block: remove export for blk_queue_bio
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
55782138
LZ
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/block.h>
1da177e4 38
8324aa91 39#include "blk.h"
5efd6113 40#include "blk-cgroup.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 48
a73f730d
TH
49DEFINE_IDA(blk_queue_ida);
50
1da177e4
LT
51/*
52 * For the allocated request tables
53 */
320ae51f 54struct kmem_cache *request_cachep = NULL;
1da177e4
LT
55
56/*
57 * For queue allocation
58 */
6728cb0e 59struct kmem_cache *blk_requestq_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4 65
8324aa91 66void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
67{
68 int nr;
69
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
74
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
79}
80
1da177e4
LT
81/**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
84 *
85 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
86 * backing_dev_info. This function can only be called if @bdev is opened
87 * and the return value is never NULL.
1da177e4
LT
88 */
89struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90{
165125e1 91 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 92
ff9ea323 93 return &q->backing_dev_info;
1da177e4 94}
1da177e4
LT
95EXPORT_SYMBOL(blk_get_backing_dev_info);
96
2a4aa30c 97void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 98{
1afb20f3
FT
99 memset(rq, 0, sizeof(*rq));
100
1da177e4 101 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 102 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 103 rq->cpu = -1;
63a71386 104 rq->q = q;
a2dec7b3 105 rq->__sector = (sector_t) -1;
2e662b65
JA
106 INIT_HLIST_NODE(&rq->hash);
107 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 108 rq->cmd = rq->__cmd;
e2494e1b 109 rq->cmd_len = BLK_MAX_CDB;
63a71386 110 rq->tag = -1;
b243ddcb 111 rq->start_time = jiffies;
9195291e 112 set_start_time_ns(rq);
09e099d4 113 rq->part = NULL;
1da177e4 114}
2a4aa30c 115EXPORT_SYMBOL(blk_rq_init);
1da177e4 116
5bb23a68
N
117static void req_bio_endio(struct request *rq, struct bio *bio,
118 unsigned int nbytes, int error)
1da177e4 119{
143a87f4
TH
120 if (error)
121 clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 error = -EIO;
797e7dbb 124
143a87f4
TH
125 if (unlikely(rq->cmd_flags & REQ_QUIET))
126 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 127
f79ea416 128 bio_advance(bio, nbytes);
7ba1ba12 129
143a87f4 130 /* don't actually finish bio if it's part of flush sequence */
4f024f37 131 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
143a87f4 132 bio_endio(bio, error);
1da177e4 133}
1da177e4 134
1da177e4
LT
135void blk_dump_rq_flags(struct request *rq, char *msg)
136{
137 int bit;
138
5953316d 139 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 140 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 141 (unsigned long long) rq->cmd_flags);
1da177e4 142
83096ebf
TH
143 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
144 (unsigned long long)blk_rq_pos(rq),
145 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
146 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
147 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 148
33659ebb 149 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 150 printk(KERN_INFO " cdb: ");
d34c87e4 151 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
152 printk("%02x ", rq->cmd[bit]);
153 printk("\n");
154 }
155}
1da177e4
LT
156EXPORT_SYMBOL(blk_dump_rq_flags);
157
3cca6dc1 158static void blk_delay_work(struct work_struct *work)
1da177e4 159{
3cca6dc1 160 struct request_queue *q;
1da177e4 161
3cca6dc1
JA
162 q = container_of(work, struct request_queue, delay_work.work);
163 spin_lock_irq(q->queue_lock);
24ecfbe2 164 __blk_run_queue(q);
3cca6dc1 165 spin_unlock_irq(q->queue_lock);
1da177e4 166}
1da177e4
LT
167
168/**
3cca6dc1
JA
169 * blk_delay_queue - restart queueing after defined interval
170 * @q: The &struct request_queue in question
171 * @msecs: Delay in msecs
1da177e4
LT
172 *
173 * Description:
3cca6dc1
JA
174 * Sometimes queueing needs to be postponed for a little while, to allow
175 * resources to come back. This function will make sure that queueing is
70460571 176 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
177 */
178void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 179{
70460571
BVA
180 if (likely(!blk_queue_dead(q)))
181 queue_delayed_work(kblockd_workqueue, &q->delay_work,
182 msecs_to_jiffies(msecs));
2ad8b1ef 183}
3cca6dc1 184EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 185
1da177e4
LT
186/**
187 * blk_start_queue - restart a previously stopped queue
165125e1 188 * @q: The &struct request_queue in question
1da177e4
LT
189 *
190 * Description:
191 * blk_start_queue() will clear the stop flag on the queue, and call
192 * the request_fn for the queue if it was in a stopped state when
193 * entered. Also see blk_stop_queue(). Queue lock must be held.
194 **/
165125e1 195void blk_start_queue(struct request_queue *q)
1da177e4 196{
a038e253
PBG
197 WARN_ON(!irqs_disabled());
198
75ad23bc 199 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 200 __blk_run_queue(q);
1da177e4 201}
1da177e4
LT
202EXPORT_SYMBOL(blk_start_queue);
203
204/**
205 * blk_stop_queue - stop a queue
165125e1 206 * @q: The &struct request_queue in question
1da177e4
LT
207 *
208 * Description:
209 * The Linux block layer assumes that a block driver will consume all
210 * entries on the request queue when the request_fn strategy is called.
211 * Often this will not happen, because of hardware limitations (queue
212 * depth settings). If a device driver gets a 'queue full' response,
213 * or if it simply chooses not to queue more I/O at one point, it can
214 * call this function to prevent the request_fn from being called until
215 * the driver has signalled it's ready to go again. This happens by calling
216 * blk_start_queue() to restart queue operations. Queue lock must be held.
217 **/
165125e1 218void blk_stop_queue(struct request_queue *q)
1da177e4 219{
136b5721 220 cancel_delayed_work(&q->delay_work);
75ad23bc 221 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
222}
223EXPORT_SYMBOL(blk_stop_queue);
224
225/**
226 * blk_sync_queue - cancel any pending callbacks on a queue
227 * @q: the queue
228 *
229 * Description:
230 * The block layer may perform asynchronous callback activity
231 * on a queue, such as calling the unplug function after a timeout.
232 * A block device may call blk_sync_queue to ensure that any
233 * such activity is cancelled, thus allowing it to release resources
59c51591 234 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
235 * that its ->make_request_fn will not re-add plugging prior to calling
236 * this function.
237 *
da527770 238 * This function does not cancel any asynchronous activity arising
da3dae54 239 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 240 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 241 *
1da177e4
LT
242 */
243void blk_sync_queue(struct request_queue *q)
244{
70ed28b9 245 del_timer_sync(&q->timeout);
f04c1fe7
ML
246
247 if (q->mq_ops) {
248 struct blk_mq_hw_ctx *hctx;
249 int i;
250
70f4db63
CH
251 queue_for_each_hw_ctx(q, hctx, i) {
252 cancel_delayed_work_sync(&hctx->run_work);
253 cancel_delayed_work_sync(&hctx->delay_work);
254 }
f04c1fe7
ML
255 } else {
256 cancel_delayed_work_sync(&q->delay_work);
257 }
1da177e4
LT
258}
259EXPORT_SYMBOL(blk_sync_queue);
260
c246e80d
BVA
261/**
262 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
263 * @q: The queue to run
264 *
265 * Description:
266 * Invoke request handling on a queue if there are any pending requests.
267 * May be used to restart request handling after a request has completed.
268 * This variant runs the queue whether or not the queue has been
269 * stopped. Must be called with the queue lock held and interrupts
270 * disabled. See also @blk_run_queue.
271 */
272inline void __blk_run_queue_uncond(struct request_queue *q)
273{
274 if (unlikely(blk_queue_dead(q)))
275 return;
276
24faf6f6
BVA
277 /*
278 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
279 * the queue lock internally. As a result multiple threads may be
280 * running such a request function concurrently. Keep track of the
281 * number of active request_fn invocations such that blk_drain_queue()
282 * can wait until all these request_fn calls have finished.
283 */
284 q->request_fn_active++;
c246e80d 285 q->request_fn(q);
24faf6f6 286 q->request_fn_active--;
c246e80d
BVA
287}
288
1da177e4 289/**
80a4b58e 290 * __blk_run_queue - run a single device queue
1da177e4 291 * @q: The queue to run
80a4b58e
JA
292 *
293 * Description:
294 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 295 * held and interrupts disabled.
1da177e4 296 */
24ecfbe2 297void __blk_run_queue(struct request_queue *q)
1da177e4 298{
a538cd03
TH
299 if (unlikely(blk_queue_stopped(q)))
300 return;
301
c246e80d 302 __blk_run_queue_uncond(q);
75ad23bc
NP
303}
304EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 305
24ecfbe2
CH
306/**
307 * blk_run_queue_async - run a single device queue in workqueue context
308 * @q: The queue to run
309 *
310 * Description:
311 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 312 * of us. The caller must hold the queue lock.
24ecfbe2
CH
313 */
314void blk_run_queue_async(struct request_queue *q)
315{
70460571 316 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 317 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 318}
c21e6beb 319EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 320
75ad23bc
NP
321/**
322 * blk_run_queue - run a single device queue
323 * @q: The queue to run
80a4b58e
JA
324 *
325 * Description:
326 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 327 * May be used to restart queueing when a request has completed.
75ad23bc
NP
328 */
329void blk_run_queue(struct request_queue *q)
330{
331 unsigned long flags;
332
333 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 334 __blk_run_queue(q);
1da177e4
LT
335 spin_unlock_irqrestore(q->queue_lock, flags);
336}
337EXPORT_SYMBOL(blk_run_queue);
338
165125e1 339void blk_put_queue(struct request_queue *q)
483f4afc
AV
340{
341 kobject_put(&q->kobj);
342}
d86e0e83 343EXPORT_SYMBOL(blk_put_queue);
483f4afc 344
e3c78ca5 345/**
807592a4 346 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 347 * @q: queue to drain
c9a929dd 348 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 349 *
c9a929dd
TH
350 * Drain requests from @q. If @drain_all is set, all requests are drained.
351 * If not, only ELVPRIV requests are drained. The caller is responsible
352 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 353 */
807592a4
BVA
354static void __blk_drain_queue(struct request_queue *q, bool drain_all)
355 __releases(q->queue_lock)
356 __acquires(q->queue_lock)
e3c78ca5 357{
458f27a9
AH
358 int i;
359
807592a4
BVA
360 lockdep_assert_held(q->queue_lock);
361
e3c78ca5 362 while (true) {
481a7d64 363 bool drain = false;
e3c78ca5 364
b855b04a
TH
365 /*
366 * The caller might be trying to drain @q before its
367 * elevator is initialized.
368 */
369 if (q->elevator)
370 elv_drain_elevator(q);
371
5efd6113 372 blkcg_drain_queue(q);
e3c78ca5 373
4eabc941
TH
374 /*
375 * This function might be called on a queue which failed
b855b04a
TH
376 * driver init after queue creation or is not yet fully
377 * active yet. Some drivers (e.g. fd and loop) get unhappy
378 * in such cases. Kick queue iff dispatch queue has
379 * something on it and @q has request_fn set.
4eabc941 380 */
b855b04a 381 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 382 __blk_run_queue(q);
c9a929dd 383
8a5ecdd4 384 drain |= q->nr_rqs_elvpriv;
24faf6f6 385 drain |= q->request_fn_active;
481a7d64
TH
386
387 /*
388 * Unfortunately, requests are queued at and tracked from
389 * multiple places and there's no single counter which can
390 * be drained. Check all the queues and counters.
391 */
392 if (drain_all) {
e97c293c 393 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
394 drain |= !list_empty(&q->queue_head);
395 for (i = 0; i < 2; i++) {
8a5ecdd4 396 drain |= q->nr_rqs[i];
481a7d64 397 drain |= q->in_flight[i];
7c94e1c1
ML
398 if (fq)
399 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
400 }
401 }
e3c78ca5 402
481a7d64 403 if (!drain)
e3c78ca5 404 break;
807592a4
BVA
405
406 spin_unlock_irq(q->queue_lock);
407
e3c78ca5 408 msleep(10);
807592a4
BVA
409
410 spin_lock_irq(q->queue_lock);
e3c78ca5 411 }
458f27a9
AH
412
413 /*
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
417 */
418 if (q->request_fn) {
a051661c
TH
419 struct request_list *rl;
420
a051661c
TH
421 blk_queue_for_each_rl(rl, q)
422 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423 wake_up_all(&rl->wait[i]);
458f27a9 424 }
e3c78ca5
TH
425}
426
d732580b
TH
427/**
428 * blk_queue_bypass_start - enter queue bypass mode
429 * @q: queue of interest
430 *
431 * In bypass mode, only the dispatch FIFO queue of @q is used. This
432 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 433 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
434 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
435 * inside queue or RCU read lock.
d732580b
TH
436 */
437void blk_queue_bypass_start(struct request_queue *q)
438{
439 spin_lock_irq(q->queue_lock);
776687bc 440 q->bypass_depth++;
d732580b
TH
441 queue_flag_set(QUEUE_FLAG_BYPASS, q);
442 spin_unlock_irq(q->queue_lock);
443
776687bc
TH
444 /*
445 * Queues start drained. Skip actual draining till init is
446 * complete. This avoids lenghty delays during queue init which
447 * can happen many times during boot.
448 */
449 if (blk_queue_init_done(q)) {
807592a4
BVA
450 spin_lock_irq(q->queue_lock);
451 __blk_drain_queue(q, false);
452 spin_unlock_irq(q->queue_lock);
453
b82d4b19
TH
454 /* ensure blk_queue_bypass() is %true inside RCU read lock */
455 synchronize_rcu();
456 }
d732580b
TH
457}
458EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
459
460/**
461 * blk_queue_bypass_end - leave queue bypass mode
462 * @q: queue of interest
463 *
464 * Leave bypass mode and restore the normal queueing behavior.
