block: add request update interface
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
2056a782 29#include <linux/blktrace_api.h>
c17bb495 30#include <linux/fault-inject.h>
1da177e4 31
8324aa91
JA
32#include "blk.h"
33
165125e1 34static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
35
36/*
37 * For the allocated request tables
38 */
5ece6c52 39static struct kmem_cache *request_cachep;
1da177e4
LT
40
41/*
42 * For queue allocation
43 */
6728cb0e 44struct kmem_cache *blk_requestq_cachep;
1da177e4 45
1da177e4
LT
46/*
47 * Controlling structure to kblockd
48 */
ff856bad 49static struct workqueue_struct *kblockd_workqueue;
1da177e4 50
26b8256e
JA
51static void drive_stat_acct(struct request *rq, int new_io)
52{
28f13702 53 struct hd_struct *part;
26b8256e 54 int rw = rq_data_dir(rq);
c9959059 55 int cpu;
26b8256e
JA
56
57 if (!blk_fs_request(rq) || !rq->rq_disk)
58 return;
59
074a7aca 60 cpu = part_stat_lock();
e71bf0d0 61 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
c9959059 62
28f13702 63 if (!new_io)
074a7aca 64 part_stat_inc(cpu, part, merges[rw]);
28f13702 65 else {
074a7aca
TH
66 part_round_stats(cpu, part);
67 part_inc_in_flight(part);
26b8256e 68 }
e71bf0d0 69
074a7aca 70 part_stat_unlock();
26b8256e
JA
71}
72
8324aa91 73void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
74{
75 int nr;
76
77 nr = q->nr_requests - (q->nr_requests / 8) + 1;
78 if (nr > q->nr_requests)
79 nr = q->nr_requests;
80 q->nr_congestion_on = nr;
81
82 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
83 if (nr < 1)
84 nr = 1;
85 q->nr_congestion_off = nr;
86}
87
1da177e4
LT
88/**
89 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
90 * @bdev: device
91 *
92 * Locates the passed device's request queue and returns the address of its
93 * backing_dev_info
94 *
95 * Will return NULL if the request queue cannot be located.
96 */
97struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
98{
99 struct backing_dev_info *ret = NULL;
165125e1 100 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
101
102 if (q)
103 ret = &q->backing_dev_info;
104 return ret;
105}
1da177e4
LT
106EXPORT_SYMBOL(blk_get_backing_dev_info);
107
2a4aa30c 108void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 109{
1afb20f3
FT
110 memset(rq, 0, sizeof(*rq));
111
1da177e4 112 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 113 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 114 rq->cpu = -1;
63a71386
JA
115 rq->q = q;
116 rq->sector = rq->hard_sector = (sector_t) -1;
2e662b65
JA
117 INIT_HLIST_NODE(&rq->hash);
118 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 119 rq->cmd = rq->__cmd;
63a71386 120 rq->tag = -1;
1da177e4 121 rq->ref_count = 1;
1da177e4 122}
2a4aa30c 123EXPORT_SYMBOL(blk_rq_init);
1da177e4 124
5bb23a68
N
125static void req_bio_endio(struct request *rq, struct bio *bio,
126 unsigned int nbytes, int error)
1da177e4 127{
165125e1 128 struct request_queue *q = rq->q;
797e7dbb 129
5bb23a68
N
130 if (&q->bar_rq != rq) {
131 if (error)
132 clear_bit(BIO_UPTODATE, &bio->bi_flags);
133 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
134 error = -EIO;
797e7dbb 135
5bb23a68 136 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 137 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 138 __func__, nbytes, bio->bi_size);
5bb23a68
N
139 nbytes = bio->bi_size;
140 }
797e7dbb 141
5bb23a68
N
142 bio->bi_size -= nbytes;
143 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
144
145 if (bio_integrity(bio))
146 bio_integrity_advance(bio, nbytes);
147
5bb23a68 148 if (bio->bi_size == 0)
6712ecf8 149 bio_endio(bio, error);
5bb23a68
N
150 } else {
151
152 /*
153 * Okay, this is the barrier request in progress, just
154 * record the error;
155 */
156 if (error && !q->orderr)
157 q->orderr = error;
158 }
1da177e4 159}
1da177e4 160
1da177e4
LT
161void blk_dump_rq_flags(struct request *rq, char *msg)
162{
163 int bit;
164
6728cb0e 165 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
166 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
167 rq->cmd_flags);
1da177e4 168
6728cb0e
JA
169 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
170 (unsigned long long)rq->sector,
171 rq->nr_sectors,
172 rq->current_nr_sectors);
173 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
174 rq->bio, rq->biotail,
175 rq->buffer, rq->data,
176 rq->data_len);
1da177e4 177
4aff5e23 178 if (blk_pc_request(rq)) {
6728cb0e 179 printk(KERN_INFO " cdb: ");
d34c87e4 180 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
181 printk("%02x ", rq->cmd[bit]);
182 printk("\n");
183 }
184}
1da177e4
LT
185EXPORT_SYMBOL(blk_dump_rq_flags);
186
1da177e4
LT
187/*
188 * "plug" the device if there are no outstanding requests: this will
189 * force the transfer to start only after we have put all the requests
190 * on the list.
191 *
192 * This is called with interrupts off and no requests on the queue and
193 * with the queue lock held.
194 */
165125e1 195void blk_plug_device(struct request_queue *q)
1da177e4
LT
196{
197 WARN_ON(!irqs_disabled());
198
199 /*
200 * don't plug a stopped queue, it must be paired with blk_start_queue()
201 * which will restart the queueing
202 */
7daac490 203 if (blk_queue_stopped(q))
1da177e4
LT
204 return;
205
e48ec690 206 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 207 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
208 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
209 }
1da177e4 210}
1da177e4
LT
211EXPORT_SYMBOL(blk_plug_device);
212
6c5e0c4d
JA
213/**
214 * blk_plug_device_unlocked - plug a device without queue lock held
215 * @q: The &struct request_queue to plug
216 *
217 * Description:
218 * Like @blk_plug_device(), but grabs the queue lock and disables
219 * interrupts.
220 **/
221void blk_plug_device_unlocked(struct request_queue *q)
222{
223 unsigned long flags;
224
225 spin_lock_irqsave(q->queue_lock, flags);
226 blk_plug_device(q);
227 spin_unlock_irqrestore(q->queue_lock, flags);
228}
229EXPORT_SYMBOL(blk_plug_device_unlocked);
230
1da177e4
LT
231/*
232 * remove the queue from the plugged list, if present. called with
233 * queue lock held and interrupts disabled.
234 */
165125e1 235int blk_remove_plug(struct request_queue *q)
1da177e4
LT
236{
237 WARN_ON(!irqs_disabled());
238
e48ec690 239 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
240 return 0;
241
242 del_timer(&q->unplug_timer);
243 return 1;
244}
1da177e4
LT
245EXPORT_SYMBOL(blk_remove_plug);
246
247/*
248 * remove the plug and let it rip..
249 */
165125e1 250void __generic_unplug_device(struct request_queue *q)
1da177e4 251{
7daac490 252 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
253 return;
254
255 if (!blk_remove_plug(q))
256 return;
257
22e2c507 258 q->request_fn(q);
1da177e4
LT
259}
260EXPORT_SYMBOL(__generic_unplug_device);
261
262/**
263 * generic_unplug_device - fire a request queue
165125e1 264 * @q: The &struct request_queue in question
1da177e4
LT
265 *
266 * Description:
267 * Linux uses plugging to build bigger requests queues before letting
268 * the device have at them. If a queue is plugged, the I/O scheduler
269 * is still adding and merging requests on the queue. Once the queue
270 * gets unplugged, the request_fn defined for the queue is invoked and
271 * transfers started.
