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
766 LIST_HEAD(list);
767
768 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 769 spin_unlock_irq(&alc->lock);
833b706c 770 slabs_destroy(cachep, &list);
c8522a3a 771 }
8fce4d8e
CL
772 }
773 }
774}
775
a737b3e2 776static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 777 struct alien_cache **alien)
e498be7d 778{
b28a02de 779 int i = 0;
c8522a3a 780 struct alien_cache *alc;
e498be7d
CL
781 struct array_cache *ac;
782 unsigned long flags;
783
784 for_each_online_node(i) {
c8522a3a
JK
785 alc = alien[i];
786 if (alc) {
833b706c
JK
787 LIST_HEAD(list);
788
c8522a3a 789 ac = &alc->ac;
49dfc304 790 spin_lock_irqsave(&alc->lock, flags);
833b706c 791 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 792 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 793 slabs_destroy(cachep, &list);
e498be7d
CL
794 }
795 }
796}
729bd0b7 797
25c4f304
JK
798static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
799 int node, int page_node)
729bd0b7 800{
ce8eb6c4 801 struct kmem_cache_node *n;
c8522a3a
JK
802 struct alien_cache *alien = NULL;
803 struct array_cache *ac;
97654dfa 804 LIST_HEAD(list);
1ca4cb24 805
18bf8541 806 n = get_node(cachep, node);
729bd0b7 807 STATS_INC_NODEFREES(cachep);
25c4f304
JK
808 if (n->alien && n->alien[page_node]) {
809 alien = n->alien[page_node];
c8522a3a 810 ac = &alien->ac;
49dfc304 811 spin_lock(&alien->lock);
c8522a3a 812 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 813 STATS_INC_ACOVERFLOW(cachep);
25c4f304 814 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 815 }
f68f8ddd 816 ac->entry[ac->avail++] = objp;
49dfc304 817 spin_unlock(&alien->lock);
833b706c 818 slabs_destroy(cachep, &list);
729bd0b7 819 } else {
25c4f304 820 n = get_node(cachep, page_node);
18bf8541 821 spin_lock(&n->list_lock);
25c4f304 822 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 823 spin_unlock(&n->list_lock);
97654dfa 824 slabs_destroy(cachep, &list);
729bd0b7
PE
825 }
826 return 1;
827}
25c4f304
JK
828
829static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
830{
831 int page_node = page_to_nid(virt_to_page(objp));
832 int node = numa_mem_id();
833 /*
834 * Make sure we are not freeing a object from another node to the array
835 * cache on this cpu.
836 */
837 if (likely(node == page_node))
838 return 0;
839
840 return __cache_free_alien(cachep, objp, node, page_node);
841}
4167e9b2
DR
842
843/*
444eb2a4
MG
844 * Construct gfp mask to allocate from a specific node but do not reclaim or
845 * warn about failures.
4167e9b2
DR
846 */
847static inline gfp_t gfp_exact_node(gfp_t flags)
848{
444eb2a4 849 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 850}
e498be7d
CL
851#endif
852
8f9f8d9e 853/*
6a67368c 854 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 855 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 856 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 857 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
858 * already in use.
859 *
18004c5d 860 * Must hold slab_mutex.
8f9f8d9e 861 */
6a67368c 862static int init_cache_node_node(int node)
8f9f8d9e
DR
863{
864 struct kmem_cache *cachep;
ce8eb6c4 865 struct kmem_cache_node *n;
5e804789 866 const size_t memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 867
18004c5d 868 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e 869 /*
5f0985bb 870 * Set up the kmem_cache_node for cpu before we can
8f9f8d9e
DR
871 * begin anything. Make sure some other cpu on this
872 * node has not already allocated this
873 */
18bf8541
CL
874 n = get_node(cachep, node);
875 if (!n) {
ce8eb6c4
CL
876 n = kmalloc_node(memsize, GFP_KERNEL, node);
877 if (!n)
8f9f8d9e 878 return -ENOMEM;
ce8eb6c4 879 kmem_cache_node_init(n);
5f0985bb
JZ
880 n->next_reap = jiffies + REAPTIMEOUT_NODE +
881 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
8f9f8d9e
DR
882
883 /*
5f0985bb
JZ
884 * The kmem_cache_nodes don't come and go as CPUs
885 * come and go. slab_mutex is sufficient
8f9f8d9e
DR
886 * protection here.
887 */
ce8eb6c4 888 cachep->node[node] = n;
8f9f8d9e
DR
889 }
890
18bf8541
CL
891 spin_lock_irq(&n->list_lock);
892 n->free_limit =
8f9f8d9e
DR
893 (1 + nr_cpus_node(node)) *
894 cachep->batchcount + cachep->num;
18bf8541 895 spin_unlock_irq(&n->list_lock);
8f9f8d9e
DR
896 }
897 return 0;
898}
899
0fa8103b
WL
900static inline int slabs_tofree(struct kmem_cache *cachep,
901 struct kmem_cache_node *n)
902{
903 return (n->free_objects + cachep->num - 1) / cachep->num;
904}
905
0db0628d 906static void cpuup_canceled(long cpu)
fbf1e473
AM
907{
908 struct kmem_cache *cachep;
ce8eb6c4 909 struct kmem_cache_node *n = NULL;
7d6e6d09 910 int node = cpu_to_mem(cpu);
a70f7302 911 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 912
18004c5d 913 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
914 struct array_cache *nc;
915 struct array_cache *shared;
c8522a3a 916 struct alien_cache **alien;
97654dfa 917 LIST_HEAD(list);
fbf1e473 918
18bf8541 919 n = get_node(cachep, node);
ce8eb6c4 920 if (!n)
bf0dea23 921 continue;
fbf1e473 922
ce8eb6c4 923 spin_lock_irq(&n->list_lock);
fbf1e473 924
ce8eb6c4
CL
925 /* Free limit for this kmem_cache_node */
926 n->free_limit -= cachep->batchcount;
bf0dea23
JK
927
928 /* cpu is dead; no one can alloc from it. */
929 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
930 if (nc) {
97654dfa 931 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
932 nc->avail = 0;
933 }
fbf1e473 934
58463c1f 935 if (!cpumask_empty(mask)) {
ce8eb6c4 936 spin_unlock_irq(&n->list_lock);
bf0dea23 937 goto free_slab;
fbf1e473
AM
938 }
939
ce8eb6c4 940 shared = n->shared;
fbf1e473
AM
941 if (shared) {
942 free_block(cachep, shared->entry,
97654dfa 943 shared->avail, node, &list);
ce8eb6c4 944 n->shared = NULL;
fbf1e473
AM
945 }
946
ce8eb6c4
CL
947 alien = n->alien;
948 n->alien = NULL;
fbf1e473 949
ce8eb6c4 950 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
951
952 kfree(shared);
953 if (alien) {
954 drain_alien_cache(cachep, alien);
955 free_alien_cache(alien);
956 }
bf0dea23
JK
957
958free_slab:
97654dfa 959 slabs_destroy(cachep, &list);
fbf1e473
AM
960 }
961 /*
962 * In the previous loop, all the objects were freed to
963 * the respective cache's slabs, now we can go ahead and
964 * shrink each nodelist to its limit.
965 */
18004c5d 966 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 967 n = get_node(cachep, node);
ce8eb6c4 968 if (!n)
fbf1e473 969 continue;
0fa8103b 970 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
971 }
972}
973
0db0628d 974static int cpuup_prepare(long cpu)
1da177e4 975{
343e0d7a 976 struct kmem_cache *cachep;
ce8eb6c4 977 struct kmem_cache_node *n = NULL;
7d6e6d09 978 int node = cpu_to_mem(cpu);
8f9f8d9e 979 int err;
1da177e4 980
fbf1e473
AM
981 /*
982 * We need to do this right in the beginning since
983 * alloc_arraycache's are going to use this list.
984 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 985 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 986 */
6a67368c 987 err = init_cache_node_node(node);
8f9f8d9e
DR
988 if (err < 0)
989 goto bad;
fbf1e473
AM
990
991 /*
992 * Now we can go ahead with allocating the shared arrays and
993 * array caches
994 */
18004c5d 995 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473 996 struct array_cache *shared = NULL;
c8522a3a 997 struct alien_cache **alien = NULL;
fbf1e473 998
fbf1e473
AM
999 if (cachep->shared) {
1000 shared = alloc_arraycache(node,
1001 cachep->shared * cachep->batchcount,
83b519e8 1002 0xbaadf00d, GFP_KERNEL);
bf0dea23 1003 if (!shared)
1da177e4 1004 goto bad;
fbf1e473
AM
1005 }
1006 if (use_alien_caches) {
83b519e8 1007 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1008 if (!alien) {
1009 kfree(shared);
fbf1e473 1010 goto bad;
12d00f6a 1011 }
fbf1e473 1012 }
18bf8541 1013 n = get_node(cachep, node);
ce8eb6c4 1014 BUG_ON(!n);
fbf1e473 1015
ce8eb6c4
CL
1016 spin_lock_irq(&n->list_lock);
1017 if (!n->shared) {
fbf1e473
AM
1018 /*
1019 * We are serialised from CPU_DEAD or
1020 * CPU_UP_CANCELLED by the cpucontrol lock
1021 */
ce8eb6c4 1022 n->shared = shared;
fbf1e473
AM
1023 shared = NULL;
1024 }
4484ebf1 1025#ifdef CONFIG_NUMA
ce8eb6c4
CL
1026 if (!n->alien) {
1027 n->alien = alien;
fbf1e473 1028 alien = NULL;
1da177e4 1029 }
fbf1e473 1030#endif
ce8eb6c4 1031 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1032 kfree(shared);
1033 free_alien_cache(alien);
1034 }
ce79ddc8 1035
fbf1e473
AM
1036 return 0;
1037bad:
12d00f6a 1038 cpuup_canceled(cpu);
fbf1e473
AM
1039 return -ENOMEM;
1040}
1041
0db0628d 1042static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1043 unsigned long action, void *hcpu)
1044{
1045 long cpu = (long)hcpu;
1046 int err = 0;
1047
1048 switch (action) {
fbf1e473
AM
1049 case CPU_UP_PREPARE:
1050 case CPU_UP_PREPARE_FROZEN:
18004c5d 1051 mutex_lock(&slab_mutex);
fbf1e473 1052 err = cpuup_prepare(cpu);
18004c5d 1053 mutex_unlock(&slab_mutex);
1da177e4
LT
1054 break;
1055 case CPU_ONLINE:
8bb78442 1056 case CPU_ONLINE_FROZEN:
1da177e4
LT
1057 start_cpu_timer(cpu);
1058 break;
1059#ifdef CONFIG_HOTPLUG_CPU
5830c590 1060 case CPU_DOWN_PREPARE:
8bb78442 1061 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1062 /*
18004c5d 1063 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1064 * held so that if cache_reap() is invoked it cannot do
1065 * anything expensive but will only modify reap_work
1066 * and reschedule the timer.
1067 */
afe2c511 1068 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1069 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1070 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1071 break;
1072 case CPU_DOWN_FAILED:
8bb78442 1073 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1074 start_cpu_timer(cpu);
1075 break;
1da177e4 1076 case CPU_DEAD:
8bb78442 1077 case CPU_DEAD_FROZEN:
4484ebf1
RT
1078 /*
1079 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1080 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1081 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1082 * memory from the node of the cpu going down. The node
4484ebf1
RT
1083 * structure is usually allocated from kmem_cache_create() and
1084 * gets destroyed at kmem_cache_destroy().
1085 */
183ff22b 1086 /* fall through */
8f5be20b 1087#endif
1da177e4 1088 case CPU_UP_CANCELED:
8bb78442 1089 case CPU_UP_CANCELED_FROZEN:
18004c5d 1090 mutex_lock(&slab_mutex);
fbf1e473 1091 cpuup_canceled(cpu);
18004c5d 1092 mutex_unlock(&slab_mutex);
1da177e4 1093 break;
1da177e4 1094 }
eac40680 1095 return notifier_from_errno(err);
1da177e4
LT
1096}
1097
0db0628d 1098static struct notifier_block cpucache_notifier = {
74b85f37
CS
1099 &cpuup_callback, NULL, 0
1100};
1da177e4 1101
8f9f8d9e
DR
1102#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1103/*
1104 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1105 * Returns -EBUSY if all objects cannot be drained so that the node is not
1106 * removed.
1107 *
18004c5d 1108 * Must hold slab_mutex.
8f9f8d9e 1109 */
6a67368c 1110static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1111{
1112 struct kmem_cache *cachep;
1113 int ret = 0;
1114
18004c5d 1115 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1116 struct kmem_cache_node *n;
8f9f8d9e 1117
18bf8541 1118 n = get_node(cachep, node);
ce8eb6c4 1119 if (!n)
8f9f8d9e
DR
1120 continue;
1121
0fa8103b 1122 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1123
ce8eb6c4
CL
1124 if (!list_empty(&n->slabs_full) ||
1125 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1126 ret = -EBUSY;
1127 break;
1128 }
1129 }
1130 return ret;
1131}
1132
1133static int __meminit slab_memory_callback(struct notifier_block *self,
1134 unsigned long action, void *arg)
1135{
1136 struct memory_notify *mnb = arg;
1137 int ret = 0;
1138 int nid;
1139
1140 nid = mnb->status_change_nid;
1141 if (nid < 0)
1142 goto out;
1143
1144 switch (action) {
1145 case MEM_GOING_ONLINE:
18004c5d 1146 mutex_lock(&slab_mutex);
6a67368c 1147 ret = init_cache_node_node(nid);
18004c5d 1148 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1149 break;
1150 case MEM_GOING_OFFLINE:
18004c5d 1151 mutex_lock(&slab_mutex);
6a67368c 1152 ret = drain_cache_node_node(nid);
18004c5d 1153 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1154 break;
1155 case MEM_ONLINE:
1156 case MEM_OFFLINE:
1157 case MEM_CANCEL_ONLINE:
1158 case MEM_CANCEL_OFFLINE:
1159 break;
1160 }
1161out:
5fda1bd5 1162 return notifier_from_errno(ret);
8f9f8d9e
DR
1163}
1164#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1165
e498be7d 1166/*
ce8eb6c4 1167 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1168 */
6744f087 1169static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1170 int nodeid)
e498be7d 1171{
6744f087 1172 struct kmem_cache_node *ptr;
e498be7d 1173
6744f087 1174 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1175 BUG_ON(!ptr);
1176
6744f087 1177 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1178 /*
1179 * Do not assume that spinlocks can be initialized via memcpy:
1180 */
1181 spin_lock_init(&ptr->list_lock);
1182
e498be7d 1183 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1184 cachep->node[nodeid] = ptr;
e498be7d
CL
1185}
1186
556a169d 1187/*
ce8eb6c4
CL
1188 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1189 * size of kmem_cache_node.
