blkcg: make blkg_conf_prep() take @pol and return with queue lock held
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
55782138
LZ
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/block.h>
1da177e4 35
8324aa91 36#include "blk.h"
5efd6113 37#include "blk-cgroup.h"
8324aa91 38
d07335e5 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 42
a73f730d
TH
43DEFINE_IDA(blk_queue_ida);
44
1da177e4
LT
45/*
46 * For the allocated request tables
47 */
5ece6c52 48static struct kmem_cache *request_cachep;
1da177e4
LT
49
50/*
51 * For queue allocation
52 */
6728cb0e 53struct kmem_cache *blk_requestq_cachep;
1da177e4 54
1da177e4
LT
55/*
56 * Controlling structure to kblockd
57 */
ff856bad 58static struct workqueue_struct *kblockd_workqueue;
1da177e4 59
26b8256e
JA
60static void drive_stat_acct(struct request *rq, int new_io)
61{
28f13702 62 struct hd_struct *part;
26b8256e 63 int rw = rq_data_dir(rq);
c9959059 64 int cpu;
26b8256e 65
c2553b58 66 if (!blk_do_io_stat(rq))
26b8256e
JA
67 return;
68
074a7aca 69 cpu = part_stat_lock();
c9959059 70
09e099d4
JM
71 if (!new_io) {
72 part = rq->part;
074a7aca 73 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
74 } else {
75 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 76 if (!hd_struct_try_get(part)) {
09e099d4
JM
77 /*
78 * The partition is already being removed,
79 * the request will be accounted on the disk only
80 *
81 * We take a reference on disk->part0 although that
82 * partition will never be deleted, so we can treat
83 * it as any other partition.
84 */
85 part = &rq->rq_disk->part0;
6c23a968 86 hd_struct_get(part);
09e099d4 87 }
074a7aca 88 part_round_stats(cpu, part);
316d315b 89 part_inc_in_flight(part, rw);
09e099d4 90 rq->part = part;
26b8256e 91 }
e71bf0d0 92
074a7aca 93 part_stat_unlock();
26b8256e
JA
94}
95
8324aa91 96void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
97{
98 int nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
102 nr = q->nr_requests;
103 q->nr_congestion_on = nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
106 if (nr < 1)
107 nr = 1;
108 q->nr_congestion_off = nr;
109}
110
1da177e4
LT
111/**
112 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
113 * @bdev: device
114 *
115 * Locates the passed device's request queue and returns the address of its
116 * backing_dev_info
117 *
118 * Will return NULL if the request queue cannot be located.
119 */
120struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
121{
122 struct backing_dev_info *ret = NULL;
165125e1 123 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
124
125 if (q)
126 ret = &q->backing_dev_info;
127 return ret;
128}
1da177e4
LT
129EXPORT_SYMBOL(blk_get_backing_dev_info);
130
2a4aa30c 131void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 132{
1afb20f3
FT
133 memset(rq, 0, sizeof(*rq));
134
1da177e4 135 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 136 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 137 rq->cpu = -1;
63a71386 138 rq->q = q;
a2dec7b3 139 rq->__sector = (sector_t) -1;
2e662b65
JA
140 INIT_HLIST_NODE(&rq->hash);
141 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 142 rq->cmd = rq->__cmd;
e2494e1b 143 rq->cmd_len = BLK_MAX_CDB;
63a71386 144 rq->tag = -1;
1da177e4 145 rq->ref_count = 1;
b243ddcb 146 rq->start_time = jiffies;
9195291e 147 set_start_time_ns(rq);
09e099d4 148 rq->part = NULL;
1da177e4 149}
2a4aa30c 150EXPORT_SYMBOL(blk_rq_init);
1da177e4 151
5bb23a68
N
152static void req_bio_endio(struct request *rq, struct bio *bio,
153 unsigned int nbytes, int error)
1da177e4 154{
143a87f4
TH
155 if (error)
156 clear_bit(BIO_UPTODATE, &bio->bi_flags);
157 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
158 error = -EIO;
797e7dbb 159
143a87f4
TH
160 if (unlikely(nbytes > bio->bi_size)) {
161 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
162 __func__, nbytes, bio->bi_size);
163 nbytes = bio->bi_size;
5bb23a68 164 }
797e7dbb 165
143a87f4
TH
166 if (unlikely(rq->cmd_flags & REQ_QUIET))
167 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 168
143a87f4
TH
169 bio->bi_size -= nbytes;
170 bio->bi_sector += (nbytes >> 9);
7ba1ba12 171
143a87f4
TH
172 if (bio_integrity(bio))
173 bio_integrity_advance(bio, nbytes);
7ba1ba12 174
143a87f4
TH
175 /* don't actually finish bio if it's part of flush sequence */
176 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
177 bio_endio(bio, error);
1da177e4 178}
1da177e4 179
1da177e4
LT
180void blk_dump_rq_flags(struct request *rq, char *msg)
181{
182 int bit;
183
6728cb0e 184 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
185 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
186 rq->cmd_flags);
1da177e4 187
83096ebf
TH
188 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
189 (unsigned long long)blk_rq_pos(rq),
190 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 191 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 192 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 193
33659ebb 194 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 195 printk(KERN_INFO " cdb: ");
d34c87e4 196 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
197 printk("%02x ", rq->cmd[bit]);
198 printk("\n");
199 }
200}
1da177e4
LT
201EXPORT_SYMBOL(blk_dump_rq_flags);
202
3cca6dc1 203static void blk_delay_work(struct work_struct *work)
1da177e4 204{
3cca6dc1 205 struct request_queue *q;
1da177e4 206
3cca6dc1
JA
207 q = container_of(work, struct request_queue, delay_work.work);
208 spin_lock_irq(q->queue_lock);
24ecfbe2 209 __blk_run_queue(q);
3cca6dc1 210 spin_unlock_irq(q->queue_lock);
1da177e4 211}
1da177e4
LT
212
213/**
3cca6dc1
JA
214 * blk_delay_queue - restart queueing after defined interval
215 * @q: The &struct request_queue in question
216 * @msecs: Delay in msecs
1da177e4
LT
217 *
218 * Description:
3cca6dc1
JA
219 * Sometimes queueing needs to be postponed for a little while, to allow
220 * resources to come back. This function will make sure that queueing is
221 * restarted around the specified time.
222 */
223void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 224{
4521cc4e
JA
225 queue_delayed_work(kblockd_workqueue, &q->delay_work,
226 msecs_to_jiffies(msecs));
2ad8b1ef 227}
3cca6dc1 228EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 229
1da177e4
LT
230/**
231 * blk_start_queue - restart a previously stopped queue
165125e1 232 * @q: The &struct request_queue in question
1da177e4
LT
233 *
234 * Description:
235 * blk_start_queue() will clear the stop flag on the queue, and call
236 * the request_fn for the queue if it was in a stopped state when
237 * entered. Also see blk_stop_queue(). Queue lock must be held.
238 **/
165125e1 239void blk_start_queue(struct request_queue *q)
1da177e4 240{
a038e253
PBG
241 WARN_ON(!irqs_disabled());
242
75ad23bc 243 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 244 __blk_run_queue(q);
1da177e4 245}
1da177e4
LT
246EXPORT_SYMBOL(blk_start_queue);
247
248/**
249 * blk_stop_queue - stop a queue
165125e1 250 * @q: The &struct request_queue in question
1da177e4
LT
251 *
252 * Description:
253 * The Linux block layer assumes that a block driver will consume all
254 * entries on the request queue when the request_fn strategy is called.
255 * Often this will not happen, because of hardware limitations (queue
256 * depth settings). If a device driver gets a 'queue full' response,
257 * or if it simply chooses not to queue more I/O at one point, it can
258 * call this function to prevent the request_fn from being called until
259 * the driver has signalled it's ready to go again. This happens by calling
260 * blk_start_queue() to restart queue operations. Queue lock must be held.
261 **/
165125e1 262void blk_stop_queue(struct request_queue *q)
1da177e4 263{
ad3d9d7e 264 __cancel_delayed_work(&q->delay_work);
75ad23bc 265 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
266}
267EXPORT_SYMBOL(blk_stop_queue);
268
269/**
270 * blk_sync_queue - cancel any pending callbacks on a queue
271 * @q: the queue
272 *
273 * Description:
274 * The block layer may perform asynchronous callback activity
275 * on a queue, such as calling the unplug function after a timeout.
276 * A block device may call blk_sync_queue to ensure that any
277 * such activity is cancelled, thus allowing it to release resources
59c51591 278 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
279 * that its ->make_request_fn will not re-add plugging prior to calling
280 * this function.
281 *
da527770
VG
282 * This function does not cancel any asynchronous activity arising
283 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 284 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 285 *
1da177e4
LT
286 */
287void blk_sync_queue(struct request_queue *q)
288{
70ed28b9 289 del_timer_sync(&q->timeout);
3cca6dc1 290 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
291}
292EXPORT_SYMBOL(blk_sync_queue);
293
294/**
80a4b58e 295 * __blk_run_queue - run a single device queue
1da177e4 296 * @q: The queue to run
80a4b58e
JA
297 *
298 * Description:
299 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 300 * held and interrupts disabled.
1da177e4 301 */
24ecfbe2 302void __blk_run_queue(struct request_queue *q)
1da177e4 303{
a538cd03
TH
304 if (unlikely(blk_queue_stopped(q)))
305 return;
306
c21e6beb 307 q->request_fn(q);
75ad23bc
NP
308}
309EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 310
24ecfbe2
CH
311/**
312 * blk_run_queue_async - run a single device queue in workqueue context
313 * @q: The queue to run
314 *
315 * Description:
316 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
317 * of us.
318 */
319void blk_run_queue_async(struct request_queue *q)
320{
3ec717b7
SL
321 if (likely(!blk_queue_stopped(q))) {
322 __cancel_delayed_work(&q->delay_work);
24ecfbe2 323 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 324 }
24ecfbe2 325}
c21e6beb 326EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 327
75ad23bc
NP
328/**
329 * blk_run_queue - run a single device queue
330 * @q: The queue to run
80a4b58e
JA
331 *
332 * Description:
333 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 334 * May be used to restart queueing when a request has completed.
75ad23bc
NP
335 */
336void blk_run_queue(struct request_queue *q)
337{
338 unsigned long flags;
339
340 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 341 __blk_run_queue(q);
1da177e4
LT
342 spin_unlock_irqrestore(q->queue_lock, flags);
343}
344EXPORT_SYMBOL(blk_run_queue);
345
165125e1 346void blk_put_queue(struct request_queue *q)
483f4afc
AV
347{
348 kobject_put(&q->kobj);
349}
d86e0e83 350EXPORT_SYMBOL(blk_put_queue);
483f4afc 351
e3c78ca5
TH
352/**
353 * blk_drain_queue - drain requests from request_queue
354 * @q: queue to drain
c9a929dd 355 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 356 *
c9a929dd
TH
357 * Drain requests from @q. If @drain_all is set, all requests are drained.
358 * If not, only ELVPRIV requests are drained. The caller is responsible
359 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 360 */
c9a929dd 361void blk_drain_queue(struct request_queue *q, bool drain_all)
e3c78ca5
TH
362{
363 while (true) {
481a7d64
TH
364 bool drain = false;
365 int i;
e3c78ca5
TH
366
367 spin_lock_irq(q->queue_lock);
368
b855b04a
TH
369 /*
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
372 */
373 if (q->elevator)
374 elv_drain_elevator(q);
375
5efd6113 376 blkcg_drain_queue(q);
e3c78ca5 377
4eabc941
TH
378 /*
379 * This function might be called on a queue which failed
b855b04a
TH
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
4eabc941 384 */
b855b04a 385 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 386 __blk_run_queue(q);
c9a929dd 387
481a7d64
TH
388 drain |= q->rq.elvpriv;
389
390 /*
391 * Unfortunately, requests are queued at and tracked from
392 * multiple places and there's no single counter which can
393 * be drained. Check all the queues and counters.
