blk-mq: simplify blk_mq_hw_sysfs_cpus_show()
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
55782138
LZ
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/block.h>
1da177e4 38
8324aa91 39#include "blk.h"
5efd6113 40#include "blk-cgroup.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
cbae8d45 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 47
a73f730d
TH
48DEFINE_IDA(blk_queue_ida);
49
1da177e4
LT
50/*
51 * For the allocated request tables
52 */
320ae51f 53struct kmem_cache *request_cachep = NULL;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
6728cb0e 58struct kmem_cache *blk_requestq_cachep;
1da177e4 59
1da177e4
LT
60/*
61 * Controlling structure to kblockd
62 */
ff856bad 63static struct workqueue_struct *kblockd_workqueue;
1da177e4 64
8324aa91 65void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
66{
67 int nr;
68
69 nr = q->nr_requests - (q->nr_requests / 8) + 1;
70 if (nr > q->nr_requests)
71 nr = q->nr_requests;
72 q->nr_congestion_on = nr;
73
74 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
75 if (nr < 1)
76 nr = 1;
77 q->nr_congestion_off = nr;
78}
79
1da177e4
LT
80/**
81 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
82 * @bdev: device
83 *
84 * Locates the passed device's request queue and returns the address of its
85 * backing_dev_info
86 *
87 * Will return NULL if the request queue cannot be located.
88 */
89struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90{
91 struct backing_dev_info *ret = NULL;
165125e1 92 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
93
94 if (q)
95 ret = &q->backing_dev_info;
96 return ret;
97}
1da177e4
LT
98EXPORT_SYMBOL(blk_get_backing_dev_info);
99
2a4aa30c 100void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 101{
1afb20f3
FT
102 memset(rq, 0, sizeof(*rq));
103
1da177e4 104 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 105 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 106 rq->cpu = -1;
63a71386 107 rq->q = q;
a2dec7b3 108 rq->__sector = (sector_t) -1;
2e662b65
JA
109 INIT_HLIST_NODE(&rq->hash);
110 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 111 rq->cmd = rq->__cmd;
e2494e1b 112 rq->cmd_len = BLK_MAX_CDB;
63a71386 113 rq->tag = -1;
b243ddcb 114 rq->start_time = jiffies;
9195291e 115 set_start_time_ns(rq);
09e099d4 116 rq->part = NULL;
1da177e4 117}
2a4aa30c 118EXPORT_SYMBOL(blk_rq_init);
1da177e4 119
5bb23a68
N
120static void req_bio_endio(struct request *rq, struct bio *bio,
121 unsigned int nbytes, int error)
1da177e4 122{
143a87f4
TH
123 if (error)
124 clear_bit(BIO_UPTODATE, &bio->bi_flags);
125 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
126 error = -EIO;
797e7dbb 127
143a87f4
TH
128 if (unlikely(rq->cmd_flags & REQ_QUIET))
129 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 130
f79ea416 131 bio_advance(bio, nbytes);
7ba1ba12 132
143a87f4 133 /* don't actually finish bio if it's part of flush sequence */
4f024f37 134 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
143a87f4 135 bio_endio(bio, error);
1da177e4 136}
1da177e4 137
1da177e4
LT
138void blk_dump_rq_flags(struct request *rq, char *msg)
139{
140 int bit;
141
5953316d 142 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 143 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 144 (unsigned long long) rq->cmd_flags);
1da177e4 145
83096ebf
TH
146 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
147 (unsigned long long)blk_rq_pos(rq),
148 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 149 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 150 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 151
33659ebb 152 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 153 printk(KERN_INFO " cdb: ");
d34c87e4 154 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
155 printk("%02x ", rq->cmd[bit]);
156 printk("\n");
157 }
158}
1da177e4
LT
159EXPORT_SYMBOL(blk_dump_rq_flags);
160
3cca6dc1 161static void blk_delay_work(struct work_struct *work)
1da177e4 162{
3cca6dc1 163 struct request_queue *q;
1da177e4 164
3cca6dc1
JA
165 q = container_of(work, struct request_queue, delay_work.work);
166 spin_lock_irq(q->queue_lock);
24ecfbe2 167 __blk_run_queue(q);
3cca6dc1 168 spin_unlock_irq(q->queue_lock);
1da177e4 169}
1da177e4
LT
170
171/**
3cca6dc1
JA
172 * blk_delay_queue - restart queueing after defined interval
173 * @q: The &struct request_queue in question
174 * @msecs: Delay in msecs
1da177e4
LT
175 *
176 * Description:
3cca6dc1
JA
177 * Sometimes queueing needs to be postponed for a little while, to allow
178 * resources to come back. This function will make sure that queueing is
70460571 179 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
180 */
181void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 182{
70460571
BVA
183 if (likely(!blk_queue_dead(q)))
184 queue_delayed_work(kblockd_workqueue, &q->delay_work,
185 msecs_to_jiffies(msecs));
2ad8b1ef 186}
3cca6dc1 187EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 188
1da177e4
LT
189/**
190 * blk_start_queue - restart a previously stopped queue
165125e1 191 * @q: The &struct request_queue in question
1da177e4
LT
192 *
193 * Description:
194 * blk_start_queue() will clear the stop flag on the queue, and call
195 * the request_fn for the queue if it was in a stopped state when
196 * entered. Also see blk_stop_queue(). Queue lock must be held.
197 **/
165125e1 198void blk_start_queue(struct request_queue *q)
1da177e4 199{
a038e253
PBG
200 WARN_ON(!irqs_disabled());
201
75ad23bc 202 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 203 __blk_run_queue(q);
1da177e4 204}
1da177e4
LT
205EXPORT_SYMBOL(blk_start_queue);
206
207/**
208 * blk_stop_queue - stop a queue
165125e1 209 * @q: The &struct request_queue in question
1da177e4
LT
210 *
211 * Description:
212 * The Linux block layer assumes that a block driver will consume all
213 * entries on the request queue when the request_fn strategy is called.
214 * Often this will not happen, because of hardware limitations (queue
215 * depth settings). If a device driver gets a 'queue full' response,
216 * or if it simply chooses not to queue more I/O at one point, it can
217 * call this function to prevent the request_fn from being called until
218 * the driver has signalled it's ready to go again. This happens by calling
219 * blk_start_queue() to restart queue operations. Queue lock must be held.
220 **/
165125e1 221void blk_stop_queue(struct request_queue *q)
1da177e4 222{
136b5721 223 cancel_delayed_work(&q->delay_work);
75ad23bc 224 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
225}
226EXPORT_SYMBOL(blk_stop_queue);
227
228/**
229 * blk_sync_queue - cancel any pending callbacks on a queue
230 * @q: the queue
231 *
232 * Description:
233 * The block layer may perform asynchronous callback activity
234 * on a queue, such as calling the unplug function after a timeout.
235 * A block device may call blk_sync_queue to ensure that any
236 * such activity is cancelled, thus allowing it to release resources
59c51591 237 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
238 * that its ->make_request_fn will not re-add plugging prior to calling
239 * this function.
240 *
da527770
VG
241 * This function does not cancel any asynchronous activity arising
242 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 243 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 244 *
1da177e4
LT
245 */
246void blk_sync_queue(struct request_queue *q)
247{
70ed28b9 248 del_timer_sync(&q->timeout);
f04c1fe7
ML
249
250 if (q->mq_ops) {
251 struct blk_mq_hw_ctx *hctx;
252 int i;
253
254 queue_for_each_hw_ctx(q, hctx, i)
255 cancel_delayed_work_sync(&hctx->delayed_work);
256 } else {
257 cancel_delayed_work_sync(&q->delay_work);
258 }
1da177e4
LT
259}
260EXPORT_SYMBOL(blk_sync_queue);
261
c246e80d
BVA
262/**
263 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
264 * @q: The queue to run
265 *
266 * Description:
267 * Invoke request handling on a queue if there are any pending requests.
268 * May be used to restart request handling after a request has completed.
269 * This variant runs the queue whether or not the queue has been
270 * stopped. Must be called with the queue lock held and interrupts
271 * disabled. See also @blk_run_queue.
272 */
273inline void __blk_run_queue_uncond(struct request_queue *q)
274{
275 if (unlikely(blk_queue_dead(q)))
276 return;
277
24faf6f6
BVA
278 /*
279 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
280 * the queue lock internally. As a result multiple threads may be
281 * running such a request function concurrently. Keep track of the
282 * number of active request_fn invocations such that blk_drain_queue()
283 * can wait until all these request_fn calls have finished.
284 */
285 q->request_fn_active++;
c246e80d 286 q->request_fn(q);
24faf6f6 287 q->request_fn_active--;
c246e80d
BVA
288}
289
1da177e4 290/**
80a4b58e 291 * __blk_run_queue - run a single device queue
1da177e4 292 * @q: The queue to run
80a4b58e
JA
293 *
294 * Description:
295 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 296 * held and interrupts disabled.
1da177e4 297 */
24ecfbe2 298void __blk_run_queue(struct request_queue *q)
1da177e4 299{
a538cd03
TH
300 if (unlikely(blk_queue_stopped(q)))
301 return;
302
c246e80d 303 __blk_run_queue_uncond(q);
75ad23bc
NP
304}
305EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 306
24ecfbe2
CH
307/**
308 * blk_run_queue_async - run a single device queue in workqueue context
309 * @q: The queue to run
310 *
311 * Description:
312 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 313 * of us. The caller must hold the queue lock.
24ecfbe2
CH
314 */
315void blk_run_queue_async(struct request_queue *q)
316{
70460571 317 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 318 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 319}
c21e6beb 320EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 321
75ad23bc
NP
322/**
323 * blk_run_queue - run a single device queue
324 * @q: The queue to run
80a4b58e
JA
325 *
326 * Description:
327 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 328 * May be used to restart queueing when a request has completed.
75ad23bc
NP
329 */
330void blk_run_queue(struct request_queue *q)
331{
332 unsigned long flags;
333
334 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 335 __blk_run_queue(q);
1da177e4
LT
336 spin_unlock_irqrestore(q->queue_lock, flags);
337}
338EXPORT_SYMBOL(blk_run_queue);
339
165125e1 340void blk_put_queue(struct request_queue *q)
483f4afc
AV
341{
342 kobject_put(&q->kobj);
343}
d86e0e83 344EXPORT_SYMBOL(blk_put_queue);
483f4afc 345
e3c78ca5 346/**
807592a4 347 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 348 * @q: queue to drain
c9a929dd 349 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 350 *
c9a929dd
TH
351 * Drain requests from @q. If @drain_all is set, all requests are drained.
352 * If not, only ELVPRIV requests are drained. The caller is responsible
353 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 354 */
807592a4
BVA
355static void __blk_drain_queue(struct request_queue *q, bool drain_all)
356 __releases(q->queue_lock)
357 __acquires(q->queue_lock)
e3c78ca5 358{
458f27a9
AH
359 int i;
360
807592a4
BVA
361 lockdep_assert_held(q->queue_lock);
362
e3c78ca5 363 while (true) {
481a7d64 364 bool drain = false;
e3c78ca5 365
b855b04a
TH
366 /*
367 * The caller might be trying to drain @q before its
368 * elevator is initialized.
369 */
370 if (q->elevator)
371 elv_drain_elevator(q);
372
5efd6113 373 blkcg_drain_queue(q);
e3c78ca5 374
4eabc941
TH
375 /*
376 * This function might be called on a queue which failed
b855b04a
TH
377 * driver init after queue creation or is not yet fully
378 * active yet. Some drivers (e.g. fd and loop) get unhappy
379 * in such cases. Kick queue iff dispatch queue has
380 * something on it and @q has request_fn set.
4eabc941 381 */
b855b04a 382 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 383 __blk_run_queue(q);
c9a929dd 384
8a5ecdd4 385 drain |= q->nr_rqs_elvpriv;
24faf6f6 386 drain |= q->request_fn_active;
481a7d64
TH
387
388 /*
389 * Unfortunately, requests are queued at and tracked from
390 * multiple places and there's no single counter which can
391 * be drained. Check all the queues and counters.
392 */
393 if (drain_all) {
394 drain |= !list_empty(&q->queue_head);
395 for (i = 0; i < 2; i++) {
8a5ecdd4 396 drain |= q->nr_rqs[i];
481a7d64
TH
397 drain |= q->in_flight[i];
398 drain |= !list_empty(&q->flush_queue[i]);
399 }
400 }
e3c78ca5 401
481a7d64 402 if (!drain)
e3c78ca5 403 break;
807592a4
BVA
404
405 spin_unlock_irq(q->queue_lock);
406
e3c78ca5 407 msleep(10);
807592a4
BVA
408
409 spin_lock_irq(q->queue_lock);
e3c78ca5 410 }
458f27a9
AH
411
412 /*
413 * With queue marked dead, any woken up waiter will fail the
414 * allocation path, so the wakeup chaining is lost and we're
415 * left with hung waiters. We need to wake up those waiters.
