block: add end_queued_request() and end_dequeued_request() helpers
[linux-2.6-block.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
1da177e4
LT
33
34/*
35 * for max sense size
36 */
37#include <scsi/scsi_cmnd.h>
38
65f27f38 39static void blk_unplug_work(struct work_struct *work);
1da177e4 40static void blk_unplug_timeout(unsigned long data);
93d17d3d 41static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
52d9e675 42static void init_request_from_bio(struct request *req, struct bio *bio);
165125e1 43static int __make_request(struct request_queue *q, struct bio *bio);
b5deef90 44static struct io_context *current_io_context(gfp_t gfp_flags, int node);
9dfa5283 45static void blk_recalc_rq_segments(struct request *rq);
66846572
N
46static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
47 struct bio *bio);
1da177e4
LT
48
49/*
50 * For the allocated request tables
51 */
e18b890b 52static struct kmem_cache *request_cachep;
1da177e4
LT
53
54/*
55 * For queue allocation
56 */
e18b890b 57static struct kmem_cache *requestq_cachep;
1da177e4
LT
58
59/*
60 * For io context allocations
61 */
e18b890b 62static struct kmem_cache *iocontext_cachep;
1da177e4 63
1da177e4
LT
64/*
65 * Controlling structure to kblockd
66 */
ff856bad 67static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
68
69unsigned long blk_max_low_pfn, blk_max_pfn;
70
71EXPORT_SYMBOL(blk_max_low_pfn);
72EXPORT_SYMBOL(blk_max_pfn);
73
ff856bad
JA
74static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
75
1da177e4
LT
76/* Amount of time in which a process may batch requests */
77#define BLK_BATCH_TIME (HZ/50UL)
78
79/* Number of requests a "batching" process may submit */
80#define BLK_BATCH_REQ 32
81
82/*
83 * Return the threshold (number of used requests) at which the queue is
84 * considered to be congested. It include a little hysteresis to keep the
85 * context switch rate down.
86 */
87static inline int queue_congestion_on_threshold(struct request_queue *q)
88{
89 return q->nr_congestion_on;
90}
91
92/*
93 * The threshold at which a queue is considered to be uncongested
94 */
95static inline int queue_congestion_off_threshold(struct request_queue *q)
96{
97 return q->nr_congestion_off;
98}
99
100static void blk_queue_congestion_threshold(struct request_queue *q)
101{
102 int nr;
103
104 nr = q->nr_requests - (q->nr_requests / 8) + 1;
105 if (nr > q->nr_requests)
106 nr = q->nr_requests;
107 q->nr_congestion_on = nr;
108
109 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
110 if (nr < 1)
111 nr = 1;
112 q->nr_congestion_off = nr;
113}
114
1da177e4
LT
115/**
116 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
117 * @bdev: device
118 *
119 * Locates the passed device's request queue and returns the address of its
120 * backing_dev_info
121 *
122 * Will return NULL if the request queue cannot be located.
123 */
124struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
125{
126 struct backing_dev_info *ret = NULL;
165125e1 127 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
128
129 if (q)
130 ret = &q->backing_dev_info;
131 return ret;
132}
1da177e4
LT
133EXPORT_SYMBOL(blk_get_backing_dev_info);
134
1da177e4
LT
135/**
136 * blk_queue_prep_rq - set a prepare_request function for queue
137 * @q: queue
138 * @pfn: prepare_request function
139 *
140 * It's possible for a queue to register a prepare_request callback which
141 * is invoked before the request is handed to the request_fn. The goal of
142 * the function is to prepare a request for I/O, it can be used to build a
143 * cdb from the request data for instance.
144 *
145 */
165125e1 146void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
1da177e4
LT
147{
148 q->prep_rq_fn = pfn;
149}
150
151EXPORT_SYMBOL(blk_queue_prep_rq);
152
153/**
154 * blk_queue_merge_bvec - set a merge_bvec function for queue
155 * @q: queue
156 * @mbfn: merge_bvec_fn
157 *
158 * Usually queues have static limitations on the max sectors or segments that
159 * we can put in a request. Stacking drivers may have some settings that
160 * are dynamic, and thus we have to query the queue whether it is ok to
161 * add a new bio_vec to a bio at a given offset or not. If the block device
162 * has such limitations, it needs to register a merge_bvec_fn to control
163 * the size of bio's sent to it. Note that a block device *must* allow a
164 * single page to be added to an empty bio. The block device driver may want
165 * to use the bio_split() function to deal with these bio's. By default
166 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
167 * honored.
168 */
165125e1 169void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
1da177e4
LT
170{
171 q->merge_bvec_fn = mbfn;
172}
173
174EXPORT_SYMBOL(blk_queue_merge_bvec);
175
165125e1 176void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
ff856bad
JA
177{
178 q->softirq_done_fn = fn;
179}
180
181EXPORT_SYMBOL(blk_queue_softirq_done);
182
1da177e4
LT
183/**
184 * blk_queue_make_request - define an alternate make_request function for a device
185 * @q: the request queue for the device to be affected
186 * @mfn: the alternate make_request function
187 *
188 * Description:
189 * The normal way for &struct bios to be passed to a device
190 * driver is for them to be collected into requests on a request
191 * queue, and then to allow the device driver to select requests
192 * off that queue when it is ready. This works well for many block
193 * devices. However some block devices (typically virtual devices
194 * such as md or lvm) do not benefit from the processing on the
195 * request queue, and are served best by having the requests passed
196 * directly to them. This can be achieved by providing a function
197 * to blk_queue_make_request().
198 *
199 * Caveat:
200 * The driver that does this *must* be able to deal appropriately
201 * with buffers in "highmemory". This can be accomplished by either calling
202 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
203 * blk_queue_bounce() to create a buffer in normal memory.
204 **/
165125e1 205void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
1da177e4
LT
206{
207 /*
208 * set defaults
209 */
210 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
211 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
212 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
213 q->make_request_fn = mfn;
214 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
215 q->backing_dev_info.state = 0;
216 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 217 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
218 blk_queue_hardsect_size(q, 512);
219 blk_queue_dma_alignment(q, 511);
220 blk_queue_congestion_threshold(q);
221 q->nr_batching = BLK_BATCH_REQ;
222
223 q->unplug_thresh = 4; /* hmm */
224 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
225 if (q->unplug_delay == 0)
226 q->unplug_delay = 1;
227
65f27f38 228 INIT_WORK(&q->unplug_work, blk_unplug_work);
1da177e4
LT
229
230 q->unplug_timer.function = blk_unplug_timeout;
231 q->unplug_timer.data = (unsigned long)q;
232
233 /*
234 * by default assume old behaviour and bounce for any highmem page
235 */
236 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
1da177e4
LT
237}
238
239EXPORT_SYMBOL(blk_queue_make_request);
240
165125e1 241static void rq_init(struct request_queue *q, struct request *rq)
1da177e4
LT
242{
243 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 244 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
245
246 rq->errors = 0;
1da177e4 247 rq->bio = rq->biotail = NULL;
2e662b65
JA
248 INIT_HLIST_NODE(&rq->hash);
249 RB_CLEAR_NODE(&rq->rb_node);
22e2c507 250 rq->ioprio = 0;
1da177e4
LT
251 rq->buffer = NULL;
252 rq->ref_count = 1;
253 rq->q = q;
1da177e4
LT
254 rq->special = NULL;
255 rq->data_len = 0;
256 rq->data = NULL;
df46b9a4 257 rq->nr_phys_segments = 0;
1da177e4
LT
258 rq->sense = NULL;
259 rq->end_io = NULL;
260 rq->end_io_data = NULL;
ff856bad 261 rq->completion_data = NULL;
abae1fde 262 rq->next_rq = NULL;
1da177e4
LT
263}
264
265/**
266 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
267 * @q: the request queue
268 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 269 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
270 *
271 * Description:
272 * For journalled file systems, doing ordered writes on a commit
273 * block instead of explicitly doing wait_on_buffer (which is bad
274 * for performance) can be a big win. Block drivers supporting this
275 * feature should call this function and indicate so.
276 *
277 **/
165125e1 278int blk_queue_ordered(struct request_queue *q, unsigned ordered,
797e7dbb
TH
279 prepare_flush_fn *prepare_flush_fn)
280{
281 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
282 prepare_flush_fn == NULL) {
283 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
284 return -EINVAL;
285 }
286
287 if (ordered != QUEUE_ORDERED_NONE &&
288 ordered != QUEUE_ORDERED_DRAIN &&
289 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
290 ordered != QUEUE_ORDERED_DRAIN_FUA &&
291 ordered != QUEUE_ORDERED_TAG &&
292 ordered != QUEUE_ORDERED_TAG_FLUSH &&
293 ordered != QUEUE_ORDERED_TAG_FUA) {
294 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
295 return -EINVAL;
1da177e4 296 }
797e7dbb 297
60481b12 298 q->ordered = ordered;
797e7dbb
TH
299 q->next_ordered = ordered;
300 q->prepare_flush_fn = prepare_flush_fn;
301
302 return 0;
1da177e4
LT
303}
304
305EXPORT_SYMBOL(blk_queue_ordered);
306
307/**
308 * blk_queue_issue_flush_fn - set function for issuing a flush
309 * @q: the request queue
310 * @iff: the function to be called issuing the flush
311 *
312 * Description:
313 * If a driver supports issuing a flush command, the support is notified
314 * to the block layer by defining it through this call.
315 *
316 **/
165125e1 317void blk_queue_issue_flush_fn(struct request_queue *q, issue_flush_fn *iff)
1da177e4
LT
318{
319 q->issue_flush_fn = iff;
320}
321
322EXPORT_SYMBOL(blk_queue_issue_flush_fn);
323
324/*
325 * Cache flushing for ordered writes handling
326 */
165125e1 327inline unsigned blk_ordered_cur_seq(struct request_queue *q)
1da177e4 328{
797e7dbb
TH
329 if (!q->ordseq)
330 return 0;
331 return 1 << ffz(q->ordseq);
1da177e4
LT
332}
333
797e7dbb 334unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 335{
165125e1 336 struct request_queue *q = rq->q;
1da177e4 337
797e7dbb 338 BUG_ON(q->ordseq == 0);
8922e16c 339
797e7dbb
TH
340 if (rq == &q->pre_flush_rq)
341 return QUEUE_ORDSEQ_PREFLUSH;
342 if (rq == &q->bar_rq)
343 return QUEUE_ORDSEQ_BAR;
344 if (rq == &q->post_flush_rq)
345 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 346
bc90ba09
TH
347 /*
348 * !fs requests don't need to follow barrier ordering. Always
349 * put them at the front. This fixes the following deadlock.
350 *
351 * http://thread.gmane.org/gmane.linux.kernel/537473
352 */
353 if (!blk_fs_request(rq))
354 return QUEUE_ORDSEQ_DRAIN;
355
4aff5e23
JA
356 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
357 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
797e7dbb
TH
358 return QUEUE_ORDSEQ_DRAIN;
359 else
360 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
361}
362
165125e1 363void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
1da177e4 364{
797e7dbb
TH
365 struct request *rq;
366 int uptodate;
1da177e4 367
797e7dbb
TH
368 if (error && !q->orderr)
369 q->orderr = error;
1da177e4 370
797e7dbb
TH
371 BUG_ON(q->ordseq & seq);
372 q->ordseq |= seq;
1da177e4 373
797e7dbb
TH
374 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
375 return;
1da177e4
LT
376
377 /*
797e7dbb 378 * Okay, sequence complete.
1da177e4 379 */
4fa253f3
JA
380 uptodate = 1;
381 if (q->orderr)
382 uptodate = q->orderr;
1da177e4 383
797e7dbb 384 q->ordseq = 0;
4fa253f3 385 rq = q->orig_bar_rq;
1da177e4 386
797e7dbb
TH
387 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
388 end_that_request_last(rq, uptodate);
1da177e4
LT
389}
390
797e7dbb 391static void pre_flush_end_io(struct request *rq, int error)
1da177e4 392{
797e7dbb
TH
393 elv_completed_request(rq->q, rq);
394 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
395}
1da177e4 396
797e7dbb
TH
397static void bar_end_io(struct request *rq, int error)
398{
399 elv_completed_request(rq->q, rq);
400 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
401}
1da177e4 402
797e7dbb
TH
403static void post_flush_end_io(struct request *rq, int error)
404{
405 elv_completed_request(rq->q, rq);
406 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
407}
1da177e4 408
165125e1 409static void queue_flush(struct request_queue *q, unsigned which)
797e7dbb
TH
410{
411 struct request *rq;
412 rq_end_io_fn *end_io;
1da177e4 413
797e7dbb
TH
414 if (which == QUEUE_ORDERED_PREFLUSH) {
415 rq = &q->pre_flush_rq;
416 end_io = pre_flush_end_io;
417 } else {
418 rq = &q->post_flush_rq;
419 end_io = post_flush_end_io;
1da177e4 420 }
797e7dbb 421
4aff5e23 422 rq->cmd_flags = REQ_HARDBARRIER;
797e7dbb 423 rq_init(q, rq);
797e7dbb 424 rq->elevator_private = NULL;
c00895ab 425 rq->elevator_private2 = NULL;
797e7dbb 426 rq->rq_disk = q->bar_rq.rq_disk;
797e7dbb
TH
427 rq->end_io = end_io;
428 q->prepare_flush_fn(q, rq);
429
30e9656c 430 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
431}
432
165125e1 433static inline struct request *start_ordered(struct request_queue *q,
797e7dbb 434 struct request *rq)
1da177e4 435{
797e7dbb
TH
436 q->orderr = 0;
437 q->ordered = q->next_ordered;
438 q->ordseq |= QUEUE_ORDSEQ_STARTED;
439
440 /*
441 * Prep proxy barrier request.
442 */
443 blkdev_dequeue_request(rq);
444 q->orig_bar_rq = rq;
445 rq = &q->bar_rq;
4aff5e23 446 rq->cmd_flags = 0;
797e7dbb 447 rq_init(q, rq);
4aff5e23
JA
448 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
449 rq->cmd_flags |= REQ_RW;
4fa253f3
JA
450 if (q->ordered & QUEUE_ORDERED_FUA)
451 rq->cmd_flags |= REQ_FUA;
797e7dbb 452 rq->elevator_private = NULL;
c00895ab 453 rq->elevator_private2 = NULL;
797e7dbb
TH
454 init_request_from_bio(rq, q->orig_bar_rq->bio);
455 rq->end_io = bar_end_io;
456
457 /*
458 * Queue ordered sequence. As we stack them at the head, we
459 * need to queue in reverse order. Note that we rely on that
460 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
461 * request gets inbetween ordered sequence.
462 */
463 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
464 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
465 else
466 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
467
30e9656c 468 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
469
470 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
471 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
472 rq = &q->pre_flush_rq;
473 } else
474 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 475
797e7dbb
TH
476 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
477 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
478 else
479 rq = NULL;
480
481 return rq;
1da177e4
LT
482}
483
165125e1 484int blk_do_ordered(struct request_queue *q, struct request **rqp)
1da177e4 485{
9a7a67af 486 struct request *rq = *rqp;
797e7dbb 487 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 488
797e7dbb
TH
489 if (!q->ordseq) {
490 if (!is_barrier)
491 return 1;
1da177e4 492
797e7dbb
TH
493 if (q->next_ordered != QUEUE_ORDERED_NONE) {
494 *rqp = start_ordered(q, rq);
495 return 1;
496 } else {
497 /*
498 * This can happen when the queue switches to
499 * ORDERED_NONE while this request is on it.
500 */
501 blkdev_dequeue_request(rq);
502 end_that_request_first(rq, -EOPNOTSUPP,
503 rq->hard_nr_sectors);
504 end_that_request_last(rq, -EOPNOTSUPP);
505 *rqp = NULL;
506 return 0;
507 }
508 }
1da177e4 509
9a7a67af
JA
510 /*
511 * Ordered sequence in progress
512 */
513
514 /* Special requests are not subject to ordering rules. */
515 if (!blk_fs_request(rq) &&
516 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
517 return 1;
518
797e7dbb 519 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 520 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
521 if (is_barrier && rq != &q->bar_rq)
522 *rqp = NULL;
9a7a67af
JA
523 } else {
524 /* Ordered by draining. Wait for turn. */
525 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
526 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
527 *rqp = NULL;
1da177e4
LT
528 }
529
530 return 1;
531}
532
5bb23a68
N
533static void req_bio_endio(struct request *rq, struct bio *bio,
534 unsigned int nbytes, int error)
1da177e4 535{
165125e1 536 struct request_queue *q = rq->q;
797e7dbb 537
5bb23a68
N
538 if (&q->bar_rq != rq) {
539 if (error)
540 clear_bit(BIO_UPTODATE, &bio->bi_flags);
541 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
542 error = -EIO;
797e7dbb 543
5bb23a68
N
544 if (unlikely(nbytes > bio->bi_size)) {
545 printk("%s: want %u bytes done, only %u left\n",
546 __FUNCTION__, nbytes, bio->bi_size);
547 nbytes = bio->bi_size;
548 }
797e7dbb 549
5bb23a68
N
550 bio->bi_size -= nbytes;
551 bio->bi_sector += (nbytes >> 9);
552 if (bio->bi_size == 0)
6712ecf8 553 bio_endio(bio, error);
5bb23a68
N
554 } else {
555
556 /*
557 * Okay, this is the barrier request in progress, just
558 * record the error;
559 */
560 if (error && !q->orderr)
561 q->orderr = error;
562 }
1da177e4 563}
1da177e4
LT
564
565/**
566 * blk_queue_bounce_limit - set bounce buffer limit for queue
567 * @q: the request queue for the device
568 * @dma_addr: bus address limit
569 *
570 * Description:
571 * Different hardware can have different requirements as to what pages
572 * it can do I/O directly to. A low level driver can call
573 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 574 * buffers for doing I/O to pages residing above @page.