556a169d 1190 */
ce8eb6c4 1191static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1192{
1193 int node;
1194
1195 for_each_online_node(node) {
ce8eb6c4 1196 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1197 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1198 REAPTIMEOUT_NODE +
1199 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1200 }
1201}
1202
a737b3e2
AM
1203/*
1204 * Initialisation. Called after the page allocator have been initialised and
1205 * before smp_init().
1da177e4
LT
1206 */
1207void __init kmem_cache_init(void)
1208{
e498be7d
CL
1209 int i;
1210
68126702
JK
1211 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1212 sizeof(struct rcu_head));
9b030cb8
CL
1213 kmem_cache = &kmem_cache_boot;
1214
b6e68bc1 1215 if (num_possible_nodes() == 1)
62918a03
SS
1216 use_alien_caches = 0;
1217
3c583465 1218 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1219 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1220
1da177e4
LT
1221 /*
1222 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1223 * page orders on machines with more than 32MB of memory if
1224 * not overridden on the command line.
1da177e4 1225 */
3df1cccd 1226 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1227 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1228
1da177e4
LT
1229 /* Bootstrap is tricky, because several objects are allocated
1230 * from caches that do not exist yet:
9b030cb8
CL
1231 * 1) initialize the kmem_cache cache: it contains the struct
1232 * kmem_cache structures of all caches, except kmem_cache itself:
1233 * kmem_cache is statically allocated.
e498be7d 1234 * Initially an __init data area is used for the head array and the
ce8eb6c4 1235 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1236 * array at the end of the bootstrap.
1da177e4 1237 * 2) Create the first kmalloc cache.
343e0d7a 1238 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1239 * An __init data area is used for the head array.
1240 * 3) Create the remaining kmalloc caches, with minimally sized
1241 * head arrays.
9b030cb8 1242 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1243 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1244 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1245 * the other cache's with kmalloc allocated memory.
1246 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1247 */
1248
9b030cb8 1249 /* 1) create the kmem_cache */
1da177e4 1250
8da3430d 1251 /*
b56efcf0 1252 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1253 */
2f9baa9f 1254 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1255 offsetof(struct kmem_cache, node) +
6744f087 1256 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1257 SLAB_HWCACHE_ALIGN);
1258 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1259 slab_state = PARTIAL;
1da177e4 1260
a737b3e2 1261 /*
bf0dea23
JK
1262 * Initialize the caches that provide memory for the kmem_cache_node
1263 * structures first. Without this, further allocations will bug.
e498be7d 1264 */
bf0dea23 1265 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1266 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1267 slab_state = PARTIAL_NODE;
34cc6990 1268 setup_kmalloc_cache_index_table();
e498be7d 1269
e0a42726
IM
1270 slab_early_init = 0;
1271
ce8eb6c4 1272 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1273 {
1ca4cb24
PE
1274 int nid;
1275
9c09a95c 1276 for_each_online_node(nid) {
ce8eb6c4 1277 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1278
bf0dea23 1279 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1280 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1281 }
1282 }
1da177e4 1283
f97d5f63 1284 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1285}
1286
1287void __init kmem_cache_init_late(void)
1288{
1289 struct kmem_cache *cachep;
1290
97d06609 1291 slab_state = UP;
52cef189 1292
8429db5c 1293 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1294 mutex_lock(&slab_mutex);
1295 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1296 if (enable_cpucache(cachep, GFP_NOWAIT))
1297 BUG();
18004c5d 1298 mutex_unlock(&slab_mutex);
056c6241 1299
97d06609
CL
1300 /* Done! */
1301 slab_state = FULL;
1302
a737b3e2
AM
1303 /*
1304 * Register a cpu startup notifier callback that initializes
1305 * cpu_cache_get for all new cpus
1da177e4
LT
1306 */
1307 register_cpu_notifier(&cpucache_notifier);
1da177e4 1308
8f9f8d9e
DR
1309#ifdef CONFIG_NUMA
1310 /*
1311 * Register a memory hotplug callback that initializes and frees
6a67368c 1312 * node.
8f9f8d9e
DR
1313 */
1314 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1315#endif
1316
a737b3e2
AM
1317 /*
1318 * The reap timers are started later, with a module init call: That part
1319 * of the kernel is not yet operational.
1da177e4
LT
1320 */
1321}
1322
1323static int __init cpucache_init(void)
1324{
1325 int cpu;
1326
a737b3e2
AM
1327 /*
1328 * Register the timers that return unneeded pages to the page allocator
1da177e4 1329 */
e498be7d 1330 for_each_online_cpu(cpu)
a737b3e2 1331 start_cpu_timer(cpu);
a164f896
GC
1332
1333 /* Done! */
97d06609 1334 slab_state = FULL;
1da177e4
LT
1335 return 0;
1336}
1da177e4
LT
1337__initcall(cpucache_init);
1338
8bdec192
RA
1339static noinline void
1340slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1341{
9a02d699 1342#if DEBUG
ce8eb6c4 1343 struct kmem_cache_node *n;
8456a648 1344 struct page *page;
8bdec192
RA
1345 unsigned long flags;
1346 int node;
9a02d699
DR
1347 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1348 DEFAULT_RATELIMIT_BURST);
1349
1350 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1351 return;
8bdec192 1352
5b3810e5
VB
1353 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1354 nodeid, gfpflags, &gfpflags);
1355 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1356 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1357
18bf8541 1358 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1359 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1360 unsigned long active_slabs = 0, num_slabs = 0;
1361
ce8eb6c4 1362 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1363 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1364 active_objs += cachep->num;
1365 active_slabs++;
1366 }
8456a648
JK
1367 list_for_each_entry(page, &n->slabs_partial, lru) {
1368 active_objs += page->active;
8bdec192
RA
1369 active_slabs++;
1370 }
8456a648 1371 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1372 num_slabs++;
1373
ce8eb6c4
CL
1374 free_objects += n->free_objects;
1375 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1376
1377 num_slabs += active_slabs;
1378 num_objs = num_slabs * cachep->num;
5b3810e5 1379 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
8bdec192
RA
1380 node, active_slabs, num_slabs, active_objs, num_objs,
1381 free_objects);
1382 }
9a02d699 1383#endif
8bdec192
RA
1384}
1385
1da177e4 1386/*
8a7d9b43
WSH
1387 * Interface to system's page allocator. No need to hold the
1388 * kmem_cache_node ->list_lock.
1da177e4
LT
1389 *
1390 * If we requested dmaable memory, we will get it. Even if we
1391 * did not request dmaable memory, we might get it, but that
1392 * would be relatively rare and ignorable.
1393 */
0c3aa83e
JK
1394static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1395 int nodeid)
1da177e4
LT
1396{
1397 struct page *page;
e1b6aa6f 1398 int nr_pages;
765c4507 1399
a618e89f 1400 flags |= cachep->allocflags;
e12ba74d
MG
1401 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1402 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1403
96db800f 1404 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1405 if (!page) {
9a02d699 1406 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1407 return NULL;
8bdec192 1408 }
1da177e4 1409
f3ccb2c4
VD
1410 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1411 __free_pages(page, cachep->gfporder);
1412 return NULL;
1413 }
1414
e1b6aa6f 1415 nr_pages = (1 << cachep->gfporder);
1da177e4 1416 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1417 add_zone_page_state(page_zone(page),
1418 NR_SLAB_RECLAIMABLE, nr_pages);
1419 else
1420 add_zone_page_state(page_zone(page),
1421 NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1422
a57a4988 1423 __SetPageSlab(page);
f68f8ddd
JK
1424 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1425 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1426 SetPageSlabPfmemalloc(page);
072bb0aa 1427
b1eeab67
VN
1428 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1429 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1430
1431 if (cachep->ctor)
1432 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1433 else
1434 kmemcheck_mark_unallocated_pages(page, nr_pages);
1435 }
c175eea4 1436
0c3aa83e 1437 return page;
1da177e4
LT
1438}
1439
1440/*
1441 * Interface to system's page release.
1442 */
0c3aa83e 1443static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1444{
27ee57c9
VD
1445 int order = cachep->gfporder;
1446 unsigned long nr_freed = (1 << order);
1da177e4 1447
27ee57c9 1448 kmemcheck_free_shadow(page, order);
c175eea4 1449
972d1a7b
CL
1450 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1451 sub_zone_page_state(page_zone(page),
1452 NR_SLAB_RECLAIMABLE, nr_freed);
1453 else
1454 sub_zone_page_state(page_zone(page),
1455 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1456
a57a4988 1457 BUG_ON(!PageSlab(page));
73293c2f 1458 __ClearPageSlabPfmemalloc(page);
a57a4988 1459 __ClearPageSlab(page);
8456a648
JK
1460 page_mapcount_reset(page);
1461 page->mapping = NULL;
1f458cbf 1462
1da177e4
LT
1463 if (current->reclaim_state)
1464 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1465 memcg_uncharge_slab(page, order, cachep);
1466 __free_pages(page, order);
1da177e4
LT
1467}
1468
1469static void kmem_rcu_free(struct rcu_head *head)
1470{
68126702
JK
1471 struct kmem_cache *cachep;
1472 struct page *page;
1da177e4 1473
68126702
JK
1474 page = container_of(head, struct page, rcu_head);
1475 cachep = page->slab_cache;
1476
1477 kmem_freepages(cachep, page);
1da177e4
LT
1478}
1479
1480#if DEBUG
40b44137
JK
1481static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1482{
1483 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1484 (cachep->size % PAGE_SIZE) == 0)
1485 return true;
1486
1487 return false;
1488}
1da177e4
LT
1489
1490#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1491static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1492 unsigned long caller)
1da177e4 1493{
8c138bc0 1494 int size = cachep->object_size;
1da177e4 1495
3dafccf2 1496 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1497
b28a02de 1498 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1499 return;
1500
b28a02de
PE
1501 *addr++ = 0x12345678;
1502 *addr++ = caller;
1503 *addr++ = smp_processor_id();
1504 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1505 {
1506 unsigned long *sptr = &caller;
1507 unsigned long svalue;
1508
1509 while (!kstack_end(sptr)) {
1510 svalue = *sptr++;
1511 if (kernel_text_address(svalue)) {
b28a02de 1512 *addr++ = svalue;
1da177e4
LT
1513 size -= sizeof(unsigned long);
1514 if (size <= sizeof(unsigned long))
1515 break;
1516 }
1517 }
1518
1519 }
b28a02de 1520 *addr++ = 0x87654321;
1da177e4 1521}
40b44137
JK
1522
1523static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1524 int map, unsigned long caller)
1525{
1526 if (!is_debug_pagealloc_cache(cachep))
1527 return;
1528
1529 if (caller)
1530 store_stackinfo(cachep, objp, caller);
1531
1532 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1533}
1534
1535#else
1536static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1537 int map, unsigned long caller) {}
1538
1da177e4
LT
1539#endif
1540
343e0d7a 1541static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1542{
8c138bc0 1543 int size = cachep->object_size;
3dafccf2 1544 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1545
1546 memset(addr, val, size);
b28a02de 1547 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1548}
1549
1550static void dump_line(char *data, int offset, int limit)
1551{
1552 int i;
aa83aa40
DJ
1553 unsigned char error = 0;
1554 int bad_count = 0;
1555
1170532b 1556 pr_err("%03x: ", offset);
aa83aa40
DJ
1557 for (i = 0; i < limit; i++) {
1558 if (data[offset + i] != POISON_FREE) {
1559 error = data[offset + i];
1560 bad_count++;
1561 }
aa83aa40 1562 }
fdde6abb
SAS
1563 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1564 &data[offset], limit, 1);
aa83aa40
DJ
1565
1566 if (bad_count == 1) {
1567 error ^= POISON_FREE;
1568 if (!(error & (error - 1))) {
1170532b 1569 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1570#ifdef CONFIG_X86
1170532b 1571 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1572#else
1170532b 1573 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1574#endif
1575 }
1576 }
1da177e4
LT
1577}
1578#endif
1579
1580#if DEBUG
1581
343e0d7a 1582static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1583{
1584 int i, size;
1585 char *realobj;
1586
1587 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1588 pr_err("Redzone: 0x%llx/0x%llx\n",
1589 *dbg_redzone1(cachep, objp),
1590 *dbg_redzone2(cachep, objp));
1da177e4
LT
1591 }
1592
1593 if (cachep->flags & SLAB_STORE_USER) {
1170532b 1594 pr_err("Last user: [<%p>](%pSR)\n",
071361d3
JP
1595 *dbg_userword(cachep, objp),
1596 *dbg_userword(cachep, objp));
1da177e4 1597 }
3dafccf2 1598 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1599 size = cachep->object_size;
b28a02de 1600 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1601 int limit;
1602 limit = 16;
b28a02de
PE
1603 if (i + limit > size)
1604 limit = size - i;
1da177e4
LT
1605 dump_line(realobj, i, limit);
1606 }
1607}
1608
343e0d7a 1609static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1610{
1611 char *realobj;
1612 int size, i;
1613 int lines = 0;
1614
40b44137
JK
1615 if (is_debug_pagealloc_cache(cachep))
1616 return;
1617
3dafccf2 1618 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1619 size = cachep->object_size;
1da177e4 1620
b28a02de 1621 for (i = 0; i < size; i++) {
1da177e4 1622 char exp = POISON_FREE;
b28a02de 1623 if (i == size - 1)
1da177e4
LT
1624 exp = POISON_END;
1625 if (realobj[i] != exp) {
1626 int limit;
1627 /* Mismatch ! */
1628 /* Print header */
1629 if (lines == 0) {
1170532b
JP
1630 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1631 print_tainted(), cachep->name,
1632 realobj, size);
1da177e4
LT
1633 print_objinfo(cachep, objp, 0);
1634 }
1635 /* Hexdump the affected line */
b28a02de 1636 i = (i / 16) * 16;
1da177e4 1637 limit = 16;
b28a02de
PE
1638 if (i + limit > size)
1639 limit = size - i;
1da177e4
LT
1640 dump_line(realobj, i, limit);
1641 i += 16;
1642 lines++;
1643 /* Limit to 5 lines */
1644 if (lines > 5)
1645 break;
1646 }
1647 }
1648 if (lines != 0) {
1649 /* Print some data about the neighboring objects, if they
1650 * exist:
1651 */
8456a648 1652 struct page *page = virt_to_head_page(objp);
8fea4e96 1653 unsigned int objnr;
1da177e4 1654
8456a648 1655 objnr = obj_to_index(cachep, page, objp);
1da177e4 1656 if (objnr) {
8456a648 1657 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1658 realobj = (char *)objp + obj_offset(cachep);
1170532b 1659 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1660 print_objinfo(cachep, objp, 2);
1661 }
b28a02de 1662 if (objnr + 1 < cachep->num) {
8456a648 1663 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1664 realobj = (char *)objp + obj_offset(cachep);
1170532b 1665 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1666 print_objinfo(cachep, objp, 2);
1667 }
1668 }
1669}
1670#endif
1671
12dd36fa 1672#if DEBUG
8456a648
JK
1673static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1674 struct page *page)
1da177e4 1675{
1da177e4 1676 int i;
b03a017b
JK
1677
1678 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1679 poison_obj(cachep, page->freelist - obj_offset(cachep),
1680 POISON_FREE);
1681 }
1682
1da177e4 1683 for (i = 0; i < cachep->num; i++) {
8456a648 1684 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1685
1686 if (cachep->flags & SLAB_POISON) {
1da177e4 1687 check_poison_obj(cachep, objp);
40b44137 1688 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1689 }
1690 if (cachep->flags & SLAB_RED_ZONE) {
1691 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1692 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1693 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1694 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1695 }
1da177e4 1696 }
12dd36fa 1697}
1da177e4 1698#else
8456a648
JK
1699static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1700 struct page *page)
12dd36fa 1701{
12dd36fa 1702}
1da177e4
LT
1703#endif
1704
911851e6
RD
1705/**
1706 * slab_destroy - destroy and release all objects in a slab
1707 * @cachep: cache pointer being destroyed
cb8ee1a3 1708 * @page: page pointer being destroyed
911851e6 1709 *
8a7d9b43
WSH
1710 * Destroy all the objs in a slab page, and release the mem back to the system.