416 */
417 if (q->request_fn) {
a051661c
TH
418 struct request_list *rl;
419
a051661c
TH
420 blk_queue_for_each_rl(rl, q)
421 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
422 wake_up_all(&rl->wait[i]);
458f27a9 423 }
e3c78ca5
TH
424}
425
d732580b
TH
426/**
427 * blk_queue_bypass_start - enter queue bypass mode
428 * @q: queue of interest
429 *
430 * In bypass mode, only the dispatch FIFO queue of @q is used. This
431 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 432 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
433 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
434 * inside queue or RCU read lock.
d732580b
TH
435 */
436void blk_queue_bypass_start(struct request_queue *q)
437{
b82d4b19
TH
438 bool drain;
439
d732580b 440 spin_lock_irq(q->queue_lock);
b82d4b19 441 drain = !q->bypass_depth++;
d732580b
TH
442 queue_flag_set(QUEUE_FLAG_BYPASS, q);
443 spin_unlock_irq(q->queue_lock);
444
b82d4b19 445 if (drain) {
807592a4
BVA
446 spin_lock_irq(q->queue_lock);
447 __blk_drain_queue(q, false);
448 spin_unlock_irq(q->queue_lock);
449
b82d4b19
TH
450 /* ensure blk_queue_bypass() is %true inside RCU read lock */
451 synchronize_rcu();
452 }
d732580b
TH
453}
454EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
455
456/**
457 * blk_queue_bypass_end - leave queue bypass mode
458 * @q: queue of interest
459 *
460 * Leave bypass mode and restore the normal queueing behavior.
461 */
462void blk_queue_bypass_end(struct request_queue *q)
463{
464 spin_lock_irq(q->queue_lock);
465 if (!--q->bypass_depth)
466 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
467 WARN_ON_ONCE(q->bypass_depth < 0);
468 spin_unlock_irq(q->queue_lock);
469}
470EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
471
c9a929dd
TH
472/**
473 * blk_cleanup_queue - shutdown a request queue
474 * @q: request queue to shutdown
475 *
c246e80d
BVA
476 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
477 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 478 */
6728cb0e 479void blk_cleanup_queue(struct request_queue *q)
483f4afc 480{
c9a929dd 481 spinlock_t *lock = q->queue_lock;
e3335de9 482
3f3299d5 483 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 484 mutex_lock(&q->sysfs_lock);
3f3299d5 485 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 486 spin_lock_irq(lock);
6ecf23af 487
80fd9979 488 /*
3f3299d5 489 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
490 * that, unlike blk_queue_bypass_start(), we aren't performing
491 * synchronize_rcu() after entering bypass mode to avoid the delay
492 * as some drivers create and destroy a lot of queues while
493 * probing. This is still safe because blk_release_queue() will be
494 * called only after the queue refcnt drops to zero and nothing,
495 * RCU or not, would be traversing the queue by then.
496 */
6ecf23af
TH
497 q->bypass_depth++;
498 queue_flag_set(QUEUE_FLAG_BYPASS, q);
499
c9a929dd
TH
500 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
501 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 502 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
503 spin_unlock_irq(lock);
504 mutex_unlock(&q->sysfs_lock);
505
c246e80d
BVA
506 /*
507 * Drain all requests queued before DYING marking. Set DEAD flag to
508 * prevent that q->request_fn() gets invoked after draining finished.
509 */
43a5e4e2
ML
510 if (q->mq_ops) {
511 blk_mq_drain_queue(q);
512 spin_lock_irq(lock);
513 } else {
514 spin_lock_irq(lock);
515 __blk_drain_queue(q, true);
516 }
c246e80d 517 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 518 spin_unlock_irq(lock);
c9a929dd
TH
519
520 /* @q won't process any more request, flush async actions */
521 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
522 blk_sync_queue(q);
523
5e5cfac0
AH
524 spin_lock_irq(lock);
525 if (q->queue_lock != &q->__queue_lock)
526 q->queue_lock = &q->__queue_lock;
527 spin_unlock_irq(lock);
528
c9a929dd 529 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
530 blk_put_queue(q);
531}
1da177e4
LT
532EXPORT_SYMBOL(blk_cleanup_queue);
533
5b788ce3
TH
534int blk_init_rl(struct request_list *rl, struct request_queue *q,
535 gfp_t gfp_mask)
1da177e4 536{
1abec4fd
MS
537 if (unlikely(rl->rq_pool))
538 return 0;
539
5b788ce3 540 rl->q = q;
1faa16d2
JA
541 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
542 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
543 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
544 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 545
1946089a 546 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 547 mempool_free_slab, request_cachep,
5b788ce3 548 gfp_mask, q->node);
1da177e4
LT
549 if (!rl->rq_pool)
550 return -ENOMEM;
551
552 return 0;
553}
554
5b788ce3
TH
555void blk_exit_rl(struct request_list *rl)
556{
557 if (rl->rq_pool)
558 mempool_destroy(rl->rq_pool);
559}
560
165125e1 561struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 562{
c304a51b 563 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
564}
565EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 566
165125e1 567struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 568{
165125e1 569 struct request_queue *q;
e0bf68dd 570 int err;
1946089a 571
8324aa91 572 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 573 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
574 if (!q)
575 return NULL;
576
320ae51f
JA
577 if (percpu_counter_init(&q->mq_usage_counter, 0))
578 goto fail_q;
579
00380a40 580 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 581 if (q->id < 0)
320ae51f 582 goto fail_c;
a73f730d 583
0989a025
JA
584 q->backing_dev_info.ra_pages =
585 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
586 q->backing_dev_info.state = 0;
587 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 588 q->backing_dev_info.name = "block";
5151412d 589 q->node = node_id;
0989a025 590
e0bf68dd 591 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
592 if (err)
593 goto fail_id;
e0bf68dd 594
31373d09
MG
595 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
596 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 597 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 598 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 599 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 600 INIT_LIST_HEAD(&q->icq_list);
4eef3049 601#ifdef CONFIG_BLK_CGROUP
e8989fae 602 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 603#endif
ae1b1539
TH
604 INIT_LIST_HEAD(&q->flush_queue[0]);
605 INIT_LIST_HEAD(&q->flush_queue[1]);
606 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 607 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 608
8324aa91 609 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 610
483f4afc 611 mutex_init(&q->sysfs_lock);
e7e72bf6 612 spin_lock_init(&q->__queue_lock);
483f4afc 613
c94a96ac
VG
614 /*
615 * By default initialize queue_lock to internal lock and driver can
616 * override it later if need be.
617 */
618 q->queue_lock = &q->__queue_lock;
619
b82d4b19
TH
620 /*
621 * A queue starts its life with bypass turned on to avoid
622 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
623 * init. The initial bypass will be finished when the queue is
624 * registered by blk_register_queue().
b82d4b19
TH
625 */
626 q->bypass_depth = 1;
627 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
628
320ae51f
JA
629 init_waitqueue_head(&q->mq_freeze_wq);
630
5efd6113 631 if (blkcg_init_queue(q))
fff4996b 632 goto fail_bdi;
f51b802c 633
1da177e4 634 return q;
a73f730d 635
fff4996b
MP
636fail_bdi:
637 bdi_destroy(&q->backing_dev_info);
a73f730d
TH
638fail_id:
639 ida_simple_remove(&blk_queue_ida, q->id);
320ae51f
JA
640fail_c:
641 percpu_counter_destroy(&q->mq_usage_counter);
a73f730d
TH
642fail_q:
643 kmem_cache_free(blk_requestq_cachep, q);
644 return NULL;
1da177e4 645}
1946089a 646EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
647
648/**
649 * blk_init_queue - prepare a request queue for use with a block device
650 * @rfn: The function to be called to process requests that have been
651 * placed on the queue.
652 * @lock: Request queue spin lock
653 *
654 * Description:
655 * If a block device wishes to use the standard request handling procedures,
656 * which sorts requests and coalesces adjacent requests, then it must
657 * call blk_init_queue(). The function @rfn will be called when there
658 * are requests on the queue that need to be processed. If the device
659 * supports plugging, then @rfn may not be called immediately when requests
660 * are available on the queue, but may be called at some time later instead.
661 * Plugged queues are generally unplugged when a buffer belonging to one
662 * of the requests on the queue is needed, or due to memory pressure.
663 *
664 * @rfn is not required, or even expected, to remove all requests off the
665 * queue, but only as many as it can handle at a time. If it does leave
666 * requests on the queue, it is responsible for arranging that the requests
667 * get dealt with eventually.
668 *
669 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
670 * request queue; this lock will be taken also from interrupt context, so irq
671 * disabling is needed for it.
1da177e4 672 *
710027a4 673 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
674 * it didn't succeed.
675 *
676 * Note:
677 * blk_init_queue() must be paired with a blk_cleanup_queue() call
678 * when the block device is deactivated (such as at module unload).
679 **/
1946089a 680
165125e1 681struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 682{
c304a51b 683 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
684}
685EXPORT_SYMBOL(blk_init_queue);
686
165125e1 687struct request_queue *
1946089a
CL
688blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
689{
c86d1b8a 690 struct request_queue *uninit_q, *q;
1da177e4 691
c86d1b8a
MS
692 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
693 if (!uninit_q)
694 return NULL;
695
5151412d 696 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 697 if (!q)
7982e90c 698 blk_cleanup_queue(uninit_q);
18741986 699
7982e90c 700 return q;
01effb0d
MS
701}
702EXPORT_SYMBOL(blk_init_queue_node);
703
704struct request_queue *
705blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
706 spinlock_t *lock)
01effb0d 707{
1da177e4
LT
708 if (!q)
709 return NULL;
710
7982e90c
MS
711 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
712 if (!q->flush_rq)
713 return NULL;
714
a051661c 715 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 716 goto fail;
1da177e4
LT
717
718 q->request_fn = rfn;
1da177e4 719 q->prep_rq_fn = NULL;
28018c24 720 q->unprep_rq_fn = NULL;
60ea8226 721 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
722
723 /* Override internal queue lock with supplied lock pointer */
724 if (lock)
725 q->queue_lock = lock;
1da177e4 726
f3b144aa
JA
727 /*
728 * This also sets hw/phys segments, boundary and size
729 */
c20e8de2 730 blk_queue_make_request(q, blk_queue_bio);
1da177e4 731
44ec9542
AS
732 q->sg_reserved_size = INT_MAX;
733
eb1c160b
TS
734 /* Protect q->elevator from elevator_change */
735 mutex_lock(&q->sysfs_lock);
736
b82d4b19 737 /* init elevator */
eb1c160b
TS
738 if (elevator_init(q, NULL)) {
739 mutex_unlock(&q->sysfs_lock);
708f04d2 740 goto fail;
eb1c160b
TS
741 }
742
743 mutex_unlock(&q->sysfs_lock);
744
b82d4b19 745 return q;
708f04d2
DJ
746
747fail:
748 kfree(q->flush_rq);
749 return NULL;
1da177e4 750}
5151412d 751EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 752
09ac46c4 753bool blk_get_queue(struct request_queue *q)
1da177e4 754{
3f3299d5 755 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
756 __blk_get_queue(q);
757 return true;
1da177e4
LT
758 }
759
09ac46c4 760 return false;
1da177e4 761}
d86e0e83 762EXPORT_SYMBOL(blk_get_queue);
1da177e4 763
5b788ce3 764static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 765{
f1f8cc94 766 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 767 elv_put_request(rl->q, rq);
f1f8cc94 768 if (rq->elv.icq)
11a3122f 769 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
770 }
771
5b788ce3 772 mempool_free(rq, rl->rq_pool);
1da177e4
LT
773}
774
1da177e4
LT
775/*
776 * ioc_batching returns true if the ioc is a valid batching request and
777 * should be given priority access to a request.
778 */
165125e1 779static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
780{
781 if (!ioc)
782 return 0;
783
784 /*
785 * Make sure the process is able to allocate at least 1 request
786 * even if the batch times out, otherwise we could theoretically
787 * lose wakeups.
788 */
789 return ioc->nr_batch_requests == q->nr_batching ||
790 (ioc->nr_batch_requests > 0
791 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
792}
793
794/*
795 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
796 * will cause the process to be a "batcher" on all queues in the system. This
797 * is the behaviour we want though - once it gets a wakeup it should be given
798 * a nice run.
799 */
165125e1 800static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
801{
802 if (!ioc || ioc_batching(q, ioc))
803 return;
804
805 ioc->nr_batch_requests = q->nr_batching;
806 ioc->last_waited = jiffies;
807}
808
5b788ce3 809static void __freed_request(struct request_list *rl, int sync)
1da177e4 810{
5b788ce3 811 struct request_queue *q = rl->q;
1da177e4 812
a051661c
TH
813 /*
814 * bdi isn't aware of blkcg yet. As all async IOs end up root
815 * blkcg anyway, just use root blkcg state.
816 */
817 if (rl == &q->root_rl &&
818 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 819 blk_clear_queue_congested(q, sync);
1da177e4 820
1faa16d2
JA
821 if (rl->count[sync] + 1 <= q->nr_requests) {
822 if (waitqueue_active(&rl->wait[sync]))
823 wake_up(&rl->wait[sync]);
1da177e4 824
5b788ce3 825 blk_clear_rl_full(rl, sync);
1da177e4
LT
826 }
827}
828
829/*
830 * A request has just been released. Account for it, update the full and
831 * congestion status, wake up any waiters. Called under q->queue_lock.
832 */
5b788ce3 833static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 834{
5b788ce3 835 struct request_queue *q = rl->q;
75eb6c37 836 int sync = rw_is_sync(flags);
1da177e4 837
8a5ecdd4 838 q->nr_rqs[sync]--;
1faa16d2 839 rl->count[sync]--;
75eb6c37 840 if (flags & REQ_ELVPRIV)
8a5ecdd4 841 q->nr_rqs_elvpriv--;
1da177e4 842
5b788ce3 843 __freed_request(rl, sync);
1da177e4 844
1faa16d2 845 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 846 __freed_request(rl, sync ^ 1);
1da177e4
LT
847}
848
9d5a4e94
MS
849/*
850 * Determine if elevator data should be initialized when allocating the
851 * request associated with @bio.