1da177e4 575 **/
165125e1 576void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
1da177e4
LT
577{
578 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
579 int dma = 0;
580
581 q->bounce_gfp = GFP_NOIO;
582#if BITS_PER_LONG == 64
583 /* Assume anything <= 4GB can be handled by IOMMU.
584 Actually some IOMMUs can handle everything, but I don't
585 know of a way to test this here. */
8269730b 586 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
587 dma = 1;
588 q->bounce_pfn = max_low_pfn;
589#else
590 if (bounce_pfn < blk_max_low_pfn)
591 dma = 1;
592 q->bounce_pfn = bounce_pfn;
593#endif
594 if (dma) {
1da177e4
LT
595 init_emergency_isa_pool();
596 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
597 q->bounce_pfn = bounce_pfn;
598 }
1da177e4
LT
599}
600
601EXPORT_SYMBOL(blk_queue_bounce_limit);
602
603/**
604 * blk_queue_max_sectors - set max sectors for a request for this queue
605 * @q: the request queue for the device
606 * @max_sectors: max sectors in the usual 512b unit
607 *
608 * Description:
609 * Enables a low level driver to set an upper limit on the size of
610 * received requests.
611 **/
165125e1 612void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
1da177e4
LT
613{
614 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
615 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
616 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
617 }
618
defd94b7
MC
619 if (BLK_DEF_MAX_SECTORS > max_sectors)
620 q->max_hw_sectors = q->max_sectors = max_sectors;
621 else {
622 q->max_sectors = BLK_DEF_MAX_SECTORS;
623 q->max_hw_sectors = max_sectors;
624 }
1da177e4
LT
625}
626
627EXPORT_SYMBOL(blk_queue_max_sectors);
628
629/**
630 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
631 * @q: the request queue for the device
632 * @max_segments: max number of segments
633 *
634 * Description:
635 * Enables a low level driver to set an upper limit on the number of
636 * physical data segments in a request. This would be the largest sized
637 * scatter list the driver could handle.
638 **/
165125e1
JA
639void blk_queue_max_phys_segments(struct request_queue *q,
640 unsigned short max_segments)
1da177e4
LT
641{
642 if (!max_segments) {
643 max_segments = 1;
644 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
645 }
646
647 q->max_phys_segments = max_segments;
648}
649
650EXPORT_SYMBOL(blk_queue_max_phys_segments);
651
652/**
653 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
654 * @q: the request queue for the device
655 * @max_segments: max number of segments
656 *
657 * Description:
658 * Enables a low level driver to set an upper limit on the number of
659 * hw data segments in a request. This would be the largest number of
660 * address/length pairs the host adapter can actually give as once
661 * to the device.
662 **/
165125e1
JA
663void blk_queue_max_hw_segments(struct request_queue *q,
664 unsigned short max_segments)
1da177e4
LT
665{
666 if (!max_segments) {
667 max_segments = 1;
668 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
669 }
670
671 q->max_hw_segments = max_segments;
672}
673
674EXPORT_SYMBOL(blk_queue_max_hw_segments);
675
676/**
677 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
678 * @q: the request queue for the device
679 * @max_size: max size of segment in bytes
680 *
681 * Description:
682 * Enables a low level driver to set an upper limit on the size of a
683 * coalesced segment
684 **/
165125e1 685void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
1da177e4
LT
686{
687 if (max_size < PAGE_CACHE_SIZE) {
688 max_size = PAGE_CACHE_SIZE;
689 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
690 }
691
692 q->max_segment_size = max_size;
693}
694
695EXPORT_SYMBOL(blk_queue_max_segment_size);
696
697/**
698 * blk_queue_hardsect_size - set hardware sector size for the queue
699 * @q: the request queue for the device
700 * @size: the hardware sector size, in bytes
701 *
702 * Description:
703 * This should typically be set to the lowest possible sector size
704 * that the hardware can operate on (possible without reverting to
705 * even internal read-modify-write operations). Usually the default
706 * of 512 covers most hardware.
707 **/
165125e1 708void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
1da177e4
LT
709{
710 q->hardsect_size = size;
711}
712
713EXPORT_SYMBOL(blk_queue_hardsect_size);
714
715/*
716 * Returns the minimum that is _not_ zero, unless both are zero.
717 */
718#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
719
720/**
721 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
722 * @t: the stacking driver (top)
723 * @b: the underlying device (bottom)
724 **/
165125e1 725void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
1da177e4
LT
726{
727 /* zero is "infinity" */
defd94b7
MC
728 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
729 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
730
731 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
732 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
733 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
734 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
735 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
736 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
737}
738
739EXPORT_SYMBOL(blk_queue_stack_limits);
740
741/**
742 * blk_queue_segment_boundary - set boundary rules for segment merging
743 * @q: the request queue for the device
744 * @mask: the memory boundary mask
745 **/
165125e1 746void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
1da177e4
LT
747{
748 if (mask < PAGE_CACHE_SIZE - 1) {
749 mask = PAGE_CACHE_SIZE - 1;
750 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
751 }
752
753 q->seg_boundary_mask = mask;
754}
755
756EXPORT_SYMBOL(blk_queue_segment_boundary);
757
758/**
759 * blk_queue_dma_alignment - set dma length and memory alignment
760 * @q: the request queue for the device
761 * @mask: alignment mask
762 *
763 * description:
764 * set required memory and length aligment for direct dma transactions.
765 * this is used when buiding direct io requests for the queue.
766 *
767 **/
165125e1 768void blk_queue_dma_alignment(struct request_queue *q, int mask)
1da177e4
LT
769{
770 q->dma_alignment = mask;
771}
772
773EXPORT_SYMBOL(blk_queue_dma_alignment);
774
775/**
776 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
777 * @q: The request queue for the device
778 * @tag: The tag of the request
779 *
780 * Notes:
781 * Should be used when a device returns a tag and you want to match
782 * it with a request.
783 *
784 * no locks need be held.
785 **/
165125e1 786struct request *blk_queue_find_tag(struct request_queue *q, int tag)
1da177e4 787{
f583f492 788 return blk_map_queue_find_tag(q->queue_tags, tag);
1da177e4
LT
789}
790
791EXPORT_SYMBOL(blk_queue_find_tag);
792
793/**
492dfb48
JB
794 * __blk_free_tags - release a given set of tag maintenance info
795 * @bqt: the tag map to free
1da177e4 796 *
492dfb48
JB
797 * Tries to free the specified @bqt@. Returns true if it was
798 * actually freed and false if there are still references using it
799 */
800static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 801{
492dfb48 802 int retval;
1da177e4 803
492dfb48
JB
804 retval = atomic_dec_and_test(&bqt->refcnt);
805 if (retval) {
1da177e4
LT
806 BUG_ON(bqt->busy);
807 BUG_ON(!list_empty(&bqt->busy_list));
808
809 kfree(bqt->tag_index);
810 bqt->tag_index = NULL;
811
812 kfree(bqt->tag_map);
813 bqt->tag_map = NULL;
814
815 kfree(bqt);
492dfb48 816
1da177e4
LT
817 }
818
492dfb48
JB
819 return retval;
820}
821
822/**
823 * __blk_queue_free_tags - release tag maintenance info
824 * @q: the request queue for the device
825 *
826 * Notes:
827 * blk_cleanup_queue() will take care of calling this function, if tagging
828 * has been used. So there's no need to call this directly.
829 **/
165125e1 830static void __blk_queue_free_tags(struct request_queue *q)
492dfb48
JB
831{
832 struct blk_queue_tag *bqt = q->queue_tags;
833
834 if (!bqt)
835 return;
836
837 __blk_free_tags(bqt);
838
1da177e4
LT
839 q->queue_tags = NULL;
840 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
841}
842
492dfb48
JB
843
844/**
845 * blk_free_tags - release a given set of tag maintenance info
846 * @bqt: the tag map to free
847 *
848 * For externally managed @bqt@ frees the map. Callers of this
849 * function must guarantee to have released all the queues that
850 * might have been using this tag map.
851 */
852void blk_free_tags(struct blk_queue_tag *bqt)
853{
854 if (unlikely(!__blk_free_tags(bqt)))
855 BUG();
856}
857EXPORT_SYMBOL(blk_free_tags);
858
1da177e4
LT
859/**
860 * blk_queue_free_tags - release tag maintenance info
861 * @q: the request queue for the device
862 *
863 * Notes:
864 * This is used to disabled tagged queuing to a device, yet leave
865 * queue in function.
866 **/
165125e1 867void blk_queue_free_tags(struct request_queue *q)
1da177e4
LT
868{
869 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
870}
871
872EXPORT_SYMBOL(blk_queue_free_tags);
873
874static int
165125e1 875init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
1da177e4 876{
1da177e4
LT
877 struct request **tag_index;
878 unsigned long *tag_map;
fa72b903 879 int nr_ulongs;
1da177e4 880
492dfb48 881 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
882 depth = q->nr_requests * 2;
883 printk(KERN_ERR "%s: adjusted depth to %d\n",
884 __FUNCTION__, depth);
885 }
886
f68110fc 887 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
888 if (!tag_index)
889 goto fail;
890
f7d37d02 891 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 892 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
893 if (!tag_map)
894 goto fail;
895
ba025082 896 tags->real_max_depth = depth;
1da177e4 897 tags->max_depth = depth;
1da177e4
LT
898 tags->tag_index = tag_index;
899 tags->tag_map = tag_map;
900
1da177e4
LT
901 return 0;
902fail:
903 kfree(tag_index);
904 return -ENOMEM;
905}
906
492dfb48
JB
907static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
908 int depth)
909{
910 struct blk_queue_tag *tags;
911
912 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
913 if (!tags)
914 goto fail;
915
916 if (init_tag_map(q, tags, depth))
917 goto fail;
918
919 INIT_LIST_HEAD(&tags->busy_list);
920 tags->busy = 0;
921 atomic_set(&tags->refcnt, 1);
922 return tags;
923fail:
924 kfree(tags);
925 return NULL;
926}
927
928/**
929 * blk_init_tags - initialize the tag info for an external tag map
930 * @depth: the maximum queue depth supported
931 * @tags: the tag to use
932 **/
933struct blk_queue_tag *blk_init_tags(int depth)
934{
935 return __blk_queue_init_tags(NULL, depth);
936}
937EXPORT_SYMBOL(blk_init_tags);
938
1da177e4
LT
939/**
940 * blk_queue_init_tags - initialize the queue tag info
941 * @q: the request queue for the device
942 * @depth: the maximum queue depth supported
943 * @tags: the tag to use
944 **/
165125e1 945int blk_queue_init_tags(struct request_queue *q, int depth,
1da177e4
LT
946 struct blk_queue_tag *tags)
947{
948 int rc;
949
950 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
951
952 if (!tags && !q->queue_tags) {
492dfb48 953 tags = __blk_queue_init_tags(q, depth);
1da177e4 954
492dfb48 955 if (!tags)
1da177e4 956 goto fail;
1da177e4
LT
957 } else if (q->queue_tags) {
958 if ((rc = blk_queue_resize_tags(q, depth)))
959 return rc;
960 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
961 return 0;
962 } else
963 atomic_inc(&tags->refcnt);
964
965 /*
966 * assign it, all done
967 */
968 q->queue_tags = tags;
969 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
970 return 0;
971fail:
972 kfree(tags);
973 return -ENOMEM;
974}
975
976EXPORT_SYMBOL(blk_queue_init_tags);
977
978/**
979 * blk_queue_resize_tags - change the queueing depth
980 * @q: the request queue for the device
981 * @new_depth: the new max command queueing depth
982 *
983 * Notes:
984 * Must be called with the queue lock held.
985 **/
165125e1 986int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1da177e4
LT
987{
988 struct blk_queue_tag *bqt = q->queue_tags;
989 struct request **tag_index;
990 unsigned long *tag_map;
fa72b903 991 int max_depth, nr_ulongs;
1da177e4
LT
992
993 if (!bqt)
994 return -ENXIO;
995
ba025082
TH
996 /*
997 * if we already have large enough real_max_depth. just
998 * adjust max_depth. *NOTE* as requests with tag value
999 * between new_depth and real_max_depth can be in-flight, tag
1000 * map can not be shrunk blindly here.
1001 */
1002 if (new_depth <= bqt->real_max_depth) {
1003 bqt->max_depth = new_depth;
1004 return 0;
1005 }
1006
492dfb48
JB
1007 /*
1008 * Currently cannot replace a shared tag map with a new
1009 * one, so error out if this is the case
1010 */
1011 if (atomic_read(&bqt->refcnt) != 1)
1012 return -EBUSY;
1013
1da177e4
LT
1014 /*
1015 * save the old state info, so we can copy it back
1016 */
1017 tag_index = bqt->tag_index;
1018 tag_map = bqt->tag_map;
ba025082 1019 max_depth = bqt->real_max_depth;
1da177e4
LT
1020
1021 if (init_tag_map(q, bqt, new_depth))
1022 return -ENOMEM;
1023
1024 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1025 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1026 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1027
1028 kfree(tag_index);
1029 kfree(tag_map);
1030 return 0;
1031}
1032
1033EXPORT_SYMBOL(blk_queue_resize_tags);
1034
1035/**
1036 * blk_queue_end_tag - end tag operations for a request
1037 * @q: the request queue for the device
1038 * @rq: the request that has completed
1039 *
1040 * Description:
1041 * Typically called when end_that_request_first() returns 0, meaning
1042 * all transfers have been done for a request. It's important to call
1043 * this function before end_that_request_last(), as that will put the
1044 * request back on the free list thus corrupting the internal tag list.
1045 *
1046 * Notes:
1047 * queue lock must be held.
1048 **/
165125e1 1049void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1050{
1051 struct blk_queue_tag *bqt = q->queue_tags;
1052 int tag = rq->tag;
1053
1054 BUG_ON(tag == -1);
1055
ba025082 1056 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1057 /*
1058 * This can happen after tag depth has been reduced.
1059 * FIXME: how about a warning or info message here?
1060 */
1da177e4
LT
1061 return;
1062
1da177e4 1063 list_del_init(&rq->queuelist);
4aff5e23 1064 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1065 rq->tag = -1;
1066
1067 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1068 printk(KERN_ERR "%s: tag %d is missing\n",
1069 __FUNCTION__, tag);
1da177e4
LT
1070
1071 bqt->tag_index[tag] = NULL;
f3da54ba 1072
dd941252
NP
1073 /*
1074 * We use test_and_clear_bit's memory ordering properties here.
1075 * The tag_map bit acts as a lock for tag_index[bit], so we need
1076 * a barrer before clearing the bit (precisely: release semantics).
1077 * Could use clear_bit_unlock when it is merged.
1078 */
f3da54ba
JA
1079 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1080 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1081 __FUNCTION__, tag);
1082 return;
1083 }
1084
1da177e4
LT
1085 bqt->busy--;
1086}
1087
1088EXPORT_SYMBOL(blk_queue_end_tag);
1089
1090/**
1091 * blk_queue_start_tag - find a free tag and assign it
1092 * @q: the request queue for the device
1093 * @rq: the block request that needs tagging
1094 *
1095 * Description:
1096 * This can either be used as a stand-alone helper, or possibly be
1097 * assigned as the queue &prep_rq_fn (in which case &struct request
1098 * automagically gets a tag assigned). Note that this function
1099 * assumes that any type of request can be queued! if this is not
1100 * true for your device, you must check the request type before
1101 * calling this function. The request will also be removed from
1102 * the request queue, so it's the drivers responsibility to readd
1103 * it if it should need to be restarted for some reason.