465 */
466void blk_queue_bypass_end(struct request_queue *q)
467{
468 spin_lock_irq(q->queue_lock);
469 if (!--q->bypass_depth)
470 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
471 WARN_ON_ONCE(q->bypass_depth < 0);
472 spin_unlock_irq(q->queue_lock);
473}
474EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
475
aed3ea94
JA
476void blk_set_queue_dying(struct request_queue *q)
477{
478 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
479
480 if (q->mq_ops)
481 blk_mq_wake_waiters(q);
482 else {
483 struct request_list *rl;
484
485 blk_queue_for_each_rl(rl, q) {
486 if (rl->rq_pool) {
487 wake_up(&rl->wait[BLK_RW_SYNC]);
488 wake_up(&rl->wait[BLK_RW_ASYNC]);
489 }
490 }
491 }
492}
493EXPORT_SYMBOL_GPL(blk_set_queue_dying);
494
c9a929dd
TH
495/**
496 * blk_cleanup_queue - shutdown a request queue
497 * @q: request queue to shutdown
498 *
c246e80d
BVA
499 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
500 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 501 */
6728cb0e 502void blk_cleanup_queue(struct request_queue *q)
483f4afc 503{
c9a929dd 504 spinlock_t *lock = q->queue_lock;
e3335de9 505
3f3299d5 506 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 507 mutex_lock(&q->sysfs_lock);
aed3ea94 508 blk_set_queue_dying(q);
c9a929dd 509 spin_lock_irq(lock);
6ecf23af 510
80fd9979 511 /*
3f3299d5 512 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
513 * that, unlike blk_queue_bypass_start(), we aren't performing
514 * synchronize_rcu() after entering bypass mode to avoid the delay
515 * as some drivers create and destroy a lot of queues while
516 * probing. This is still safe because blk_release_queue() will be
517 * called only after the queue refcnt drops to zero and nothing,
518 * RCU or not, would be traversing the queue by then.
519 */
6ecf23af
TH
520 q->bypass_depth++;
521 queue_flag_set(QUEUE_FLAG_BYPASS, q);
522
c9a929dd
TH
523 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
524 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 525 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
526 spin_unlock_irq(lock);
527 mutex_unlock(&q->sysfs_lock);
528
c246e80d
BVA
529 /*
530 * Drain all requests queued before DYING marking. Set DEAD flag to
531 * prevent that q->request_fn() gets invoked after draining finished.
532 */
43a5e4e2 533 if (q->mq_ops) {
780db207 534 blk_mq_freeze_queue(q);
43a5e4e2
ML
535 spin_lock_irq(lock);
536 } else {
537 spin_lock_irq(lock);
538 __blk_drain_queue(q, true);
539 }
c246e80d 540 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 541 spin_unlock_irq(lock);
c9a929dd
TH
542
543 /* @q won't process any more request, flush async actions */
544 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
545 blk_sync_queue(q);
546
45a9c9d9
BVA
547 if (q->mq_ops)
548 blk_mq_free_queue(q);
549
5e5cfac0
AH
550 spin_lock_irq(lock);
551 if (q->queue_lock != &q->__queue_lock)
552 q->queue_lock = &q->__queue_lock;
553 spin_unlock_irq(lock);
554
6cd18e71
N
555 bdi_destroy(&q->backing_dev_info);
556
c9a929dd 557 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
558 blk_put_queue(q);
559}
1da177e4
LT
560EXPORT_SYMBOL(blk_cleanup_queue);
561
271508db
DR
562/* Allocate memory local to the request queue */
563static void *alloc_request_struct(gfp_t gfp_mask, void *data)
564{
565 int nid = (int)(long)data;
566 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
567}
568
569static void free_request_struct(void *element, void *unused)
570{
571 kmem_cache_free(request_cachep, element);
572}
573
5b788ce3
TH
574int blk_init_rl(struct request_list *rl, struct request_queue *q,
575 gfp_t gfp_mask)
1da177e4 576{
1abec4fd
MS
577 if (unlikely(rl->rq_pool))
578 return 0;
579
5b788ce3 580 rl->q = q;
1faa16d2
JA
581 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
582 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
583 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
584 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 585
271508db
DR
586 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
587 free_request_struct,
588 (void *)(long)q->node, gfp_mask,
589 q->node);
1da177e4
LT
590 if (!rl->rq_pool)
591 return -ENOMEM;
592
593 return 0;
594}
595
5b788ce3
TH
596void blk_exit_rl(struct request_list *rl)
597{
598 if (rl->rq_pool)
599 mempool_destroy(rl->rq_pool);
600}
601
165125e1 602struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 603{
c304a51b 604 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
605}
606EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 607
165125e1 608struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 609{
165125e1 610 struct request_queue *q;
e0bf68dd 611 int err;
1946089a 612
8324aa91 613 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 614 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
615 if (!q)
616 return NULL;
617
00380a40 618 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 619 if (q->id < 0)
3d2936f4 620 goto fail_q;
a73f730d 621
0989a025
JA
622 q->backing_dev_info.ra_pages =
623 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
624 q->backing_dev_info.state = 0;
b4caecd4 625 q->backing_dev_info.capabilities = 0;
d993831f 626 q->backing_dev_info.name = "block";
5151412d 627 q->node = node_id;
0989a025 628
e0bf68dd 629 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
630 if (err)
631 goto fail_id;
e0bf68dd 632
31373d09
MG
633 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
634 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 635 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 636 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 637 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 638 INIT_LIST_HEAD(&q->icq_list);
4eef3049 639#ifdef CONFIG_BLK_CGROUP
e8989fae 640 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 641#endif
3cca6dc1 642 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 643
8324aa91 644 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 645
483f4afc 646 mutex_init(&q->sysfs_lock);
e7e72bf6 647 spin_lock_init(&q->__queue_lock);
483f4afc 648
c94a96ac
VG
649 /*
650 * By default initialize queue_lock to internal lock and driver can
651 * override it later if need be.
652 */
653 q->queue_lock = &q->__queue_lock;
654
b82d4b19
TH
655 /*
656 * A queue starts its life with bypass turned on to avoid
657 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
658 * init. The initial bypass will be finished when the queue is
659 * registered by blk_register_queue().
b82d4b19
TH
660 */
661 q->bypass_depth = 1;
662 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
663
320ae51f
JA
664 init_waitqueue_head(&q->mq_freeze_wq);
665
5efd6113 666 if (blkcg_init_queue(q))
fff4996b 667 goto fail_bdi;
f51b802c 668
1da177e4 669 return q;
a73f730d 670
fff4996b
MP
671fail_bdi:
672 bdi_destroy(&q->backing_dev_info);
a73f730d
TH
673fail_id:
674 ida_simple_remove(&blk_queue_ida, q->id);
675fail_q:
676 kmem_cache_free(blk_requestq_cachep, q);
677 return NULL;
1da177e4 678}
1946089a 679EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
680
681/**
682 * blk_init_queue - prepare a request queue for use with a block device
683 * @rfn: The function to be called to process requests that have been
684 * placed on the queue.
685 * @lock: Request queue spin lock
686 *
687 * Description:
688 * If a block device wishes to use the standard request handling procedures,
689 * which sorts requests and coalesces adjacent requests, then it must
690 * call blk_init_queue(). The function @rfn will be called when there
691 * are requests on the queue that need to be processed. If the device
692 * supports plugging, then @rfn may not be called immediately when requests
693 * are available on the queue, but may be called at some time later instead.
694 * Plugged queues are generally unplugged when a buffer belonging to one
695 * of the requests on the queue is needed, or due to memory pressure.
696 *
697 * @rfn is not required, or even expected, to remove all requests off the
698 * queue, but only as many as it can handle at a time. If it does leave
699 * requests on the queue, it is responsible for arranging that the requests
700 * get dealt with eventually.
701 *
702 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
703 * request queue; this lock will be taken also from interrupt context, so irq
704 * disabling is needed for it.
1da177e4 705 *
710027a4 706 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
707 * it didn't succeed.
708 *
709 * Note:
710 * blk_init_queue() must be paired with a blk_cleanup_queue() call
711 * when the block device is deactivated (such as at module unload).
712 **/
1946089a 713
165125e1 714struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 715{
c304a51b 716 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
717}
718EXPORT_SYMBOL(blk_init_queue);
719
165125e1 720struct request_queue *
1946089a
CL
721blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
722{
c86d1b8a 723 struct request_queue *uninit_q, *q;
1da177e4 724
c86d1b8a
MS
725 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
726 if (!uninit_q)
727 return NULL;
728
5151412d 729 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 730 if (!q)
7982e90c 731 blk_cleanup_queue(uninit_q);
18741986 732
7982e90c 733 return q;
01effb0d
MS
734}
735EXPORT_SYMBOL(blk_init_queue_node);
736
336b7e1f
MS
737static void blk_queue_bio(struct request_queue *q, struct bio *bio);
738
01effb0d
MS
739struct request_queue *
740blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
741 spinlock_t *lock)
01effb0d 742{
1da177e4
LT
743 if (!q)
744 return NULL;
745
f70ced09 746 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 747 if (!q->fq)
7982e90c
MS
748 return NULL;
749
a051661c 750 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 751 goto fail;
1da177e4
LT
752
753 q->request_fn = rfn;
1da177e4 754 q->prep_rq_fn = NULL;
28018c24 755 q->unprep_rq_fn = NULL;
60ea8226 756 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
757
758 /* Override internal queue lock with supplied lock pointer */
759 if (lock)
760 q->queue_lock = lock;
1da177e4 761
f3b144aa
JA
762 /*
763 * This also sets hw/phys segments, boundary and size
764 */
c20e8de2 765 blk_queue_make_request(q, blk_queue_bio);
1da177e4 766
44ec9542
AS
767 q->sg_reserved_size = INT_MAX;
768
eb1c160b
TS
769 /* Protect q->elevator from elevator_change */
770 mutex_lock(&q->sysfs_lock);
771
b82d4b19 772 /* init elevator */
eb1c160b
TS
773 if (elevator_init(q, NULL)) {
774 mutex_unlock(&q->sysfs_lock);
708f04d2 775 goto fail;
eb1c160b
TS
776 }
777
778 mutex_unlock(&q->sysfs_lock);
779
b82d4b19 780 return q;
708f04d2
DJ
781
782fail:
ba483388 783 blk_free_flush_queue(q->fq);
708f04d2 784 return NULL;
1da177e4 785}
5151412d 786EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 787
09ac46c4 788bool blk_get_queue(struct request_queue *q)
1da177e4 789{
3f3299d5 790 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
791 __blk_get_queue(q);
792 return true;
1da177e4
LT
793 }
794
09ac46c4 795 return false;
1da177e4 796}
d86e0e83 797EXPORT_SYMBOL(blk_get_queue);
1da177e4 798
5b788ce3 799static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 800{
f1f8cc94 801 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 802 elv_put_request(rl->q, rq);
f1f8cc94 803 if (rq->elv.icq)
11a3122f 804 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
805 }
806
5b788ce3 807 mempool_free(rq, rl->rq_pool);
1da177e4
LT
808}
809
1da177e4
LT
810/*
811 * ioc_batching returns true if the ioc is a valid batching request and
812 * should be given priority access to a request.
813 */
165125e1 814static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
815{
816 if (!ioc)
817 return 0;
818
819 /*
820 * Make sure the process is able to allocate at least 1 request
821 * even if the batch times out, otherwise we could theoretically
822 * lose wakeups.
823 */
824 return ioc->nr_batch_requests == q->nr_batching ||
825 (ioc->nr_batch_requests > 0
826 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
827}
828
829/*
830 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
831 * will cause the process to be a "batcher" on all queues in the system. This
832 * is the behaviour we want though - once it gets a wakeup it should be given
833 * a nice run.
834 */
165125e1 835static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
836{
837 if (!ioc || ioc_batching(q, ioc))
838 return;
839
840 ioc->nr_batch_requests = q->nr_batching;
841 ioc->last_waited = jiffies;
842}
843
5b788ce3 844static void __freed_request(struct request_list *rl, int sync)
1da177e4 845{
5b788ce3 846 struct request_queue *q = rl->q;
1da177e4 847
a051661c
TH
848 /*
849 * bdi isn't aware of blkcg yet. As all async IOs end up root
850 * blkcg anyway, just use root blkcg state.
851 */
852 if (rl == &q->root_rl &&
853 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 854 blk_clear_queue_congested(q, sync);
1da177e4 855
1faa16d2
JA
856 if (rl->count[sync] + 1 <= q->nr_requests) {
857 if (waitqueue_active(&rl->wait[sync]))
858 wake_up(&rl->wait[sync]);
1da177e4 859
5b788ce3 860 blk_clear_rl_full(rl, sync);
1da177e4
LT
861 }
862}
863
864/*
865 * A request has just been released. Account for it, update the full and
866 * congestion status, wake up any waiters. Called under q->queue_lock.