852 */
853static bool blk_rq_should_init_elevator(struct bio *bio)
854{
855 if (!bio)
856 return true;
857
858 /*
859 * Flush requests do not use the elevator so skip initialization.
860 * This allows a request to share the flush and elevator data.
861 */
862 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
863 return false;
864
865 return true;
866}
867
852c788f
TH
868/**
869 * rq_ioc - determine io_context for request allocation
870 * @bio: request being allocated is for this bio (can be %NULL)
871 *
872 * Determine io_context to use for request allocation for @bio. May return
873 * %NULL if %current->io_context doesn't exist.
874 */
875static struct io_context *rq_ioc(struct bio *bio)
876{
877#ifdef CONFIG_BLK_CGROUP
878 if (bio && bio->bi_ioc)
879 return bio->bi_ioc;
880#endif
881 return current->io_context;
882}
883
da8303c6 884/**
a06e05e6 885 * __get_request - get a free request
5b788ce3 886 * @rl: request list to allocate from
da8303c6
TH
887 * @rw_flags: RW and SYNC flags
888 * @bio: bio to allocate request for (can be %NULL)
889 * @gfp_mask: allocation mask
890 *
891 * Get a free request from @q. This function may fail under memory
892 * pressure or if @q is dead.
893 *
894 * Must be callled with @q->queue_lock held and,
895 * Returns %NULL on failure, with @q->queue_lock held.
896 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 897 */
5b788ce3 898static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 899 struct bio *bio, gfp_t gfp_mask)
1da177e4 900{
5b788ce3 901 struct request_queue *q = rl->q;
b679281a 902 struct request *rq;
7f4b35d1
TH
903 struct elevator_type *et = q->elevator->type;
904 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 905 struct io_cq *icq = NULL;
1faa16d2 906 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 907 int may_queue;
88ee5ef1 908
3f3299d5 909 if (unlikely(blk_queue_dying(q)))
da8303c6
TH
910 return NULL;
911
7749a8d4 912 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
913 if (may_queue == ELV_MQUEUE_NO)
914 goto rq_starved;
915
1faa16d2
JA
916 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
917 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
918 /*
919 * The queue will fill after this allocation, so set
920 * it as full, and mark this process as "batching".
921 * This process will be allowed to complete a batch of
922 * requests, others will be blocked.
923 */
5b788ce3 924 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 925 ioc_set_batching(q, ioc);
5b788ce3 926 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
927 } else {
928 if (may_queue != ELV_MQUEUE_MUST
929 && !ioc_batching(q, ioc)) {
930 /*
931 * The queue is full and the allocating
932 * process is not a "batcher", and not
933 * exempted by the IO scheduler
934 */
b679281a 935 return NULL;
88ee5ef1
JA
936 }
937 }
1da177e4 938 }
a051661c
TH
939 /*
940 * bdi isn't aware of blkcg yet. As all async IOs end up
941 * root blkcg anyway, just use root blkcg state.
942 */
943 if (rl == &q->root_rl)
944 blk_set_queue_congested(q, is_sync);
1da177e4
LT
945 }
946
082cf69e
JA
947 /*
948 * Only allow batching queuers to allocate up to 50% over the defined
949 * limit of requests, otherwise we could have thousands of requests
950 * allocated with any setting of ->nr_requests
951 */
1faa16d2 952 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 953 return NULL;
fd782a4a 954
8a5ecdd4 955 q->nr_rqs[is_sync]++;
1faa16d2
JA
956 rl->count[is_sync]++;
957 rl->starved[is_sync] = 0;
cb98fc8b 958
f1f8cc94
TH
959 /*
960 * Decide whether the new request will be managed by elevator. If
961 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
962 * prevent the current elevator from being destroyed until the new
963 * request is freed. This guarantees icq's won't be destroyed and
964 * makes creating new ones safe.
965 *
966 * Also, lookup icq while holding queue_lock. If it doesn't exist,
967 * it will be created after releasing queue_lock.
968 */
d732580b 969 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 970 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 971 q->nr_rqs_elvpriv++;
f1f8cc94
TH
972 if (et->icq_cache && ioc)
973 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 974 }
cb98fc8b 975
f253b86b
JA
976 if (blk_queue_io_stat(q))
977 rw_flags |= REQ_IO_STAT;
1da177e4
LT
978 spin_unlock_irq(q->queue_lock);
979
29e2b09a 980 /* allocate and init request */
5b788ce3 981 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 982 if (!rq)
b679281a 983 goto fail_alloc;
1da177e4 984
29e2b09a 985 blk_rq_init(q, rq);
a051661c 986 blk_rq_set_rl(rq, rl);
29e2b09a
TH
987 rq->cmd_flags = rw_flags | REQ_ALLOCED;
988
aaf7c680 989 /* init elvpriv */
29e2b09a 990 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 991 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
992 if (ioc)
993 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
994 if (!icq)
995 goto fail_elvpriv;
29e2b09a 996 }
aaf7c680
TH
997
998 rq->elv.icq = icq;
999 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1000 goto fail_elvpriv;
1001
1002 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1003 if (icq)
1004 get_io_context(icq->ioc);
1005 }
aaf7c680 1006out:
88ee5ef1
JA
1007 /*
1008 * ioc may be NULL here, and ioc_batching will be false. That's
1009 * OK, if the queue is under the request limit then requests need
1010 * not count toward the nr_batch_requests limit. There will always
1011 * be some limit enforced by BLK_BATCH_TIME.
1012 */
1da177e4
LT
1013 if (ioc_batching(q, ioc))
1014 ioc->nr_batch_requests--;
6728cb0e 1015
1faa16d2 1016 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1017 return rq;
b679281a 1018
aaf7c680
TH
1019fail_elvpriv:
1020 /*
1021 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1022 * and may fail indefinitely under memory pressure and thus
1023 * shouldn't stall IO. Treat this request as !elvpriv. This will
1024 * disturb iosched and blkcg but weird is bettern than dead.
1025 */
1026 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1027 dev_name(q->backing_dev_info.dev));
1028
1029 rq->cmd_flags &= ~REQ_ELVPRIV;
1030 rq->elv.icq = NULL;
1031
1032 spin_lock_irq(q->queue_lock);
8a5ecdd4 1033 q->nr_rqs_elvpriv--;
aaf7c680
TH
1034 spin_unlock_irq(q->queue_lock);
1035 goto out;
1036
b679281a
TH
1037fail_alloc:
1038 /*
1039 * Allocation failed presumably due to memory. Undo anything we
1040 * might have messed up.
1041 *
1042 * Allocating task should really be put onto the front of the wait
1043 * queue, but this is pretty rare.
1044 */
1045 spin_lock_irq(q->queue_lock);
5b788ce3 1046 freed_request(rl, rw_flags);
b679281a
TH
1047
1048 /*
1049 * in the very unlikely event that allocation failed and no
1050 * requests for this direction was pending, mark us starved so that
1051 * freeing of a request in the other direction will notice
1052 * us. another possible fix would be to split the rq mempool into
1053 * READ and WRITE
1054 */
1055rq_starved:
1056 if (unlikely(rl->count[is_sync] == 0))
1057 rl->starved[is_sync] = 1;
1058 return NULL;
1da177e4
LT
1059}
1060
da8303c6 1061/**
a06e05e6 1062 * get_request - get a free request
da8303c6
TH
1063 * @q: request_queue to allocate request from
1064 * @rw_flags: RW and SYNC flags
1065 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1066 * @gfp_mask: allocation mask
da8303c6 1067 *
a06e05e6
TH
1068 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1069 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1070 *
da8303c6
TH
1071 * Must be callled with @q->queue_lock held and,
1072 * Returns %NULL on failure, with @q->queue_lock held.
1073 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1074 */
a06e05e6
TH
1075static struct request *get_request(struct request_queue *q, int rw_flags,
1076 struct bio *bio, gfp_t gfp_mask)
1da177e4 1077{
1faa16d2 1078 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1079 DEFINE_WAIT(wait);
a051661c 1080 struct request_list *rl;
1da177e4 1081 struct request *rq;
a051661c
TH
1082
1083 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1084retry:
a051661c 1085 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1086 if (rq)
1087 return rq;
1da177e4 1088
3f3299d5 1089 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1090 blk_put_rl(rl);
a06e05e6 1091 return NULL;
a051661c 1092 }
1da177e4 1093
a06e05e6
TH
1094 /* wait on @rl and retry */
1095 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1096 TASK_UNINTERRUPTIBLE);
1da177e4 1097
a06e05e6 1098 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1099
a06e05e6
TH
1100 spin_unlock_irq(q->queue_lock);
1101 io_schedule();
d6344532 1102
a06e05e6
TH
1103 /*
1104 * After sleeping, we become a "batching" process and will be able
1105 * to allocate at least one request, and up to a big batch of them
1106 * for a small period time. See ioc_batching, ioc_set_batching
1107 */
a06e05e6 1108 ioc_set_batching(q, current->io_context);
05caf8db 1109
a06e05e6
TH
1110 spin_lock_irq(q->queue_lock);
1111 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1112
a06e05e6 1113 goto retry;
1da177e4
LT
1114}
1115
320ae51f
JA
1116static struct request *blk_old_get_request(struct request_queue *q, int rw,
1117 gfp_t gfp_mask)
1da177e4
LT
1118{
1119 struct request *rq;
1120
1121 BUG_ON(rw != READ && rw != WRITE);
1122
7f4b35d1
TH
1123 /* create ioc upfront */
1124 create_io_context(gfp_mask, q->node);
1125
d6344532 1126 spin_lock_irq(q->queue_lock);
a06e05e6 1127 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1128 if (!rq)
1129 spin_unlock_irq(q->queue_lock);
d6344532 1130 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1131
1132 return rq;
1133}
320ae51f
JA
1134
1135struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1136{
1137 if (q->mq_ops)
18741986 1138 return blk_mq_alloc_request(q, rw, gfp_mask);
320ae51f
JA
1139 else
1140 return blk_old_get_request(q, rw, gfp_mask);
1141}
1da177e4
LT
1142EXPORT_SYMBOL(blk_get_request);
1143
dc72ef4a 1144/**
79eb63e9 1145 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1146 * @q: target request queue
79eb63e9
BH
1147 * @bio: The bio describing the memory mappings that will be submitted for IO.
1148 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1149 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1150 *
79eb63e9
BH
1151 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1152 * type commands. Where the struct request needs to be farther initialized by
1153 * the caller. It is passed a &struct bio, which describes the memory info of
1154 * the I/O transfer.
dc72ef4a 1155 *
79eb63e9
BH
1156 * The caller of blk_make_request must make sure that bi_io_vec
1157 * are set to describe the memory buffers. That bio_data_dir() will return
1158 * the needed direction of the request. (And all bio's in the passed bio-chain
1159 * are properly set accordingly)
1160 *
1161 * If called under none-sleepable conditions, mapped bio buffers must not
1162 * need bouncing, by calling the appropriate masked or flagged allocator,
1163 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1164 * BUG.
53674ac5
JA
1165 *
1166 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1167 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1168 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1169 * completion of a bio that hasn't been submitted yet, thus resulting in a
1170 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1171 * of bio_alloc(), as that avoids the mempool deadlock.
1172 * If possible a big IO should be split into smaller parts when allocation
1173 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1174 */
79eb63e9
BH
1175struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1176 gfp_t gfp_mask)
dc72ef4a 1177{
79eb63e9
BH
1178 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1179
1180 if (unlikely(!rq))
1181 return ERR_PTR(-ENOMEM);
1182
1183 for_each_bio(bio) {
1184 struct bio *bounce_bio = bio;
1185 int ret;
1186
1187 blk_queue_bounce(q, &bounce_bio);
1188 ret = blk_rq_append_bio(q, rq, bounce_bio);
1189 if (unlikely(ret)) {
1190 blk_put_request(rq);
1191 return ERR_PTR(ret);
1192 }
1193 }
1194
1195 return rq;
dc72ef4a 1196}
79eb63e9 1197EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1198
1da177e4
LT
1199/**
1200 * blk_requeue_request - put a request back on queue
1201 * @q: request queue where request should be inserted
1202 * @rq: request to be inserted
1203 *
1204 * Description:
1205 * Drivers often keep queueing requests until the hardware cannot accept
1206 * more, when that condition happens we need to put the request back
1207 * on the queue. Must be called with queue lock held.
1208 */
165125e1 1209void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1210{
242f9dcb
JA
1211 blk_delete_timer(rq);
1212 blk_clear_rq_complete(rq);
5f3ea37c 1213 trace_block_rq_requeue(q, rq);
2056a782 1214
1da177e4
LT
1215 if (blk_rq_tagged(rq))
1216 blk_queue_end_tag(q, rq);
1217
ba396a6c
JB
1218 BUG_ON(blk_queued_rq(rq));
1219
1da177e4
LT
1220 elv_requeue_request(q, rq);
1221}
1da177e4
LT
1222EXPORT_SYMBOL(blk_requeue_request);
1223
73c10101
JA
1224static void add_acct_request(struct request_queue *q, struct request *rq,
1225 int where)
1226{
320ae51f 1227 blk_account_io_start(rq, true);
7eaceacc 1228 __elv_add_request(q, rq, where);
73c10101
JA
1229}
1230
074a7aca
TH
1231static void part_round_stats_single(int cpu, struct hd_struct *part,
1232 unsigned long now)
1233{
1234 if (now == part->stamp)
1235 return;
1236
316d315b 1237 if (part_in_flight(part)) {
074a7aca 1238 __part_stat_add(cpu, part, time_in_queue,
316d315b 1239 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1240 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1241 }
1242 part->stamp = now;
1243}
1244
1245/**
496aa8a9
RD
1246 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1247 * @cpu: cpu number for stats access
1248 * @part: target partition
1da177e4
LT
1249 *
1250 * The average IO queue length and utilisation statistics are maintained
1251 * by observing the current state of the queue length and the amount of
1252 * time it has been in this state for.