1104 *
1105 * Notes:
1106 * queue lock must be held.
1107 **/
165125e1 1108int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1109{
1110 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1111 int tag;
1da177e4 1112
4aff5e23 1113 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1da177e4 1114 printk(KERN_ERR
040c928c
TH
1115 "%s: request %p for device [%s] already tagged %d",
1116 __FUNCTION__, rq,
1117 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1118 BUG();
1119 }
1120
059af497
JA
1121 /*
1122 * Protect against shared tag maps, as we may not have exclusive
1123 * access to the tag map.
1124 */
1125 do {
1126 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1127 if (tag >= bqt->max_depth)
1128 return 1;
1da177e4 1129
059af497 1130 } while (test_and_set_bit(tag, bqt->tag_map));
dd941252
NP
1131 /*
1132 * We rely on test_and_set_bit providing lock memory ordering semantics
1133 * (could use test_and_set_bit_lock when it is merged).
1134 */
1da177e4 1135
4aff5e23 1136 rq->cmd_flags |= REQ_QUEUED;
1da177e4
LT
1137 rq->tag = tag;
1138 bqt->tag_index[tag] = rq;
1139 blkdev_dequeue_request(rq);
1140 list_add(&rq->queuelist, &bqt->busy_list);
1141 bqt->busy++;
1142 return 0;
1143}
1144
1145EXPORT_SYMBOL(blk_queue_start_tag);
1146
1147/**
1148 * blk_queue_invalidate_tags - invalidate all pending tags
1149 * @q: the request queue for the device
1150 *
1151 * Description:
1152 * Hardware conditions may dictate a need to stop all pending requests.
1153 * In this case, we will safely clear the block side of the tag queue and
1154 * readd all requests to the request queue in the right order.
1155 *
1156 * Notes:
1157 * queue lock must be held.
1158 **/
165125e1 1159void blk_queue_invalidate_tags(struct request_queue *q)
1da177e4
LT
1160{
1161 struct blk_queue_tag *bqt = q->queue_tags;
1162 struct list_head *tmp, *n;
1163 struct request *rq;
1164
1165 list_for_each_safe(tmp, n, &bqt->busy_list) {
1166 rq = list_entry_rq(tmp);
1167
1168 if (rq->tag == -1) {
040c928c
TH
1169 printk(KERN_ERR
1170 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4 1171 list_del_init(&rq->queuelist);
4aff5e23 1172 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1173 } else
1174 blk_queue_end_tag(q, rq);
1175
4aff5e23 1176 rq->cmd_flags &= ~REQ_STARTED;
1da177e4
LT
1177 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1178 }
1179}
1180
1181EXPORT_SYMBOL(blk_queue_invalidate_tags);
1182
1da177e4
LT
1183void blk_dump_rq_flags(struct request *rq, char *msg)
1184{
1185 int bit;
1186
4aff5e23
JA
1187 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1188 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1189 rq->cmd_flags);
1da177e4
LT
1190
1191 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1192 rq->nr_sectors,
1193 rq->current_nr_sectors);
1194 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1195
4aff5e23 1196 if (blk_pc_request(rq)) {
1da177e4
LT
1197 printk("cdb: ");
1198 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1199 printk("%02x ", rq->cmd[bit]);
1200 printk("\n");
1201 }
1202}
1203
1204EXPORT_SYMBOL(blk_dump_rq_flags);
1205
165125e1 1206void blk_recount_segments(struct request_queue *q, struct bio *bio)
1da177e4 1207{
9dfa5283
N
1208 struct request rq;
1209 struct bio *nxt = bio->bi_next;
1210 rq.q = q;
1211 rq.bio = rq.biotail = bio;
1212 bio->bi_next = NULL;
1213 blk_recalc_rq_segments(&rq);
1214 bio->bi_next = nxt;
1215 bio->bi_phys_segments = rq.nr_phys_segments;
1216 bio->bi_hw_segments = rq.nr_hw_segments;
1217 bio->bi_flags |= (1 << BIO_SEG_VALID);
1218}
1219EXPORT_SYMBOL(blk_recount_segments);
1220
1221static void blk_recalc_rq_segments(struct request *rq)
1222{
1223 int nr_phys_segs;
1224 int nr_hw_segs;
1225 unsigned int phys_size;
1226 unsigned int hw_size;
1da177e4 1227 struct bio_vec *bv, *bvprv = NULL;
9dfa5283
N
1228 int seg_size;
1229 int hw_seg_size;
1230 int cluster;
5705f702 1231 struct req_iterator iter;
1da177e4 1232 int high, highprv = 1;
9dfa5283 1233 struct request_queue *q = rq->q;
1da177e4 1234
9dfa5283 1235 if (!rq->bio)
1da177e4
LT
1236 return;
1237
1238 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
9dfa5283
N
1239 hw_seg_size = seg_size = 0;
1240 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
5705f702 1241 rq_for_each_segment(bv, rq, iter) {
1da177e4
LT
1242 /*
1243 * the trick here is making sure that a high page is never
1244 * considered part of another segment, since that might
1245 * change with the bounce page.
1246 */
f772b3d9 1247 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1da177e4
LT
1248 if (high || highprv)
1249 goto new_hw_segment;
1250 if (cluster) {
1251 if (seg_size + bv->bv_len > q->max_segment_size)
1252 goto new_segment;
1253 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1254 goto new_segment;
1255 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1256 goto new_segment;
1257 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1258 goto new_hw_segment;
1259
1260 seg_size += bv->bv_len;
1261 hw_seg_size += bv->bv_len;
1262 bvprv = bv;
1263 continue;
1264 }
1265new_segment:
1266 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
9dfa5283 1267 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1da177e4 1268 hw_seg_size += bv->bv_len;
9dfa5283 1269 else {
1da177e4 1270new_hw_segment:
9dfa5283
N
1271 if (nr_hw_segs == 1 &&
1272 hw_seg_size > rq->bio->bi_hw_front_size)
1273 rq->bio->bi_hw_front_size = hw_seg_size;
1da177e4
LT
1274 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1275 nr_hw_segs++;
1276 }
1277
1278 nr_phys_segs++;
1279 bvprv = bv;
1280 seg_size = bv->bv_len;
1281 highprv = high;
1282 }
9dfa5283
N
1283
1284 if (nr_hw_segs == 1 &&
1285 hw_seg_size > rq->bio->bi_hw_front_size)
1286 rq->bio->bi_hw_front_size = hw_seg_size;
1287 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1288 rq->biotail->bi_hw_back_size = hw_seg_size;
1289 rq->nr_phys_segments = nr_phys_segs;
1290 rq->nr_hw_segments = nr_hw_segs;
1da177e4 1291}
1da177e4 1292
165125e1 1293static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1294 struct bio *nxt)
1295{
1296 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1297 return 0;
1298
1299 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1300 return 0;
1301 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1302 return 0;
1303
1304 /*
1305 * bio and nxt are contigous in memory, check if the queue allows
1306 * these two to be merged into one
1307 */
1308 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1309 return 1;
1310
1311 return 0;
1312}
1313
165125e1 1314static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1315 struct bio *nxt)
1316{
1317 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1318 blk_recount_segments(q, bio);
1319 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1320 blk_recount_segments(q, nxt);
1321 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
32eef964 1322 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1da177e4 1323 return 0;
32eef964 1324 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1da177e4
LT
1325 return 0;
1326
1327 return 1;
1328}
1329
1da177e4
LT
1330/*
1331 * map a request to scatterlist, return number of sg entries setup. Caller
1332 * must make sure sg can hold rq->nr_phys_segments entries
1333 */
165125e1
JA
1334int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1335 struct scatterlist *sg)
1da177e4
LT
1336{
1337 struct bio_vec *bvec, *bvprv;
5705f702
N
1338 struct req_iterator iter;
1339 int nsegs, cluster;
1da177e4
LT
1340
1341 nsegs = 0;
1342 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1343
1344 /*
1345 * for each bio in rq
1346 */
1347 bvprv = NULL;
5705f702 1348 rq_for_each_segment(bvec, rq, iter) {
6c92e699 1349 int nbytes = bvec->bv_len;
1da177e4 1350
6c92e699
JA
1351 if (bvprv && cluster) {
1352 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1353 goto new_segment;
1da177e4 1354
6c92e699
JA
1355 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1356 goto new_segment;
1357 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1358 goto new_segment;
1da177e4 1359
6c92e699
JA
1360 sg[nsegs - 1].length += nbytes;
1361 } else {
1da177e4 1362new_segment:
6c92e699
JA
1363 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1364 sg[nsegs].page = bvec->bv_page;
1365 sg[nsegs].length = nbytes;
1366 sg[nsegs].offset = bvec->bv_offset;
1367
1368 nsegs++;
1369 }
1370 bvprv = bvec;
5705f702 1371 } /* segments in rq */
1da177e4
LT
1372
1373 return nsegs;
1374}
1375
1376EXPORT_SYMBOL(blk_rq_map_sg);
1377
1378/*
1379 * the standard queue merge functions, can be overridden with device
1380 * specific ones if so desired
1381 */
1382
165125e1 1383static inline int ll_new_mergeable(struct request_queue *q,
1da177e4
LT
1384 struct request *req,
1385 struct bio *bio)
1386{
1387 int nr_phys_segs = bio_phys_segments(q, bio);
1388
1389 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1390 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1391 if (req == q->last_merge)
1392 q->last_merge = NULL;
1393 return 0;
1394 }
1395
1396 /*
1397 * A hw segment is just getting larger, bump just the phys
1398 * counter.
1399 */
1400 req->nr_phys_segments += nr_phys_segs;
1401 return 1;
1402}
1403
165125e1 1404static inline int ll_new_hw_segment(struct request_queue *q,
1da177e4
LT
1405 struct request *req,
1406 struct bio *bio)
1407{
1408 int nr_hw_segs = bio_hw_segments(q, bio);
1409 int nr_phys_segs = bio_phys_segments(q, bio);
1410
1411 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1412 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1413 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1414 if (req == q->last_merge)
1415 q->last_merge = NULL;
1416 return 0;
1417 }
1418
1419 /*
1420 * This will form the start of a new hw segment. Bump both
1421 * counters.
1422 */
1423 req->nr_hw_segments += nr_hw_segs;
1424 req->nr_phys_segments += nr_phys_segs;
1425 return 1;
1426}
1427
3001ca77
N
1428static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1429 struct bio *bio)
1da177e4 1430{
defd94b7 1431 unsigned short max_sectors;
1da177e4
LT
1432 int len;
1433
defd94b7
MC
1434 if (unlikely(blk_pc_request(req)))
1435 max_sectors = q->max_hw_sectors;
1436 else
1437 max_sectors = q->max_sectors;
1438
1439 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1440 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1441 if (req == q->last_merge)
1442 q->last_merge = NULL;
1443 return 0;
1444 }
1445 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1446 blk_recount_segments(q, req->biotail);
1447 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1448 blk_recount_segments(q, bio);
1449 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1450 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1451 !BIOVEC_VIRT_OVERSIZE(len)) {
1452 int mergeable = ll_new_mergeable(q, req, bio);
1453
1454 if (mergeable) {
1455 if (req->nr_hw_segments == 1)
1456 req->bio->bi_hw_front_size = len;
1457 if (bio->bi_hw_segments == 1)
1458 bio->bi_hw_back_size = len;
1459 }
1460 return mergeable;
1461 }
1462
1463 return ll_new_hw_segment(q, req, bio);
1464}
1465
165125e1 1466static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1467 struct bio *bio)
1468{
defd94b7 1469 unsigned short max_sectors;
1da177e4
LT
1470 int len;
1471
defd94b7
MC
1472 if (unlikely(blk_pc_request(req)))
1473 max_sectors = q->max_hw_sectors;
1474 else
1475 max_sectors = q->max_sectors;
1476
1477
1478 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1479 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1480 if (req == q->last_merge)
1481 q->last_merge = NULL;
1482 return 0;
1483 }
1484 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1485 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1486 blk_recount_segments(q, bio);
1487 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1488 blk_recount_segments(q, req->bio);
1489 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1490 !BIOVEC_VIRT_OVERSIZE(len)) {
1491 int mergeable = ll_new_mergeable(q, req, bio);
1492
1493 if (mergeable) {
1494 if (bio->bi_hw_segments == 1)
1495 bio->bi_hw_front_size = len;
1496 if (req->nr_hw_segments == 1)
1497 req->biotail->bi_hw_back_size = len;
1498 }
1499 return mergeable;
1500 }
1501
1502 return ll_new_hw_segment(q, req, bio);
1503}
1504
165125e1 1505static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1506 struct request *next)
1507{
dfa1a553
ND
1508 int total_phys_segments;
1509 int total_hw_segments;
1da177e4
LT
1510
1511 /*
1512 * First check if the either of the requests are re-queued
1513 * requests. Can't merge them if they are.
1514 */
1515 if (req->special || next->special)
1516 return 0;
1517
1518 /*
dfa1a553 1519 * Will it become too large?
1da177e4
LT
1520 */
1521 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1522 return 0;
1523
1524 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1525 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1526 total_phys_segments--;
1527
1528 if (total_phys_segments > q->max_phys_segments)
1529 return 0;
1530
1531 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1532 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1533 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1534 /*
1535 * propagate the combined length to the end of the requests
1536 */
1537 if (req->nr_hw_segments == 1)
1538 req->bio->bi_hw_front_size = len;
1539 if (next->nr_hw_segments == 1)
1540 next->biotail->bi_hw_back_size = len;
1541 total_hw_segments--;
1542 }
1543
1544 if (total_hw_segments > q->max_hw_segments)
1545 return 0;
1546
1547 /* Merge is OK... */
1548 req->nr_phys_segments = total_phys_segments;
1549 req->nr_hw_segments = total_hw_segments;
1550 return 1;
1551}
1552
1553/*
1554 * "plug" the device if there are no outstanding requests: this will
1555 * force the transfer to start only after we have put all the requests
1556 * on the list.
1557 *
1558 * This is called with interrupts off and no requests on the queue and
1559 * with the queue lock held.
1560 */
165125e1 1561void blk_plug_device(struct request_queue *q)
1da177e4
LT
1562{
1563 WARN_ON(!irqs_disabled());
1564
1565 /*
1566 * don't plug a stopped queue, it must be paired with blk_start_queue()
1567 * which will restart the queueing
1568 */
7daac490 1569 if (blk_queue_stopped(q))
1da177e4
LT
1570 return;
1571
2056a782 1572 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1573 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1574 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1575 }
1da177e4
LT
1576}
1577
1578EXPORT_SYMBOL(blk_plug_device);
1579
1580/*
1581 * remove the queue from the plugged list, if present. called with
1582 * queue lock held and interrupts disabled.
1583 */
165125e1 1584int blk_remove_plug(struct request_queue *q)
1da177e4
LT
1585{
1586 WARN_ON(!irqs_disabled());
1587
1588 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1589 return 0;
1590
1591 del_timer(&q->unplug_timer);
1592 return 1;
1593}
1594
1595EXPORT_SYMBOL(blk_remove_plug);
1596
1597/*
1598 * remove the plug and let it rip..
1599 */
165125e1 1600void __generic_unplug_device(struct request_queue *q)
1da177e4 1601{
7daac490 1602 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1603 return;
1604
1605 if (!blk_remove_plug(q))
1606 return;
1607
22e2c507 1608 q->request_fn(q);
1da177e4
LT
1609}
1610EXPORT_SYMBOL(__generic_unplug_device);
1611
1612/**
1613 * generic_unplug_device - fire a request queue
165125e1 1614 * @q: The &struct request_queue in question
1da177e4
LT
1615 *
1616 * Description:
1617 * Linux uses plugging to build bigger requests queues before letting
1618 * the device have at them. If a queue is plugged, the I/O scheduler
1619 * is still adding and merging requests on the queue. Once the queue
1620 * gets unplugged, the request_fn defined for the queue is invoked and
1621 * transfers started.