867 */
5b788ce3 868static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 869{
5b788ce3 870 struct request_queue *q = rl->q;
75eb6c37 871 int sync = rw_is_sync(flags);
1da177e4 872
8a5ecdd4 873 q->nr_rqs[sync]--;
1faa16d2 874 rl->count[sync]--;
75eb6c37 875 if (flags & REQ_ELVPRIV)
8a5ecdd4 876 q->nr_rqs_elvpriv--;
1da177e4 877
5b788ce3 878 __freed_request(rl, sync);
1da177e4 879
1faa16d2 880 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 881 __freed_request(rl, sync ^ 1);
1da177e4
LT
882}
883
e3a2b3f9
JA
884int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
885{
886 struct request_list *rl;
887
888 spin_lock_irq(q->queue_lock);
889 q->nr_requests = nr;
890 blk_queue_congestion_threshold(q);
891
892 /* congestion isn't cgroup aware and follows root blkcg for now */
893 rl = &q->root_rl;
894
895 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
896 blk_set_queue_congested(q, BLK_RW_SYNC);
897 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
898 blk_clear_queue_congested(q, BLK_RW_SYNC);
899
900 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
901 blk_set_queue_congested(q, BLK_RW_ASYNC);
902 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
903 blk_clear_queue_congested(q, BLK_RW_ASYNC);
904
905 blk_queue_for_each_rl(rl, q) {
906 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
907 blk_set_rl_full(rl, BLK_RW_SYNC);
908 } else {
909 blk_clear_rl_full(rl, BLK_RW_SYNC);
910 wake_up(&rl->wait[BLK_RW_SYNC]);
911 }
912
913 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
914 blk_set_rl_full(rl, BLK_RW_ASYNC);
915 } else {
916 blk_clear_rl_full(rl, BLK_RW_ASYNC);
917 wake_up(&rl->wait[BLK_RW_ASYNC]);
918 }
919 }
920
921 spin_unlock_irq(q->queue_lock);
922 return 0;
923}
924
9d5a4e94
MS
925/*
926 * Determine if elevator data should be initialized when allocating the
927 * request associated with @bio.
928 */
929static bool blk_rq_should_init_elevator(struct bio *bio)
930{
931 if (!bio)
932 return true;
933
934 /*
935 * Flush requests do not use the elevator so skip initialization.
936 * This allows a request to share the flush and elevator data.
937 */
938 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
939 return false;
940
941 return true;
942}
943
852c788f
TH
944/**
945 * rq_ioc - determine io_context for request allocation
946 * @bio: request being allocated is for this bio (can be %NULL)
947 *
948 * Determine io_context to use for request allocation for @bio. May return
949 * %NULL if %current->io_context doesn't exist.
950 */
951static struct io_context *rq_ioc(struct bio *bio)
952{
953#ifdef CONFIG_BLK_CGROUP
954 if (bio && bio->bi_ioc)
955 return bio->bi_ioc;
956#endif
957 return current->io_context;
958}
959
da8303c6 960/**
a06e05e6 961 * __get_request - get a free request
5b788ce3 962 * @rl: request list to allocate from
da8303c6
TH
963 * @rw_flags: RW and SYNC flags
964 * @bio: bio to allocate request for (can be %NULL)
965 * @gfp_mask: allocation mask
966 *
967 * Get a free request from @q. This function may fail under memory
968 * pressure or if @q is dead.
969 *
da3dae54 970 * Must be called with @q->queue_lock held and,
a492f075
JL
971 * Returns ERR_PTR on failure, with @q->queue_lock held.
972 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 973 */
5b788ce3 974static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 975 struct bio *bio, gfp_t gfp_mask)
1da177e4 976{
5b788ce3 977 struct request_queue *q = rl->q;
b679281a 978 struct request *rq;
7f4b35d1
TH
979 struct elevator_type *et = q->elevator->type;
980 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 981 struct io_cq *icq = NULL;
1faa16d2 982 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 983 int may_queue;
88ee5ef1 984
3f3299d5 985 if (unlikely(blk_queue_dying(q)))
a492f075 986 return ERR_PTR(-ENODEV);
da8303c6 987
7749a8d4 988 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
989 if (may_queue == ELV_MQUEUE_NO)
990 goto rq_starved;
991
1faa16d2
JA
992 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
993 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
994 /*
995 * The queue will fill after this allocation, so set
996 * it as full, and mark this process as "batching".
997 * This process will be allowed to complete a batch of
998 * requests, others will be blocked.
999 */
5b788ce3 1000 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1001 ioc_set_batching(q, ioc);
5b788ce3 1002 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1003 } else {
1004 if (may_queue != ELV_MQUEUE_MUST
1005 && !ioc_batching(q, ioc)) {
1006 /*
1007 * The queue is full and the allocating
1008 * process is not a "batcher", and not
1009 * exempted by the IO scheduler
1010 */
a492f075 1011 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1012 }
1013 }
1da177e4 1014 }
a051661c
TH
1015 /*
1016 * bdi isn't aware of blkcg yet. As all async IOs end up
1017 * root blkcg anyway, just use root blkcg state.
1018 */
1019 if (rl == &q->root_rl)
1020 blk_set_queue_congested(q, is_sync);
1da177e4
LT
1021 }
1022
082cf69e
JA
1023 /*
1024 * Only allow batching queuers to allocate up to 50% over the defined
1025 * limit of requests, otherwise we could have thousands of requests
1026 * allocated with any setting of ->nr_requests
1027 */
1faa16d2 1028 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1029 return ERR_PTR(-ENOMEM);
fd782a4a 1030
8a5ecdd4 1031 q->nr_rqs[is_sync]++;
1faa16d2
JA
1032 rl->count[is_sync]++;
1033 rl->starved[is_sync] = 0;
cb98fc8b 1034
f1f8cc94
TH
1035 /*
1036 * Decide whether the new request will be managed by elevator. If
1037 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1038 * prevent the current elevator from being destroyed until the new
1039 * request is freed. This guarantees icq's won't be destroyed and
1040 * makes creating new ones safe.
1041 *
1042 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1043 * it will be created after releasing queue_lock.
1044 */
d732580b 1045 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 1046 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 1047 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1048 if (et->icq_cache && ioc)
1049 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1050 }
cb98fc8b 1051
f253b86b
JA
1052 if (blk_queue_io_stat(q))
1053 rw_flags |= REQ_IO_STAT;
1da177e4
LT
1054 spin_unlock_irq(q->queue_lock);
1055
29e2b09a 1056 /* allocate and init request */
5b788ce3 1057 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1058 if (!rq)
b679281a 1059 goto fail_alloc;
1da177e4 1060
29e2b09a 1061 blk_rq_init(q, rq);
a051661c 1062 blk_rq_set_rl(rq, rl);
29e2b09a
TH
1063 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1064
aaf7c680 1065 /* init elvpriv */
29e2b09a 1066 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 1067 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1068 if (ioc)
1069 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1070 if (!icq)
1071 goto fail_elvpriv;
29e2b09a 1072 }
aaf7c680
TH
1073
1074 rq->elv.icq = icq;
1075 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1076 goto fail_elvpriv;
1077
1078 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1079 if (icq)
1080 get_io_context(icq->ioc);
1081 }
aaf7c680 1082out:
88ee5ef1
JA
1083 /*
1084 * ioc may be NULL here, and ioc_batching will be false. That's
1085 * OK, if the queue is under the request limit then requests need
1086 * not count toward the nr_batch_requests limit. There will always
1087 * be some limit enforced by BLK_BATCH_TIME.
1088 */
1da177e4
LT
1089 if (ioc_batching(q, ioc))
1090 ioc->nr_batch_requests--;
6728cb0e 1091
1faa16d2 1092 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1093 return rq;
b679281a 1094
aaf7c680
TH
1095fail_elvpriv:
1096 /*
1097 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1098 * and may fail indefinitely under memory pressure and thus
1099 * shouldn't stall IO. Treat this request as !elvpriv. This will
1100 * disturb iosched and blkcg but weird is bettern than dead.
1101 */
7b2b10e0
RE
1102 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1103 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680
TH
1104
1105 rq->cmd_flags &= ~REQ_ELVPRIV;
1106 rq->elv.icq = NULL;
1107
1108 spin_lock_irq(q->queue_lock);
8a5ecdd4 1109 q->nr_rqs_elvpriv--;
aaf7c680
TH
1110 spin_unlock_irq(q->queue_lock);
1111 goto out;
1112
b679281a
TH
1113fail_alloc:
1114 /*
1115 * Allocation failed presumably due to memory. Undo anything we
1116 * might have messed up.
1117 *
1118 * Allocating task should really be put onto the front of the wait
1119 * queue, but this is pretty rare.
1120 */
1121 spin_lock_irq(q->queue_lock);
5b788ce3 1122 freed_request(rl, rw_flags);
b679281a
TH
1123
1124 /*
1125 * in the very unlikely event that allocation failed and no
1126 * requests for this direction was pending, mark us starved so that
1127 * freeing of a request in the other direction will notice
1128 * us. another possible fix would be to split the rq mempool into
1129 * READ and WRITE
1130 */
1131rq_starved:
1132 if (unlikely(rl->count[is_sync] == 0))
1133 rl->starved[is_sync] = 1;
a492f075 1134 return ERR_PTR(-ENOMEM);
1da177e4
LT
1135}
1136
da8303c6 1137/**
a06e05e6 1138 * get_request - get a free request
da8303c6
TH
1139 * @q: request_queue to allocate request from
1140 * @rw_flags: RW and SYNC flags
1141 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1142 * @gfp_mask: allocation mask
da8303c6 1143 *
a06e05e6
TH
1144 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1145 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1146 *
da3dae54 1147 * Must be called with @q->queue_lock held and,
a492f075
JL
1148 * Returns ERR_PTR on failure, with @q->queue_lock held.
1149 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1150 */
a06e05e6
TH
1151static struct request *get_request(struct request_queue *q, int rw_flags,
1152 struct bio *bio, gfp_t gfp_mask)
1da177e4 1153{
1faa16d2 1154 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1155 DEFINE_WAIT(wait);
a051661c 1156 struct request_list *rl;
1da177e4 1157 struct request *rq;
a051661c
TH
1158
1159 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1160retry:
a051661c 1161 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a492f075 1162 if (!IS_ERR(rq))
a06e05e6 1163 return rq;
1da177e4 1164
3f3299d5 1165 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1166 blk_put_rl(rl);
a492f075 1167 return rq;
a051661c 1168 }
1da177e4 1169
a06e05e6
TH
1170 /* wait on @rl and retry */
1171 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1172 TASK_UNINTERRUPTIBLE);
1da177e4 1173
a06e05e6 1174 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1175
a06e05e6
TH
1176 spin_unlock_irq(q->queue_lock);
1177 io_schedule();
d6344532 1178
a06e05e6
TH
1179 /*
1180 * After sleeping, we become a "batching" process and will be able
1181 * to allocate at least one request, and up to a big batch of them
1182 * for a small period time. See ioc_batching, ioc_set_batching
1183 */
a06e05e6 1184 ioc_set_batching(q, current->io_context);
05caf8db 1185
a06e05e6
TH
1186 spin_lock_irq(q->queue_lock);
1187 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1188
a06e05e6 1189 goto retry;
1da177e4
LT
1190}
1191
320ae51f
JA
1192static struct request *blk_old_get_request(struct request_queue *q, int rw,
1193 gfp_t gfp_mask)
1da177e4
LT
1194{
1195 struct request *rq;
1196
1197 BUG_ON(rw != READ && rw != WRITE);
1198
7f4b35d1
TH
1199 /* create ioc upfront */
1200 create_io_context(gfp_mask, q->node);
1201
d6344532 1202 spin_lock_irq(q->queue_lock);
a06e05e6 1203 rq = get_request(q, rw, NULL, gfp_mask);
a492f075 1204 if (IS_ERR(rq))
da8303c6 1205 spin_unlock_irq(q->queue_lock);
d6344532 1206 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1207
1208 return rq;
1209}
320ae51f
JA
1210
1211struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1212{
1213 if (q->mq_ops)
4ce01dd1 1214 return blk_mq_alloc_request(q, rw, gfp_mask, false);
320ae51f
JA
1215 else
1216 return blk_old_get_request(q, rw, gfp_mask);
1217}
1da177e4
LT
1218EXPORT_SYMBOL(blk_get_request);
1219
dc72ef4a 1220/**
79eb63e9 1221 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1222 * @q: target request queue
79eb63e9
BH
1223 * @bio: The bio describing the memory mappings that will be submitted for IO.
1224 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1225 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1226 *
79eb63e9
BH
1227 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1228 * type commands. Where the struct request needs to be farther initialized by
1229 * the caller. It is passed a &struct bio, which describes the memory info of
1230 * the I/O transfer.
dc72ef4a 1231 *
79eb63e9
BH
1232 * The caller of blk_make_request must make sure that bi_io_vec
1233 * are set to describe the memory buffers. That bio_data_dir() will return
1234 * the needed direction of the request. (And all bio's in the passed bio-chain
1235 * are properly set accordingly)
1236 *
1237 * If called under none-sleepable conditions, mapped bio buffers must not
1238 * need bouncing, by calling the appropriate masked or flagged allocator,
1239 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1240 * BUG.
53674ac5
JA
1241 *
1242 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1243 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1244 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1245 * completion of a bio that hasn't been submitted yet, thus resulting in a
1246 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1247 * of bio_alloc(), as that avoids the mempool deadlock.
1248 * If possible a big IO should be split into smaller parts when allocation
1249 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1250 */
79eb63e9
BH
1251struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1252 gfp_t gfp_mask)
dc72ef4a 1253{
79eb63e9
BH
1254 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1255
a492f075
JL
1256 if (IS_ERR(rq))
1257 return rq;
79eb63e9 1258
f27b087b
JA
1259 blk_rq_set_block_pc(rq);
1260
79eb63e9
BH
1261 for_each_bio(bio) {
1262 struct bio *bounce_bio = bio;
1263 int ret;
1264
1265 blk_queue_bounce(q, &bounce_bio);
1266 ret = blk_rq_append_bio(q, rq, bounce_bio);
1267 if (unlikely(ret)) {
1268 blk_put_request(rq);
1269 return ERR_PTR(ret);
1270 }
1271 }
1272
1273 return rq;
dc72ef4a 1274}
79eb63e9 1275EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1276
f27b087b 1277/**
da3dae54 1278 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1279 * @rq: request to be initialized
1280 *
1281 */
1282void blk_rq_set_block_pc(struct request *rq)
1283{
1284 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1285 rq->__data_len = 0;
1286 rq->__sector = (sector_t) -1;
1287 rq->bio = rq->biotail = NULL;
1288 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1289}
1290EXPORT_SYMBOL(blk_rq_set_block_pc);
1291
1da177e4
LT
1292/**
1293 * blk_requeue_request - put a request back on queue
1294 * @q: request queue where request should be inserted
1295 * @rq: request to be inserted
1296 *
1297 * Description:
1298 * Drivers often keep queueing requests until the hardware cannot accept
1299 * more, when that condition happens we need to put the request back
1300 * on the queue. Must be called with queue lock held.