272 **/
165125e1 273void generic_unplug_device(struct request_queue *q)
1da177e4 274{
dbaf2c00
JA
275 if (blk_queue_plugged(q)) {
276 spin_lock_irq(q->queue_lock);
277 __generic_unplug_device(q);
278 spin_unlock_irq(q->queue_lock);
279 }
1da177e4
LT
280}
281EXPORT_SYMBOL(generic_unplug_device);
282
283static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
284 struct page *page)
285{
165125e1 286 struct request_queue *q = bdi->unplug_io_data;
1da177e4 287
2ad8b1ef 288 blk_unplug(q);
1da177e4
LT
289}
290
86db1e29 291void blk_unplug_work(struct work_struct *work)
1da177e4 292{
165125e1
JA
293 struct request_queue *q =
294 container_of(work, struct request_queue, unplug_work);
1da177e4 295
2056a782
JA
296 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
297 q->rq.count[READ] + q->rq.count[WRITE]);
298
1da177e4
LT
299 q->unplug_fn(q);
300}
301
86db1e29 302void blk_unplug_timeout(unsigned long data)
1da177e4 303{
165125e1 304 struct request_queue *q = (struct request_queue *)data;
1da177e4 305
2056a782
JA
306 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
307 q->rq.count[READ] + q->rq.count[WRITE]);
308
18887ad9 309 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
310}
311
2ad8b1ef
AB
312void blk_unplug(struct request_queue *q)
313{
314 /*
315 * devices don't necessarily have an ->unplug_fn defined
316 */
317 if (q->unplug_fn) {
318 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
319 q->rq.count[READ] + q->rq.count[WRITE]);
320
321 q->unplug_fn(q);
322 }
323}
324EXPORT_SYMBOL(blk_unplug);
325
c7c22e4d
JA
326static void blk_invoke_request_fn(struct request_queue *q)
327{
328 /*
329 * one level of recursion is ok and is much faster than kicking
330 * the unplug handling
331 */
332 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
333 q->request_fn(q);
334 queue_flag_clear(QUEUE_FLAG_REENTER, q);
335 } else {
336 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
337 kblockd_schedule_work(q, &q->unplug_work);
338 }
339}
340
1da177e4
LT
341/**
342 * blk_start_queue - restart a previously stopped queue
165125e1 343 * @q: The &struct request_queue in question
1da177e4
LT
344 *
345 * Description:
346 * blk_start_queue() will clear the stop flag on the queue, and call
347 * the request_fn for the queue if it was in a stopped state when
348 * entered. Also see blk_stop_queue(). Queue lock must be held.
349 **/
165125e1 350void blk_start_queue(struct request_queue *q)
1da177e4 351{
a038e253
PBG
352 WARN_ON(!irqs_disabled());
353
75ad23bc 354 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
c7c22e4d 355 blk_invoke_request_fn(q);
1da177e4 356}
1da177e4
LT
357EXPORT_SYMBOL(blk_start_queue);
358
359/**
360 * blk_stop_queue - stop a queue
165125e1 361 * @q: The &struct request_queue in question
1da177e4
LT
362 *
363 * Description:
364 * The Linux block layer assumes that a block driver will consume all
365 * entries on the request queue when the request_fn strategy is called.
366 * Often this will not happen, because of hardware limitations (queue
367 * depth settings). If a device driver gets a 'queue full' response,
368 * or if it simply chooses not to queue more I/O at one point, it can
369 * call this function to prevent the request_fn from being called until
370 * the driver has signalled it's ready to go again. This happens by calling
371 * blk_start_queue() to restart queue operations. Queue lock must be held.
372 **/
165125e1 373void blk_stop_queue(struct request_queue *q)
1da177e4
LT
374{
375 blk_remove_plug(q);
75ad23bc 376 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
377}
378EXPORT_SYMBOL(blk_stop_queue);
379
380/**
381 * blk_sync_queue - cancel any pending callbacks on a queue
382 * @q: the queue
383 *
384 * Description:
385 * The block layer may perform asynchronous callback activity
386 * on a queue, such as calling the unplug function after a timeout.
387 * A block device may call blk_sync_queue to ensure that any
388 * such activity is cancelled, thus allowing it to release resources
59c51591 389 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
390 * that its ->make_request_fn will not re-add plugging prior to calling
391 * this function.
392 *
393 */
394void blk_sync_queue(struct request_queue *q)
395{
396 del_timer_sync(&q->unplug_timer);
abbeb88d 397 kblockd_flush_work(&q->unplug_work);
1da177e4
LT
398}
399EXPORT_SYMBOL(blk_sync_queue);
400
401/**
402 * blk_run_queue - run a single device queue
403 * @q: The queue to run
404 */
75ad23bc 405void __blk_run_queue(struct request_queue *q)
1da177e4 406{
1da177e4 407 blk_remove_plug(q);
dac07ec1
JA
408
409 /*
410 * Only recurse once to avoid overrunning the stack, let the unplug
411 * handling reinvoke the handler shortly if we already got there.
412 */
c7c22e4d
JA
413 if (!elv_queue_empty(q))
414 blk_invoke_request_fn(q);
75ad23bc
NP
415}
416EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 417
75ad23bc
NP
418/**
419 * blk_run_queue - run a single device queue
420 * @q: The queue to run
421 */
422void blk_run_queue(struct request_queue *q)
423{
424 unsigned long flags;
425
426 spin_lock_irqsave(q->queue_lock, flags);
427 __blk_run_queue(q);
1da177e4
LT
428 spin_unlock_irqrestore(q->queue_lock, flags);
429}
430EXPORT_SYMBOL(blk_run_queue);
431
165125e1 432void blk_put_queue(struct request_queue *q)
483f4afc
AV
433{
434 kobject_put(&q->kobj);
435}
483f4afc 436
6728cb0e 437void blk_cleanup_queue(struct request_queue *q)
483f4afc 438{
e3335de9
JA
439 /*
440 * We know we have process context here, so we can be a little
441 * cautious and ensure that pending block actions on this device
442 * are done before moving on. Going into this function, we should
443 * not have processes doing IO to this device.
444 */
445 blk_sync_queue(q);
446
483f4afc 447 mutex_lock(&q->sysfs_lock);
75ad23bc 448 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
449 mutex_unlock(&q->sysfs_lock);
450
451 if (q->elevator)
452 elevator_exit(q->elevator);
453
454 blk_put_queue(q);
455}
1da177e4
LT
456EXPORT_SYMBOL(blk_cleanup_queue);
457
165125e1 458static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
459{
460 struct request_list *rl = &q->rq;
461
462 rl->count[READ] = rl->count[WRITE] = 0;
463 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 464 rl->elvpriv = 0;
1da177e4
LT
465 init_waitqueue_head(&rl->wait[READ]);
466 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 467
1946089a
CL
468 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
469 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
470
471 if (!rl->rq_pool)
472 return -ENOMEM;
473
474 return 0;
475}
476
165125e1 477struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 478{
1946089a
CL
479 return blk_alloc_queue_node(gfp_mask, -1);
480}
481EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 482
165125e1 483struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 484{
165125e1 485 struct request_queue *q;
e0bf68dd 486 int err;
1946089a 487
8324aa91 488 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 489 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
490 if (!q)
491 return NULL;
492
e0bf68dd
PZ
493 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
494 q->backing_dev_info.unplug_io_data = q;
495 err = bdi_init(&q->backing_dev_info);
496 if (err) {
8324aa91 497 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
498 return NULL;
499 }
500
1da177e4 501 init_timer(&q->unplug_timer);
242f9dcb
JA
502 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
503 INIT_LIST_HEAD(&q->timeout_list);
483f4afc 504
8324aa91 505 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 506
483f4afc 507 mutex_init(&q->sysfs_lock);
e7e72bf6 508 spin_lock_init(&q->__queue_lock);
483f4afc 509
1da177e4
LT
510 return q;
511}
1946089a 512EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
513
514/**
515 * blk_init_queue - prepare a request queue for use with a block device
516 * @rfn: The function to be called to process requests that have been
517 * placed on the queue.
518 * @lock: Request queue spin lock
519 *
520 * Description:
521 * If a block device wishes to use the standard request handling procedures,
522 * which sorts requests and coalesces adjacent requests, then it must
523 * call blk_init_queue(). The function @rfn will be called when there
524 * are requests on the queue that need to be processed. If the device
525 * supports plugging, then @rfn may not be called immediately when requests
526 * are available on the queue, but may be called at some time later instead.
527 * Plugged queues are generally unplugged when a buffer belonging to one
528 * of the requests on the queue is needed, or due to memory pressure.
529 *
530 * @rfn is not required, or even expected, to remove all requests off the
531 * queue, but only as many as it can handle at a time. If it does leave
532 * requests on the queue, it is responsible for arranging that the requests
533 * get dealt with eventually.
534 *
535 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
536 * request queue; this lock will be taken also from interrupt context, so irq
537 * disabling is needed for it.
1da177e4 538 *
710027a4 539 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
540 * it didn't succeed.
541 *
542 * Note:
543 * blk_init_queue() must be paired with a blk_cleanup_queue() call
544 * when the block device is deactivated (such as at module unload).