394 */
395 if (drain_all) {
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
398 drain |= q->rq.count[i];
399 drain |= q->in_flight[i];
400 drain |= !list_empty(&q->flush_queue[i]);
401 }
402 }
e3c78ca5
TH
403
404 spin_unlock_irq(q->queue_lock);
405
481a7d64 406 if (!drain)
e3c78ca5
TH
407 break;
408 msleep(10);
409 }
410}
411
d732580b
TH
412/**
413 * blk_queue_bypass_start - enter queue bypass mode
414 * @q: queue of interest
415 *
416 * In bypass mode, only the dispatch FIFO queue of @q is used. This
417 * function makes @q enter bypass mode and drains all requests which were
6ecf23af
TH
418 * throttled or issued before. On return, it's guaranteed that no request
419 * is being throttled or has ELVPRIV set.
d732580b
TH
420 */
421void blk_queue_bypass_start(struct request_queue *q)
422{
423 spin_lock_irq(q->queue_lock);
424 q->bypass_depth++;
425 queue_flag_set(QUEUE_FLAG_BYPASS, q);
426 spin_unlock_irq(q->queue_lock);
427
428 blk_drain_queue(q, false);
429}
430EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
431
432/**
433 * blk_queue_bypass_end - leave queue bypass mode
434 * @q: queue of interest
435 *
436 * Leave bypass mode and restore the normal queueing behavior.
437 */
438void blk_queue_bypass_end(struct request_queue *q)
439{
440 spin_lock_irq(q->queue_lock);
441 if (!--q->bypass_depth)
442 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
443 WARN_ON_ONCE(q->bypass_depth < 0);
444 spin_unlock_irq(q->queue_lock);
445}
446EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
447
c9a929dd
TH
448/**
449 * blk_cleanup_queue - shutdown a request queue
450 * @q: request queue to shutdown
451 *
452 * Mark @q DEAD, drain all pending requests, destroy and put it. All
453 * future requests will be failed immediately with -ENODEV.
c94a96ac 454 */
6728cb0e 455void blk_cleanup_queue(struct request_queue *q)
483f4afc 456{
c9a929dd 457 spinlock_t *lock = q->queue_lock;
e3335de9 458
c9a929dd 459 /* mark @q DEAD, no new request or merges will be allowed afterwards */
483f4afc 460 mutex_lock(&q->sysfs_lock);
75ad23bc 461 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
c9a929dd
TH
462
463 spin_lock_irq(lock);
6ecf23af
TH
464
465 /* dead queue is permanently in bypass mode till released */
466 q->bypass_depth++;
467 queue_flag_set(QUEUE_FLAG_BYPASS, q);
468
c9a929dd
TH
469 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
470 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
471 queue_flag_set(QUEUE_FLAG_DEAD, q);
483f4afc 472
777eb1bf
HR
473 if (q->queue_lock != &q->__queue_lock)
474 q->queue_lock = &q->__queue_lock;
da527770 475
c9a929dd
TH
476 spin_unlock_irq(lock);
477 mutex_unlock(&q->sysfs_lock);
478
b855b04a
TH
479 /* drain all requests queued before DEAD marking */
480 blk_drain_queue(q, true);
c9a929dd
TH
481
482 /* @q won't process any more request, flush async actions */
483 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
484 blk_sync_queue(q);
485
486 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
487 blk_put_queue(q);
488}
1da177e4
LT
489EXPORT_SYMBOL(blk_cleanup_queue);
490
165125e1 491static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
492{
493 struct request_list *rl = &q->rq;
494
1abec4fd
MS
495 if (unlikely(rl->rq_pool))
496 return 0;
497
1faa16d2
JA
498 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
499 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 500 rl->elvpriv = 0;
1faa16d2
JA
501 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
502 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 503
1946089a
CL
504 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
505 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
506
507 if (!rl->rq_pool)
508 return -ENOMEM;
509
510 return 0;
511}
512
165125e1 513struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 514{
1946089a
CL
515 return blk_alloc_queue_node(gfp_mask, -1);
516}
517EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 518
165125e1 519struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 520{
165125e1 521 struct request_queue *q;
e0bf68dd 522 int err;
1946089a 523
8324aa91 524 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 525 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
526 if (!q)
527 return NULL;
528
a73f730d
TH
529 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
530 if (q->id < 0)
531 goto fail_q;
532
0989a025
JA
533 q->backing_dev_info.ra_pages =
534 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
535 q->backing_dev_info.state = 0;
536 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 537 q->backing_dev_info.name = "block";
5151412d 538 q->node = node_id;
0989a025 539
e0bf68dd 540 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
541 if (err)
542 goto fail_id;
e0bf68dd 543
31373d09
MG
544 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
545 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 546 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 547 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 548 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 549 INIT_LIST_HEAD(&q->icq_list);
4eef3049 550#ifdef CONFIG_BLK_CGROUP
e8989fae 551 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 552#endif
ae1b1539
TH
553 INIT_LIST_HEAD(&q->flush_queue[0]);
554 INIT_LIST_HEAD(&q->flush_queue[1]);
555 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 556 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 557
8324aa91 558 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 559
483f4afc 560 mutex_init(&q->sysfs_lock);
e7e72bf6 561 spin_lock_init(&q->__queue_lock);
483f4afc 562
c94a96ac
VG
563 /*
564 * By default initialize queue_lock to internal lock and driver can
565 * override it later if need be.
566 */
567 q->queue_lock = &q->__queue_lock;
568
5efd6113 569 if (blkcg_init_queue(q))
f51b802c
TH
570 goto fail_id;
571
1da177e4 572 return q;
a73f730d
TH
573
574fail_id:
575 ida_simple_remove(&blk_queue_ida, q->id);
576fail_q:
577 kmem_cache_free(blk_requestq_cachep, q);
578 return NULL;
1da177e4 579}
1946089a 580EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
581
582/**
583 * blk_init_queue - prepare a request queue for use with a block device
584 * @rfn: The function to be called to process requests that have been
585 * placed on the queue.
586 * @lock: Request queue spin lock
587 *
588 * Description:
589 * If a block device wishes to use the standard request handling procedures,
590 * which sorts requests and coalesces adjacent requests, then it must
591 * call blk_init_queue(). The function @rfn will be called when there
592 * are requests on the queue that need to be processed. If the device
593 * supports plugging, then @rfn may not be called immediately when requests
594 * are available on the queue, but may be called at some time later instead.
595 * Plugged queues are generally unplugged when a buffer belonging to one
596 * of the requests on the queue is needed, or due to memory pressure.
597 *
598 * @rfn is not required, or even expected, to remove all requests off the
599 * queue, but only as many as it can handle at a time. If it does leave
600 * requests on the queue, it is responsible for arranging that the requests
601 * get dealt with eventually.
602 *
603 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
604 * request queue; this lock will be taken also from interrupt context, so irq
605 * disabling is needed for it.
1da177e4 606 *
710027a4 607 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
608 * it didn't succeed.
609 *
610 * Note:
611 * blk_init_queue() must be paired with a blk_cleanup_queue() call
612 * when the block device is deactivated (such as at module unload).
613 **/
1946089a 614
165125e1 615struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 616{
1946089a
CL
617 return blk_init_queue_node(rfn, lock, -1);
618}
619EXPORT_SYMBOL(blk_init_queue);
620
165125e1 621struct request_queue *
1946089a
CL
622blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
623{
c86d1b8a 624 struct request_queue *uninit_q, *q;
1da177e4 625
c86d1b8a
MS
626 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
627 if (!uninit_q)
628 return NULL;
629
5151412d 630 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
631 if (!q)
632 blk_cleanup_queue(uninit_q);
633
634 return q;
01effb0d
MS
635}
636EXPORT_SYMBOL(blk_init_queue_node);
637
638struct request_queue *
639blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
640 spinlock_t *lock)
01effb0d 641{
1da177e4
LT
642 if (!q)
643 return NULL;
644
c86d1b8a 645 if (blk_init_free_list(q))
8669aafd 646 return NULL;
1da177e4
LT
647
648 q->request_fn = rfn;
1da177e4 649 q->prep_rq_fn = NULL;
28018c24 650 q->unprep_rq_fn = NULL;
bc58ba94 651 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
652
653 /* Override internal queue lock with supplied lock pointer */
654 if (lock)
655 q->queue_lock = lock;
1da177e4 656
f3b144aa
JA
657 /*
658 * This also sets hw/phys segments, boundary and size
659 */
c20e8de2 660 blk_queue_make_request(q, blk_queue_bio);
1da177e4 661
44ec9542
AS
662 q->sg_reserved_size = INT_MAX;
663
1da177e4
LT
664 /*
665 * all done
666 */
667 if (!elevator_init(q, NULL)) {
668 blk_queue_congestion_threshold(q);
669 return q;
670 }
671
1da177e4
LT
672 return NULL;
673}
5151412d 674EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 675
09ac46c4 676bool blk_get_queue(struct request_queue *q)
1da177e4 677{
34f6055c 678 if (likely(!blk_queue_dead(q))) {
09ac46c4
TH
679 __blk_get_queue(q);
680 return true;
1da177e4
LT
681 }
682
09ac46c4 683 return false;
1da177e4 684}
d86e0e83 685EXPORT_SYMBOL(blk_get_queue);
1da177e4 686
165125e1 687static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 688{
f1f8cc94 689 if (rq->cmd_flags & REQ_ELVPRIV) {
cb98fc8b 690 elv_put_request(q, rq);
f1f8cc94 691 if (rq->elv.icq)
11a3122f 692 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
693 }
694
1da177e4
LT
695 mempool_free(rq, q->rq.rq_pool);
696}
697
1ea25ecb 698static struct request *
852c788f 699blk_alloc_request(struct request_queue *q, struct bio *bio, struct io_cq *icq,
f1f8cc94 700 unsigned int flags, gfp_t gfp_mask)
1da177e4
LT
701{
702 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
703
704 if (!rq)
705 return NULL;
706
2a4aa30c 707 blk_rq_init(q, rq);
1afb20f3 708
42dad764 709 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 710
f1f8cc94
TH
711 if (flags & REQ_ELVPRIV) {
712 rq->elv.icq = icq;
852c788f 713 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
f1f8cc94
TH
714 mempool_free(rq, q->rq.rq_pool);
715 return NULL;
716 }
717 /* @rq->elv.icq holds on to io_context until @rq is freed */
718 if (icq)
719 get_io_context(icq->ioc);
cb98fc8b 720 }
1da177e4 721
cb98fc8b 722 return rq;
1da177e4
LT
723}
724
725/*
726 * ioc_batching returns true if the ioc is a valid batching request and
727 * should be given priority access to a request.
728 */
165125e1 729static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
730{
731 if (!ioc)
732 return 0;
733
734 /*
735 * Make sure the process is able to allocate at least 1 request
736 * even if the batch times out, otherwise we could theoretically
737 * lose wakeups.
738 */
739 return ioc->nr_batch_requests == q->nr_batching ||
740 (ioc->nr_batch_requests > 0
741 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
742}
743
744/*
745 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
746 * will cause the process to be a "batcher" on all queues in the system. This
747 * is the behaviour we want though - once it gets a wakeup it should be given
748 * a nice run.
749 */
165125e1 750static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
751{
752 if (!ioc || ioc_batching(q, ioc))
753 return;
754
755 ioc->nr_batch_requests = q->nr_batching;
756 ioc->last_waited = jiffies;
757}
758
1faa16d2 759static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
760{
761 struct request_list *rl = &q->rq;
762
1faa16d2
JA
763 if (rl->count[sync] < queue_congestion_off_threshold(q))
764 blk_clear_queue_congested(q, sync);
1da177e4 765
1faa16d2
JA
766 if (rl->count[sync] + 1 <= q->nr_requests) {
767 if (waitqueue_active(&rl->wait[sync]))
768 wake_up(&rl->wait[sync]);
1da177e4 769
1faa16d2 770 blk_clear_queue_full(q, sync);
1da177e4
LT
771 }
772}
773
774/*
775 * A request has just been released. Account for it, update the full and
776 * congestion status, wake up any waiters. Called under q->queue_lock.