1301 */
165125e1 1302void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1303{
242f9dcb
JA
1304 blk_delete_timer(rq);
1305 blk_clear_rq_complete(rq);
5f3ea37c 1306 trace_block_rq_requeue(q, rq);
2056a782 1307
125c99bc 1308 if (rq->cmd_flags & REQ_QUEUED)
1da177e4
LT
1309 blk_queue_end_tag(q, rq);
1310
ba396a6c
JB
1311 BUG_ON(blk_queued_rq(rq));
1312
1da177e4
LT
1313 elv_requeue_request(q, rq);
1314}
1da177e4
LT
1315EXPORT_SYMBOL(blk_requeue_request);
1316
73c10101
JA
1317static void add_acct_request(struct request_queue *q, struct request *rq,
1318 int where)
1319{
320ae51f 1320 blk_account_io_start(rq, true);
7eaceacc 1321 __elv_add_request(q, rq, where);
73c10101
JA
1322}
1323
074a7aca
TH
1324static void part_round_stats_single(int cpu, struct hd_struct *part,
1325 unsigned long now)
1326{
7276d02e
JA
1327 int inflight;
1328
074a7aca
TH
1329 if (now == part->stamp)
1330 return;
1331
7276d02e
JA
1332 inflight = part_in_flight(part);
1333 if (inflight) {
074a7aca 1334 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1335 inflight * (now - part->stamp));
074a7aca
TH
1336 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1337 }
1338 part->stamp = now;
1339}
1340
1341/**
496aa8a9
RD
1342 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1343 * @cpu: cpu number for stats access
1344 * @part: target partition
1da177e4
LT
1345 *
1346 * The average IO queue length and utilisation statistics are maintained
1347 * by observing the current state of the queue length and the amount of
1348 * time it has been in this state for.
1349 *
1350 * Normally, that accounting is done on IO completion, but that can result
1351 * in more than a second's worth of IO being accounted for within any one
1352 * second, leading to >100% utilisation. To deal with that, we call this
1353 * function to do a round-off before returning the results when reading
1354 * /proc/diskstats. This accounts immediately for all queue usage up to
1355 * the current jiffies and restarts the counters again.
1356 */
c9959059 1357void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1358{
1359 unsigned long now = jiffies;
1360
074a7aca
TH
1361 if (part->partno)
1362 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1363 part_round_stats_single(cpu, part, now);
6f2576af 1364}
074a7aca 1365EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1366
47fafbc7 1367#ifdef CONFIG_PM
c8158819
LM
1368static void blk_pm_put_request(struct request *rq)
1369{
1370 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1371 pm_runtime_mark_last_busy(rq->q->dev);
1372}
1373#else
1374static inline void blk_pm_put_request(struct request *rq) {}
1375#endif
1376
1da177e4
LT
1377/*
1378 * queue lock must be held
1379 */
165125e1 1380void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1381{
1da177e4
LT
1382 if (unlikely(!q))
1383 return;
1da177e4 1384
6f5ba581
CH
1385 if (q->mq_ops) {
1386 blk_mq_free_request(req);
1387 return;
1388 }
1389
c8158819
LM
1390 blk_pm_put_request(req);
1391
8922e16c
TH
1392 elv_completed_request(q, req);
1393
1cd96c24
BH
1394 /* this is a bio leak */
1395 WARN_ON(req->bio != NULL);
1396
1da177e4
LT
1397 /*
1398 * Request may not have originated from ll_rw_blk. if not,
1399 * it didn't come out of our reserved rq pools
1400 */
49171e5c 1401 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1402 unsigned int flags = req->cmd_flags;
a051661c 1403 struct request_list *rl = blk_rq_rl(req);
1da177e4 1404
1da177e4 1405 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1406 BUG_ON(ELV_ON_HASH(req));
1da177e4 1407
a051661c
TH
1408 blk_free_request(rl, req);
1409 freed_request(rl, flags);
1410 blk_put_rl(rl);
1da177e4
LT
1411 }
1412}
6e39b69e
MC
1413EXPORT_SYMBOL_GPL(__blk_put_request);
1414
1da177e4
LT
1415void blk_put_request(struct request *req)
1416{
165125e1 1417 struct request_queue *q = req->q;
8922e16c 1418
320ae51f
JA
1419 if (q->mq_ops)
1420 blk_mq_free_request(req);
1421 else {
1422 unsigned long flags;
1423
1424 spin_lock_irqsave(q->queue_lock, flags);
1425 __blk_put_request(q, req);
1426 spin_unlock_irqrestore(q->queue_lock, flags);
1427 }
1da177e4 1428}
1da177e4
LT
1429EXPORT_SYMBOL(blk_put_request);
1430
66ac0280
CH
1431/**
1432 * blk_add_request_payload - add a payload to a request
1433 * @rq: request to update
1434 * @page: page backing the payload
1435 * @len: length of the payload.
1436 *
1437 * This allows to later add a payload to an already submitted request by
1438 * a block driver. The driver needs to take care of freeing the payload
1439 * itself.
1440 *
1441 * Note that this is a quite horrible hack and nothing but handling of
1442 * discard requests should ever use it.
1443 */
1444void blk_add_request_payload(struct request *rq, struct page *page,
1445 unsigned int len)
1446{
1447 struct bio *bio = rq->bio;
1448
1449 bio->bi_io_vec->bv_page = page;
1450 bio->bi_io_vec->bv_offset = 0;
1451 bio->bi_io_vec->bv_len = len;
1452
4f024f37 1453 bio->bi_iter.bi_size = len;
66ac0280
CH
1454 bio->bi_vcnt = 1;
1455 bio->bi_phys_segments = 1;
1456
1457 rq->__data_len = rq->resid_len = len;
1458 rq->nr_phys_segments = 1;
66ac0280
CH
1459}
1460EXPORT_SYMBOL_GPL(blk_add_request_payload);
1461
320ae51f
JA
1462bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1463 struct bio *bio)
73c10101
JA
1464{
1465 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1466
73c10101
JA
1467 if (!ll_back_merge_fn(q, req, bio))
1468 return false;
1469
8c1cf6bb 1470 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1471
1472 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1473 blk_rq_set_mixed_merge(req);
1474
1475 req->biotail->bi_next = bio;
1476 req->biotail = bio;
4f024f37 1477 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1478 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1479
320ae51f 1480 blk_account_io_start(req, false);
73c10101
JA
1481 return true;
1482}
1483
320ae51f
JA
1484bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1485 struct bio *bio)
73c10101
JA
1486{
1487 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1488
73c10101
JA
1489 if (!ll_front_merge_fn(q, req, bio))
1490 return false;
1491
8c1cf6bb 1492 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1493
1494 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1495 blk_rq_set_mixed_merge(req);
1496
73c10101
JA
1497 bio->bi_next = req->bio;
1498 req->bio = bio;
1499
4f024f37
KO
1500 req->__sector = bio->bi_iter.bi_sector;
1501 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1502 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1503
320ae51f 1504 blk_account_io_start(req, false);
73c10101
JA
1505 return true;
1506}
1507
bd87b589 1508/**
320ae51f 1509 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1510 * @q: request_queue new bio is being queued at
1511 * @bio: new bio being queued
1512 * @request_count: out parameter for number of traversed plugged requests
1513 *
1514 * Determine whether @bio being queued on @q can be merged with a request
1515 * on %current's plugged list. Returns %true if merge was successful,
1516 * otherwise %false.
1517 *
07c2bd37
TH
1518 * Plugging coalesces IOs from the same issuer for the same purpose without
1519 * going through @q->queue_lock. As such it's more of an issuing mechanism
1520 * than scheduling, and the request, while may have elvpriv data, is not
1521 * added on the elevator at this point. In addition, we don't have
1522 * reliable access to the elevator outside queue lock. Only check basic
1523 * merging parameters without querying the elevator.
da41a589
RE
1524 *
1525 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1526 */
320ae51f
JA
1527bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1528 unsigned int *request_count)
73c10101
JA
1529{
1530 struct blk_plug *plug;
1531 struct request *rq;
1532 bool ret = false;
92f399c7 1533 struct list_head *plug_list;
73c10101 1534
bd87b589 1535 plug = current->plug;
73c10101
JA
1536 if (!plug)
1537 goto out;
56ebdaf2 1538 *request_count = 0;
73c10101 1539
92f399c7
SL
1540 if (q->mq_ops)
1541 plug_list = &plug->mq_list;
1542 else
1543 plug_list = &plug->list;
1544
1545 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1546 int el_ret;
1547
1b2e19f1
SL
1548 if (rq->q == q)
1549 (*request_count)++;
56ebdaf2 1550
07c2bd37 1551 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1552 continue;
1553
050c8ea8 1554 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1555 if (el_ret == ELEVATOR_BACK_MERGE) {
1556 ret = bio_attempt_back_merge(q, rq, bio);
1557 if (ret)
1558 break;
1559 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1560 ret = bio_attempt_front_merge(q, rq, bio);
1561 if (ret)
1562 break;
1563 }
1564 }
1565out:
1566 return ret;
1567}
1568
86db1e29 1569void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1570{
4aff5e23 1571 req->cmd_type = REQ_TYPE_FS;
52d9e675 1572
7b6d91da
CH
1573 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1574 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1575 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1576
52d9e675 1577 req->errors = 0;
4f024f37 1578 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1579 req->ioprio = bio_prio(bio);
bc1c56fd 1580 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1581}
1582
336b7e1f 1583static void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1584{
5e00d1b5 1585 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1586 struct blk_plug *plug;
1587 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1588 struct request *req;
56ebdaf2 1589 unsigned int request_count = 0;
1da177e4 1590
1da177e4
LT
1591 /*
1592 * low level driver can indicate that it wants pages above a
1593 * certain limit bounced to low memory (ie for highmem, or even
1594 * ISA dma in theory)
1595 */
1596 blk_queue_bounce(q, &bio);
1597
ffecfd1a
DW
1598 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1599 bio_endio(bio, -EIO);
1600 return;
1601 }
1602
4fed947c 1603 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1604 spin_lock_irq(q->queue_lock);
ae1b1539 1605 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1606 goto get_rq;
1607 }
1608
73c10101
JA
1609 /*
1610 * Check if we can merge with the plugged list before grabbing
1611 * any locks.
1612 */
da41a589
RE
1613 if (!blk_queue_nomerges(q) &&
1614 blk_attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1615 return;
1da177e4 1616
73c10101 1617 spin_lock_irq(q->queue_lock);
2056a782 1618
73c10101
JA
1619 el_ret = elv_merge(q, &req, bio);
1620 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1621 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1622 elv_bio_merged(q, req, bio);
73c10101
JA
1623 if (!attempt_back_merge(q, req))
1624 elv_merged_request(q, req, el_ret);
1625 goto out_unlock;
1626 }
1627 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1628 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1629 elv_bio_merged(q, req, bio);
73c10101
JA
1630 if (!attempt_front_merge(q, req))
1631 elv_merged_request(q, req, el_ret);
1632 goto out_unlock;
80a761fd 1633 }
1da177e4
LT
1634 }
1635
450991bc 1636get_rq:
7749a8d4
JA
1637 /*
1638 * This sync check and mask will be re-done in init_request_from_bio(),
1639 * but we need to set it earlier to expose the sync flag to the
1640 * rq allocator and io schedulers.
1641 */
1642 rw_flags = bio_data_dir(bio);
1643 if (sync)
7b6d91da 1644 rw_flags |= REQ_SYNC;
7749a8d4 1645
1da177e4 1646 /*
450991bc 1647 * Grab a free request. This is might sleep but can not fail.
d6344532 1648 * Returns with the queue unlocked.
450991bc 1649 */
a06e05e6 1650 req = get_request(q, rw_flags, bio, GFP_NOIO);
a492f075
JL
1651 if (IS_ERR(req)) {
1652 bio_endio(bio, PTR_ERR(req)); /* @q is dead */
da8303c6
TH
1653 goto out_unlock;
1654 }
d6344532 1655
450991bc
NP
1656 /*
1657 * After dropping the lock and possibly sleeping here, our request
1658 * may now be mergeable after it had proven unmergeable (above).
1659 * We don't worry about that case for efficiency. It won't happen
1660 * often, and the elevators are able to handle it.