1253 *
1254 * Normally, that accounting is done on IO completion, but that can result
1255 * in more than a second's worth of IO being accounted for within any one
1256 * second, leading to >100% utilisation. To deal with that, we call this
1257 * function to do a round-off before returning the results when reading
1258 * /proc/diskstats. This accounts immediately for all queue usage up to
1259 * the current jiffies and restarts the counters again.
1260 */
c9959059 1261void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1262{
1263 unsigned long now = jiffies;
1264
074a7aca
TH
1265 if (part->partno)
1266 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1267 part_round_stats_single(cpu, part, now);
6f2576af 1268}
074a7aca 1269EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1270
c8158819
LM
1271#ifdef CONFIG_PM_RUNTIME
1272static void blk_pm_put_request(struct request *rq)
1273{
1274 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1275 pm_runtime_mark_last_busy(rq->q->dev);
1276}
1277#else
1278static inline void blk_pm_put_request(struct request *rq) {}
1279#endif
1280
1da177e4
LT
1281/*
1282 * queue lock must be held
1283 */
165125e1 1284void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1285{
1da177e4
LT
1286 if (unlikely(!q))
1287 return;
1da177e4 1288
6f5ba581
CH
1289 if (q->mq_ops) {
1290 blk_mq_free_request(req);
1291 return;
1292 }
1293
c8158819
LM
1294 blk_pm_put_request(req);
1295
8922e16c
TH
1296 elv_completed_request(q, req);
1297
1cd96c24
BH
1298 /* this is a bio leak */
1299 WARN_ON(req->bio != NULL);
1300
1da177e4
LT
1301 /*
1302 * Request may not have originated from ll_rw_blk. if not,
1303 * it didn't come out of our reserved rq pools
1304 */
49171e5c 1305 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1306 unsigned int flags = req->cmd_flags;
a051661c 1307 struct request_list *rl = blk_rq_rl(req);
1da177e4 1308
1da177e4 1309 BUG_ON(!list_empty(&req->queuelist));
9817064b 1310 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4 1311
a051661c
TH
1312 blk_free_request(rl, req);
1313 freed_request(rl, flags);
1314 blk_put_rl(rl);
1da177e4
LT
1315 }
1316}
6e39b69e
MC
1317EXPORT_SYMBOL_GPL(__blk_put_request);
1318
1da177e4
LT
1319void blk_put_request(struct request *req)
1320{
165125e1 1321 struct request_queue *q = req->q;
8922e16c 1322
320ae51f
JA
1323 if (q->mq_ops)
1324 blk_mq_free_request(req);
1325 else {
1326 unsigned long flags;
1327
1328 spin_lock_irqsave(q->queue_lock, flags);
1329 __blk_put_request(q, req);
1330 spin_unlock_irqrestore(q->queue_lock, flags);
1331 }
1da177e4 1332}
1da177e4
LT
1333EXPORT_SYMBOL(blk_put_request);
1334
66ac0280
CH
1335/**
1336 * blk_add_request_payload - add a payload to a request
1337 * @rq: request to update
1338 * @page: page backing the payload
1339 * @len: length of the payload.
1340 *
1341 * This allows to later add a payload to an already submitted request by
1342 * a block driver. The driver needs to take care of freeing the payload
1343 * itself.
1344 *
1345 * Note that this is a quite horrible hack and nothing but handling of
1346 * discard requests should ever use it.
1347 */
1348void blk_add_request_payload(struct request *rq, struct page *page,
1349 unsigned int len)
1350{
1351 struct bio *bio = rq->bio;
1352
1353 bio->bi_io_vec->bv_page = page;
1354 bio->bi_io_vec->bv_offset = 0;
1355 bio->bi_io_vec->bv_len = len;
1356
4f024f37 1357 bio->bi_iter.bi_size = len;
66ac0280
CH
1358 bio->bi_vcnt = 1;
1359 bio->bi_phys_segments = 1;
1360
1361 rq->__data_len = rq->resid_len = len;
1362 rq->nr_phys_segments = 1;
1363 rq->buffer = bio_data(bio);
1364}
1365EXPORT_SYMBOL_GPL(blk_add_request_payload);
1366
320ae51f
JA
1367bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1368 struct bio *bio)
73c10101
JA
1369{
1370 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1371
73c10101
JA
1372 if (!ll_back_merge_fn(q, req, bio))
1373 return false;
1374
8c1cf6bb 1375 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1376
1377 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1378 blk_rq_set_mixed_merge(req);
1379
1380 req->biotail->bi_next = bio;
1381 req->biotail = bio;
4f024f37 1382 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1383 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1384
320ae51f 1385 blk_account_io_start(req, false);
73c10101
JA
1386 return true;
1387}
1388
320ae51f
JA
1389bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1390 struct bio *bio)
73c10101
JA
1391{
1392 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1393
73c10101
JA
1394 if (!ll_front_merge_fn(q, req, bio))
1395 return false;
1396
8c1cf6bb 1397 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1398
1399 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1400 blk_rq_set_mixed_merge(req);
1401
73c10101
JA
1402 bio->bi_next = req->bio;
1403 req->bio = bio;
1404
1405 /*
1406 * may not be valid. if the low level driver said
1407 * it didn't need a bounce buffer then it better
1408 * not touch req->buffer either...
1409 */
1410 req->buffer = bio_data(bio);
4f024f37
KO
1411 req->__sector = bio->bi_iter.bi_sector;
1412 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1413 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1414
320ae51f 1415 blk_account_io_start(req, false);
73c10101
JA
1416 return true;
1417}
1418
bd87b589 1419/**
320ae51f 1420 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1421 * @q: request_queue new bio is being queued at
1422 * @bio: new bio being queued
1423 * @request_count: out parameter for number of traversed plugged requests
1424 *
1425 * Determine whether @bio being queued on @q can be merged with a request
1426 * on %current's plugged list. Returns %true if merge was successful,
1427 * otherwise %false.
1428 *
07c2bd37
TH
1429 * Plugging coalesces IOs from the same issuer for the same purpose without
1430 * going through @q->queue_lock. As such it's more of an issuing mechanism
1431 * than scheduling, and the request, while may have elvpriv data, is not
1432 * added on the elevator at this point. In addition, we don't have
1433 * reliable access to the elevator outside queue lock. Only check basic
1434 * merging parameters without querying the elevator.
73c10101 1435 */
320ae51f
JA
1436bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1437 unsigned int *request_count)
73c10101
JA
1438{
1439 struct blk_plug *plug;
1440 struct request *rq;
1441 bool ret = false;
92f399c7 1442 struct list_head *plug_list;
73c10101 1443
23779fbc
AH
1444 if (blk_queue_nomerges(q))
1445 goto out;
1446
bd87b589 1447 plug = current->plug;
73c10101
JA
1448 if (!plug)
1449 goto out;
56ebdaf2 1450 *request_count = 0;
73c10101 1451
92f399c7
SL
1452 if (q->mq_ops)
1453 plug_list = &plug->mq_list;
1454 else
1455 plug_list = &plug->list;
1456
1457 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1458 int el_ret;
1459
1b2e19f1
SL
1460 if (rq->q == q)
1461 (*request_count)++;
56ebdaf2 1462
07c2bd37 1463 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1464 continue;
1465
050c8ea8 1466 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1467 if (el_ret == ELEVATOR_BACK_MERGE) {
1468 ret = bio_attempt_back_merge(q, rq, bio);
1469 if (ret)
1470 break;
1471 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1472 ret = bio_attempt_front_merge(q, rq, bio);
1473 if (ret)
1474 break;
1475 }
1476 }
1477out:
1478 return ret;
1479}
1480
86db1e29 1481void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1482{
4aff5e23 1483 req->cmd_type = REQ_TYPE_FS;
52d9e675 1484
7b6d91da
CH
1485 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1486 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1487 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1488
52d9e675 1489 req->errors = 0;
4f024f37 1490 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1491 req->ioprio = bio_prio(bio);
bc1c56fd 1492 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1493}
1494
5a7bbad2 1495void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1496{
5e00d1b5 1497 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1498 struct blk_plug *plug;
1499 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1500 struct request *req;
56ebdaf2 1501 unsigned int request_count = 0;
1da177e4 1502
1da177e4
LT
1503 /*
1504 * low level driver can indicate that it wants pages above a
1505 * certain limit bounced to low memory (ie for highmem, or even
1506 * ISA dma in theory)
1507 */
1508 blk_queue_bounce(q, &bio);
1509
ffecfd1a
DW
1510 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1511 bio_endio(bio, -EIO);
1512 return;
1513 }
1514
4fed947c 1515 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1516 spin_lock_irq(q->queue_lock);
ae1b1539 1517 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1518 goto get_rq;
1519 }
1520
73c10101
JA
1521 /*
1522 * Check if we can merge with the plugged list before grabbing
1523 * any locks.
1524 */
320ae51f 1525 if (blk_attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1526 return;
1da177e4 1527
73c10101 1528 spin_lock_irq(q->queue_lock);
2056a782 1529
73c10101
JA
1530 el_ret = elv_merge(q, &req, bio);
1531 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1532 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1533 elv_bio_merged(q, req, bio);
73c10101
JA
1534 if (!attempt_back_merge(q, req))
1535 elv_merged_request(q, req, el_ret);
1536 goto out_unlock;
1537 }
1538 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1539 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1540 elv_bio_merged(q, req, bio);
73c10101
JA
1541 if (!attempt_front_merge(q, req))
1542 elv_merged_request(q, req, el_ret);
1543 goto out_unlock;
80a761fd 1544 }
1da177e4
LT
1545 }
1546
450991bc 1547get_rq:
7749a8d4
JA
1548 /*
1549 * This sync check and mask will be re-done in init_request_from_bio(),
1550 * but we need to set it earlier to expose the sync flag to the
1551 * rq allocator and io schedulers.
1552 */
1553 rw_flags = bio_data_dir(bio);
1554 if (sync)
7b6d91da 1555 rw_flags |= REQ_SYNC;
7749a8d4 1556
1da177e4 1557 /*
450991bc 1558 * Grab a free request. This is might sleep but can not fail.
d6344532 1559 * Returns with the queue unlocked.
450991bc 1560 */
a06e05e6 1561 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1562 if (unlikely(!req)) {
1563 bio_endio(bio, -ENODEV); /* @q is dead */
1564 goto out_unlock;
1565 }
d6344532 1566
450991bc
NP
1567 /*
1568 * After dropping the lock and possibly sleeping here, our request
1569 * may now be mergeable after it had proven unmergeable (above).
1570 * We don't worry about that case for efficiency. It won't happen
1571 * often, and the elevators are able to handle it.
1da177e4 1572 */
52d9e675 1573 init_request_from_bio(req, bio);
1da177e4 1574
9562ad9a 1575 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1576 req->cpu = raw_smp_processor_id();
73c10101
JA
1577
1578 plug = current->plug;
721a9602 1579 if (plug) {
dc6d36c9
JA
1580 /*
1581 * If this is the first request added after a plug, fire
7aef2e78 1582 * of a plug trace.
dc6d36c9 1583 */
7aef2e78 1584 if (!request_count)
dc6d36c9 1585 trace_block_plug(q);
3540d5e8 1586 else {
019ceb7d 1587 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1588 blk_flush_plug_list(plug, false);
019ceb7d
SL
1589 trace_block_plug(q);
1590 }
73c10101 1591 }
73c10101 1592 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1593 blk_account_io_start(req, true);
73c10101
JA
1594 } else {
1595 spin_lock_irq(q->queue_lock);
1596 add_acct_request(q, req, where);
24ecfbe2 1597 __blk_run_queue(q);
73c10101
JA
1598out_unlock:
1599 spin_unlock_irq(q->queue_lock);
1600 }
1da177e4 1601}
c20e8de2 1602EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1603
1604/*
1605 * If bio->bi_dev is a partition, remap the location
1606 */
1607static inline void blk_partition_remap(struct bio *bio)
1608{
1609 struct block_device *bdev = bio->bi_bdev;
1610
bf2de6f5 1611 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1612 struct hd_struct *p = bdev->bd_part;
1613
4f024f37 1614 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1615 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1616
d07335e5
MS
1617 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1618 bdev->bd_dev,
4f024f37 1619 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1620 }
1621}
1622
1da177e4
LT
1623static void handle_bad_sector(struct bio *bio)
1624{
1625 char b[BDEVNAME_SIZE];
1626
1627 printk(KERN_INFO "attempt to access beyond end of device\n");
1628 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1629 bdevname(bio->bi_bdev, b),
1630 bio->bi_rw,
f73a1c7d 1631 (unsigned long long)bio_end_sector(bio),
77304d2a 1632 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1633
1634 set_bit(BIO_EOF, &bio->bi_flags);
1635}
1636
c17bb495
AM
1637#ifdef CONFIG_FAIL_MAKE_REQUEST
1638
1639static DECLARE_FAULT_ATTR(fail_make_request);
1640
1641static int __init setup_fail_make_request(char *str)
1642{
1643 return setup_fault_attr(&fail_make_request, str);
1644}
1645__setup("fail_make_request=", setup_fail_make_request);
1646
b2c9cd37 1647static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1648{
b2c9cd37 1649 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1650}
1651
1652static int __init fail_make_request_debugfs(void)
1653{
dd48c085
AM
1654 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1655 NULL, &fail_make_request);
1656
1657 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1658}
1659
1660late_initcall(fail_make_request_debugfs);
1661
1662#else /* CONFIG_FAIL_MAKE_REQUEST */
1663
b2c9cd37
AM
1664static inline bool should_fail_request(struct hd_struct *part,
1665 unsigned int bytes)
c17bb495 1666{
b2c9cd37 1667 return false;
c17bb495
AM
1668}
1669
1670#endif /* CONFIG_FAIL_MAKE_REQUEST */
1671
c07e2b41
JA
1672/*
1673 * Check whether this bio extends beyond the end of the device.