777 */
75eb6c37 778static void freed_request(struct request_queue *q, unsigned int flags)
1da177e4
LT
779{
780 struct request_list *rl = &q->rq;
75eb6c37 781 int sync = rw_is_sync(flags);
1da177e4 782
1faa16d2 783 rl->count[sync]--;
75eb6c37 784 if (flags & REQ_ELVPRIV)
cb98fc8b 785 rl->elvpriv--;
1da177e4 786
1faa16d2 787 __freed_request(q, sync);
1da177e4 788
1faa16d2
JA
789 if (unlikely(rl->starved[sync ^ 1]))
790 __freed_request(q, sync ^ 1);
1da177e4
LT
791}
792
9d5a4e94
MS
793/*
794 * Determine if elevator data should be initialized when allocating the
795 * request associated with @bio.
796 */
797static bool blk_rq_should_init_elevator(struct bio *bio)
798{
799 if (!bio)
800 return true;
801
802 /*
803 * Flush requests do not use the elevator so skip initialization.
804 * This allows a request to share the flush and elevator data.
805 */
806 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
807 return false;
808
809 return true;
810}
811
852c788f
TH
812/**
813 * rq_ioc - determine io_context for request allocation
814 * @bio: request being allocated is for this bio (can be %NULL)
815 *
816 * Determine io_context to use for request allocation for @bio. May return
817 * %NULL if %current->io_context doesn't exist.
818 */
819static struct io_context *rq_ioc(struct bio *bio)
820{
821#ifdef CONFIG_BLK_CGROUP
822 if (bio && bio->bi_ioc)
823 return bio->bi_ioc;
824#endif
825 return current->io_context;
826}
827
da8303c6
TH
828/**
829 * get_request - get a free request
830 * @q: request_queue to allocate request from
831 * @rw_flags: RW and SYNC flags
832 * @bio: bio to allocate request for (can be %NULL)
833 * @gfp_mask: allocation mask
834 *
835 * Get a free request from @q. This function may fail under memory
836 * pressure or if @q is dead.
837 *
838 * Must be callled with @q->queue_lock held and,
839 * Returns %NULL on failure, with @q->queue_lock held.
840 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 841 */
165125e1 842static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 843 struct bio *bio, gfp_t gfp_mask)
1da177e4 844{
b679281a 845 struct request *rq;
1da177e4 846 struct request_list *rl = &q->rq;
f1f8cc94 847 struct elevator_type *et;
f2dbd76a 848 struct io_context *ioc;
f1f8cc94 849 struct io_cq *icq = NULL;
1faa16d2 850 const bool is_sync = rw_is_sync(rw_flags) != 0;
f2dbd76a 851 bool retried = false;
75eb6c37 852 int may_queue;
f2dbd76a 853retry:
f1f8cc94 854 et = q->elevator->type;
852c788f 855 ioc = rq_ioc(bio);
88ee5ef1 856
34f6055c 857 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
858 return NULL;
859
7749a8d4 860 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
861 if (may_queue == ELV_MQUEUE_NO)
862 goto rq_starved;
863
1faa16d2
JA
864 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
865 if (rl->count[is_sync]+1 >= q->nr_requests) {
f2dbd76a
TH
866 /*
867 * We want ioc to record batching state. If it's
868 * not already there, creating a new one requires
869 * dropping queue_lock, which in turn requires
870 * retesting conditions to avoid queue hang.
871 */
872 if (!ioc && !retried) {
873 spin_unlock_irq(q->queue_lock);
24acfc34 874 create_io_context(gfp_mask, q->node);
f2dbd76a
TH
875 spin_lock_irq(q->queue_lock);
876 retried = true;
877 goto retry;
878 }
879
88ee5ef1
JA
880 /*
881 * The queue will fill after this allocation, so set
882 * it as full, and mark this process as "batching".
883 * This process will be allowed to complete a batch of
884 * requests, others will be blocked.
885 */
1faa16d2 886 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 887 ioc_set_batching(q, ioc);
1faa16d2 888 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
889 } else {
890 if (may_queue != ELV_MQUEUE_MUST
891 && !ioc_batching(q, ioc)) {
892 /*
893 * The queue is full and the allocating
894 * process is not a "batcher", and not
895 * exempted by the IO scheduler
896 */
b679281a 897 return NULL;
88ee5ef1
JA
898 }
899 }
1da177e4 900 }
1faa16d2 901 blk_set_queue_congested(q, is_sync);
1da177e4
LT
902 }
903
082cf69e
JA
904 /*
905 * Only allow batching queuers to allocate up to 50% over the defined
906 * limit of requests, otherwise we could have thousands of requests
907 * allocated with any setting of ->nr_requests
908 */
1faa16d2 909 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 910 return NULL;
fd782a4a 911
1faa16d2
JA
912 rl->count[is_sync]++;
913 rl->starved[is_sync] = 0;
cb98fc8b 914
f1f8cc94
TH
915 /*
916 * Decide whether the new request will be managed by elevator. If
917 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
918 * prevent the current elevator from being destroyed until the new
919 * request is freed. This guarantees icq's won't be destroyed and
920 * makes creating new ones safe.
921 *
922 * Also, lookup icq while holding queue_lock. If it doesn't exist,
923 * it will be created after releasing queue_lock.
924 */
d732580b 925 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37
TH
926 rw_flags |= REQ_ELVPRIV;
927 rl->elvpriv++;
f1f8cc94
TH
928 if (et->icq_cache && ioc)
929 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 930 }
cb98fc8b 931
f253b86b
JA
932 if (blk_queue_io_stat(q))
933 rw_flags |= REQ_IO_STAT;
1da177e4
LT
934 spin_unlock_irq(q->queue_lock);
935
f1f8cc94 936 /* create icq if missing */
05c30b95 937 if ((rw_flags & REQ_ELVPRIV) && unlikely(et->icq_cache && !icq)) {
852c788f
TH
938 create_io_context(gfp_mask, q->node);
939 ioc = rq_ioc(bio);
940 if (!ioc)
941 goto fail_alloc;
942 icq = ioc_create_icq(ioc, q, gfp_mask);
05c30b95 943 if (!icq)
b679281a 944 goto fail_alloc;
05c30b95 945 }
f1f8cc94 946
852c788f 947 rq = blk_alloc_request(q, bio, icq, rw_flags, gfp_mask);
b679281a
TH
948 if (unlikely(!rq))
949 goto fail_alloc;
1da177e4 950
88ee5ef1
JA
951 /*
952 * ioc may be NULL here, and ioc_batching will be false. That's
953 * OK, if the queue is under the request limit then requests need
954 * not count toward the nr_batch_requests limit. There will always
955 * be some limit enforced by BLK_BATCH_TIME.
956 */
1da177e4
LT
957 if (ioc_batching(q, ioc))
958 ioc->nr_batch_requests--;
6728cb0e 959
1faa16d2 960 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 961 return rq;
b679281a
TH
962
963fail_alloc:
964 /*
965 * Allocation failed presumably due to memory. Undo anything we
966 * might have messed up.
967 *
968 * Allocating task should really be put onto the front of the wait
969 * queue, but this is pretty rare.
970 */
971 spin_lock_irq(q->queue_lock);
972 freed_request(q, rw_flags);
973
974 /*
975 * in the very unlikely event that allocation failed and no
976 * requests for this direction was pending, mark us starved so that
977 * freeing of a request in the other direction will notice
978 * us. another possible fix would be to split the rq mempool into
979 * READ and WRITE
980 */
981rq_starved:
982 if (unlikely(rl->count[is_sync] == 0))
983 rl->starved[is_sync] = 1;
984 return NULL;
1da177e4
LT
985}
986
da8303c6
TH
987/**
988 * get_request_wait - get a free request with retry
989 * @q: request_queue to allocate request from
990 * @rw_flags: RW and SYNC flags
991 * @bio: bio to allocate request for (can be %NULL)
992 *
993 * Get a free request from @q. This function keeps retrying under memory
994 * pressure and fails iff @q is dead.
d6344532 995 *
da8303c6
TH
996 * Must be callled with @q->queue_lock held and,
997 * Returns %NULL on failure, with @q->queue_lock held.
998 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 999 */
165125e1 1000static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 1001 struct bio *bio)
1da177e4 1002{
1faa16d2 1003 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
1004 struct request *rq;
1005
7749a8d4 1006 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
1007 while (!rq) {
1008 DEFINE_WAIT(wait);
1da177e4
LT
1009 struct request_list *rl = &q->rq;
1010
34f6055c 1011 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
1012 return NULL;
1013
1faa16d2 1014 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
1015 TASK_UNINTERRUPTIBLE);
1016
1faa16d2 1017 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1018
05caf8db
ZY
1019 spin_unlock_irq(q->queue_lock);
1020 io_schedule();
1da177e4 1021
05caf8db
ZY
1022 /*
1023 * After sleeping, we become a "batching" process and
1024 * will be able to allocate at least one request, and
1025 * up to a big batch of them for a small period time.
1026 * See ioc_batching, ioc_set_batching
1027 */
24acfc34 1028 create_io_context(GFP_NOIO, q->node);
f2dbd76a 1029 ioc_set_batching(q, current->io_context);
d6344532 1030
05caf8db 1031 spin_lock_irq(q->queue_lock);
1faa16d2 1032 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
1033
1034 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1035 };
1da177e4
LT
1036
1037 return rq;
1038}
1039
165125e1 1040struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1041{
1042 struct request *rq;
1043
1044 BUG_ON(rw != READ && rw != WRITE);
1045
d6344532 1046 spin_lock_irq(q->queue_lock);
da8303c6 1047 if (gfp_mask & __GFP_WAIT)
22e2c507 1048 rq = get_request_wait(q, rw, NULL);
da8303c6 1049 else
22e2c507 1050 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1051 if (!rq)
1052 spin_unlock_irq(q->queue_lock);
d6344532 1053 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1054
1055 return rq;
1056}
1da177e4
LT
1057EXPORT_SYMBOL(blk_get_request);
1058
dc72ef4a 1059/**
79eb63e9 1060 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1061 * @q: target request queue
79eb63e9
BH
1062 * @bio: The bio describing the memory mappings that will be submitted for IO.
1063 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1064 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1065 *
79eb63e9
BH
1066 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1067 * type commands. Where the struct request needs to be farther initialized by
1068 * the caller. It is passed a &struct bio, which describes the memory info of
1069 * the I/O transfer.
dc72ef4a 1070 *
79eb63e9
BH
1071 * The caller of blk_make_request must make sure that bi_io_vec
1072 * are set to describe the memory buffers. That bio_data_dir() will return
1073 * the needed direction of the request. (And all bio's in the passed bio-chain
1074 * are properly set accordingly)
1075 *
1076 * If called under none-sleepable conditions, mapped bio buffers must not
1077 * need bouncing, by calling the appropriate masked or flagged allocator,
1078 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1079 * BUG.
53674ac5
JA
1080 *
1081 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1082 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1083 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1084 * completion of a bio that hasn't been submitted yet, thus resulting in a
1085 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1086 * of bio_alloc(), as that avoids the mempool deadlock.
1087 * If possible a big IO should be split into smaller parts when allocation
1088 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1089 */
79eb63e9
BH
1090struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1091 gfp_t gfp_mask)
dc72ef4a 1092{
79eb63e9
BH
1093 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1094
1095 if (unlikely(!rq))
1096 return ERR_PTR(-ENOMEM);
1097
1098 for_each_bio(bio) {
1099 struct bio *bounce_bio = bio;
1100 int ret;
1101
1102 blk_queue_bounce(q, &bounce_bio);
1103 ret = blk_rq_append_bio(q, rq, bounce_bio);
1104 if (unlikely(ret)) {
1105 blk_put_request(rq);
1106 return ERR_PTR(ret);
1107 }
1108 }
1109
1110 return rq;
dc72ef4a 1111}
79eb63e9 1112EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1113
1da177e4
LT
1114/**
1115 * blk_requeue_request - put a request back on queue
1116 * @q: request queue where request should be inserted
1117 * @rq: request to be inserted
1118 *
1119 * Description:
1120 * Drivers often keep queueing requests until the hardware cannot accept
1121 * more, when that condition happens we need to put the request back
1122 * on the queue. Must be called with queue lock held.