1da177e4 1661 */
52d9e675 1662 init_request_from_bio(req, bio);
1da177e4 1663
9562ad9a 1664 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1665 req->cpu = raw_smp_processor_id();
73c10101
JA
1666
1667 plug = current->plug;
721a9602 1668 if (plug) {
dc6d36c9
JA
1669 /*
1670 * If this is the first request added after a plug, fire
7aef2e78 1671 * of a plug trace.
dc6d36c9 1672 */
7aef2e78 1673 if (!request_count)
dc6d36c9 1674 trace_block_plug(q);
3540d5e8 1675 else {
019ceb7d 1676 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1677 blk_flush_plug_list(plug, false);
019ceb7d
SL
1678 trace_block_plug(q);
1679 }
73c10101 1680 }
73c10101 1681 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1682 blk_account_io_start(req, true);
73c10101
JA
1683 } else {
1684 spin_lock_irq(q->queue_lock);
1685 add_acct_request(q, req, where);
24ecfbe2 1686 __blk_run_queue(q);
73c10101
JA
1687out_unlock:
1688 spin_unlock_irq(q->queue_lock);
1689 }
1da177e4
LT
1690}
1691
1692/*
1693 * If bio->bi_dev is a partition, remap the location
1694 */
1695static inline void blk_partition_remap(struct bio *bio)
1696{
1697 struct block_device *bdev = bio->bi_bdev;
1698
bf2de6f5 1699 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1700 struct hd_struct *p = bdev->bd_part;
1701
4f024f37 1702 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1703 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1704
d07335e5
MS
1705 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1706 bdev->bd_dev,
4f024f37 1707 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1708 }
1709}
1710
1da177e4
LT
1711static void handle_bad_sector(struct bio *bio)
1712{
1713 char b[BDEVNAME_SIZE];
1714
1715 printk(KERN_INFO "attempt to access beyond end of device\n");
1716 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1717 bdevname(bio->bi_bdev, b),
1718 bio->bi_rw,
f73a1c7d 1719 (unsigned long long)bio_end_sector(bio),
77304d2a 1720 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1721
1722 set_bit(BIO_EOF, &bio->bi_flags);
1723}
1724
c17bb495
AM
1725#ifdef CONFIG_FAIL_MAKE_REQUEST
1726
1727static DECLARE_FAULT_ATTR(fail_make_request);
1728
1729static int __init setup_fail_make_request(char *str)
1730{
1731 return setup_fault_attr(&fail_make_request, str);
1732}
1733__setup("fail_make_request=", setup_fail_make_request);
1734
b2c9cd37 1735static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1736{
b2c9cd37 1737 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1738}
1739
1740static int __init fail_make_request_debugfs(void)
1741{
dd48c085
AM
1742 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1743 NULL, &fail_make_request);
1744
21f9fcd8 1745 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1746}
1747
1748late_initcall(fail_make_request_debugfs);
1749
1750#else /* CONFIG_FAIL_MAKE_REQUEST */
1751
b2c9cd37
AM
1752static inline bool should_fail_request(struct hd_struct *part,
1753 unsigned int bytes)
c17bb495 1754{
b2c9cd37 1755 return false;
c17bb495
AM
1756}
1757
1758#endif /* CONFIG_FAIL_MAKE_REQUEST */
1759
c07e2b41
JA
1760/*
1761 * Check whether this bio extends beyond the end of the device.
1762 */
1763static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1764{
1765 sector_t maxsector;
1766
1767 if (!nr_sectors)
1768 return 0;
1769
1770 /* Test device or partition size, when known. */
77304d2a 1771 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1772 if (maxsector) {
4f024f37 1773 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1774
1775 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1776 /*
1777 * This may well happen - the kernel calls bread()
1778 * without checking the size of the device, e.g., when
1779 * mounting a device.
1780 */
1781 handle_bad_sector(bio);
1782 return 1;
1783 }
1784 }
1785
1786 return 0;
1787}
1788
27a84d54
CH
1789static noinline_for_stack bool
1790generic_make_request_checks(struct bio *bio)
1da177e4 1791{
165125e1 1792 struct request_queue *q;
5a7bbad2 1793 int nr_sectors = bio_sectors(bio);
51fd77bd 1794 int err = -EIO;
5a7bbad2
CH
1795 char b[BDEVNAME_SIZE];
1796 struct hd_struct *part;
1da177e4
LT
1797
1798 might_sleep();
1da177e4 1799
c07e2b41
JA
1800 if (bio_check_eod(bio, nr_sectors))
1801 goto end_io;
1da177e4 1802
5a7bbad2
CH
1803 q = bdev_get_queue(bio->bi_bdev);
1804 if (unlikely(!q)) {
1805 printk(KERN_ERR
1806 "generic_make_request: Trying to access "
1807 "nonexistent block-device %s (%Lu)\n",
1808 bdevname(bio->bi_bdev, b),
4f024f37 1809 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1810 goto end_io;
1811 }
c17bb495 1812
e2a60da7
MP
1813 if (likely(bio_is_rw(bio) &&
1814 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1815 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1816 bdevname(bio->bi_bdev, b),
1817 bio_sectors(bio),
1818 queue_max_hw_sectors(q));
1819 goto end_io;
1820 }
1da177e4 1821
5a7bbad2 1822 part = bio->bi_bdev->bd_part;
4f024f37 1823 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1824 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1825 bio->bi_iter.bi_size))
5a7bbad2 1826 goto end_io;
2056a782 1827
5a7bbad2
CH
1828 /*
1829 * If this device has partitions, remap block n
1830 * of partition p to block n+start(p) of the disk.
1831 */
1832 blk_partition_remap(bio);
2056a782 1833
5a7bbad2
CH
1834 if (bio_check_eod(bio, nr_sectors))
1835 goto end_io;
1e87901e 1836
5a7bbad2
CH
1837 /*
1838 * Filter flush bio's early so that make_request based
1839 * drivers without flush support don't have to worry
1840 * about them.
1841 */
1842 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1843 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1844 if (!nr_sectors) {
1845 err = 0;
51fd77bd
JA
1846 goto end_io;
1847 }
5a7bbad2 1848 }
5ddfe969 1849
5a7bbad2
CH
1850 if ((bio->bi_rw & REQ_DISCARD) &&
1851 (!blk_queue_discard(q) ||
e2a60da7 1852 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1853 err = -EOPNOTSUPP;
1854 goto end_io;
1855 }
01edede4 1856
4363ac7c 1857 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1858 err = -EOPNOTSUPP;
1859 goto end_io;
1860 }
01edede4 1861
7f4b35d1
TH
1862 /*
1863 * Various block parts want %current->io_context and lazy ioc
1864 * allocation ends up trading a lot of pain for a small amount of
1865 * memory. Just allocate it upfront. This may fail and block
1866 * layer knows how to live with it.
1867 */
1868 create_io_context(GFP_ATOMIC, q->node);
1869
bc16a4f9
TH
1870 if (blk_throtl_bio(q, bio))
1871 return false; /* throttled, will be resubmitted later */
27a84d54 1872
5a7bbad2 1873 trace_block_bio_queue(q, bio);
27a84d54 1874 return true;
a7384677
TH
1875
1876end_io:
1877 bio_endio(bio, err);
27a84d54 1878 return false;
1da177e4
LT
1879}
1880
27a84d54
CH
1881/**
1882 * generic_make_request - hand a buffer to its device driver for I/O
1883 * @bio: The bio describing the location in memory and on the device.
1884 *
1885 * generic_make_request() is used to make I/O requests of block
1886 * devices. It is passed a &struct bio, which describes the I/O that needs
1887 * to be done.
1888 *
1889 * generic_make_request() does not return any status. The
1890 * success/failure status of the request, along with notification of
1891 * completion, is delivered asynchronously through the bio->bi_end_io
1892 * function described (one day) else where.
1893 *
1894 * The caller of generic_make_request must make sure that bi_io_vec
1895 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1896 * set to describe the device address, and the
1897 * bi_end_io and optionally bi_private are set to describe how
1898 * completion notification should be signaled.
1899 *
1900 * generic_make_request and the drivers it calls may use bi_next if this
1901 * bio happens to be merged with someone else, and may resubmit the bio to
1902 * a lower device by calling into generic_make_request recursively, which
1903 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1904 */
1905void generic_make_request(struct bio *bio)
1906{
bddd87c7
AM
1907 struct bio_list bio_list_on_stack;
1908
27a84d54
CH
1909 if (!generic_make_request_checks(bio))
1910 return;
1911
1912 /*
1913 * We only want one ->make_request_fn to be active at a time, else
1914 * stack usage with stacked devices could be a problem. So use
1915 * current->bio_list to keep a list of requests submited by a
1916 * make_request_fn function. current->bio_list is also used as a
1917 * flag to say if generic_make_request is currently active in this
1918 * task or not. If it is NULL, then no make_request is active. If
1919 * it is non-NULL, then a make_request is active, and new requests
1920 * should be added at the tail
1921 */
bddd87c7 1922 if (current->bio_list) {
bddd87c7 1923 bio_list_add(current->bio_list, bio);
d89d8796
NB
1924 return;
1925 }
27a84d54 1926
d89d8796
NB
1927 /* following loop may be a bit non-obvious, and so deserves some
1928 * explanation.
1929 * Before entering the loop, bio->bi_next is NULL (as all callers
1930 * ensure that) so we have a list with a single bio.
1931 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1932 * we assign bio_list to a pointer to the bio_list_on_stack,
1933 * thus initialising the bio_list of new bios to be
27a84d54 1934 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1935 * through a recursive call to generic_make_request. If it
1936 * did, we find a non-NULL value in bio_list and re-enter the loop
1937 * from the top. In this case we really did just take the bio
bddd87c7 1938 * of the top of the list (no pretending) and so remove it from
27a84d54 1939 * bio_list, and call into ->make_request() again.
d89d8796
NB
1940 */
1941 BUG_ON(bio->bi_next);
bddd87c7
AM
1942 bio_list_init(&bio_list_on_stack);
1943 current->bio_list = &bio_list_on_stack;
d89d8796 1944 do {
27a84d54
CH
1945 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1946
1947 q->make_request_fn(q, bio);
1948
bddd87c7 1949 bio = bio_list_pop(current->bio_list);
d89d8796 1950 } while (bio);
bddd87c7 1951 current->bio_list = NULL; /* deactivate */
d89d8796 1952}
1da177e4
LT
1953EXPORT_SYMBOL(generic_make_request);
1954
1955/**
710027a4 1956 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1957 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1958 * @bio: The &struct bio which describes the I/O
1959 *
1960 * submit_bio() is very similar in purpose to generic_make_request(), and
1961 * uses that function to do most of the work. Both are fairly rough
710027a4 1962 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1963 *
1964 */
1965void submit_bio(int rw, struct bio *bio)
1966{
22e2c507 1967 bio->bi_rw |= rw;
1da177e4 1968
bf2de6f5
JA
1969 /*
1970 * If it's a regular read/write or a barrier with data attached,
1971 * go through the normal accounting stuff before submission.
1972 */
e2a60da7 1973 if (bio_has_data(bio)) {
4363ac7c
MP
1974 unsigned int count;
1975
1976 if (unlikely(rw & REQ_WRITE_SAME))
1977 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1978 else
1979 count = bio_sectors(bio);
1980
bf2de6f5
JA
1981 if (rw & WRITE) {
1982 count_vm_events(PGPGOUT, count);
1983 } else {
4f024f37 1984 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1985 count_vm_events(PGPGIN, count);
1986 }
1987
1988 if (unlikely(block_dump)) {
1989 char b[BDEVNAME_SIZE];
8dcbdc74 1990 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1991 current->comm, task_pid_nr(current),
bf2de6f5 1992 (rw & WRITE) ? "WRITE" : "READ",
4f024f37 1993 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
1994 bdevname(bio->bi_bdev, b),
1995 count);
bf2de6f5 1996 }
1da177e4
LT
1997 }
1998
1999 generic_make_request(bio);
2000}
1da177e4
LT
2001EXPORT_SYMBOL(submit_bio);
2002
82124d60
KU
2003/**
2004 * blk_rq_check_limits - Helper function to check a request for the queue limit
2005 * @q: the queue
2006 * @rq: the request being checked
2007 *
2008 * Description:
2009 * @rq may have been made based on weaker limitations of upper-level queues
2010 * in request stacking drivers, and it may violate the limitation of @q.
2011 * Since the block layer and the underlying device driver trust @rq
2012 * after it is inserted to @q, it should be checked against @q before
2013 * the insertion using this generic function.
2014 *
2015 * This function should also be useful for request stacking drivers
eef35c2d 2016 * in some cases below, so export this function.
82124d60
KU
2017 * Request stacking drivers like request-based dm may change the queue
2018 * limits while requests are in the queue (e.g. dm's table swapping).
e227867f 2019 * Such request stacking drivers should check those requests against
82124d60
KU
2020 * the new queue limits again when they dispatch those requests,
2021 * although such checkings are also done against the old queue limits
2022 * when submitting requests.
2023 */
2024int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2025{
e2a60da7 2026 if (!rq_mergeable(rq))
3383977f
S
2027 return 0;
2028
f31dc1cd 2029 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
2030 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2031 return -EIO;
2032 }
2033
2034 /*
2035 * queue's settings related to segment counting like q->bounce_pfn
2036 * may differ from that of other stacking queues.
2037 * Recalculate it to check the request correctly on this queue's
2038 * limitation.
2039 */
2040 blk_recalc_rq_segments(rq);
8a78362c 2041 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2042 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2043 return -EIO;
2044 }
2045
2046 return 0;
2047}
2048EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2049
2050/**
2051 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2052 * @q: the queue to submit the request
2053 * @rq: the request being queued
2054 */
2055int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2056{
2057 unsigned long flags;
4853abaa 2058 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
2059
2060 if (blk_rq_check_limits(q, rq))
2061 return -EIO;
2062
b2c9cd37
AM
2063 if (rq->rq_disk &&
2064 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2065 return -EIO;
82124d60 2066
7fb4898e
KB
2067 if (q->mq_ops) {
2068 if (blk_queue_io_stat(q))
2069 blk_account_io_start(rq, true);
2070 blk_mq_insert_request(rq, false, true, true);
2071 return 0;
2072 }
2073
82124d60 2074 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2075 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2076 spin_unlock_irqrestore(q->queue_lock, flags);
2077 return -ENODEV;
2078 }
82124d60
KU
2079
2080 /*
2081 * Submitting request must be dequeued before calling this function
2082 * because it will be linked to another request_queue
2083 */
2084 BUG_ON(blk_queued_rq(rq));
2085
4853abaa
JM
2086 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2087 where = ELEVATOR_INSERT_FLUSH;
2088
2089 add_acct_request(q, rq, where);
e67b77c7
JM
2090 if (where == ELEVATOR_INSERT_FLUSH)
2091 __blk_run_queue(q);
82124d60
KU
2092 spin_unlock_irqrestore(q->queue_lock, flags);
2093
2094 return 0;
2095}
2096EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2097
80a761fd
TH
2098/**
2099 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2100 * @rq: request to examine
2101 *
2102 * Description:
2103 * A request could be merge of IOs which require different failure
2104 * handling. This function determines the number of bytes which
2105 * can be failed from the beginning of the request without
2106 * crossing into area which need to be retried further.