1674 */
1675static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1676{
1677 sector_t maxsector;
1678
1679 if (!nr_sectors)
1680 return 0;
1681
1682 /* Test device or partition size, when known. */
77304d2a 1683 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1684 if (maxsector) {
4f024f37 1685 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1686
1687 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1688 /*
1689 * This may well happen - the kernel calls bread()
1690 * without checking the size of the device, e.g., when
1691 * mounting a device.
1692 */
1693 handle_bad_sector(bio);
1694 return 1;
1695 }
1696 }
1697
1698 return 0;
1699}
1700
27a84d54
CH
1701static noinline_for_stack bool
1702generic_make_request_checks(struct bio *bio)
1da177e4 1703{
165125e1 1704 struct request_queue *q;
5a7bbad2 1705 int nr_sectors = bio_sectors(bio);
51fd77bd 1706 int err = -EIO;
5a7bbad2
CH
1707 char b[BDEVNAME_SIZE];
1708 struct hd_struct *part;
1da177e4
LT
1709
1710 might_sleep();
1da177e4 1711
c07e2b41
JA
1712 if (bio_check_eod(bio, nr_sectors))
1713 goto end_io;
1da177e4 1714
5a7bbad2
CH
1715 q = bdev_get_queue(bio->bi_bdev);
1716 if (unlikely(!q)) {
1717 printk(KERN_ERR
1718 "generic_make_request: Trying to access "
1719 "nonexistent block-device %s (%Lu)\n",
1720 bdevname(bio->bi_bdev, b),
4f024f37 1721 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1722 goto end_io;
1723 }
c17bb495 1724
e2a60da7
MP
1725 if (likely(bio_is_rw(bio) &&
1726 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1727 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1728 bdevname(bio->bi_bdev, b),
1729 bio_sectors(bio),
1730 queue_max_hw_sectors(q));
1731 goto end_io;
1732 }
1da177e4 1733
5a7bbad2 1734 part = bio->bi_bdev->bd_part;
4f024f37 1735 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1736 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1737 bio->bi_iter.bi_size))
5a7bbad2 1738 goto end_io;
2056a782 1739
5a7bbad2
CH
1740 /*
1741 * If this device has partitions, remap block n
1742 * of partition p to block n+start(p) of the disk.
1743 */
1744 blk_partition_remap(bio);
2056a782 1745
5a7bbad2
CH
1746 if (bio_check_eod(bio, nr_sectors))
1747 goto end_io;
1e87901e 1748
5a7bbad2
CH
1749 /*
1750 * Filter flush bio's early so that make_request based
1751 * drivers without flush support don't have to worry
1752 * about them.
1753 */
1754 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1755 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1756 if (!nr_sectors) {
1757 err = 0;
51fd77bd
JA
1758 goto end_io;
1759 }
5a7bbad2 1760 }
5ddfe969 1761
5a7bbad2
CH
1762 if ((bio->bi_rw & REQ_DISCARD) &&
1763 (!blk_queue_discard(q) ||
e2a60da7 1764 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1765 err = -EOPNOTSUPP;
1766 goto end_io;
1767 }
01edede4 1768
4363ac7c 1769 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1770 err = -EOPNOTSUPP;
1771 goto end_io;
1772 }
01edede4 1773
7f4b35d1
TH
1774 /*
1775 * Various block parts want %current->io_context and lazy ioc
1776 * allocation ends up trading a lot of pain for a small amount of
1777 * memory. Just allocate it upfront. This may fail and block
1778 * layer knows how to live with it.
1779 */
1780 create_io_context(GFP_ATOMIC, q->node);
1781
bc16a4f9
TH
1782 if (blk_throtl_bio(q, bio))
1783 return false; /* throttled, will be resubmitted later */
27a84d54 1784
5a7bbad2 1785 trace_block_bio_queue(q, bio);
27a84d54 1786 return true;
a7384677
TH
1787
1788end_io:
1789 bio_endio(bio, err);
27a84d54 1790 return false;
1da177e4
LT
1791}
1792
27a84d54
CH
1793/**
1794 * generic_make_request - hand a buffer to its device driver for I/O
1795 * @bio: The bio describing the location in memory and on the device.
1796 *
1797 * generic_make_request() is used to make I/O requests of block
1798 * devices. It is passed a &struct bio, which describes the I/O that needs
1799 * to be done.
1800 *
1801 * generic_make_request() does not return any status. The
1802 * success/failure status of the request, along with notification of
1803 * completion, is delivered asynchronously through the bio->bi_end_io
1804 * function described (one day) else where.
1805 *
1806 * The caller of generic_make_request must make sure that bi_io_vec
1807 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1808 * set to describe the device address, and the
1809 * bi_end_io and optionally bi_private are set to describe how
1810 * completion notification should be signaled.
1811 *
1812 * generic_make_request and the drivers it calls may use bi_next if this
1813 * bio happens to be merged with someone else, and may resubmit the bio to
1814 * a lower device by calling into generic_make_request recursively, which
1815 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1816 */
1817void generic_make_request(struct bio *bio)
1818{
bddd87c7
AM
1819 struct bio_list bio_list_on_stack;
1820
27a84d54
CH
1821 if (!generic_make_request_checks(bio))
1822 return;
1823
1824 /*
1825 * We only want one ->make_request_fn to be active at a time, else
1826 * stack usage with stacked devices could be a problem. So use
1827 * current->bio_list to keep a list of requests submited by a
1828 * make_request_fn function. current->bio_list is also used as a
1829 * flag to say if generic_make_request is currently active in this
1830 * task or not. If it is NULL, then no make_request is active. If
1831 * it is non-NULL, then a make_request is active, and new requests
1832 * should be added at the tail
1833 */
bddd87c7 1834 if (current->bio_list) {
bddd87c7 1835 bio_list_add(current->bio_list, bio);
d89d8796
NB
1836 return;
1837 }
27a84d54 1838
d89d8796
NB
1839 /* following loop may be a bit non-obvious, and so deserves some
1840 * explanation.
1841 * Before entering the loop, bio->bi_next is NULL (as all callers
1842 * ensure that) so we have a list with a single bio.
1843 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1844 * we assign bio_list to a pointer to the bio_list_on_stack,
1845 * thus initialising the bio_list of new bios to be
27a84d54 1846 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1847 * through a recursive call to generic_make_request. If it
1848 * did, we find a non-NULL value in bio_list and re-enter the loop
1849 * from the top. In this case we really did just take the bio
bddd87c7 1850 * of the top of the list (no pretending) and so remove it from
27a84d54 1851 * bio_list, and call into ->make_request() again.
d89d8796
NB
1852 */
1853 BUG_ON(bio->bi_next);
bddd87c7
AM
1854 bio_list_init(&bio_list_on_stack);
1855 current->bio_list = &bio_list_on_stack;
d89d8796 1856 do {
27a84d54
CH
1857 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1858
1859 q->make_request_fn(q, bio);
1860
bddd87c7 1861 bio = bio_list_pop(current->bio_list);
d89d8796 1862 } while (bio);
bddd87c7 1863 current->bio_list = NULL; /* deactivate */
d89d8796 1864}
1da177e4
LT
1865EXPORT_SYMBOL(generic_make_request);
1866
1867/**
710027a4 1868 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1869 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1870 * @bio: The &struct bio which describes the I/O
1871 *
1872 * submit_bio() is very similar in purpose to generic_make_request(), and
1873 * uses that function to do most of the work. Both are fairly rough
710027a4 1874 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1875 *
1876 */
1877void submit_bio(int rw, struct bio *bio)
1878{
22e2c507 1879 bio->bi_rw |= rw;
1da177e4 1880
bf2de6f5
JA
1881 /*
1882 * If it's a regular read/write or a barrier with data attached,
1883 * go through the normal accounting stuff before submission.
1884 */
e2a60da7 1885 if (bio_has_data(bio)) {
4363ac7c
MP
1886 unsigned int count;
1887
1888 if (unlikely(rw & REQ_WRITE_SAME))
1889 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1890 else
1891 count = bio_sectors(bio);
1892
bf2de6f5
JA
1893 if (rw & WRITE) {
1894 count_vm_events(PGPGOUT, count);
1895 } else {
4f024f37 1896 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1897 count_vm_events(PGPGIN, count);
1898 }
1899
1900 if (unlikely(block_dump)) {
1901 char b[BDEVNAME_SIZE];
8dcbdc74 1902 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1903 current->comm, task_pid_nr(current),
bf2de6f5 1904 (rw & WRITE) ? "WRITE" : "READ",
4f024f37 1905 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
1906 bdevname(bio->bi_bdev, b),
1907 count);
bf2de6f5 1908 }
1da177e4
LT
1909 }
1910
1911 generic_make_request(bio);
1912}
1da177e4
LT
1913EXPORT_SYMBOL(submit_bio);
1914
82124d60
KU
1915/**
1916 * blk_rq_check_limits - Helper function to check a request for the queue limit
1917 * @q: the queue
1918 * @rq: the request being checked
1919 *
1920 * Description:
1921 * @rq may have been made based on weaker limitations of upper-level queues
1922 * in request stacking drivers, and it may violate the limitation of @q.
1923 * Since the block layer and the underlying device driver trust @rq
1924 * after it is inserted to @q, it should be checked against @q before
1925 * the insertion using this generic function.
1926 *
1927 * This function should also be useful for request stacking drivers
eef35c2d 1928 * in some cases below, so export this function.
82124d60
KU
1929 * Request stacking drivers like request-based dm may change the queue
1930 * limits while requests are in the queue (e.g. dm's table swapping).
e227867f 1931 * Such request stacking drivers should check those requests against
82124d60
KU
1932 * the new queue limits again when they dispatch those requests,
1933 * although such checkings are also done against the old queue limits
1934 * when submitting requests.
1935 */
1936int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1937{
e2a60da7 1938 if (!rq_mergeable(rq))
3383977f
S
1939 return 0;
1940
f31dc1cd 1941 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1942 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1943 return -EIO;
1944 }
1945
1946 /*
1947 * queue's settings related to segment counting like q->bounce_pfn
1948 * may differ from that of other stacking queues.
1949 * Recalculate it to check the request correctly on this queue's
1950 * limitation.
1951 */
1952 blk_recalc_rq_segments(rq);
8a78362c 1953 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1954 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1955 return -EIO;
1956 }
1957
1958 return 0;
1959}
1960EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1961
1962/**
1963 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1964 * @q: the queue to submit the request
1965 * @rq: the request being queued
1966 */
1967int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1968{
1969 unsigned long flags;
4853abaa 1970 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1971
1972 if (blk_rq_check_limits(q, rq))
1973 return -EIO;
1974
b2c9cd37
AM
1975 if (rq->rq_disk &&
1976 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1977 return -EIO;
82124d60
KU
1978
1979 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 1980 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
1981 spin_unlock_irqrestore(q->queue_lock, flags);
1982 return -ENODEV;
1983 }
82124d60
KU
1984
1985 /*
1986 * Submitting request must be dequeued before calling this function
1987 * because it will be linked to another request_queue
1988 */
1989 BUG_ON(blk_queued_rq(rq));
1990
4853abaa
JM
1991 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1992 where = ELEVATOR_INSERT_FLUSH;
1993
1994 add_acct_request(q, rq, where);
e67b77c7
JM
1995 if (where == ELEVATOR_INSERT_FLUSH)
1996 __blk_run_queue(q);
82124d60
KU
1997 spin_unlock_irqrestore(q->queue_lock, flags);
1998
1999 return 0;
2000}
2001EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2002
80a761fd
TH
2003/**
2004 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2005 * @rq: request to examine
2006 *
2007 * Description:
2008 * A request could be merge of IOs which require different failure
2009 * handling. This function determines the number of bytes which
2010 * can be failed from the beginning of the request without
2011 * crossing into area which need to be retried further.
2012 *
2013 * Return:
2014 * The number of bytes to fail.
2015 *
2016 * Context:
2017 * queue_lock must be held.
2018 */
2019unsigned int blk_rq_err_bytes(const struct request *rq)
2020{
2021 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2022 unsigned int bytes = 0;
2023 struct bio *bio;
2024
2025 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2026 return blk_rq_bytes(rq);
2027
2028 /*
2029 * Currently the only 'mixing' which can happen is between
2030 * different fastfail types. We can safely fail portions
2031 * which have all the failfast bits that the first one has -
2032 * the ones which are at least as eager to fail as the first
2033 * one.