1622 **/
165125e1 1623void generic_unplug_device(struct request_queue *q)
1da177e4
LT
1624{
1625 spin_lock_irq(q->queue_lock);
1626 __generic_unplug_device(q);
1627 spin_unlock_irq(q->queue_lock);
1628}
1629EXPORT_SYMBOL(generic_unplug_device);
1630
1631static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1632 struct page *page)
1633{
165125e1 1634 struct request_queue *q = bdi->unplug_io_data;
1da177e4
LT
1635
1636 /*
1637 * devices don't necessarily have an ->unplug_fn defined
1638 */
2056a782
JA
1639 if (q->unplug_fn) {
1640 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1641 q->rq.count[READ] + q->rq.count[WRITE]);
1642
1da177e4 1643 q->unplug_fn(q);
2056a782 1644 }
1da177e4
LT
1645}
1646
65f27f38 1647static void blk_unplug_work(struct work_struct *work)
1da177e4 1648{
165125e1
JA
1649 struct request_queue *q =
1650 container_of(work, struct request_queue, unplug_work);
1da177e4 1651
2056a782
JA
1652 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1653 q->rq.count[READ] + q->rq.count[WRITE]);
1654
1da177e4
LT
1655 q->unplug_fn(q);
1656}
1657
1658static void blk_unplug_timeout(unsigned long data)
1659{
165125e1 1660 struct request_queue *q = (struct request_queue *)data;
1da177e4 1661
2056a782
JA
1662 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1663 q->rq.count[READ] + q->rq.count[WRITE]);
1664
1da177e4
LT
1665 kblockd_schedule_work(&q->unplug_work);
1666}
1667
1668/**
1669 * blk_start_queue - restart a previously stopped queue
165125e1 1670 * @q: The &struct request_queue in question
1da177e4
LT
1671 *
1672 * Description:
1673 * blk_start_queue() will clear the stop flag on the queue, and call
1674 * the request_fn for the queue if it was in a stopped state when
1675 * entered. Also see blk_stop_queue(). Queue lock must be held.
1676 **/
165125e1 1677void blk_start_queue(struct request_queue *q)
1da177e4 1678{
a038e253
PBG
1679 WARN_ON(!irqs_disabled());
1680
1da177e4
LT
1681 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1682
1683 /*
1684 * one level of recursion is ok and is much faster than kicking
1685 * the unplug handling
1686 */
1687 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1688 q->request_fn(q);
1689 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1690 } else {
1691 blk_plug_device(q);
1692 kblockd_schedule_work(&q->unplug_work);
1693 }
1694}
1695
1696EXPORT_SYMBOL(blk_start_queue);
1697
1698/**
1699 * blk_stop_queue - stop a queue
165125e1 1700 * @q: The &struct request_queue in question
1da177e4
LT
1701 *
1702 * Description:
1703 * The Linux block layer assumes that a block driver will consume all
1704 * entries on the request queue when the request_fn strategy is called.
1705 * Often this will not happen, because of hardware limitations (queue
1706 * depth settings). If a device driver gets a 'queue full' response,
1707 * or if it simply chooses not to queue more I/O at one point, it can
1708 * call this function to prevent the request_fn from being called until
1709 * the driver has signalled it's ready to go again. This happens by calling
1710 * blk_start_queue() to restart queue operations. Queue lock must be held.
1711 **/
165125e1 1712void blk_stop_queue(struct request_queue *q)
1da177e4
LT
1713{
1714 blk_remove_plug(q);
1715 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1716}
1717EXPORT_SYMBOL(blk_stop_queue);
1718
1719/**
1720 * blk_sync_queue - cancel any pending callbacks on a queue
1721 * @q: the queue
1722 *
1723 * Description:
1724 * The block layer may perform asynchronous callback activity
1725 * on a queue, such as calling the unplug function after a timeout.
1726 * A block device may call blk_sync_queue to ensure that any
1727 * such activity is cancelled, thus allowing it to release resources
59c51591 1728 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
1729 * that its ->make_request_fn will not re-add plugging prior to calling
1730 * this function.
1731 *
1732 */
1733void blk_sync_queue(struct request_queue *q)
1734{
1735 del_timer_sync(&q->unplug_timer);
1da177e4
LT
1736}
1737EXPORT_SYMBOL(blk_sync_queue);
1738
1739/**
1740 * blk_run_queue - run a single device queue
1741 * @q: The queue to run
1742 */
1743void blk_run_queue(struct request_queue *q)
1744{
1745 unsigned long flags;
1746
1747 spin_lock_irqsave(q->queue_lock, flags);
1748 blk_remove_plug(q);
dac07ec1
JA
1749
1750 /*
1751 * Only recurse once to avoid overrunning the stack, let the unplug
1752 * handling reinvoke the handler shortly if we already got there.
1753 */
1754 if (!elv_queue_empty(q)) {
1755 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1756 q->request_fn(q);
1757 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1758 } else {
1759 blk_plug_device(q);
1760 kblockd_schedule_work(&q->unplug_work);
1761 }
1762 }
1763
1da177e4
LT
1764 spin_unlock_irqrestore(q->queue_lock, flags);
1765}
1766EXPORT_SYMBOL(blk_run_queue);
1767
1768/**
165125e1 1769 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
a580290c 1770 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1771 *
1772 * Description:
1773 * blk_cleanup_queue is the pair to blk_init_queue() or
1774 * blk_queue_make_request(). It should be called when a request queue is
1775 * being released; typically when a block device is being de-registered.
1776 * Currently, its primary task it to free all the &struct request
1777 * structures that were allocated to the queue and the queue itself.
1778 *
1779 * Caveat:
1780 * Hopefully the low level driver will have finished any
1781 * outstanding requests first...
1782 **/
483f4afc 1783static void blk_release_queue(struct kobject *kobj)
1da177e4 1784{
165125e1
JA
1785 struct request_queue *q =
1786 container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1787 struct request_list *rl = &q->rq;
1788
1da177e4
LT
1789 blk_sync_queue(q);
1790
1791 if (rl->rq_pool)
1792 mempool_destroy(rl->rq_pool);
1793
1794 if (q->queue_tags)
1795 __blk_queue_free_tags(q);
1796
6c5c9341 1797 blk_trace_shutdown(q);
2056a782 1798
1da177e4
LT
1799 kmem_cache_free(requestq_cachep, q);
1800}
1801
165125e1 1802void blk_put_queue(struct request_queue *q)
483f4afc
AV
1803{
1804 kobject_put(&q->kobj);
1805}
1806EXPORT_SYMBOL(blk_put_queue);
1807
165125e1 1808void blk_cleanup_queue(struct request_queue * q)
483f4afc
AV
1809{
1810 mutex_lock(&q->sysfs_lock);
1811 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1812 mutex_unlock(&q->sysfs_lock);
1813
1814 if (q->elevator)
1815 elevator_exit(q->elevator);
1816
1817 blk_put_queue(q);
1818}
1819
1da177e4
LT
1820EXPORT_SYMBOL(blk_cleanup_queue);
1821
165125e1 1822static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
1823{
1824 struct request_list *rl = &q->rq;
1825
1826 rl->count[READ] = rl->count[WRITE] = 0;
1827 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1828 rl->elvpriv = 0;
1da177e4
LT
1829 init_waitqueue_head(&rl->wait[READ]);
1830 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1831
1946089a
CL
1832 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1833 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1834
1835 if (!rl->rq_pool)
1836 return -ENOMEM;
1837
1838 return 0;
1839}
1840
165125e1 1841struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1842{
1946089a
CL
1843 return blk_alloc_queue_node(gfp_mask, -1);
1844}
1845EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1846
483f4afc
AV
1847static struct kobj_type queue_ktype;
1848
165125e1 1849struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 1850{
165125e1 1851 struct request_queue *q;
1946089a 1852
94f6030c
CL
1853 q = kmem_cache_alloc_node(requestq_cachep,
1854 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1855 if (!q)
1856 return NULL;
1857
1da177e4 1858 init_timer(&q->unplug_timer);
483f4afc 1859
19c38de8 1860 kobject_set_name(&q->kobj, "%s", "queue");
483f4afc
AV
1861 q->kobj.ktype = &queue_ktype;
1862 kobject_init(&q->kobj);
1da177e4
LT
1863
1864 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1865 q->backing_dev_info.unplug_io_data = q;
1866
483f4afc
AV
1867 mutex_init(&q->sysfs_lock);
1868
1da177e4
LT
1869 return q;
1870}
1946089a 1871EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1872
1873/**
1874 * blk_init_queue - prepare a request queue for use with a block device
1875 * @rfn: The function to be called to process requests that have been
1876 * placed on the queue.
1877 * @lock: Request queue spin lock
1878 *
1879 * Description:
1880 * If a block device wishes to use the standard request handling procedures,
1881 * which sorts requests and coalesces adjacent requests, then it must
1882 * call blk_init_queue(). The function @rfn will be called when there
1883 * are requests on the queue that need to be processed. If the device
1884 * supports plugging, then @rfn may not be called immediately when requests
1885 * are available on the queue, but may be called at some time later instead.
1886 * Plugged queues are generally unplugged when a buffer belonging to one
1887 * of the requests on the queue is needed, or due to memory pressure.
1888 *
1889 * @rfn is not required, or even expected, to remove all requests off the
1890 * queue, but only as many as it can handle at a time. If it does leave
1891 * requests on the queue, it is responsible for arranging that the requests
1892 * get dealt with eventually.
1893 *
1894 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1895 * request queue; this lock will be taken also from interrupt context, so irq
1896 * disabling is needed for it.
1da177e4
LT
1897 *
1898 * Function returns a pointer to the initialized request queue, or NULL if
1899 * it didn't succeed.
1900 *
1901 * Note:
1902 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1903 * when the block device is deactivated (such as at module unload).
1904 **/
1946089a 1905
165125e1 1906struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1907{
1946089a
CL
1908 return blk_init_queue_node(rfn, lock, -1);
1909}
1910EXPORT_SYMBOL(blk_init_queue);
1911
165125e1 1912struct request_queue *
1946089a
CL
1913blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1914{
165125e1 1915 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1916
1917 if (!q)
1918 return NULL;
1919
1946089a 1920 q->node = node_id;
8669aafd
AV
1921 if (blk_init_free_list(q)) {
1922 kmem_cache_free(requestq_cachep, q);
1923 return NULL;
1924 }
1da177e4 1925
152587de 1926 /*
1927 * if caller didn't supply a lock, they get per-queue locking with
1928 * our embedded lock
1929 */
1930 if (!lock) {
1931 spin_lock_init(&q->__queue_lock);
1932 lock = &q->__queue_lock;
1933 }
1934
1da177e4 1935 q->request_fn = rfn;
1da177e4
LT
1936 q->prep_rq_fn = NULL;
1937 q->unplug_fn = generic_unplug_device;
1938 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1939 q->queue_lock = lock;
1940
1941 blk_queue_segment_boundary(q, 0xffffffff);
1942
1943 blk_queue_make_request(q, __make_request);
1944 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1945
1946 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1947 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1948
44ec9542
AS
1949 q->sg_reserved_size = INT_MAX;
1950
1da177e4
LT
1951 /*
1952 * all done
1953 */
1954 if (!elevator_init(q, NULL)) {
1955 blk_queue_congestion_threshold(q);
1956 return q;
1957 }
1958
8669aafd 1959 blk_put_queue(q);
1da177e4
LT
1960 return NULL;
1961}
1946089a 1962EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 1963
165125e1 1964int blk_get_queue(struct request_queue *q)
1da177e4 1965{
fde6ad22 1966 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1967 kobject_get(&q->kobj);
1da177e4
LT
1968 return 0;
1969 }
1970
1971 return 1;
1972}
1973
1974EXPORT_SYMBOL(blk_get_queue);
1975
165125e1 1976static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 1977{
4aff5e23 1978 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 1979 elv_put_request(q, rq);
1da177e4
LT
1980 mempool_free(rq, q->rq.rq_pool);
1981}
1982
1ea25ecb 1983static struct request *
165125e1 1984blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
1985{
1986 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1987
1988 if (!rq)
1989 return NULL;
1990
1991 /*
4aff5e23 1992 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
1993 * see bio.h and blkdev.h
1994 */
49171e5c 1995 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 1996
cb98fc8b 1997 if (priv) {
cb78b285 1998 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
1999 mempool_free(rq, q->rq.rq_pool);
2000 return NULL;
2001 }
4aff5e23 2002 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 2003 }
1da177e4 2004
cb98fc8b 2005 return rq;
1da177e4
LT
2006}
2007
2008/*
2009 * ioc_batching returns true if the ioc is a valid batching request and
2010 * should be given priority access to a request.
2011 */
165125e1 2012static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2013{
2014 if (!ioc)
2015 return 0;
2016
2017 /*
2018 * Make sure the process is able to allocate at least 1 request
2019 * even if the batch times out, otherwise we could theoretically
2020 * lose wakeups.
2021 */
2022 return ioc->nr_batch_requests == q->nr_batching ||
2023 (ioc->nr_batch_requests > 0
2024 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2025}
2026
2027/*
2028 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2029 * will cause the process to be a "batcher" on all queues in the system. This
2030 * is the behaviour we want though - once it gets a wakeup it should be given
2031 * a nice run.
2032 */
165125e1 2033static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2034{
2035 if (!ioc || ioc_batching(q, ioc))
2036 return;
2037
2038 ioc->nr_batch_requests = q->nr_batching;
2039 ioc->last_waited = jiffies;
2040}
2041
165125e1 2042static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
2043{
2044 struct request_list *rl = &q->rq;
2045
2046 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 2047 blk_clear_queue_congested(q, rw);
1da177e4
LT
2048
2049 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2050 if (waitqueue_active(&rl->wait[rw]))
2051 wake_up(&rl->wait[rw]);
2052
2053 blk_clear_queue_full(q, rw);
2054 }
2055}
2056
2057/*
2058 * A request has just been released. Account for it, update the full and
2059 * congestion status, wake up any waiters. Called under q->queue_lock.
2060 */
165125e1 2061static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
2062{
2063 struct request_list *rl = &q->rq;
2064
2065 rl->count[rw]--;
cb98fc8b
TH
2066 if (priv)
2067 rl->elvpriv--;
1da177e4
LT
2068
2069 __freed_request(q, rw);
2070
2071 if (unlikely(rl->starved[rw ^ 1]))
2072 __freed_request(q, rw ^ 1);
1da177e4
LT
2073}
2074
2075#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2076/*
d6344532
NP
2077 * Get a free request, queue_lock must be held.
2078 * Returns NULL on failure, with queue_lock held.
2079 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2080 */
165125e1 2081static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 2082 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
2083{
2084 struct request *rq = NULL;
2085 struct request_list *rl = &q->rq;
88ee5ef1 2086 struct io_context *ioc = NULL;
7749a8d4 2087 const int rw = rw_flags & 0x01;
88ee5ef1
JA
2088 int may_queue, priv;
2089
7749a8d4 2090 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
2091 if (may_queue == ELV_MQUEUE_NO)
2092 goto rq_starved;
2093
2094 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2095 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 2096 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
2097 /*
2098 * The queue will fill after this allocation, so set
2099 * it as full, and mark this process as "batching".
2100 * This process will be allowed to complete a batch of
2101 * requests, others will be blocked.
2102 */
2103 if (!blk_queue_full(q, rw)) {
2104 ioc_set_batching(q, ioc);
2105 blk_set_queue_full(q, rw);
2106 } else {
2107 if (may_queue != ELV_MQUEUE_MUST
2108 && !ioc_batching(q, ioc)) {
2109 /*
2110 * The queue is full and the allocating
2111 * process is not a "batcher", and not
2112 * exempted by the IO scheduler
2113 */
2114 goto out;
2115 }
2116 }
1da177e4 2117 }
79e2de4b 2118 blk_set_queue_congested(q, rw);
1da177e4
LT
2119 }
2120
082cf69e
JA
2121 /*
2122 * Only allow batching queuers to allocate up to 50% over the defined
2123 * limit of requests, otherwise we could have thousands of requests
2124 * allocated with any setting of ->nr_requests
2125 */
fd782a4a 2126 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2127 goto out;
fd782a4a 2128
1da177e4
LT
2129 rl->count[rw]++;
2130 rl->starved[rw] = 0;
cb98fc8b 2131
64521d1a 2132 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2133 if (priv)
2134 rl->elvpriv++;
2135
1da177e4
LT
2136 spin_unlock_irq(q->queue_lock);
2137
7749a8d4 2138 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 2139 if (unlikely(!rq)) {
1da177e4
LT
2140 /*
2141 * Allocation failed presumably due to memory. Undo anything
2142 * we might have messed up.
2143 *
2144 * Allocating task should really be put onto the front of the
2145 * wait queue, but this is pretty rare.
2146 */
2147 spin_lock_irq(q->queue_lock);
cb98fc8b 2148 freed_request(q, rw, priv);
1da177e4
LT
2149
2150 /*
2151 * in the very unlikely event that allocation failed and no
2152 * requests for this direction was pending, mark us starved
2153 * so that freeing of a request in the other direction will
2154 * notice us. another possible fix would be to split the
2155 * rq mempool into READ and WRITE
2156 */
2157rq_starved:
2158 if (unlikely(rl->count[rw] == 0))
2159 rl->starved[rw] = 1;
2160
1da177e4
LT
2161 goto out;
2162 }
2163
88ee5ef1
JA
2164 /*
2165 * ioc may be NULL here, and ioc_batching will be false. That's
2166 * OK, if the queue is under the request limit then requests need
2167 * not count toward the nr_batch_requests limit. There will always
2168 * be some limit enforced by BLK_BATCH_TIME.