1123 */
165125e1 1124void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1125{
242f9dcb
JA
1126 blk_delete_timer(rq);
1127 blk_clear_rq_complete(rq);
5f3ea37c 1128 trace_block_rq_requeue(q, rq);
2056a782 1129
1da177e4
LT
1130 if (blk_rq_tagged(rq))
1131 blk_queue_end_tag(q, rq);
1132
ba396a6c
JB
1133 BUG_ON(blk_queued_rq(rq));
1134
1da177e4
LT
1135 elv_requeue_request(q, rq);
1136}
1da177e4
LT
1137EXPORT_SYMBOL(blk_requeue_request);
1138
73c10101
JA
1139static void add_acct_request(struct request_queue *q, struct request *rq,
1140 int where)
1141{
1142 drive_stat_acct(rq, 1);
7eaceacc 1143 __elv_add_request(q, rq, where);
73c10101
JA
1144}
1145
074a7aca
TH
1146static void part_round_stats_single(int cpu, struct hd_struct *part,
1147 unsigned long now)
1148{
1149 if (now == part->stamp)
1150 return;
1151
316d315b 1152 if (part_in_flight(part)) {
074a7aca 1153 __part_stat_add(cpu, part, time_in_queue,
316d315b 1154 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1155 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1156 }
1157 part->stamp = now;
1158}
1159
1160/**
496aa8a9
RD
1161 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1162 * @cpu: cpu number for stats access
1163 * @part: target partition
1da177e4
LT
1164 *
1165 * The average IO queue length and utilisation statistics are maintained
1166 * by observing the current state of the queue length and the amount of
1167 * time it has been in this state for.
1168 *
1169 * Normally, that accounting is done on IO completion, but that can result
1170 * in more than a second's worth of IO being accounted for within any one
1171 * second, leading to >100% utilisation. To deal with that, we call this
1172 * function to do a round-off before returning the results when reading
1173 * /proc/diskstats. This accounts immediately for all queue usage up to
1174 * the current jiffies and restarts the counters again.
1175 */
c9959059 1176void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1177{
1178 unsigned long now = jiffies;
1179
074a7aca
TH
1180 if (part->partno)
1181 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1182 part_round_stats_single(cpu, part, now);
6f2576af 1183}
074a7aca 1184EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1185
1da177e4
LT
1186/*
1187 * queue lock must be held
1188 */
165125e1 1189void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1190{
1da177e4
LT
1191 if (unlikely(!q))
1192 return;
1193 if (unlikely(--req->ref_count))
1194 return;
1195
8922e16c
TH
1196 elv_completed_request(q, req);
1197
1cd96c24
BH
1198 /* this is a bio leak */
1199 WARN_ON(req->bio != NULL);
1200
1da177e4
LT
1201 /*
1202 * Request may not have originated from ll_rw_blk. if not,
1203 * it didn't come out of our reserved rq pools
1204 */
49171e5c 1205 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1206 unsigned int flags = req->cmd_flags;
1da177e4 1207
1da177e4 1208 BUG_ON(!list_empty(&req->queuelist));
9817064b 1209 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1210
1211 blk_free_request(q, req);
75eb6c37 1212 freed_request(q, flags);
1da177e4
LT
1213 }
1214}
6e39b69e
MC
1215EXPORT_SYMBOL_GPL(__blk_put_request);
1216
1da177e4
LT
1217void blk_put_request(struct request *req)
1218{
8922e16c 1219 unsigned long flags;
165125e1 1220 struct request_queue *q = req->q;
8922e16c 1221
52a93ba8
FT
1222 spin_lock_irqsave(q->queue_lock, flags);
1223 __blk_put_request(q, req);
1224 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1225}
1da177e4
LT
1226EXPORT_SYMBOL(blk_put_request);
1227
66ac0280
CH
1228/**
1229 * blk_add_request_payload - add a payload to a request
1230 * @rq: request to update
1231 * @page: page backing the payload
1232 * @len: length of the payload.
1233 *
1234 * This allows to later add a payload to an already submitted request by
1235 * a block driver. The driver needs to take care of freeing the payload
1236 * itself.
1237 *
1238 * Note that this is a quite horrible hack and nothing but handling of
1239 * discard requests should ever use it.
1240 */
1241void blk_add_request_payload(struct request *rq, struct page *page,
1242 unsigned int len)
1243{
1244 struct bio *bio = rq->bio;
1245
1246 bio->bi_io_vec->bv_page = page;
1247 bio->bi_io_vec->bv_offset = 0;
1248 bio->bi_io_vec->bv_len = len;
1249
1250 bio->bi_size = len;
1251 bio->bi_vcnt = 1;
1252 bio->bi_phys_segments = 1;
1253
1254 rq->__data_len = rq->resid_len = len;
1255 rq->nr_phys_segments = 1;
1256 rq->buffer = bio_data(bio);
1257}
1258EXPORT_SYMBOL_GPL(blk_add_request_payload);
1259
73c10101
JA
1260static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1261 struct bio *bio)
1262{
1263 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1264
73c10101
JA
1265 if (!ll_back_merge_fn(q, req, bio))
1266 return false;
1267
1268 trace_block_bio_backmerge(q, bio);
1269
1270 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1271 blk_rq_set_mixed_merge(req);
1272
1273 req->biotail->bi_next = bio;
1274 req->biotail = bio;
1275 req->__data_len += bio->bi_size;
1276 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1277
1278 drive_stat_acct(req, 0);
1279 return true;
1280}
1281
1282static bool bio_attempt_front_merge(struct request_queue *q,
1283 struct request *req, struct bio *bio)
1284{
1285 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1286
73c10101
JA
1287 if (!ll_front_merge_fn(q, req, bio))
1288 return false;
1289
1290 trace_block_bio_frontmerge(q, bio);
1291
1292 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1293 blk_rq_set_mixed_merge(req);
1294
73c10101
JA
1295 bio->bi_next = req->bio;
1296 req->bio = bio;
1297
1298 /*
1299 * may not be valid. if the low level driver said
1300 * it didn't need a bounce buffer then it better
1301 * not touch req->buffer either...
1302 */
1303 req->buffer = bio_data(bio);
1304 req->__sector = bio->bi_sector;
1305 req->__data_len += bio->bi_size;
1306 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1307
1308 drive_stat_acct(req, 0);
1309 return true;
1310}
1311
bd87b589
TH
1312/**
1313 * attempt_plug_merge - try to merge with %current's plugged list
1314 * @q: request_queue new bio is being queued at
1315 * @bio: new bio being queued
1316 * @request_count: out parameter for number of traversed plugged requests
1317 *
1318 * Determine whether @bio being queued on @q can be merged with a request
1319 * on %current's plugged list. Returns %true if merge was successful,
1320 * otherwise %false.
1321 *
07c2bd37
TH
1322 * Plugging coalesces IOs from the same issuer for the same purpose without
1323 * going through @q->queue_lock. As such it's more of an issuing mechanism
1324 * than scheduling, and the request, while may have elvpriv data, is not
1325 * added on the elevator at this point. In addition, we don't have
1326 * reliable access to the elevator outside queue lock. Only check basic
1327 * merging parameters without querying the elevator.
73c10101 1328 */
bd87b589
TH
1329static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1330 unsigned int *request_count)
73c10101
JA
1331{
1332 struct blk_plug *plug;
1333 struct request *rq;
1334 bool ret = false;
1335
bd87b589 1336 plug = current->plug;
73c10101
JA
1337 if (!plug)
1338 goto out;
56ebdaf2 1339 *request_count = 0;
73c10101
JA
1340
1341 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1342 int el_ret;
1343
56ebdaf2
SL
1344 (*request_count)++;
1345
07c2bd37 1346 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1347 continue;
1348
050c8ea8 1349 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1350 if (el_ret == ELEVATOR_BACK_MERGE) {
1351 ret = bio_attempt_back_merge(q, rq, bio);
1352 if (ret)
1353 break;
1354 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1355 ret = bio_attempt_front_merge(q, rq, bio);
1356 if (ret)
1357 break;
1358 }
1359 }
1360out:
1361 return ret;
1362}
1363
86db1e29 1364void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1365{
4aff5e23 1366 req->cmd_type = REQ_TYPE_FS;
52d9e675 1367
7b6d91da
CH
1368 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1369 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1370 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1371
52d9e675 1372 req->errors = 0;
a2dec7b3 1373 req->__sector = bio->bi_sector;
52d9e675 1374 req->ioprio = bio_prio(bio);
bc1c56fd 1375 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1376}
1377
5a7bbad2 1378void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1379{
5e00d1b5 1380 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1381 struct blk_plug *plug;
1382 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1383 struct request *req;
56ebdaf2 1384 unsigned int request_count = 0;
1da177e4 1385
1da177e4
LT
1386 /*
1387 * low level driver can indicate that it wants pages above a
1388 * certain limit bounced to low memory (ie for highmem, or even
1389 * ISA dma in theory)
1390 */
1391 blk_queue_bounce(q, &bio);
1392
4fed947c 1393 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1394 spin_lock_irq(q->queue_lock);
ae1b1539 1395 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1396 goto get_rq;
1397 }
1398
73c10101
JA
1399 /*
1400 * Check if we can merge with the plugged list before grabbing
1401 * any locks.
1402 */
bd87b589 1403 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1404 return;
1da177e4 1405
73c10101 1406 spin_lock_irq(q->queue_lock);
2056a782 1407
73c10101
JA
1408 el_ret = elv_merge(q, &req, bio);
1409 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1410 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1411 elv_bio_merged(q, req, bio);
73c10101
JA
1412 if (!attempt_back_merge(q, req))
1413 elv_merged_request(q, req, el_ret);
1414 goto out_unlock;
1415 }
1416 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1417 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1418 elv_bio_merged(q, req, bio);
73c10101
JA
1419 if (!attempt_front_merge(q, req))
1420 elv_merged_request(q, req, el_ret);
1421 goto out_unlock;
80a761fd 1422 }
1da177e4
LT
1423 }
1424
450991bc 1425get_rq:
7749a8d4
JA
1426 /*
1427 * This sync check and mask will be re-done in init_request_from_bio(),
1428 * but we need to set it earlier to expose the sync flag to the
1429 * rq allocator and io schedulers.
1430 */
1431 rw_flags = bio_data_dir(bio);
1432 if (sync)
7b6d91da 1433 rw_flags |= REQ_SYNC;
7749a8d4 1434
1da177e4 1435 /*
450991bc 1436 * Grab a free request. This is might sleep but can not fail.
d6344532 1437 * Returns with the queue unlocked.
450991bc 1438 */
7749a8d4 1439 req = get_request_wait(q, rw_flags, bio);
da8303c6
TH
1440 if (unlikely(!req)) {
1441 bio_endio(bio, -ENODEV); /* @q is dead */
1442 goto out_unlock;
1443 }
d6344532 1444
450991bc
NP
1445 /*
1446 * After dropping the lock and possibly sleeping here, our request
1447 * may now be mergeable after it had proven unmergeable (above).
1448 * We don't worry about that case for efficiency. It won't happen
1449 * often, and the elevators are able to handle it.
1da177e4 1450 */
52d9e675 1451 init_request_from_bio(req, bio);
1da177e4 1452
9562ad9a 1453 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1454 req->cpu = raw_smp_processor_id();
73c10101
JA
1455
1456 plug = current->plug;
721a9602 1457 if (plug) {
dc6d36c9
JA
1458 /*
1459 * If this is the first request added after a plug, fire
1460 * of a plug trace. If others have been added before, check
1461 * if we have multiple devices in this plug. If so, make a
1462 * note to sort the list before dispatch.