2034 */
2035 for (bio = rq->bio; bio; bio = bio->bi_next) {
2036 if ((bio->bi_rw & ff) != ff)
2037 break;
4f024f37 2038 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2039 }
2040
2041 /* this could lead to infinite loop */
2042 BUG_ON(blk_rq_bytes(rq) && !bytes);
2043 return bytes;
2044}
2045EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2046
320ae51f 2047void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2048{
c2553b58 2049 if (blk_do_io_stat(req)) {
bc58ba94
JA
2050 const int rw = rq_data_dir(req);
2051 struct hd_struct *part;
2052 int cpu;
2053
2054 cpu = part_stat_lock();
09e099d4 2055 part = req->part;
bc58ba94
JA
2056 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2057 part_stat_unlock();
2058 }
2059}
2060
320ae51f 2061void blk_account_io_done(struct request *req)
bc58ba94 2062{
bc58ba94 2063 /*
dd4c133f
TH
2064 * Account IO completion. flush_rq isn't accounted as a
2065 * normal IO on queueing nor completion. Accounting the
2066 * containing request is enough.
bc58ba94 2067 */
414b4ff5 2068 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2069 unsigned long duration = jiffies - req->start_time;
2070 const int rw = rq_data_dir(req);
2071 struct hd_struct *part;
2072 int cpu;
2073
2074 cpu = part_stat_lock();
09e099d4 2075 part = req->part;
bc58ba94
JA
2076
2077 part_stat_inc(cpu, part, ios[rw]);
2078 part_stat_add(cpu, part, ticks[rw], duration);
2079 part_round_stats(cpu, part);
316d315b 2080 part_dec_in_flight(part, rw);
bc58ba94 2081
6c23a968 2082 hd_struct_put(part);
bc58ba94
JA
2083 part_stat_unlock();
2084 }
2085}
2086
c8158819
LM
2087#ifdef CONFIG_PM_RUNTIME
2088/*
2089 * Don't process normal requests when queue is suspended
2090 * or in the process of suspending/resuming
2091 */
2092static struct request *blk_pm_peek_request(struct request_queue *q,
2093 struct request *rq)
2094{
2095 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2096 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2097 return NULL;
2098 else
2099 return rq;
2100}
2101#else
2102static inline struct request *blk_pm_peek_request(struct request_queue *q,
2103 struct request *rq)
2104{
2105 return rq;
2106}
2107#endif
2108
320ae51f
JA
2109void blk_account_io_start(struct request *rq, bool new_io)
2110{
2111 struct hd_struct *part;
2112 int rw = rq_data_dir(rq);
2113 int cpu;
2114
2115 if (!blk_do_io_stat(rq))
2116 return;
2117
2118 cpu = part_stat_lock();
2119
2120 if (!new_io) {
2121 part = rq->part;
2122 part_stat_inc(cpu, part, merges[rw]);
2123 } else {
2124 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2125 if (!hd_struct_try_get(part)) {
2126 /*
2127 * The partition is already being removed,
2128 * the request will be accounted on the disk only
2129 *
2130 * We take a reference on disk->part0 although that
2131 * partition will never be deleted, so we can treat
2132 * it as any other partition.
2133 */
2134 part = &rq->rq_disk->part0;
2135 hd_struct_get(part);
2136 }
2137 part_round_stats(cpu, part);
2138 part_inc_in_flight(part, rw);
2139 rq->part = part;
2140 }
2141
2142 part_stat_unlock();
2143}
2144
3bcddeac 2145/**
9934c8c0
TH
2146 * blk_peek_request - peek at the top of a request queue
2147 * @q: request queue to peek at
2148 *
2149 * Description:
2150 * Return the request at the top of @q. The returned request
2151 * should be started using blk_start_request() before LLD starts
2152 * processing it.
2153 *
2154 * Return:
2155 * Pointer to the request at the top of @q if available. Null
2156 * otherwise.
2157 *
2158 * Context:
2159 * queue_lock must be held.
2160 */
2161struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2162{
2163 struct request *rq;
2164 int ret;
2165
2166 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2167
2168 rq = blk_pm_peek_request(q, rq);
2169 if (!rq)
2170 break;
2171
158dbda0
TH
2172 if (!(rq->cmd_flags & REQ_STARTED)) {
2173 /*
2174 * This is the first time the device driver
2175 * sees this request (possibly after
2176 * requeueing). Notify IO scheduler.
2177 */
33659ebb 2178 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2179 elv_activate_rq(q, rq);
2180
2181 /*
2182 * just mark as started even if we don't start
2183 * it, a request that has been delayed should
2184 * not be passed by new incoming requests
2185 */
2186 rq->cmd_flags |= REQ_STARTED;
2187 trace_block_rq_issue(q, rq);
2188 }
2189
2190 if (!q->boundary_rq || q->boundary_rq == rq) {
2191 q->end_sector = rq_end_sector(rq);
2192 q->boundary_rq = NULL;
2193 }
2194
2195 if (rq->cmd_flags & REQ_DONTPREP)
2196 break;
2197
2e46e8b2 2198 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2199 /*
2200 * make sure space for the drain appears we
2201 * know we can do this because max_hw_segments
2202 * has been adjusted to be one fewer than the
2203 * device can handle
2204 */
2205 rq->nr_phys_segments++;
2206 }
2207
2208 if (!q->prep_rq_fn)
2209 break;
2210
2211 ret = q->prep_rq_fn(q, rq);
2212 if (ret == BLKPREP_OK) {
2213 break;
2214 } else if (ret == BLKPREP_DEFER) {
2215 /*
2216 * the request may have been (partially) prepped.
2217 * we need to keep this request in the front to
2218 * avoid resource deadlock. REQ_STARTED will
2219 * prevent other fs requests from passing this one.
2220 */
2e46e8b2 2221 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2222 !(rq->cmd_flags & REQ_DONTPREP)) {
2223 /*
2224 * remove the space for the drain we added
2225 * so that we don't add it again
2226 */
2227 --rq->nr_phys_segments;
2228 }
2229
2230 rq = NULL;
2231 break;
2232 } else if (ret == BLKPREP_KILL) {
2233 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2234 /*
2235 * Mark this request as started so we don't trigger
2236 * any debug logic in the end I/O path.
2237 */
2238 blk_start_request(rq);
40cbbb78 2239 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2240 } else {
2241 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2242 break;
2243 }
2244 }
2245
2246 return rq;
2247}
9934c8c0 2248EXPORT_SYMBOL(blk_peek_request);
158dbda0 2249
9934c8c0 2250void blk_dequeue_request(struct request *rq)
158dbda0 2251{
9934c8c0
TH
2252 struct request_queue *q = rq->q;
2253
158dbda0
TH
2254 BUG_ON(list_empty(&rq->queuelist));
2255 BUG_ON(ELV_ON_HASH(rq));
2256
2257 list_del_init(&rq->queuelist);
2258
2259 /*
2260 * the time frame between a request being removed from the lists
2261 * and to it is freed is accounted as io that is in progress at
2262 * the driver side.
2263 */
9195291e 2264 if (blk_account_rq(rq)) {
0a7ae2ff 2265 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2266 set_io_start_time_ns(rq);
2267 }
158dbda0
TH
2268}
2269
9934c8c0
TH
2270/**
2271 * blk_start_request - start request processing on the driver
2272 * @req: request to dequeue
2273 *
2274 * Description:
2275 * Dequeue @req and start timeout timer on it. This hands off the
2276 * request to the driver.
2277 *
2278 * Block internal functions which don't want to start timer should
2279 * call blk_dequeue_request().
2280 *
2281 * Context:
2282 * queue_lock must be held.
2283 */
2284void blk_start_request(struct request *req)
2285{
2286 blk_dequeue_request(req);
2287
2288 /*
5f49f631
TH
2289 * We are now handing the request to the hardware, initialize
2290 * resid_len to full count and add the timeout handler.
9934c8c0 2291 */
5f49f631 2292 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2293 if (unlikely(blk_bidi_rq(req)))
2294 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2295
4912aa6c 2296 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2297 blk_add_timer(req);
2298}
2299EXPORT_SYMBOL(blk_start_request);
2300
2301/**
2302 * blk_fetch_request - fetch a request from a request queue
2303 * @q: request queue to fetch a request from
2304 *
2305 * Description:
2306 * Return the request at the top of @q. The request is started on
2307 * return and LLD can start processing it immediately.
2308 *
2309 * Return:
2310 * Pointer to the request at the top of @q if available. Null
2311 * otherwise.
2312 *
2313 * Context:
2314 * queue_lock must be held.
2315 */
2316struct request *blk_fetch_request(struct request_queue *q)
2317{
2318 struct request *rq;
2319
2320 rq = blk_peek_request(q);
2321 if (rq)
2322 blk_start_request(rq);
2323 return rq;
2324}
2325EXPORT_SYMBOL(blk_fetch_request);
2326
3bcddeac 2327/**
2e60e022 2328 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2329 * @req: the request being processed
710027a4 2330 * @error: %0 for success, < %0 for error
8ebf9756 2331 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2332 *
2333 * Description:
8ebf9756
RD
2334 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2335 * the request structure even if @req doesn't have leftover.
2336 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2337 *
2338 * This special helper function is only for request stacking drivers
2339 * (e.g. request-based dm) so that they can handle partial completion.
2340 * Actual device drivers should use blk_end_request instead.
2341 *
2342 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2343 * %false return from this function.
3bcddeac
KU
2344 *
2345 * Return:
2e60e022
TH
2346 * %false - this request doesn't have any more data
2347 * %true - this request has more data
3bcddeac 2348 **/
2e60e022 2349bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2350{
f79ea416 2351 int total_bytes;
1da177e4 2352
2e60e022
TH
2353 if (!req->bio)
2354 return false;
2355
af5040da 2356 trace_block_rq_complete(req->q, req, nr_bytes);
2056a782 2357
1da177e4 2358 /*
6f41469c
TH
2359 * For fs requests, rq is just carrier of independent bio's
2360 * and each partial completion should be handled separately.
2361 * Reset per-request error on each partial completion.
2362 *
2363 * TODO: tj: This is too subtle. It would be better to let
2364 * low level drivers do what they see fit.
1da177e4 2365 */
33659ebb 2366 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2367 req->errors = 0;
2368
33659ebb
CH
2369 if (error && req->cmd_type == REQ_TYPE_FS &&
2370 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2371 char *error_type;
2372
2373 switch (error) {
2374 case -ENOLINK:
2375 error_type = "recoverable transport";
2376 break;
2377 case -EREMOTEIO:
2378 error_type = "critical target";
2379 break;
2380 case -EBADE:
2381 error_type = "critical nexus";
2382 break;
d1ffc1f8
HR
2383 case -ETIMEDOUT:
2384 error_type = "timeout";
2385 break;
a9d6ceb8
HR
2386 case -ENOSPC:
2387 error_type = "critical space allocation";
2388 break;
7e782af5
HR
2389 case -ENODATA:
2390 error_type = "critical medium";
2391 break;
79775567
HR
2392 case -EIO:
2393 default:
2394 error_type = "I/O";
2395 break;
2396 }
37d7b34f
YZ
2397 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2398 error_type, req->rq_disk ?
2399 req->rq_disk->disk_name : "?",
2400 (unsigned long long)blk_rq_pos(req));
2401
1da177e4
LT
2402 }
2403
bc58ba94 2404 blk_account_io_completion(req, nr_bytes);
d72d904a 2405
f79ea416
KO
2406 total_bytes = 0;
2407 while (req->bio) {
2408 struct bio *bio = req->bio;
4f024f37 2409 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2410
4f024f37 2411 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2412 req->bio = bio->bi_next;
1da177e4 2413
f79ea416 2414 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2415
f79ea416
KO
2416 total_bytes += bio_bytes;
2417 nr_bytes -= bio_bytes;
1da177e4 2418
f79ea416
KO
2419 if (!nr_bytes)
2420 break;
1da177e4
LT
2421 }
2422
2423 /*
2424 * completely done
2425 */
2e60e022
TH
2426 if (!req->bio) {
2427 /*
2428 * Reset counters so that the request stacking driver
2429 * can find how many bytes remain in the request
2430 * later.
2431 */
a2dec7b3 2432 req->__data_len = 0;
2e60e022
TH
2433 return false;
2434 }
1da177e4 2435
a2dec7b3 2436 req->__data_len -= total_bytes;
2e46e8b2
TH
2437 req->buffer = bio_data(req->bio);
2438
2439 /* update sector only for requests with clear definition of sector */
e2a60da7 2440 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2441 req->__sector += total_bytes >> 9;
2e46e8b2 2442
80a761fd
TH
2443 /* mixed attributes always follow the first bio */
2444 if (req->cmd_flags & REQ_MIXED_MERGE) {
2445 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2446 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2447 }
2448
2e46e8b2
TH
2449 /*
2450 * If total number of sectors is less than the first segment
2451 * size, something has gone terribly wrong.