1711 * Before calling the slab page must have been unlinked from the cache. The
1712 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1713 */
8456a648 1714static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1715{
7e007355 1716 void *freelist;
12dd36fa 1717
8456a648
JK
1718 freelist = page->freelist;
1719 slab_destroy_debugcheck(cachep, page);
bc4f610d
KS
1720 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1721 call_rcu(&page->rcu_head, kmem_rcu_free);
1722 else
0c3aa83e 1723 kmem_freepages(cachep, page);
68126702
JK
1724
1725 /*
8456a648 1726 * From now on, we don't use freelist
68126702
JK
1727 * although actual page can be freed in rcu context
1728 */
1729 if (OFF_SLAB(cachep))
8456a648 1730 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1731}
1732
97654dfa
JK
1733static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1734{
1735 struct page *page, *n;
1736
1737 list_for_each_entry_safe(page, n, list, lru) {
1738 list_del(&page->lru);
1739 slab_destroy(cachep, page);
1740 }
1741}
1742
4d268eba 1743/**
a70773dd
RD
1744 * calculate_slab_order - calculate size (page order) of slabs
1745 * @cachep: pointer to the cache that is being created
1746 * @size: size of objects to be created in this cache.
a70773dd
RD
1747 * @flags: slab allocation flags
1748 *
1749 * Also calculates the number of objects per slab.
4d268eba
PE
1750 *
1751 * This could be made much more intelligent. For now, try to avoid using
1752 * high order pages for slabs. When the gfp() functions are more friendly
1753 * towards high-order requests, this should be changed.
1754 */
a737b3e2 1755static size_t calculate_slab_order(struct kmem_cache *cachep,
2e6b3602 1756 size_t size, unsigned long flags)
4d268eba
PE
1757{
1758 size_t left_over = 0;
9888e6fa 1759 int gfporder;
4d268eba 1760
0aa817f0 1761 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1762 unsigned int num;
1763 size_t remainder;
1764
70f75067 1765 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1766 if (!num)
1767 continue;
9888e6fa 1768
f315e3fa
JK
1769 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1770 if (num > SLAB_OBJ_MAX_NUM)
1771 break;
1772
b1ab41c4 1773 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1774 struct kmem_cache *freelist_cache;
1775 size_t freelist_size;
1776
1777 freelist_size = num * sizeof(freelist_idx_t);
1778 freelist_cache = kmalloc_slab(freelist_size, 0u);
1779 if (!freelist_cache)
1780 continue;
1781
b1ab41c4 1782 /*
3217fd9b
JK
1783 * Needed to avoid possible looping condition
1784 * in cache_grow()
b1ab41c4 1785 */
3217fd9b
JK
1786 if (OFF_SLAB(freelist_cache))
1787 continue;
b1ab41c4 1788
3217fd9b
JK
1789 /* check if off slab has enough benefit */
1790 if (freelist_cache->size > cachep->size / 2)
1791 continue;
b1ab41c4 1792 }
4d268eba 1793
9888e6fa 1794 /* Found something acceptable - save it away */
4d268eba 1795 cachep->num = num;
9888e6fa 1796 cachep->gfporder = gfporder;
4d268eba
PE
1797 left_over = remainder;
1798
f78bb8ad
LT
1799 /*
1800 * A VFS-reclaimable slab tends to have most allocations
1801 * as GFP_NOFS and we really don't want to have to be allocating
1802 * higher-order pages when we are unable to shrink dcache.
1803 */
1804 if (flags & SLAB_RECLAIM_ACCOUNT)
1805 break;
1806
4d268eba
PE
1807 /*
1808 * Large number of objects is good, but very large slabs are
1809 * currently bad for the gfp()s.
1810 */
543585cc 1811 if (gfporder >= slab_max_order)
4d268eba
PE
1812 break;
1813
9888e6fa
LT
1814 /*
1815 * Acceptable internal fragmentation?
1816 */
a737b3e2 1817 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1818 break;
1819 }
1820 return left_over;
1821}
1822
bf0dea23
JK
1823static struct array_cache __percpu *alloc_kmem_cache_cpus(
1824 struct kmem_cache *cachep, int entries, int batchcount)
1825{
1826 int cpu;
1827 size_t size;
1828 struct array_cache __percpu *cpu_cache;
1829
1830 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1831 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1832
1833 if (!cpu_cache)
1834 return NULL;
1835
1836 for_each_possible_cpu(cpu) {
1837 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1838 entries, batchcount);
1839 }
1840
1841 return cpu_cache;
1842}
1843
83b519e8 1844static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1845{
97d06609 1846 if (slab_state >= FULL)
83b519e8 1847 return enable_cpucache(cachep, gfp);
2ed3a4ef 1848
bf0dea23
JK
1849 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1850 if (!cachep->cpu_cache)
1851 return 1;
1852
97d06609 1853 if (slab_state == DOWN) {
bf0dea23
JK
1854 /* Creation of first cache (kmem_cache). */
1855 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1856 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1857 /* For kmem_cache_node */
1858 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1859 } else {
bf0dea23 1860 int node;
f30cf7d1 1861
bf0dea23
JK
1862 for_each_online_node(node) {
1863 cachep->node[node] = kmalloc_node(
1864 sizeof(struct kmem_cache_node), gfp, node);
1865 BUG_ON(!cachep->node[node]);
1866 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1867 }
1868 }
bf0dea23 1869
6a67368c 1870 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1871 jiffies + REAPTIMEOUT_NODE +
1872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1873
1874 cpu_cache_get(cachep)->avail = 0;
1875 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1876 cpu_cache_get(cachep)->batchcount = 1;
1877 cpu_cache_get(cachep)->touched = 0;
1878 cachep->batchcount = 1;
1879 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1880 return 0;
f30cf7d1
PE
1881}
1882
12220dea
JK
1883unsigned long kmem_cache_flags(unsigned long object_size,
1884 unsigned long flags, const char *name,
1885 void (*ctor)(void *))
1886{
1887 return flags;
1888}
1889
1890struct kmem_cache *
1891__kmem_cache_alias(const char *name, size_t size, size_t align,
1892 unsigned long flags, void (*ctor)(void *))
1893{
1894 struct kmem_cache *cachep;
1895
1896 cachep = find_mergeable(size, align, flags, name, ctor);
1897 if (cachep) {
1898 cachep->refcount++;
1899
1900 /*
1901 * Adjust the object sizes so that we clear
1902 * the complete object on kzalloc.
1903 */
1904 cachep->object_size = max_t(int, cachep->object_size, size);
1905 }
1906 return cachep;
1907}
1908
b03a017b
JK
1909static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1910 size_t size, unsigned long flags)
1911{
1912 size_t left;
1913
1914 cachep->num = 0;
1915
1916 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1917 return false;
1918
1919 left = calculate_slab_order(cachep, size,
1920 flags | CFLGS_OBJFREELIST_SLAB);
1921 if (!cachep->num)
1922 return false;
1923
1924 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1925 return false;
1926
1927 cachep->colour = left / cachep->colour_off;
1928
1929 return true;
1930}
1931
158e319b
JK
1932static bool set_off_slab_cache(struct kmem_cache *cachep,
1933 size_t size, unsigned long flags)
1934{
1935 size_t left;
1936
1937 cachep->num = 0;
1938
1939 /*
3217fd9b
JK
1940 * Always use on-slab management when SLAB_NOLEAKTRACE
1941 * to avoid recursive calls into kmemleak.
158e319b 1942 */
158e319b
JK
1943 if (flags & SLAB_NOLEAKTRACE)
1944 return false;
1945
1946 /*
1947 * Size is large, assume best to place the slab management obj
1948 * off-slab (should allow better packing of objs).
1949 */
1950 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1951 if (!cachep->num)
1952 return false;
1953
1954 /*
1955 * If the slab has been placed off-slab, and we have enough space then
1956 * move it on-slab. This is at the expense of any extra colouring.
1957 */
1958 if (left >= cachep->num * sizeof(freelist_idx_t))
1959 return false;
1960
1961 cachep->colour = left / cachep->colour_off;
1962
1963 return true;
1964}
1965
1966static bool set_on_slab_cache(struct kmem_cache *cachep,
1967 size_t size, unsigned long flags)
1968{
1969 size_t left;
1970
1971 cachep->num = 0;
1972
1973 left = calculate_slab_order(cachep, size, flags);
1974 if (!cachep->num)
1975 return false;
1976
1977 cachep->colour = left / cachep->colour_off;
1978
1979 return true;
1980}
1981
1da177e4 1982/**
039363f3 1983 * __kmem_cache_create - Create a cache.
a755b76a 1984 * @cachep: cache management descriptor
1da177e4 1985 * @flags: SLAB flags
1da177e4
LT
1986 *
1987 * Returns a ptr to the cache on success, NULL on failure.
1988 * Cannot be called within a int, but can be interrupted.
20c2df83 1989 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1990 *
1da177e4
LT
1991 * The flags are
1992 *
1993 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1994 * to catch references to uninitialised memory.
1995 *
1996 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1997 * for buffer overruns.
1998 *
1da177e4
LT
1999 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2000 * cacheline. This can be beneficial if you're counting cycles as closely
2001 * as davem.
2002 */
278b1bb1 2003int
8a13a4cc 2004__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2005{
d4a5fca5 2006 size_t ralign = BYTES_PER_WORD;
83b519e8 2007 gfp_t gfp;
278b1bb1 2008 int err;
8a13a4cc 2009 size_t size = cachep->size;
1da177e4 2010
1da177e4 2011#if DEBUG
1da177e4
LT
2012#if FORCED_DEBUG
2013 /*
2014 * Enable redzoning and last user accounting, except for caches with
2015 * large objects, if the increased size would increase the object size
2016 * above the next power of two: caches with object sizes just above a
2017 * power of two have a significant amount of internal fragmentation.
2018 */
87a927c7
DW
2019 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2020 2 * sizeof(unsigned long long)))
b28a02de 2021 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2022 if (!(flags & SLAB_DESTROY_BY_RCU))
2023 flags |= SLAB_POISON;
2024#endif
1da177e4 2025#endif
1da177e4 2026
a737b3e2
AM
2027 /*
2028 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2029 * unaligned accesses for some archs when redzoning is used, and makes
2030 * sure any on-slab bufctl's are also correctly aligned.
2031 */
b28a02de
PE
2032 if (size & (BYTES_PER_WORD - 1)) {
2033 size += (BYTES_PER_WORD - 1);
2034 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2035 }
2036
87a927c7
DW
2037 if (flags & SLAB_RED_ZONE) {
2038 ralign = REDZONE_ALIGN;
2039 /* If redzoning, ensure that the second redzone is suitably
2040 * aligned, by adjusting the object size accordingly. */
2041 size += REDZONE_ALIGN - 1;
2042 size &= ~(REDZONE_ALIGN - 1);
2043 }
ca5f9703 2044
a44b56d3 2045 /* 3) caller mandated alignment */
8a13a4cc
CL
2046 if (ralign < cachep->align) {
2047 ralign = cachep->align;
1da177e4 2048 }
3ff84a7f
PE
2049 /* disable debug if necessary */
2050 if (ralign > __alignof__(unsigned long long))
a44b56d3 2051 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2052 /*
ca5f9703 2053 * 4) Store it.
1da177e4 2054 */
8a13a4cc 2055 cachep->align = ralign;
158e319b
JK
2056 cachep->colour_off = cache_line_size();
2057 /* Offset must be a multiple of the alignment. */
2058 if (cachep->colour_off < cachep->align)
2059 cachep->colour_off = cachep->align;
1da177e4 2060
83b519e8
PE
2061 if (slab_is_available())
2062 gfp = GFP_KERNEL;
2063 else
2064 gfp = GFP_NOWAIT;
2065
1da177e4 2066#if DEBUG
1da177e4 2067
ca5f9703
PE
2068 /*
2069 * Both debugging options require word-alignment which is calculated
2070 * into align above.
2071 */
1da177e4 2072 if (flags & SLAB_RED_ZONE) {
1da177e4 2073 /* add space for red zone words */
3ff84a7f
PE
2074 cachep->obj_offset += sizeof(unsigned long long);
2075 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2076 }
2077 if (flags & SLAB_STORE_USER) {
ca5f9703 2078 /* user store requires one word storage behind the end of
87a927c7
DW
2079 * the real object. But if the second red zone needs to be
2080 * aligned to 64 bits, we must allow that much space.
1da177e4 2081 */
87a927c7
DW
2082 if (flags & SLAB_RED_ZONE)
2083 size += REDZONE_ALIGN;
2084 else
2085 size += BYTES_PER_WORD;
1da177e4 2086 }
832a15d2
JK
2087#endif
2088
7ed2f9e6
AP
2089 kasan_cache_create(cachep, &size, &flags);
2090
832a15d2
JK
2091 size = ALIGN(size, cachep->align);
2092 /*
2093 * We should restrict the number of objects in a slab to implement
2094 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2095 */
2096 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2097 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2098
2099#if DEBUG
03a2d2a3
JK
2100 /*
2101 * To activate debug pagealloc, off-slab management is necessary
2102 * requirement. In early phase of initialization, small sized slab
2103 * doesn't get initialized so it would not be possible. So, we need
2104 * to check size >= 256. It guarantees that all necessary small
2105 * sized slab is initialized in current slab initialization sequence.