1463 */
1464 if (list_empty(&plug->list))
1465 trace_block_plug(q);
3540d5e8
SL
1466 else {
1467 if (!plug->should_sort) {
1468 struct request *__rq;
73c10101 1469
3540d5e8
SL
1470 __rq = list_entry_rq(plug->list.prev);
1471 if (__rq->q != q)
1472 plug->should_sort = 1;
1473 }
019ceb7d 1474 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1475 blk_flush_plug_list(plug, false);
019ceb7d
SL
1476 trace_block_plug(q);
1477 }
73c10101 1478 }
73c10101
JA
1479 list_add_tail(&req->queuelist, &plug->list);
1480 drive_stat_acct(req, 1);
1481 } else {
1482 spin_lock_irq(q->queue_lock);
1483 add_acct_request(q, req, where);
24ecfbe2 1484 __blk_run_queue(q);
73c10101
JA
1485out_unlock:
1486 spin_unlock_irq(q->queue_lock);
1487 }
1da177e4 1488}
c20e8de2 1489EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1490
1491/*
1492 * If bio->bi_dev is a partition, remap the location
1493 */
1494static inline void blk_partition_remap(struct bio *bio)
1495{
1496 struct block_device *bdev = bio->bi_bdev;
1497
bf2de6f5 1498 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1499 struct hd_struct *p = bdev->bd_part;
1500
1da177e4
LT
1501 bio->bi_sector += p->start_sect;
1502 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1503
d07335e5
MS
1504 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1505 bdev->bd_dev,
1506 bio->bi_sector - p->start_sect);
1da177e4
LT
1507 }
1508}
1509
1da177e4
LT
1510static void handle_bad_sector(struct bio *bio)
1511{
1512 char b[BDEVNAME_SIZE];
1513
1514 printk(KERN_INFO "attempt to access beyond end of device\n");
1515 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1516 bdevname(bio->bi_bdev, b),
1517 bio->bi_rw,
1518 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1519 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1520
1521 set_bit(BIO_EOF, &bio->bi_flags);
1522}
1523
c17bb495
AM
1524#ifdef CONFIG_FAIL_MAKE_REQUEST
1525
1526static DECLARE_FAULT_ATTR(fail_make_request);
1527
1528static int __init setup_fail_make_request(char *str)
1529{
1530 return setup_fault_attr(&fail_make_request, str);
1531}
1532__setup("fail_make_request=", setup_fail_make_request);
1533
b2c9cd37 1534static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1535{
b2c9cd37 1536 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1537}
1538
1539static int __init fail_make_request_debugfs(void)
1540{
dd48c085
AM
1541 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1542 NULL, &fail_make_request);
1543
1544 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1545}
1546
1547late_initcall(fail_make_request_debugfs);
1548
1549#else /* CONFIG_FAIL_MAKE_REQUEST */
1550
b2c9cd37
AM
1551static inline bool should_fail_request(struct hd_struct *part,
1552 unsigned int bytes)
c17bb495 1553{
b2c9cd37 1554 return false;
c17bb495
AM
1555}
1556
1557#endif /* CONFIG_FAIL_MAKE_REQUEST */
1558
c07e2b41
JA
1559/*
1560 * Check whether this bio extends beyond the end of the device.
1561 */
1562static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1563{
1564 sector_t maxsector;
1565
1566 if (!nr_sectors)
1567 return 0;
1568
1569 /* Test device or partition size, when known. */
77304d2a 1570 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1571 if (maxsector) {
1572 sector_t sector = bio->bi_sector;
1573
1574 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1575 /*
1576 * This may well happen - the kernel calls bread()
1577 * without checking the size of the device, e.g., when
1578 * mounting a device.
1579 */
1580 handle_bad_sector(bio);
1581 return 1;
1582 }
1583 }
1584
1585 return 0;
1586}
1587
27a84d54
CH
1588static noinline_for_stack bool
1589generic_make_request_checks(struct bio *bio)
1da177e4 1590{
165125e1 1591 struct request_queue *q;
5a7bbad2 1592 int nr_sectors = bio_sectors(bio);
51fd77bd 1593 int err = -EIO;
5a7bbad2
CH
1594 char b[BDEVNAME_SIZE];
1595 struct hd_struct *part;
1da177e4
LT
1596
1597 might_sleep();
1da177e4 1598
c07e2b41
JA
1599 if (bio_check_eod(bio, nr_sectors))
1600 goto end_io;
1da177e4 1601
5a7bbad2
CH
1602 q = bdev_get_queue(bio->bi_bdev);
1603 if (unlikely(!q)) {
1604 printk(KERN_ERR
1605 "generic_make_request: Trying to access "
1606 "nonexistent block-device %s (%Lu)\n",
1607 bdevname(bio->bi_bdev, b),
1608 (long long) bio->bi_sector);
1609 goto end_io;
1610 }
c17bb495 1611
5a7bbad2
CH
1612 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1613 nr_sectors > queue_max_hw_sectors(q))) {
1614 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1615 bdevname(bio->bi_bdev, b),
1616 bio_sectors(bio),
1617 queue_max_hw_sectors(q));
1618 goto end_io;
1619 }
1da177e4 1620
5a7bbad2
CH
1621 part = bio->bi_bdev->bd_part;
1622 if (should_fail_request(part, bio->bi_size) ||
1623 should_fail_request(&part_to_disk(part)->part0,
1624 bio->bi_size))
1625 goto end_io;
2056a782 1626
5a7bbad2
CH
1627 /*
1628 * If this device has partitions, remap block n
1629 * of partition p to block n+start(p) of the disk.
1630 */
1631 blk_partition_remap(bio);
2056a782 1632
5a7bbad2
CH
1633 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1634 goto end_io;
a7384677 1635
5a7bbad2
CH
1636 if (bio_check_eod(bio, nr_sectors))
1637 goto end_io;
1e87901e 1638
5a7bbad2
CH
1639 /*
1640 * Filter flush bio's early so that make_request based
1641 * drivers without flush support don't have to worry
1642 * about them.
1643 */
1644 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1645 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1646 if (!nr_sectors) {
1647 err = 0;
51fd77bd
JA
1648 goto end_io;
1649 }
5a7bbad2 1650 }
5ddfe969 1651
5a7bbad2
CH
1652 if ((bio->bi_rw & REQ_DISCARD) &&
1653 (!blk_queue_discard(q) ||
1654 ((bio->bi_rw & REQ_SECURE) &&
1655 !blk_queue_secdiscard(q)))) {
1656 err = -EOPNOTSUPP;
1657 goto end_io;
1658 }
01edede4 1659
bc16a4f9
TH
1660 if (blk_throtl_bio(q, bio))
1661 return false; /* throttled, will be resubmitted later */
27a84d54 1662
5a7bbad2 1663 trace_block_bio_queue(q, bio);
27a84d54 1664 return true;
a7384677
TH
1665
1666end_io:
1667 bio_endio(bio, err);
27a84d54 1668 return false;
1da177e4
LT
1669}
1670
27a84d54
CH
1671/**
1672 * generic_make_request - hand a buffer to its device driver for I/O
1673 * @bio: The bio describing the location in memory and on the device.
1674 *
1675 * generic_make_request() is used to make I/O requests of block
1676 * devices. It is passed a &struct bio, which describes the I/O that needs
1677 * to be done.
1678 *
1679 * generic_make_request() does not return any status. The
1680 * success/failure status of the request, along with notification of
1681 * completion, is delivered asynchronously through the bio->bi_end_io
1682 * function described (one day) else where.
1683 *
1684 * The caller of generic_make_request must make sure that bi_io_vec
1685 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1686 * set to describe the device address, and the
1687 * bi_end_io and optionally bi_private are set to describe how
1688 * completion notification should be signaled.
1689 *
1690 * generic_make_request and the drivers it calls may use bi_next if this
1691 * bio happens to be merged with someone else, and may resubmit the bio to
1692 * a lower device by calling into generic_make_request recursively, which
1693 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1694 */
1695void generic_make_request(struct bio *bio)
1696{
bddd87c7
AM
1697 struct bio_list bio_list_on_stack;
1698
27a84d54
CH
1699 if (!generic_make_request_checks(bio))
1700 return;
1701
1702 /*
1703 * We only want one ->make_request_fn to be active at a time, else
1704 * stack usage with stacked devices could be a problem. So use
1705 * current->bio_list to keep a list of requests submited by a
1706 * make_request_fn function. current->bio_list is also used as a
1707 * flag to say if generic_make_request is currently active in this
1708 * task or not. If it is NULL, then no make_request is active. If
1709 * it is non-NULL, then a make_request is active, and new requests
1710 * should be added at the tail
1711 */
bddd87c7 1712 if (current->bio_list) {
bddd87c7 1713 bio_list_add(current->bio_list, bio);
d89d8796
NB
1714 return;
1715 }
27a84d54 1716
d89d8796
NB
1717 /* following loop may be a bit non-obvious, and so deserves some
1718 * explanation.
1719 * Before entering the loop, bio->bi_next is NULL (as all callers
1720 * ensure that) so we have a list with a single bio.
1721 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1722 * we assign bio_list to a pointer to the bio_list_on_stack,
1723 * thus initialising the bio_list of new bios to be
27a84d54 1724 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1725 * through a recursive call to generic_make_request. If it
1726 * did, we find a non-NULL value in bio_list and re-enter the loop
1727 * from the top. In this case we really did just take the bio
bddd87c7 1728 * of the top of the list (no pretending) and so remove it from
27a84d54 1729 * bio_list, and call into ->make_request() again.
d89d8796
NB
1730 */
1731 BUG_ON(bio->bi_next);
bddd87c7
AM
1732 bio_list_init(&bio_list_on_stack);
1733 current->bio_list = &bio_list_on_stack;
d89d8796 1734 do {
27a84d54
CH
1735 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1736
1737 q->make_request_fn(q, bio);
1738
bddd87c7 1739 bio = bio_list_pop(current->bio_list);
d89d8796 1740 } while (bio);
bddd87c7 1741 current->bio_list = NULL; /* deactivate */
d89d8796 1742}
1da177e4
LT
1743EXPORT_SYMBOL(generic_make_request);
1744
1745/**
710027a4 1746 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1747 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1748 * @bio: The &struct bio which describes the I/O
1749 *
1750 * submit_bio() is very similar in purpose to generic_make_request(), and
1751 * uses that function to do most of the work. Both are fairly rough
710027a4 1752 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1753 *
1754 */
1755void submit_bio(int rw, struct bio *bio)
1756{
1757 int count = bio_sectors(bio);
1758
22e2c507 1759 bio->bi_rw |= rw;
1da177e4 1760
bf2de6f5
JA
1761 /*
1762 * If it's a regular read/write or a barrier with data attached,
1763 * go through the normal accounting stuff before submission.
1764 */
3ffb52e7 1765 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1766 if (rw & WRITE) {
1767 count_vm_events(PGPGOUT, count);
1768 } else {
1769 task_io_account_read(bio->bi_size);
1770 count_vm_events(PGPGIN, count);
1771 }
1772
1773 if (unlikely(block_dump)) {
1774 char b[BDEVNAME_SIZE];
8dcbdc74 1775 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1776 current->comm, task_pid_nr(current),
bf2de6f5
JA
1777 (rw & WRITE) ? "WRITE" : "READ",
1778 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1779 bdevname(bio->bi_bdev, b),
1780 count);
bf2de6f5 1781 }
1da177e4
LT
1782 }
1783
1784 generic_make_request(bio);
1785}
1da177e4
LT
1786EXPORT_SYMBOL(submit_bio);
1787
82124d60
KU
1788/**
1789 * blk_rq_check_limits - Helper function to check a request for the queue limit
1790 * @q: the queue
1791 * @rq: the request being checked
1792 *
1793 * Description:
1794 * @rq may have been made based on weaker limitations of upper-level queues
1795 * in request stacking drivers, and it may violate the limitation of @q.
1796 * Since the block layer and the underlying device driver trust @rq
1797 * after it is inserted to @q, it should be checked against @q before
1798 * the insertion using this generic function.
1799 *
1800 * This function should also be useful for request stacking drivers
eef35c2d 1801 * in some cases below, so export this function.
82124d60
KU
1802 * Request stacking drivers like request-based dm may change the queue
1803 * limits while requests are in the queue (e.g. dm's table swapping).
1804 * Such request stacking drivers should check those requests agaist
1805 * the new queue limits again when they dispatch those requests,
1806 * although such checkings are also done against the old queue limits
1807 * when submitting requests.
1808 */
1809int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1810{
3383977f
S
1811 if (rq->cmd_flags & REQ_DISCARD)
1812 return 0;
1813
ae03bf63
MP
1814 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1815 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1816 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1817 return -EIO;
1818 }
1819
1820 /*
1821 * queue's settings related to segment counting like q->bounce_pfn
1822 * may differ from that of other stacking queues.