545 **/
1946089a 546
165125e1 547struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 548{
1946089a
CL
549 return blk_init_queue_node(rfn, lock, -1);
550}
551EXPORT_SYMBOL(blk_init_queue);
552
165125e1 553struct request_queue *
1946089a
CL
554blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
555{
165125e1 556 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
557
558 if (!q)
559 return NULL;
560
1946089a 561 q->node = node_id;
8669aafd 562 if (blk_init_free_list(q)) {
8324aa91 563 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
564 return NULL;
565 }
1da177e4 566
152587de 567 /*
568 * if caller didn't supply a lock, they get per-queue locking with
569 * our embedded lock
570 */
e7e72bf6 571 if (!lock)
152587de 572 lock = &q->__queue_lock;
152587de 573
1da177e4 574 q->request_fn = rfn;
1da177e4
LT
575 q->prep_rq_fn = NULL;
576 q->unplug_fn = generic_unplug_device;
577 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
578 q->queue_lock = lock;
579
580 blk_queue_segment_boundary(q, 0xffffffff);
581
582 blk_queue_make_request(q, __make_request);
583 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
584
585 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
586 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
587
44ec9542
AS
588 q->sg_reserved_size = INT_MAX;
589
abf54393
FT
590 blk_set_cmd_filter_defaults(&q->cmd_filter);
591
1da177e4
LT
592 /*
593 * all done
594 */
595 if (!elevator_init(q, NULL)) {
596 blk_queue_congestion_threshold(q);
597 return q;
598 }
599
8669aafd 600 blk_put_queue(q);
1da177e4
LT
601 return NULL;
602}
1946089a 603EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 604
165125e1 605int blk_get_queue(struct request_queue *q)
1da177e4 606{
fde6ad22 607 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 608 kobject_get(&q->kobj);
1da177e4
LT
609 return 0;
610 }
611
612 return 1;
613}
1da177e4 614
165125e1 615static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 616{
4aff5e23 617 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 618 elv_put_request(q, rq);
1da177e4
LT
619 mempool_free(rq, q->rq.rq_pool);
620}
621
1ea25ecb 622static struct request *
165125e1 623blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
624{
625 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
626
627 if (!rq)
628 return NULL;
629
2a4aa30c 630 blk_rq_init(q, rq);
1afb20f3 631
49171e5c 632 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 633
cb98fc8b 634 if (priv) {
cb78b285 635 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
636 mempool_free(rq, q->rq.rq_pool);
637 return NULL;
638 }
4aff5e23 639 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 640 }
1da177e4 641
cb98fc8b 642 return rq;
1da177e4
LT
643}
644
645/*
646 * ioc_batching returns true if the ioc is a valid batching request and
647 * should be given priority access to a request.
648 */
165125e1 649static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
650{
651 if (!ioc)
652 return 0;
653
654 /*
655 * Make sure the process is able to allocate at least 1 request
656 * even if the batch times out, otherwise we could theoretically
657 * lose wakeups.
658 */
659 return ioc->nr_batch_requests == q->nr_batching ||
660 (ioc->nr_batch_requests > 0
661 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
662}
663
664/*
665 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
666 * will cause the process to be a "batcher" on all queues in the system. This
667 * is the behaviour we want though - once it gets a wakeup it should be given
668 * a nice run.
669 */
165125e1 670static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
671{
672 if (!ioc || ioc_batching(q, ioc))
673 return;
674
675 ioc->nr_batch_requests = q->nr_batching;
676 ioc->last_waited = jiffies;
677}
678
165125e1 679static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
680{
681 struct request_list *rl = &q->rq;
682
683 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 684 blk_clear_queue_congested(q, rw);
1da177e4
LT
685
686 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
687 if (waitqueue_active(&rl->wait[rw]))
688 wake_up(&rl->wait[rw]);
689
690 blk_clear_queue_full(q, rw);
691 }
692}
693
694/*
695 * A request has just been released. Account for it, update the full and
696 * congestion status, wake up any waiters. Called under q->queue_lock.
697 */
165125e1 698static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
699{
700 struct request_list *rl = &q->rq;
701
702 rl->count[rw]--;
cb98fc8b
TH
703 if (priv)
704 rl->elvpriv--;
1da177e4
LT
705
706 __freed_request(q, rw);
707
708 if (unlikely(rl->starved[rw ^ 1]))
709 __freed_request(q, rw ^ 1);
1da177e4
LT
710}
711
712#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
713/*
d6344532
NP
714 * Get a free request, queue_lock must be held.
715 * Returns NULL on failure, with queue_lock held.
716 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 717 */
165125e1 718static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 719 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
720{
721 struct request *rq = NULL;
722 struct request_list *rl = &q->rq;
88ee5ef1 723 struct io_context *ioc = NULL;
7749a8d4 724 const int rw = rw_flags & 0x01;
88ee5ef1
JA
725 int may_queue, priv;
726
7749a8d4 727 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
728 if (may_queue == ELV_MQUEUE_NO)
729 goto rq_starved;
730
731 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
732 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 733 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
734 /*
735 * The queue will fill after this allocation, so set
736 * it as full, and mark this process as "batching".
737 * This process will be allowed to complete a batch of
738 * requests, others will be blocked.
739 */
740 if (!blk_queue_full(q, rw)) {
741 ioc_set_batching(q, ioc);
742 blk_set_queue_full(q, rw);
743 } else {
744 if (may_queue != ELV_MQUEUE_MUST
745 && !ioc_batching(q, ioc)) {
746 /*
747 * The queue is full and the allocating
748 * process is not a "batcher", and not
749 * exempted by the IO scheduler
750 */
751 goto out;
752 }
753 }
1da177e4 754 }
79e2de4b 755 blk_set_queue_congested(q, rw);
1da177e4
LT
756 }
757
082cf69e
JA
758 /*
759 * Only allow batching queuers to allocate up to 50% over the defined
760 * limit of requests, otherwise we could have thousands of requests
761 * allocated with any setting of ->nr_requests
762 */
fd782a4a 763 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 764 goto out;
fd782a4a 765
1da177e4
LT
766 rl->count[rw]++;
767 rl->starved[rw] = 0;
cb98fc8b 768
64521d1a 769 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
770 if (priv)
771 rl->elvpriv++;
772
1da177e4
LT
773 spin_unlock_irq(q->queue_lock);
774
7749a8d4 775 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 776 if (unlikely(!rq)) {
1da177e4
LT
777 /*
778 * Allocation failed presumably due to memory. Undo anything
779 * we might have messed up.
780 *
781 * Allocating task should really be put onto the front of the
782 * wait queue, but this is pretty rare.
783 */
784 spin_lock_irq(q->queue_lock);
cb98fc8b 785 freed_request(q, rw, priv);
1da177e4
LT
786
787 /*
788 * in the very unlikely event that allocation failed and no
789 * requests for this direction was pending, mark us starved
790 * so that freeing of a request in the other direction will
791 * notice us. another possible fix would be to split the
792 * rq mempool into READ and WRITE
793 */
794rq_starved:
795 if (unlikely(rl->count[rw] == 0))
796 rl->starved[rw] = 1;
797
1da177e4
LT
798 goto out;
799 }
800
88ee5ef1
JA
801 /*
802 * ioc may be NULL here, and ioc_batching will be false. That's
803 * OK, if the queue is under the request limit then requests need
804 * not count toward the nr_batch_requests limit. There will always
805 * be some limit enforced by BLK_BATCH_TIME.
806 */
1da177e4
LT
807 if (ioc_batching(q, ioc))
808 ioc->nr_batch_requests--;
6728cb0e 809
2056a782 810 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 811out:
1da177e4
LT
812 return rq;
813}
814
815/*
816 * No available requests for this queue, unplug the device and wait for some
817 * requests to become available.
d6344532
NP
818 *
819 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 820 */
165125e1 821static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 822 struct bio *bio)
1da177e4 823{
7749a8d4 824 const int rw = rw_flags & 0x01;
1da177e4
LT
825 struct request *rq;
826
7749a8d4 827 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
828 while (!rq) {
829 DEFINE_WAIT(wait);
05caf8db 830 struct io_context *ioc;
1da177e4
LT
831 struct request_list *rl = &q->rq;
832
833 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
834 TASK_UNINTERRUPTIBLE);
835
05caf8db 836 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
1da177e4 837
05caf8db
ZY
838 __generic_unplug_device(q);
839 spin_unlock_irq(q->queue_lock);
840 io_schedule();
1da177e4 841
05caf8db
ZY
842 /*
843 * After sleeping, we become a "batching" process and
844 * will be able to allocate at least one request, and
845 * up to a big batch of them for a small period time.