2106 */
40323278 2107 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2108 size >= 256 && cachep->object_size > cache_line_size()) {
2109 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2110 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2111
2112 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2113 flags |= CFLGS_OFF_SLAB;
2114 cachep->obj_offset += tmp_size - size;
2115 size = tmp_size;
2116 goto done;
2117 }
2118 }
1da177e4 2119 }
1da177e4
LT
2120#endif
2121
b03a017b
JK
2122 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2123 flags |= CFLGS_OBJFREELIST_SLAB;
2124 goto done;
2125 }
2126
158e319b 2127 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2128 flags |= CFLGS_OFF_SLAB;
158e319b 2129 goto done;
832a15d2 2130 }
1da177e4 2131
158e319b
JK
2132 if (set_on_slab_cache(cachep, size, flags))
2133 goto done;
1da177e4 2134
158e319b 2135 return -E2BIG;
1da177e4 2136
158e319b
JK
2137done:
2138 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2139 cachep->flags = flags;
a57a4988 2140 cachep->allocflags = __GFP_COMP;
4b51d669 2141 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2142 cachep->allocflags |= GFP_DMA;
3b0efdfa 2143 cachep->size = size;
6a2d7a95 2144 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2145
40b44137
JK
2146#if DEBUG
2147 /*
2148 * If we're going to use the generic kernel_map_pages()
2149 * poisoning, then it's going to smash the contents of
2150 * the redzone and userword anyhow, so switch them off.
2151 */
2152 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2153 (cachep->flags & SLAB_POISON) &&
2154 is_debug_pagealloc_cache(cachep))
2155 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2156#endif
2157
2158 if (OFF_SLAB(cachep)) {
158e319b
JK
2159 cachep->freelist_cache =
2160 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2161 }
1da177e4 2162
278b1bb1
CL
2163 err = setup_cpu_cache(cachep, gfp);
2164 if (err) {
52b4b950 2165 __kmem_cache_release(cachep);
278b1bb1 2166 return err;
2ed3a4ef 2167 }
1da177e4 2168
278b1bb1 2169 return 0;
1da177e4 2170}
1da177e4
LT
2171
2172#if DEBUG
2173static void check_irq_off(void)
2174{
2175 BUG_ON(!irqs_disabled());
2176}
2177
2178static void check_irq_on(void)
2179{
2180 BUG_ON(irqs_disabled());
2181}
2182
343e0d7a 2183static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2184{
2185#ifdef CONFIG_SMP
2186 check_irq_off();
18bf8541 2187 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2188#endif
2189}
e498be7d 2190
343e0d7a 2191static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2192{
2193#ifdef CONFIG_SMP
2194 check_irq_off();
18bf8541 2195 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2196#endif
2197}
2198
1da177e4
LT
2199#else
2200#define check_irq_off() do { } while(0)
2201#define check_irq_on() do { } while(0)
2202#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2203#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2204#endif
2205
ce8eb6c4 2206static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2207 struct array_cache *ac,
2208 int force, int node);
2209
1da177e4
LT
2210static void do_drain(void *arg)
2211{
a737b3e2 2212 struct kmem_cache *cachep = arg;
1da177e4 2213 struct array_cache *ac;
7d6e6d09 2214 int node = numa_mem_id();
18bf8541 2215 struct kmem_cache_node *n;
97654dfa 2216 LIST_HEAD(list);
1da177e4
LT
2217
2218 check_irq_off();
9a2dba4b 2219 ac = cpu_cache_get(cachep);
18bf8541
CL
2220 n = get_node(cachep, node);
2221 spin_lock(&n->list_lock);
97654dfa 2222 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2223 spin_unlock(&n->list_lock);
97654dfa 2224 slabs_destroy(cachep, &list);
1da177e4
LT
2225 ac->avail = 0;
2226}
2227
343e0d7a 2228static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2229{
ce8eb6c4 2230 struct kmem_cache_node *n;
e498be7d
CL
2231 int node;
2232
15c8b6c1 2233 on_each_cpu(do_drain, cachep, 1);
1da177e4 2234 check_irq_on();
18bf8541
CL
2235 for_each_kmem_cache_node(cachep, node, n)
2236 if (n->alien)
ce8eb6c4 2237 drain_alien_cache(cachep, n->alien);
a4523a8b 2238
18bf8541
CL
2239 for_each_kmem_cache_node(cachep, node, n)
2240 drain_array(cachep, n, n->shared, 1, node);
1da177e4
LT
2241}
2242
ed11d9eb
CL
2243/*
2244 * Remove slabs from the list of free slabs.
2245 * Specify the number of slabs to drain in tofree.
2246 *
2247 * Returns the actual number of slabs released.
2248 */
2249static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2250 struct kmem_cache_node *n, int tofree)
1da177e4 2251{
ed11d9eb
CL
2252 struct list_head *p;
2253 int nr_freed;
8456a648 2254 struct page *page;
1da177e4 2255
ed11d9eb 2256 nr_freed = 0;
ce8eb6c4 2257 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2258
ce8eb6c4
CL
2259 spin_lock_irq(&n->list_lock);
2260 p = n->slabs_free.prev;
2261 if (p == &n->slabs_free) {
2262 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2263 goto out;
2264 }
1da177e4 2265
8456a648 2266 page = list_entry(p, struct page, lru);
8456a648 2267 list_del(&page->lru);
ed11d9eb
CL
2268 /*
2269 * Safe to drop the lock. The slab is no longer linked
2270 * to the cache.
2271 */
ce8eb6c4
CL
2272 n->free_objects -= cache->num;
2273 spin_unlock_irq(&n->list_lock);
8456a648 2274 slab_destroy(cache, page);
ed11d9eb 2275 nr_freed++;
1da177e4 2276 }
ed11d9eb
CL
2277out:
2278 return nr_freed;
1da177e4
LT
2279}
2280
d6e0b7fa 2281int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
e498be7d 2282{
18bf8541
CL
2283 int ret = 0;
2284 int node;
ce8eb6c4 2285 struct kmem_cache_node *n;
e498be7d
CL
2286
2287 drain_cpu_caches(cachep);
2288
2289 check_irq_on();
18bf8541 2290 for_each_kmem_cache_node(cachep, node, n) {
0fa8103b 2291 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2292
ce8eb6c4
CL
2293 ret += !list_empty(&n->slabs_full) ||
2294 !list_empty(&n->slabs_partial);
e498be7d
CL
2295 }
2296 return (ret ? 1 : 0);
2297}
2298
945cf2b6 2299int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950
DS
2300{
2301 return __kmem_cache_shrink(cachep, false);
2302}
2303
2304void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2305{
12c3667f 2306 int i;
ce8eb6c4 2307 struct kmem_cache_node *n;
1da177e4 2308
bf0dea23 2309 free_percpu(cachep->cpu_cache);
1da177e4 2310
ce8eb6c4 2311 /* NUMA: free the node structures */
18bf8541
CL
2312 for_each_kmem_cache_node(cachep, i, n) {
2313 kfree(n->shared);
2314 free_alien_cache(n->alien);
2315 kfree(n);
2316 cachep->node[i] = NULL;
12c3667f 2317 }
1da177e4 2318}
1da177e4 2319
e5ac9c5a
RT
2320/*
2321 * Get the memory for a slab management obj.
5f0985bb
JZ
2322 *
2323 * For a slab cache when the slab descriptor is off-slab, the
2324 * slab descriptor can't come from the same cache which is being created,
2325 * Because if it is the case, that means we defer the creation of
2326 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2327 * And we eventually call down to __kmem_cache_create(), which
2328 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2329 * This is a "chicken-and-egg" problem.
2330 *
2331 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2332 * which are all initialized during kmem_cache_init().
e5ac9c5a 2333 */
7e007355 2334static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2335 struct page *page, int colour_off,
2336 gfp_t local_flags, int nodeid)
1da177e4 2337{
7e007355 2338 void *freelist;
0c3aa83e 2339 void *addr = page_address(page);
b28a02de 2340
2e6b3602
JK
2341 page->s_mem = addr + colour_off;
2342 page->active = 0;
2343
b03a017b
JK
2344 if (OBJFREELIST_SLAB(cachep))
2345 freelist = NULL;
2346 else if (OFF_SLAB(cachep)) {
1da177e4 2347 /* Slab management obj is off-slab. */
8456a648 2348 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2349 local_flags, nodeid);
8456a648 2350 if (!freelist)
1da177e4
LT
2351 return NULL;
2352 } else {
2e6b3602
JK
2353 /* We will use last bytes at the slab for freelist */
2354 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2355 cachep->freelist_size;
1da177e4 2356 }
2e6b3602 2357
8456a648 2358 return freelist;
1da177e4
LT
2359}
2360
7cc68973 2361static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2362{
a41adfaa 2363 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2364}
2365
2366static inline void set_free_obj(struct page *page,
7cc68973 2367 unsigned int idx, freelist_idx_t val)
e5c58dfd 2368{
a41adfaa 2369 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2370}
2371
10b2e9e8 2372static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2373{
10b2e9e8 2374#if DEBUG
1da177e4
LT
2375 int i;
2376
2377 for (i = 0; i < cachep->num; i++) {
8456a648 2378 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2379
1da177e4
LT
2380 if (cachep->flags & SLAB_STORE_USER)
2381 *dbg_userword(cachep, objp) = NULL;
2382
2383 if (cachep->flags & SLAB_RED_ZONE) {
2384 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2385 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2386 }
2387 /*
a737b3e2
AM
2388 * Constructors are not allowed to allocate memory from the same
2389 * cache which they are a constructor for. Otherwise, deadlock.
2390 * They must also be threaded.
1da177e4 2391 */
7ed2f9e6
AP
2392 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2393 kasan_unpoison_object_data(cachep,
2394 objp + obj_offset(cachep));
51cc5068 2395 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2396 kasan_poison_object_data(
2397 cachep, objp + obj_offset(cachep));
2398 }
1da177e4
LT
2399
2400 if (cachep->flags & SLAB_RED_ZONE) {
2401 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2402 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2403 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2404 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2405 }
40b44137
JK
2406 /* need to poison the objs? */
2407 if (cachep->flags & SLAB_POISON) {
2408 poison_obj(cachep, objp, POISON_FREE);
2409 slab_kernel_map(cachep, objp, 0, 0);
2410 }
10b2e9e8 2411 }
1da177e4 2412#endif
10b2e9e8
JK
2413}
2414
2415static void cache_init_objs(struct kmem_cache *cachep,
2416 struct page *page)
2417{
2418 int i;
7ed2f9e6 2419 void *objp;
10b2e9e8
JK
2420
2421 cache_init_objs_debug(cachep, page);
2422
b03a017b
JK
2423 if (OBJFREELIST_SLAB(cachep)) {
2424 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2425 obj_offset(cachep);
2426 }
2427
10b2e9e8
JK
2428 for (i = 0; i < cachep->num; i++) {
2429 /* constructor could break poison info */
7ed2f9e6
AP
2430 if (DEBUG == 0 && cachep->ctor) {
2431 objp = index_to_obj(cachep, page, i);
2432 kasan_unpoison_object_data(cachep, objp);
2433 cachep->ctor(objp);
2434 kasan_poison_object_data(cachep, objp);
2435 }
10b2e9e8 2436
e5c58dfd 2437 set_free_obj(page, i, i);
1da177e4 2438 }
1da177e4
LT
2439}
2440
343e0d7a 2441static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2442{
4b51d669
CL
2443 if (CONFIG_ZONE_DMA_FLAG) {
2444 if (flags & GFP_DMA)
a618e89f 2445 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2446 else
a618e89f 2447 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2448 }
1da177e4
LT
2449}
2450
260b61dd 2451static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2452{
b1cb0982 2453 void *objp;
78d382d7 2454
e5c58dfd 2455 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2456 page->active++;
78d382d7 2457
d31676df
JK
2458#if DEBUG
2459 if (cachep->flags & SLAB_STORE_USER)
2460 set_store_user_dirty(cachep);
2461#endif
2462
78d382d7
MD
2463 return objp;
2464}
2465
260b61dd
JK
2466static void slab_put_obj(struct kmem_cache *cachep,
2467 struct page *page, void *objp)
78d382d7 2468{
8456a648 2469 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2470#if DEBUG
16025177 2471 unsigned int i;
b1cb0982 2472
b1cb0982 2473 /* Verify double free bug */
8456a648 2474 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2475 if (get_free_obj(page, i) == objnr) {
1170532b 2476 pr_err("slab: double free detected in cache '%s', objp %p\n",
756a025f 2477 cachep->name, objp);
b1cb0982
JK
2478 BUG();
2479 }
78d382d7
MD
2480 }
2481#endif
8456a648 2482 page->active--;
b03a017b
JK
2483 if (!page->freelist)
2484 page->freelist = objp + obj_offset(cachep);
2485
e5c58dfd 2486 set_free_obj(page, page->active, objnr);
78d382d7
MD
2487}
2488
4776874f
PE
2489/*
2490 * Map pages beginning at addr to the given cache and slab. This is required
2491 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2492 * virtual address for kfree, ksize, and slab debugging.
4776874f 2493 */
8456a648 2494static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2495 void *freelist)
1da177e4 2496{
a57a4988 2497 page->slab_cache = cache;
8456a648 2498 page->freelist = freelist;
1da177e4
LT
2499}
2500
2501/*
2502 * Grow (by 1) the number of slabs within a cache. This is called by
2503 * kmem_cache_alloc() when there are no active objs left in a cache.
2504 */
3c517a61 2505static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2506 gfp_t flags, int nodeid, struct page *page)
1da177e4 2507{
7e007355 2508 void *freelist;
b28a02de
PE
2509 size_t offset;
2510 gfp_t local_flags;
ce8eb6c4 2511 struct kmem_cache_node *n;
1da177e4 2512
a737b3e2
AM
2513 /*
2514 * Be lazy and only check for valid flags here, keeping it out of the
2515 * critical path in kmem_cache_alloc().
1da177e4 2516 */
c871ac4e
AM
2517 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2518 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2519 BUG();
2520 }
6cb06229 2521 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2522
ce8eb6c4 2523 /* Take the node list lock to change the colour_next on this node */
1da177e4 2524 check_irq_off();
18bf8541 2525 n = get_node(cachep, nodeid);
ce8eb6c4 2526 spin_lock(&n->list_lock);
1da177e4
LT
2527
2528 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2529 offset = n->colour_next;
2530 n->colour_next++;
2531 if (n->colour_next >= cachep->colour)
2532 n->colour_next = 0;
2533 spin_unlock(&n->list_lock);
1da177e4 2534
2e1217cf 2535 offset *= cachep->colour_off;
1da177e4 2536
d0164adc 2537 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2538 local_irq_enable();
2539
2540 /*
2541 * The test for missing atomic flag is performed here, rather than
2542 * the more obvious place, simply to reduce the critical path length
2543 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2544 * will eventually be caught here (where it matters).
