block: Replace __get_cpu_var uses
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
aaf7c680 32#include <linux/ratelimit.h>
6c954667 33#include <linux/pm_runtime.h>
55782138
LZ
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/block.h>
1da177e4 37
8324aa91 38#include "blk.h"
5efd6113 39#include "blk-cgroup.h"
8324aa91 40
d07335e5 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 42EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
cbae8d45 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 45
a73f730d
TH
46DEFINE_IDA(blk_queue_ida);
47
1da177e4
LT
48/*
49 * For the allocated request tables
50 */
5ece6c52 51static struct kmem_cache *request_cachep;
1da177e4
LT
52
53/*
54 * For queue allocation
55 */
6728cb0e 56struct kmem_cache *blk_requestq_cachep;
1da177e4 57
1da177e4
LT
58/*
59 * Controlling structure to kblockd
60 */
ff856bad 61static struct workqueue_struct *kblockd_workqueue;
1da177e4 62
26b8256e
JA
63static void drive_stat_acct(struct request *rq, int new_io)
64{
28f13702 65 struct hd_struct *part;
26b8256e 66 int rw = rq_data_dir(rq);
c9959059 67 int cpu;
26b8256e 68
c2553b58 69 if (!blk_do_io_stat(rq))
26b8256e
JA
70 return;
71
074a7aca 72 cpu = part_stat_lock();
c9959059 73
09e099d4
JM
74 if (!new_io) {
75 part = rq->part;
074a7aca 76 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
77 } else {
78 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 79 if (!hd_struct_try_get(part)) {
09e099d4
JM
80 /*
81 * The partition is already being removed,
82 * the request will be accounted on the disk only
83 *
84 * We take a reference on disk->part0 although that
85 * partition will never be deleted, so we can treat
86 * it as any other partition.
87 */
88 part = &rq->rq_disk->part0;
6c23a968 89 hd_struct_get(part);
09e099d4 90 }
074a7aca 91 part_round_stats(cpu, part);
316d315b 92 part_inc_in_flight(part, rw);
09e099d4 93 rq->part = part;
26b8256e 94 }
e71bf0d0 95
074a7aca 96 part_stat_unlock();
26b8256e
JA
97}
98
8324aa91 99void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
100{
101 int nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
107
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
112}
113
1da177e4
LT
114/**
115 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * @bdev: device
117 *
118 * Locates the passed device's request queue and returns the address of its
119 * backing_dev_info
120 *
121 * Will return NULL if the request queue cannot be located.
122 */
123struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
124{
125 struct backing_dev_info *ret = NULL;
165125e1 126 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
127
128 if (q)
129 ret = &q->backing_dev_info;
130 return ret;
131}
1da177e4
LT
132EXPORT_SYMBOL(blk_get_backing_dev_info);
133
2a4aa30c 134void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 135{
1afb20f3
FT
136 memset(rq, 0, sizeof(*rq));
137
1da177e4 138 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 139 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 140 rq->cpu = -1;
63a71386 141 rq->q = q;
a2dec7b3 142 rq->__sector = (sector_t) -1;
2e662b65
JA
143 INIT_HLIST_NODE(&rq->hash);
144 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 145 rq->cmd = rq->__cmd;
e2494e1b 146 rq->cmd_len = BLK_MAX_CDB;
63a71386 147 rq->tag = -1;
1da177e4 148 rq->ref_count = 1;
b243ddcb 149 rq->start_time = jiffies;
9195291e 150 set_start_time_ns(rq);
09e099d4 151 rq->part = NULL;
1da177e4 152}
2a4aa30c 153EXPORT_SYMBOL(blk_rq_init);
1da177e4 154
5bb23a68
N
155static void req_bio_endio(struct request *rq, struct bio *bio,
156 unsigned int nbytes, int error)
1da177e4 157{
143a87f4
TH
158 if (error)
159 clear_bit(BIO_UPTODATE, &bio->bi_flags);
160 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
161 error = -EIO;
797e7dbb 162
143a87f4
TH
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 165
f79ea416 166 bio_advance(bio, nbytes);
7ba1ba12 167
143a87f4
TH
168 /* don't actually finish bio if it's part of flush sequence */
169 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
170 bio_endio(bio, error);
1da177e4 171}
1da177e4 172
1da177e4
LT
173void blk_dump_rq_flags(struct request *rq, char *msg)
174{
175 int bit;
176
6728cb0e 177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
1da177e4 180
83096ebf
TH
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 186
33659ebb 187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 188 printk(KERN_INFO " cdb: ");
d34c87e4 189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193}
1da177e4
LT
194EXPORT_SYMBOL(blk_dump_rq_flags);
195
3cca6dc1 196static void blk_delay_work(struct work_struct *work)
1da177e4 197{
3cca6dc1 198 struct request_queue *q;
1da177e4 199
3cca6dc1
JA
200 q = container_of(work, struct request_queue, delay_work.work);
201 spin_lock_irq(q->queue_lock);
24ecfbe2 202 __blk_run_queue(q);
3cca6dc1 203 spin_unlock_irq(q->queue_lock);
1da177e4 204}
1da177e4
LT
205
206/**
3cca6dc1
JA
207 * blk_delay_queue - restart queueing after defined interval
208 * @q: The &struct request_queue in question
209 * @msecs: Delay in msecs
1da177e4
LT
210 *
211 * Description:
3cca6dc1
JA
212 * Sometimes queueing needs to be postponed for a little while, to allow
213 * resources to come back. This function will make sure that queueing is
70460571 214 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
215 */
216void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 217{
70460571
BVA
218 if (likely(!blk_queue_dead(q)))
219 queue_delayed_work(kblockd_workqueue, &q->delay_work,
220 msecs_to_jiffies(msecs));
2ad8b1ef 221}
3cca6dc1 222EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 223
1da177e4
LT
224/**
225 * blk_start_queue - restart a previously stopped queue
165125e1 226 * @q: The &struct request_queue in question
1da177e4
LT
227 *
228 * Description:
229 * blk_start_queue() will clear the stop flag on the queue, and call
230 * the request_fn for the queue if it was in a stopped state when
231 * entered. Also see blk_stop_queue(). Queue lock must be held.
232 **/
165125e1 233void blk_start_queue(struct request_queue *q)
1da177e4 234{
a038e253
PBG
235 WARN_ON(!irqs_disabled());
236
75ad23bc 237 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 238 __blk_run_queue(q);
1da177e4 239}
1da177e4
LT
240EXPORT_SYMBOL(blk_start_queue);
241
242/**
243 * blk_stop_queue - stop a queue
165125e1 244 * @q: The &struct request_queue in question
1da177e4
LT
245 *
246 * Description:
247 * The Linux block layer assumes that a block driver will consume all
248 * entries on the request queue when the request_fn strategy is called.
249 * Often this will not happen, because of hardware limitations (queue
250 * depth settings). If a device driver gets a 'queue full' response,
251 * or if it simply chooses not to queue more I/O at one point, it can
252 * call this function to prevent the request_fn from being called until
253 * the driver has signalled it's ready to go again. This happens by calling
254 * blk_start_queue() to restart queue operations. Queue lock must be held.
255 **/
165125e1 256void blk_stop_queue(struct request_queue *q)
1da177e4 257{
136b5721 258 cancel_delayed_work(&q->delay_work);
75ad23bc 259 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
260}
261EXPORT_SYMBOL(blk_stop_queue);
262
263/**
264 * blk_sync_queue - cancel any pending callbacks on a queue
265 * @q: the queue
266 *
267 * Description:
268 * The block layer may perform asynchronous callback activity
269 * on a queue, such as calling the unplug function after a timeout.
270 * A block device may call blk_sync_queue to ensure that any
271 * such activity is cancelled, thus allowing it to release resources
59c51591 272 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
273 * that its ->make_request_fn will not re-add plugging prior to calling
274 * this function.
275 *
da527770
VG
276 * This function does not cancel any asynchronous activity arising
277 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 278 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 279 *
1da177e4
LT
280 */
281void blk_sync_queue(struct request_queue *q)
282{
70ed28b9 283 del_timer_sync(&q->timeout);
3cca6dc1 284 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
285}
286EXPORT_SYMBOL(blk_sync_queue);
287
c246e80d
BVA
288/**
289 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
290 * @q: The queue to run
291 *
292 * Description:
293 * Invoke request handling on a queue if there are any pending requests.
294 * May be used to restart request handling after a request has completed.
295 * This variant runs the queue whether or not the queue has been
296 * stopped. Must be called with the queue lock held and interrupts
297 * disabled. See also @blk_run_queue.
298 */
299inline void __blk_run_queue_uncond(struct request_queue *q)
300{
301 if (unlikely(blk_queue_dead(q)))
302 return;
303
24faf6f6
BVA
304 /*
305 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
306 * the queue lock internally. As a result multiple threads may be
307 * running such a request function concurrently. Keep track of the
308 * number of active request_fn invocations such that blk_drain_queue()
309 * can wait until all these request_fn calls have finished.
310 */
311 q->request_fn_active++;
c246e80d 312 q->request_fn(q);
24faf6f6 313 q->request_fn_active--;
c246e80d
BVA
314}
315
1da177e4 316/**
80a4b58e 317 * __blk_run_queue - run a single device queue
1da177e4 318 * @q: The queue to run
80a4b58e
JA
319 *
320 * Description:
321 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 322 * held and interrupts disabled.
1da177e4 323 */
24ecfbe2 324void __blk_run_queue(struct request_queue *q)
1da177e4 325{
a538cd03
TH
326 if (unlikely(blk_queue_stopped(q)))
327 return;
328
c246e80d 329 __blk_run_queue_uncond(q);
75ad23bc
NP
330}
331EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 332
24ecfbe2
CH
333/**
334 * blk_run_queue_async - run a single device queue in workqueue context
335 * @q: The queue to run
336 *
337 * Description:
338 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 339 * of us. The caller must hold the queue lock.
24ecfbe2
CH
340 */
341void blk_run_queue_async(struct request_queue *q)
342{
70460571 343 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 344 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 345}
c21e6beb 346EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 347
75ad23bc
NP
348/**
349 * blk_run_queue - run a single device queue
350 * @q: The queue to run
80a4b58e
JA
351 *
352 * Description:
353 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 354 * May be used to restart queueing when a request has completed.
75ad23bc
NP
355 */
356void blk_run_queue(struct request_queue *q)
357{
358 unsigned long flags;
359
360 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 361 __blk_run_queue(q);
1da177e4
LT
362 spin_unlock_irqrestore(q->queue_lock, flags);
363}
364EXPORT_SYMBOL(blk_run_queue);
365
165125e1 366void blk_put_queue(struct request_queue *q)
483f4afc
AV
367{
368 kobject_put(&q->kobj);
369}
d86e0e83 370EXPORT_SYMBOL(blk_put_queue);
483f4afc 371
e3c78ca5 372/**
807592a4 373 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 374 * @q: queue to drain
c9a929dd 375 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 376 *
c9a929dd
TH
377 * Drain requests from @q. If @drain_all is set, all requests are drained.
378 * If not, only ELVPRIV requests are drained. The caller is responsible
379 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 380 */
807592a4
BVA
381static void __blk_drain_queue(struct request_queue *q, bool drain_all)
382 __releases(q->queue_lock)
383 __acquires(q->queue_lock)
e3c78ca5 384{
458f27a9
AH
385 int i;
386
807592a4
BVA
387 lockdep_assert_held(q->queue_lock);
388
e3c78ca5 389 while (true) {
481a7d64 390 bool drain = false;
e3c78ca5 391
b855b04a
TH
392 /*
393 * The caller might be trying to drain @q before its
394 * elevator is initialized.
395 */
396 if (q->elevator)
397 elv_drain_elevator(q);
398
5efd6113 399 blkcg_drain_queue(q);
e3c78ca5 400
4eabc941
TH
401 /*
402 * This function might be called on a queue which failed
b855b04a
TH
403 * driver init after queue creation or is not yet fully
404 * active yet. Some drivers (e.g. fd and loop) get unhappy
405 * in such cases. Kick queue iff dispatch queue has
406 * something on it and @q has request_fn set.
4eabc941 407 */
b855b04a 408 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 409 __blk_run_queue(q);
c9a929dd 410
8a5ecdd4 411 drain |= q->nr_rqs_elvpriv;
24faf6f6 412 drain |= q->request_fn_active;
481a7d64
TH
413
414 /*
415 * Unfortunately, requests are queued at and tracked from
416 * multiple places and there's no single counter which can
417 * be drained. Check all the queues and counters.
418 */
419 if (drain_all) {
420 drain |= !list_empty(&q->queue_head);
421 for (i = 0; i < 2; i++) {
8a5ecdd4 422 drain |= q->nr_rqs[i];
481a7d64
TH
423 drain |= q->in_flight[i];
424 drain |= !list_empty(&q->flush_queue[i]);
425 }
426 }
e3c78ca5 427
481a7d64 428 if (!drain)
e3c78ca5 429 break;
807592a4
BVA
430
431 spin_unlock_irq(q->queue_lock);
432
e3c78ca5 433 msleep(10);
807592a4
BVA
434
435 spin_lock_irq(q->queue_lock);
e3c78ca5 436 }
458f27a9
AH
437
438 /*
439 * With queue marked dead, any woken up waiter will fail the
440 * allocation path, so the wakeup chaining is lost and we're
441 * left with hung waiters. We need to wake up those waiters.