1823 * Recalculate it to check the request correctly on this queue's
1824 * limitation.
1825 */
1826 blk_recalc_rq_segments(rq);
8a78362c 1827 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1828 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1829 return -EIO;
1830 }
1831
1832 return 0;
1833}
1834EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1835
1836/**
1837 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1838 * @q: the queue to submit the request
1839 * @rq: the request being queued
1840 */
1841int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1842{
1843 unsigned long flags;
4853abaa 1844 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1845
1846 if (blk_rq_check_limits(q, rq))
1847 return -EIO;
1848
b2c9cd37
AM
1849 if (rq->rq_disk &&
1850 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1851 return -EIO;
82124d60
KU
1852
1853 spin_lock_irqsave(q->queue_lock, flags);
8ba61435
TH
1854 if (unlikely(blk_queue_dead(q))) {
1855 spin_unlock_irqrestore(q->queue_lock, flags);
1856 return -ENODEV;
1857 }
82124d60
KU
1858
1859 /*
1860 * Submitting request must be dequeued before calling this function
1861 * because it will be linked to another request_queue
1862 */
1863 BUG_ON(blk_queued_rq(rq));
1864
4853abaa
JM
1865 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1866 where = ELEVATOR_INSERT_FLUSH;
1867
1868 add_acct_request(q, rq, where);
e67b77c7
JM
1869 if (where == ELEVATOR_INSERT_FLUSH)
1870 __blk_run_queue(q);
82124d60
KU
1871 spin_unlock_irqrestore(q->queue_lock, flags);
1872
1873 return 0;
1874}
1875EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1876
80a761fd
TH
1877/**
1878 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1879 * @rq: request to examine
1880 *
1881 * Description:
1882 * A request could be merge of IOs which require different failure
1883 * handling. This function determines the number of bytes which
1884 * can be failed from the beginning of the request without
1885 * crossing into area which need to be retried further.
1886 *
1887 * Return:
1888 * The number of bytes to fail.
1889 *
1890 * Context:
1891 * queue_lock must be held.
1892 */
1893unsigned int blk_rq_err_bytes(const struct request *rq)
1894{
1895 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1896 unsigned int bytes = 0;
1897 struct bio *bio;
1898
1899 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1900 return blk_rq_bytes(rq);
1901
1902 /*
1903 * Currently the only 'mixing' which can happen is between
1904 * different fastfail types. We can safely fail portions
1905 * which have all the failfast bits that the first one has -
1906 * the ones which are at least as eager to fail as the first
1907 * one.
1908 */
1909 for (bio = rq->bio; bio; bio = bio->bi_next) {
1910 if ((bio->bi_rw & ff) != ff)
1911 break;
1912 bytes += bio->bi_size;
1913 }
1914
1915 /* this could lead to infinite loop */
1916 BUG_ON(blk_rq_bytes(rq) && !bytes);
1917 return bytes;
1918}
1919EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1920
bc58ba94
JA
1921static void blk_account_io_completion(struct request *req, unsigned int bytes)
1922{
c2553b58 1923 if (blk_do_io_stat(req)) {
bc58ba94
JA
1924 const int rw = rq_data_dir(req);
1925 struct hd_struct *part;
1926 int cpu;
1927
1928 cpu = part_stat_lock();
09e099d4 1929 part = req->part;
bc58ba94
JA
1930 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1931 part_stat_unlock();
1932 }
1933}
1934
1935static void blk_account_io_done(struct request *req)
1936{
bc58ba94 1937 /*
dd4c133f
TH
1938 * Account IO completion. flush_rq isn't accounted as a
1939 * normal IO on queueing nor completion. Accounting the
1940 * containing request is enough.
bc58ba94 1941 */
414b4ff5 1942 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1943 unsigned long duration = jiffies - req->start_time;
1944 const int rw = rq_data_dir(req);
1945 struct hd_struct *part;
1946 int cpu;
1947
1948 cpu = part_stat_lock();
09e099d4 1949 part = req->part;
bc58ba94
JA
1950
1951 part_stat_inc(cpu, part, ios[rw]);
1952 part_stat_add(cpu, part, ticks[rw], duration);
1953 part_round_stats(cpu, part);
316d315b 1954 part_dec_in_flight(part, rw);
bc58ba94 1955
6c23a968 1956 hd_struct_put(part);
bc58ba94
JA
1957 part_stat_unlock();
1958 }
1959}
1960
3bcddeac 1961/**
9934c8c0
TH
1962 * blk_peek_request - peek at the top of a request queue
1963 * @q: request queue to peek at
1964 *
1965 * Description:
1966 * Return the request at the top of @q. The returned request
1967 * should be started using blk_start_request() before LLD starts
1968 * processing it.
1969 *
1970 * Return:
1971 * Pointer to the request at the top of @q if available. Null
1972 * otherwise.
1973 *
1974 * Context:
1975 * queue_lock must be held.
1976 */
1977struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1978{
1979 struct request *rq;
1980 int ret;
1981
1982 while ((rq = __elv_next_request(q)) != NULL) {
1983 if (!(rq->cmd_flags & REQ_STARTED)) {
1984 /*
1985 * This is the first time the device driver
1986 * sees this request (possibly after
1987 * requeueing). Notify IO scheduler.
1988 */
33659ebb 1989 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1990 elv_activate_rq(q, rq);
1991
1992 /*
1993 * just mark as started even if we don't start
1994 * it, a request that has been delayed should
1995 * not be passed by new incoming requests
1996 */
1997 rq->cmd_flags |= REQ_STARTED;
1998 trace_block_rq_issue(q, rq);
1999 }
2000
2001 if (!q->boundary_rq || q->boundary_rq == rq) {
2002 q->end_sector = rq_end_sector(rq);
2003 q->boundary_rq = NULL;
2004 }
2005
2006 if (rq->cmd_flags & REQ_DONTPREP)
2007 break;
2008
2e46e8b2 2009 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2010 /*
2011 * make sure space for the drain appears we
2012 * know we can do this because max_hw_segments
2013 * has been adjusted to be one fewer than the
2014 * device can handle
2015 */
2016 rq->nr_phys_segments++;
2017 }
2018
2019 if (!q->prep_rq_fn)
2020 break;
2021
2022 ret = q->prep_rq_fn(q, rq);
2023 if (ret == BLKPREP_OK) {
2024 break;
2025 } else if (ret == BLKPREP_DEFER) {
2026 /*
2027 * the request may have been (partially) prepped.
2028 * we need to keep this request in the front to
2029 * avoid resource deadlock. REQ_STARTED will
2030 * prevent other fs requests from passing this one.
2031 */
2e46e8b2 2032 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2033 !(rq->cmd_flags & REQ_DONTPREP)) {
2034 /*
2035 * remove the space for the drain we added
2036 * so that we don't add it again
2037 */
2038 --rq->nr_phys_segments;
2039 }
2040
2041 rq = NULL;
2042 break;
2043 } else if (ret == BLKPREP_KILL) {
2044 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2045 /*
2046 * Mark this request as started so we don't trigger
2047 * any debug logic in the end I/O path.
2048 */
2049 blk_start_request(rq);
40cbbb78 2050 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2051 } else {
2052 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2053 break;
2054 }
2055 }
2056
2057 return rq;
2058}
9934c8c0 2059EXPORT_SYMBOL(blk_peek_request);
158dbda0 2060
9934c8c0 2061void blk_dequeue_request(struct request *rq)
158dbda0 2062{
9934c8c0
TH
2063 struct request_queue *q = rq->q;
2064
158dbda0
TH
2065 BUG_ON(list_empty(&rq->queuelist));
2066 BUG_ON(ELV_ON_HASH(rq));
2067
2068 list_del_init(&rq->queuelist);
2069
2070 /*
2071 * the time frame between a request being removed from the lists
2072 * and to it is freed is accounted as io that is in progress at
2073 * the driver side.
2074 */
9195291e 2075 if (blk_account_rq(rq)) {
0a7ae2ff 2076 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2077 set_io_start_time_ns(rq);
2078 }
158dbda0
TH
2079}
2080
9934c8c0
TH
2081/**
2082 * blk_start_request - start request processing on the driver
2083 * @req: request to dequeue
2084 *
2085 * Description:
2086 * Dequeue @req and start timeout timer on it. This hands off the
2087 * request to the driver.
2088 *
2089 * Block internal functions which don't want to start timer should
2090 * call blk_dequeue_request().
2091 *
2092 * Context:
2093 * queue_lock must be held.
2094 */
2095void blk_start_request(struct request *req)
2096{
2097 blk_dequeue_request(req);
2098
2099 /*
5f49f631
TH
2100 * We are now handing the request to the hardware, initialize
2101 * resid_len to full count and add the timeout handler.
9934c8c0 2102 */
5f49f631 2103 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2104 if (unlikely(blk_bidi_rq(req)))
2105 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2106
9934c8c0
TH
2107 blk_add_timer(req);
2108}
2109EXPORT_SYMBOL(blk_start_request);
2110
2111/**
2112 * blk_fetch_request - fetch a request from a request queue
2113 * @q: request queue to fetch a request from
2114 *
2115 * Description:
2116 * Return the request at the top of @q. The request is started on
2117 * return and LLD can start processing it immediately.
2118 *
2119 * Return:
2120 * Pointer to the request at the top of @q if available. Null
2121 * otherwise.
2122 *
2123 * Context:
2124 * queue_lock must be held.
2125 */
2126struct request *blk_fetch_request(struct request_queue *q)
2127{
2128 struct request *rq;
2129
2130 rq = blk_peek_request(q);
2131 if (rq)
2132 blk_start_request(rq);
2133 return rq;
2134}
2135EXPORT_SYMBOL(blk_fetch_request);
2136
3bcddeac 2137/**
2e60e022 2138 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2139 * @req: the request being processed
710027a4 2140 * @error: %0 for success, < %0 for error
8ebf9756 2141 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2142 *
2143 * Description:
8ebf9756
RD
2144 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2145 * the request structure even if @req doesn't have leftover.
2146 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2147 *
2148 * This special helper function is only for request stacking drivers
2149 * (e.g. request-based dm) so that they can handle partial completion.
2150 * Actual device drivers should use blk_end_request instead.
2151 *
2152 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2153 * %false return from this function.
3bcddeac
KU
2154 *
2155 * Return:
2e60e022
TH
2156 * %false - this request doesn't have any more data
2157 * %true - this request has more data
3bcddeac 2158 **/
2e60e022 2159bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2160{
5450d3e1 2161 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2162 struct bio *bio;
2163
2e60e022
TH
2164 if (!req->bio)
2165 return false;
2166
5f3ea37c 2167 trace_block_rq_complete(req->q, req);
2056a782 2168
1da177e4 2169 /*
6f41469c
TH
2170 * For fs requests, rq is just carrier of independent bio's
2171 * and each partial completion should be handled separately.
2172 * Reset per-request error on each partial completion.
2173 *
2174 * TODO: tj: This is too subtle. It would be better to let
2175 * low level drivers do what they see fit.