2452 */
2453 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2454 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2455 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2456 }
2457
2458 /* recalculate the number of segments */
1da177e4 2459 blk_recalc_rq_segments(req);
2e46e8b2 2460
2e60e022 2461 return true;
1da177e4 2462}
2e60e022 2463EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2464
2e60e022
TH
2465static bool blk_update_bidi_request(struct request *rq, int error,
2466 unsigned int nr_bytes,
2467 unsigned int bidi_bytes)
5efccd17 2468{
2e60e022
TH
2469 if (blk_update_request(rq, error, nr_bytes))
2470 return true;
5efccd17 2471
2e60e022
TH
2472 /* Bidi request must be completed as a whole */
2473 if (unlikely(blk_bidi_rq(rq)) &&
2474 blk_update_request(rq->next_rq, error, bidi_bytes))
2475 return true;
5efccd17 2476
e2e1a148
JA
2477 if (blk_queue_add_random(rq->q))
2478 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2479
2480 return false;
1da177e4
LT
2481}
2482
28018c24
JB
2483/**
2484 * blk_unprep_request - unprepare a request
2485 * @req: the request
2486 *
2487 * This function makes a request ready for complete resubmission (or
2488 * completion). It happens only after all error handling is complete,
2489 * so represents the appropriate moment to deallocate any resources
2490 * that were allocated to the request in the prep_rq_fn. The queue
2491 * lock is held when calling this.
2492 */
2493void blk_unprep_request(struct request *req)
2494{
2495 struct request_queue *q = req->q;
2496
2497 req->cmd_flags &= ~REQ_DONTPREP;
2498 if (q->unprep_rq_fn)
2499 q->unprep_rq_fn(q, req);
2500}
2501EXPORT_SYMBOL_GPL(blk_unprep_request);
2502
1da177e4
LT
2503/*
2504 * queue lock must be held
2505 */
2e60e022 2506static void blk_finish_request(struct request *req, int error)
1da177e4 2507{
b8286239
KU
2508 if (blk_rq_tagged(req))
2509 blk_queue_end_tag(req->q, req);
2510
ba396a6c 2511 BUG_ON(blk_queued_rq(req));
1da177e4 2512
33659ebb 2513 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2514 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2515
e78042e5
MA
2516 blk_delete_timer(req);
2517
28018c24
JB
2518 if (req->cmd_flags & REQ_DONTPREP)
2519 blk_unprep_request(req);
2520
bc58ba94 2521 blk_account_io_done(req);
b8286239 2522
1da177e4 2523 if (req->end_io)
8ffdc655 2524 req->end_io(req, error);
b8286239
KU
2525 else {
2526 if (blk_bidi_rq(req))
2527 __blk_put_request(req->next_rq->q, req->next_rq);
2528
1da177e4 2529 __blk_put_request(req->q, req);
b8286239 2530 }
1da177e4
LT
2531}
2532
3b11313a 2533/**
2e60e022
TH
2534 * blk_end_bidi_request - Complete a bidi request
2535 * @rq: the request to complete
2536 * @error: %0 for success, < %0 for error
2537 * @nr_bytes: number of bytes to complete @rq
2538 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2539 *
2540 * Description:
e3a04fe3 2541 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2542 * Drivers that supports bidi can safely call this member for any
2543 * type of request, bidi or uni. In the later case @bidi_bytes is
2544 * just ignored.
336cdb40
KU
2545 *
2546 * Return:
2e60e022
TH
2547 * %false - we are done with this request
2548 * %true - still buffers pending for this request
a0cd1285 2549 **/
b1f74493 2550static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2551 unsigned int nr_bytes, unsigned int bidi_bytes)
2552{
336cdb40 2553 struct request_queue *q = rq->q;
2e60e022 2554 unsigned long flags;
32fab448 2555
2e60e022
TH
2556 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2557 return true;
32fab448 2558
336cdb40 2559 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2560 blk_finish_request(rq, error);
336cdb40
KU
2561 spin_unlock_irqrestore(q->queue_lock, flags);
2562
2e60e022 2563 return false;
32fab448
KU
2564}
2565
336cdb40 2566/**
2e60e022
TH
2567 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2568 * @rq: the request to complete
710027a4 2569 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2570 * @nr_bytes: number of bytes to complete @rq
2571 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2572 *
2573 * Description:
2e60e022
TH
2574 * Identical to blk_end_bidi_request() except that queue lock is
2575 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2576 *
2577 * Return:
2e60e022
TH
2578 * %false - we are done with this request
2579 * %true - still buffers pending for this request
336cdb40 2580 **/
4853abaa 2581bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2582 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2583{
2e60e022
TH
2584 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2585 return true;
336cdb40 2586
2e60e022 2587 blk_finish_request(rq, error);
336cdb40 2588
2e60e022 2589 return false;
336cdb40 2590}
e19a3ab0
KU
2591
2592/**
2593 * blk_end_request - Helper function for drivers to complete the request.
2594 * @rq: the request being processed
710027a4 2595 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2596 * @nr_bytes: number of bytes to complete
2597 *
2598 * Description:
2599 * Ends I/O on a number of bytes attached to @rq.
2600 * If @rq has leftover, sets it up for the next range of segments.
2601 *
2602 * Return:
b1f74493
FT
2603 * %false - we are done with this request
2604 * %true - still buffers pending for this request
e19a3ab0 2605 **/
b1f74493 2606bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2607{
b1f74493 2608 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2609}
56ad1740 2610EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2611
2612/**
b1f74493
FT
2613 * blk_end_request_all - Helper function for drives to finish the request.
2614 * @rq: the request to finish
8ebf9756 2615 * @error: %0 for success, < %0 for error
336cdb40
KU
2616 *
2617 * Description:
b1f74493
FT
2618 * Completely finish @rq.
2619 */
2620void blk_end_request_all(struct request *rq, int error)
336cdb40 2621{
b1f74493
FT
2622 bool pending;
2623 unsigned int bidi_bytes = 0;
336cdb40 2624
b1f74493
FT
2625 if (unlikely(blk_bidi_rq(rq)))
2626 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2627
b1f74493
FT
2628 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2629 BUG_ON(pending);
2630}
56ad1740 2631EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2632
b1f74493
FT
2633/**
2634 * blk_end_request_cur - Helper function to finish the current request chunk.
2635 * @rq: the request to finish the current chunk for
8ebf9756 2636 * @error: %0 for success, < %0 for error
b1f74493
FT
2637 *
2638 * Description:
2639 * Complete the current consecutively mapped chunk from @rq.
2640 *
2641 * Return:
2642 * %false - we are done with this request
2643 * %true - still buffers pending for this request
2644 */
2645bool blk_end_request_cur(struct request *rq, int error)
2646{
2647 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2648}
56ad1740 2649EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2650
80a761fd
TH
2651/**
2652 * blk_end_request_err - Finish a request till the next failure boundary.
2653 * @rq: the request to finish till the next failure boundary for
2654 * @error: must be negative errno
2655 *
2656 * Description:
2657 * Complete @rq till the next failure boundary.
2658 *
2659 * Return:
2660 * %false - we are done with this request
2661 * %true - still buffers pending for this request
2662 */
2663bool blk_end_request_err(struct request *rq, int error)
2664{
2665 WARN_ON(error >= 0);
2666 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2667}
2668EXPORT_SYMBOL_GPL(blk_end_request_err);
2669
e3a04fe3 2670/**
b1f74493
FT
2671 * __blk_end_request - Helper function for drivers to complete the request.
2672 * @rq: the request being processed
2673 * @error: %0 for success, < %0 for error
2674 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2675 *
2676 * Description:
b1f74493 2677 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2678 *
2679 * Return:
b1f74493
FT
2680 * %false - we are done with this request
2681 * %true - still buffers pending for this request
e3a04fe3 2682 **/
b1f74493 2683bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2684{
b1f74493 2685 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2686}
56ad1740 2687EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2688
32fab448 2689/**
b1f74493
FT
2690 * __blk_end_request_all - Helper function for drives to finish the request.
2691 * @rq: the request to finish
8ebf9756 2692 * @error: %0 for success, < %0 for error
32fab448
KU
2693 *
2694 * Description:
b1f74493 2695 * Completely finish @rq. Must be called with queue lock held.
32fab448 2696 */
b1f74493 2697void __blk_end_request_all(struct request *rq, int error)
32fab448 2698{
b1f74493
FT
2699 bool pending;
2700 unsigned int bidi_bytes = 0;
2701
2702 if (unlikely(blk_bidi_rq(rq)))
2703 bidi_bytes = blk_rq_bytes(rq->next_rq);
2704
2705 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2706 BUG_ON(pending);
32fab448 2707}
56ad1740 2708EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2709
e19a3ab0 2710/**
b1f74493
FT
2711 * __blk_end_request_cur - Helper function to finish the current request chunk.
2712 * @rq: the request to finish the current chunk for
8ebf9756 2713 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2714 *
2715 * Description:
b1f74493
FT
2716 * Complete the current consecutively mapped chunk from @rq. Must
2717 * be called with queue lock held.
e19a3ab0
KU
2718 *
2719 * Return:
b1f74493
FT
2720 * %false - we are done with this request
2721 * %true - still buffers pending for this request
2722 */
2723bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2724{
b1f74493 2725 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2726}
56ad1740 2727EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2728
80a761fd
TH
2729/**
2730 * __blk_end_request_err - Finish a request till the next failure boundary.
2731 * @rq: the request to finish till the next failure boundary for
2732 * @error: must be negative errno
2733 *
2734 * Description:
2735 * Complete @rq till the next failure boundary. Must be called
2736 * with queue lock held.
2737 *
2738 * Return:
2739 * %false - we are done with this request
2740 * %true - still buffers pending for this request
2741 */
2742bool __blk_end_request_err(struct request *rq, int error)
2743{
2744 WARN_ON(error >= 0);
2745 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2746}
2747EXPORT_SYMBOL_GPL(__blk_end_request_err);
2748
86db1e29
JA
2749void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2750 struct bio *bio)
1da177e4 2751{
a82afdfc 2752 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2753 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2754
fb2dce86
DW
2755 if (bio_has_data(bio)) {
2756 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2757 rq->buffer = bio_data(bio);
2758 }
4f024f37 2759 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2760 rq->bio = rq->biotail = bio;
1da177e4 2761
66846572
N
2762 if (bio->bi_bdev)
2763 rq->rq_disk = bio->bi_bdev->bd_disk;
2764}
1da177e4 2765
2d4dc890
IL
2766#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2767/**
2768 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2769 * @rq: the request to be flushed
2770 *
2771 * Description:
2772 * Flush all pages in @rq.
2773 */
2774void rq_flush_dcache_pages(struct request *rq)
2775{
2776 struct req_iterator iter;
7988613b 2777 struct bio_vec bvec;
2d4dc890
IL
2778
2779 rq_for_each_segment(bvec, rq, iter)
7988613b 2780 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2781}
2782EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2783#endif
2784
ef9e3fac
KU
2785/**
2786 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2787 * @q : the queue of the device being checked
2788 *
2789 * Description:
2790 * Check if underlying low-level drivers of a device are busy.
2791 * If the drivers want to export their busy state, they must set own
2792 * exporting function using blk_queue_lld_busy() first.
2793 *
2794 * Basically, this function is used only by request stacking drivers
2795 * to stop dispatching requests to underlying devices when underlying
2796 * devices are busy. This behavior helps more I/O merging on the queue
2797 * of the request stacking driver and prevents I/O throughput regression
2798 * on burst I/O load.
2799 *
2800 * Return:
2801 * 0 - Not busy (The request stacking driver should dispatch request)
2802 * 1 - Busy (The request stacking driver should stop dispatching request)
2803 */
2804int blk_lld_busy(struct request_queue *q)
2805{
2806 if (q->lld_busy_fn)
2807 return q->lld_busy_fn(q);
2808
2809 return 0;
2810}
2811EXPORT_SYMBOL_GPL(blk_lld_busy);
2812
b0fd271d
KU
2813/**
2814 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2815 * @rq: the clone request to be cleaned up
2816 *
2817 * Description:
2818 * Free all bios in @rq for a cloned request.
2819 */
2820void blk_rq_unprep_clone(struct request *rq)
2821{
2822 struct bio *bio;
2823
2824 while ((bio = rq->bio) != NULL) {
2825 rq->bio = bio->bi_next;
2826
2827 bio_put(bio);
2828 }
2829}
2830EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2831
2832/*
2833 * Copy attributes of the original request to the clone request.
2834 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2835 */
2836static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2837{
2838 dst->cpu = src->cpu;
3a2edd0d 2839 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2840 dst->cmd_type = src->cmd_type;
2841 dst->__sector = blk_rq_pos(src);
2842 dst->__data_len = blk_rq_bytes(src);
2843 dst->nr_phys_segments = src->nr_phys_segments;
2844 dst->ioprio = src->ioprio;
2845 dst->extra_len = src->extra_len;
2846}
2847
2848/**
2849 * blk_rq_prep_clone - Helper function to setup clone request
2850 * @rq: the request to be setup
2851 * @rq_src: original request to be cloned
2852 * @bs: bio_set that bios for clone are allocated from
2853 * @gfp_mask: memory allocation mask for bio
2854 * @bio_ctr: setup function to be called for each clone bio.
2855 * Returns %0 for success, non %0 for failure.
2856 * @data: private data to be passed to @bio_ctr
2857 *
2858 * Description:
2859 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2860 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2861 * are not copied, and copying such parts is the caller's responsibility.
2862 * Also, pages which the original bios are pointing to are not copied
2863 * and the cloned bios just point same pages.
2864 * So cloned bios must be completed before original bios, which means
2865 * the caller must complete @rq before @rq_src.