442 */
443 if (q->request_fn) {
a051661c
TH
444 struct request_list *rl;
445
a051661c
TH
446 blk_queue_for_each_rl(rl, q)
447 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
448 wake_up_all(&rl->wait[i]);
458f27a9 449 }
e3c78ca5
TH
450}
451
d732580b
TH
452/**
453 * blk_queue_bypass_start - enter queue bypass mode
454 * @q: queue of interest
455 *
456 * In bypass mode, only the dispatch FIFO queue of @q is used. This
457 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 458 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
459 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
460 * inside queue or RCU read lock.
d732580b
TH
461 */
462void blk_queue_bypass_start(struct request_queue *q)
463{
b82d4b19
TH
464 bool drain;
465
d732580b 466 spin_lock_irq(q->queue_lock);
b82d4b19 467 drain = !q->bypass_depth++;
d732580b
TH
468 queue_flag_set(QUEUE_FLAG_BYPASS, q);
469 spin_unlock_irq(q->queue_lock);
470
b82d4b19 471 if (drain) {
807592a4
BVA
472 spin_lock_irq(q->queue_lock);
473 __blk_drain_queue(q, false);
474 spin_unlock_irq(q->queue_lock);
475
b82d4b19
TH
476 /* ensure blk_queue_bypass() is %true inside RCU read lock */
477 synchronize_rcu();
478 }
d732580b
TH
479}
480EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
481
482/**
483 * blk_queue_bypass_end - leave queue bypass mode
484 * @q: queue of interest
485 *
486 * Leave bypass mode and restore the normal queueing behavior.
487 */
488void blk_queue_bypass_end(struct request_queue *q)
489{
490 spin_lock_irq(q->queue_lock);
491 if (!--q->bypass_depth)
492 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
493 WARN_ON_ONCE(q->bypass_depth < 0);
494 spin_unlock_irq(q->queue_lock);
495}
496EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
497
c9a929dd
TH
498/**
499 * blk_cleanup_queue - shutdown a request queue
500 * @q: request queue to shutdown
501 *
c246e80d
BVA
502 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
503 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 504 */
6728cb0e 505void blk_cleanup_queue(struct request_queue *q)
483f4afc 506{
c9a929dd 507 spinlock_t *lock = q->queue_lock;
e3335de9 508
3f3299d5 509 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 510 mutex_lock(&q->sysfs_lock);
3f3299d5 511 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 512 spin_lock_irq(lock);
6ecf23af 513
80fd9979 514 /*
3f3299d5 515 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
516 * that, unlike blk_queue_bypass_start(), we aren't performing
517 * synchronize_rcu() after entering bypass mode to avoid the delay
518 * as some drivers create and destroy a lot of queues while
519 * probing. This is still safe because blk_release_queue() will be
520 * called only after the queue refcnt drops to zero and nothing,
521 * RCU or not, would be traversing the queue by then.
522 */
6ecf23af
TH
523 q->bypass_depth++;
524 queue_flag_set(QUEUE_FLAG_BYPASS, q);
525
c9a929dd
TH
526 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
527 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 528 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
529 spin_unlock_irq(lock);
530 mutex_unlock(&q->sysfs_lock);
531
c246e80d
BVA
532 /*
533 * Drain all requests queued before DYING marking. Set DEAD flag to
534 * prevent that q->request_fn() gets invoked after draining finished.
535 */
807592a4
BVA
536 spin_lock_irq(lock);
537 __blk_drain_queue(q, true);
c246e80d 538 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 539 spin_unlock_irq(lock);
c9a929dd
TH
540
541 /* @q won't process any more request, flush async actions */
542 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
543 blk_sync_queue(q);
544
5e5cfac0
AH
545 spin_lock_irq(lock);
546 if (q->queue_lock != &q->__queue_lock)
547 q->queue_lock = &q->__queue_lock;
548 spin_unlock_irq(lock);
549
c9a929dd 550 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
551 blk_put_queue(q);
552}
1da177e4
LT
553EXPORT_SYMBOL(blk_cleanup_queue);
554
5b788ce3
TH
555int blk_init_rl(struct request_list *rl, struct request_queue *q,
556 gfp_t gfp_mask)
1da177e4 557{
1abec4fd
MS
558 if (unlikely(rl->rq_pool))
559 return 0;
560
5b788ce3 561 rl->q = q;
1faa16d2
JA
562 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
563 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
564 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
565 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 566
1946089a 567 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 568 mempool_free_slab, request_cachep,
5b788ce3 569 gfp_mask, q->node);
1da177e4
LT
570 if (!rl->rq_pool)
571 return -ENOMEM;
572
573 return 0;
574}
575
5b788ce3
TH
576void blk_exit_rl(struct request_list *rl)
577{
578 if (rl->rq_pool)
579 mempool_destroy(rl->rq_pool);
580}
581
165125e1 582struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 583{
c304a51b 584 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
585}
586EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 587
165125e1 588struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 589{
165125e1 590 struct request_queue *q;
e0bf68dd 591 int err;
1946089a 592
8324aa91 593 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 594 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
595 if (!q)
596 return NULL;
597
00380a40 598 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d
TH
599 if (q->id < 0)
600 goto fail_q;
601
0989a025
JA
602 q->backing_dev_info.ra_pages =
603 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
604 q->backing_dev_info.state = 0;
605 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 606 q->backing_dev_info.name = "block";
5151412d 607 q->node = node_id;
0989a025 608
e0bf68dd 609 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
610 if (err)
611 goto fail_id;
e0bf68dd 612
31373d09
MG
613 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
614 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 615 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 616 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 617 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 618 INIT_LIST_HEAD(&q->icq_list);
4eef3049 619#ifdef CONFIG_BLK_CGROUP
e8989fae 620 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 621#endif
ae1b1539
TH
622 INIT_LIST_HEAD(&q->flush_queue[0]);
623 INIT_LIST_HEAD(&q->flush_queue[1]);
624 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 625 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 626
8324aa91 627 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 628
483f4afc 629 mutex_init(&q->sysfs_lock);
e7e72bf6 630 spin_lock_init(&q->__queue_lock);
483f4afc 631
c94a96ac
VG
632 /*
633 * By default initialize queue_lock to internal lock and driver can
634 * override it later if need be.
635 */
636 q->queue_lock = &q->__queue_lock;
637
b82d4b19
TH
638 /*
639 * A queue starts its life with bypass turned on to avoid
640 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
641 * init. The initial bypass will be finished when the queue is
642 * registered by blk_register_queue().
b82d4b19
TH
643 */
644 q->bypass_depth = 1;
645 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
646
5efd6113 647 if (blkcg_init_queue(q))
fff4996b 648 goto fail_bdi;
f51b802c 649
1da177e4 650 return q;
a73f730d 651
fff4996b
MP
652fail_bdi:
653 bdi_destroy(&q->backing_dev_info);
a73f730d
TH
654fail_id:
655 ida_simple_remove(&blk_queue_ida, q->id);
656fail_q:
657 kmem_cache_free(blk_requestq_cachep, q);
658 return NULL;
1da177e4 659}
1946089a 660EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
661
662/**
663 * blk_init_queue - prepare a request queue for use with a block device
664 * @rfn: The function to be called to process requests that have been
665 * placed on the queue.
666 * @lock: Request queue spin lock
667 *
668 * Description:
669 * If a block device wishes to use the standard request handling procedures,
670 * which sorts requests and coalesces adjacent requests, then it must
671 * call blk_init_queue(). The function @rfn will be called when there
672 * are requests on the queue that need to be processed. If the device
673 * supports plugging, then @rfn may not be called immediately when requests
674 * are available on the queue, but may be called at some time later instead.
675 * Plugged queues are generally unplugged when a buffer belonging to one
676 * of the requests on the queue is needed, or due to memory pressure.
677 *
678 * @rfn is not required, or even expected, to remove all requests off the
679 * queue, but only as many as it can handle at a time. If it does leave
680 * requests on the queue, it is responsible for arranging that the requests
681 * get dealt with eventually.
682 *
683 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
684 * request queue; this lock will be taken also from interrupt context, so irq
685 * disabling is needed for it.
1da177e4 686 *
710027a4 687 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
688 * it didn't succeed.
689 *
690 * Note:
691 * blk_init_queue() must be paired with a blk_cleanup_queue() call
692 * when the block device is deactivated (such as at module unload).
693 **/
1946089a 694
165125e1 695struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 696{
c304a51b 697 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
698}
699EXPORT_SYMBOL(blk_init_queue);
700
165125e1 701struct request_queue *
1946089a
CL
702blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
703{
c86d1b8a 704 struct request_queue *uninit_q, *q;
1da177e4 705
c86d1b8a
MS
706 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
707 if (!uninit_q)
708 return NULL;
709
5151412d 710 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
711 if (!q)
712 blk_cleanup_queue(uninit_q);
713
714 return q;
01effb0d
MS
715}
716EXPORT_SYMBOL(blk_init_queue_node);
717
718struct request_queue *
719blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
720 spinlock_t *lock)
01effb0d 721{
1da177e4
LT
722 if (!q)
723 return NULL;
724
a051661c 725 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
8669aafd 726 return NULL;
1da177e4
LT
727
728 q->request_fn = rfn;
1da177e4 729 q->prep_rq_fn = NULL;
28018c24 730 q->unprep_rq_fn = NULL;
60ea8226 731 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
732
733 /* Override internal queue lock with supplied lock pointer */
734 if (lock)
735 q->queue_lock = lock;
1da177e4 736
f3b144aa
JA
737 /*
738 * This also sets hw/phys segments, boundary and size
739 */
c20e8de2 740 blk_queue_make_request(q, blk_queue_bio);
1da177e4 741
44ec9542
AS
742 q->sg_reserved_size = INT_MAX;
743
b82d4b19
TH
744 /* init elevator */
745 if (elevator_init(q, NULL))
746 return NULL;
b82d4b19 747 return q;
1da177e4 748}
5151412d 749EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 750
09ac46c4 751bool blk_get_queue(struct request_queue *q)
1da177e4 752{
3f3299d5 753 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
754 __blk_get_queue(q);
755 return true;
1da177e4
LT
756 }
757
09ac46c4 758 return false;
1da177e4 759}
d86e0e83 760EXPORT_SYMBOL(blk_get_queue);
1da177e4 761
5b788ce3 762static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 763{
f1f8cc94 764 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 765 elv_put_request(rl->q, rq);
f1f8cc94 766 if (rq->elv.icq)
11a3122f 767 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
768 }
769
5b788ce3 770 mempool_free(rq, rl->rq_pool);
1da177e4
LT
771}
772
1da177e4
LT
773/*
774 * ioc_batching returns true if the ioc is a valid batching request and
775 * should be given priority access to a request.
776 */
165125e1 777static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
778{
779 if (!ioc)
780 return 0;
781
782 /*
783 * Make sure the process is able to allocate at least 1 request
784 * even if the batch times out, otherwise we could theoretically
785 * lose wakeups.
786 */
787 return ioc->nr_batch_requests == q->nr_batching ||
788 (ioc->nr_batch_requests > 0
789 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
790}
791
792/*
793 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
794 * will cause the process to be a "batcher" on all queues in the system. This
795 * is the behaviour we want though - once it gets a wakeup it should be given
796 * a nice run.
797 */
165125e1 798static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
799{
800 if (!ioc || ioc_batching(q, ioc))
801 return;
802
803 ioc->nr_batch_requests = q->nr_batching;
804 ioc->last_waited = jiffies;
805}
806
5b788ce3 807static void __freed_request(struct request_list *rl, int sync)
1da177e4 808{
5b788ce3 809 struct request_queue *q = rl->q;
1da177e4 810
a051661c
TH
811 /*
812 * bdi isn't aware of blkcg yet. As all async IOs end up root
813 * blkcg anyway, just use root blkcg state.
814 */
815 if (rl == &q->root_rl &&
816 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 817 blk_clear_queue_congested(q, sync);
1da177e4 818
1faa16d2
JA
819 if (rl->count[sync] + 1 <= q->nr_requests) {
820 if (waitqueue_active(&rl->wait[sync]))
821 wake_up(&rl->wait[sync]);
1da177e4 822
5b788ce3 823 blk_clear_rl_full(rl, sync);
1da177e4
LT
824 }
825}
826
827/*
828 * A request has just been released. Account for it, update the full and
829 * congestion status, wake up any waiters. Called under q->queue_lock.