2169 */
1da177e4
LT
2170 if (ioc_batching(q, ioc))
2171 ioc->nr_batch_requests--;
2172
2173 rq_init(q, rq);
2056a782
JA
2174
2175 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2176out:
1da177e4
LT
2177 return rq;
2178}
2179
2180/*
2181 * No available requests for this queue, unplug the device and wait for some
2182 * requests to become available.
d6344532
NP
2183 *
2184 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2185 */
165125e1 2186static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 2187 struct bio *bio)
1da177e4 2188{
7749a8d4 2189 const int rw = rw_flags & 0x01;
1da177e4
LT
2190 struct request *rq;
2191
7749a8d4 2192 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
2193 while (!rq) {
2194 DEFINE_WAIT(wait);
1da177e4
LT
2195 struct request_list *rl = &q->rq;
2196
2197 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2198 TASK_UNINTERRUPTIBLE);
2199
7749a8d4 2200 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1da177e4
LT
2201
2202 if (!rq) {
2203 struct io_context *ioc;
2204
2056a782
JA
2205 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2206
d6344532
NP
2207 __generic_unplug_device(q);
2208 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2209 io_schedule();
2210
2211 /*
2212 * After sleeping, we become a "batching" process and
2213 * will be able to allocate at least one request, and
2214 * up to a big batch of them for a small period time.
2215 * See ioc_batching, ioc_set_batching
2216 */
b5deef90 2217 ioc = current_io_context(GFP_NOIO, q->node);
1da177e4 2218 ioc_set_batching(q, ioc);
d6344532
NP
2219
2220 spin_lock_irq(q->queue_lock);
1da177e4
LT
2221 }
2222 finish_wait(&rl->wait[rw], &wait);
450991bc 2223 }
1da177e4
LT
2224
2225 return rq;
2226}
2227
165125e1 2228struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2229{
2230 struct request *rq;
2231
2232 BUG_ON(rw != READ && rw != WRITE);
2233
d6344532
NP
2234 spin_lock_irq(q->queue_lock);
2235 if (gfp_mask & __GFP_WAIT) {
22e2c507 2236 rq = get_request_wait(q, rw, NULL);
d6344532 2237 } else {
22e2c507 2238 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2239 if (!rq)
2240 spin_unlock_irq(q->queue_lock);
2241 }
2242 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2243
2244 return rq;
2245}
1da177e4
LT
2246EXPORT_SYMBOL(blk_get_request);
2247
dc72ef4a
JA
2248/**
2249 * blk_start_queueing - initiate dispatch of requests to device
2250 * @q: request queue to kick into gear
2251 *
2252 * This is basically a helper to remove the need to know whether a queue
2253 * is plugged or not if someone just wants to initiate dispatch of requests
2254 * for this queue.
2255 *
2256 * The queue lock must be held with interrupts disabled.
2257 */
165125e1 2258void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
2259{
2260 if (!blk_queue_plugged(q))
2261 q->request_fn(q);
2262 else
2263 __generic_unplug_device(q);
2264}
2265EXPORT_SYMBOL(blk_start_queueing);
2266
1da177e4
LT
2267/**
2268 * blk_requeue_request - put a request back on queue
2269 * @q: request queue where request should be inserted
2270 * @rq: request to be inserted
2271 *
2272 * Description:
2273 * Drivers often keep queueing requests until the hardware cannot accept
2274 * more, when that condition happens we need to put the request back
2275 * on the queue. Must be called with queue lock held.
2276 */
165125e1 2277void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 2278{
2056a782
JA
2279 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2280
1da177e4
LT
2281 if (blk_rq_tagged(rq))
2282 blk_queue_end_tag(q, rq);
2283
2284 elv_requeue_request(q, rq);
2285}
2286
2287EXPORT_SYMBOL(blk_requeue_request);
2288
2289/**
2290 * blk_insert_request - insert a special request in to a request queue
2291 * @q: request queue where request should be inserted
2292 * @rq: request to be inserted
2293 * @at_head: insert request at head or tail of queue
2294 * @data: private data
1da177e4
LT
2295 *
2296 * Description:
2297 * Many block devices need to execute commands asynchronously, so they don't
2298 * block the whole kernel from preemption during request execution. This is
2299 * accomplished normally by inserting aritficial requests tagged as
2300 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2301 * scheduled for actual execution by the request queue.
2302 *
2303 * We have the option of inserting the head or the tail of the queue.
2304 * Typically we use the tail for new ioctls and so forth. We use the head
2305 * of the queue for things like a QUEUE_FULL message from a device, or a
2306 * host that is unable to accept a particular command.
2307 */
165125e1 2308void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 2309 int at_head, void *data)
1da177e4 2310{
867d1191 2311 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2312 unsigned long flags;
2313
2314 /*
2315 * tell I/O scheduler that this isn't a regular read/write (ie it
2316 * must not attempt merges on this) and that it acts as a soft
2317 * barrier
2318 */
4aff5e23
JA
2319 rq->cmd_type = REQ_TYPE_SPECIAL;
2320 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
2321
2322 rq->special = data;
2323
2324 spin_lock_irqsave(q->queue_lock, flags);
2325
2326 /*
2327 * If command is tagged, release the tag
2328 */
867d1191
TH
2329 if (blk_rq_tagged(rq))
2330 blk_queue_end_tag(q, rq);
1da177e4 2331
867d1191
TH
2332 drive_stat_acct(rq, rq->nr_sectors, 1);
2333 __elv_add_request(q, rq, where, 0);
dc72ef4a 2334 blk_start_queueing(q);
1da177e4
LT
2335 spin_unlock_irqrestore(q->queue_lock, flags);
2336}
2337
2338EXPORT_SYMBOL(blk_insert_request);
2339
0e75f906
MC
2340static int __blk_rq_unmap_user(struct bio *bio)
2341{
2342 int ret = 0;
2343
2344 if (bio) {
2345 if (bio_flagged(bio, BIO_USER_MAPPED))
2346 bio_unmap_user(bio);
2347 else
2348 ret = bio_uncopy_user(bio);
2349 }
2350
2351 return ret;
2352}
2353
3001ca77
N
2354int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2355 struct bio *bio)
2356{
2357 if (!rq->bio)
2358 blk_rq_bio_prep(q, rq, bio);
2359 else if (!ll_back_merge_fn(q, rq, bio))
2360 return -EINVAL;
2361 else {
2362 rq->biotail->bi_next = bio;
2363 rq->biotail = bio;
2364
2365 rq->data_len += bio->bi_size;
2366 }
2367 return 0;
2368}
2369EXPORT_SYMBOL(blk_rq_append_bio);
2370
165125e1 2371static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
0e75f906
MC
2372 void __user *ubuf, unsigned int len)
2373{
2374 unsigned long uaddr;
2375 struct bio *bio, *orig_bio;
2376 int reading, ret;
2377
2378 reading = rq_data_dir(rq) == READ;
2379
2380 /*
2381 * if alignment requirement is satisfied, map in user pages for
2382 * direct dma. else, set up kernel bounce buffers
2383 */
2384 uaddr = (unsigned long) ubuf;
2385 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2386 bio = bio_map_user(q, NULL, uaddr, len, reading);
2387 else
2388 bio = bio_copy_user(q, uaddr, len, reading);
2389
2985259b 2390 if (IS_ERR(bio))
0e75f906 2391 return PTR_ERR(bio);
0e75f906
MC
2392
2393 orig_bio = bio;
2394 blk_queue_bounce(q, &bio);
2985259b 2395
0e75f906
MC
2396 /*
2397 * We link the bounce buffer in and could have to traverse it
2398 * later so we have to get a ref to prevent it from being freed
2399 */
2400 bio_get(bio);
2401
3001ca77
N
2402 ret = blk_rq_append_bio(q, rq, bio);
2403 if (!ret)
2404 return bio->bi_size;
0e75f906 2405
0e75f906 2406 /* if it was boucned we must call the end io function */
6712ecf8 2407 bio_endio(bio, 0);
0e75f906
MC
2408 __blk_rq_unmap_user(orig_bio);
2409 bio_put(bio);
2410 return ret;
2411}
2412
1da177e4
LT
2413/**
2414 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2415 * @q: request queue where request should be inserted
73747aed 2416 * @rq: request structure to fill
1da177e4
LT
2417 * @ubuf: the user buffer
2418 * @len: length of user data
2419 *
2420 * Description:
2421 * Data will be mapped directly for zero copy io, if possible. Otherwise
2422 * a kernel bounce buffer is used.
2423 *
2424 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2425 * still in process context.
2426 *
2427 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2428 * before being submitted to the device, as pages mapped may be out of
2429 * reach. It's the callers responsibility to make sure this happens. The
2430 * original bio must be passed back in to blk_rq_unmap_user() for proper
2431 * unmapping.
2432 */
165125e1
JA
2433int blk_rq_map_user(struct request_queue *q, struct request *rq,
2434 void __user *ubuf, unsigned long len)
1da177e4 2435{
0e75f906 2436 unsigned long bytes_read = 0;
8e5cfc45 2437 struct bio *bio = NULL;
0e75f906 2438 int ret;
1da177e4 2439
defd94b7 2440 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2441 return -EINVAL;
2442 if (!len || !ubuf)
2443 return -EINVAL;
1da177e4 2444
0e75f906
MC
2445 while (bytes_read != len) {
2446 unsigned long map_len, end, start;
1da177e4 2447
0e75f906
MC
2448 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2449 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2450 >> PAGE_SHIFT;
2451 start = (unsigned long)ubuf >> PAGE_SHIFT;
1da177e4 2452
0e75f906
MC
2453 /*
2454 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2455 * pages. If this happens we just lower the requested
2456 * mapping len by a page so that we can fit
2457 */
2458 if (end - start > BIO_MAX_PAGES)
2459 map_len -= PAGE_SIZE;
1da177e4 2460
0e75f906
MC
2461 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2462 if (ret < 0)
2463 goto unmap_rq;
8e5cfc45
JA
2464 if (!bio)
2465 bio = rq->bio;
0e75f906
MC
2466 bytes_read += ret;
2467 ubuf += ret;
1da177e4
LT
2468 }
2469
0e75f906
MC
2470 rq->buffer = rq->data = NULL;
2471 return 0;
2472unmap_rq:
8e5cfc45 2473 blk_rq_unmap_user(bio);
0e75f906 2474 return ret;
1da177e4
LT
2475}
2476
2477EXPORT_SYMBOL(blk_rq_map_user);
2478
f1970baf
JB
2479/**
2480 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2481 * @q: request queue where request should be inserted
2482 * @rq: request to map data to
2483 * @iov: pointer to the iovec
2484 * @iov_count: number of elements in the iovec
af9997e4 2485 * @len: I/O byte count
f1970baf
JB
2486 *
2487 * Description:
2488 * Data will be mapped directly for zero copy io, if possible. Otherwise
2489 * a kernel bounce buffer is used.
2490 *
2491 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2492 * still in process context.
2493 *
2494 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2495 * before being submitted to the device, as pages mapped may be out of
2496 * reach. It's the callers responsibility to make sure this happens. The
2497 * original bio must be passed back in to blk_rq_unmap_user() for proper
2498 * unmapping.
2499 */
165125e1 2500int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
0e75f906 2501 struct sg_iovec *iov, int iov_count, unsigned int len)
f1970baf
JB
2502{
2503 struct bio *bio;
2504
2505 if (!iov || iov_count <= 0)
2506 return -EINVAL;
2507
2508 /* we don't allow misaligned data like bio_map_user() does. If the
2509 * user is using sg, they're expected to know the alignment constraints
2510 * and respect them accordingly */
2511 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2512 if (IS_ERR(bio))
2513 return PTR_ERR(bio);
2514
0e75f906 2515 if (bio->bi_size != len) {
6712ecf8 2516 bio_endio(bio, 0);
0e75f906
MC
2517 bio_unmap_user(bio);
2518 return -EINVAL;
2519 }
2520
2521 bio_get(bio);
f1970baf
JB
2522 blk_rq_bio_prep(q, rq, bio);
2523 rq->buffer = rq->data = NULL;
f1970baf
JB
2524 return 0;
2525}
2526
2527EXPORT_SYMBOL(blk_rq_map_user_iov);
2528
1da177e4
LT
2529/**
2530 * blk_rq_unmap_user - unmap a request with user data
8e5cfc45 2531 * @bio: start of bio list
1da177e4
LT
2532 *
2533 * Description:
8e5cfc45
JA
2534 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2535 * supply the original rq->bio from the blk_rq_map_user() return, since
2536 * the io completion may have changed rq->bio.
1da177e4 2537 */
8e5cfc45 2538int blk_rq_unmap_user(struct bio *bio)
1da177e4 2539{
8e5cfc45 2540 struct bio *mapped_bio;
48785bb9 2541 int ret = 0, ret2;
1da177e4 2542
8e5cfc45
JA
2543 while (bio) {
2544 mapped_bio = bio;
2545 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
0e75f906 2546 mapped_bio = bio->bi_private;
1da177e4 2547
48785bb9
JA
2548 ret2 = __blk_rq_unmap_user(mapped_bio);
2549 if (ret2 && !ret)
2550 ret = ret2;
2551
8e5cfc45
JA
2552 mapped_bio = bio;
2553 bio = bio->bi_next;
2554 bio_put(mapped_bio);
0e75f906 2555 }
48785bb9
JA
2556
2557 return ret;
1da177e4
LT
2558}
2559
2560EXPORT_SYMBOL(blk_rq_unmap_user);
2561
df46b9a4
MC
2562/**
2563 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2564 * @q: request queue where request should be inserted
73747aed 2565 * @rq: request to fill
df46b9a4
MC
2566 * @kbuf: the kernel buffer
2567 * @len: length of user data
73747aed 2568 * @gfp_mask: memory allocation flags
df46b9a4 2569 */
165125e1 2570int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
8267e268 2571 unsigned int len, gfp_t gfp_mask)
df46b9a4 2572{
df46b9a4
MC
2573 struct bio *bio;
2574
defd94b7 2575 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2576 return -EINVAL;
2577 if (!len || !kbuf)
2578 return -EINVAL;
df46b9a4
MC
2579
2580 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2581 if (IS_ERR(bio))
2582 return PTR_ERR(bio);
df46b9a4 2583
dd1cab95
JA
2584 if (rq_data_dir(rq) == WRITE)
2585 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2586
dd1cab95 2587 blk_rq_bio_prep(q, rq, bio);
821de3a2 2588 blk_queue_bounce(q, &rq->bio);
dd1cab95 2589 rq->buffer = rq->data = NULL;
dd1cab95 2590 return 0;
df46b9a4
MC
2591}
2592
2593EXPORT_SYMBOL(blk_rq_map_kern);
2594
73747aed
CH
2595/**
2596 * blk_execute_rq_nowait - insert a request into queue for execution
2597 * @q: queue to insert the request in
2598 * @bd_disk: matching gendisk
2599 * @rq: request to insert
2600 * @at_head: insert request at head or tail of queue
2601 * @done: I/O completion handler
2602 *
2603 * Description:
2604 * Insert a fully prepared request at the back of the io scheduler queue
2605 * for execution. Don't wait for completion.
2606 */
165125e1 2607void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
f1970baf 2608 struct request *rq, int at_head,
8ffdc655 2609 rq_end_io_fn *done)
f1970baf
JB
2610{
2611 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2612
2613 rq->rq_disk = bd_disk;
4aff5e23 2614 rq->cmd_flags |= REQ_NOMERGE;
f1970baf 2615 rq->end_io = done;
4c5d0bbd
AM
2616 WARN_ON(irqs_disabled());
2617 spin_lock_irq(q->queue_lock);
2618 __elv_add_request(q, rq, where, 1);
2619 __generic_unplug_device(q);
2620 spin_unlock_irq(q->queue_lock);
f1970baf 2621}
6e39b69e
MC
2622EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2623
1da177e4
LT
2624/**
2625 * blk_execute_rq - insert a request into queue for execution
2626 * @q: queue to insert the request in
2627 * @bd_disk: matching gendisk
2628 * @rq: request to insert
994ca9a1 2629 * @at_head: insert request at head or tail of queue
1da177e4
LT
2630 *
2631 * Description:
2632 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2633 * for execution and wait for completion.