846 * See ioc_batching, ioc_set_batching
847 */
848 ioc = current_io_context(GFP_NOIO, q->node);
849 ioc_set_batching(q, ioc);
d6344532 850
05caf8db 851 spin_lock_irq(q->queue_lock);
1da177e4 852 finish_wait(&rl->wait[rw], &wait);
05caf8db
ZY
853
854 rq = get_request(q, rw_flags, bio, GFP_NOIO);
855 };
1da177e4
LT
856
857 return rq;
858}
859
165125e1 860struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
861{
862 struct request *rq;
863
864 BUG_ON(rw != READ && rw != WRITE);
865
d6344532
NP
866 spin_lock_irq(q->queue_lock);
867 if (gfp_mask & __GFP_WAIT) {
22e2c507 868 rq = get_request_wait(q, rw, NULL);
d6344532 869 } else {
22e2c507 870 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
871 if (!rq)
872 spin_unlock_irq(q->queue_lock);
873 }
874 /* q->queue_lock is unlocked at this point */
1da177e4
LT
875
876 return rq;
877}
1da177e4
LT
878EXPORT_SYMBOL(blk_get_request);
879
dc72ef4a
JA
880/**
881 * blk_start_queueing - initiate dispatch of requests to device
882 * @q: request queue to kick into gear
883 *
884 * This is basically a helper to remove the need to know whether a queue
885 * is plugged or not if someone just wants to initiate dispatch of requests
886 * for this queue.
887 *
888 * The queue lock must be held with interrupts disabled.
889 */
165125e1 890void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
891{
892 if (!blk_queue_plugged(q))
893 q->request_fn(q);
894 else
895 __generic_unplug_device(q);
896}
897EXPORT_SYMBOL(blk_start_queueing);
898
1da177e4
LT
899/**
900 * blk_requeue_request - put a request back on queue
901 * @q: request queue where request should be inserted
902 * @rq: request to be inserted
903 *
904 * Description:
905 * Drivers often keep queueing requests until the hardware cannot accept
906 * more, when that condition happens we need to put the request back
907 * on the queue. Must be called with queue lock held.
908 */
165125e1 909void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 910{
242f9dcb
JA
911 blk_delete_timer(rq);
912 blk_clear_rq_complete(rq);
2056a782
JA
913 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
914
1da177e4
LT
915 if (blk_rq_tagged(rq))
916 blk_queue_end_tag(q, rq);
917
918 elv_requeue_request(q, rq);
919}
1da177e4
LT
920EXPORT_SYMBOL(blk_requeue_request);
921
922/**
710027a4 923 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
924 * @q: request queue where request should be inserted
925 * @rq: request to be inserted
926 * @at_head: insert request at head or tail of queue
927 * @data: private data
1da177e4
LT
928 *
929 * Description:
930 * Many block devices need to execute commands asynchronously, so they don't
931 * block the whole kernel from preemption during request execution. This is
932 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
933 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
934 * be scheduled for actual execution by the request queue.
1da177e4
LT
935 *
936 * We have the option of inserting the head or the tail of the queue.
937 * Typically we use the tail for new ioctls and so forth. We use the head
938 * of the queue for things like a QUEUE_FULL message from a device, or a
939 * host that is unable to accept a particular command.
940 */
165125e1 941void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 942 int at_head, void *data)
1da177e4 943{
867d1191 944 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
945 unsigned long flags;
946
947 /*
948 * tell I/O scheduler that this isn't a regular read/write (ie it
949 * must not attempt merges on this) and that it acts as a soft
950 * barrier
951 */
4aff5e23
JA
952 rq->cmd_type = REQ_TYPE_SPECIAL;
953 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
954
955 rq->special = data;
956
957 spin_lock_irqsave(q->queue_lock, flags);
958
959 /*
960 * If command is tagged, release the tag
961 */
867d1191
TH
962 if (blk_rq_tagged(rq))
963 blk_queue_end_tag(q, rq);
1da177e4 964
b238b3d4 965 drive_stat_acct(rq, 1);
867d1191 966 __elv_add_request(q, rq, where, 0);
dc72ef4a 967 blk_start_queueing(q);
1da177e4
LT
968 spin_unlock_irqrestore(q->queue_lock, flags);
969}
1da177e4
LT
970EXPORT_SYMBOL(blk_insert_request);
971
1da177e4
LT
972/*
973 * add-request adds a request to the linked list.
974 * queue lock is held and interrupts disabled, as we muck with the
975 * request queue list.
976 */
6728cb0e 977static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 978{
b238b3d4 979 drive_stat_acct(req, 1);
1da177e4 980
1da177e4
LT
981 /*
982 * elevator indicated where it wants this request to be
983 * inserted at elevator_merge time
984 */
985 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
986}
6728cb0e 987
074a7aca
TH
988static void part_round_stats_single(int cpu, struct hd_struct *part,
989 unsigned long now)
990{
991 if (now == part->stamp)
992 return;
993
994 if (part->in_flight) {
995 __part_stat_add(cpu, part, time_in_queue,
996 part->in_flight * (now - part->stamp));
997 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
998 }
999 part->stamp = now;
1000}
1001
1002/**
1003 * part_round_stats() - Round off the performance stats on a struct
1da177e4
LT
1004 * disk_stats.
1005 *
1006 * The average IO queue length and utilisation statistics are maintained
1007 * by observing the current state of the queue length and the amount of
1008 * time it has been in this state for.
1009 *
1010 * Normally, that accounting is done on IO completion, but that can result
1011 * in more than a second's worth of IO being accounted for within any one
1012 * second, leading to >100% utilisation. To deal with that, we call this
1013 * function to do a round-off before returning the results when reading
1014 * /proc/diskstats. This accounts immediately for all queue usage up to
1015 * the current jiffies and restarts the counters again.
1016 */
c9959059 1017void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1018{
1019 unsigned long now = jiffies;
1020
074a7aca
TH
1021 if (part->partno)
1022 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1023 part_round_stats_single(cpu, part, now);
6f2576af 1024}
074a7aca 1025EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1026
1da177e4
LT
1027/*
1028 * queue lock must be held
1029 */
165125e1 1030void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1031{
1da177e4
LT
1032 if (unlikely(!q))
1033 return;
1034 if (unlikely(--req->ref_count))
1035 return;
1036
8922e16c
TH
1037 elv_completed_request(q, req);
1038
1da177e4
LT
1039 /*
1040 * Request may not have originated from ll_rw_blk. if not,
1041 * it didn't come out of our reserved rq pools
1042 */
49171e5c 1043 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 1044 int rw = rq_data_dir(req);
4aff5e23 1045 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1046
1da177e4 1047 BUG_ON(!list_empty(&req->queuelist));
9817064b 1048 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1049
1050 blk_free_request(q, req);
cb98fc8b 1051 freed_request(q, rw, priv);
1da177e4
LT
1052 }
1053}
6e39b69e
MC
1054EXPORT_SYMBOL_GPL(__blk_put_request);
1055
1da177e4
LT
1056void blk_put_request(struct request *req)
1057{
8922e16c 1058 unsigned long flags;
165125e1 1059 struct request_queue *q = req->q;
8922e16c 1060
52a93ba8
FT
1061 spin_lock_irqsave(q->queue_lock, flags);
1062 __blk_put_request(q, req);
1063 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1064}
1da177e4
LT
1065EXPORT_SYMBOL(blk_put_request);
1066
86db1e29 1067void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1068{
c7c22e4d 1069 req->cpu = bio->bi_comp_cpu;
4aff5e23 1070 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1071
1072 /*
1073 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1074 */
1075 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 1076 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
1077
1078 /*
1079 * REQ_BARRIER implies no merging, but lets make it explicit
1080 */
fb2dce86 1081 if (unlikely(bio_discard(bio))) {
e17fc0a1
DW
1082 req->cmd_flags |= REQ_DISCARD;
1083 if (bio_barrier(bio))
1084 req->cmd_flags |= REQ_SOFTBARRIER;
fb2dce86 1085 req->q->prepare_discard_fn(req->q, req);
e17fc0a1
DW
1086 } else if (unlikely(bio_barrier(bio)))
1087 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 1088
b31dc66a 1089 if (bio_sync(bio))
4aff5e23 1090 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
1091 if (bio_rw_meta(bio))