1da177e4 2176 */
33659ebb 2177 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2178 req->errors = 0;
2179
33659ebb
CH
2180 if (error && req->cmd_type == REQ_TYPE_FS &&
2181 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2182 char *error_type;
2183
2184 switch (error) {
2185 case -ENOLINK:
2186 error_type = "recoverable transport";
2187 break;
2188 case -EREMOTEIO:
2189 error_type = "critical target";
2190 break;
2191 case -EBADE:
2192 error_type = "critical nexus";
2193 break;
2194 case -EIO:
2195 default:
2196 error_type = "I/O";
2197 break;
2198 }
2199 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2200 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2201 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2202 }
2203
bc58ba94 2204 blk_account_io_completion(req, nr_bytes);
d72d904a 2205
1da177e4
LT
2206 total_bytes = bio_nbytes = 0;
2207 while ((bio = req->bio) != NULL) {
2208 int nbytes;
2209
2210 if (nr_bytes >= bio->bi_size) {
2211 req->bio = bio->bi_next;
2212 nbytes = bio->bi_size;
5bb23a68 2213 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2214 next_idx = 0;
2215 bio_nbytes = 0;
2216 } else {
2217 int idx = bio->bi_idx + next_idx;
2218
af498d7f 2219 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2220 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2221 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2222 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2223 break;
2224 }
2225
2226 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2227 BIO_BUG_ON(nbytes > bio->bi_size);
2228
2229 /*
2230 * not a complete bvec done
2231 */
2232 if (unlikely(nbytes > nr_bytes)) {
2233 bio_nbytes += nr_bytes;
2234 total_bytes += nr_bytes;
2235 break;
2236 }
2237
2238 /*
2239 * advance to the next vector
2240 */
2241 next_idx++;
2242 bio_nbytes += nbytes;
2243 }
2244
2245 total_bytes += nbytes;
2246 nr_bytes -= nbytes;
2247
6728cb0e
JA
2248 bio = req->bio;
2249 if (bio) {
1da177e4
LT
2250 /*
2251 * end more in this run, or just return 'not-done'
2252 */
2253 if (unlikely(nr_bytes <= 0))
2254 break;
2255 }
2256 }
2257
2258 /*
2259 * completely done
2260 */
2e60e022
TH
2261 if (!req->bio) {
2262 /*
2263 * Reset counters so that the request stacking driver
2264 * can find how many bytes remain in the request
2265 * later.
2266 */
a2dec7b3 2267 req->__data_len = 0;
2e60e022
TH
2268 return false;
2269 }
1da177e4
LT
2270
2271 /*
2272 * if the request wasn't completed, update state
2273 */
2274 if (bio_nbytes) {
5bb23a68 2275 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2276 bio->bi_idx += next_idx;
2277 bio_iovec(bio)->bv_offset += nr_bytes;
2278 bio_iovec(bio)->bv_len -= nr_bytes;
2279 }
2280
a2dec7b3 2281 req->__data_len -= total_bytes;
2e46e8b2
TH
2282 req->buffer = bio_data(req->bio);
2283
2284 /* update sector only for requests with clear definition of sector */
33659ebb 2285 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2286 req->__sector += total_bytes >> 9;
2e46e8b2 2287
80a761fd
TH
2288 /* mixed attributes always follow the first bio */
2289 if (req->cmd_flags & REQ_MIXED_MERGE) {
2290 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2291 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2292 }
2293
2e46e8b2
TH
2294 /*
2295 * If total number of sectors is less than the first segment
2296 * size, something has gone terribly wrong.
2297 */
2298 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2299 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2300 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2301 }
2302
2303 /* recalculate the number of segments */
1da177e4 2304 blk_recalc_rq_segments(req);
2e46e8b2 2305
2e60e022 2306 return true;
1da177e4 2307}
2e60e022 2308EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2309
2e60e022
TH
2310static bool blk_update_bidi_request(struct request *rq, int error,
2311 unsigned int nr_bytes,
2312 unsigned int bidi_bytes)
5efccd17 2313{
2e60e022
TH
2314 if (blk_update_request(rq, error, nr_bytes))
2315 return true;
5efccd17 2316
2e60e022
TH
2317 /* Bidi request must be completed as a whole */
2318 if (unlikely(blk_bidi_rq(rq)) &&
2319 blk_update_request(rq->next_rq, error, bidi_bytes))
2320 return true;
5efccd17 2321
e2e1a148
JA
2322 if (blk_queue_add_random(rq->q))
2323 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2324
2325 return false;
1da177e4
LT
2326}
2327
28018c24
JB
2328/**
2329 * blk_unprep_request - unprepare a request
2330 * @req: the request
2331 *
2332 * This function makes a request ready for complete resubmission (or
2333 * completion). It happens only after all error handling is complete,
2334 * so represents the appropriate moment to deallocate any resources
2335 * that were allocated to the request in the prep_rq_fn. The queue
2336 * lock is held when calling this.
2337 */
2338void blk_unprep_request(struct request *req)
2339{
2340 struct request_queue *q = req->q;
2341
2342 req->cmd_flags &= ~REQ_DONTPREP;
2343 if (q->unprep_rq_fn)
2344 q->unprep_rq_fn(q, req);
2345}
2346EXPORT_SYMBOL_GPL(blk_unprep_request);
2347
1da177e4
LT
2348/*
2349 * queue lock must be held
2350 */
2e60e022 2351static void blk_finish_request(struct request *req, int error)
1da177e4 2352{
b8286239
KU
2353 if (blk_rq_tagged(req))
2354 blk_queue_end_tag(req->q, req);
2355
ba396a6c 2356 BUG_ON(blk_queued_rq(req));
1da177e4 2357
33659ebb 2358 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2359 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2360
e78042e5
MA
2361 blk_delete_timer(req);
2362
28018c24
JB
2363 if (req->cmd_flags & REQ_DONTPREP)
2364 blk_unprep_request(req);
2365
2366
bc58ba94 2367 blk_account_io_done(req);
b8286239 2368
1da177e4 2369 if (req->end_io)
8ffdc655 2370 req->end_io(req, error);
b8286239
KU
2371 else {
2372 if (blk_bidi_rq(req))
2373 __blk_put_request(req->next_rq->q, req->next_rq);
2374
1da177e4 2375 __blk_put_request(req->q, req);
b8286239 2376 }
1da177e4
LT
2377}
2378
3b11313a 2379/**
2e60e022
TH
2380 * blk_end_bidi_request - Complete a bidi request
2381 * @rq: the request to complete
2382 * @error: %0 for success, < %0 for error
2383 * @nr_bytes: number of bytes to complete @rq
2384 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2385 *
2386 * Description:
e3a04fe3 2387 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2388 * Drivers that supports bidi can safely call this member for any
2389 * type of request, bidi or uni. In the later case @bidi_bytes is
2390 * just ignored.
336cdb40
KU
2391 *
2392 * Return:
2e60e022
TH
2393 * %false - we are done with this request
2394 * %true - still buffers pending for this request
a0cd1285 2395 **/
b1f74493 2396static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2397 unsigned int nr_bytes, unsigned int bidi_bytes)
2398{
336cdb40 2399 struct request_queue *q = rq->q;
2e60e022 2400 unsigned long flags;
32fab448 2401
2e60e022
TH
2402 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2403 return true;
32fab448 2404
336cdb40 2405 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2406 blk_finish_request(rq, error);
336cdb40
KU
2407 spin_unlock_irqrestore(q->queue_lock, flags);
2408
2e60e022 2409 return false;
32fab448
KU
2410}
2411
336cdb40 2412/**
2e60e022
TH
2413 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2414 * @rq: the request to complete
710027a4 2415 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2416 * @nr_bytes: number of bytes to complete @rq
2417 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2418 *
2419 * Description:
2e60e022
TH
2420 * Identical to blk_end_bidi_request() except that queue lock is
2421 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2422 *
2423 * Return:
2e60e022
TH
2424 * %false - we are done with this request
2425 * %true - still buffers pending for this request
336cdb40 2426 **/
4853abaa 2427bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2428 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2429{
2e60e022
TH
2430 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2431 return true;
336cdb40 2432
2e60e022 2433 blk_finish_request(rq, error);
336cdb40 2434
2e60e022 2435 return false;
336cdb40 2436}
e19a3ab0
KU
2437
2438/**
2439 * blk_end_request - Helper function for drivers to complete the request.
2440 * @rq: the request being processed
710027a4 2441 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2442 * @nr_bytes: number of bytes to complete
2443 *
2444 * Description:
2445 * Ends I/O on a number of bytes attached to @rq.
2446 * If @rq has leftover, sets it up for the next range of segments.
2447 *
2448 * Return:
b1f74493
FT
2449 * %false - we are done with this request
2450 * %true - still buffers pending for this request
e19a3ab0 2451 **/
b1f74493 2452bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2453{
b1f74493 2454 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2455}
56ad1740 2456EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2457
2458/**
b1f74493
FT
2459 * blk_end_request_all - Helper function for drives to finish the request.
2460 * @rq: the request to finish
8ebf9756 2461 * @error: %0 for success, < %0 for error
336cdb40
KU
2462 *
2463 * Description:
b1f74493
FT
2464 * Completely finish @rq.
2465 */
2466void blk_end_request_all(struct request *rq, int error)
336cdb40 2467{
b1f74493
FT
2468 bool pending;
2469 unsigned int bidi_bytes = 0;
336cdb40 2470
b1f74493
FT
2471 if (unlikely(blk_bidi_rq(rq)))
2472 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2473
b1f74493
FT
2474 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2475 BUG_ON(pending);
2476}
56ad1740 2477EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2478
b1f74493
FT
2479/**
2480 * blk_end_request_cur - Helper function to finish the current request chunk.
2481 * @rq: the request to finish the current chunk for
8ebf9756 2482 * @error: %0 for success, < %0 for error
b1f74493
FT
2483 *
2484 * Description:
2485 * Complete the current consecutively mapped chunk from @rq.
2486 *
2487 * Return:
2488 * %false - we are done with this request
2489 * %true - still buffers pending for this request
2490 */
2491bool blk_end_request_cur(struct request *rq, int error)
2492{
2493 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2494}
56ad1740 2495EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2496
80a761fd
TH
2497/**
2498 * blk_end_request_err - Finish a request till the next failure boundary.
2499 * @rq: the request to finish till the next failure boundary for
2500 * @error: must be negative errno
2501 *
2502 * Description:
2503 * Complete @rq till the next failure boundary.
2504 *
2505 * Return:
2506 * %false - we are done with this request
2507 * %true - still buffers pending for this request
2508 */
2509bool blk_end_request_err(struct request *rq, int error)
2510{
2511 WARN_ON(error >= 0);
2512 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2513}
2514EXPORT_SYMBOL_GPL(blk_end_request_err);
2515
e3a04fe3 2516/**
b1f74493
FT
2517 * __blk_end_request - Helper function for drivers to complete the request.
2518 * @rq: the request being processed
2519 * @error: %0 for success, < %0 for error
2520 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2521 *
2522 * Description:
b1f74493 2523 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2524 *
2525 * Return:
b1f74493
FT
2526 * %false - we are done with this request
2527 * %true - still buffers pending for this request
e3a04fe3 2528 **/
b1f74493 2529bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2530{
b1f74493 2531 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2532}
56ad1740 2533EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2534
32fab448 2535/**
b1f74493
FT
2536 * __blk_end_request_all - Helper function for drives to finish the request.
2537 * @rq: the request to finish
8ebf9756 2538 * @error: %0 for success, < %0 for error
32fab448
KU
2539 *
2540 * Description:
b1f74493 2541 * Completely finish @rq. Must be called with queue lock held.
32fab448 2542 */
b1f74493 2543void __blk_end_request_all(struct request *rq, int error)
32fab448 2544{
b1f74493
FT
2545 bool pending;
2546 unsigned int bidi_bytes = 0;
2547
2548 if (unlikely(blk_bidi_rq(rq)))
2549 bidi_bytes = blk_rq_bytes(rq->next_rq);
2550
2551 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2552 BUG_ON(pending);
32fab448 2553}
56ad1740 2554EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2555
e19a3ab0 2556/**
b1f74493
FT
2557 * __blk_end_request_cur - Helper function to finish the current request chunk.
2558 * @rq: the request to finish the current chunk for
8ebf9756 2559 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2560 *
2561 * Description:
b1f74493
FT
2562 * Complete the current consecutively mapped chunk from @rq. Must
2563 * be called with queue lock held.
e19a3ab0
KU
2564 *
2565 * Return:
b1f74493
FT
2566 * %false - we are done with this request
2567 * %true - still buffers pending for this request
2568 */
2569bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2570{
b1f74493 2571 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2572}
56ad1740 2573EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2574
80a761fd
TH
2575/**
2576 * __blk_end_request_err - Finish a request till the next failure boundary.
2577 * @rq: the request to finish till the next failure boundary for
2578 * @error: must be negative errno
2579 *
2580 * Description:
2581 * Complete @rq till the next failure boundary. Must be called
2582 * with queue lock held.