2545 */
2546 kmem_flagcheck(cachep, flags);
2547
a737b3e2
AM
2548 /*
2549 * Get mem for the objs. Attempt to allocate a physical page from
2550 * 'nodeid'.
e498be7d 2551 */
0c3aa83e
JK
2552 if (!page)
2553 page = kmem_getpages(cachep, local_flags, nodeid);
2554 if (!page)
1da177e4
LT
2555 goto failed;
2556
2557 /* Get slab management. */
8456a648 2558 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2559 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
b03a017b 2560 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2561 goto opps1;
2562
8456a648 2563 slab_map_pages(cachep, page, freelist);
1da177e4 2564
7ed2f9e6 2565 kasan_poison_slab(page);
8456a648 2566 cache_init_objs(cachep, page);
1da177e4 2567
d0164adc 2568 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2569 local_irq_disable();
2570 check_irq_off();
ce8eb6c4 2571 spin_lock(&n->list_lock);
1da177e4
LT
2572
2573 /* Make slab active. */
8456a648 2574 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2575 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2576 n->free_objects += cachep->num;
2577 spin_unlock(&n->list_lock);
1da177e4 2578 return 1;
a737b3e2 2579opps1:
0c3aa83e 2580 kmem_freepages(cachep, page);
a737b3e2 2581failed:
d0164adc 2582 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2583 local_irq_disable();
2584 return 0;
2585}
2586
2587#if DEBUG
2588
2589/*
2590 * Perform extra freeing checks:
2591 * - detect bad pointers.
2592 * - POISON/RED_ZONE checking
1da177e4
LT
2593 */
2594static void kfree_debugcheck(const void *objp)
2595{
1da177e4 2596 if (!virt_addr_valid(objp)) {
1170532b 2597 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2598 (unsigned long)objp);
2599 BUG();
1da177e4 2600 }
1da177e4
LT
2601}
2602
58ce1fd5
PE
2603static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2604{
b46b8f19 2605 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2606
2607 redzone1 = *dbg_redzone1(cache, obj);
2608 redzone2 = *dbg_redzone2(cache, obj);
2609
2610 /*
2611 * Redzone is ok.
2612 */
2613 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2614 return;
2615
2616 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2617 slab_error(cache, "double free detected");
2618 else
2619 slab_error(cache, "memory outside object was overwritten");
2620
1170532b
JP
2621 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2622 obj, redzone1, redzone2);
58ce1fd5
PE
2623}
2624
343e0d7a 2625static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2626 unsigned long caller)
1da177e4 2627{
1da177e4 2628 unsigned int objnr;
8456a648 2629 struct page *page;
1da177e4 2630
80cbd911
MW
2631 BUG_ON(virt_to_cache(objp) != cachep);
2632
3dafccf2 2633 objp -= obj_offset(cachep);
1da177e4 2634 kfree_debugcheck(objp);
b49af68f 2635 page = virt_to_head_page(objp);
1da177e4 2636
1da177e4 2637 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2638 verify_redzone_free(cachep, objp);
1da177e4
LT
2639 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2640 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2641 }
d31676df
JK
2642 if (cachep->flags & SLAB_STORE_USER) {
2643 set_store_user_dirty(cachep);
7c0cb9c6 2644 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2645 }
1da177e4 2646
8456a648 2647 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2648
2649 BUG_ON(objnr >= cachep->num);
8456a648 2650 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2651
1da177e4 2652 if (cachep->flags & SLAB_POISON) {
1da177e4 2653 poison_obj(cachep, objp, POISON_FREE);
40b44137 2654 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2655 }
2656 return objp;
2657}
2658
1da177e4
LT
2659#else
2660#define kfree_debugcheck(x) do { } while(0)
2661#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2662#endif
2663
b03a017b
JK
2664static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2665 void **list)
2666{
2667#if DEBUG
2668 void *next = *list;
2669 void *objp;
2670
2671 while (next) {
2672 objp = next - obj_offset(cachep);
2673 next = *(void **)next;
2674 poison_obj(cachep, objp, POISON_FREE);
2675 }
2676#endif
2677}
2678
d8410234 2679static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2680 struct kmem_cache_node *n, struct page *page,
2681 void **list)
d8410234
JK
2682{
2683 /* move slabp to correct slabp list: */
2684 list_del(&page->lru);
b03a017b 2685 if (page->active == cachep->num) {
d8410234 2686 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2687 if (OBJFREELIST_SLAB(cachep)) {
2688#if DEBUG
2689 /* Poisoning will be done without holding the lock */
2690 if (cachep->flags & SLAB_POISON) {
2691 void **objp = page->freelist;
2692
2693 *objp = *list;
2694 *list = objp;
2695 }
2696#endif
2697 page->freelist = NULL;
2698 }
2699 } else
d8410234
JK
2700 list_add(&page->lru, &n->slabs_partial);
2701}
2702
f68f8ddd
JK
2703/* Try to find non-pfmemalloc slab if needed */
2704static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2705 struct page *page, bool pfmemalloc)
2706{
2707 if (!page)
2708 return NULL;
2709
2710 if (pfmemalloc)
2711 return page;
2712
2713 if (!PageSlabPfmemalloc(page))
2714 return page;
2715
2716 /* No need to keep pfmemalloc slab if we have enough free objects */
2717 if (n->free_objects > n->free_limit) {
2718 ClearPageSlabPfmemalloc(page);
2719 return page;
2720 }
2721
2722 /* Move pfmemalloc slab to the end of list to speed up next search */
2723 list_del(&page->lru);
2724 if (!page->active)
2725 list_add_tail(&page->lru, &n->slabs_free);
2726 else
2727 list_add_tail(&page->lru, &n->slabs_partial);
2728
2729 list_for_each_entry(page, &n->slabs_partial, lru) {
2730 if (!PageSlabPfmemalloc(page))
2731 return page;
2732 }
2733
2734 list_for_each_entry(page, &n->slabs_free, lru) {
2735 if (!PageSlabPfmemalloc(page))
2736 return page;
2737 }
2738
2739 return NULL;
2740}
2741
2742static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2743{
2744 struct page *page;
2745
2746 page = list_first_entry_or_null(&n->slabs_partial,
2747 struct page, lru);
2748 if (!page) {
2749 n->free_touched = 1;
2750 page = list_first_entry_or_null(&n->slabs_free,
2751 struct page, lru);
2752 }
2753
f68f8ddd
JK
2754 if (sk_memalloc_socks())
2755 return get_valid_first_slab(n, page, pfmemalloc);
2756
7aa0d227
GT
2757 return page;
2758}
2759
f68f8ddd
JK
2760static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2761 struct kmem_cache_node *n, gfp_t flags)
2762{
2763 struct page *page;
2764 void *obj;
2765 void *list = NULL;
2766
2767 if (!gfp_pfmemalloc_allowed(flags))
2768 return NULL;
2769
2770 spin_lock(&n->list_lock);
2771 page = get_first_slab(n, true);
2772 if (!page) {
2773 spin_unlock(&n->list_lock);
2774 return NULL;
2775 }
2776
2777 obj = slab_get_obj(cachep, page);
2778 n->free_objects--;
2779
2780 fixup_slab_list(cachep, n, page, &list);
2781
2782 spin_unlock(&n->list_lock);
2783 fixup_objfreelist_debug(cachep, &list);
2784
2785 return obj;
2786}
2787
2788static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2789{
2790 int batchcount;
ce8eb6c4 2791 struct kmem_cache_node *n;
1da177e4 2792 struct array_cache *ac;
1ca4cb24 2793 int node;
b03a017b 2794 void *list = NULL;
1ca4cb24 2795
1da177e4 2796 check_irq_off();
7d6e6d09 2797 node = numa_mem_id();
f68f8ddd 2798
072bb0aa 2799retry:
9a2dba4b 2800 ac = cpu_cache_get(cachep);
1da177e4
LT
2801 batchcount = ac->batchcount;
2802 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2803 /*
2804 * If there was little recent activity on this cache, then
2805 * perform only a partial refill. Otherwise we could generate
2806 * refill bouncing.
1da177e4
LT
2807 */
2808 batchcount = BATCHREFILL_LIMIT;
2809 }
18bf8541 2810 n = get_node(cachep, node);
e498be7d 2811
ce8eb6c4
CL
2812 BUG_ON(ac->avail > 0 || !n);
2813 spin_lock(&n->list_lock);
1da177e4 2814
3ded175a 2815 /* See if we can refill from the shared array */
ce8eb6c4
CL
2816 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2817 n->shared->touched = 1;
3ded175a 2818 goto alloc_done;
44b57f1c 2819 }
3ded175a 2820
1da177e4 2821 while (batchcount > 0) {
8456a648 2822 struct page *page;
1da177e4 2823 /* Get slab alloc is to come from. */
f68f8ddd 2824 page = get_first_slab(n, false);
7aa0d227
GT
2825 if (!page)
2826 goto must_grow;
1da177e4 2827
1da177e4 2828 check_spinlock_acquired(cachep);
714b8171
PE
2829
2830 /*
2831 * The slab was either on partial or free list so
2832 * there must be at least one object available for
2833 * allocation.
2834 */
8456a648 2835 BUG_ON(page->active >= cachep->num);
714b8171 2836
8456a648 2837 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2838 STATS_INC_ALLOCED(cachep);
2839 STATS_INC_ACTIVE(cachep);
2840 STATS_SET_HIGH(cachep);
2841
f68f8ddd 2842 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
1da177e4 2843 }
1da177e4 2844
b03a017b 2845 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
2846 }
2847
a737b3e2 2848must_grow:
ce8eb6c4 2849 n->free_objects -= ac->avail;
a737b3e2 2850alloc_done:
ce8eb6c4 2851 spin_unlock(&n->list_lock);
b03a017b 2852 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2853
2854 if (unlikely(!ac->avail)) {
2855 int x;
f68f8ddd
JK
2856
2857 /* Check if we can use obj in pfmemalloc slab */
2858 if (sk_memalloc_socks()) {
2859 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2860
2861 if (obj)
2862 return obj;
2863 }
2864
4167e9b2 2865 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
e498be7d 2866
a737b3e2 2867 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2868 ac = cpu_cache_get(cachep);
51cd8e6f 2869 node = numa_mem_id();
072bb0aa
MG
2870
2871 /* no objects in sight? abort */
f68f8ddd 2872 if (!x && ac->avail == 0)
1da177e4
LT
2873 return NULL;
2874
a737b3e2 2875 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2876 goto retry;
2877 }
2878 ac->touched = 1;
072bb0aa 2879
f68f8ddd 2880 return ac->entry[--ac->avail];
1da177e4
LT
2881}
2882
a737b3e2
AM
2883static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2884 gfp_t flags)
1da177e4 2885{
d0164adc 2886 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
2887#if DEBUG
2888 kmem_flagcheck(cachep, flags);
2889#endif
2890}
2891
2892#if DEBUG
a737b3e2 2893static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2894 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2895{
b28a02de 2896 if (!objp)
1da177e4 2897 return objp;
b28a02de 2898 if (cachep->flags & SLAB_POISON) {
1da177e4 2899 check_poison_obj(cachep, objp);
40b44137 2900 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
2901 poison_obj(cachep, objp, POISON_INUSE);
2902 }
2903 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2904 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2905
2906 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2907 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2908 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 2909 slab_error(cachep, "double free, or memory outside object was overwritten");
1170532b
JP
2910 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2911 objp, *dbg_redzone1(cachep, objp),
2912 *dbg_redzone2(cachep, objp));
1da177e4
LT
2913 }
2914 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2915 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2916 }
03787301 2917
3dafccf2 2918 objp += obj_offset(cachep);
4f104934 2919 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2920 cachep->ctor(objp);
7ea466f2
TH
2921 if (ARCH_SLAB_MINALIGN &&
2922 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
1170532b 2923 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2924 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2925 }
1da177e4
LT
2926 return objp;
2927}
2928#else
2929#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2930#endif
2931
343e0d7a 2932static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2933{
b28a02de 2934 void *objp;
1da177e4
LT
2935 struct array_cache *ac;
2936
5c382300 2937 check_irq_off();
8a8b6502 2938
9a2dba4b 2939 ac = cpu_cache_get(cachep);
1da177e4 2940 if (likely(ac->avail)) {
1da177e4 2941 ac->touched = 1;
f68f8ddd 2942 objp = ac->entry[--ac->avail];
072bb0aa 2943
f68f8ddd
JK
2944 STATS_INC_ALLOCHIT(cachep);
2945 goto out;
1da177e4 2946 }
072bb0aa
MG
2947
2948 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 2949 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
2950 /*
2951 * the 'ac' may be updated by cache_alloc_refill(),
2952 * and kmemleak_erase() requires its correct value.
2953 */
2954 ac = cpu_cache_get(cachep);
2955
2956out:
d5cff635
CM
2957 /*
2958 * To avoid a false negative, if an object that is in one of the
2959 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2960 * treat the array pointers as a reference to the object.
2961 */
f3d8b53a
O
2962 if (objp)
2963 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
2964 return objp;
2965}
2966
e498be7d 2967#ifdef CONFIG_NUMA
c61afb18 2968/*
2ad654bc 2969 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
2970 *
2971 * If we are in_interrupt, then process context, including cpusets and
2972 * mempolicy, may not apply and should not be used for allocation policy.
2973 */
2974static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2975{
2976 int nid_alloc, nid_here;
2977
765c4507 2978 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 2979 return NULL;
7d6e6d09 2980 nid_alloc = nid_here = numa_mem_id();
c61afb18 2981 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 2982 nid_alloc = cpuset_slab_spread_node();
c61afb18 2983 else if (current->mempolicy)
2a389610 2984 nid_alloc = mempolicy_slab_node();
c61afb18 2985 if (nid_alloc != nid_here)
8b98c169 2986 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
2987 return NULL;
2988}
2989
765c4507
CL
2990/*
2991 * Fallback function if there was no memory available and no objects on a
3c517a61 2992 * certain node and fall back is permitted. First we scan all the
6a67368c 2993 * available node for available objects. If that fails then we
3c517a61
CL
2994 * perform an allocation without specifying a node. This allows the page
2995 * allocator to do its reclaim / fallback magic. We then insert the
2996 * slab into the proper nodelist and then allocate from it.
765c4507 2997 */
8c8cc2c1 2998static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 2999{
8c8cc2c1
PE
3000 struct zonelist *zonelist;
3001 gfp_t local_flags;
dd1a239f 3002 struct zoneref *z;
54a6eb5c
MG
3003 struct zone *zone;
3004 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3005 void *obj = NULL;
3c517a61 3006 int nid;
cc9a6c87 3007 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3008
3009 if (flags & __GFP_THISNODE)
3010 return NULL;
3011
6cb06229 3012 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3013
cc9a6c87 3014retry_cpuset:
d26914d1 3015 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3016 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3017
3c517a61
CL
3018retry:
3019 /*
3020 * Look through allowed nodes for objects available
3021 * from existing per node queues.