1092 req->cmd_flags |= REQ_RW_META;
b31dc66a 1093
52d9e675
TH
1094 req->errors = 0;
1095 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 1096 req->ioprio = bio_prio(bio);
52d9e675 1097 req->start_time = jiffies;
bc1c56fd 1098 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1099}
1100
165125e1 1101static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1102{
450991bc 1103 struct request *req;
fb2dce86 1104 int el_ret, nr_sectors, barrier, discard, err;
51da90fc
JA
1105 const unsigned short prio = bio_prio(bio);
1106 const int sync = bio_sync(bio);
7749a8d4 1107 int rw_flags;
1da177e4 1108
1da177e4 1109 nr_sectors = bio_sectors(bio);
1da177e4
LT
1110
1111 /*
1112 * low level driver can indicate that it wants pages above a
1113 * certain limit bounced to low memory (ie for highmem, or even
1114 * ISA dma in theory)
1115 */
1116 blk_queue_bounce(q, &bio);
1117
1da177e4 1118 barrier = bio_barrier(bio);
e17fc0a1
DW
1119 if (unlikely(barrier) && bio_has_data(bio) &&
1120 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
1121 err = -EOPNOTSUPP;
1122 goto end_io;
1123 }
1124
fb2dce86
DW
1125 discard = bio_discard(bio);
1126 if (unlikely(discard) && !q->prepare_discard_fn) {
1127 err = -EOPNOTSUPP;
1128 goto end_io;
1129 }
1130
1da177e4
LT
1131 spin_lock_irq(q->queue_lock);
1132
450991bc 1133 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
1134 goto get_rq;
1135
1136 el_ret = elv_merge(q, &req, bio);
1137 switch (el_ret) {
6728cb0e
JA
1138 case ELEVATOR_BACK_MERGE:
1139 BUG_ON(!rq_mergeable(req));
1da177e4 1140
6728cb0e
JA
1141 if (!ll_back_merge_fn(q, req, bio))
1142 break;
1da177e4 1143
6728cb0e 1144 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2056a782 1145
6728cb0e
JA
1146 req->biotail->bi_next = bio;
1147 req->biotail = bio;
1148 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1149 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1150 if (!blk_rq_cpu_valid(req))
1151 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1152 drive_stat_acct(req, 0);
1153 if (!attempt_back_merge(q, req))
1154 elv_merged_request(q, req, el_ret);
1155 goto out;
1da177e4 1156
6728cb0e
JA
1157 case ELEVATOR_FRONT_MERGE:
1158 BUG_ON(!rq_mergeable(req));
1da177e4 1159
6728cb0e
JA
1160 if (!ll_front_merge_fn(q, req, bio))
1161 break;
1da177e4 1162
6728cb0e 1163 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2056a782 1164
6728cb0e
JA
1165 bio->bi_next = req->bio;
1166 req->bio = bio;
1da177e4 1167
6728cb0e
JA
1168 /*
1169 * may not be valid. if the low level driver said
1170 * it didn't need a bounce buffer then it better
1171 * not touch req->buffer either...
1172 */
1173 req->buffer = bio_data(bio);
1174 req->current_nr_sectors = bio_cur_sectors(bio);
1175 req->hard_cur_sectors = req->current_nr_sectors;
1176 req->sector = req->hard_sector = bio->bi_sector;
1177 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1178 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1179 if (!blk_rq_cpu_valid(req))
1180 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1181 drive_stat_acct(req, 0);
1182 if (!attempt_front_merge(q, req))
1183 elv_merged_request(q, req, el_ret);
1184 goto out;
1185
1186 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1187 default:
1188 ;
1da177e4
LT
1189 }
1190
450991bc 1191get_rq:
7749a8d4
JA
1192 /*
1193 * This sync check and mask will be re-done in init_request_from_bio(),
1194 * but we need to set it earlier to expose the sync flag to the
1195 * rq allocator and io schedulers.
1196 */
1197 rw_flags = bio_data_dir(bio);
1198 if (sync)
1199 rw_flags |= REQ_RW_SYNC;
1200
1da177e4 1201 /*
450991bc 1202 * Grab a free request. This is might sleep but can not fail.
d6344532 1203 * Returns with the queue unlocked.
450991bc 1204 */
7749a8d4 1205 req = get_request_wait(q, rw_flags, bio);
d6344532 1206
450991bc
NP
1207 /*
1208 * After dropping the lock and possibly sleeping here, our request
1209 * may now be mergeable after it had proven unmergeable (above).
1210 * We don't worry about that case for efficiency. It won't happen
1211 * often, and the elevators are able to handle it.
1da177e4 1212 */
52d9e675 1213 init_request_from_bio(req, bio);
1da177e4 1214
450991bc 1215 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1216 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1217 bio_flagged(bio, BIO_CPU_AFFINE))
1218 req->cpu = blk_cpu_to_group(smp_processor_id());
450991bc
NP
1219 if (elv_queue_empty(q))
1220 blk_plug_device(q);
1da177e4
LT
1221 add_request(q, req);
1222out:
4a534f93 1223 if (sync)
1da177e4 1224 __generic_unplug_device(q);
1da177e4
LT
1225 spin_unlock_irq(q->queue_lock);
1226 return 0;
1227
1228end_io:
6712ecf8 1229 bio_endio(bio, err);
1da177e4
LT
1230 return 0;
1231}
1232
1233/*
1234 * If bio->bi_dev is a partition, remap the location
1235 */
1236static inline void blk_partition_remap(struct bio *bio)
1237{
1238 struct block_device *bdev = bio->bi_bdev;
1239
bf2de6f5 1240 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1241 struct hd_struct *p = bdev->bd_part;
1242
1da177e4
LT
1243 bio->bi_sector += p->start_sect;
1244 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
1245
1246 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1247 bdev->bd_dev, bio->bi_sector,
1248 bio->bi_sector - p->start_sect);
1da177e4
LT
1249 }
1250}
1251
1da177e4
LT
1252static void handle_bad_sector(struct bio *bio)
1253{
1254 char b[BDEVNAME_SIZE];
1255
1256 printk(KERN_INFO "attempt to access beyond end of device\n");
1257 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1258 bdevname(bio->bi_bdev, b),
1259 bio->bi_rw,
1260 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1261 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1262
1263 set_bit(BIO_EOF, &bio->bi_flags);
1264}
1265
c17bb495
AM
1266#ifdef CONFIG_FAIL_MAKE_REQUEST
1267
1268static DECLARE_FAULT_ATTR(fail_make_request);
1269
1270static int __init setup_fail_make_request(char *str)
1271{
1272 return setup_fault_attr(&fail_make_request, str);
1273}
1274__setup("fail_make_request=", setup_fail_make_request);
1275
1276static int should_fail_request(struct bio *bio)
1277{
eddb2e26
TH
1278 struct hd_struct *part = bio->bi_bdev->bd_part;
1279
1280 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1281 return should_fail(&fail_make_request, bio->bi_size);
1282
1283 return 0;
1284}
1285
1286static int __init fail_make_request_debugfs(void)
1287{
1288 return init_fault_attr_dentries(&fail_make_request,
1289 "fail_make_request");
1290}
1291
1292late_initcall(fail_make_request_debugfs);
1293
1294#else /* CONFIG_FAIL_MAKE_REQUEST */
1295
1296static inline int should_fail_request(struct bio *bio)
1297{
1298 return 0;
1299}
1300
1301#endif /* CONFIG_FAIL_MAKE_REQUEST */
1302
c07e2b41
JA
1303/*
1304 * Check whether this bio extends beyond the end of the device.
1305 */
1306static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1307{
1308 sector_t maxsector;
1309
1310 if (!nr_sectors)
1311 return 0;
1312
1313 /* Test device or partition size, when known. */
1314 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1315 if (maxsector) {
1316 sector_t sector = bio->bi_sector;
1317
1318 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1319 /*
1320 * This may well happen - the kernel calls bread()
1321 * without checking the size of the device, e.g., when
1322 * mounting a device.
1323 */
1324 handle_bad_sector(bio);
1325 return 1;
1326 }
1327 }
1328
1329 return 0;
1330}
1331
1da177e4 1332/**
710027a4 1333 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1334 * @bio: The bio describing the location in memory and on the device.
1335 *
1336 * generic_make_request() is used to make I/O requests of block
1337 * devices. It is passed a &struct bio, which describes the I/O that needs
1338 * to be done.
1339 *
1340 * generic_make_request() does not return any status. The
1341 * success/failure status of the request, along with notification of
1342 * completion, is delivered asynchronously through the bio->bi_end_io
1343 * function described (one day) else where.
1344 *
1345 * The caller of generic_make_request must make sure that bi_io_vec
1346 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1347 * set to describe the device address, and the
1348 * bi_end_io and optionally bi_private are set to describe how
1349 * completion notification should be signaled.