1da177e4 2634 */
165125e1 2635int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
994ca9a1 2636 struct request *rq, int at_head)
1da177e4 2637{
60be6b9a 2638 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2639 char sense[SCSI_SENSE_BUFFERSIZE];
2640 int err = 0;
2641
1da177e4
LT
2642 /*
2643 * we need an extra reference to the request, so we can look at
2644 * it after io completion
2645 */
2646 rq->ref_count++;
2647
2648 if (!rq->sense) {
2649 memset(sense, 0, sizeof(sense));
2650 rq->sense = sense;
2651 rq->sense_len = 0;
2652 }
2653
c00895ab 2654 rq->end_io_data = &wait;
994ca9a1 2655 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4 2656 wait_for_completion(&wait);
1da177e4
LT
2657
2658 if (rq->errors)
2659 err = -EIO;
2660
2661 return err;
2662}
2663
2664EXPORT_SYMBOL(blk_execute_rq);
2665
2666/**
2667 * blkdev_issue_flush - queue a flush
2668 * @bdev: blockdev to issue flush for
2669 * @error_sector: error sector
2670 *
2671 * Description:
2672 * Issue a flush for the block device in question. Caller can supply
2673 * room for storing the error offset in case of a flush error, if they
2674 * wish to. Caller must run wait_for_completion() on its own.
2675 */
2676int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2677{
165125e1 2678 struct request_queue *q;
1da177e4
LT
2679
2680 if (bdev->bd_disk == NULL)
2681 return -ENXIO;
2682
2683 q = bdev_get_queue(bdev);
2684 if (!q)
2685 return -ENXIO;
2686 if (!q->issue_flush_fn)
2687 return -EOPNOTSUPP;
2688
2689 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2690}
2691
2692EXPORT_SYMBOL(blkdev_issue_flush);
2693
93d17d3d 2694static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1da177e4
LT
2695{
2696 int rw = rq_data_dir(rq);
2697
2698 if (!blk_fs_request(rq) || !rq->rq_disk)
2699 return;
2700
d72d904a 2701 if (!new_io) {
a362357b 2702 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2703 } else {
1da177e4
LT
2704 disk_round_stats(rq->rq_disk);
2705 rq->rq_disk->in_flight++;
2706 }
2707}
2708
2709/*
2710 * add-request adds a request to the linked list.
2711 * queue lock is held and interrupts disabled, as we muck with the
2712 * request queue list.
2713 */
165125e1 2714static inline void add_request(struct request_queue * q, struct request * req)
1da177e4
LT
2715{
2716 drive_stat_acct(req, req->nr_sectors, 1);
2717
1da177e4
LT
2718 /*
2719 * elevator indicated where it wants this request to be
2720 * inserted at elevator_merge time
2721 */
2722 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2723}
2724
2725/*
2726 * disk_round_stats() - Round off the performance stats on a struct
2727 * disk_stats.
2728 *
2729 * The average IO queue length and utilisation statistics are maintained
2730 * by observing the current state of the queue length and the amount of
2731 * time it has been in this state for.
2732 *
2733 * Normally, that accounting is done on IO completion, but that can result
2734 * in more than a second's worth of IO being accounted for within any one
2735 * second, leading to >100% utilisation. To deal with that, we call this
2736 * function to do a round-off before returning the results when reading
2737 * /proc/diskstats. This accounts immediately for all queue usage up to
2738 * the current jiffies and restarts the counters again.
2739 */
2740void disk_round_stats(struct gendisk *disk)
2741{
2742 unsigned long now = jiffies;
2743
b2982649
CK
2744 if (now == disk->stamp)
2745 return;
1da177e4 2746
20e5c81f
CK
2747 if (disk->in_flight) {
2748 __disk_stat_add(disk, time_in_queue,
2749 disk->in_flight * (now - disk->stamp));
2750 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2751 }
1da177e4 2752 disk->stamp = now;
1da177e4
LT
2753}
2754
3eaf840e
JNN
2755EXPORT_SYMBOL_GPL(disk_round_stats);
2756
1da177e4
LT
2757/*
2758 * queue lock must be held
2759 */
165125e1 2760void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 2761{
1da177e4
LT
2762 if (unlikely(!q))
2763 return;
2764 if (unlikely(--req->ref_count))
2765 return;
2766
8922e16c
TH
2767 elv_completed_request(q, req);
2768
1da177e4
LT
2769 /*
2770 * Request may not have originated from ll_rw_blk. if not,
2771 * it didn't come out of our reserved rq pools
2772 */
49171e5c 2773 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 2774 int rw = rq_data_dir(req);
4aff5e23 2775 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 2776
1da177e4 2777 BUG_ON(!list_empty(&req->queuelist));
9817064b 2778 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
2779
2780 blk_free_request(q, req);
cb98fc8b 2781 freed_request(q, rw, priv);
1da177e4
LT
2782 }
2783}
2784
6e39b69e
MC
2785EXPORT_SYMBOL_GPL(__blk_put_request);
2786
1da177e4
LT
2787void blk_put_request(struct request *req)
2788{
8922e16c 2789 unsigned long flags;
165125e1 2790 struct request_queue *q = req->q;
8922e16c 2791
1da177e4 2792 /*
8922e16c
TH
2793 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2794 * following if (q) test.
1da177e4 2795 */
8922e16c 2796 if (q) {
1da177e4
LT
2797 spin_lock_irqsave(q->queue_lock, flags);
2798 __blk_put_request(q, req);
2799 spin_unlock_irqrestore(q->queue_lock, flags);
2800 }
2801}
2802
2803EXPORT_SYMBOL(blk_put_request);
2804
2805/**
2806 * blk_end_sync_rq - executes a completion event on a request
2807 * @rq: request to complete
fddfdeaf 2808 * @error: end io status of the request
1da177e4 2809 */
8ffdc655 2810void blk_end_sync_rq(struct request *rq, int error)
1da177e4 2811{
c00895ab 2812 struct completion *waiting = rq->end_io_data;
1da177e4 2813
c00895ab 2814 rq->end_io_data = NULL;
1da177e4
LT
2815 __blk_put_request(rq->q, rq);
2816
2817 /*
2818 * complete last, if this is a stack request the process (and thus
2819 * the rq pointer) could be invalid right after this complete()
2820 */
2821 complete(waiting);
2822}
2823EXPORT_SYMBOL(blk_end_sync_rq);
2824
1da177e4
LT
2825/*
2826 * Has to be called with the request spinlock acquired
2827 */
165125e1 2828static int attempt_merge(struct request_queue *q, struct request *req,
1da177e4
LT
2829 struct request *next)
2830{
2831 if (!rq_mergeable(req) || !rq_mergeable(next))
2832 return 0;
2833
2834 /*
d6e05edc 2835 * not contiguous
1da177e4
LT
2836 */
2837 if (req->sector + req->nr_sectors != next->sector)
2838 return 0;
2839
2840 if (rq_data_dir(req) != rq_data_dir(next)
2841 || req->rq_disk != next->rq_disk
c00895ab 2842 || next->special)
1da177e4
LT
2843 return 0;
2844
2845 /*
2846 * If we are allowed to merge, then append bio list
2847 * from next to rq and release next. merge_requests_fn
2848 * will have updated segment counts, update sector
2849 * counts here.
2850 */
1aa4f24f 2851 if (!ll_merge_requests_fn(q, req, next))
1da177e4
LT
2852 return 0;
2853
2854 /*
2855 * At this point we have either done a back merge
2856 * or front merge. We need the smaller start_time of
2857 * the merged requests to be the current request
2858 * for accounting purposes.
2859 */
2860 if (time_after(req->start_time, next->start_time))
2861 req->start_time = next->start_time;
2862
2863 req->biotail->bi_next = next->bio;
2864 req->biotail = next->biotail;
2865
2866 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2867
2868 elv_merge_requests(q, req, next);
2869
2870 if (req->rq_disk) {
2871 disk_round_stats(req->rq_disk);
2872 req->rq_disk->in_flight--;
2873 }
2874
22e2c507
JA
2875 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2876
1da177e4
LT
2877 __blk_put_request(q, next);
2878 return 1;
2879}
2880
165125e1
JA
2881static inline int attempt_back_merge(struct request_queue *q,
2882 struct request *rq)
1da177e4
LT
2883{
2884 struct request *next = elv_latter_request(q, rq);
2885
2886 if (next)
2887 return attempt_merge(q, rq, next);
2888
2889 return 0;
2890}
2891
165125e1
JA
2892static inline int attempt_front_merge(struct request_queue *q,
2893 struct request *rq)
1da177e4
LT
2894{
2895 struct request *prev = elv_former_request(q, rq);
2896
2897 if (prev)
2898 return attempt_merge(q, prev, rq);
2899
2900 return 0;
2901}
2902
52d9e675
TH
2903static void init_request_from_bio(struct request *req, struct bio *bio)
2904{
4aff5e23 2905 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
2906
2907 /*
2908 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2909 */
2910 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 2911 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
2912
2913 /*
2914 * REQ_BARRIER implies no merging, but lets make it explicit
2915 */
2916 if (unlikely(bio_barrier(bio)))
4aff5e23 2917 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 2918
b31dc66a 2919 if (bio_sync(bio))
4aff5e23 2920 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
2921 if (bio_rw_meta(bio))
2922 req->cmd_flags |= REQ_RW_META;
b31dc66a 2923
52d9e675
TH
2924 req->errors = 0;
2925 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 2926 req->ioprio = bio_prio(bio);
52d9e675 2927 req->start_time = jiffies;
bc1c56fd 2928 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
2929}
2930
165125e1 2931static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 2932{
450991bc 2933 struct request *req;
51da90fc
JA
2934 int el_ret, nr_sectors, barrier, err;
2935 const unsigned short prio = bio_prio(bio);
2936 const int sync = bio_sync(bio);
7749a8d4 2937 int rw_flags;
1da177e4 2938
1da177e4 2939 nr_sectors = bio_sectors(bio);
1da177e4
LT
2940
2941 /*
2942 * low level driver can indicate that it wants pages above a
2943 * certain limit bounced to low memory (ie for highmem, or even
2944 * ISA dma in theory)
2945 */
2946 blk_queue_bounce(q, &bio);
2947
1da177e4 2948 barrier = bio_barrier(bio);
797e7dbb 2949 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2950 err = -EOPNOTSUPP;
2951 goto end_io;
2952 }
2953
1da177e4
LT
2954 spin_lock_irq(q->queue_lock);
2955
450991bc 2956 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
2957 goto get_rq;
2958
2959 el_ret = elv_merge(q, &req, bio);
2960 switch (el_ret) {
2961 case ELEVATOR_BACK_MERGE:
2962 BUG_ON(!rq_mergeable(req));
2963
1aa4f24f 2964 if (!ll_back_merge_fn(q, req, bio))
1da177e4
LT
2965 break;
2966
2056a782
JA
2967 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2968
1da177e4
LT
2969 req->biotail->bi_next = bio;
2970 req->biotail = bio;
2971 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2972 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2973 drive_stat_acct(req, nr_sectors, 0);
2974 if (!attempt_back_merge(q, req))
2e662b65 2975 elv_merged_request(q, req, el_ret);
1da177e4
LT
2976 goto out;
2977
2978 case ELEVATOR_FRONT_MERGE:
2979 BUG_ON(!rq_mergeable(req));
2980
1aa4f24f 2981 if (!ll_front_merge_fn(q, req, bio))
1da177e4
LT
2982 break;
2983
2056a782
JA
2984 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2985
1da177e4
LT
2986 bio->bi_next = req->bio;
2987 req->bio = bio;
2988
2989 /*
2990 * may not be valid. if the low level driver said
2991 * it didn't need a bounce buffer then it better
2992 * not touch req->buffer either...
2993 */
2994 req->buffer = bio_data(bio);
51da90fc
JA
2995 req->current_nr_sectors = bio_cur_sectors(bio);
2996 req->hard_cur_sectors = req->current_nr_sectors;
2997 req->sector = req->hard_sector = bio->bi_sector;
1da177e4 2998 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2999 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
3000 drive_stat_acct(req, nr_sectors, 0);
3001 if (!attempt_front_merge(q, req))
2e662b65 3002 elv_merged_request(q, req, el_ret);
1da177e4
LT
3003 goto out;
3004
450991bc 3005 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 3006 default:
450991bc 3007 ;
1da177e4
LT
3008 }
3009
450991bc 3010get_rq:
7749a8d4
JA
3011 /*
3012 * This sync check and mask will be re-done in init_request_from_bio(),
3013 * but we need to set it earlier to expose the sync flag to the
3014 * rq allocator and io schedulers.
3015 */
3016 rw_flags = bio_data_dir(bio);
3017 if (sync)
3018 rw_flags |= REQ_RW_SYNC;
3019
1da177e4 3020 /*
450991bc 3021 * Grab a free request. This is might sleep but can not fail.
d6344532 3022 * Returns with the queue unlocked.
450991bc 3023 */
7749a8d4 3024 req = get_request_wait(q, rw_flags, bio);
d6344532 3025
450991bc
NP
3026 /*
3027 * After dropping the lock and possibly sleeping here, our request
3028 * may now be mergeable after it had proven unmergeable (above).
3029 * We don't worry about that case for efficiency. It won't happen
3030 * often, and the elevators are able to handle it.
1da177e4 3031 */
52d9e675 3032 init_request_from_bio(req, bio);
1da177e4 3033
450991bc
NP
3034 spin_lock_irq(q->queue_lock);
3035 if (elv_queue_empty(q))
3036 blk_plug_device(q);
1da177e4
LT
3037 add_request(q, req);
3038out:
4a534f93 3039 if (sync)
1da177e4
LT
3040 __generic_unplug_device(q);
3041
3042 spin_unlock_irq(q->queue_lock);
3043 return 0;
3044
3045end_io:
6712ecf8 3046 bio_endio(bio, err);
1da177e4
LT
3047 return 0;
3048}
3049
3050/*
3051 * If bio->bi_dev is a partition, remap the location
3052 */
3053static inline void blk_partition_remap(struct bio *bio)
3054{
3055 struct block_device *bdev = bio->bi_bdev;
3056
3057 if (bdev != bdev->bd_contains) {
3058 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3059 const int rw = bio_data_dir(bio);
3060
3061 p->sectors[rw] += bio_sectors(bio);
3062 p->ios[rw]++;
1da177e4 3063
1da177e4
LT
3064 bio->bi_sector += p->start_sect;
3065 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
3066
3067 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3068 bdev->bd_dev, bio->bi_sector,
3069 bio->bi_sector - p->start_sect);
1da177e4
LT
3070 }
3071}
3072
1da177e4
LT
3073static void handle_bad_sector(struct bio *bio)
3074{
3075 char b[BDEVNAME_SIZE];
3076
3077 printk(KERN_INFO "attempt to access beyond end of device\n");
3078 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3079 bdevname(bio->bi_bdev, b),
3080 bio->bi_rw,
3081 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3082 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3083
3084 set_bit(BIO_EOF, &bio->bi_flags);
3085}
3086
c17bb495
AM
3087#ifdef CONFIG_FAIL_MAKE_REQUEST
3088
3089static DECLARE_FAULT_ATTR(fail_make_request);
3090
3091static int __init setup_fail_make_request(char *str)
3092{
3093 return setup_fault_attr(&fail_make_request, str);
3094}
3095__setup("fail_make_request=", setup_fail_make_request);
3096
3097static int should_fail_request(struct bio *bio)
3098{
3099 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3100 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3101 return should_fail(&fail_make_request, bio->bi_size);
3102
3103 return 0;
3104}
3105
3106static int __init fail_make_request_debugfs(void)
3107{
3108 return init_fault_attr_dentries(&fail_make_request,
3109 "fail_make_request");
3110}
3111
3112late_initcall(fail_make_request_debugfs);
3113
3114#else /* CONFIG_FAIL_MAKE_REQUEST */
3115
3116static inline int should_fail_request(struct bio *bio)
3117{
3118 return 0;
3119}
3120
3121#endif /* CONFIG_FAIL_MAKE_REQUEST */
3122
1da177e4
LT
3123/**
3124 * generic_make_request: hand a buffer to its device driver for I/O
3125 * @bio: The bio describing the location in memory and on the device.
3126 *
3127 * generic_make_request() is used to make I/O requests of block
3128 * devices. It is passed a &struct bio, which describes the I/O that needs
3129 * to be done.
3130 *
3131 * generic_make_request() does not return any status. The
3132 * success/failure status of the request, along with notification of
3133 * completion, is delivered asynchronously through the bio->bi_end_io
3134 * function described (one day) else where.
3135 *
3136 * The caller of generic_make_request must make sure that bi_io_vec
3137 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3138 * set to describe the device address, and the
3139 * bi_end_io and optionally bi_private are set to describe how
3140 * completion notification should be signaled.
3141 *
3142 * generic_make_request and the drivers it calls may use bi_next if this
3143 * bio happens to be merged with someone else, and may change bi_dev and
3144 * bi_sector for remaps as it sees fit. So the values of these fields
3145 * should NOT be depended on after the call to generic_make_request.