2107 *
2108 * Return:
2109 * The number of bytes to fail.
2110 *
2111 * Context:
2112 * queue_lock must be held.
2113 */
2114unsigned int blk_rq_err_bytes(const struct request *rq)
2115{
2116 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2117 unsigned int bytes = 0;
2118 struct bio *bio;
2119
2120 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2121 return blk_rq_bytes(rq);
2122
2123 /*
2124 * Currently the only 'mixing' which can happen is between
2125 * different fastfail types. We can safely fail portions
2126 * which have all the failfast bits that the first one has -
2127 * the ones which are at least as eager to fail as the first
2128 * one.
2129 */
2130 for (bio = rq->bio; bio; bio = bio->bi_next) {
2131 if ((bio->bi_rw & ff) != ff)
2132 break;
4f024f37 2133 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2134 }
2135
2136 /* this could lead to infinite loop */
2137 BUG_ON(blk_rq_bytes(rq) && !bytes);
2138 return bytes;
2139}
2140EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2141
320ae51f 2142void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2143{
c2553b58 2144 if (blk_do_io_stat(req)) {
bc58ba94
JA
2145 const int rw = rq_data_dir(req);
2146 struct hd_struct *part;
2147 int cpu;
2148
2149 cpu = part_stat_lock();
09e099d4 2150 part = req->part;
bc58ba94
JA
2151 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2152 part_stat_unlock();
2153 }
2154}
2155
320ae51f 2156void blk_account_io_done(struct request *req)
bc58ba94 2157{
bc58ba94 2158 /*
dd4c133f
TH
2159 * Account IO completion. flush_rq isn't accounted as a
2160 * normal IO on queueing nor completion. Accounting the
2161 * containing request is enough.
bc58ba94 2162 */
414b4ff5 2163 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2164 unsigned long duration = jiffies - req->start_time;
2165 const int rw = rq_data_dir(req);
2166 struct hd_struct *part;
2167 int cpu;
2168
2169 cpu = part_stat_lock();
09e099d4 2170 part = req->part;
bc58ba94
JA
2171
2172 part_stat_inc(cpu, part, ios[rw]);
2173 part_stat_add(cpu, part, ticks[rw], duration);
2174 part_round_stats(cpu, part);
316d315b 2175 part_dec_in_flight(part, rw);
bc58ba94 2176
6c23a968 2177 hd_struct_put(part);
bc58ba94
JA
2178 part_stat_unlock();
2179 }
2180}
2181
47fafbc7 2182#ifdef CONFIG_PM
c8158819
LM
2183/*
2184 * Don't process normal requests when queue is suspended
2185 * or in the process of suspending/resuming
2186 */
2187static struct request *blk_pm_peek_request(struct request_queue *q,
2188 struct request *rq)
2189{
2190 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2191 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2192 return NULL;
2193 else
2194 return rq;
2195}
2196#else
2197static inline struct request *blk_pm_peek_request(struct request_queue *q,
2198 struct request *rq)
2199{
2200 return rq;
2201}
2202#endif
2203
320ae51f
JA
2204void blk_account_io_start(struct request *rq, bool new_io)
2205{
2206 struct hd_struct *part;
2207 int rw = rq_data_dir(rq);
2208 int cpu;
2209
2210 if (!blk_do_io_stat(rq))
2211 return;
2212
2213 cpu = part_stat_lock();
2214
2215 if (!new_io) {
2216 part = rq->part;
2217 part_stat_inc(cpu, part, merges[rw]);
2218 } else {
2219 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2220 if (!hd_struct_try_get(part)) {
2221 /*
2222 * The partition is already being removed,
2223 * the request will be accounted on the disk only
2224 *
2225 * We take a reference on disk->part0 although that
2226 * partition will never be deleted, so we can treat
2227 * it as any other partition.
2228 */
2229 part = &rq->rq_disk->part0;
2230 hd_struct_get(part);
2231 }
2232 part_round_stats(cpu, part);
2233 part_inc_in_flight(part, rw);
2234 rq->part = part;
2235 }
2236
2237 part_stat_unlock();
2238}
2239
3bcddeac 2240/**
9934c8c0
TH
2241 * blk_peek_request - peek at the top of a request queue
2242 * @q: request queue to peek at
2243 *
2244 * Description:
2245 * Return the request at the top of @q. The returned request
2246 * should be started using blk_start_request() before LLD starts
2247 * processing it.
2248 *
2249 * Return:
2250 * Pointer to the request at the top of @q if available. Null
2251 * otherwise.
2252 *
2253 * Context:
2254 * queue_lock must be held.
2255 */
2256struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2257{
2258 struct request *rq;
2259 int ret;
2260
2261 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2262
2263 rq = blk_pm_peek_request(q, rq);
2264 if (!rq)
2265 break;
2266
158dbda0
TH
2267 if (!(rq->cmd_flags & REQ_STARTED)) {
2268 /*
2269 * This is the first time the device driver
2270 * sees this request (possibly after
2271 * requeueing). Notify IO scheduler.
2272 */
33659ebb 2273 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2274 elv_activate_rq(q, rq);
2275
2276 /*
2277 * just mark as started even if we don't start
2278 * it, a request that has been delayed should
2279 * not be passed by new incoming requests
2280 */
2281 rq->cmd_flags |= REQ_STARTED;
2282 trace_block_rq_issue(q, rq);
2283 }
2284
2285 if (!q->boundary_rq || q->boundary_rq == rq) {
2286 q->end_sector = rq_end_sector(rq);
2287 q->boundary_rq = NULL;
2288 }
2289
2290 if (rq->cmd_flags & REQ_DONTPREP)
2291 break;
2292
2e46e8b2 2293 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2294 /*
2295 * make sure space for the drain appears we
2296 * know we can do this because max_hw_segments
2297 * has been adjusted to be one fewer than the
2298 * device can handle
2299 */
2300 rq->nr_phys_segments++;
2301 }
2302
2303 if (!q->prep_rq_fn)
2304 break;
2305
2306 ret = q->prep_rq_fn(q, rq);
2307 if (ret == BLKPREP_OK) {
2308 break;
2309 } else if (ret == BLKPREP_DEFER) {
2310 /*
2311 * the request may have been (partially) prepped.
2312 * we need to keep this request in the front to
2313 * avoid resource deadlock. REQ_STARTED will
2314 * prevent other fs requests from passing this one.
2315 */
2e46e8b2 2316 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2317 !(rq->cmd_flags & REQ_DONTPREP)) {
2318 /*
2319 * remove the space for the drain we added
2320 * so that we don't add it again
2321 */
2322 --rq->nr_phys_segments;
2323 }
2324
2325 rq = NULL;
2326 break;
2327 } else if (ret == BLKPREP_KILL) {
2328 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2329 /*
2330 * Mark this request as started so we don't trigger
2331 * any debug logic in the end I/O path.
2332 */
2333 blk_start_request(rq);
40cbbb78 2334 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2335 } else {
2336 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2337 break;
2338 }
2339 }
2340
2341 return rq;
2342}
9934c8c0 2343EXPORT_SYMBOL(blk_peek_request);
158dbda0 2344
9934c8c0 2345void blk_dequeue_request(struct request *rq)
158dbda0 2346{
9934c8c0
TH
2347 struct request_queue *q = rq->q;
2348
158dbda0
TH
2349 BUG_ON(list_empty(&rq->queuelist));
2350 BUG_ON(ELV_ON_HASH(rq));
2351
2352 list_del_init(&rq->queuelist);
2353
2354 /*
2355 * the time frame between a request being removed from the lists
2356 * and to it is freed is accounted as io that is in progress at
2357 * the driver side.
2358 */
9195291e 2359 if (blk_account_rq(rq)) {
0a7ae2ff 2360 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2361 set_io_start_time_ns(rq);
2362 }
158dbda0
TH
2363}
2364
9934c8c0
TH
2365/**
2366 * blk_start_request - start request processing on the driver
2367 * @req: request to dequeue
2368 *
2369 * Description:
2370 * Dequeue @req and start timeout timer on it. This hands off the
2371 * request to the driver.
2372 *
2373 * Block internal functions which don't want to start timer should
2374 * call blk_dequeue_request().
2375 *
2376 * Context:
2377 * queue_lock must be held.
2378 */
2379void blk_start_request(struct request *req)
2380{
2381 blk_dequeue_request(req);
2382
2383 /*
5f49f631
TH
2384 * We are now handing the request to the hardware, initialize
2385 * resid_len to full count and add the timeout handler.
9934c8c0 2386 */
5f49f631 2387 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2388 if (unlikely(blk_bidi_rq(req)))
2389 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2390
4912aa6c 2391 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2392 blk_add_timer(req);
2393}
2394EXPORT_SYMBOL(blk_start_request);
2395
2396/**
2397 * blk_fetch_request - fetch a request from a request queue
2398 * @q: request queue to fetch a request from
2399 *
2400 * Description:
2401 * Return the request at the top of @q. The request is started on
2402 * return and LLD can start processing it immediately.
2403 *
2404 * Return:
2405 * Pointer to the request at the top of @q if available. Null
2406 * otherwise.
2407 *
2408 * Context:
2409 * queue_lock must be held.
2410 */
2411struct request *blk_fetch_request(struct request_queue *q)
2412{
2413 struct request *rq;
2414
2415 rq = blk_peek_request(q);
2416 if (rq)
2417 blk_start_request(rq);
2418 return rq;
2419}
2420EXPORT_SYMBOL(blk_fetch_request);
2421
3bcddeac 2422/**
2e60e022 2423 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2424 * @req: the request being processed
710027a4 2425 * @error: %0 for success, < %0 for error
8ebf9756 2426 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2427 *
2428 * Description:
8ebf9756
RD
2429 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2430 * the request structure even if @req doesn't have leftover.
2431 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2432 *
2433 * This special helper function is only for request stacking drivers
2434 * (e.g. request-based dm) so that they can handle partial completion.
2435 * Actual device drivers should use blk_end_request instead.
2436 *
2437 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2438 * %false return from this function.
3bcddeac
KU
2439 *
2440 * Return:
2e60e022
TH
2441 * %false - this request doesn't have any more data
2442 * %true - this request has more data
3bcddeac 2443 **/
2e60e022 2444bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2445{
f79ea416 2446 int total_bytes;
1da177e4 2447
4a0efdc9
HR
2448 trace_block_rq_complete(req->q, req, nr_bytes);
2449
2e60e022
TH
2450 if (!req->bio)
2451 return false;
2452
1da177e4 2453 /*
6f41469c
TH
2454 * For fs requests, rq is just carrier of independent bio's
2455 * and each partial completion should be handled separately.
2456 * Reset per-request error on each partial completion.
2457 *
2458 * TODO: tj: This is too subtle. It would be better to let
2459 * low level drivers do what they see fit.
1da177e4 2460 */
33659ebb 2461 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2462 req->errors = 0;
2463
33659ebb
CH
2464 if (error && req->cmd_type == REQ_TYPE_FS &&
2465 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2466 char *error_type;
2467
2468 switch (error) {
2469 case -ENOLINK:
2470 error_type = "recoverable transport";
2471 break;
2472 case -EREMOTEIO:
2473 error_type = "critical target";
2474 break;
2475 case -EBADE:
2476 error_type = "critical nexus";
2477 break;
d1ffc1f8
HR
2478 case -ETIMEDOUT:
2479 error_type = "timeout";
2480 break;
a9d6ceb8
HR
2481 case -ENOSPC:
2482 error_type = "critical space allocation";
2483 break;
7e782af5
HR
2484 case -ENODATA:
2485 error_type = "critical medium";
2486 break;
79775567
HR
2487 case -EIO:
2488 default:
2489 error_type = "I/O";
2490 break;
2491 }
ef3ecb66
RE
2492 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2493 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2494 req->rq_disk->disk_name : "?",
2495 (unsigned long long)blk_rq_pos(req));
2496
1da177e4
LT
2497 }
2498
bc58ba94 2499 blk_account_io_completion(req, nr_bytes);
d72d904a 2500
f79ea416
KO
2501 total_bytes = 0;
2502 while (req->bio) {
2503 struct bio *bio = req->bio;
4f024f37 2504 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2505
4f024f37 2506 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2507 req->bio = bio->bi_next;
1da177e4 2508
f79ea416 2509 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2510
f79ea416
KO
2511 total_bytes += bio_bytes;
2512 nr_bytes -= bio_bytes;
1da177e4 2513
f79ea416
KO
2514 if (!nr_bytes)
2515 break;
1da177e4
LT
2516 }
2517
2518 /*
2519 * completely done
2520 */
2e60e022
TH
2521 if (!req->bio) {
2522 /*
2523 * Reset counters so that the request stacking driver
2524 * can find how many bytes remain in the request
2525 * later.
2526 */
a2dec7b3 2527 req->__data_len = 0;
2e60e022
TH
2528 return false;
2529 }
1da177e4 2530
a2dec7b3 2531 req->__data_len -= total_bytes;
2e46e8b2
TH
2532
2533 /* update sector only for requests with clear definition of sector */
e2a60da7 2534 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2535 req->__sector += total_bytes >> 9;
2e46e8b2 2536
80a761fd
TH
2537 /* mixed attributes always follow the first bio */
2538 if (req->cmd_flags & REQ_MIXED_MERGE) {
2539 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2540 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2541 }
2542
2e46e8b2
TH
2543 /*
2544 * If total number of sectors is less than the first segment
2545 * size, something has gone terribly wrong.