1350 *
1351 * generic_make_request and the drivers it calls may use bi_next if this
1352 * bio happens to be merged with someone else, and may change bi_dev and
1353 * bi_sector for remaps as it sees fit. So the values of these fields
1354 * should NOT be depended on after the call to generic_make_request.
1355 */
d89d8796 1356static inline void __generic_make_request(struct bio *bio)
1da177e4 1357{
165125e1 1358 struct request_queue *q;
5ddfe969 1359 sector_t old_sector;
1da177e4 1360 int ret, nr_sectors = bio_sectors(bio);
2056a782 1361 dev_t old_dev;
51fd77bd 1362 int err = -EIO;
1da177e4
LT
1363
1364 might_sleep();
1da177e4 1365
c07e2b41
JA
1366 if (bio_check_eod(bio, nr_sectors))
1367 goto end_io;
1da177e4
LT
1368
1369 /*
1370 * Resolve the mapping until finished. (drivers are
1371 * still free to implement/resolve their own stacking
1372 * by explicitly returning 0)
1373 *
1374 * NOTE: we don't repeat the blk_size check for each new device.
1375 * Stacking drivers are expected to know what they are doing.
1376 */
5ddfe969 1377 old_sector = -1;
2056a782 1378 old_dev = 0;
1da177e4
LT
1379 do {
1380 char b[BDEVNAME_SIZE];
1381
1382 q = bdev_get_queue(bio->bi_bdev);
1383 if (!q) {
1384 printk(KERN_ERR
1385 "generic_make_request: Trying to access "
1386 "nonexistent block-device %s (%Lu)\n",
1387 bdevname(bio->bi_bdev, b),
1388 (long long) bio->bi_sector);
1389end_io:
51fd77bd 1390 bio_endio(bio, err);
1da177e4
LT
1391 break;
1392 }
1393
4fa253f3 1394 if (unlikely(nr_sectors > q->max_hw_sectors)) {
6728cb0e 1395 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1da177e4
LT
1396 bdevname(bio->bi_bdev, b),
1397 bio_sectors(bio),
1398 q->max_hw_sectors);
1399 goto end_io;
1400 }
1401
fde6ad22 1402 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1403 goto end_io;
1404
c17bb495
AM
1405 if (should_fail_request(bio))
1406 goto end_io;
1407
1da177e4
LT
1408 /*
1409 * If this device has partitions, remap block n
1410 * of partition p to block n+start(p) of the disk.
1411 */
1412 blk_partition_remap(bio);
1413
7ba1ba12
MP
1414 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1415 goto end_io;
1416
5ddfe969 1417 if (old_sector != -1)
4fa253f3 1418 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 1419 old_sector);
2056a782
JA
1420
1421 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1422
5ddfe969 1423 old_sector = bio->bi_sector;
2056a782
JA
1424 old_dev = bio->bi_bdev->bd_dev;
1425
c07e2b41
JA
1426 if (bio_check_eod(bio, nr_sectors))
1427 goto end_io;
fb2dce86
DW
1428 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1429 (bio_discard(bio) && !q->prepare_discard_fn)) {
51fd77bd
JA
1430 err = -EOPNOTSUPP;
1431 goto end_io;
1432 }
5ddfe969 1433
1da177e4
LT
1434 ret = q->make_request_fn(q, bio);
1435 } while (ret);
1436}
1437
d89d8796
NB
1438/*
1439 * We only want one ->make_request_fn to be active at a time,
1440 * else stack usage with stacked devices could be a problem.
1441 * So use current->bio_{list,tail} to keep a list of requests
1442 * submited by a make_request_fn function.
1443 * current->bio_tail is also used as a flag to say if
1444 * generic_make_request is currently active in this task or not.
1445 * If it is NULL, then no make_request is active. If it is non-NULL,
1446 * then a make_request is active, and new requests should be added
1447 * at the tail
1448 */
1449void generic_make_request(struct bio *bio)
1450{
1451 if (current->bio_tail) {
1452 /* make_request is active */
1453 *(current->bio_tail) = bio;
1454 bio->bi_next = NULL;
1455 current->bio_tail = &bio->bi_next;
1456 return;
1457 }
1458 /* following loop may be a bit non-obvious, and so deserves some
1459 * explanation.
1460 * Before entering the loop, bio->bi_next is NULL (as all callers
1461 * ensure that) so we have a list with a single bio.
1462 * We pretend that we have just taken it off a longer list, so
1463 * we assign bio_list to the next (which is NULL) and bio_tail
1464 * to &bio_list, thus initialising the bio_list of new bios to be
1465 * added. __generic_make_request may indeed add some more bios
1466 * through a recursive call to generic_make_request. If it
1467 * did, we find a non-NULL value in bio_list and re-enter the loop
1468 * from the top. In this case we really did just take the bio
1469 * of the top of the list (no pretending) and so fixup bio_list and
1470 * bio_tail or bi_next, and call into __generic_make_request again.
1471 *
1472 * The loop was structured like this to make only one call to
1473 * __generic_make_request (which is important as it is large and
1474 * inlined) and to keep the structure simple.
1475 */
1476 BUG_ON(bio->bi_next);
1477 do {
1478 current->bio_list = bio->bi_next;
1479 if (bio->bi_next == NULL)
1480 current->bio_tail = &current->bio_list;
1481 else
1482 bio->bi_next = NULL;
1483 __generic_make_request(bio);
1484 bio = current->bio_list;
1485 } while (bio);
1486 current->bio_tail = NULL; /* deactivate */
1487}
1da177e4
LT
1488EXPORT_SYMBOL(generic_make_request);
1489
1490/**
710027a4 1491 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1492 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1493 * @bio: The &struct bio which describes the I/O
1494 *
1495 * submit_bio() is very similar in purpose to generic_make_request(), and
1496 * uses that function to do most of the work. Both are fairly rough
710027a4 1497 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1498 *
1499 */
1500void submit_bio(int rw, struct bio *bio)
1501{
1502 int count = bio_sectors(bio);
1503
22e2c507 1504 bio->bi_rw |= rw;
1da177e4 1505
bf2de6f5
JA
1506 /*
1507 * If it's a regular read/write or a barrier with data attached,
1508 * go through the normal accounting stuff before submission.
1509 */
a9c701e5 1510 if (bio_has_data(bio)) {
bf2de6f5
JA
1511 if (rw & WRITE) {
1512 count_vm_events(PGPGOUT, count);
1513 } else {
1514 task_io_account_read(bio->bi_size);
1515 count_vm_events(PGPGIN, count);
1516 }
1517
1518 if (unlikely(block_dump)) {
1519 char b[BDEVNAME_SIZE];
1520 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1521 current->comm, task_pid_nr(current),
bf2de6f5
JA
1522 (rw & WRITE) ? "WRITE" : "READ",
1523 (unsigned long long)bio->bi_sector,
6728cb0e 1524 bdevname(bio->bi_bdev, b));
bf2de6f5 1525 }
1da177e4
LT
1526 }
1527
1528 generic_make_request(bio);
1529}
1da177e4
LT
1530EXPORT_SYMBOL(submit_bio);
1531
3bcddeac
KU
1532/**
1533 * __end_that_request_first - end I/O on a request
1534 * @req: the request being processed
710027a4 1535 * @error: %0 for success, < %0 for error
3bcddeac
KU
1536 * @nr_bytes: number of bytes to complete
1537 *
1538 * Description:
1539 * Ends I/O on a number of bytes attached to @req, and sets it up
1540 * for the next range of segments (if any) in the cluster.
1541 *
1542 * Return:
710027a4
RD
1543 * %0 - we are done with this request, call end_that_request_last()
1544 * %1 - still buffers pending for this request
3bcddeac 1545 **/
5450d3e1 1546static int __end_that_request_first(struct request *req, int error,
1da177e4
LT
1547 int nr_bytes)
1548{
5450d3e1 1549 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1550 struct bio *bio;
1551
2056a782
JA
1552 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1553
1da177e4 1554 /*
710027a4 1555 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1da177e4
LT
1556 * sense key with us all the way through
1557 */
1558 if (!blk_pc_request(req))
1559 req->errors = 0;
1560
6728cb0e
JA
1561 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1562 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4
LT
1563 req->rq_disk ? req->rq_disk->disk_name : "?",
1564 (unsigned long long)req->sector);
1565 }
1566
d72d904a 1567 if (blk_fs_request(req) && req->rq_disk) {
a362357b 1568 const int rw = rq_data_dir(req);
e71bf0d0 1569 struct hd_struct *part;
c9959059 1570 int cpu;
a362357b 1571
074a7aca 1572 cpu = part_stat_lock();
e71bf0d0 1573 part = disk_map_sector_rcu(req->rq_disk, req->sector);
074a7aca
TH
1574 part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9);
1575 part_stat_unlock();
d72d904a
JA
1576 }
1577
1da177e4
LT
1578 total_bytes = bio_nbytes = 0;
1579 while ((bio = req->bio) != NULL) {
1580 int nbytes;
1581
bf2de6f5
JA
1582 /*
1583 * For an empty barrier request, the low level driver must
1584 * store a potential error location in ->sector. We pass
1585 * that back up in ->bi_sector.