2866 */
2867int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2868 struct bio_set *bs, gfp_t gfp_mask,
2869 int (*bio_ctr)(struct bio *, struct bio *, void *),
2870 void *data)
2871{
2872 struct bio *bio, *bio_src;
2873
2874 if (!bs)
2875 bs = fs_bio_set;
2876
2877 blk_rq_init(NULL, rq);
2878
2879 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2880 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2881 if (!bio)
2882 goto free_and_out;
2883
b0fd271d
KU
2884 if (bio_ctr && bio_ctr(bio, bio_src, data))
2885 goto free_and_out;
2886
2887 if (rq->bio) {
2888 rq->biotail->bi_next = bio;
2889 rq->biotail = bio;
2890 } else
2891 rq->bio = rq->biotail = bio;
2892 }
2893
2894 __blk_rq_prep_clone(rq, rq_src);
2895
2896 return 0;
2897
2898free_and_out:
2899 if (bio)
4254bba1 2900 bio_put(bio);
b0fd271d
KU
2901 blk_rq_unprep_clone(rq);
2902
2903 return -ENOMEM;
2904}
2905EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2906
59c3d45e 2907int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
2908{
2909 return queue_work(kblockd_workqueue, work);
2910}
1da177e4
LT
2911EXPORT_SYMBOL(kblockd_schedule_work);
2912
59c3d45e
JA
2913int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2914 unsigned long delay)
e43473b7
VG
2915{
2916 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2917}
2918EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2919
8ab14595
JA
2920int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2921 unsigned long delay)
2922{
2923 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2924}
2925EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2926
73c10101
JA
2927#define PLUG_MAGIC 0x91827364
2928
75df7136
SJ
2929/**
2930 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2931 * @plug: The &struct blk_plug that needs to be initialized
2932 *
2933 * Description:
2934 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2935 * pending I/O should the task end up blocking between blk_start_plug() and
2936 * blk_finish_plug(). This is important from a performance perspective, but
2937 * also ensures that we don't deadlock. For instance, if the task is blocking
2938 * for a memory allocation, memory reclaim could end up wanting to free a
2939 * page belonging to that request that is currently residing in our private
2940 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2941 * this kind of deadlock.
2942 */
73c10101
JA
2943void blk_start_plug(struct blk_plug *plug)
2944{
2945 struct task_struct *tsk = current;
2946
2947 plug->magic = PLUG_MAGIC;
2948 INIT_LIST_HEAD(&plug->list);
320ae51f 2949 INIT_LIST_HEAD(&plug->mq_list);
048c9374 2950 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2951
2952 /*
2953 * If this is a nested plug, don't actually assign it. It will be
2954 * flushed on its own.
2955 */
2956 if (!tsk->plug) {
2957 /*
2958 * Store ordering should not be needed here, since a potential
2959 * preempt will imply a full memory barrier
2960 */
2961 tsk->plug = plug;
2962 }
2963}
2964EXPORT_SYMBOL(blk_start_plug);
2965
2966static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2967{
2968 struct request *rqa = container_of(a, struct request, queuelist);
2969 struct request *rqb = container_of(b, struct request, queuelist);
2970
975927b9
JM
2971 return !(rqa->q < rqb->q ||
2972 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
2973}
2974
49cac01e
JA
2975/*
2976 * If 'from_schedule' is true, then postpone the dispatch of requests
2977 * until a safe kblockd context. We due this to avoid accidental big
2978 * additional stack usage in driver dispatch, in places where the originally
2979 * plugger did not intend it.
2980 */
f6603783 2981static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2982 bool from_schedule)
99e22598 2983 __releases(q->queue_lock)
94b5eb28 2984{
49cac01e 2985 trace_block_unplug(q, depth, !from_schedule);
99e22598 2986
70460571 2987 if (from_schedule)
24ecfbe2 2988 blk_run_queue_async(q);
70460571 2989 else
24ecfbe2 2990 __blk_run_queue(q);
70460571 2991 spin_unlock(q->queue_lock);
94b5eb28
JA
2992}
2993
74018dc3 2994static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
2995{
2996 LIST_HEAD(callbacks);
2997
2a7d5559
SL
2998 while (!list_empty(&plug->cb_list)) {
2999 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3000
2a7d5559
SL
3001 while (!list_empty(&callbacks)) {
3002 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3003 struct blk_plug_cb,
3004 list);
2a7d5559 3005 list_del(&cb->list);
74018dc3 3006 cb->callback(cb, from_schedule);
2a7d5559 3007 }
048c9374
N
3008 }
3009}
3010
9cbb1750
N
3011struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3012 int size)
3013{
3014 struct blk_plug *plug = current->plug;
3015 struct blk_plug_cb *cb;
3016
3017 if (!plug)
3018 return NULL;
3019
3020 list_for_each_entry(cb, &plug->cb_list, list)
3021 if (cb->callback == unplug && cb->data == data)
3022 return cb;
3023
3024 /* Not currently on the callback list */
3025 BUG_ON(size < sizeof(*cb));
3026 cb = kzalloc(size, GFP_ATOMIC);
3027 if (cb) {
3028 cb->data = data;
3029 cb->callback = unplug;
3030 list_add(&cb->list, &plug->cb_list);
3031 }
3032 return cb;
3033}
3034EXPORT_SYMBOL(blk_check_plugged);
3035
49cac01e 3036void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3037{
3038 struct request_queue *q;
3039 unsigned long flags;
3040 struct request *rq;
109b8129 3041 LIST_HEAD(list);
94b5eb28 3042 unsigned int depth;
73c10101
JA
3043
3044 BUG_ON(plug->magic != PLUG_MAGIC);
3045
74018dc3 3046 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3047
3048 if (!list_empty(&plug->mq_list))
3049 blk_mq_flush_plug_list(plug, from_schedule);
3050
73c10101
JA
3051 if (list_empty(&plug->list))
3052 return;
3053
109b8129
N
3054 list_splice_init(&plug->list, &list);
3055
422765c2 3056 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3057
3058 q = NULL;
94b5eb28 3059 depth = 0;
18811272
JA
3060
3061 /*
3062 * Save and disable interrupts here, to avoid doing it for every
3063 * queue lock we have to take.
3064 */
73c10101 3065 local_irq_save(flags);
109b8129
N
3066 while (!list_empty(&list)) {
3067 rq = list_entry_rq(list.next);
73c10101 3068 list_del_init(&rq->queuelist);
73c10101
JA
3069 BUG_ON(!rq->q);
3070 if (rq->q != q) {
99e22598
JA
3071 /*
3072 * This drops the queue lock
3073 */
3074 if (q)
49cac01e 3075 queue_unplugged(q, depth, from_schedule);
73c10101 3076 q = rq->q;
94b5eb28 3077 depth = 0;
73c10101
JA
3078 spin_lock(q->queue_lock);
3079 }
8ba61435
TH
3080
3081 /*
3082 * Short-circuit if @q is dead
3083 */
3f3299d5 3084 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3085 __blk_end_request_all(rq, -ENODEV);
3086 continue;
3087 }
3088
73c10101
JA
3089 /*
3090 * rq is already accounted, so use raw insert
3091 */
401a18e9
JA
3092 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3093 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3094 else
3095 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3096
3097 depth++;
73c10101
JA
3098 }
3099
99e22598
JA
3100 /*
3101 * This drops the queue lock
3102 */
3103 if (q)
49cac01e 3104 queue_unplugged(q, depth, from_schedule);
73c10101 3105
73c10101
JA
3106 local_irq_restore(flags);
3107}
73c10101
JA
3108
3109void blk_finish_plug(struct blk_plug *plug)
3110{
f6603783 3111 blk_flush_plug_list(plug, false);
73c10101 3112
88b996cd
CH
3113 if (plug == current->plug)
3114 current->plug = NULL;
73c10101 3115}
88b996cd 3116EXPORT_SYMBOL(blk_finish_plug);
73c10101 3117
6c954667
LM
3118#ifdef CONFIG_PM_RUNTIME
3119/**
3120 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3121 * @q: the queue of the device
3122 * @dev: the device the queue belongs to
3123 *
3124 * Description:
3125 * Initialize runtime-PM-related fields for @q and start auto suspend for
3126 * @dev. Drivers that want to take advantage of request-based runtime PM
3127 * should call this function after @dev has been initialized, and its
3128 * request queue @q has been allocated, and runtime PM for it can not happen
3129 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3130 * cases, driver should call this function before any I/O has taken place.
3131 *
3132 * This function takes care of setting up using auto suspend for the device,
3133 * the autosuspend delay is set to -1 to make runtime suspend impossible
3134 * until an updated value is either set by user or by driver. Drivers do
3135 * not need to touch other autosuspend settings.
3136 *
3137 * The block layer runtime PM is request based, so only works for drivers
3138 * that use request as their IO unit instead of those directly use bio's.
3139 */
3140void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3141{
3142 q->dev = dev;
3143 q->rpm_status = RPM_ACTIVE;
3144 pm_runtime_set_autosuspend_delay(q->dev, -1);
3145 pm_runtime_use_autosuspend(q->dev);
3146}
3147EXPORT_SYMBOL(blk_pm_runtime_init);
3148
3149/**
3150 * blk_pre_runtime_suspend - Pre runtime suspend check
3151 * @q: the queue of the device
3152 *
3153 * Description:
3154 * This function will check if runtime suspend is allowed for the device
3155 * by examining if there are any requests pending in the queue. If there
3156 * are requests pending, the device can not be runtime suspended; otherwise,
3157 * the queue's status will be updated to SUSPENDING and the driver can
3158 * proceed to suspend the device.
3159 *
3160 * For the not allowed case, we mark last busy for the device so that
3161 * runtime PM core will try to autosuspend it some time later.
3162 *
3163 * This function should be called near the start of the device's
3164 * runtime_suspend callback.
3165 *
3166 * Return:
3167 * 0 - OK to runtime suspend the device
3168 * -EBUSY - Device should not be runtime suspended
3169 */
3170int blk_pre_runtime_suspend(struct request_queue *q)
3171{
3172 int ret = 0;
3173
3174 spin_lock_irq(q->queue_lock);
3175 if (q->nr_pending) {
3176 ret = -EBUSY;
3177 pm_runtime_mark_last_busy(q->dev);
3178 } else {
3179 q->rpm_status = RPM_SUSPENDING;
3180 }
3181 spin_unlock_irq(q->queue_lock);
3182 return ret;
3183}
3184EXPORT_SYMBOL(blk_pre_runtime_suspend);
3185
3186/**
3187 * blk_post_runtime_suspend - Post runtime suspend processing
3188 * @q: the queue of the device
3189 * @err: return value of the device's runtime_suspend function
3190 *
3191 * Description:
3192 * Update the queue's runtime status according to the return value of the
3193 * device's runtime suspend function and mark last busy for the device so
3194 * that PM core will try to auto suspend the device at a later time.
3195 *
3196 * This function should be called near the end of the device's
3197 * runtime_suspend callback.
3198 */
3199void blk_post_runtime_suspend(struct request_queue *q, int err)
3200{
3201 spin_lock_irq(q->queue_lock);
3202 if (!err) {
3203 q->rpm_status = RPM_SUSPENDED;
3204 } else {
3205 q->rpm_status = RPM_ACTIVE;
3206 pm_runtime_mark_last_busy(q->dev);
3207 }
3208 spin_unlock_irq(q->queue_lock);
3209}
3210EXPORT_SYMBOL(blk_post_runtime_suspend);
3211
3212/**
3213 * blk_pre_runtime_resume - Pre runtime resume processing
3214 * @q: the queue of the device
3215 *
3216 * Description:
3217 * Update the queue's runtime status to RESUMING in preparation for the
3218 * runtime resume of the device.
3219 *
3220 * This function should be called near the start of the device's
3221 * runtime_resume callback.
3222 */
3223void blk_pre_runtime_resume(struct request_queue *q)
3224{
3225 spin_lock_irq(q->queue_lock);
3226 q->rpm_status = RPM_RESUMING;
3227 spin_unlock_irq(q->queue_lock);
3228}
3229EXPORT_SYMBOL(blk_pre_runtime_resume);
3230
3231/**
3232 * blk_post_runtime_resume - Post runtime resume processing
3233 * @q: the queue of the device
3234 * @err: return value of the device's runtime_resume function
3235 *
3236 * Description:
3237 * Update the queue's runtime status according to the return value of the
3238 * device's runtime_resume function. If it is successfully resumed, process
3239 * the requests that are queued into the device's queue when it is resuming
3240 * and then mark last busy and initiate autosuspend for it.
3241 *
3242 * This function should be called near the end of the device's
3243 * runtime_resume callback.
3244 */
3245void blk_post_runtime_resume(struct request_queue *q, int err)
3246{
3247 spin_lock_irq(q->queue_lock);
3248 if (!err) {
3249 q->rpm_status = RPM_ACTIVE;
3250 __blk_run_queue(q);
3251 pm_runtime_mark_last_busy(q->dev);
c60855cd 3252 pm_request_autosuspend(q->dev);
6c954667
LM
3253 } else {
3254 q->rpm_status = RPM_SUSPENDED;
3255 }
3256 spin_unlock_irq(q->queue_lock);
3257}
3258EXPORT_SYMBOL(blk_post_runtime_resume);
3259#endif
3260
1da177e4
LT
3261int __init blk_dev_init(void)
3262{
9eb55b03
NK
3263 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3264 sizeof(((struct request *)0)->cmd_flags));
3265
89b90be2
TH
3266 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3267 kblockd_workqueue = alloc_workqueue("kblockd",
695588f9
VK
3268 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3269 WQ_POWER_EFFICIENT, 0);
1da177e4
LT
3270 if (!kblockd_workqueue)
3271 panic("Failed to create kblockd\n");
3272
3273 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3274 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3275
8324aa91 3276 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3277 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3278
d38ecf93 3279 return 0;
1da177e4 3280}