3146 */
d89d8796 3147static inline void __generic_make_request(struct bio *bio)
1da177e4 3148{
165125e1 3149 struct request_queue *q;
1da177e4 3150 sector_t maxsector;
5ddfe969 3151 sector_t old_sector;
1da177e4 3152 int ret, nr_sectors = bio_sectors(bio);
2056a782 3153 dev_t old_dev;
1da177e4
LT
3154
3155 might_sleep();
3156 /* Test device or partition size, when known. */
3157 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3158 if (maxsector) {
3159 sector_t sector = bio->bi_sector;
3160
3161 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3162 /*
3163 * This may well happen - the kernel calls bread()
3164 * without checking the size of the device, e.g., when
3165 * mounting a device.
3166 */
3167 handle_bad_sector(bio);
3168 goto end_io;
3169 }
3170 }
3171
3172 /*
3173 * Resolve the mapping until finished. (drivers are
3174 * still free to implement/resolve their own stacking
3175 * by explicitly returning 0)
3176 *
3177 * NOTE: we don't repeat the blk_size check for each new device.
3178 * Stacking drivers are expected to know what they are doing.
3179 */
5ddfe969 3180 old_sector = -1;
2056a782 3181 old_dev = 0;
1da177e4
LT
3182 do {
3183 char b[BDEVNAME_SIZE];
3184
3185 q = bdev_get_queue(bio->bi_bdev);
3186 if (!q) {
3187 printk(KERN_ERR
3188 "generic_make_request: Trying to access "
3189 "nonexistent block-device %s (%Lu)\n",
3190 bdevname(bio->bi_bdev, b),
3191 (long long) bio->bi_sector);
3192end_io:
6712ecf8 3193 bio_endio(bio, -EIO);
1da177e4
LT
3194 break;
3195 }
3196
4fa253f3 3197 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1da177e4
LT
3198 printk("bio too big device %s (%u > %u)\n",
3199 bdevname(bio->bi_bdev, b),
3200 bio_sectors(bio),
3201 q->max_hw_sectors);
3202 goto end_io;
3203 }
3204
fde6ad22 3205 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3206 goto end_io;
3207
c17bb495
AM
3208 if (should_fail_request(bio))
3209 goto end_io;
3210
1da177e4
LT
3211 /*
3212 * If this device has partitions, remap block n
3213 * of partition p to block n+start(p) of the disk.
3214 */
3215 blk_partition_remap(bio);
3216
5ddfe969 3217 if (old_sector != -1)
4fa253f3 3218 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 3219 old_sector);
2056a782
JA
3220
3221 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3222
5ddfe969 3223 old_sector = bio->bi_sector;
2056a782
JA
3224 old_dev = bio->bi_bdev->bd_dev;
3225
5ddfe969
N
3226 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3227 if (maxsector) {
3228 sector_t sector = bio->bi_sector;
3229
df66b855
AM
3230 if (maxsector < nr_sectors ||
3231 maxsector - nr_sectors < sector) {
5ddfe969 3232 /*
df66b855
AM
3233 * This may well happen - partitions are not
3234 * checked to make sure they are within the size
3235 * of the whole device.
5ddfe969
N
3236 */
3237 handle_bad_sector(bio);
3238 goto end_io;
3239 }
3240 }
3241
1da177e4
LT
3242 ret = q->make_request_fn(q, bio);
3243 } while (ret);
3244}
3245
d89d8796
NB
3246/*
3247 * We only want one ->make_request_fn to be active at a time,
3248 * else stack usage with stacked devices could be a problem.
3249 * So use current->bio_{list,tail} to keep a list of requests
3250 * submited by a make_request_fn function.
3251 * current->bio_tail is also used as a flag to say if
3252 * generic_make_request is currently active in this task or not.
3253 * If it is NULL, then no make_request is active. If it is non-NULL,
3254 * then a make_request is active, and new requests should be added
3255 * at the tail
3256 */
3257void generic_make_request(struct bio *bio)
3258{
3259 if (current->bio_tail) {
3260 /* make_request is active */
3261 *(current->bio_tail) = bio;
3262 bio->bi_next = NULL;
3263 current->bio_tail = &bio->bi_next;
3264 return;
3265 }
3266 /* following loop may be a bit non-obvious, and so deserves some
3267 * explanation.
3268 * Before entering the loop, bio->bi_next is NULL (as all callers
3269 * ensure that) so we have a list with a single bio.
3270 * We pretend that we have just taken it off a longer list, so
3271 * we assign bio_list to the next (which is NULL) and bio_tail
3272 * to &bio_list, thus initialising the bio_list of new bios to be
3273 * added. __generic_make_request may indeed add some more bios
3274 * through a recursive call to generic_make_request. If it
3275 * did, we find a non-NULL value in bio_list and re-enter the loop
3276 * from the top. In this case we really did just take the bio
3277 * of the top of the list (no pretending) and so fixup bio_list and
3278 * bio_tail or bi_next, and call into __generic_make_request again.
3279 *
3280 * The loop was structured like this to make only one call to
3281 * __generic_make_request (which is important as it is large and
3282 * inlined) and to keep the structure simple.
3283 */
3284 BUG_ON(bio->bi_next);
3285 do {
3286 current->bio_list = bio->bi_next;
3287 if (bio->bi_next == NULL)
3288 current->bio_tail = &current->bio_list;
3289 else
3290 bio->bi_next = NULL;
3291 __generic_make_request(bio);
3292 bio = current->bio_list;
3293 } while (bio);
3294 current->bio_tail = NULL; /* deactivate */
3295}
3296
1da177e4
LT
3297EXPORT_SYMBOL(generic_make_request);
3298
3299/**
3300 * submit_bio: submit a bio to the block device layer for I/O
3301 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3302 * @bio: The &struct bio which describes the I/O
3303 *
3304 * submit_bio() is very similar in purpose to generic_make_request(), and
3305 * uses that function to do most of the work. Both are fairly rough
3306 * interfaces, @bio must be presetup and ready for I/O.
3307 *
3308 */
3309void submit_bio(int rw, struct bio *bio)
3310{
3311 int count = bio_sectors(bio);
3312
3313 BIO_BUG_ON(!bio->bi_size);
3314 BIO_BUG_ON(!bio->bi_io_vec);
22e2c507 3315 bio->bi_rw |= rw;
faccbd4b 3316 if (rw & WRITE) {
f8891e5e 3317 count_vm_events(PGPGOUT, count);
faccbd4b
AM
3318 } else {
3319 task_io_account_read(bio->bi_size);
f8891e5e 3320 count_vm_events(PGPGIN, count);
faccbd4b 3321 }
1da177e4
LT
3322
3323 if (unlikely(block_dump)) {
3324 char b[BDEVNAME_SIZE];
3325 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3326 current->comm, current->pid,
3327 (rw & WRITE) ? "WRITE" : "READ",
3328 (unsigned long long)bio->bi_sector,
3329 bdevname(bio->bi_bdev,b));
3330 }
3331
3332 generic_make_request(bio);
3333}
3334
3335EXPORT_SYMBOL(submit_bio);
3336
93d17d3d 3337static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3338{
3339 if (blk_fs_request(rq)) {
3340 rq->hard_sector += nsect;
3341 rq->hard_nr_sectors -= nsect;
3342
3343 /*
3344 * Move the I/O submission pointers ahead if required.
3345 */
3346 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3347 (rq->sector <= rq->hard_sector)) {
3348 rq->sector = rq->hard_sector;
3349 rq->nr_sectors = rq->hard_nr_sectors;
3350 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3351 rq->current_nr_sectors = rq->hard_cur_sectors;
3352 rq->buffer = bio_data(rq->bio);
3353 }
3354
3355 /*
3356 * if total number of sectors is less than the first segment
3357 * size, something has gone terribly wrong
3358 */
3359 if (rq->nr_sectors < rq->current_nr_sectors) {
3360 printk("blk: request botched\n");
3361 rq->nr_sectors = rq->current_nr_sectors;
3362 }
3363 }
3364}
3365
3366static int __end_that_request_first(struct request *req, int uptodate,
3367 int nr_bytes)
3368{
3369 int total_bytes, bio_nbytes, error, next_idx = 0;
3370 struct bio *bio;
3371
2056a782
JA
3372 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3373
1da177e4
LT
3374 /*
3375 * extend uptodate bool to allow < 0 value to be direct io error
3376 */
3377 error = 0;
3378 if (end_io_error(uptodate))
3379 error = !uptodate ? -EIO : uptodate;
3380
3381 /*
3382 * for a REQ_BLOCK_PC request, we want to carry any eventual
3383 * sense key with us all the way through
3384 */
3385 if (!blk_pc_request(req))
3386 req->errors = 0;
3387
3388 if (!uptodate) {
4aff5e23 3389 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1da177e4
LT
3390 printk("end_request: I/O error, dev %s, sector %llu\n",
3391 req->rq_disk ? req->rq_disk->disk_name : "?",
3392 (unsigned long long)req->sector);
3393 }
3394
d72d904a 3395 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3396 const int rw = rq_data_dir(req);
3397
53e86061 3398 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3399 }
3400
1da177e4
LT
3401 total_bytes = bio_nbytes = 0;
3402 while ((bio = req->bio) != NULL) {
3403 int nbytes;
3404
3405 if (nr_bytes >= bio->bi_size) {
3406 req->bio = bio->bi_next;
3407 nbytes = bio->bi_size;
5bb23a68 3408 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
3409 next_idx = 0;
3410 bio_nbytes = 0;
3411 } else {
3412 int idx = bio->bi_idx + next_idx;
3413
3414 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3415 blk_dump_rq_flags(req, "__end_that");
3416 printk("%s: bio idx %d >= vcnt %d\n",
3417 __FUNCTION__,
3418 bio->bi_idx, bio->bi_vcnt);
3419 break;
3420 }
3421
3422 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3423 BIO_BUG_ON(nbytes > bio->bi_size);
3424
3425 /*
3426 * not a complete bvec done
3427 */
3428 if (unlikely(nbytes > nr_bytes)) {
3429 bio_nbytes += nr_bytes;
3430 total_bytes += nr_bytes;
3431 break;
3432 }
3433
3434 /*
3435 * advance to the next vector
3436 */
3437 next_idx++;
3438 bio_nbytes += nbytes;
3439 }
3440
3441 total_bytes += nbytes;
3442 nr_bytes -= nbytes;
3443
3444 if ((bio = req->bio)) {
3445 /*
3446 * end more in this run, or just return 'not-done'
3447 */
3448 if (unlikely(nr_bytes <= 0))
3449 break;
3450 }
3451 }
3452
3453 /*
3454 * completely done
3455 */
3456 if (!req->bio)
3457 return 0;
3458
3459 /*
3460 * if the request wasn't completed, update state
3461 */
3462 if (bio_nbytes) {
5bb23a68 3463 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
3464 bio->bi_idx += next_idx;
3465 bio_iovec(bio)->bv_offset += nr_bytes;
3466 bio_iovec(bio)->bv_len -= nr_bytes;
3467 }
3468
3469 blk_recalc_rq_sectors(req, total_bytes >> 9);
3470 blk_recalc_rq_segments(req);
3471 return 1;
3472}
3473
3474/**
3475 * end_that_request_first - end I/O on a request
3476 * @req: the request being processed
3477 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3478 * @nr_sectors: number of sectors to end I/O on
3479 *
3480 * Description:
3481 * Ends I/O on a number of sectors attached to @req, and sets it up
3482 * for the next range of segments (if any) in the cluster.
3483 *
3484 * Return:
3485 * 0 - we are done with this request, call end_that_request_last()
3486 * 1 - still buffers pending for this request
3487 **/
3488int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3489{
3490 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3491}
3492
3493EXPORT_SYMBOL(end_that_request_first);
3494
3495/**
3496 * end_that_request_chunk - end I/O on a request
3497 * @req: the request being processed
3498 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3499 * @nr_bytes: number of bytes to complete
3500 *
3501 * Description:
3502 * Ends I/O on a number of bytes attached to @req, and sets it up
3503 * for the next range of segments (if any). Like end_that_request_first(),
3504 * but deals with bytes instead of sectors.
3505 *
3506 * Return:
3507 * 0 - we are done with this request, call end_that_request_last()
3508 * 1 - still buffers pending for this request
3509 **/
3510int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3511{
3512 return __end_that_request_first(req, uptodate, nr_bytes);
3513}
3514
3515EXPORT_SYMBOL(end_that_request_chunk);
3516
ff856bad
JA
3517/*
3518 * splice the completion data to a local structure and hand off to
3519 * process_completion_queue() to complete the requests
3520 */
3521static void blk_done_softirq(struct softirq_action *h)
3522{
626ab0e6 3523 struct list_head *cpu_list, local_list;
ff856bad
JA
3524
3525 local_irq_disable();
3526 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3527 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3528 local_irq_enable();
3529
3530 while (!list_empty(&local_list)) {
3531 struct request *rq = list_entry(local_list.next, struct request, donelist);
3532
3533 list_del_init(&rq->donelist);
3534 rq->q->softirq_done_fn(rq);
3535 }
3536}
3537
db47d475 3538static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
ff856bad
JA
3539 void *hcpu)
3540{
3541 /*
3542 * If a CPU goes away, splice its entries to the current CPU
3543 * and trigger a run of the softirq
3544 */
8bb78442 3545 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
3546 int cpu = (unsigned long) hcpu;
3547
3548 local_irq_disable();
3549 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3550 &__get_cpu_var(blk_cpu_done));
3551 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3552 local_irq_enable();
3553 }
3554
3555 return NOTIFY_OK;
3556}
3557
3558
db47d475 3559static struct notifier_block blk_cpu_notifier __cpuinitdata = {
ff856bad
JA
3560 .notifier_call = blk_cpu_notify,
3561};
3562
ff856bad
JA
3563/**
3564 * blk_complete_request - end I/O on a request
3565 * @req: the request being processed
3566 *
3567 * Description:
3568 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3569 * unless the driver actually implements this in its completion callback
4fa253f3 3570 * through requeueing. The actual completion happens out-of-order,
ff856bad
JA
3571 * through a softirq handler. The user must have registered a completion
3572 * callback through blk_queue_softirq_done().
3573 **/
3574
3575void blk_complete_request(struct request *req)
3576{
3577 struct list_head *cpu_list;
3578 unsigned long flags;
3579
3580 BUG_ON(!req->q->softirq_done_fn);
3581
3582 local_irq_save(flags);
3583
3584 cpu_list = &__get_cpu_var(blk_cpu_done);
3585 list_add_tail(&req->donelist, cpu_list);
3586 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3587
3588 local_irq_restore(flags);
3589}
3590
3591EXPORT_SYMBOL(blk_complete_request);
3592
1da177e4
LT
3593/*
3594 * queue lock must be held
3595 */
8ffdc655 3596void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3597{
3598 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3599 int error;
3600
3601 /*
3602 * extend uptodate bool to allow < 0 value to be direct io error
3603 */
3604 error = 0;
3605 if (end_io_error(uptodate))
3606 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3607
3608 if (unlikely(laptop_mode) && blk_fs_request(req))
3609 laptop_io_completion();
3610
fd0ff8aa
JA
3611 /*
3612 * Account IO completion. bar_rq isn't accounted as a normal
3613 * IO on queueing nor completion. Accounting the containing
3614 * request is enough.
3615 */
3616 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3617 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3618 const int rw = rq_data_dir(req);
3619
3620 __disk_stat_inc(disk, ios[rw]);
3621 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3622 disk_round_stats(disk);
3623 disk->in_flight--;
3624 }
3625 if (req->end_io)
8ffdc655 3626 req->end_io(req, error);
1da177e4
LT
3627 else
3628 __blk_put_request(req->q, req);
3629}
3630
3631EXPORT_SYMBOL(end_that_request_last);
3632
a0cd1285
JA
3633static inline void __end_request(struct request *rq, int uptodate,
3634 unsigned int nr_bytes, int dequeue)
1da177e4 3635{
a0cd1285
JA
3636 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
3637 if (dequeue)
3638 blkdev_dequeue_request(rq);
3639 add_disk_randomness(rq->rq_disk);
3640 end_that_request_last(rq, uptodate);
1da177e4
LT
3641 }
3642}
3643
a0cd1285
JA
3644static unsigned int rq_byte_size(struct request *rq)
3645{
3646 if (blk_fs_request(rq))
3647 return rq->hard_nr_sectors << 9;
3648
3649 return rq->data_len;
3650}
3651
3652/**
3653 * end_queued_request - end all I/O on a queued request
3654 * @rq: the request being processed
3655 * @uptodate: error value or 0/1 uptodate flag
3656 *
3657 * Description:
3658 * Ends all I/O on a request, and removes it from the block layer queues.