3022 */
54a6eb5c
MG
3023 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3024 nid = zone_to_nid(zone);
aedb0eb1 3025
061d7074 3026 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3027 get_node(cache, nid) &&
3028 get_node(cache, nid)->free_objects) {
3c517a61 3029 obj = ____cache_alloc_node(cache,
4167e9b2 3030 gfp_exact_node(flags), nid);
481c5346
CL
3031 if (obj)
3032 break;
3033 }
3c517a61
CL
3034 }
3035
cfce6604 3036 if (!obj) {
3c517a61
CL
3037 /*
3038 * This allocation will be performed within the constraints
3039 * of the current cpuset / memory policy requirements.
3040 * We may trigger various forms of reclaim on the allowed
3041 * set and go into memory reserves if necessary.
3042 */
0c3aa83e
JK
3043 struct page *page;
3044
d0164adc 3045 if (gfpflags_allow_blocking(local_flags))
dd47ea75
CL
3046 local_irq_enable();
3047 kmem_flagcheck(cache, flags);
0c3aa83e 3048 page = kmem_getpages(cache, local_flags, numa_mem_id());
d0164adc 3049 if (gfpflags_allow_blocking(local_flags))
dd47ea75 3050 local_irq_disable();
0c3aa83e 3051 if (page) {
3c517a61
CL
3052 /*
3053 * Insert into the appropriate per node queues
3054 */
0c3aa83e
JK
3055 nid = page_to_nid(page);
3056 if (cache_grow(cache, flags, nid, page)) {
3c517a61 3057 obj = ____cache_alloc_node(cache,
4167e9b2 3058 gfp_exact_node(flags), nid);
3c517a61
CL
3059 if (!obj)
3060 /*
3061 * Another processor may allocate the
3062 * objects in the slab since we are
3063 * not holding any locks.
3064 */
3065 goto retry;
3066 } else {
b6a60451 3067 /* cache_grow already freed obj */
3c517a61
CL
3068 obj = NULL;
3069 }
3070 }
aedb0eb1 3071 }
cc9a6c87 3072
d26914d1 3073 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3074 goto retry_cpuset;
765c4507
CL
3075 return obj;
3076}
3077
e498be7d
CL
3078/*
3079 * A interface to enable slab creation on nodeid
1da177e4 3080 */
8b98c169 3081static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3082 int nodeid)
e498be7d 3083{
8456a648 3084 struct page *page;
ce8eb6c4 3085 struct kmem_cache_node *n;
b28a02de 3086 void *obj;
b03a017b 3087 void *list = NULL;
b28a02de
PE
3088 int x;
3089
7c3fbbdd 3090 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3091 n = get_node(cachep, nodeid);
ce8eb6c4 3092 BUG_ON(!n);
b28a02de 3093
a737b3e2 3094retry:
ca3b9b91 3095 check_irq_off();
ce8eb6c4 3096 spin_lock(&n->list_lock);
f68f8ddd 3097 page = get_first_slab(n, false);
7aa0d227
GT
3098 if (!page)
3099 goto must_grow;
b28a02de 3100
b28a02de 3101 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3102
3103 STATS_INC_NODEALLOCS(cachep);
3104 STATS_INC_ACTIVE(cachep);
3105 STATS_SET_HIGH(cachep);
3106
8456a648 3107 BUG_ON(page->active == cachep->num);
b28a02de 3108
260b61dd 3109 obj = slab_get_obj(cachep, page);
ce8eb6c4 3110 n->free_objects--;
b28a02de 3111
b03a017b 3112 fixup_slab_list(cachep, n, page, &list);
e498be7d 3113
ce8eb6c4 3114 spin_unlock(&n->list_lock);
b03a017b 3115 fixup_objfreelist_debug(cachep, &list);
b28a02de 3116 goto done;
e498be7d 3117
a737b3e2 3118must_grow:
ce8eb6c4 3119 spin_unlock(&n->list_lock);
4167e9b2 3120 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
765c4507
CL
3121 if (x)
3122 goto retry;
1da177e4 3123
8c8cc2c1 3124 return fallback_alloc(cachep, flags);
e498be7d 3125
a737b3e2 3126done:
b28a02de 3127 return obj;
e498be7d 3128}
8c8cc2c1 3129
8c8cc2c1 3130static __always_inline void *
48356303 3131slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3132 unsigned long caller)
8c8cc2c1
PE
3133{
3134 unsigned long save_flags;
3135 void *ptr;
7d6e6d09 3136 int slab_node = numa_mem_id();
8c8cc2c1 3137
dcce284a 3138 flags &= gfp_allowed_mask;
011eceaf
JDB
3139 cachep = slab_pre_alloc_hook(cachep, flags);
3140 if (unlikely(!cachep))
824ebef1
AM
3141 return NULL;
3142
8c8cc2c1
PE
3143 cache_alloc_debugcheck_before(cachep, flags);
3144 local_irq_save(save_flags);
3145
eacbbae3 3146 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3147 nodeid = slab_node;
8c8cc2c1 3148
18bf8541 3149 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3150 /* Node not bootstrapped yet */
3151 ptr = fallback_alloc(cachep, flags);
3152 goto out;
3153 }
3154
7d6e6d09 3155 if (nodeid == slab_node) {
8c8cc2c1
PE
3156 /*
3157 * Use the locally cached objects if possible.
3158 * However ____cache_alloc does not allow fallback
3159 * to other nodes. It may fail while we still have
3160 * objects on other nodes available.
3161 */
3162 ptr = ____cache_alloc(cachep, flags);
3163 if (ptr)
3164 goto out;
3165 }
3166 /* ___cache_alloc_node can fall back to other nodes */
3167 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3168 out:
3169 local_irq_restore(save_flags);
3170 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3171
d5e3ed66
JDB
3172 if (unlikely(flags & __GFP_ZERO) && ptr)
3173 memset(ptr, 0, cachep->object_size);
d07dbea4 3174
d5e3ed66 3175 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3176 return ptr;
3177}
3178
3179static __always_inline void *
3180__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3181{
3182 void *objp;
3183
2ad654bc 3184 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3185 objp = alternate_node_alloc(cache, flags);
3186 if (objp)
3187 goto out;
3188 }
3189 objp = ____cache_alloc(cache, flags);
3190
3191 /*
3192 * We may just have run out of memory on the local node.
3193 * ____cache_alloc_node() knows how to locate memory on other nodes
3194 */
7d6e6d09
LS
3195 if (!objp)
3196 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3197
3198 out:
3199 return objp;
3200}
3201#else
3202
3203static __always_inline void *
3204__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3205{
3206 return ____cache_alloc(cachep, flags);
3207}
3208
3209#endif /* CONFIG_NUMA */
3210
3211static __always_inline void *
48356303 3212slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3213{
3214 unsigned long save_flags;
3215 void *objp;
3216
dcce284a 3217 flags &= gfp_allowed_mask;
011eceaf
JDB
3218 cachep = slab_pre_alloc_hook(cachep, flags);
3219 if (unlikely(!cachep))
824ebef1
AM
3220 return NULL;
3221
8c8cc2c1
PE
3222 cache_alloc_debugcheck_before(cachep, flags);
3223 local_irq_save(save_flags);
3224 objp = __do_cache_alloc(cachep, flags);
3225 local_irq_restore(save_flags);
3226 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3227 prefetchw(objp);
3228
d5e3ed66
JDB
3229 if (unlikely(flags & __GFP_ZERO) && objp)
3230 memset(objp, 0, cachep->object_size);
d07dbea4 3231
d5e3ed66 3232 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3233 return objp;
3234}
e498be7d
CL
3235
3236/*
5f0985bb 3237 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3238 * @list: List of detached free slabs should be freed by caller
e498be7d 3239 */
97654dfa
JK
3240static void free_block(struct kmem_cache *cachep, void **objpp,
3241 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3242{
3243 int i;
25c063fb 3244 struct kmem_cache_node *n = get_node(cachep, node);
1da177e4
LT
3245
3246 for (i = 0; i < nr_objects; i++) {
072bb0aa 3247 void *objp;
8456a648 3248 struct page *page;
1da177e4 3249
072bb0aa
MG
3250 objp = objpp[i];
3251
8456a648 3252 page = virt_to_head_page(objp);
8456a648 3253 list_del(&page->lru);
ff69416e 3254 check_spinlock_acquired_node(cachep, node);
260b61dd 3255 slab_put_obj(cachep, page, objp);
1da177e4 3256 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3257 n->free_objects++;
1da177e4
LT
3258
3259 /* fixup slab chains */
8456a648 3260 if (page->active == 0) {
ce8eb6c4
CL
3261 if (n->free_objects > n->free_limit) {
3262 n->free_objects -= cachep->num;
97654dfa 3263 list_add_tail(&page->lru, list);
1da177e4 3264 } else {
8456a648 3265 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3266 }
3267 } else {
3268 /* Unconditionally move a slab to the end of the
3269 * partial list on free - maximum time for the
3270 * other objects to be freed, too.
3271 */
8456a648 3272 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3273 }
3274 }
3275}
3276
343e0d7a 3277static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3278{
3279 int batchcount;
ce8eb6c4 3280 struct kmem_cache_node *n;
7d6e6d09 3281 int node = numa_mem_id();
97654dfa 3282 LIST_HEAD(list);
1da177e4
LT
3283
3284 batchcount = ac->batchcount;
260b61dd 3285
1da177e4 3286 check_irq_off();
18bf8541 3287 n = get_node(cachep, node);
ce8eb6c4
CL
3288 spin_lock(&n->list_lock);
3289 if (n->shared) {
3290 struct array_cache *shared_array = n->shared;
b28a02de 3291 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3292 if (max) {
3293 if (batchcount > max)
3294 batchcount = max;
e498be7d 3295 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3296 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3297 shared_array->avail += batchcount;
3298 goto free_done;
3299 }
3300 }
3301
97654dfa 3302 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3303free_done:
1da177e4
LT
3304#if STATS
3305 {
3306 int i = 0;
73c0219d 3307 struct page *page;
1da177e4 3308
73c0219d 3309 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3310 BUG_ON(page->active);
1da177e4
LT
3311
3312 i++;
1da177e4
LT
3313 }
3314 STATS_SET_FREEABLE(cachep, i);
3315 }
3316#endif
ce8eb6c4 3317 spin_unlock(&n->list_lock);
97654dfa 3318 slabs_destroy(cachep, &list);
1da177e4 3319 ac->avail -= batchcount;
a737b3e2 3320 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3321}
3322
3323/*
a737b3e2
AM
3324 * Release an obj back to its cache. If the obj has a constructed state, it must
3325 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3326 */
a947eb95 3327static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3328 unsigned long caller)
1da177e4 3329{
9a2dba4b 3330 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4 3331
7ed2f9e6
AP
3332 kasan_slab_free(cachep, objp);
3333
1da177e4 3334 check_irq_off();
d5cff635 3335 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3336 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3337
8c138bc0 3338 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3339
1807a1aa
SS
3340 /*
3341 * Skip calling cache_free_alien() when the platform is not numa.
3342 * This will avoid cache misses that happen while accessing slabp (which
3343 * is per page memory reference) to get nodeid. Instead use a global
3344 * variable to skip the call, which is mostly likely to be present in
3345 * the cache.
3346 */
b6e68bc1 3347 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3348 return;
3349
3d880194 3350 if (ac->avail < ac->limit) {
1da177e4 3351 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3352 } else {
3353 STATS_INC_FREEMISS(cachep);
3354 cache_flusharray(cachep, ac);
1da177e4 3355 }
42c8c99c 3356
f68f8ddd
JK
3357 if (sk_memalloc_socks()) {
3358 struct page *page = virt_to_head_page(objp);
3359
3360 if (unlikely(PageSlabPfmemalloc(page))) {
3361 cache_free_pfmemalloc(cachep, page, objp);
3362 return;
3363 }
3364 }
3365
3366 ac->entry[ac->avail++] = objp;
1da177e4
LT
3367}
3368
3369/**
3370 * kmem_cache_alloc - Allocate an object
3371 * @cachep: The cache to allocate from.
3372 * @flags: See kmalloc().
3373 *
3374 * Allocate an object from this cache. The flags are only relevant
3375 * if the cache has no available objects.
3376 */
343e0d7a 3377void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3378{
48356303 3379 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3380
7ed2f9e6 3381 kasan_slab_alloc(cachep, ret);
ca2b84cb 3382 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3383 cachep->object_size, cachep->size, flags);
36555751
EGM
3384
3385 return ret;
1da177e4
LT
3386}
3387EXPORT_SYMBOL(kmem_cache_alloc);
3388
7b0501dd
JDB
3389static __always_inline void
3390cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3391 size_t size, void **p, unsigned long caller)
3392{
3393 size_t i;
3394
3395 for (i = 0; i < size; i++)
3396 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3397}
3398
865762a8 3399int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3400 void **p)
484748f0 3401{
2a777eac
JDB
3402 size_t i;
3403
3404 s = slab_pre_alloc_hook(s, flags);
3405 if (!s)
3406 return 0;
3407
3408 cache_alloc_debugcheck_before(s, flags);
3409
3410 local_irq_disable();
3411 for (i = 0; i < size; i++) {
3412 void *objp = __do_cache_alloc(s, flags);
3413
2a777eac
JDB
3414 if (unlikely(!objp))
3415 goto error;
3416 p[i] = objp;
3417 }
3418 local_irq_enable();
3419
7b0501dd
JDB
3420 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3421
2a777eac
JDB
3422 /* Clear memory outside IRQ disabled section */
3423 if (unlikely(flags & __GFP_ZERO))
3424 for (i = 0; i < size; i++)
3425 memset(p[i], 0, s->object_size);
3426
3427 slab_post_alloc_hook(s, flags, size, p);
3428 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3429 return size;
3430error:
3431 local_irq_enable();
7b0501dd 3432 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3433 slab_post_alloc_hook(s, flags, i, p);
3434 __kmem_cache_free_bulk(s, i, p);
3435 return 0;
484748f0
CL
3436}
3437EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3438
0f24f128 3439#ifdef CONFIG_TRACING
85beb586 3440void *
4052147c 3441kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3442{
85beb586
SR
3443 void *ret;
3444
48356303 3445 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3446
7ed2f9e6 3447 kasan_kmalloc(cachep, ret, size);
85beb586 3448 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3449 size, cachep->size, flags);
85beb586 3450 return ret;
36555751 3451}
85beb586 3452EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3453#endif
3454
1da177e4 3455#ifdef CONFIG_NUMA
d0d04b78
ZL
3456/**
3457 * kmem_cache_alloc_node - Allocate an object on the specified node
3458 * @cachep: The cache to allocate from.
3459 * @flags: See kmalloc().
3460 * @nodeid: node number of the target node.
3461 *
3462 * Identical to kmem_cache_alloc but it will allocate memory on the given
3463 * node, which can improve the performance for cpu bound structures.
3464 *
3465 * Fallback to other node is possible if __GFP_THISNODE is not set.