1586 */
1587 if (blk_empty_barrier(req))
1588 bio->bi_sector = req->sector;
1589
1da177e4
LT
1590 if (nr_bytes >= bio->bi_size) {
1591 req->bio = bio->bi_next;
1592 nbytes = bio->bi_size;
5bb23a68 1593 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1594 next_idx = 0;
1595 bio_nbytes = 0;
1596 } else {
1597 int idx = bio->bi_idx + next_idx;
1598
1599 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1600 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1601 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
24c03d47 1602 __func__, bio->bi_idx, bio->bi_vcnt);
1da177e4
LT
1603 break;
1604 }
1605
1606 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1607 BIO_BUG_ON(nbytes > bio->bi_size);
1608
1609 /*
1610 * not a complete bvec done
1611 */
1612 if (unlikely(nbytes > nr_bytes)) {
1613 bio_nbytes += nr_bytes;
1614 total_bytes += nr_bytes;
1615 break;
1616 }
1617
1618 /*
1619 * advance to the next vector
1620 */
1621 next_idx++;
1622 bio_nbytes += nbytes;
1623 }
1624
1625 total_bytes += nbytes;
1626 nr_bytes -= nbytes;
1627
6728cb0e
JA
1628 bio = req->bio;
1629 if (bio) {
1da177e4
LT
1630 /*
1631 * end more in this run, or just return 'not-done'
1632 */
1633 if (unlikely(nr_bytes <= 0))
1634 break;
1635 }
1636 }
1637
1638 /*
1639 * completely done
1640 */
1641 if (!req->bio)
1642 return 0;
1643
1644 /*
1645 * if the request wasn't completed, update state
1646 */
1647 if (bio_nbytes) {
5bb23a68 1648 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
1649 bio->bi_idx += next_idx;
1650 bio_iovec(bio)->bv_offset += nr_bytes;
1651 bio_iovec(bio)->bv_len -= nr_bytes;
1652 }
1653
1654 blk_recalc_rq_sectors(req, total_bytes >> 9);
1655 blk_recalc_rq_segments(req);
1656 return 1;
1657}
1658
1da177e4
LT
1659/*
1660 * queue lock must be held
1661 */
5450d3e1 1662static void end_that_request_last(struct request *req, int error)
1da177e4
LT
1663{
1664 struct gendisk *disk = req->rq_disk;
8ffdc655 1665
242f9dcb
JA
1666 blk_delete_timer(req);
1667
b8286239
KU
1668 if (blk_rq_tagged(req))
1669 blk_queue_end_tag(req->q, req);
1670
1671 if (blk_queued_rq(req))
1672 blkdev_dequeue_request(req);
1da177e4
LT
1673
1674 if (unlikely(laptop_mode) && blk_fs_request(req))
1675 laptop_io_completion();
1676
fd0ff8aa
JA
1677 /*
1678 * Account IO completion. bar_rq isn't accounted as a normal
1679 * IO on queueing nor completion. Accounting the containing
1680 * request is enough.
1681 */
1682 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 1683 unsigned long duration = jiffies - req->start_time;
a362357b 1684 const int rw = rq_data_dir(req);
e71bf0d0 1685 struct hd_struct *part;
c9959059 1686 int cpu;
e71bf0d0 1687
074a7aca 1688 cpu = part_stat_lock();
e71bf0d0 1689 part = disk_map_sector_rcu(disk, req->sector);
a362357b 1690
074a7aca
TH
1691 part_stat_inc(cpu, part, ios[rw]);
1692 part_stat_add(cpu, part, ticks[rw], duration);
1693 part_round_stats(cpu, part);
1694 part_dec_in_flight(part);
e71bf0d0 1695
074a7aca 1696 part_stat_unlock();
1da177e4 1697 }
b8286239 1698
1da177e4 1699 if (req->end_io)
8ffdc655 1700 req->end_io(req, error);
b8286239
KU
1701 else {
1702 if (blk_bidi_rq(req))
1703 __blk_put_request(req->next_rq->q, req->next_rq);
1704
1da177e4 1705 __blk_put_request(req->q, req);
b8286239 1706 }
1da177e4
LT
1707}
1708
a0cd1285 1709static inline void __end_request(struct request *rq, int uptodate,
9e6e39f2 1710 unsigned int nr_bytes)
1da177e4 1711{
9e6e39f2
KU
1712 int error = 0;
1713
1714 if (uptodate <= 0)
1715 error = uptodate ? uptodate : -EIO;
1716
1717 __blk_end_request(rq, error, nr_bytes);
1da177e4
LT
1718}
1719
3b11313a
KU
1720/**
1721 * blk_rq_bytes - Returns bytes left to complete in the entire request
5d87a052 1722 * @rq: the request being processed
3b11313a
KU
1723 **/
1724unsigned int blk_rq_bytes(struct request *rq)
a0cd1285
JA
1725{
1726 if (blk_fs_request(rq))
1727 return rq->hard_nr_sectors << 9;
1728
1729 return rq->data_len;
1730}
3b11313a
KU
1731EXPORT_SYMBOL_GPL(blk_rq_bytes);
1732
1733/**
1734 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
5d87a052 1735 * @rq: the request being processed
3b11313a
KU
1736 **/
1737unsigned int blk_rq_cur_bytes(struct request *rq)
1738{
1739 if (blk_fs_request(rq))
1740 return rq->current_nr_sectors << 9;
1741
1742 if (rq->bio)
1743 return rq->bio->bi_size;
1744
1745 return rq->data_len;
1746}
1747EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
a0cd1285
JA
1748
1749/**
1750 * end_queued_request - end all I/O on a queued request
1751 * @rq: the request being processed
710027a4 1752 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1753 *
1754 * Description:
1755 * Ends all I/O on a request, and removes it from the block layer queues.
710027a4 1756 * Not suitable for normal I/O completion, unless the driver still has
a0cd1285
JA
1757 * the request attached to the block layer.
1758 *
1759 **/
1760void end_queued_request(struct request *rq, int uptodate)
1761{
9e6e39f2 1762 __end_request(rq, uptodate, blk_rq_bytes(rq));
a0cd1285
JA
1763}
1764EXPORT_SYMBOL(end_queued_request);
1765
1766/**
1767 * end_dequeued_request - end all I/O on a dequeued request
1768 * @rq: the request being processed
710027a4 1769 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1770 *
1771 * Description:
1772 * Ends all I/O on a request. The request must already have been
1773 * dequeued using blkdev_dequeue_request(), as is normally the case
1774 * for most drivers.
1775 *
1776 **/
1777void end_dequeued_request(struct request *rq, int uptodate)
1778{
9e6e39f2 1779 __end_request(rq, uptodate, blk_rq_bytes(rq));
a0cd1285
JA
1780}
1781EXPORT_SYMBOL(end_dequeued_request);
1782
1783
1784/**
1785 * end_request - end I/O on the current segment of the request
8f731f7d 1786 * @req: the request being processed
710027a4 1787 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1788 *
1789 * Description:
1790 * Ends I/O on the current segment of a request. If that is the only
1791 * remaining segment, the request is also completed and freed.
1792 *
710027a4
RD
1793 * This is a remnant of how older block drivers handled I/O completions.
1794 * Modern drivers typically end I/O on the full request in one go, unless
a0cd1285
JA
1795 * they have a residual value to account for. For that case this function
1796 * isn't really useful, unless the residual just happens to be the
1797 * full current segment. In other words, don't use this function in new
839e96af
JA
1798 * code. Use blk_end_request() or __blk_end_request() to end partial parts
1799 * of a request, or end_dequeued_request() and end_queued_request() to
1800 * completely end IO on a dequeued/queued request.
a0cd1285
JA
1801 *
1802 **/
1803void end_request(struct request *req, int uptodate)
1804{
9e6e39f2 1805 __end_request(req, uptodate, req->hard_cur_sectors << 9);
a0cd1285 1806}
1da177e4
LT
1807EXPORT_SYMBOL(end_request);
1808
32fab448
KU
1809static int end_that_request_data(struct request *rq, int error,
1810 unsigned int nr_bytes, unsigned int bidi_bytes)
1811{
1812 if (rq->bio) {
1813 if (__end_that_request_first(rq, error, nr_bytes))
1814 return 1;
1815
1816 /* Bidi request must be completed as a whole */
1817 if (blk_bidi_rq(rq) &&
1818 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1819 return 1;
1820 }
1821
1822 return 0;
1823}
1824
336cdb40 1825/**
e19a3ab0
KU
1826 * blk_end_io - Generic end_io function to complete a request.