830 */
5b788ce3 831static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 832{
5b788ce3 833 struct request_queue *q = rl->q;
75eb6c37 834 int sync = rw_is_sync(flags);
1da177e4 835
8a5ecdd4 836 q->nr_rqs[sync]--;
1faa16d2 837 rl->count[sync]--;
75eb6c37 838 if (flags & REQ_ELVPRIV)
8a5ecdd4 839 q->nr_rqs_elvpriv--;
1da177e4 840
5b788ce3 841 __freed_request(rl, sync);
1da177e4 842
1faa16d2 843 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 844 __freed_request(rl, sync ^ 1);
1da177e4
LT
845}
846
9d5a4e94
MS
847/*
848 * Determine if elevator data should be initialized when allocating the
849 * request associated with @bio.
850 */
851static bool blk_rq_should_init_elevator(struct bio *bio)
852{
853 if (!bio)
854 return true;
855
856 /*
857 * Flush requests do not use the elevator so skip initialization.
858 * This allows a request to share the flush and elevator data.
859 */
860 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
861 return false;
862
863 return true;
864}
865
852c788f
TH
866/**
867 * rq_ioc - determine io_context for request allocation
868 * @bio: request being allocated is for this bio (can be %NULL)
869 *
870 * Determine io_context to use for request allocation for @bio. May return
871 * %NULL if %current->io_context doesn't exist.
872 */
873static struct io_context *rq_ioc(struct bio *bio)
874{
875#ifdef CONFIG_BLK_CGROUP
876 if (bio && bio->bi_ioc)
877 return bio->bi_ioc;
878#endif
879 return current->io_context;
880}
881
da8303c6 882/**
a06e05e6 883 * __get_request - get a free request
5b788ce3 884 * @rl: request list to allocate from
da8303c6
TH
885 * @rw_flags: RW and SYNC flags
886 * @bio: bio to allocate request for (can be %NULL)
887 * @gfp_mask: allocation mask
888 *
889 * Get a free request from @q. This function may fail under memory
890 * pressure or if @q is dead.
891 *
892 * Must be callled with @q->queue_lock held and,
893 * Returns %NULL on failure, with @q->queue_lock held.
894 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 895 */
5b788ce3 896static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 897 struct bio *bio, gfp_t gfp_mask)
1da177e4 898{
5b788ce3 899 struct request_queue *q = rl->q;
b679281a 900 struct request *rq;
7f4b35d1
TH
901 struct elevator_type *et = q->elevator->type;
902 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 903 struct io_cq *icq = NULL;
1faa16d2 904 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 905 int may_queue;
88ee5ef1 906
3f3299d5 907 if (unlikely(blk_queue_dying(q)))
da8303c6
TH
908 return NULL;
909
7749a8d4 910 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
911 if (may_queue == ELV_MQUEUE_NO)
912 goto rq_starved;
913
1faa16d2
JA
914 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
915 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
916 /*
917 * The queue will fill after this allocation, so set
918 * it as full, and mark this process as "batching".
919 * This process will be allowed to complete a batch of
920 * requests, others will be blocked.
921 */
5b788ce3 922 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 923 ioc_set_batching(q, ioc);
5b788ce3 924 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
925 } else {
926 if (may_queue != ELV_MQUEUE_MUST
927 && !ioc_batching(q, ioc)) {
928 /*
929 * The queue is full and the allocating
930 * process is not a "batcher", and not
931 * exempted by the IO scheduler
932 */
b679281a 933 return NULL;
88ee5ef1
JA
934 }
935 }
1da177e4 936 }
a051661c
TH
937 /*
938 * bdi isn't aware of blkcg yet. As all async IOs end up
939 * root blkcg anyway, just use root blkcg state.
940 */
941 if (rl == &q->root_rl)
942 blk_set_queue_congested(q, is_sync);
1da177e4
LT
943 }
944
082cf69e
JA
945 /*
946 * Only allow batching queuers to allocate up to 50% over the defined
947 * limit of requests, otherwise we could have thousands of requests
948 * allocated with any setting of ->nr_requests
949 */
1faa16d2 950 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 951 return NULL;
fd782a4a 952
8a5ecdd4 953 q->nr_rqs[is_sync]++;
1faa16d2
JA
954 rl->count[is_sync]++;
955 rl->starved[is_sync] = 0;
cb98fc8b 956
f1f8cc94
TH
957 /*
958 * Decide whether the new request will be managed by elevator. If
959 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
960 * prevent the current elevator from being destroyed until the new
961 * request is freed. This guarantees icq's won't be destroyed and
962 * makes creating new ones safe.
963 *
964 * Also, lookup icq while holding queue_lock. If it doesn't exist,
965 * it will be created after releasing queue_lock.
966 */
d732580b 967 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 968 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 969 q->nr_rqs_elvpriv++;
f1f8cc94
TH
970 if (et->icq_cache && ioc)
971 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 972 }
cb98fc8b 973
f253b86b
JA
974 if (blk_queue_io_stat(q))
975 rw_flags |= REQ_IO_STAT;
1da177e4
LT
976 spin_unlock_irq(q->queue_lock);
977
29e2b09a 978 /* allocate and init request */
5b788ce3 979 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 980 if (!rq)
b679281a 981 goto fail_alloc;
1da177e4 982
29e2b09a 983 blk_rq_init(q, rq);
a051661c 984 blk_rq_set_rl(rq, rl);
29e2b09a
TH
985 rq->cmd_flags = rw_flags | REQ_ALLOCED;
986
aaf7c680 987 /* init elvpriv */
29e2b09a 988 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 989 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
990 if (ioc)
991 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
992 if (!icq)
993 goto fail_elvpriv;
29e2b09a 994 }
aaf7c680
TH
995
996 rq->elv.icq = icq;
997 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
998 goto fail_elvpriv;
999
1000 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1001 if (icq)
1002 get_io_context(icq->ioc);
1003 }
aaf7c680 1004out:
88ee5ef1
JA
1005 /*
1006 * ioc may be NULL here, and ioc_batching will be false. That's
1007 * OK, if the queue is under the request limit then requests need
1008 * not count toward the nr_batch_requests limit. There will always
1009 * be some limit enforced by BLK_BATCH_TIME.
1010 */
1da177e4
LT
1011 if (ioc_batching(q, ioc))
1012 ioc->nr_batch_requests--;
6728cb0e 1013
1faa16d2 1014 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1015 return rq;
b679281a 1016
aaf7c680
TH
1017fail_elvpriv:
1018 /*
1019 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1020 * and may fail indefinitely under memory pressure and thus
1021 * shouldn't stall IO. Treat this request as !elvpriv. This will
1022 * disturb iosched and blkcg but weird is bettern than dead.
1023 */
1024 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1025 dev_name(q->backing_dev_info.dev));
1026
1027 rq->cmd_flags &= ~REQ_ELVPRIV;
1028 rq->elv.icq = NULL;
1029
1030 spin_lock_irq(q->queue_lock);
8a5ecdd4 1031 q->nr_rqs_elvpriv--;
aaf7c680
TH
1032 spin_unlock_irq(q->queue_lock);
1033 goto out;
1034
b679281a
TH
1035fail_alloc:
1036 /*
1037 * Allocation failed presumably due to memory. Undo anything we
1038 * might have messed up.
1039 *
1040 * Allocating task should really be put onto the front of the wait
1041 * queue, but this is pretty rare.
1042 */
1043 spin_lock_irq(q->queue_lock);
5b788ce3 1044 freed_request(rl, rw_flags);
b679281a
TH
1045
1046 /*
1047 * in the very unlikely event that allocation failed and no
1048 * requests for this direction was pending, mark us starved so that
1049 * freeing of a request in the other direction will notice
1050 * us. another possible fix would be to split the rq mempool into
1051 * READ and WRITE
1052 */
1053rq_starved:
1054 if (unlikely(rl->count[is_sync] == 0))
1055 rl->starved[is_sync] = 1;
1056 return NULL;
1da177e4
LT
1057}
1058
da8303c6 1059/**
a06e05e6 1060 * get_request - get a free request
da8303c6
TH
1061 * @q: request_queue to allocate request from
1062 * @rw_flags: RW and SYNC flags
1063 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1064 * @gfp_mask: allocation mask
da8303c6 1065 *
a06e05e6
TH
1066 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1067 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1068 *
da8303c6
TH
1069 * Must be callled with @q->queue_lock held and,
1070 * Returns %NULL on failure, with @q->queue_lock held.
1071 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1072 */
a06e05e6
TH
1073static struct request *get_request(struct request_queue *q, int rw_flags,
1074 struct bio *bio, gfp_t gfp_mask)
1da177e4 1075{
1faa16d2 1076 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1077 DEFINE_WAIT(wait);
a051661c 1078 struct request_list *rl;
1da177e4 1079 struct request *rq;
a051661c
TH
1080
1081 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1082retry:
a051661c 1083 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1084 if (rq)
1085 return rq;
1da177e4 1086
3f3299d5 1087 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1088 blk_put_rl(rl);
a06e05e6 1089 return NULL;
a051661c 1090 }
1da177e4 1091
a06e05e6
TH
1092 /* wait on @rl and retry */
1093 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1094 TASK_UNINTERRUPTIBLE);
1da177e4 1095
a06e05e6 1096 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1097
a06e05e6
TH
1098 spin_unlock_irq(q->queue_lock);
1099 io_schedule();
d6344532 1100
a06e05e6
TH
1101 /*
1102 * After sleeping, we become a "batching" process and will be able
1103 * to allocate at least one request, and up to a big batch of them
1104 * for a small period time. See ioc_batching, ioc_set_batching
1105 */
a06e05e6 1106 ioc_set_batching(q, current->io_context);
05caf8db 1107
a06e05e6
TH
1108 spin_lock_irq(q->queue_lock);
1109 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1110
a06e05e6 1111 goto retry;
1da177e4
LT
1112}
1113
165125e1 1114struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1115{
1116 struct request *rq;
1117
1118 BUG_ON(rw != READ && rw != WRITE);
1119
7f4b35d1
TH
1120 /* create ioc upfront */
1121 create_io_context(gfp_mask, q->node);
1122
d6344532 1123 spin_lock_irq(q->queue_lock);
a06e05e6 1124 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1125 if (!rq)
1126 spin_unlock_irq(q->queue_lock);
d6344532 1127 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1128
1129 return rq;
1130}
1da177e4
LT
1131EXPORT_SYMBOL(blk_get_request);
1132
dc72ef4a 1133/**
79eb63e9 1134 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1135 * @q: target request queue
79eb63e9
BH
1136 * @bio: The bio describing the memory mappings that will be submitted for IO.
1137 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1138 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1139 *
79eb63e9
BH
1140 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1141 * type commands. Where the struct request needs to be farther initialized by
1142 * the caller. It is passed a &struct bio, which describes the memory info of
1143 * the I/O transfer.
dc72ef4a 1144 *
79eb63e9
BH
1145 * The caller of blk_make_request must make sure that bi_io_vec
1146 * are set to describe the memory buffers. That bio_data_dir() will return
1147 * the needed direction of the request. (And all bio's in the passed bio-chain
1148 * are properly set accordingly)
1149 *
1150 * If called under none-sleepable conditions, mapped bio buffers must not
1151 * need bouncing, by calling the appropriate masked or flagged allocator,
1152 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1153 * BUG.
53674ac5
JA
1154 *
1155 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1156 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1157 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1158 * completion of a bio that hasn't been submitted yet, thus resulting in a
1159 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1160 * of bio_alloc(), as that avoids the mempool deadlock.
1161 * If possible a big IO should be split into smaller parts when allocation
1162 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1163 */
79eb63e9
BH
1164struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1165 gfp_t gfp_mask)
dc72ef4a 1166{
79eb63e9
BH
1167 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1168
1169 if (unlikely(!rq))
1170 return ERR_PTR(-ENOMEM);
1171
1172 for_each_bio(bio) {
1173 struct bio *bounce_bio = bio;
1174 int ret;
1175
1176 blk_queue_bounce(q, &bounce_bio);
1177 ret = blk_rq_append_bio(q, rq, bounce_bio);
1178 if (unlikely(ret)) {
1179 blk_put_request(rq);
1180 return ERR_PTR(ret);
1181 }
1182 }
1183
1184 return rq;
dc72ef4a 1185}
79eb63e9 1186EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1187
1da177e4
LT
1188/**
1189 * blk_requeue_request - put a request back on queue
1190 * @q: request queue where request should be inserted
1191 * @rq: request to be inserted
1192 *
1193 * Description:
1194 * Drivers often keep queueing requests until the hardware cannot accept
1195 * more, when that condition happens we need to put the request back
1196 * on the queue. Must be called with queue lock held.