3659 * Not suitable for normal IO completion, unless the driver still has
3660 * the request attached to the block layer.
3661 *
3662 **/
3663void end_queued_request(struct request *rq, int uptodate)
3664{
3665 __end_request(rq, uptodate, rq_byte_size(rq), 1);
3666}
3667EXPORT_SYMBOL(end_queued_request);
3668
3669/**
3670 * end_dequeued_request - end all I/O on a dequeued request
3671 * @rq: the request being processed
3672 * @uptodate: error value or 0/1 uptodate flag
3673 *
3674 * Description:
3675 * Ends all I/O on a request. The request must already have been
3676 * dequeued using blkdev_dequeue_request(), as is normally the case
3677 * for most drivers.
3678 *
3679 **/
3680void end_dequeued_request(struct request *rq, int uptodate)
3681{
3682 __end_request(rq, uptodate, rq_byte_size(rq), 0);
3683}
3684EXPORT_SYMBOL(end_dequeued_request);
3685
3686
3687/**
3688 * end_request - end I/O on the current segment of the request
3689 * @rq: the request being processed
3690 * @uptodate: error value or 0/1 uptodate flag
3691 *
3692 * Description:
3693 * Ends I/O on the current segment of a request. If that is the only
3694 * remaining segment, the request is also completed and freed.
3695 *
3696 * This is a remnant of how older block drivers handled IO completions.
3697 * Modern drivers typically end IO on the full request in one go, unless
3698 * they have a residual value to account for. For that case this function
3699 * isn't really useful, unless the residual just happens to be the
3700 * full current segment. In other words, don't use this function in new
3701 * code. Either use end_request_completely(), or the
3702 * end_that_request_chunk() (along with end_that_request_last()) for
3703 * partial completions.
3704 *
3705 **/
3706void end_request(struct request *req, int uptodate)
3707{
3708 __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
3709}
1da177e4
LT
3710EXPORT_SYMBOL(end_request);
3711
66846572
N
3712static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3713 struct bio *bio)
1da177e4 3714{
4aff5e23
JA
3715 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3716 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
3717
3718 rq->nr_phys_segments = bio_phys_segments(q, bio);
3719 rq->nr_hw_segments = bio_hw_segments(q, bio);
3720 rq->current_nr_sectors = bio_cur_sectors(bio);
3721 rq->hard_cur_sectors = rq->current_nr_sectors;
3722 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3723 rq->buffer = bio_data(bio);
0e75f906 3724 rq->data_len = bio->bi_size;
1da177e4
LT
3725
3726 rq->bio = rq->biotail = bio;
1da177e4 3727
66846572
N
3728 if (bio->bi_bdev)
3729 rq->rq_disk = bio->bi_bdev->bd_disk;
3730}
1da177e4
LT
3731
3732int kblockd_schedule_work(struct work_struct *work)
3733{
3734 return queue_work(kblockd_workqueue, work);
3735}
3736
3737EXPORT_SYMBOL(kblockd_schedule_work);
3738
19a75d83 3739void kblockd_flush_work(struct work_struct *work)
1da177e4 3740{
28e53bdd 3741 cancel_work_sync(work);
1da177e4 3742}
19a75d83 3743EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
3744
3745int __init blk_dev_init(void)
3746{
ff856bad
JA
3747 int i;
3748
1da177e4
LT
3749 kblockd_workqueue = create_workqueue("kblockd");
3750 if (!kblockd_workqueue)
3751 panic("Failed to create kblockd\n");
3752
3753 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3754 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4
LT
3755
3756 requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3757 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4
LT
3758
3759 iocontext_cachep = kmem_cache_create("blkdev_ioc",
20c2df83 3760 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
1da177e4 3761
0a945022 3762 for_each_possible_cpu(i)
ff856bad
JA
3763 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3764
3765 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3766 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3767
f772b3d9
VT
3768 blk_max_low_pfn = max_low_pfn - 1;
3769 blk_max_pfn = max_pfn - 1;
1da177e4
LT
3770
3771 return 0;
3772}
3773
3774/*
3775 * IO Context helper functions
3776 */
3777void put_io_context(struct io_context *ioc)
3778{
3779 if (ioc == NULL)
3780 return;
3781
3782 BUG_ON(atomic_read(&ioc->refcount) == 0);
3783
3784 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3785 struct cfq_io_context *cic;
3786
334e94de 3787 rcu_read_lock();
1da177e4
LT
3788 if (ioc->aic && ioc->aic->dtor)
3789 ioc->aic->dtor(ioc->aic);
e2d74ac0 3790 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3791 struct rb_node *n = rb_first(&ioc->cic_root);
3792
3793 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3794 cic->dtor(ioc);
3795 }
334e94de 3796 rcu_read_unlock();
1da177e4
LT
3797
3798 kmem_cache_free(iocontext_cachep, ioc);
3799 }
3800}
3801EXPORT_SYMBOL(put_io_context);
3802
3803/* Called by the exitting task */
3804void exit_io_context(void)
3805{
1da177e4 3806 struct io_context *ioc;
e2d74ac0 3807 struct cfq_io_context *cic;
1da177e4 3808
22e2c507 3809 task_lock(current);
1da177e4
LT
3810 ioc = current->io_context;
3811 current->io_context = NULL;
22e2c507 3812 task_unlock(current);
1da177e4 3813
25034d7a 3814 ioc->task = NULL;
1da177e4
LT
3815 if (ioc->aic && ioc->aic->exit)
3816 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3817 if (ioc->cic_root.rb_node != NULL) {
3818 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3819 cic->exit(ioc);
3820 }
25034d7a 3821
1da177e4
LT
3822 put_io_context(ioc);
3823}
3824
3825/*
3826 * If the current task has no IO context then create one and initialise it.
fb3cc432 3827 * Otherwise, return its existing IO context.
1da177e4 3828 *
fb3cc432
NP
3829 * This returned IO context doesn't have a specifically elevated refcount,
3830 * but since the current task itself holds a reference, the context can be
3831 * used in general code, so long as it stays within `current` context.
1da177e4 3832 */
b5deef90 3833static struct io_context *current_io_context(gfp_t gfp_flags, int node)
1da177e4
LT
3834{
3835 struct task_struct *tsk = current;
1da177e4
LT
3836 struct io_context *ret;
3837
1da177e4 3838 ret = tsk->io_context;
fb3cc432
NP
3839 if (likely(ret))
3840 return ret;
1da177e4 3841
b5deef90 3842 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
1da177e4
LT
3843 if (ret) {
3844 atomic_set(&ret->refcount, 1);
22e2c507 3845 ret->task = current;
fc46379d 3846 ret->ioprio_changed = 0;
1da177e4
LT
3847 ret->last_waited = jiffies; /* doesn't matter... */
3848 ret->nr_batch_requests = 0; /* because this is 0 */
3849 ret->aic = NULL;
e2d74ac0 3850 ret->cic_root.rb_node = NULL;
4e521c27 3851 ret->ioc_data = NULL;
9f83e45e
ON
3852 /* make sure set_task_ioprio() sees the settings above */
3853 smp_wmb();
fb3cc432
NP
3854 tsk->io_context = ret;
3855 }
1da177e4 3856
fb3cc432
NP
3857 return ret;
3858}
1da177e4 3859
fb3cc432
NP
3860/*
3861 * If the current task has no IO context then create one and initialise it.
3862 * If it does have a context, take a ref on it.
3863 *
3864 * This is always called in the context of the task which submitted the I/O.
3865 */
b5deef90 3866struct io_context *get_io_context(gfp_t gfp_flags, int node)
fb3cc432
NP
3867{
3868 struct io_context *ret;
b5deef90 3869 ret = current_io_context(gfp_flags, node);
fb3cc432 3870 if (likely(ret))
1da177e4 3871 atomic_inc(&ret->refcount);
1da177e4
LT
3872 return ret;
3873}
3874EXPORT_SYMBOL(get_io_context);
3875
3876void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3877{
3878 struct io_context *src = *psrc;
3879 struct io_context *dst = *pdst;
3880
3881 if (src) {
3882 BUG_ON(atomic_read(&src->refcount) == 0);
3883 atomic_inc(&src->refcount);
3884 put_io_context(dst);
3885 *pdst = src;
3886 }
3887}
3888EXPORT_SYMBOL(copy_io_context);
3889
3890void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3891{
3892 struct io_context *temp;
3893 temp = *ioc1;
3894 *ioc1 = *ioc2;
3895 *ioc2 = temp;
3896}
3897EXPORT_SYMBOL(swap_io_context);
3898
3899/*
3900 * sysfs parts below
3901 */
3902struct queue_sysfs_entry {
3903 struct attribute attr;
3904 ssize_t (*show)(struct request_queue *, char *);
3905 ssize_t (*store)(struct request_queue *, const char *, size_t);
3906};
3907
3908static ssize_t
3909queue_var_show(unsigned int var, char *page)
3910{
3911 return sprintf(page, "%d\n", var);
3912}
3913
3914static ssize_t
3915queue_var_store(unsigned long *var, const char *page, size_t count)
3916{
3917 char *p = (char *) page;
3918
3919 *var = simple_strtoul(p, &p, 10);
3920 return count;
3921}
3922
3923static ssize_t queue_requests_show(struct request_queue *q, char *page)
3924{
3925 return queue_var_show(q->nr_requests, (page));
3926}
3927
3928static ssize_t
3929queue_requests_store(struct request_queue *q, const char *page, size_t count)
3930{
3931 struct request_list *rl = &q->rq;
c981ff9f
AV
3932 unsigned long nr;
3933 int ret = queue_var_store(&nr, page, count);
3934 if (nr < BLKDEV_MIN_RQ)
3935 nr = BLKDEV_MIN_RQ;
1da177e4 3936
c981ff9f
AV
3937 spin_lock_irq(q->queue_lock);
3938 q->nr_requests = nr;
1da177e4
LT
3939 blk_queue_congestion_threshold(q);
3940
3941 if (rl->count[READ] >= queue_congestion_on_threshold(q))
79e2de4b 3942 blk_set_queue_congested(q, READ);
1da177e4 3943 else if (rl->count[READ] < queue_congestion_off_threshold(q))
79e2de4b 3944 blk_clear_queue_congested(q, READ);
1da177e4
LT
3945
3946 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
79e2de4b 3947 blk_set_queue_congested(q, WRITE);
1da177e4 3948 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
79e2de4b 3949 blk_clear_queue_congested(q, WRITE);
1da177e4
LT
3950
3951 if (rl->count[READ] >= q->nr_requests) {
3952 blk_set_queue_full(q, READ);
3953 } else if (rl->count[READ]+1 <= q->nr_requests) {
3954 blk_clear_queue_full(q, READ);
3955 wake_up(&rl->wait[READ]);
3956 }
3957
3958 if (rl->count[WRITE] >= q->nr_requests) {
3959 blk_set_queue_full(q, WRITE);
3960 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3961 blk_clear_queue_full(q, WRITE);
3962 wake_up(&rl->wait[WRITE]);
3963 }
c981ff9f 3964 spin_unlock_irq(q->queue_lock);
1da177e4
LT
3965 return ret;
3966}
3967
3968static ssize_t queue_ra_show(struct request_queue *q, char *page)
3969{
3970 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3971
3972 return queue_var_show(ra_kb, (page));
3973}
3974
3975static ssize_t
3976queue_ra_store(struct request_queue *q, const char *page, size_t count)
3977{
3978 unsigned long ra_kb;
3979 ssize_t ret = queue_var_store(&ra_kb, page, count);
3980
3981 spin_lock_irq(q->queue_lock);
1da177e4
LT
3982 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3983 spin_unlock_irq(q->queue_lock);
3984
3985 return ret;
3986}
3987
3988static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3989{
3990 int max_sectors_kb = q->max_sectors >> 1;
3991
3992 return queue_var_show(max_sectors_kb, (page));
3993}
3994
3995static ssize_t
3996queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3997{
3998 unsigned long max_sectors_kb,
3999 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4000 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4001 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
4002 int ra_kb;
4003
4004 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4005 return -EINVAL;
4006 /*
4007 * Take the queue lock to update the readahead and max_sectors
4008 * values synchronously:
4009 */
4010 spin_lock_irq(q->queue_lock);
4011 /*
4012 * Trim readahead window as well, if necessary:
4013 */
4014 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4015 if (ra_kb > max_sectors_kb)
4016 q->backing_dev_info.ra_pages =
4017 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
4018
4019 q->max_sectors = max_sectors_kb << 1;
4020 spin_unlock_irq(q->queue_lock);
4021
4022 return ret;
4023}
4024
4025static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4026{
4027 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4028
4029 return queue_var_show(max_hw_sectors_kb, (page));
4030}
4031
4032
4033static struct queue_sysfs_entry queue_requests_entry = {
4034 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4035 .show = queue_requests_show,
4036 .store = queue_requests_store,
4037};
4038
4039static struct queue_sysfs_entry queue_ra_entry = {
4040 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4041 .show = queue_ra_show,
4042 .store = queue_ra_store,
4043};
4044
4045static struct queue_sysfs_entry queue_max_sectors_entry = {
4046 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4047 .show = queue_max_sectors_show,
4048 .store = queue_max_sectors_store,
4049};
4050
4051static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4052 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4053 .show = queue_max_hw_sectors_show,
4054};
4055
4056static struct queue_sysfs_entry queue_iosched_entry = {
4057 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4058 .show = elv_iosched_show,
4059 .store = elv_iosched_store,
4060};
4061
4062static struct attribute *default_attrs[] = {
4063 &queue_requests_entry.attr,
4064 &queue_ra_entry.attr,
4065 &queue_max_hw_sectors_entry.attr,
4066 &queue_max_sectors_entry.attr,
4067 &queue_iosched_entry.attr,
4068 NULL,
4069};
4070
4071#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4072
4073static ssize_t
4074queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4075{
4076 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1
JA
4077 struct request_queue *q =
4078 container_of(kobj, struct request_queue, kobj);
483f4afc 4079 ssize_t res;
1da177e4 4080
1da177e4 4081 if (!entry->show)
6c1852a0 4082 return -EIO;
483f4afc
AV
4083 mutex_lock(&q->sysfs_lock);
4084 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4085 mutex_unlock(&q->sysfs_lock);
4086 return -ENOENT;
4087 }
4088 res = entry->show(q, page);
4089 mutex_unlock(&q->sysfs_lock);
4090 return res;
1da177e4
LT
4091}
4092
4093static ssize_t
4094queue_attr_store(struct kobject *kobj, struct attribute *attr,
4095 const char *page, size_t length)
4096{
4097 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1 4098 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
483f4afc
AV
4099
4100 ssize_t res;
1da177e4 4101
1da177e4 4102 if (!entry->store)
6c1852a0 4103 return -EIO;
483f4afc
AV
4104 mutex_lock(&q->sysfs_lock);
4105 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4106 mutex_unlock(&q->sysfs_lock);
4107 return -ENOENT;
4108 }
4109 res = entry->store(q, page, length);
4110 mutex_unlock(&q->sysfs_lock);
4111 return res;
1da177e4
LT
4112}
4113
4114static struct sysfs_ops queue_sysfs_ops = {
4115 .show = queue_attr_show,
4116 .store = queue_attr_store,
4117};
4118
93d17d3d 4119static struct kobj_type queue_ktype = {
1da177e4
LT
4120 .sysfs_ops = &queue_sysfs_ops,
4121 .default_attrs = default_attrs,
483f4afc 4122 .release = blk_release_queue,
1da177e4
LT
4123};
4124
4125int blk_register_queue(struct gendisk *disk)
4126{
4127 int ret;
4128
165125e1 4129 struct request_queue *q = disk->queue;
1da177e4
LT
4130
4131 if (!q || !q->request_fn)
4132 return -ENXIO;
4133
4134 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 4135
483f4afc 4136 ret = kobject_add(&q->kobj);
1da177e4
LT
4137 if (ret < 0)
4138 return ret;
4139
483f4afc
AV
4140 kobject_uevent(&q->kobj, KOBJ_ADD);
4141
1da177e4
LT
4142 ret = elv_register_queue(q);
4143 if (ret) {
483f4afc
AV
4144 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4145 kobject_del(&q->kobj);
1da177e4
LT
4146 return ret;
4147 }
4148
4149 return 0;
4150}
4151
4152void blk_unregister_queue(struct gendisk *disk)
4153{
165125e1 4154 struct request_queue *q = disk->queue;
1da177e4
LT
4155
4156 if (q && q->request_fn) {
4157 elv_unregister_queue(q);
4158
483f4afc
AV
4159 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4160 kobject_del(&q->kobj);
1da177e4
LT
4161 kobject_put(&disk->kobj);
4162 }
4163}