3466 */
8b98c169
CH
3467void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3468{
48356303 3469 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3470
7ed2f9e6 3471 kasan_slab_alloc(cachep, ret);
ca2b84cb 3472 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3473 cachep->object_size, cachep->size,
ca2b84cb 3474 flags, nodeid);
36555751
EGM
3475
3476 return ret;
8b98c169 3477}
1da177e4
LT
3478EXPORT_SYMBOL(kmem_cache_alloc_node);
3479
0f24f128 3480#ifdef CONFIG_TRACING
4052147c 3481void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3482 gfp_t flags,
4052147c
EG
3483 int nodeid,
3484 size_t size)
36555751 3485{
85beb586
SR
3486 void *ret;
3487
592f4145 3488 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7ed2f9e6 3489 kasan_kmalloc(cachep, ret, size);
85beb586 3490 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3491 size, cachep->size,
85beb586
SR
3492 flags, nodeid);
3493 return ret;
36555751 3494}
85beb586 3495EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3496#endif
3497
8b98c169 3498static __always_inline void *
7c0cb9c6 3499__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3500{
343e0d7a 3501 struct kmem_cache *cachep;
7ed2f9e6 3502 void *ret;
97e2bde4 3503
2c59dd65 3504 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3505 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3506 return cachep;
7ed2f9e6
AP
3507 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3508 kasan_kmalloc(cachep, ret, size);
3509
3510 return ret;
97e2bde4 3511}
8b98c169 3512
8b98c169
CH
3513void *__kmalloc_node(size_t size, gfp_t flags, int node)
3514{
7c0cb9c6 3515 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3516}
dbe5e69d 3517EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3518
3519void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3520 int node, unsigned long caller)
8b98c169 3521{
7c0cb9c6 3522 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3523}
3524EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3525#endif /* CONFIG_NUMA */
1da177e4
LT
3526
3527/**
800590f5 3528 * __do_kmalloc - allocate memory
1da177e4 3529 * @size: how many bytes of memory are required.
800590f5 3530 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3531 * @caller: function caller for debug tracking of the caller
1da177e4 3532 */
7fd6b141 3533static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3534 unsigned long caller)
1da177e4 3535{
343e0d7a 3536 struct kmem_cache *cachep;
36555751 3537 void *ret;
1da177e4 3538
2c59dd65 3539 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3540 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3541 return cachep;
48356303 3542 ret = slab_alloc(cachep, flags, caller);
36555751 3543
7ed2f9e6 3544 kasan_kmalloc(cachep, ret, size);
7c0cb9c6 3545 trace_kmalloc(caller, ret,
3b0efdfa 3546 size, cachep->size, flags);
36555751
EGM
3547
3548 return ret;
7fd6b141
PE
3549}
3550
7fd6b141
PE
3551void *__kmalloc(size_t size, gfp_t flags)
3552{
7c0cb9c6 3553 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3554}
3555EXPORT_SYMBOL(__kmalloc);
3556
ce71e27c 3557void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3558{
7c0cb9c6 3559 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3560}
3561EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3562
1da177e4
LT
3563/**
3564 * kmem_cache_free - Deallocate an object
3565 * @cachep: The cache the allocation was from.
3566 * @objp: The previously allocated object.
3567 *
3568 * Free an object which was previously allocated from this
3569 * cache.
3570 */
343e0d7a 3571void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3572{
3573 unsigned long flags;
b9ce5ef4
GC
3574 cachep = cache_from_obj(cachep, objp);
3575 if (!cachep)
3576 return;
1da177e4
LT
3577
3578 local_irq_save(flags);
d97d476b 3579 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3580 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3581 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3582 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3583 local_irq_restore(flags);
36555751 3584
ca2b84cb 3585 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3586}
3587EXPORT_SYMBOL(kmem_cache_free);
3588
e6cdb58d
JDB
3589void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3590{
3591 struct kmem_cache *s;
3592 size_t i;
3593
3594 local_irq_disable();
3595 for (i = 0; i < size; i++) {
3596 void *objp = p[i];
3597
ca257195
JDB
3598 if (!orig_s) /* called via kfree_bulk */
3599 s = virt_to_cache(objp);
3600 else
3601 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3602
3603 debug_check_no_locks_freed(objp, s->object_size);
3604 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3605 debug_check_no_obj_freed(objp, s->object_size);
3606
3607 __cache_free(s, objp, _RET_IP_);
3608 }
3609 local_irq_enable();
3610
3611 /* FIXME: add tracing */
3612}
3613EXPORT_SYMBOL(kmem_cache_free_bulk);
3614
1da177e4
LT
3615/**
3616 * kfree - free previously allocated memory
3617 * @objp: pointer returned by kmalloc.
3618 *
80e93eff
PE
3619 * If @objp is NULL, no operation is performed.
3620 *
1da177e4
LT
3621 * Don't free memory not originally allocated by kmalloc()
3622 * or you will run into trouble.
3623 */
3624void kfree(const void *objp)
3625{
343e0d7a 3626 struct kmem_cache *c;
1da177e4
LT
3627 unsigned long flags;
3628
2121db74
PE
3629 trace_kfree(_RET_IP_, objp);
3630
6cb8f913 3631 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3632 return;
3633 local_irq_save(flags);
3634 kfree_debugcheck(objp);
6ed5eb22 3635 c = virt_to_cache(objp);
8c138bc0
CL
3636 debug_check_no_locks_freed(objp, c->object_size);
3637
3638 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3639 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3640 local_irq_restore(flags);
3641}
3642EXPORT_SYMBOL(kfree);
3643
e498be7d 3644/*
ce8eb6c4 3645 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3646 */
5f0985bb 3647static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3648{
3649 int node;
ce8eb6c4 3650 struct kmem_cache_node *n;
cafeb02e 3651 struct array_cache *new_shared;
c8522a3a 3652 struct alien_cache **new_alien = NULL;
e498be7d 3653
9c09a95c 3654 for_each_online_node(node) {
cafeb02e 3655
b455def2
L
3656 if (use_alien_caches) {
3657 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3658 if (!new_alien)
3659 goto fail;
3660 }
cafeb02e 3661
63109846
ED
3662 new_shared = NULL;
3663 if (cachep->shared) {
3664 new_shared = alloc_arraycache(node,
0718dc2a 3665 cachep->shared*cachep->batchcount,
83b519e8 3666 0xbaadf00d, gfp);
63109846
ED
3667 if (!new_shared) {
3668 free_alien_cache(new_alien);
3669 goto fail;
3670 }
0718dc2a 3671 }
cafeb02e 3672
18bf8541 3673 n = get_node(cachep, node);
ce8eb6c4
CL
3674 if (n) {
3675 struct array_cache *shared = n->shared;
97654dfa 3676 LIST_HEAD(list);
cafeb02e 3677
ce8eb6c4 3678 spin_lock_irq(&n->list_lock);
e498be7d 3679
cafeb02e 3680 if (shared)
0718dc2a 3681 free_block(cachep, shared->entry,
97654dfa 3682 shared->avail, node, &list);
e498be7d 3683
ce8eb6c4
CL
3684 n->shared = new_shared;
3685 if (!n->alien) {
3686 n->alien = new_alien;
e498be7d
CL
3687 new_alien = NULL;
3688 }
ce8eb6c4 3689 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3690 cachep->batchcount + cachep->num;
ce8eb6c4 3691 spin_unlock_irq(&n->list_lock);
97654dfa 3692 slabs_destroy(cachep, &list);
cafeb02e 3693 kfree(shared);
e498be7d
CL
3694 free_alien_cache(new_alien);
3695 continue;
3696 }
ce8eb6c4
CL
3697 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3698 if (!n) {
0718dc2a
CL
3699 free_alien_cache(new_alien);
3700 kfree(new_shared);
e498be7d 3701 goto fail;
0718dc2a 3702 }
e498be7d 3703
ce8eb6c4 3704 kmem_cache_node_init(n);
5f0985bb
JZ
3705 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3706 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
ce8eb6c4
CL
3707 n->shared = new_shared;
3708 n->alien = new_alien;
3709 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3710 cachep->batchcount + cachep->num;
ce8eb6c4 3711 cachep->node[node] = n;
e498be7d 3712 }
cafeb02e 3713 return 0;
0718dc2a 3714
a737b3e2 3715fail:
3b0efdfa 3716 if (!cachep->list.next) {
0718dc2a
CL
3717 /* Cache is not active yet. Roll back what we did */
3718 node--;
3719 while (node >= 0) {
18bf8541
CL
3720 n = get_node(cachep, node);
3721 if (n) {
ce8eb6c4
CL
3722 kfree(n->shared);
3723 free_alien_cache(n->alien);
3724 kfree(n);
6a67368c 3725 cachep->node[node] = NULL;
0718dc2a
CL
3726 }
3727 node--;
3728 }
3729 }
cafeb02e 3730 return -ENOMEM;
e498be7d
CL
3731}
3732
18004c5d 3733/* Always called with the slab_mutex held */
943a451a 3734static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3735 int batchcount, int shared, gfp_t gfp)
1da177e4 3736{
bf0dea23
JK
3737 struct array_cache __percpu *cpu_cache, *prev;
3738 int cpu;
1da177e4 3739
bf0dea23
JK
3740 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3741 if (!cpu_cache)
d2e7b7d0
SS
3742 return -ENOMEM;
3743
bf0dea23
JK
3744 prev = cachep->cpu_cache;
3745 cachep->cpu_cache = cpu_cache;
3746 kick_all_cpus_sync();
e498be7d 3747
1da177e4 3748 check_irq_on();
1da177e4
LT
3749 cachep->batchcount = batchcount;
3750 cachep->limit = limit;
e498be7d 3751 cachep->shared = shared;
1da177e4 3752
bf0dea23
JK
3753 if (!prev)
3754 goto alloc_node;
3755
3756 for_each_online_cpu(cpu) {
97654dfa 3757 LIST_HEAD(list);
18bf8541
CL
3758 int node;
3759 struct kmem_cache_node *n;
bf0dea23 3760 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3761
bf0dea23 3762 node = cpu_to_mem(cpu);
18bf8541
CL
3763 n = get_node(cachep, node);
3764 spin_lock_irq(&n->list_lock);
bf0dea23 3765 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3766 spin_unlock_irq(&n->list_lock);
97654dfa 3767 slabs_destroy(cachep, &list);
1da177e4 3768 }
bf0dea23
JK
3769 free_percpu(prev);
3770
3771alloc_node:
5f0985bb 3772 return alloc_kmem_cache_node(cachep, gfp);
1da177e4
LT
3773}
3774
943a451a
GC
3775static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3776 int batchcount, int shared, gfp_t gfp)
3777{
3778 int ret;
426589f5 3779 struct kmem_cache *c;
943a451a
GC
3780
3781 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3782
3783 if (slab_state < FULL)
3784 return ret;
3785
3786 if ((ret < 0) || !is_root_cache(cachep))
3787 return ret;
3788
426589f5
VD
3789 lockdep_assert_held(&slab_mutex);
3790 for_each_memcg_cache(c, cachep) {
3791 /* return value determined by the root cache only */
3792 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3793 }
3794
3795 return ret;
3796}
3797
18004c5d 3798/* Called with slab_mutex held always */
83b519e8 3799static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3800{
3801 int err;
943a451a
GC
3802 int limit = 0;
3803 int shared = 0;
3804 int batchcount = 0;
3805
3806 if (!is_root_cache(cachep)) {
3807 struct kmem_cache *root = memcg_root_cache(cachep);
3808 limit = root->limit;
3809 shared = root->shared;
3810 batchcount = root->batchcount;
3811 }
1da177e4 3812
943a451a
GC
3813 if (limit && shared && batchcount)
3814 goto skip_setup;
a737b3e2
AM
3815 /*
3816 * The head array serves three purposes:
1da177e4
LT
3817 * - create a LIFO ordering, i.e. return objects that are cache-warm
3818 * - reduce the number of spinlock operations.
a737b3e2 3819 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3820 * bufctl chains: array operations are cheaper.
3821 * The numbers are guessed, we should auto-tune as described by
3822 * Bonwick.
3823 */
3b0efdfa 3824 if (cachep->size > 131072)
1da177e4 3825 limit = 1;
3b0efdfa 3826 else if (cachep->size > PAGE_SIZE)
1da177e4 3827 limit = 8;
3b0efdfa 3828 else if (cachep->size > 1024)
1da177e4 3829 limit = 24;
3b0efdfa 3830 else if (cachep->size > 256)
1da177e4
LT
3831 limit = 54;
3832 else
3833 limit = 120;
3834
a737b3e2
AM
3835 /*
3836 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3837 * allocation behaviour: Most allocs on one cpu, most free operations
3838 * on another cpu. For these cases, an efficient object passing between
3839 * cpus is necessary. This is provided by a shared array. The array
3840 * replaces Bonwick's magazine layer.
3841 * On uniprocessor, it's functionally equivalent (but less efficient)
3842 * to a larger limit. Thus disabled by default.
3843 */
3844 shared = 0;
3b0efdfa 3845 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3846 shared = 8;
1da177e4
LT
3847
3848#if DEBUG
a737b3e2
AM
3849 /*
3850 * With debugging enabled, large batchcount lead to excessively long
3851 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3852 */
3853 if (limit > 32)
3854 limit = 32;
3855#endif
943a451a
GC
3856 batchcount = (limit + 1) / 2;
3857skip_setup:
3858 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4 3859 if (err)
1170532b 3860 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3861 cachep->name, -err);
2ed3a4ef 3862 return err;
1da177e4
LT
3863}
3864
1b55253a 3865/*
ce8eb6c4
CL
3866 * Drain an array if it contains any elements taking the node lock only if
3867 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3868 * if drain_array() is used on the shared array.
1b55253a 3869 */
ce8eb6c4 3870static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 3871 struct array_cache *ac, int force, int node)
1da177e4 3872{
97654dfa 3873 LIST_HEAD(list);
1da177e4
LT
3874 int tofree;
3875
1b55253a
CL
3876 if (!ac || !ac->avail)
3877 return;
1da177e4
LT
3878 if (ac->touched && !force) {
3879 ac->touched = 0;
b18e7e65 3880 } else {
ce8eb6c4 3881 spin_lock_irq(&n->list_lock);
b18e7e65
CL
3882 if (ac->avail) {
3883 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3884 if (tofree > ac->avail)
3885 tofree = (ac->avail + 1) / 2;
97654dfa 3886 free_block(cachep, ac->entry, tofree, node, &list);
b18e7e65
CL
3887 ac->avail -= tofree;
3888 memmove(ac->entry, &(ac->entry[tofree]),
3889 sizeof(void *) * ac->avail);
3890 }
ce8eb6c4 3891 spin_unlock_irq(&n->list_lock);
97654dfa 3892 slabs_destroy(cachep, &list);
1da177e4
LT
3893 }
3894}
3895
3896/**
3897 * cache_reap - Reclaim memory from caches.
05fb6bf0 3898 * @w: work descriptor
1da177e4
LT
3899 *
3900 * Called from workqueue/eventd every few seconds.