2546 */
2547 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2548 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2549 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2550 }
2551
2552 /* recalculate the number of segments */
1da177e4 2553 blk_recalc_rq_segments(req);
2e46e8b2 2554
2e60e022 2555 return true;
1da177e4 2556}
2e60e022 2557EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2558
2e60e022
TH
2559static bool blk_update_bidi_request(struct request *rq, int error,
2560 unsigned int nr_bytes,
2561 unsigned int bidi_bytes)
5efccd17 2562{
2e60e022
TH
2563 if (blk_update_request(rq, error, nr_bytes))
2564 return true;
5efccd17 2565
2e60e022
TH
2566 /* Bidi request must be completed as a whole */
2567 if (unlikely(blk_bidi_rq(rq)) &&
2568 blk_update_request(rq->next_rq, error, bidi_bytes))
2569 return true;
5efccd17 2570
e2e1a148
JA
2571 if (blk_queue_add_random(rq->q))
2572 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2573
2574 return false;
1da177e4
LT
2575}
2576
28018c24
JB
2577/**
2578 * blk_unprep_request - unprepare a request
2579 * @req: the request
2580 *
2581 * This function makes a request ready for complete resubmission (or
2582 * completion). It happens only after all error handling is complete,
2583 * so represents the appropriate moment to deallocate any resources
2584 * that were allocated to the request in the prep_rq_fn. The queue
2585 * lock is held when calling this.
2586 */
2587void blk_unprep_request(struct request *req)
2588{
2589 struct request_queue *q = req->q;
2590
2591 req->cmd_flags &= ~REQ_DONTPREP;
2592 if (q->unprep_rq_fn)
2593 q->unprep_rq_fn(q, req);
2594}
2595EXPORT_SYMBOL_GPL(blk_unprep_request);
2596
1da177e4
LT
2597/*
2598 * queue lock must be held
2599 */
12120077 2600void blk_finish_request(struct request *req, int error)
1da177e4 2601{
125c99bc 2602 if (req->cmd_flags & REQ_QUEUED)
b8286239
KU
2603 blk_queue_end_tag(req->q, req);
2604
ba396a6c 2605 BUG_ON(blk_queued_rq(req));
1da177e4 2606
33659ebb 2607 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2608 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2609
e78042e5
MA
2610 blk_delete_timer(req);
2611
28018c24
JB
2612 if (req->cmd_flags & REQ_DONTPREP)
2613 blk_unprep_request(req);
2614
bc58ba94 2615 blk_account_io_done(req);
b8286239 2616
1da177e4 2617 if (req->end_io)
8ffdc655 2618 req->end_io(req, error);
b8286239
KU
2619 else {
2620 if (blk_bidi_rq(req))
2621 __blk_put_request(req->next_rq->q, req->next_rq);
2622
1da177e4 2623 __blk_put_request(req->q, req);
b8286239 2624 }
1da177e4 2625}
12120077 2626EXPORT_SYMBOL(blk_finish_request);
1da177e4 2627
3b11313a 2628/**
2e60e022
TH
2629 * blk_end_bidi_request - Complete a bidi request
2630 * @rq: the request to complete
2631 * @error: %0 for success, < %0 for error
2632 * @nr_bytes: number of bytes to complete @rq
2633 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2634 *
2635 * Description:
e3a04fe3 2636 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2637 * Drivers that supports bidi can safely call this member for any
2638 * type of request, bidi or uni. In the later case @bidi_bytes is
2639 * just ignored.
336cdb40
KU
2640 *
2641 * Return:
2e60e022
TH
2642 * %false - we are done with this request
2643 * %true - still buffers pending for this request
a0cd1285 2644 **/
b1f74493 2645static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2646 unsigned int nr_bytes, unsigned int bidi_bytes)
2647{
336cdb40 2648 struct request_queue *q = rq->q;
2e60e022 2649 unsigned long flags;
32fab448 2650
2e60e022
TH
2651 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2652 return true;
32fab448 2653
336cdb40 2654 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2655 blk_finish_request(rq, error);
336cdb40
KU
2656 spin_unlock_irqrestore(q->queue_lock, flags);
2657
2e60e022 2658 return false;
32fab448
KU
2659}
2660
336cdb40 2661/**
2e60e022
TH
2662 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2663 * @rq: the request to complete
710027a4 2664 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2665 * @nr_bytes: number of bytes to complete @rq
2666 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2667 *
2668 * Description:
2e60e022
TH
2669 * Identical to blk_end_bidi_request() except that queue lock is
2670 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2671 *
2672 * Return:
2e60e022
TH
2673 * %false - we are done with this request
2674 * %true - still buffers pending for this request
336cdb40 2675 **/
4853abaa 2676bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2677 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2678{
2e60e022
TH
2679 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2680 return true;
336cdb40 2681
2e60e022 2682 blk_finish_request(rq, error);
336cdb40 2683
2e60e022 2684 return false;
336cdb40 2685}
e19a3ab0
KU
2686
2687/**
2688 * blk_end_request - Helper function for drivers to complete the request.
2689 * @rq: the request being processed
710027a4 2690 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2691 * @nr_bytes: number of bytes to complete
2692 *
2693 * Description:
2694 * Ends I/O on a number of bytes attached to @rq.
2695 * If @rq has leftover, sets it up for the next range of segments.
2696 *
2697 * Return:
b1f74493
FT
2698 * %false - we are done with this request
2699 * %true - still buffers pending for this request
e19a3ab0 2700 **/
b1f74493 2701bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2702{
b1f74493 2703 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2704}
56ad1740 2705EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2706
2707/**
b1f74493
FT
2708 * blk_end_request_all - Helper function for drives to finish the request.
2709 * @rq: the request to finish
8ebf9756 2710 * @error: %0 for success, < %0 for error
336cdb40
KU
2711 *
2712 * Description:
b1f74493
FT
2713 * Completely finish @rq.
2714 */
2715void blk_end_request_all(struct request *rq, int error)
336cdb40 2716{
b1f74493
FT
2717 bool pending;
2718 unsigned int bidi_bytes = 0;
336cdb40 2719
b1f74493
FT
2720 if (unlikely(blk_bidi_rq(rq)))
2721 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2722
b1f74493
FT
2723 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2724 BUG_ON(pending);
2725}
56ad1740 2726EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2727
b1f74493
FT
2728/**
2729 * blk_end_request_cur - Helper function to finish the current request chunk.
2730 * @rq: the request to finish the current chunk for
8ebf9756 2731 * @error: %0 for success, < %0 for error
b1f74493
FT
2732 *
2733 * Description:
2734 * Complete the current consecutively mapped chunk from @rq.
2735 *
2736 * Return:
2737 * %false - we are done with this request
2738 * %true - still buffers pending for this request
2739 */
2740bool blk_end_request_cur(struct request *rq, int error)
2741{
2742 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2743}
56ad1740 2744EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2745
80a761fd
TH
2746/**
2747 * blk_end_request_err - Finish a request till the next failure boundary.
2748 * @rq: the request to finish till the next failure boundary for
2749 * @error: must be negative errno
2750 *
2751 * Description:
2752 * Complete @rq till the next failure boundary.
2753 *
2754 * Return:
2755 * %false - we are done with this request
2756 * %true - still buffers pending for this request
2757 */
2758bool blk_end_request_err(struct request *rq, int error)
2759{
2760 WARN_ON(error >= 0);
2761 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2762}
2763EXPORT_SYMBOL_GPL(blk_end_request_err);
2764
e3a04fe3 2765/**
b1f74493
FT
2766 * __blk_end_request - Helper function for drivers to complete the request.
2767 * @rq: the request being processed
2768 * @error: %0 for success, < %0 for error
2769 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2770 *
2771 * Description:
b1f74493 2772 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2773 *
2774 * Return:
b1f74493
FT
2775 * %false - we are done with this request
2776 * %true - still buffers pending for this request
e3a04fe3 2777 **/
b1f74493 2778bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2779{
b1f74493 2780 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2781}
56ad1740 2782EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2783
32fab448 2784/**
b1f74493
FT
2785 * __blk_end_request_all - Helper function for drives to finish the request.
2786 * @rq: the request to finish
8ebf9756 2787 * @error: %0 for success, < %0 for error
32fab448
KU
2788 *
2789 * Description:
b1f74493 2790 * Completely finish @rq. Must be called with queue lock held.
32fab448 2791 */
b1f74493 2792void __blk_end_request_all(struct request *rq, int error)
32fab448 2793{
b1f74493
FT
2794 bool pending;
2795 unsigned int bidi_bytes = 0;
2796
2797 if (unlikely(blk_bidi_rq(rq)))
2798 bidi_bytes = blk_rq_bytes(rq->next_rq);
2799
2800 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2801 BUG_ON(pending);
32fab448 2802}
56ad1740 2803EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2804
e19a3ab0 2805/**
b1f74493
FT
2806 * __blk_end_request_cur - Helper function to finish the current request chunk.
2807 * @rq: the request to finish the current chunk for
8ebf9756 2808 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2809 *
2810 * Description:
b1f74493
FT
2811 * Complete the current consecutively mapped chunk from @rq. Must
2812 * be called with queue lock held.
e19a3ab0
KU
2813 *
2814 * Return:
b1f74493
FT
2815 * %false - we are done with this request
2816 * %true - still buffers pending for this request
2817 */
2818bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2819{
b1f74493 2820 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2821}
56ad1740 2822EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2823
80a761fd
TH
2824/**
2825 * __blk_end_request_err - Finish a request till the next failure boundary.
2826 * @rq: the request to finish till the next failure boundary for
2827 * @error: must be negative errno
2828 *
2829 * Description:
2830 * Complete @rq till the next failure boundary. Must be called
2831 * with queue lock held.
2832 *
2833 * Return:
2834 * %false - we are done with this request
2835 * %true - still buffers pending for this request
2836 */
2837bool __blk_end_request_err(struct request *rq, int error)
2838{
2839 WARN_ON(error >= 0);
2840 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2841}
2842EXPORT_SYMBOL_GPL(__blk_end_request_err);
2843
86db1e29
JA
2844void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2845 struct bio *bio)
1da177e4 2846{
a82afdfc 2847 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2848 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2849
b4f42e28 2850 if (bio_has_data(bio))
fb2dce86 2851 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2852
4f024f37 2853 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2854 rq->bio = rq->biotail = bio;
1da177e4 2855
66846572
N
2856 if (bio->bi_bdev)
2857 rq->rq_disk = bio->bi_bdev->bd_disk;
2858}
1da177e4 2859
2d4dc890
IL
2860#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2861/**
2862 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2863 * @rq: the request to be flushed
2864 *
2865 * Description:
2866 * Flush all pages in @rq.
2867 */
2868void rq_flush_dcache_pages(struct request *rq)
2869{
2870 struct req_iterator iter;
7988613b 2871 struct bio_vec bvec;
2d4dc890
IL
2872
2873 rq_for_each_segment(bvec, rq, iter)
7988613b 2874 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2875}
2876EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2877#endif
2878
ef9e3fac
KU
2879/**
2880 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2881 * @q : the queue of the device being checked
2882 *
2883 * Description:
2884 * Check if underlying low-level drivers of a device are busy.
2885 * If the drivers want to export their busy state, they must set own
2886 * exporting function using blk_queue_lld_busy() first.
2887 *
2888 * Basically, this function is used only by request stacking drivers
2889 * to stop dispatching requests to underlying devices when underlying
2890 * devices are busy. This behavior helps more I/O merging on the queue
2891 * of the request stacking driver and prevents I/O throughput regression
2892 * on burst I/O load.
2893 *
2894 * Return:
2895 * 0 - Not busy (The request stacking driver should dispatch request)
2896 * 1 - Busy (The request stacking driver should stop dispatching request)
2897 */
2898int blk_lld_busy(struct request_queue *q)
2899{
2900 if (q->lld_busy_fn)
2901 return q->lld_busy_fn(q);
2902
2903 return 0;
2904}
2905EXPORT_SYMBOL_GPL(blk_lld_busy);
2906
b0fd271d
KU
2907/**
2908 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2909 * @rq: the clone request to be cleaned up
2910 *
2911 * Description:
2912 * Free all bios in @rq for a cloned request.
2913 */
2914void blk_rq_unprep_clone(struct request *rq)
2915{
2916 struct bio *bio;
2917
2918 while ((bio = rq->bio) != NULL) {
2919 rq->bio = bio->bi_next;
2920
2921 bio_put(bio);
2922 }
2923}
2924EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2925
2926/*
2927 * Copy attributes of the original request to the clone request.
b4f42e28 2928 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
b0fd271d
KU
2929 */
2930static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2931{
2932 dst->cpu = src->cpu;
77a08689 2933 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2934 dst->cmd_type = src->cmd_type;
2935 dst->__sector = blk_rq_pos(src);
2936 dst->__data_len = blk_rq_bytes(src);
2937 dst->nr_phys_segments = src->nr_phys_segments;
2938 dst->ioprio = src->ioprio;
2939 dst->extra_len = src->extra_len;
2940}
2941
2942/**
2943 * blk_rq_prep_clone - Helper function to setup clone request
2944 * @rq: the request to be setup
2945 * @rq_src: original request to be cloned
2946 * @bs: bio_set that bios for clone are allocated from
2947 * @gfp_mask: memory allocation mask for bio
2948 * @bio_ctr: setup function to be called for each clone bio.
2949 * Returns %0 for success, non %0 for failure.
2950 * @data: private data to be passed to @bio_ctr
2951 *
2952 * Description:
2953 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
b4f42e28 2954 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
b0fd271d
KU
2955 * are not copied, and copying such parts is the caller's responsibility.