1197 */
165125e1 1198void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1199{
242f9dcb
JA
1200 blk_delete_timer(rq);
1201 blk_clear_rq_complete(rq);
5f3ea37c 1202 trace_block_rq_requeue(q, rq);
2056a782 1203
1da177e4
LT
1204 if (blk_rq_tagged(rq))
1205 blk_queue_end_tag(q, rq);
1206
ba396a6c
JB
1207 BUG_ON(blk_queued_rq(rq));
1208
1da177e4
LT
1209 elv_requeue_request(q, rq);
1210}
1da177e4
LT
1211EXPORT_SYMBOL(blk_requeue_request);
1212
73c10101
JA
1213static void add_acct_request(struct request_queue *q, struct request *rq,
1214 int where)
1215{
1216 drive_stat_acct(rq, 1);
7eaceacc 1217 __elv_add_request(q, rq, where);
73c10101
JA
1218}
1219
074a7aca
TH
1220static void part_round_stats_single(int cpu, struct hd_struct *part,
1221 unsigned long now)
1222{
1223 if (now == part->stamp)
1224 return;
1225
316d315b 1226 if (part_in_flight(part)) {
074a7aca 1227 __part_stat_add(cpu, part, time_in_queue,
316d315b 1228 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1229 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1230 }
1231 part->stamp = now;
1232}
1233
1234/**
496aa8a9
RD
1235 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1236 * @cpu: cpu number for stats access
1237 * @part: target partition
1da177e4
LT
1238 *
1239 * The average IO queue length and utilisation statistics are maintained
1240 * by observing the current state of the queue length and the amount of
1241 * time it has been in this state for.
1242 *
1243 * Normally, that accounting is done on IO completion, but that can result
1244 * in more than a second's worth of IO being accounted for within any one
1245 * second, leading to >100% utilisation. To deal with that, we call this
1246 * function to do a round-off before returning the results when reading
1247 * /proc/diskstats. This accounts immediately for all queue usage up to
1248 * the current jiffies and restarts the counters again.
1249 */
c9959059 1250void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1251{
1252 unsigned long now = jiffies;
1253
074a7aca
TH
1254 if (part->partno)
1255 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1256 part_round_stats_single(cpu, part, now);
6f2576af 1257}
074a7aca 1258EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1259
c8158819
LM
1260#ifdef CONFIG_PM_RUNTIME
1261static void blk_pm_put_request(struct request *rq)
1262{
1263 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1264 pm_runtime_mark_last_busy(rq->q->dev);
1265}
1266#else
1267static inline void blk_pm_put_request(struct request *rq) {}
1268#endif
1269
1da177e4
LT
1270/*
1271 * queue lock must be held
1272 */
165125e1 1273void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1274{
1da177e4
LT
1275 if (unlikely(!q))
1276 return;
1277 if (unlikely(--req->ref_count))
1278 return;
1279
c8158819
LM
1280 blk_pm_put_request(req);
1281
8922e16c
TH
1282 elv_completed_request(q, req);
1283
1cd96c24
BH
1284 /* this is a bio leak */
1285 WARN_ON(req->bio != NULL);
1286
1da177e4
LT
1287 /*
1288 * Request may not have originated from ll_rw_blk. if not,
1289 * it didn't come out of our reserved rq pools
1290 */
49171e5c 1291 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1292 unsigned int flags = req->cmd_flags;
a051661c 1293 struct request_list *rl = blk_rq_rl(req);
1da177e4 1294
1da177e4 1295 BUG_ON(!list_empty(&req->queuelist));
9817064b 1296 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4 1297
a051661c
TH
1298 blk_free_request(rl, req);
1299 freed_request(rl, flags);
1300 blk_put_rl(rl);
1da177e4
LT
1301 }
1302}
6e39b69e
MC
1303EXPORT_SYMBOL_GPL(__blk_put_request);
1304
1da177e4
LT
1305void blk_put_request(struct request *req)
1306{
8922e16c 1307 unsigned long flags;
165125e1 1308 struct request_queue *q = req->q;
8922e16c 1309
52a93ba8
FT
1310 spin_lock_irqsave(q->queue_lock, flags);
1311 __blk_put_request(q, req);
1312 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1313}
1da177e4
LT
1314EXPORT_SYMBOL(blk_put_request);
1315
66ac0280
CH
1316/**
1317 * blk_add_request_payload - add a payload to a request
1318 * @rq: request to update
1319 * @page: page backing the payload
1320 * @len: length of the payload.
1321 *
1322 * This allows to later add a payload to an already submitted request by
1323 * a block driver. The driver needs to take care of freeing the payload
1324 * itself.
1325 *
1326 * Note that this is a quite horrible hack and nothing but handling of
1327 * discard requests should ever use it.
1328 */
1329void blk_add_request_payload(struct request *rq, struct page *page,
1330 unsigned int len)
1331{
1332 struct bio *bio = rq->bio;
1333
1334 bio->bi_io_vec->bv_page = page;
1335 bio->bi_io_vec->bv_offset = 0;
1336 bio->bi_io_vec->bv_len = len;
1337
1338 bio->bi_size = len;
1339 bio->bi_vcnt = 1;
1340 bio->bi_phys_segments = 1;
1341
1342 rq->__data_len = rq->resid_len = len;
1343 rq->nr_phys_segments = 1;
1344 rq->buffer = bio_data(bio);
1345}
1346EXPORT_SYMBOL_GPL(blk_add_request_payload);
1347
73c10101
JA
1348static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1349 struct bio *bio)
1350{
1351 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1352
73c10101
JA
1353 if (!ll_back_merge_fn(q, req, bio))
1354 return false;
1355
8c1cf6bb 1356 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1357
1358 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1359 blk_rq_set_mixed_merge(req);
1360
1361 req->biotail->bi_next = bio;
1362 req->biotail = bio;
1363 req->__data_len += bio->bi_size;
1364 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1365
1366 drive_stat_acct(req, 0);
1367 return true;
1368}
1369
1370static bool bio_attempt_front_merge(struct request_queue *q,
1371 struct request *req, struct bio *bio)
1372{
1373 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1374
73c10101
JA
1375 if (!ll_front_merge_fn(q, req, bio))
1376 return false;
1377
8c1cf6bb 1378 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1379
1380 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1381 blk_rq_set_mixed_merge(req);
1382
73c10101
JA
1383 bio->bi_next = req->bio;
1384 req->bio = bio;
1385
1386 /*
1387 * may not be valid. if the low level driver said
1388 * it didn't need a bounce buffer then it better
1389 * not touch req->buffer either...
1390 */
1391 req->buffer = bio_data(bio);
1392 req->__sector = bio->bi_sector;
1393 req->__data_len += bio->bi_size;
1394 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1395
1396 drive_stat_acct(req, 0);
1397 return true;
1398}
1399
bd87b589
TH
1400/**
1401 * attempt_plug_merge - try to merge with %current's plugged list
1402 * @q: request_queue new bio is being queued at
1403 * @bio: new bio being queued
1404 * @request_count: out parameter for number of traversed plugged requests
1405 *
1406 * Determine whether @bio being queued on @q can be merged with a request
1407 * on %current's plugged list. Returns %true if merge was successful,
1408 * otherwise %false.
1409 *
07c2bd37
TH
1410 * Plugging coalesces IOs from the same issuer for the same purpose without
1411 * going through @q->queue_lock. As such it's more of an issuing mechanism
1412 * than scheduling, and the request, while may have elvpriv data, is not
1413 * added on the elevator at this point. In addition, we don't have
1414 * reliable access to the elevator outside queue lock. Only check basic
1415 * merging parameters without querying the elevator.
73c10101 1416 */
bd87b589
TH
1417static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1418 unsigned int *request_count)
73c10101
JA
1419{
1420 struct blk_plug *plug;
1421 struct request *rq;
1422 bool ret = false;
1423
bd87b589 1424 plug = current->plug;
73c10101
JA
1425 if (!plug)
1426 goto out;
56ebdaf2 1427 *request_count = 0;
73c10101
JA
1428
1429 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1430 int el_ret;
1431
1b2e19f1
SL
1432 if (rq->q == q)
1433 (*request_count)++;
56ebdaf2 1434
07c2bd37 1435 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1436 continue;
1437
050c8ea8 1438 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1439 if (el_ret == ELEVATOR_BACK_MERGE) {
1440 ret = bio_attempt_back_merge(q, rq, bio);
1441 if (ret)
1442 break;
1443 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1444 ret = bio_attempt_front_merge(q, rq, bio);
1445 if (ret)
1446 break;
1447 }
1448 }
1449out:
1450 return ret;
1451}
1452
86db1e29 1453void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1454{
4aff5e23 1455 req->cmd_type = REQ_TYPE_FS;
52d9e675 1456
7b6d91da
CH
1457 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1458 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1459 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1460
52d9e675 1461 req->errors = 0;
a2dec7b3 1462 req->__sector = bio->bi_sector;
52d9e675 1463 req->ioprio = bio_prio(bio);
bc1c56fd 1464 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1465}
1466
5a7bbad2 1467void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1468{
5e00d1b5 1469 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1470 struct blk_plug *plug;
1471 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1472 struct request *req;
56ebdaf2 1473 unsigned int request_count = 0;
1da177e4 1474
1da177e4
LT
1475 /*
1476 * low level driver can indicate that it wants pages above a
1477 * certain limit bounced to low memory (ie for highmem, or even
1478 * ISA dma in theory)
1479 */
1480 blk_queue_bounce(q, &bio);
1481
ffecfd1a
DW
1482 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1483 bio_endio(bio, -EIO);
1484 return;
1485 }
1486
4fed947c 1487 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1488 spin_lock_irq(q->queue_lock);
ae1b1539 1489 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1490 goto get_rq;
1491 }
1492
73c10101
JA
1493 /*
1494 * Check if we can merge with the plugged list before grabbing
1495 * any locks.
1496 */
bd87b589 1497 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1498 return;
1da177e4 1499
73c10101 1500 spin_lock_irq(q->queue_lock);
2056a782 1501
73c10101
JA
1502 el_ret = elv_merge(q, &req, bio);
1503 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1504 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1505 elv_bio_merged(q, req, bio);
73c10101
JA
1506 if (!attempt_back_merge(q, req))
1507 elv_merged_request(q, req, el_ret);
1508 goto out_unlock;
1509 }
1510 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1511 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1512 elv_bio_merged(q, req, bio);
73c10101
JA
1513 if (!attempt_front_merge(q, req))
1514 elv_merged_request(q, req, el_ret);
1515 goto out_unlock;
80a761fd 1516 }
1da177e4
LT
1517 }
1518
450991bc 1519get_rq:
7749a8d4
JA
1520 /*
1521 * This sync check and mask will be re-done in init_request_from_bio(),
1522 * but we need to set it earlier to expose the sync flag to the
1523 * rq allocator and io schedulers.
1524 */
1525 rw_flags = bio_data_dir(bio);
1526 if (sync)
7b6d91da 1527 rw_flags |= REQ_SYNC;
7749a8d4 1528
1da177e4 1529 /*
450991bc 1530 * Grab a free request. This is might sleep but can not fail.
d6344532 1531 * Returns with the queue unlocked.
450991bc 1532 */
a06e05e6 1533 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1534 if (unlikely(!req)) {
1535 bio_endio(bio, -ENODEV); /* @q is dead */
1536 goto out_unlock;
1537 }
d6344532 1538
450991bc
NP
1539 /*
1540 * After dropping the lock and possibly sleeping here, our request
1541 * may now be mergeable after it had proven unmergeable (above).
1542 * We don't worry about that case for efficiency. It won't happen
1543 * often, and the elevators are able to handle it.
1da177e4 1544 */
52d9e675 1545 init_request_from_bio(req, bio);
1da177e4 1546
9562ad9a 1547 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1548 req->cpu = raw_smp_processor_id();
73c10101
JA
1549
1550 plug = current->plug;
721a9602 1551 if (plug) {
dc6d36c9
JA
1552 /*
1553 * If this is the first request added after a plug, fire
7aef2e78 1554 * of a plug trace.
dc6d36c9 1555 */
7aef2e78 1556 if (!request_count)
dc6d36c9 1557 trace_block_plug(q);
3540d5e8 1558 else {
019ceb7d 1559 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1560 blk_flush_plug_list(plug, false);
019ceb7d
SL
1561 trace_block_plug(q);
1562 }
73c10101 1563 }
73c10101
JA
1564 list_add_tail(&req->queuelist, &plug->list);
1565 drive_stat_acct(req, 1);
1566 } else {
1567 spin_lock_irq(q->queue_lock);
1568 add_acct_request(q, req, where);
24ecfbe2 1569 __blk_run_queue(q);
73c10101
JA
1570out_unlock:
1571 spin_unlock_irq(q->queue_lock);
1572 }
1da177e4 1573}
c20e8de2 1574EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1575
1576/*
1577 * If bio->bi_dev is a partition, remap the location
1578 */
1579static inline void blk_partition_remap(struct bio *bio)
1580{
1581 struct block_device *bdev = bio->bi_bdev;
1582
bf2de6f5 1583 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1584 struct hd_struct *p = bdev->bd_part;
1585
1da177e4
LT
1586 bio->bi_sector += p->start_sect;
1587 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1588
d07335e5
MS
1589 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1590 bdev->bd_dev,
1591 bio->bi_sector - p->start_sect);
1da177e4
LT
1592 }
1593}
1594
1da177e4
LT
1595static void handle_bad_sector(struct bio *bio)
1596{
1597 char b[BDEVNAME_SIZE];
1598
1599 printk(KERN_INFO "attempt to access beyond end of device\n");
1600 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1601 bdevname(bio->bi_bdev, b),
1602 bio->bi_rw,
f73a1c7d 1603 (unsigned long long)bio_end_sector(bio),
77304d2a 1604 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1605
1606 set_bit(BIO_EOF, &bio->bi_flags);
1607}
1608
c17bb495
AM
1609#ifdef CONFIG_FAIL_MAKE_REQUEST
1610
1611static DECLARE_FAULT_ATTR(fail_make_request);
1612
1613static int __init setup_fail_make_request(char *str)
1614{
1615 return setup_fault_attr(&fail_make_request, str);
1616}
1617__setup("fail_make_request=", setup_fail_make_request);
1618
b2c9cd37 1619static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1620{
b2c9cd37 1621 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1622}
1623
1624static int __init fail_make_request_debugfs(void)
1625{
dd48c085
AM
1626 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1627 NULL, &fail_make_request);
1628
1629 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1630}
1631
1632late_initcall(fail_make_request_debugfs);
1633
1634#else /* CONFIG_FAIL_MAKE_REQUEST */
1635
b2c9cd37
AM
1636static inline bool should_fail_request(struct hd_struct *part,
1637 unsigned int bytes)
c17bb495 1638{
b2c9cd37 1639 return false;
c17bb495
AM
1640}
1641
1642#endif /* CONFIG_FAIL_MAKE_REQUEST */
1643
c07e2b41
JA
1644/*
1645 * Check whether this bio extends beyond the end of the device.