2583 *
2584 * Return:
2585 * %false - we are done with this request
2586 * %true - still buffers pending for this request
2587 */
2588bool __blk_end_request_err(struct request *rq, int error)
2589{
2590 WARN_ON(error >= 0);
2591 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2592}
2593EXPORT_SYMBOL_GPL(__blk_end_request_err);
2594
86db1e29
JA
2595void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2596 struct bio *bio)
1da177e4 2597{
a82afdfc 2598 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2599 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2600
fb2dce86
DW
2601 if (bio_has_data(bio)) {
2602 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2603 rq->buffer = bio_data(bio);
2604 }
a2dec7b3 2605 rq->__data_len = bio->bi_size;
1da177e4 2606 rq->bio = rq->biotail = bio;
1da177e4 2607
66846572
N
2608 if (bio->bi_bdev)
2609 rq->rq_disk = bio->bi_bdev->bd_disk;
2610}
1da177e4 2611
2d4dc890
IL
2612#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2613/**
2614 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2615 * @rq: the request to be flushed
2616 *
2617 * Description:
2618 * Flush all pages in @rq.
2619 */
2620void rq_flush_dcache_pages(struct request *rq)
2621{
2622 struct req_iterator iter;
2623 struct bio_vec *bvec;
2624
2625 rq_for_each_segment(bvec, rq, iter)
2626 flush_dcache_page(bvec->bv_page);
2627}
2628EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2629#endif
2630
ef9e3fac
KU
2631/**
2632 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2633 * @q : the queue of the device being checked
2634 *
2635 * Description:
2636 * Check if underlying low-level drivers of a device are busy.
2637 * If the drivers want to export their busy state, they must set own
2638 * exporting function using blk_queue_lld_busy() first.
2639 *
2640 * Basically, this function is used only by request stacking drivers
2641 * to stop dispatching requests to underlying devices when underlying
2642 * devices are busy. This behavior helps more I/O merging on the queue
2643 * of the request stacking driver and prevents I/O throughput regression
2644 * on burst I/O load.
2645 *
2646 * Return:
2647 * 0 - Not busy (The request stacking driver should dispatch request)
2648 * 1 - Busy (The request stacking driver should stop dispatching request)
2649 */
2650int blk_lld_busy(struct request_queue *q)
2651{
2652 if (q->lld_busy_fn)
2653 return q->lld_busy_fn(q);
2654
2655 return 0;
2656}
2657EXPORT_SYMBOL_GPL(blk_lld_busy);
2658
b0fd271d
KU
2659/**
2660 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2661 * @rq: the clone request to be cleaned up
2662 *
2663 * Description:
2664 * Free all bios in @rq for a cloned request.
2665 */
2666void blk_rq_unprep_clone(struct request *rq)
2667{
2668 struct bio *bio;
2669
2670 while ((bio = rq->bio) != NULL) {
2671 rq->bio = bio->bi_next;
2672
2673 bio_put(bio);
2674 }
2675}
2676EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2677
2678/*
2679 * Copy attributes of the original request to the clone request.
2680 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2681 */
2682static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2683{
2684 dst->cpu = src->cpu;
3a2edd0d 2685 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2686 dst->cmd_type = src->cmd_type;
2687 dst->__sector = blk_rq_pos(src);
2688 dst->__data_len = blk_rq_bytes(src);
2689 dst->nr_phys_segments = src->nr_phys_segments;
2690 dst->ioprio = src->ioprio;
2691 dst->extra_len = src->extra_len;
2692}
2693
2694/**
2695 * blk_rq_prep_clone - Helper function to setup clone request
2696 * @rq: the request to be setup
2697 * @rq_src: original request to be cloned
2698 * @bs: bio_set that bios for clone are allocated from
2699 * @gfp_mask: memory allocation mask for bio
2700 * @bio_ctr: setup function to be called for each clone bio.
2701 * Returns %0 for success, non %0 for failure.
2702 * @data: private data to be passed to @bio_ctr
2703 *
2704 * Description:
2705 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2706 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2707 * are not copied, and copying such parts is the caller's responsibility.
2708 * Also, pages which the original bios are pointing to are not copied
2709 * and the cloned bios just point same pages.
2710 * So cloned bios must be completed before original bios, which means
2711 * the caller must complete @rq before @rq_src.
2712 */
2713int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2714 struct bio_set *bs, gfp_t gfp_mask,
2715 int (*bio_ctr)(struct bio *, struct bio *, void *),
2716 void *data)
2717{
2718 struct bio *bio, *bio_src;
2719
2720 if (!bs)
2721 bs = fs_bio_set;
2722
2723 blk_rq_init(NULL, rq);
2724
2725 __rq_for_each_bio(bio_src, rq_src) {
2726 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2727 if (!bio)
2728 goto free_and_out;
2729
2730 __bio_clone(bio, bio_src);
2731
2732 if (bio_integrity(bio_src) &&
7878cba9 2733 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2734 goto free_and_out;
2735
2736 if (bio_ctr && bio_ctr(bio, bio_src, data))
2737 goto free_and_out;
2738
2739 if (rq->bio) {
2740 rq->biotail->bi_next = bio;
2741 rq->biotail = bio;
2742 } else
2743 rq->bio = rq->biotail = bio;
2744 }
2745
2746 __blk_rq_prep_clone(rq, rq_src);
2747
2748 return 0;
2749
2750free_and_out:
2751 if (bio)
2752 bio_free(bio, bs);
2753 blk_rq_unprep_clone(rq);
2754
2755 return -ENOMEM;
2756}
2757EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2758
18887ad9 2759int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2760{
2761 return queue_work(kblockd_workqueue, work);
2762}
1da177e4
LT
2763EXPORT_SYMBOL(kblockd_schedule_work);
2764
e43473b7
VG
2765int kblockd_schedule_delayed_work(struct request_queue *q,
2766 struct delayed_work *dwork, unsigned long delay)
2767{
2768 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2769}
2770EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2771
73c10101
JA
2772#define PLUG_MAGIC 0x91827364
2773
75df7136
SJ
2774/**
2775 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2776 * @plug: The &struct blk_plug that needs to be initialized
2777 *
2778 * Description:
2779 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2780 * pending I/O should the task end up blocking between blk_start_plug() and
2781 * blk_finish_plug(). This is important from a performance perspective, but
2782 * also ensures that we don't deadlock. For instance, if the task is blocking
2783 * for a memory allocation, memory reclaim could end up wanting to free a
2784 * page belonging to that request that is currently residing in our private
2785 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2786 * this kind of deadlock.
2787 */
73c10101
JA
2788void blk_start_plug(struct blk_plug *plug)
2789{
2790 struct task_struct *tsk = current;
2791
2792 plug->magic = PLUG_MAGIC;
2793 INIT_LIST_HEAD(&plug->list);
048c9374 2794 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2795 plug->should_sort = 0;
2796
2797 /*
2798 * If this is a nested plug, don't actually assign it. It will be
2799 * flushed on its own.
2800 */
2801 if (!tsk->plug) {
2802 /*
2803 * Store ordering should not be needed here, since a potential
2804 * preempt will imply a full memory barrier
2805 */
2806 tsk->plug = plug;
2807 }
2808}
2809EXPORT_SYMBOL(blk_start_plug);
2810
2811static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2812{
2813 struct request *rqa = container_of(a, struct request, queuelist);
2814 struct request *rqb = container_of(b, struct request, queuelist);
2815
f83e8261 2816 return !(rqa->q <= rqb->q);
73c10101
JA
2817}
2818
49cac01e
JA
2819/*
2820 * If 'from_schedule' is true, then postpone the dispatch of requests
2821 * until a safe kblockd context. We due this to avoid accidental big
2822 * additional stack usage in driver dispatch, in places where the originally
2823 * plugger did not intend it.
2824 */
f6603783 2825static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2826 bool from_schedule)
99e22598 2827 __releases(q->queue_lock)
94b5eb28 2828{
49cac01e 2829 trace_block_unplug(q, depth, !from_schedule);
99e22598 2830
8ba61435
TH
2831 /*
2832 * Don't mess with dead queue.
2833 */
2834 if (unlikely(blk_queue_dead(q))) {
2835 spin_unlock(q->queue_lock);
2836 return;
2837 }
2838
99e22598
JA
2839 /*
2840 * If we are punting this to kblockd, then we can safely drop
2841 * the queue_lock before waking kblockd (which needs to take
2842 * this lock).
2843 */
2844 if (from_schedule) {
2845 spin_unlock(q->queue_lock);
24ecfbe2 2846 blk_run_queue_async(q);
99e22598 2847 } else {
24ecfbe2 2848 __blk_run_queue(q);
99e22598
JA
2849 spin_unlock(q->queue_lock);
2850 }
2851
94b5eb28
JA
2852}
2853
048c9374
N
2854static void flush_plug_callbacks(struct blk_plug *plug)
2855{
2856 LIST_HEAD(callbacks);
2857
2858 if (list_empty(&plug->cb_list))
2859 return;
2860
2861 list_splice_init(&plug->cb_list, &callbacks);
2862
2863 while (!list_empty(&callbacks)) {
2864 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2865 struct blk_plug_cb,
2866 list);
2867 list_del(&cb->list);
2868 cb->callback(cb);
2869 }
2870}
2871
49cac01e 2872void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2873{
2874 struct request_queue *q;
2875 unsigned long flags;
2876 struct request *rq;
109b8129 2877 LIST_HEAD(list);
94b5eb28 2878 unsigned int depth;
73c10101
JA
2879
2880 BUG_ON(plug->magic != PLUG_MAGIC);
2881
048c9374 2882 flush_plug_callbacks(plug);
73c10101
JA
2883 if (list_empty(&plug->list))
2884 return;
2885
109b8129
N
2886 list_splice_init(&plug->list, &list);
2887
2888 if (plug->should_sort) {
2889 list_sort(NULL, &list, plug_rq_cmp);
2890 plug->should_sort = 0;
2891 }
73c10101
JA
2892
2893 q = NULL;
94b5eb28 2894 depth = 0;
18811272
JA
2895
2896 /*
2897 * Save and disable interrupts here, to avoid doing it for every
2898 * queue lock we have to take.
2899 */
73c10101 2900 local_irq_save(flags);
109b8129
N
2901 while (!list_empty(&list)) {
2902 rq = list_entry_rq(list.next);
73c10101 2903 list_del_init(&rq->queuelist);
73c10101
JA
2904 BUG_ON(!rq->q);
2905 if (rq->q != q) {
99e22598
JA
2906 /*
2907 * This drops the queue lock
2908 */
2909 if (q)
49cac01e 2910 queue_unplugged(q, depth, from_schedule);
73c10101 2911 q = rq->q;
94b5eb28 2912 depth = 0;
73c10101
JA
2913 spin_lock(q->queue_lock);
2914 }
8ba61435
TH
2915
2916 /*
2917 * Short-circuit if @q is dead
2918 */
2919 if (unlikely(blk_queue_dead(q))) {
2920 __blk_end_request_all(rq, -ENODEV);
2921 continue;
2922 }
2923
73c10101
JA
2924 /*
2925 * rq is already accounted, so use raw insert
2926 */
401a18e9
JA
2927 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2928 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2929 else
2930 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2931
2932 depth++;
73c10101
JA
2933 }
2934
99e22598
JA
2935 /*
2936 * This drops the queue lock
2937 */
2938 if (q)
49cac01e 2939 queue_unplugged(q, depth, from_schedule);
73c10101 2940
73c10101
JA
2941 local_irq_restore(flags);
2942}
73c10101
JA
2943
2944void blk_finish_plug(struct blk_plug *plug)
2945{
f6603783 2946 blk_flush_plug_list(plug, false);
73c10101 2947
88b996cd
CH
2948 if (plug == current->plug)
2949 current->plug = NULL;
73c10101 2950}
88b996cd 2951EXPORT_SYMBOL(blk_finish_plug);
73c10101 2952
1da177e4
LT
2953int __init blk_dev_init(void)
2954{
9eb55b03
NK
2955 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2956 sizeof(((struct request *)0)->cmd_flags));
2957
89b90be2
TH
2958 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2959 kblockd_workqueue = alloc_workqueue("kblockd",
2960 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2961 if (!kblockd_workqueue)
2962 panic("Failed to create kblockd\n");
2963
2964 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2965 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2966
8324aa91 2967 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2968 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2969
d38ecf93 2970 return 0;
1da177e4 2971}