2956 * Also, pages which the original bios are pointing to are not copied
2957 * and the cloned bios just point same pages.
2958 * So cloned bios must be completed before original bios, which means
2959 * the caller must complete @rq before @rq_src.
2960 */
2961int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2962 struct bio_set *bs, gfp_t gfp_mask,
2963 int (*bio_ctr)(struct bio *, struct bio *, void *),
2964 void *data)
2965{
2966 struct bio *bio, *bio_src;
2967
2968 if (!bs)
2969 bs = fs_bio_set;
2970
b0fd271d 2971 __rq_for_each_bio(bio_src, rq_src) {
11dfce50 2972 bio = bio_clone_fast(bio_src, gfp_mask, bs);
b0fd271d
KU
2973 if (!bio)
2974 goto free_and_out;
2975
b0fd271d
KU
2976 if (bio_ctr && bio_ctr(bio, bio_src, data))
2977 goto free_and_out;
2978
2979 if (rq->bio) {
2980 rq->biotail->bi_next = bio;
2981 rq->biotail = bio;
2982 } else
2983 rq->bio = rq->biotail = bio;
2984 }
2985
2986 __blk_rq_prep_clone(rq, rq_src);
2987
2988 return 0;
2989
2990free_and_out:
2991 if (bio)
4254bba1 2992 bio_put(bio);
b0fd271d
KU
2993 blk_rq_unprep_clone(rq);
2994
2995 return -ENOMEM;
2996}
2997EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2998
59c3d45e 2999int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3000{
3001 return queue_work(kblockd_workqueue, work);
3002}
1da177e4
LT
3003EXPORT_SYMBOL(kblockd_schedule_work);
3004
59c3d45e
JA
3005int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3006 unsigned long delay)
e43473b7
VG
3007{
3008 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3009}
3010EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3011
8ab14595
JA
3012int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3013 unsigned long delay)
3014{
3015 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3016}
3017EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3018
75df7136
SJ
3019/**
3020 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3021 * @plug: The &struct blk_plug that needs to be initialized
3022 *
3023 * Description:
3024 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3025 * pending I/O should the task end up blocking between blk_start_plug() and
3026 * blk_finish_plug(). This is important from a performance perspective, but
3027 * also ensures that we don't deadlock. For instance, if the task is blocking
3028 * for a memory allocation, memory reclaim could end up wanting to free a
3029 * page belonging to that request that is currently residing in our private
3030 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3031 * this kind of deadlock.
3032 */
73c10101
JA
3033void blk_start_plug(struct blk_plug *plug)
3034{
3035 struct task_struct *tsk = current;
3036
73c10101 3037 INIT_LIST_HEAD(&plug->list);
320ae51f 3038 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3039 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
3040
3041 /*
3042 * If this is a nested plug, don't actually assign it. It will be
3043 * flushed on its own.
3044 */
3045 if (!tsk->plug) {
3046 /*
3047 * Store ordering should not be needed here, since a potential
3048 * preempt will imply a full memory barrier
3049 */
3050 tsk->plug = plug;
3051 }
3052}
3053EXPORT_SYMBOL(blk_start_plug);
3054
3055static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3056{
3057 struct request *rqa = container_of(a, struct request, queuelist);
3058 struct request *rqb = container_of(b, struct request, queuelist);
3059
975927b9
JM
3060 return !(rqa->q < rqb->q ||
3061 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3062}
3063
49cac01e
JA
3064/*
3065 * If 'from_schedule' is true, then postpone the dispatch of requests
3066 * until a safe kblockd context. We due this to avoid accidental big
3067 * additional stack usage in driver dispatch, in places where the originally
3068 * plugger did not intend it.
3069 */
f6603783 3070static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3071 bool from_schedule)
99e22598 3072 __releases(q->queue_lock)
94b5eb28 3073{
49cac01e 3074 trace_block_unplug(q, depth, !from_schedule);
99e22598 3075
70460571 3076 if (from_schedule)
24ecfbe2 3077 blk_run_queue_async(q);
70460571 3078 else
24ecfbe2 3079 __blk_run_queue(q);
70460571 3080 spin_unlock(q->queue_lock);
94b5eb28
JA
3081}
3082
74018dc3 3083static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3084{
3085 LIST_HEAD(callbacks);
3086
2a7d5559
SL
3087 while (!list_empty(&plug->cb_list)) {
3088 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3089
2a7d5559
SL
3090 while (!list_empty(&callbacks)) {
3091 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3092 struct blk_plug_cb,
3093 list);
2a7d5559 3094 list_del(&cb->list);
74018dc3 3095 cb->callback(cb, from_schedule);
2a7d5559 3096 }
048c9374
N
3097 }
3098}
3099
9cbb1750
N
3100struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3101 int size)
3102{
3103 struct blk_plug *plug = current->plug;
3104 struct blk_plug_cb *cb;
3105
3106 if (!plug)
3107 return NULL;
3108
3109 list_for_each_entry(cb, &plug->cb_list, list)
3110 if (cb->callback == unplug && cb->data == data)
3111 return cb;
3112
3113 /* Not currently on the callback list */
3114 BUG_ON(size < sizeof(*cb));
3115 cb = kzalloc(size, GFP_ATOMIC);
3116 if (cb) {
3117 cb->data = data;
3118 cb->callback = unplug;
3119 list_add(&cb->list, &plug->cb_list);
3120 }
3121 return cb;
3122}
3123EXPORT_SYMBOL(blk_check_plugged);
3124
49cac01e 3125void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3126{
3127 struct request_queue *q;
3128 unsigned long flags;
3129 struct request *rq;
109b8129 3130 LIST_HEAD(list);
94b5eb28 3131 unsigned int depth;
73c10101 3132
74018dc3 3133 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3134
3135 if (!list_empty(&plug->mq_list))
3136 blk_mq_flush_plug_list(plug, from_schedule);
3137
73c10101
JA
3138 if (list_empty(&plug->list))
3139 return;
3140
109b8129
N
3141 list_splice_init(&plug->list, &list);
3142
422765c2 3143 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3144
3145 q = NULL;
94b5eb28 3146 depth = 0;
18811272
JA
3147
3148 /*
3149 * Save and disable interrupts here, to avoid doing it for every
3150 * queue lock we have to take.
3151 */
73c10101 3152 local_irq_save(flags);
109b8129
N
3153 while (!list_empty(&list)) {
3154 rq = list_entry_rq(list.next);
73c10101 3155 list_del_init(&rq->queuelist);
73c10101
JA
3156 BUG_ON(!rq->q);
3157 if (rq->q != q) {
99e22598
JA
3158 /*
3159 * This drops the queue lock
3160 */
3161 if (q)
49cac01e 3162 queue_unplugged(q, depth, from_schedule);
73c10101 3163 q = rq->q;
94b5eb28 3164 depth = 0;
73c10101
JA
3165 spin_lock(q->queue_lock);
3166 }
8ba61435
TH
3167
3168 /*
3169 * Short-circuit if @q is dead
3170 */
3f3299d5 3171 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3172 __blk_end_request_all(rq, -ENODEV);
3173 continue;
3174 }
3175
73c10101
JA
3176 /*
3177 * rq is already accounted, so use raw insert
3178 */
401a18e9
JA
3179 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3180 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3181 else
3182 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3183
3184 depth++;
73c10101
JA
3185 }
3186
99e22598
JA
3187 /*
3188 * This drops the queue lock
3189 */
3190 if (q)
49cac01e 3191 queue_unplugged(q, depth, from_schedule);
73c10101 3192
73c10101
JA
3193 local_irq_restore(flags);
3194}
73c10101
JA
3195
3196void blk_finish_plug(struct blk_plug *plug)
3197{
f6603783 3198 blk_flush_plug_list(plug, false);
73c10101 3199
88b996cd
CH
3200 if (plug == current->plug)
3201 current->plug = NULL;
73c10101 3202}
88b996cd 3203EXPORT_SYMBOL(blk_finish_plug);
73c10101 3204
47fafbc7 3205#ifdef CONFIG_PM
6c954667
LM
3206/**
3207 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3208 * @q: the queue of the device
3209 * @dev: the device the queue belongs to
3210 *
3211 * Description:
3212 * Initialize runtime-PM-related fields for @q and start auto suspend for
3213 * @dev. Drivers that want to take advantage of request-based runtime PM
3214 * should call this function after @dev has been initialized, and its
3215 * request queue @q has been allocated, and runtime PM for it can not happen
3216 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3217 * cases, driver should call this function before any I/O has taken place.
3218 *
3219 * This function takes care of setting up using auto suspend for the device,
3220 * the autosuspend delay is set to -1 to make runtime suspend impossible
3221 * until an updated value is either set by user or by driver. Drivers do
3222 * not need to touch other autosuspend settings.
3223 *
3224 * The block layer runtime PM is request based, so only works for drivers
3225 * that use request as their IO unit instead of those directly use bio's.
3226 */
3227void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3228{
3229 q->dev = dev;
3230 q->rpm_status = RPM_ACTIVE;
3231 pm_runtime_set_autosuspend_delay(q->dev, -1);
3232 pm_runtime_use_autosuspend(q->dev);
3233}
3234EXPORT_SYMBOL(blk_pm_runtime_init);
3235
3236/**
3237 * blk_pre_runtime_suspend - Pre runtime suspend check
3238 * @q: the queue of the device
3239 *
3240 * Description:
3241 * This function will check if runtime suspend is allowed for the device
3242 * by examining if there are any requests pending in the queue. If there
3243 * are requests pending, the device can not be runtime suspended; otherwise,
3244 * the queue's status will be updated to SUSPENDING and the driver can
3245 * proceed to suspend the device.
3246 *
3247 * For the not allowed case, we mark last busy for the device so that
3248 * runtime PM core will try to autosuspend it some time later.
3249 *
3250 * This function should be called near the start of the device's
3251 * runtime_suspend callback.
3252 *
3253 * Return:
3254 * 0 - OK to runtime suspend the device
3255 * -EBUSY - Device should not be runtime suspended
3256 */
3257int blk_pre_runtime_suspend(struct request_queue *q)
3258{
3259 int ret = 0;
3260
3261 spin_lock_irq(q->queue_lock);
3262 if (q->nr_pending) {
3263 ret = -EBUSY;
3264 pm_runtime_mark_last_busy(q->dev);
3265 } else {
3266 q->rpm_status = RPM_SUSPENDING;
3267 }
3268 spin_unlock_irq(q->queue_lock);
3269 return ret;
3270}
3271EXPORT_SYMBOL(blk_pre_runtime_suspend);
3272
3273/**
3274 * blk_post_runtime_suspend - Post runtime suspend processing
3275 * @q: the queue of the device
3276 * @err: return value of the device's runtime_suspend function
3277 *
3278 * Description:
3279 * Update the queue's runtime status according to the return value of the
3280 * device's runtime suspend function and mark last busy for the device so
3281 * that PM core will try to auto suspend the device at a later time.
3282 *
3283 * This function should be called near the end of the device's
3284 * runtime_suspend callback.
3285 */
3286void blk_post_runtime_suspend(struct request_queue *q, int err)
3287{
3288 spin_lock_irq(q->queue_lock);
3289 if (!err) {
3290 q->rpm_status = RPM_SUSPENDED;
3291 } else {
3292 q->rpm_status = RPM_ACTIVE;
3293 pm_runtime_mark_last_busy(q->dev);
3294 }
3295 spin_unlock_irq(q->queue_lock);
3296}
3297EXPORT_SYMBOL(blk_post_runtime_suspend);
3298
3299/**
3300 * blk_pre_runtime_resume - Pre runtime resume processing
3301 * @q: the queue of the device
3302 *
3303 * Description:
3304 * Update the queue's runtime status to RESUMING in preparation for the
3305 * runtime resume of the device.
3306 *
3307 * This function should be called near the start of the device's
3308 * runtime_resume callback.
3309 */
3310void blk_pre_runtime_resume(struct request_queue *q)
3311{
3312 spin_lock_irq(q->queue_lock);
3313 q->rpm_status = RPM_RESUMING;
3314 spin_unlock_irq(q->queue_lock);
3315}
3316EXPORT_SYMBOL(blk_pre_runtime_resume);
3317
3318/**
3319 * blk_post_runtime_resume - Post runtime resume processing
3320 * @q: the queue of the device
3321 * @err: return value of the device's runtime_resume function
3322 *
3323 * Description:
3324 * Update the queue's runtime status according to the return value of the
3325 * device's runtime_resume function. If it is successfully resumed, process
3326 * the requests that are queued into the device's queue when it is resuming
3327 * and then mark last busy and initiate autosuspend for it.
3328 *
3329 * This function should be called near the end of the device's
3330 * runtime_resume callback.
3331 */
3332void blk_post_runtime_resume(struct request_queue *q, int err)
3333{
3334 spin_lock_irq(q->queue_lock);
3335 if (!err) {
3336 q->rpm_status = RPM_ACTIVE;
3337 __blk_run_queue(q);
3338 pm_runtime_mark_last_busy(q->dev);
c60855cd 3339 pm_request_autosuspend(q->dev);
6c954667
LM
3340 } else {
3341 q->rpm_status = RPM_SUSPENDED;
3342 }
3343 spin_unlock_irq(q->queue_lock);
3344}
3345EXPORT_SYMBOL(blk_post_runtime_resume);
3346#endif
3347
1da177e4
LT
3348int __init blk_dev_init(void)
3349{
9eb55b03
NK
3350 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3351 sizeof(((struct request *)0)->cmd_flags));
3352
89b90be2
TH
3353 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3354 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3355 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3356 if (!kblockd_workqueue)
3357 panic("Failed to create kblockd\n");
3358
3359 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3360 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3361
8324aa91 3362 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3363 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3364
d38ecf93 3365 return 0;
1da177e4 3366}