1646 */
1647static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1648{
1649 sector_t maxsector;
1650
1651 if (!nr_sectors)
1652 return 0;
1653
1654 /* Test device or partition size, when known. */
77304d2a 1655 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1656 if (maxsector) {
1657 sector_t sector = bio->bi_sector;
1658
1659 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1660 /*
1661 * This may well happen - the kernel calls bread()
1662 * without checking the size of the device, e.g., when
1663 * mounting a device.
1664 */
1665 handle_bad_sector(bio);
1666 return 1;
1667 }
1668 }
1669
1670 return 0;
1671}
1672
27a84d54
CH
1673static noinline_for_stack bool
1674generic_make_request_checks(struct bio *bio)
1da177e4 1675{
165125e1 1676 struct request_queue *q;
5a7bbad2 1677 int nr_sectors = bio_sectors(bio);
51fd77bd 1678 int err = -EIO;
5a7bbad2
CH
1679 char b[BDEVNAME_SIZE];
1680 struct hd_struct *part;
1da177e4
LT
1681
1682 might_sleep();
1da177e4 1683
c07e2b41
JA
1684 if (bio_check_eod(bio, nr_sectors))
1685 goto end_io;
1da177e4 1686
5a7bbad2
CH
1687 q = bdev_get_queue(bio->bi_bdev);
1688 if (unlikely(!q)) {
1689 printk(KERN_ERR
1690 "generic_make_request: Trying to access "
1691 "nonexistent block-device %s (%Lu)\n",
1692 bdevname(bio->bi_bdev, b),
1693 (long long) bio->bi_sector);
1694 goto end_io;
1695 }
c17bb495 1696
e2a60da7
MP
1697 if (likely(bio_is_rw(bio) &&
1698 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1699 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1700 bdevname(bio->bi_bdev, b),
1701 bio_sectors(bio),
1702 queue_max_hw_sectors(q));
1703 goto end_io;
1704 }
1da177e4 1705
5a7bbad2
CH
1706 part = bio->bi_bdev->bd_part;
1707 if (should_fail_request(part, bio->bi_size) ||
1708 should_fail_request(&part_to_disk(part)->part0,
1709 bio->bi_size))
1710 goto end_io;
2056a782 1711
5a7bbad2
CH
1712 /*
1713 * If this device has partitions, remap block n
1714 * of partition p to block n+start(p) of the disk.
1715 */
1716 blk_partition_remap(bio);
2056a782 1717
5a7bbad2
CH
1718 if (bio_check_eod(bio, nr_sectors))
1719 goto end_io;
1e87901e 1720
5a7bbad2
CH
1721 /*
1722 * Filter flush bio's early so that make_request based
1723 * drivers without flush support don't have to worry
1724 * about them.
1725 */
1726 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1727 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1728 if (!nr_sectors) {
1729 err = 0;
51fd77bd
JA
1730 goto end_io;
1731 }
5a7bbad2 1732 }
5ddfe969 1733
5a7bbad2
CH
1734 if ((bio->bi_rw & REQ_DISCARD) &&
1735 (!blk_queue_discard(q) ||
e2a60da7 1736 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1737 err = -EOPNOTSUPP;
1738 goto end_io;
1739 }
01edede4 1740
4363ac7c 1741 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1742 err = -EOPNOTSUPP;
1743 goto end_io;
1744 }
01edede4 1745
7f4b35d1
TH
1746 /*
1747 * Various block parts want %current->io_context and lazy ioc
1748 * allocation ends up trading a lot of pain for a small amount of
1749 * memory. Just allocate it upfront. This may fail and block
1750 * layer knows how to live with it.
1751 */
1752 create_io_context(GFP_ATOMIC, q->node);
1753
bc16a4f9
TH
1754 if (blk_throtl_bio(q, bio))
1755 return false; /* throttled, will be resubmitted later */
27a84d54 1756
5a7bbad2 1757 trace_block_bio_queue(q, bio);
27a84d54 1758 return true;
a7384677
TH
1759
1760end_io:
1761 bio_endio(bio, err);
27a84d54 1762 return false;
1da177e4
LT
1763}
1764
27a84d54
CH
1765/**
1766 * generic_make_request - hand a buffer to its device driver for I/O
1767 * @bio: The bio describing the location in memory and on the device.
1768 *
1769 * generic_make_request() is used to make I/O requests of block
1770 * devices. It is passed a &struct bio, which describes the I/O that needs
1771 * to be done.
1772 *
1773 * generic_make_request() does not return any status. The
1774 * success/failure status of the request, along with notification of
1775 * completion, is delivered asynchronously through the bio->bi_end_io
1776 * function described (one day) else where.
1777 *
1778 * The caller of generic_make_request must make sure that bi_io_vec
1779 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1780 * set to describe the device address, and the
1781 * bi_end_io and optionally bi_private are set to describe how
1782 * completion notification should be signaled.
1783 *
1784 * generic_make_request and the drivers it calls may use bi_next if this
1785 * bio happens to be merged with someone else, and may resubmit the bio to
1786 * a lower device by calling into generic_make_request recursively, which
1787 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1788 */
1789void generic_make_request(struct bio *bio)
1790{
bddd87c7
AM
1791 struct bio_list bio_list_on_stack;
1792
27a84d54
CH
1793 if (!generic_make_request_checks(bio))
1794 return;
1795
1796 /*
1797 * We only want one ->make_request_fn to be active at a time, else
1798 * stack usage with stacked devices could be a problem. So use
1799 * current->bio_list to keep a list of requests submited by a
1800 * make_request_fn function. current->bio_list is also used as a
1801 * flag to say if generic_make_request is currently active in this
1802 * task or not. If it is NULL, then no make_request is active. If
1803 * it is non-NULL, then a make_request is active, and new requests
1804 * should be added at the tail
1805 */
bddd87c7 1806 if (current->bio_list) {
bddd87c7 1807 bio_list_add(current->bio_list, bio);
d89d8796
NB
1808 return;
1809 }
27a84d54 1810
d89d8796
NB
1811 /* following loop may be a bit non-obvious, and so deserves some
1812 * explanation.
1813 * Before entering the loop, bio->bi_next is NULL (as all callers
1814 * ensure that) so we have a list with a single bio.
1815 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1816 * we assign bio_list to a pointer to the bio_list_on_stack,
1817 * thus initialising the bio_list of new bios to be
27a84d54 1818 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1819 * through a recursive call to generic_make_request. If it
1820 * did, we find a non-NULL value in bio_list and re-enter the loop
1821 * from the top. In this case we really did just take the bio
bddd87c7 1822 * of the top of the list (no pretending) and so remove it from
27a84d54 1823 * bio_list, and call into ->make_request() again.
d89d8796
NB
1824 */
1825 BUG_ON(bio->bi_next);
bddd87c7
AM
1826 bio_list_init(&bio_list_on_stack);
1827 current->bio_list = &bio_list_on_stack;
d89d8796 1828 do {
27a84d54
CH
1829 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1830
1831 q->make_request_fn(q, bio);
1832
bddd87c7 1833 bio = bio_list_pop(current->bio_list);
d89d8796 1834 } while (bio);
bddd87c7 1835 current->bio_list = NULL; /* deactivate */
d89d8796 1836}
1da177e4
LT
1837EXPORT_SYMBOL(generic_make_request);
1838
1839/**
710027a4 1840 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1841 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1842 * @bio: The &struct bio which describes the I/O
1843 *
1844 * submit_bio() is very similar in purpose to generic_make_request(), and
1845 * uses that function to do most of the work. Both are fairly rough
710027a4 1846 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1847 *
1848 */
1849void submit_bio(int rw, struct bio *bio)
1850{
22e2c507 1851 bio->bi_rw |= rw;
1da177e4 1852
bf2de6f5
JA
1853 /*
1854 * If it's a regular read/write or a barrier with data attached,
1855 * go through the normal accounting stuff before submission.
1856 */
e2a60da7 1857 if (bio_has_data(bio)) {
4363ac7c
MP
1858 unsigned int count;
1859
1860 if (unlikely(rw & REQ_WRITE_SAME))
1861 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1862 else
1863 count = bio_sectors(bio);
1864
bf2de6f5
JA
1865 if (rw & WRITE) {
1866 count_vm_events(PGPGOUT, count);
1867 } else {
1868 task_io_account_read(bio->bi_size);
1869 count_vm_events(PGPGIN, count);
1870 }
1871
1872 if (unlikely(block_dump)) {
1873 char b[BDEVNAME_SIZE];
8dcbdc74 1874 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1875 current->comm, task_pid_nr(current),
bf2de6f5
JA
1876 (rw & WRITE) ? "WRITE" : "READ",
1877 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1878 bdevname(bio->bi_bdev, b),
1879 count);
bf2de6f5 1880 }
1da177e4
LT
1881 }
1882
1883 generic_make_request(bio);
1884}
1da177e4
LT
1885EXPORT_SYMBOL(submit_bio);
1886
82124d60
KU
1887/**
1888 * blk_rq_check_limits - Helper function to check a request for the queue limit
1889 * @q: the queue
1890 * @rq: the request being checked
1891 *
1892 * Description:
1893 * @rq may have been made based on weaker limitations of upper-level queues
1894 * in request stacking drivers, and it may violate the limitation of @q.
1895 * Since the block layer and the underlying device driver trust @rq
1896 * after it is inserted to @q, it should be checked against @q before
1897 * the insertion using this generic function.
1898 *
1899 * This function should also be useful for request stacking drivers
eef35c2d 1900 * in some cases below, so export this function.
82124d60
KU
1901 * Request stacking drivers like request-based dm may change the queue
1902 * limits while requests are in the queue (e.g. dm's table swapping).
1903 * Such request stacking drivers should check those requests agaist
1904 * the new queue limits again when they dispatch those requests,
1905 * although such checkings are also done against the old queue limits
1906 * when submitting requests.
1907 */
1908int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1909{
e2a60da7 1910 if (!rq_mergeable(rq))
3383977f
S
1911 return 0;
1912
f31dc1cd 1913 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1914 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1915 return -EIO;
1916 }
1917
1918 /*
1919 * queue's settings related to segment counting like q->bounce_pfn
1920 * may differ from that of other stacking queues.
1921 * Recalculate it to check the request correctly on this queue's
1922 * limitation.
1923 */
1924 blk_recalc_rq_segments(rq);
8a78362c 1925 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1926 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1927 return -EIO;
1928 }
1929
1930 return 0;
1931}
1932EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1933
1934/**
1935 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1936 * @q: the queue to submit the request
1937 * @rq: the request being queued
1938 */
1939int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1940{
1941 unsigned long flags;
4853abaa 1942 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1943
1944 if (blk_rq_check_limits(q, rq))
1945 return -EIO;
1946
b2c9cd37
AM
1947 if (rq->rq_disk &&
1948 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1949 return -EIO;
82124d60
KU
1950
1951 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 1952 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
1953 spin_unlock_irqrestore(q->queue_lock, flags);
1954 return -ENODEV;
1955 }
82124d60
KU
1956
1957 /*
1958 * Submitting request must be dequeued before calling this function
1959 * because it will be linked to another request_queue
1960 */
1961 BUG_ON(blk_queued_rq(rq));
1962
4853abaa
JM
1963 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1964 where = ELEVATOR_INSERT_FLUSH;
1965
1966 add_acct_request(q, rq, where);
e67b77c7
JM
1967 if (where == ELEVATOR_INSERT_FLUSH)
1968 __blk_run_queue(q);
82124d60
KU
1969 spin_unlock_irqrestore(q->queue_lock, flags);
1970
1971 return 0;
1972}
1973EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1974
80a761fd
TH
1975/**
1976 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1977 * @rq: request to examine
1978 *
1979 * Description:
1980 * A request could be merge of IOs which require different failure
1981 * handling. This function determines the number of bytes which
1982 * can be failed from the beginning of the request without
1983 * crossing into area which need to be retried further.