1827 * @rq: the request being processed
710027a4 1828 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1829 * @nr_bytes: number of bytes to complete @rq
1830 * @bidi_bytes: number of bytes to complete @rq->next_rq
e19a3ab0
KU
1831 * @drv_callback: function called between completion of bios in the request
1832 * and completion of the request.
710027a4 1833 * If the callback returns non %0, this helper returns without
e19a3ab0 1834 * completion of the request.
336cdb40
KU
1835 *
1836 * Description:
e3a04fe3 1837 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
336cdb40
KU
1838 * If @rq has leftover, sets it up for the next range of segments.
1839 *
1840 * Return:
710027a4
RD
1841 * %0 - we are done with this request
1842 * %1 - this request is not freed yet, it still has pending buffers.
336cdb40 1843 **/
22b13210
JA
1844static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1845 unsigned int bidi_bytes,
1846 int (drv_callback)(struct request *))
336cdb40
KU
1847{
1848 struct request_queue *q = rq->q;
1849 unsigned long flags = 0UL;
336cdb40 1850
32fab448
KU
1851 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1852 return 1;
336cdb40 1853
e19a3ab0
KU
1854 /* Special feature for tricky drivers */
1855 if (drv_callback && drv_callback(rq))
1856 return 1;
1857
336cdb40
KU
1858 add_disk_randomness(rq->rq_disk);
1859
1860 spin_lock_irqsave(q->queue_lock, flags);
b8286239 1861 end_that_request_last(rq, error);
336cdb40
KU
1862 spin_unlock_irqrestore(q->queue_lock, flags);
1863
1864 return 0;
1865}
e19a3ab0
KU
1866
1867/**
1868 * blk_end_request - Helper function for drivers to complete the request.
1869 * @rq: the request being processed
710027a4 1870 * @error: %0 for success, < %0 for error
e19a3ab0
KU
1871 * @nr_bytes: number of bytes to complete
1872 *
1873 * Description:
1874 * Ends I/O on a number of bytes attached to @rq.
1875 * If @rq has leftover, sets it up for the next range of segments.
1876 *
1877 * Return:
710027a4
RD
1878 * %0 - we are done with this request
1879 * %1 - still buffers pending for this request
e19a3ab0 1880 **/
22b13210 1881int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 1882{
e3a04fe3 1883 return blk_end_io(rq, error, nr_bytes, 0, NULL);
e19a3ab0 1884}
336cdb40
KU
1885EXPORT_SYMBOL_GPL(blk_end_request);
1886
1887/**
1888 * __blk_end_request - Helper function for drivers to complete the request.
1889 * @rq: the request being processed
710027a4 1890 * @error: %0 for success, < %0 for error
336cdb40
KU
1891 * @nr_bytes: number of bytes to complete
1892 *
1893 * Description:
1894 * Must be called with queue lock held unlike blk_end_request().
1895 *
1896 * Return:
710027a4
RD
1897 * %0 - we are done with this request
1898 * %1 - still buffers pending for this request
336cdb40 1899 **/
22b13210 1900int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
336cdb40 1901{
60540161 1902 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
051cc395 1903 return 1;
336cdb40
KU
1904
1905 add_disk_randomness(rq->rq_disk);
1906
b8286239 1907 end_that_request_last(rq, error);
336cdb40
KU
1908
1909 return 0;
1910}
1911EXPORT_SYMBOL_GPL(__blk_end_request);
1912
e3a04fe3
KU
1913/**
1914 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1915 * @rq: the bidi request being processed
710027a4 1916 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1917 * @nr_bytes: number of bytes to complete @rq
1918 * @bidi_bytes: number of bytes to complete @rq->next_rq
1919 *
1920 * Description:
1921 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1922 *
1923 * Return:
710027a4
RD
1924 * %0 - we are done with this request
1925 * %1 - still buffers pending for this request
e3a04fe3 1926 **/
22b13210
JA
1927int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1928 unsigned int bidi_bytes)
e3a04fe3
KU
1929{
1930 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1931}
1932EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1933
32fab448
KU
1934/**
1935 * blk_update_request - Special helper function for request stacking drivers
1936 * @rq: the request being processed
1937 * @error: %0 for success, < %0 for error
1938 * @nr_bytes: number of bytes to complete @rq
1939 *
1940 * Description:
1941 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
1942 * the request structure even if @rq doesn't have leftover.
1943 * If @rq has leftover, sets it up for the next range of segments.
1944 *
1945 * This special helper function is only for request stacking drivers
1946 * (e.g. request-based dm) so that they can handle partial completion.
1947 * Actual device drivers should use blk_end_request instead.
1948 */
1949void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
1950{
1951 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
1952 /*
1953 * These members are not updated in end_that_request_data()
1954 * when all bios are completed.
1955 * Update them so that the request stacking driver can find
1956 * how many bytes remain in the request later.
1957 */
1958 rq->nr_sectors = rq->hard_nr_sectors = 0;
1959 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
1960 }
1961}
1962EXPORT_SYMBOL_GPL(blk_update_request);
1963
e19a3ab0
KU
1964/**
1965 * blk_end_request_callback - Special helper function for tricky drivers
1966 * @rq: the request being processed
710027a4 1967 * @error: %0 for success, < %0 for error
e19a3ab0
KU
1968 * @nr_bytes: number of bytes to complete
1969 * @drv_callback: function called between completion of bios in the request
1970 * and completion of the request.
710027a4 1971 * If the callback returns non %0, this helper returns without
e19a3ab0
KU
1972 * completion of the request.
1973 *
1974 * Description:
1975 * Ends I/O on a number of bytes attached to @rq.
1976 * If @rq has leftover, sets it up for the next range of segments.
1977 *
1978 * This special helper function is used only for existing tricky drivers.
1979 * (e.g. cdrom_newpc_intr() of ide-cd)
1980 * This interface will be removed when such drivers are rewritten.
1981 * Don't use this interface in other places anymore.
1982 *
1983 * Return:
710027a4
RD
1984 * %0 - we are done with this request
1985 * %1 - this request is not freed yet.
1986 * this request still has pending buffers or
1987 * the driver doesn't want to finish this request yet.
e19a3ab0 1988 **/
22b13210
JA
1989int blk_end_request_callback(struct request *rq, int error,
1990 unsigned int nr_bytes,
e19a3ab0
KU
1991 int (drv_callback)(struct request *))
1992{
e3a04fe3 1993 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
e19a3ab0
KU
1994}
1995EXPORT_SYMBOL_GPL(blk_end_request_callback);
1996
86db1e29
JA
1997void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1998 struct bio *bio)
1da177e4 1999{
d628eaef
DW
2000 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2001 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
4aff5e23 2002 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4 2003
fb2dce86
DW
2004 if (bio_has_data(bio)) {
2005 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2006 rq->buffer = bio_data(bio);
2007 }
1da177e4
LT
2008 rq->current_nr_sectors = bio_cur_sectors(bio);
2009 rq->hard_cur_sectors = rq->current_nr_sectors;
2010 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
0e75f906 2011 rq->data_len = bio->bi_size;
1da177e4
LT
2012
2013 rq->bio = rq->biotail = bio;
1da177e4 2014
66846572
N
2015 if (bio->bi_bdev)
2016 rq->rq_disk = bio->bi_bdev->bd_disk;
2017}
1da177e4 2018
18887ad9 2019int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2020{
2021 return queue_work(kblockd_workqueue, work);
2022}
1da177e4
LT
2023EXPORT_SYMBOL(kblockd_schedule_work);
2024
19a75d83 2025void kblockd_flush_work(struct work_struct *work)
1da177e4 2026{
28e53bdd 2027 cancel_work_sync(work);
1da177e4 2028}
19a75d83 2029EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
2030
2031int __init blk_dev_init(void)
2032{
2033 kblockd_workqueue = create_workqueue("kblockd");
2034 if (!kblockd_workqueue)
2035 panic("Failed to create kblockd\n");
2036
2037 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2038 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2039
8324aa91 2040 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2041 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2042
d38ecf93 2043 return 0;
1da177e4 2044}
1da177e4 2045