3901 * Purpose:
3902 * - clear the per-cpu caches for this CPU.
3903 * - return freeable pages to the main free memory pool.
3904 *
a737b3e2
AM
3905 * If we cannot acquire the cache chain mutex then just give up - we'll try
3906 * again on the next iteration.
1da177e4 3907 */
7c5cae36 3908static void cache_reap(struct work_struct *w)
1da177e4 3909{
7a7c381d 3910 struct kmem_cache *searchp;
ce8eb6c4 3911 struct kmem_cache_node *n;
7d6e6d09 3912 int node = numa_mem_id();
bf6aede7 3913 struct delayed_work *work = to_delayed_work(w);
1da177e4 3914
18004c5d 3915 if (!mutex_trylock(&slab_mutex))
1da177e4 3916 /* Give up. Setup the next iteration. */
7c5cae36 3917 goto out;
1da177e4 3918
18004c5d 3919 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3920 check_irq_on();
3921
35386e3b 3922 /*
ce8eb6c4 3923 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3924 * have established with reasonable certainty that
3925 * we can do some work if the lock was obtained.
3926 */
18bf8541 3927 n = get_node(searchp, node);
35386e3b 3928
ce8eb6c4 3929 reap_alien(searchp, n);
1da177e4 3930
ce8eb6c4 3931 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 3932
35386e3b
CL
3933 /*
3934 * These are racy checks but it does not matter
3935 * if we skip one check or scan twice.
3936 */
ce8eb6c4 3937 if (time_after(n->next_reap, jiffies))
35386e3b 3938 goto next;
1da177e4 3939
5f0985bb 3940 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 3941
ce8eb6c4 3942 drain_array(searchp, n, n->shared, 0, node);
1da177e4 3943
ce8eb6c4
CL
3944 if (n->free_touched)
3945 n->free_touched = 0;
ed11d9eb
CL
3946 else {
3947 int freed;
1da177e4 3948
ce8eb6c4 3949 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
3950 5 * searchp->num - 1) / (5 * searchp->num));
3951 STATS_ADD_REAPED(searchp, freed);
3952 }
35386e3b 3953next:
1da177e4
LT
3954 cond_resched();
3955 }
3956 check_irq_on();
18004c5d 3957 mutex_unlock(&slab_mutex);
8fce4d8e 3958 next_reap_node();
7c5cae36 3959out:
a737b3e2 3960 /* Set up the next iteration */
5f0985bb 3961 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
3962}
3963
158a9624 3964#ifdef CONFIG_SLABINFO
0d7561c6 3965void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 3966{
8456a648 3967 struct page *page;
b28a02de
PE
3968 unsigned long active_objs;
3969 unsigned long num_objs;
3970 unsigned long active_slabs = 0;
3971 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3972 const char *name;
1da177e4 3973 char *error = NULL;
e498be7d 3974 int node;
ce8eb6c4 3975 struct kmem_cache_node *n;
1da177e4 3976
1da177e4
LT
3977 active_objs = 0;
3978 num_slabs = 0;
18bf8541 3979 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 3980
ca3b9b91 3981 check_irq_on();
ce8eb6c4 3982 spin_lock_irq(&n->list_lock);
e498be7d 3983
8456a648
JK
3984 list_for_each_entry(page, &n->slabs_full, lru) {
3985 if (page->active != cachep->num && !error)
e498be7d
CL
3986 error = "slabs_full accounting error";
3987 active_objs += cachep->num;
3988 active_slabs++;
3989 }
8456a648
JK
3990 list_for_each_entry(page, &n->slabs_partial, lru) {
3991 if (page->active == cachep->num && !error)
106a74e1 3992 error = "slabs_partial accounting error";
8456a648 3993 if (!page->active && !error)
106a74e1 3994 error = "slabs_partial accounting error";
8456a648 3995 active_objs += page->active;
e498be7d
CL
3996 active_slabs++;
3997 }
8456a648
JK
3998 list_for_each_entry(page, &n->slabs_free, lru) {
3999 if (page->active && !error)
106a74e1 4000 error = "slabs_free accounting error";
e498be7d
CL
4001 num_slabs++;
4002 }
ce8eb6c4
CL
4003 free_objects += n->free_objects;
4004 if (n->shared)
4005 shared_avail += n->shared->avail;
e498be7d 4006
ce8eb6c4 4007 spin_unlock_irq(&n->list_lock);
1da177e4 4008 }
b28a02de
PE
4009 num_slabs += active_slabs;
4010 num_objs = num_slabs * cachep->num;
e498be7d 4011 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4012 error = "free_objects accounting error";
4013
b28a02de 4014 name = cachep->name;
1da177e4 4015 if (error)
1170532b 4016 pr_err("slab: cache %s error: %s\n", name, error);
1da177e4 4017
0d7561c6
GC
4018 sinfo->active_objs = active_objs;
4019 sinfo->num_objs = num_objs;
4020 sinfo->active_slabs = active_slabs;
4021 sinfo->num_slabs = num_slabs;
4022 sinfo->shared_avail = shared_avail;
4023 sinfo->limit = cachep->limit;
4024 sinfo->batchcount = cachep->batchcount;
4025 sinfo->shared = cachep->shared;
4026 sinfo->objects_per_slab = cachep->num;
4027 sinfo->cache_order = cachep->gfporder;
4028}
4029
4030void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4031{
1da177e4 4032#if STATS
ce8eb6c4 4033 { /* node stats */
1da177e4
LT
4034 unsigned long high = cachep->high_mark;
4035 unsigned long allocs = cachep->num_allocations;
4036 unsigned long grown = cachep->grown;
4037 unsigned long reaped = cachep->reaped;
4038 unsigned long errors = cachep->errors;
4039 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4040 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4041 unsigned long node_frees = cachep->node_frees;
fb7faf33 4042 unsigned long overflows = cachep->node_overflow;
1da177e4 4043
756a025f 4044 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4045 allocs, high, grown,
4046 reaped, errors, max_freeable, node_allocs,
4047 node_frees, overflows);
1da177e4
LT
4048 }
4049 /* cpu stats */
4050 {
4051 unsigned long allochit = atomic_read(&cachep->allochit);
4052 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4053 unsigned long freehit = atomic_read(&cachep->freehit);
4054 unsigned long freemiss = atomic_read(&cachep->freemiss);
4055
4056 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4057 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4058 }
4059#endif
1da177e4
LT
4060}
4061
1da177e4
LT
4062#define MAX_SLABINFO_WRITE 128
4063/**
4064 * slabinfo_write - Tuning for the slab allocator
4065 * @file: unused
4066 * @buffer: user buffer
4067 * @count: data length
4068 * @ppos: unused
4069 */
b7454ad3 4070ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4071 size_t count, loff_t *ppos)
1da177e4 4072{
b28a02de 4073 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4074 int limit, batchcount, shared, res;
7a7c381d 4075 struct kmem_cache *cachep;
b28a02de 4076
1da177e4
LT
4077 if (count > MAX_SLABINFO_WRITE)
4078 return -EINVAL;
4079 if (copy_from_user(&kbuf, buffer, count))
4080 return -EFAULT;
b28a02de 4081 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4082
4083 tmp = strchr(kbuf, ' ');
4084 if (!tmp)
4085 return -EINVAL;
4086 *tmp = '\0';
4087 tmp++;
4088 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4089 return -EINVAL;
4090
4091 /* Find the cache in the chain of caches. */
18004c5d 4092 mutex_lock(&slab_mutex);
1da177e4 4093 res = -EINVAL;
18004c5d 4094 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4095 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4096 if (limit < 1 || batchcount < 1 ||
4097 batchcount > limit || shared < 0) {
e498be7d 4098 res = 0;
1da177e4 4099 } else {
e498be7d 4100 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4101 batchcount, shared,
4102 GFP_KERNEL);
1da177e4
LT
4103 }
4104 break;
4105 }
4106 }
18004c5d 4107 mutex_unlock(&slab_mutex);
1da177e4
LT
4108 if (res >= 0)
4109 res = count;
4110 return res;
4111}
871751e2
AV
4112
4113#ifdef CONFIG_DEBUG_SLAB_LEAK
4114
871751e2
AV
4115static inline int add_caller(unsigned long *n, unsigned long v)
4116{
4117 unsigned long *p;
4118 int l;
4119 if (!v)
4120 return 1;
4121 l = n[1];
4122 p = n + 2;
4123 while (l) {
4124 int i = l/2;
4125 unsigned long *q = p + 2 * i;
4126 if (*q == v) {
4127 q[1]++;
4128 return 1;
4129 }
4130 if (*q > v) {
4131 l = i;
4132 } else {
4133 p = q + 2;
4134 l -= i + 1;
4135 }
4136 }
4137 if (++n[1] == n[0])
4138 return 0;
4139 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4140 p[0] = v;
4141 p[1] = 1;
4142 return 1;
4143}
4144
8456a648
JK
4145static void handle_slab(unsigned long *n, struct kmem_cache *c,
4146 struct page *page)
871751e2
AV
4147{
4148 void *p;
d31676df
JK
4149 int i, j;
4150 unsigned long v;
b1cb0982 4151
871751e2
AV
4152 if (n[0] == n[1])
4153 return;
8456a648 4154 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4155 bool active = true;
4156
4157 for (j = page->active; j < c->num; j++) {
4158 if (get_free_obj(page, j) == i) {
4159 active = false;
4160 break;
4161 }
4162 }
4163
4164 if (!active)
871751e2 4165 continue;
b1cb0982 4166
d31676df
JK
4167 /*
4168 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4169 * mapping is established when actual object allocation and
4170 * we could mistakenly access the unmapped object in the cpu
4171 * cache.
4172 */
4173 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4174 continue;
4175
4176 if (!add_caller(n, v))
871751e2
AV
4177 return;
4178 }
4179}
4180
4181static void show_symbol(struct seq_file *m, unsigned long address)
4182{
4183#ifdef CONFIG_KALLSYMS
871751e2 4184 unsigned long offset, size;
9281acea 4185 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4186
a5c43dae 4187 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4188 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4189 if (modname[0])
871751e2
AV
4190 seq_printf(m, " [%s]", modname);
4191 return;
4192 }
4193#endif
4194 seq_printf(m, "%p", (void *)address);
4195}
4196
4197static int leaks_show(struct seq_file *m, void *p)
4198{
0672aa7c 4199 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4200 struct page *page;
ce8eb6c4 4201 struct kmem_cache_node *n;
871751e2 4202 const char *name;
db845067 4203 unsigned long *x = m->private;
871751e2
AV
4204 int node;
4205 int i;
4206
4207 if (!(cachep->flags & SLAB_STORE_USER))
4208 return 0;
4209 if (!(cachep->flags & SLAB_RED_ZONE))
4210 return 0;
4211
d31676df
JK
4212 /*
4213 * Set store_user_clean and start to grab stored user information
4214 * for all objects on this cache. If some alloc/free requests comes
4215 * during the processing, information would be wrong so restart
4216 * whole processing.
4217 */
4218 do {
4219 set_store_user_clean(cachep);
4220 drain_cpu_caches(cachep);
4221
4222 x[1] = 0;
871751e2 4223
d31676df 4224 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4225
d31676df
JK
4226 check_irq_on();
4227 spin_lock_irq(&n->list_lock);
871751e2 4228
d31676df
JK
4229 list_for_each_entry(page, &n->slabs_full, lru)
4230 handle_slab(x, cachep, page);
4231 list_for_each_entry(page, &n->slabs_partial, lru)
4232 handle_slab(x, cachep, page);
4233 spin_unlock_irq(&n->list_lock);
4234 }
4235 } while (!is_store_user_clean(cachep));
871751e2 4236
871751e2 4237 name = cachep->name;
db845067 4238 if (x[0] == x[1]) {
871751e2 4239 /* Increase the buffer size */
18004c5d 4240 mutex_unlock(&slab_mutex);
db845067 4241 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4242 if (!m->private) {
4243 /* Too bad, we are really out */
db845067 4244 m->private = x;
18004c5d 4245 mutex_lock(&slab_mutex);
871751e2
AV
4246 return -ENOMEM;
4247 }
db845067
CL
4248 *(unsigned long *)m->private = x[0] * 2;
4249 kfree(x);
18004c5d 4250 mutex_lock(&slab_mutex);
871751e2
AV
4251 /* Now make sure this entry will be retried */
4252 m->count = m->size;
4253 return 0;
4254 }
db845067
CL
4255 for (i = 0; i < x[1]; i++) {
4256 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4257 show_symbol(m, x[2*i+2]);
871751e2
AV
4258 seq_putc(m, '\n');
4259 }
d2e7b7d0 4260
871751e2
AV
4261 return 0;
4262}
4263
a0ec95a8 4264static const struct seq_operations slabstats_op = {
1df3b26f 4265 .start = slab_start,
276a2439
WL
4266 .next = slab_next,
4267 .stop = slab_stop,
871751e2
AV
4268 .show = leaks_show,
4269};
a0ec95a8
AD
4270
4271static int slabstats_open(struct inode *inode, struct file *file)
4272{
b208ce32
RJ
4273 unsigned long *n;
4274
4275 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4276 if (!n)
4277 return -ENOMEM;
4278
4279 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4280
4281 return 0;
a0ec95a8
AD
4282}
4283
4284static const struct file_operations proc_slabstats_operations = {
4285 .open = slabstats_open,
4286 .read = seq_read,
4287 .llseek = seq_lseek,
4288 .release = seq_release_private,
4289};
4290#endif
4291
4292static int __init slab_proc_init(void)
4293{
4294#ifdef CONFIG_DEBUG_SLAB_LEAK
4295 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4296#endif
a0ec95a8
AD
4297 return 0;
4298}
4299module_init(slab_proc_init);
1da177e4
LT
4300#endif
4301
00e145b6
MS
4302/**
4303 * ksize - get the actual amount of memory allocated for a given object
4304 * @objp: Pointer to the object
4305 *
4306 * kmalloc may internally round up allocations and return more memory
4307 * than requested. ksize() can be used to determine the actual amount of
4308 * memory allocated. The caller may use this additional memory, even though
4309 * a smaller amount of memory was initially specified with the kmalloc call.
4310 * The caller must guarantee that objp points to a valid object previously
4311 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4312 * must not be freed during the duration of the call.
4313 */
fd76bab2 4314size_t ksize(const void *objp)
1da177e4 4315{
7ed2f9e6
AP
4316 size_t size;
4317
ef8b4520
CL
4318 BUG_ON(!objp);
4319 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4320 return 0;
1da177e4 4321
7ed2f9e6
AP
4322 size = virt_to_cache(objp)->object_size;
4323 /* We assume that ksize callers could use the whole allocated area,
4324 * so we need to unpoison this area.
4325 */
4326 kasan_krealloc(objp, size);
4327
4328 return size;
1da177e4 4329}
b1aabecd 4330EXPORT_SYMBOL(ksize);