1984 *
1985 * Return:
1986 * The number of bytes to fail.
1987 *
1988 * Context:
1989 * queue_lock must be held.
1990 */
1991unsigned int blk_rq_err_bytes(const struct request *rq)
1992{
1993 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1994 unsigned int bytes = 0;
1995 struct bio *bio;
1996
1997 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1998 return blk_rq_bytes(rq);
1999
2000 /*
2001 * Currently the only 'mixing' which can happen is between
2002 * different fastfail types. We can safely fail portions
2003 * which have all the failfast bits that the first one has -
2004 * the ones which are at least as eager to fail as the first
2005 * one.
2006 */
2007 for (bio = rq->bio; bio; bio = bio->bi_next) {
2008 if ((bio->bi_rw & ff) != ff)
2009 break;
2010 bytes += bio->bi_size;
2011 }
2012
2013 /* this could lead to infinite loop */
2014 BUG_ON(blk_rq_bytes(rq) && !bytes);
2015 return bytes;
2016}
2017EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2018
bc58ba94
JA
2019static void blk_account_io_completion(struct request *req, unsigned int bytes)
2020{
c2553b58 2021 if (blk_do_io_stat(req)) {
bc58ba94
JA
2022 const int rw = rq_data_dir(req);
2023 struct hd_struct *part;
2024 int cpu;
2025
2026 cpu = part_stat_lock();
09e099d4 2027 part = req->part;
bc58ba94
JA
2028 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2029 part_stat_unlock();
2030 }
2031}
2032
2033static void blk_account_io_done(struct request *req)
2034{
bc58ba94 2035 /*
dd4c133f
TH
2036 * Account IO completion. flush_rq isn't accounted as a
2037 * normal IO on queueing nor completion. Accounting the
2038 * containing request is enough.
bc58ba94 2039 */
414b4ff5 2040 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2041 unsigned long duration = jiffies - req->start_time;
2042 const int rw = rq_data_dir(req);
2043 struct hd_struct *part;
2044 int cpu;
2045
2046 cpu = part_stat_lock();
09e099d4 2047 part = req->part;
bc58ba94
JA
2048
2049 part_stat_inc(cpu, part, ios[rw]);
2050 part_stat_add(cpu, part, ticks[rw], duration);
2051 part_round_stats(cpu, part);
316d315b 2052 part_dec_in_flight(part, rw);
bc58ba94 2053
6c23a968 2054 hd_struct_put(part);
bc58ba94
JA
2055 part_stat_unlock();
2056 }
2057}
2058
c8158819
LM
2059#ifdef CONFIG_PM_RUNTIME
2060/*
2061 * Don't process normal requests when queue is suspended
2062 * or in the process of suspending/resuming
2063 */
2064static struct request *blk_pm_peek_request(struct request_queue *q,
2065 struct request *rq)
2066{
2067 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2068 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2069 return NULL;
2070 else
2071 return rq;
2072}
2073#else
2074static inline struct request *blk_pm_peek_request(struct request_queue *q,
2075 struct request *rq)
2076{
2077 return rq;
2078}
2079#endif
2080
3bcddeac 2081/**
9934c8c0
TH
2082 * blk_peek_request - peek at the top of a request queue
2083 * @q: request queue to peek at
2084 *
2085 * Description:
2086 * Return the request at the top of @q. The returned request
2087 * should be started using blk_start_request() before LLD starts
2088 * processing it.
2089 *
2090 * Return:
2091 * Pointer to the request at the top of @q if available. Null
2092 * otherwise.
2093 *
2094 * Context:
2095 * queue_lock must be held.
2096 */
2097struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2098{
2099 struct request *rq;
2100 int ret;
2101
2102 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2103
2104 rq = blk_pm_peek_request(q, rq);
2105 if (!rq)
2106 break;
2107
158dbda0
TH
2108 if (!(rq->cmd_flags & REQ_STARTED)) {
2109 /*
2110 * This is the first time the device driver
2111 * sees this request (possibly after
2112 * requeueing). Notify IO scheduler.
2113 */
33659ebb 2114 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2115 elv_activate_rq(q, rq);
2116
2117 /*
2118 * just mark as started even if we don't start
2119 * it, a request that has been delayed should
2120 * not be passed by new incoming requests
2121 */
2122 rq->cmd_flags |= REQ_STARTED;
2123 trace_block_rq_issue(q, rq);
2124 }
2125
2126 if (!q->boundary_rq || q->boundary_rq == rq) {
2127 q->end_sector = rq_end_sector(rq);
2128 q->boundary_rq = NULL;
2129 }
2130
2131 if (rq->cmd_flags & REQ_DONTPREP)
2132 break;
2133
2e46e8b2 2134 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2135 /*
2136 * make sure space for the drain appears we
2137 * know we can do this because max_hw_segments
2138 * has been adjusted to be one fewer than the
2139 * device can handle
2140 */
2141 rq->nr_phys_segments++;
2142 }
2143
2144 if (!q->prep_rq_fn)
2145 break;
2146
2147 ret = q->prep_rq_fn(q, rq);
2148 if (ret == BLKPREP_OK) {
2149 break;
2150 } else if (ret == BLKPREP_DEFER) {
2151 /*
2152 * the request may have been (partially) prepped.
2153 * we need to keep this request in the front to
2154 * avoid resource deadlock. REQ_STARTED will
2155 * prevent other fs requests from passing this one.
2156 */
2e46e8b2 2157 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2158 !(rq->cmd_flags & REQ_DONTPREP)) {
2159 /*
2160 * remove the space for the drain we added
2161 * so that we don't add it again
2162 */
2163 --rq->nr_phys_segments;
2164 }
2165
2166 rq = NULL;
2167 break;
2168 } else if (ret == BLKPREP_KILL) {
2169 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2170 /*
2171 * Mark this request as started so we don't trigger
2172 * any debug logic in the end I/O path.
2173 */
2174 blk_start_request(rq);
40cbbb78 2175 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2176 } else {
2177 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2178 break;
2179 }
2180 }
2181
2182 return rq;
2183}
9934c8c0 2184EXPORT_SYMBOL(blk_peek_request);
158dbda0 2185
9934c8c0 2186void blk_dequeue_request(struct request *rq)
158dbda0 2187{
9934c8c0
TH
2188 struct request_queue *q = rq->q;
2189
158dbda0
TH
2190 BUG_ON(list_empty(&rq->queuelist));
2191 BUG_ON(ELV_ON_HASH(rq));
2192
2193 list_del_init(&rq->queuelist);
2194
2195 /*
2196 * the time frame between a request being removed from the lists
2197 * and to it is freed is accounted as io that is in progress at
2198 * the driver side.
2199 */
9195291e 2200 if (blk_account_rq(rq)) {
0a7ae2ff 2201 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2202 set_io_start_time_ns(rq);
2203 }
158dbda0
TH
2204}
2205
9934c8c0
TH
2206/**
2207 * blk_start_request - start request processing on the driver
2208 * @req: request to dequeue
2209 *
2210 * Description:
2211 * Dequeue @req and start timeout timer on it. This hands off the
2212 * request to the driver.
2213 *
2214 * Block internal functions which don't want to start timer should
2215 * call blk_dequeue_request().
2216 *
2217 * Context:
2218 * queue_lock must be held.
2219 */
2220void blk_start_request(struct request *req)
2221{
2222 blk_dequeue_request(req);
2223
2224 /*
5f49f631
TH
2225 * We are now handing the request to the hardware, initialize
2226 * resid_len to full count and add the timeout handler.
9934c8c0 2227 */
5f49f631 2228 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2229 if (unlikely(blk_bidi_rq(req)))
2230 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2231
4912aa6c 2232 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2233 blk_add_timer(req);
2234}
2235EXPORT_SYMBOL(blk_start_request);
2236
2237/**
2238 * blk_fetch_request - fetch a request from a request queue
2239 * @q: request queue to fetch a request from
2240 *
2241 * Description:
2242 * Return the request at the top of @q. The request is started on
2243 * return and LLD can start processing it immediately.
2244 *
2245 * Return:
2246 * Pointer to the request at the top of @q if available. Null
2247 * otherwise.
2248 *
2249 * Context:
2250 * queue_lock must be held.
2251 */
2252struct request *blk_fetch_request(struct request_queue *q)
2253{
2254 struct request *rq;
2255
2256 rq = blk_peek_request(q);
2257 if (rq)
2258 blk_start_request(rq);
2259 return rq;
2260}
2261EXPORT_SYMBOL(blk_fetch_request);
2262
3bcddeac 2263/**
2e60e022 2264 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2265 * @req: the request being processed
710027a4 2266 * @error: %0 for success, < %0 for error
8ebf9756 2267 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2268 *
2269 * Description:
8ebf9756
RD
2270 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2271 * the request structure even if @req doesn't have leftover.
2272 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2273 *
2274 * This special helper function is only for request stacking drivers
2275 * (e.g. request-based dm) so that they can handle partial completion.
2276 * Actual device drivers should use blk_end_request instead.
2277 *
2278 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2279 * %false return from this function.
3bcddeac
KU
2280 *
2281 * Return:
2e60e022
TH
2282 * %false - this request doesn't have any more data
2283 * %true - this request has more data
3bcddeac 2284 **/
2e60e022 2285bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2286{
f79ea416 2287 int total_bytes;
1da177e4 2288
2e60e022
TH
2289 if (!req->bio)
2290 return false;
2291
5f3ea37c 2292 trace_block_rq_complete(req->q, req);
2056a782 2293
1da177e4 2294 /*
6f41469c
TH
2295 * For fs requests, rq is just carrier of independent bio's
2296 * and each partial completion should be handled separately.
2297 * Reset per-request error on each partial completion.
2298 *
2299 * TODO: tj: This is too subtle. It would be better to let
2300 * low level drivers do what they see fit.
1da177e4 2301 */
33659ebb 2302 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2303 req->errors = 0;
2304
33659ebb
CH
2305 if (error && req->cmd_type == REQ_TYPE_FS &&
2306 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2307 char *error_type;
2308
2309 switch (error) {
2310 case -ENOLINK:
2311 error_type = "recoverable transport";
2312 break;
2313 case -EREMOTEIO:
2314 error_type = "critical target";
2315 break;
2316 case -EBADE:
2317 error_type = "critical nexus";
2318 break;
d1ffc1f8
HR
2319 case -ETIMEDOUT:
2320 error_type = "timeout";
2321 break;
a9d6ceb8
HR
2322 case -ENOSPC:
2323 error_type = "critical space allocation";
2324 break;
7e782af5
HR
2325 case -ENODATA:
2326 error_type = "critical medium";
2327 break;
79775567
HR
2328 case -EIO:
2329 default:
2330 error_type = "I/O";
2331 break;
2332 }
37d7b34f
YZ
2333 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2334 error_type, req->rq_disk ?
2335 req->rq_disk->disk_name : "?",
2336 (unsigned long long)blk_rq_pos(req));
2337
1da177e4
LT
2338 }
2339
bc58ba94 2340 blk_account_io_completion(req, nr_bytes);
d72d904a 2341
f79ea416
KO
2342 total_bytes = 0;
2343 while (req->bio) {
2344 struct bio *bio = req->bio;
2345 unsigned bio_bytes = min(bio->bi_size, nr_bytes);
1da177e4 2346
f79ea416 2347 if (bio_bytes == bio->bi_size)
1da177e4 2348 req->bio = bio->bi_next;
1da177e4 2349
f79ea416 2350 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2351
f79ea416
KO
2352 total_bytes += bio_bytes;
2353 nr_bytes -= bio_bytes;
1da177e4 2354
f79ea416
KO
2355 if (!nr_bytes)
2356 break;
1da177e4
LT
2357 }
2358
2359 /*
2360 * completely done
2361 */
2e60e022
TH
2362 if (!req->bio) {
2363 /*
2364 * Reset counters so that the request stacking driver
2365 * can find how many bytes remain in the request
2366 * later.
2367 */
a2dec7b3 2368 req->__data_len = 0;
2e60e022
TH
2369 return false;
2370 }
1da177e4 2371
a2dec7b3 2372 req->__data_len -= total_bytes;
2e46e8b2
TH
2373 req->buffer = bio_data(req->bio);
2374
2375 /* update sector only for requests with clear definition of sector */
e2a60da7 2376 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2377 req->__sector += total_bytes >> 9;
2e46e8b2 2378
80a761fd
TH
2379 /* mixed attributes always follow the first bio */
2380 if (req->cmd_flags & REQ_MIXED_MERGE) {
2381 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2382 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2383 }
2384
2e46e8b2
TH
2385 /*
2386 * If total number of sectors is less than the first segment
2387 * size, something has gone terribly wrong.
2388 */
2389 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2390 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2391 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2392 }
2393
2394 /* recalculate the number of segments */
1da177e4 2395 blk_recalc_rq_segments(req);
2e46e8b2 2396
2e60e022 2397 return true;
1da177e4 2398}
2e60e022 2399EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2400
2e60e022
TH
2401static bool blk_update_bidi_request(struct request *rq, int error,
2402 unsigned int nr_bytes,
2403 unsigned int bidi_bytes)
5efccd17 2404{
2e60e022
TH
2405 if (blk_update_request(rq, error, nr_bytes))
2406 return true;
5efccd17 2407
2e60e022
TH
2408 /* Bidi request must be completed as a whole */
2409 if (unlikely(blk_bidi_rq(rq)) &&
2410 blk_update_request(rq->next_rq, error, bidi_bytes))
2411 return true;
5efccd17 2412
e2e1a148
JA
2413 if (blk_queue_add_random(rq->q))
2414 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2415
2416 return false;
1da177e4
LT
2417}
2418
28018c24
JB
2419/**
2420 * blk_unprep_request - unprepare a request
2421 * @req: the request
2422 *
2423 * This function makes a request ready for complete resubmission (or
2424 * completion). It happens only after all error handling is complete,
2425 * so represents the appropriate moment to deallocate any resources
2426 * that were allocated to the request in the prep_rq_fn. The queue
2427 * lock is held when calling this.
2428 */
2429void blk_unprep_request(struct request *req)
2430{
2431 struct request_queue *q = req->q;
2432
2433 req->cmd_flags &= ~REQ_DONTPREP;
2434 if (q->unprep_rq_fn)
2435 q->unprep_rq_fn(q, req);
2436}
2437EXPORT_SYMBOL_GPL(blk_unprep_request);
2438
1da177e4
LT
2439/*
2440 * queue lock must be held
2441 */
2e60e022 2442static void blk_finish_request(struct request *req, int error)
1da177e4 2443{
b8286239
KU
2444 if (blk_rq_tagged(req))
2445 blk_queue_end_tag(req->q, req);
2446
ba396a6c 2447 BUG_ON(blk_queued_rq(req));
1da177e4 2448
33659ebb 2449 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2450 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2451
e78042e5
MA
2452 blk_delete_timer(req);
2453
28018c24
JB
2454 if (req->cmd_flags & REQ_DONTPREP)
2455 blk_unprep_request(req);
2456
2457
bc58ba94 2458 blk_account_io_done(req);
b8286239 2459
1da177e4 2460 if (req->end_io)
8ffdc655 2461 req->end_io(req, error);
b8286239
KU
2462 else {
2463 if (blk_bidi_rq(req))
2464 __blk_put_request(req->next_rq->q, req->next_rq);
2465
1da177e4 2466 __blk_put_request(req->q, req);
b8286239 2467 }
1da177e4
LT
2468}
2469
3b11313a 2470/**
2e60e022
TH
2471 * blk_end_bidi_request - Complete a bidi request
2472 * @rq: the request to complete
2473 * @error: %0 for success, < %0 for error
2474 * @nr_bytes: number of bytes to complete @rq
2475 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2476 *
2477 * Description:
e3a04fe3 2478 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2479 * Drivers that supports bidi can safely call this member for any
2480 * type of request, bidi or uni. In the later case @bidi_bytes is
2481 * just ignored.
336cdb40
KU
2482 *
2483 * Return:
2e60e022
TH
2484 * %false - we are done with this request
2485 * %true - still buffers pending for this request
a0cd1285 2486 **/
b1f74493 2487static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2488 unsigned int nr_bytes, unsigned int bidi_bytes)
2489{
336cdb40 2490 struct request_queue *q = rq->q;
2e60e022 2491 unsigned long flags;
32fab448 2492
2e60e022
TH
2493 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2494 return true;
32fab448 2495
336cdb40 2496 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2497 blk_finish_request(rq, error);
336cdb40
KU
2498 spin_unlock_irqrestore(q->queue_lock, flags);
2499
2e60e022 2500 return false;
32fab448
KU
2501}
2502
336cdb40 2503/**
2e60e022
TH
2504 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2505 * @rq: the request to complete
710027a4 2506 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2507 * @nr_bytes: number of bytes to complete @rq
2508 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2509 *
2510 * Description:
2e60e022
TH
2511 * Identical to blk_end_bidi_request() except that queue lock is
2512 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2513 *
2514 * Return:
2e60e022
TH
2515 * %false - we are done with this request
2516 * %true - still buffers pending for this request
336cdb40 2517 **/
4853abaa 2518bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2519 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2520{
2e60e022
TH
2521 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2522 return true;
336cdb40 2523
2e60e022 2524 blk_finish_request(rq, error);
336cdb40 2525
2e60e022 2526 return false;
336cdb40 2527}
e19a3ab0
KU
2528
2529/**
2530 * blk_end_request - Helper function for drivers to complete the request.
2531 * @rq: the request being processed
710027a4 2532 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2533 * @nr_bytes: number of bytes to complete
2534 *
2535 * Description:
2536 * Ends I/O on a number of bytes attached to @rq.
2537 * If @rq has leftover, sets it up for the next range of segments.
2538 *
2539 * Return:
b1f74493
FT
2540 * %false - we are done with this request
2541 * %true - still buffers pending for this request
e19a3ab0 2542 **/
b1f74493 2543bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2544{
b1f74493 2545 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2546}
56ad1740 2547EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2548
2549/**
b1f74493
FT
2550 * blk_end_request_all - Helper function for drives to finish the request.
2551 * @rq: the request to finish
8ebf9756 2552 * @error: %0 for success, < %0 for error
336cdb40
KU
2553 *
2554 * Description:
b1f74493
FT
2555 * Completely finish @rq.
2556 */
2557void blk_end_request_all(struct request *rq, int error)
336cdb40 2558{
b1f74493
FT
2559 bool pending;
2560 unsigned int bidi_bytes = 0;
336cdb40 2561
b1f74493
FT
2562 if (unlikely(blk_bidi_rq(rq)))
2563 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2564
b1f74493
FT
2565 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2566 BUG_ON(pending);
2567}
56ad1740 2568EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2569
b1f74493
FT
2570/**
2571 * blk_end_request_cur - Helper function to finish the current request chunk.
2572 * @rq: the request to finish the current chunk for
8ebf9756 2573 * @error: %0 for success, < %0 for error
b1f74493
FT
2574 *
2575 * Description:
2576 * Complete the current consecutively mapped chunk from @rq.
2577 *
2578 * Return:
2579 * %false - we are done with this request
2580 * %true - still buffers pending for this request
2581 */
2582bool blk_end_request_cur(struct request *rq, int error)
2583{
2584 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2585}
56ad1740 2586EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2587
80a761fd
TH
2588/**
2589 * blk_end_request_err - Finish a request till the next failure boundary.
2590 * @rq: the request to finish till the next failure boundary for
2591 * @error: must be negative errno
2592 *
2593 * Description:
2594 * Complete @rq till the next failure boundary.
2595 *
2596 * Return:
2597 * %false - we are done with this request
2598 * %true - still buffers pending for this request
2599 */
2600bool blk_end_request_err(struct request *rq, int error)
2601{
2602 WARN_ON(error >= 0);
2603 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2604}
2605EXPORT_SYMBOL_GPL(blk_end_request_err);
2606
e3a04fe3 2607/**
b1f74493
FT
2608 * __blk_end_request - Helper function for drivers to complete the request.
2609 * @rq: the request being processed
2610 * @error: %0 for success, < %0 for error
2611 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2612 *
2613 * Description:
b1f74493 2614 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2615 *
2616 * Return:
b1f74493
FT
2617 * %false - we are done with this request
2618 * %true - still buffers pending for this request
e3a04fe3 2619 **/
b1f74493 2620bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2621{
b1f74493 2622 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2623}
56ad1740 2624EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2625
32fab448 2626/**
b1f74493
FT
2627 * __blk_end_request_all - Helper function for drives to finish the request.
2628 * @rq: the request to finish
8ebf9756 2629 * @error: %0 for success, < %0 for error
32fab448
KU
2630 *
2631 * Description:
b1f74493 2632 * Completely finish @rq. Must be called with queue lock held.
32fab448 2633 */
b1f74493 2634void __blk_end_request_all(struct request *rq, int error)
32fab448 2635{
b1f74493
FT
2636 bool pending;
2637 unsigned int bidi_bytes = 0;
2638
2639 if (unlikely(blk_bidi_rq(rq)))
2640 bidi_bytes = blk_rq_bytes(rq->next_rq);
2641
2642 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2643 BUG_ON(pending);
32fab448 2644}
56ad1740 2645EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2646
e19a3ab0 2647/**
b1f74493
FT
2648 * __blk_end_request_cur - Helper function to finish the current request chunk.
2649 * @rq: the request to finish the current chunk for
8ebf9756 2650 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2651 *
2652 * Description:
b1f74493
FT
2653 * Complete the current consecutively mapped chunk from @rq. Must
2654 * be called with queue lock held.
e19a3ab0
KU
2655 *
2656 * Return:
b1f74493
FT
2657 * %false - we are done with this request
2658 * %true - still buffers pending for this request
2659 */
2660bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2661{
b1f74493 2662 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2663}
56ad1740 2664EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2665
80a761fd
TH
2666/**
2667 * __blk_end_request_err - Finish a request till the next failure boundary.
2668 * @rq: the request to finish till the next failure boundary for
2669 * @error: must be negative errno
2670 *
2671 * Description:
2672 * Complete @rq till the next failure boundary. Must be called
2673 * with queue lock held.
2674 *
2675 * Return:
2676 * %false - we are done with this request
2677 * %true - still buffers pending for this request
2678 */
2679bool __blk_end_request_err(struct request *rq, int error)
2680{
2681 WARN_ON(error >= 0);
2682 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2683}
2684EXPORT_SYMBOL_GPL(__blk_end_request_err);
2685
86db1e29
JA
2686void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2687 struct bio *bio)
1da177e4 2688{
a82afdfc 2689 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2690 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2691
fb2dce86
DW
2692 if (bio_has_data(bio)) {
2693 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2694 rq->buffer = bio_data(bio);
2695 }
a2dec7b3 2696 rq->__data_len = bio->bi_size;
1da177e4 2697 rq->bio = rq->biotail = bio;
1da177e4 2698
66846572
N
2699 if (bio->bi_bdev)
2700 rq->rq_disk = bio->bi_bdev->bd_disk;
2701}
1da177e4 2702
2d4dc890
IL
2703#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2704/**
2705 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2706 * @rq: the request to be flushed
2707 *
2708 * Description:
2709 * Flush all pages in @rq.
2710 */
2711void rq_flush_dcache_pages(struct request *rq)
2712{
2713 struct req_iterator iter;
2714 struct bio_vec *bvec;
2715
2716 rq_for_each_segment(bvec, rq, iter)
2717 flush_dcache_page(bvec->bv_page);
2718}
2719EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2720#endif
2721
ef9e3fac
KU
2722/**
2723 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2724 * @q : the queue of the device being checked
2725 *
2726 * Description:
2727 * Check if underlying low-level drivers of a device are busy.
2728 * If the drivers want to export their busy state, they must set own
2729 * exporting function using blk_queue_lld_busy() first.
2730 *
2731 * Basically, this function is used only by request stacking drivers
2732 * to stop dispatching requests to underlying devices when underlying
2733 * devices are busy. This behavior helps more I/O merging on the queue
2734 * of the request stacking driver and prevents I/O throughput regression
2735 * on burst I/O load.
2736 *
2737 * Return:
2738 * 0 - Not busy (The request stacking driver should dispatch request)
2739 * 1 - Busy (The request stacking driver should stop dispatching request)
2740 */
2741int blk_lld_busy(struct request_queue *q)
2742{
2743 if (q->lld_busy_fn)
2744 return q->lld_busy_fn(q);
2745
2746 return 0;
2747}
2748EXPORT_SYMBOL_GPL(blk_lld_busy);
2749
b0fd271d
KU
2750/**
2751 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2752 * @rq: the clone request to be cleaned up
2753 *
2754 * Description:
2755 * Free all bios in @rq for a cloned request.
2756 */
2757void blk_rq_unprep_clone(struct request *rq)
2758{
2759 struct bio *bio;
2760
2761 while ((bio = rq->bio) != NULL) {
2762 rq->bio = bio->bi_next;
2763
2764 bio_put(bio);
2765 }
2766}
2767EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2768
2769/*
2770 * Copy attributes of the original request to the clone request.
2771 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2772 */
2773static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2774{
2775 dst->cpu = src->cpu;
3a2edd0d 2776 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2777 dst->cmd_type = src->cmd_type;
2778 dst->__sector = blk_rq_pos(src);
2779 dst->__data_len = blk_rq_bytes(src);
2780 dst->nr_phys_segments = src->nr_phys_segments;
2781 dst->ioprio = src->ioprio;
2782 dst->extra_len = src->extra_len;
2783}
2784
2785/**
2786 * blk_rq_prep_clone - Helper function to setup clone request
2787 * @rq: the request to be setup
2788 * @rq_src: original request to be cloned
2789 * @bs: bio_set that bios for clone are allocated from
2790 * @gfp_mask: memory allocation mask for bio
2791 * @bio_ctr: setup function to be called for each clone bio.
2792 * Returns %0 for success, non %0 for failure.
2793 * @data: private data to be passed to @bio_ctr
2794 *
2795 * Description:
2796 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2797 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2798 * are not copied, and copying such parts is the caller's responsibility.
2799 * Also, pages which the original bios are pointing to are not copied
2800 * and the cloned bios just point same pages.
2801 * So cloned bios must be completed before original bios, which means
2802 * the caller must complete @rq before @rq_src.
2803 */
2804int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2805 struct bio_set *bs, gfp_t gfp_mask,
2806 int (*bio_ctr)(struct bio *, struct bio *, void *),
2807 void *data)
2808{
2809 struct bio *bio, *bio_src;
2810
2811 if (!bs)
2812 bs = fs_bio_set;
2813
2814 blk_rq_init(NULL, rq);
2815
2816 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2817 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2818 if (!bio)
2819 goto free_and_out;
2820
b0fd271d
KU
2821 if (bio_ctr && bio_ctr(bio, bio_src, data))
2822 goto free_and_out;
2823
2824 if (rq->bio) {
2825 rq->biotail->bi_next = bio;
2826 rq->biotail = bio;
2827 } else
2828 rq->bio = rq->biotail = bio;
2829 }
2830
2831 __blk_rq_prep_clone(rq, rq_src);
2832
2833 return 0;
2834
2835free_and_out:
2836 if (bio)
4254bba1 2837 bio_put(bio);
b0fd271d
KU
2838 blk_rq_unprep_clone(rq);
2839
2840 return -ENOMEM;
2841}
2842EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2843
18887ad9 2844int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2845{
2846 return queue_work(kblockd_workqueue, work);
2847}
1da177e4
LT
2848EXPORT_SYMBOL(kblockd_schedule_work);
2849
e43473b7
VG
2850int kblockd_schedule_delayed_work(struct request_queue *q,
2851 struct delayed_work *dwork, unsigned long delay)
2852{
2853 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2854}
2855EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2856
73c10101
JA
2857#define PLUG_MAGIC 0x91827364
2858
75df7136
SJ
2859/**
2860 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2861 * @plug: The &struct blk_plug that needs to be initialized
2862 *
2863 * Description:
2864 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2865 * pending I/O should the task end up blocking between blk_start_plug() and
2866 * blk_finish_plug(). This is important from a performance perspective, but
2867 * also ensures that we don't deadlock. For instance, if the task is blocking
2868 * for a memory allocation, memory reclaim could end up wanting to free a
2869 * page belonging to that request that is currently residing in our private
2870 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2871 * this kind of deadlock.
2872 */
73c10101
JA
2873void blk_start_plug(struct blk_plug *plug)
2874{
2875 struct task_struct *tsk = current;
2876
2877 plug->magic = PLUG_MAGIC;
2878 INIT_LIST_HEAD(&plug->list);
048c9374 2879 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2880
2881 /*
2882 * If this is a nested plug, don't actually assign it. It will be
2883 * flushed on its own.
2884 */
2885 if (!tsk->plug) {
2886 /*
2887 * Store ordering should not be needed here, since a potential
2888 * preempt will imply a full memory barrier
2889 */
2890 tsk->plug = plug;
2891 }
2892}
2893EXPORT_SYMBOL(blk_start_plug);
2894
2895static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2896{
2897 struct request *rqa = container_of(a, struct request, queuelist);
2898 struct request *rqb = container_of(b, struct request, queuelist);
2899
975927b9
JM
2900 return !(rqa->q < rqb->q ||
2901 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
2902}
2903
49cac01e
JA
2904/*
2905 * If 'from_schedule' is true, then postpone the dispatch of requests
2906 * until a safe kblockd context. We due this to avoid accidental big
2907 * additional stack usage in driver dispatch, in places where the originally
2908 * plugger did not intend it.
2909 */
f6603783 2910static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2911 bool from_schedule)
99e22598 2912 __releases(q->queue_lock)
94b5eb28 2913{
49cac01e 2914 trace_block_unplug(q, depth, !from_schedule);
99e22598 2915
70460571 2916 if (from_schedule)
24ecfbe2 2917 blk_run_queue_async(q);
70460571 2918 else
24ecfbe2 2919 __blk_run_queue(q);
70460571 2920 spin_unlock(q->queue_lock);
94b5eb28
JA
2921}
2922
74018dc3 2923static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
2924{
2925 LIST_HEAD(callbacks);
2926
2a7d5559
SL
2927 while (!list_empty(&plug->cb_list)) {
2928 list_splice_init(&plug->cb_list, &callbacks);
048c9374 2929
2a7d5559
SL
2930 while (!list_empty(&callbacks)) {
2931 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
2932 struct blk_plug_cb,
2933 list);
2a7d5559 2934 list_del(&cb->list);
74018dc3 2935 cb->callback(cb, from_schedule);
2a7d5559 2936 }
048c9374
N
2937 }
2938}
2939
9cbb1750
N
2940struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2941 int size)
2942{
2943 struct blk_plug *plug = current->plug;
2944 struct blk_plug_cb *cb;
2945
2946 if (!plug)
2947 return NULL;
2948
2949 list_for_each_entry(cb, &plug->cb_list, list)
2950 if (cb->callback == unplug && cb->data == data)
2951 return cb;
2952
2953 /* Not currently on the callback list */
2954 BUG_ON(size < sizeof(*cb));
2955 cb = kzalloc(size, GFP_ATOMIC);
2956 if (cb) {
2957 cb->data = data;
2958 cb->callback = unplug;
2959 list_add(&cb->list, &plug->cb_list);
2960 }
2961 return cb;
2962}
2963EXPORT_SYMBOL(blk_check_plugged);
2964
49cac01e 2965void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2966{
2967 struct request_queue *q;
2968 unsigned long flags;
2969 struct request *rq;
109b8129 2970 LIST_HEAD(list);
94b5eb28 2971 unsigned int depth;
73c10101
JA
2972
2973 BUG_ON(plug->magic != PLUG_MAGIC);
2974
74018dc3 2975 flush_plug_callbacks(plug, from_schedule);
73c10101
JA
2976 if (list_empty(&plug->list))
2977 return;
2978
109b8129
N
2979 list_splice_init(&plug->list, &list);
2980
422765c2 2981 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
2982
2983 q = NULL;
94b5eb28 2984 depth = 0;
18811272
JA
2985
2986 /*
2987 * Save and disable interrupts here, to avoid doing it for every
2988 * queue lock we have to take.
2989 */
73c10101 2990 local_irq_save(flags);
109b8129
N
2991 while (!list_empty(&list)) {
2992 rq = list_entry_rq(list.next);
73c10101 2993 list_del_init(&rq->queuelist);
73c10101
JA
2994 BUG_ON(!rq->q);
2995 if (rq->q != q) {
99e22598
JA
2996 /*
2997 * This drops the queue lock
2998 */
2999 if (q)
49cac01e 3000 queue_unplugged(q, depth, from_schedule);
73c10101 3001 q = rq->q;
94b5eb28 3002 depth = 0;
73c10101
JA
3003 spin_lock(q->queue_lock);
3004 }
8ba61435
TH
3005
3006 /*
3007 * Short-circuit if @q is dead
3008 */
3f3299d5 3009 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3010 __blk_end_request_all(rq, -ENODEV);
3011 continue;
3012 }
3013
73c10101
JA
3014 /*
3015 * rq is already accounted, so use raw insert
3016 */
401a18e9
JA
3017 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3018 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3019 else
3020 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3021
3022 depth++;
73c10101
JA
3023 }
3024
99e22598
JA
3025 /*
3026 * This drops the queue lock
3027 */
3028 if (q)
49cac01e 3029 queue_unplugged(q, depth, from_schedule);
73c10101 3030
73c10101
JA
3031 local_irq_restore(flags);
3032}
73c10101
JA
3033
3034void blk_finish_plug(struct blk_plug *plug)
3035{
f6603783 3036 blk_flush_plug_list(plug, false);
73c10101 3037
88b996cd
CH
3038 if (plug == current->plug)
3039 current->plug = NULL;
73c10101 3040}
88b996cd 3041EXPORT_SYMBOL(blk_finish_plug);
73c10101 3042
6c954667
LM
3043#ifdef CONFIG_PM_RUNTIME
3044/**
3045 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3046 * @q: the queue of the device
3047 * @dev: the device the queue belongs to
3048 *
3049 * Description:
3050 * Initialize runtime-PM-related fields for @q and start auto suspend for
3051 * @dev. Drivers that want to take advantage of request-based runtime PM
3052 * should call this function after @dev has been initialized, and its
3053 * request queue @q has been allocated, and runtime PM for it can not happen
3054 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3055 * cases, driver should call this function before any I/O has taken place.
3056 *
3057 * This function takes care of setting up using auto suspend for the device,
3058 * the autosuspend delay is set to -1 to make runtime suspend impossible
3059 * until an updated value is either set by user or by driver. Drivers do
3060 * not need to touch other autosuspend settings.
3061 *
3062 * The block layer runtime PM is request based, so only works for drivers
3063 * that use request as their IO unit instead of those directly use bio's.
3064 */
3065void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3066{
3067 q->dev = dev;
3068 q->rpm_status = RPM_ACTIVE;
3069 pm_runtime_set_autosuspend_delay(q->dev, -1);
3070 pm_runtime_use_autosuspend(q->dev);
3071}
3072EXPORT_SYMBOL(blk_pm_runtime_init);
3073
3074/**
3075 * blk_pre_runtime_suspend - Pre runtime suspend check
3076 * @q: the queue of the device
3077 *
3078 * Description:
3079 * This function will check if runtime suspend is allowed for the device
3080 * by examining if there are any requests pending in the queue. If there
3081 * are requests pending, the device can not be runtime suspended; otherwise,
3082 * the queue's status will be updated to SUSPENDING and the driver can
3083 * proceed to suspend the device.
3084 *
3085 * For the not allowed case, we mark last busy for the device so that
3086 * runtime PM core will try to autosuspend it some time later.
3087 *
3088 * This function should be called near the start of the device's
3089 * runtime_suspend callback.
3090 *
3091 * Return:
3092 * 0 - OK to runtime suspend the device
3093 * -EBUSY - Device should not be runtime suspended
3094 */
3095int blk_pre_runtime_suspend(struct request_queue *q)
3096{
3097 int ret = 0;
3098
3099 spin_lock_irq(q->queue_lock);
3100 if (q->nr_pending) {
3101 ret = -EBUSY;
3102 pm_runtime_mark_last_busy(q->dev);
3103 } else {
3104 q->rpm_status = RPM_SUSPENDING;
3105 }
3106 spin_unlock_irq(q->queue_lock);
3107 return ret;
3108}
3109EXPORT_SYMBOL(blk_pre_runtime_suspend);
3110
3111/**
3112 * blk_post_runtime_suspend - Post runtime suspend processing
3113 * @q: the queue of the device
3114 * @err: return value of the device's runtime_suspend function
3115 *
3116 * Description:
3117 * Update the queue's runtime status according to the return value of the
3118 * device's runtime suspend function and mark last busy for the device so
3119 * that PM core will try to auto suspend the device at a later time.
3120 *
3121 * This function should be called near the end of the device's
3122 * runtime_suspend callback.
3123 */
3124void blk_post_runtime_suspend(struct request_queue *q, int err)
3125{
3126 spin_lock_irq(q->queue_lock);
3127 if (!err) {
3128 q->rpm_status = RPM_SUSPENDED;
3129 } else {
3130 q->rpm_status = RPM_ACTIVE;
3131 pm_runtime_mark_last_busy(q->dev);
3132 }
3133 spin_unlock_irq(q->queue_lock);
3134}
3135EXPORT_SYMBOL(blk_post_runtime_suspend);
3136
3137/**
3138 * blk_pre_runtime_resume - Pre runtime resume processing
3139 * @q: the queue of the device
3140 *
3141 * Description:
3142 * Update the queue's runtime status to RESUMING in preparation for the
3143 * runtime resume of the device.
3144 *
3145 * This function should be called near the start of the device's
3146 * runtime_resume callback.
3147 */
3148void blk_pre_runtime_resume(struct request_queue *q)
3149{
3150 spin_lock_irq(q->queue_lock);
3151 q->rpm_status = RPM_RESUMING;
3152 spin_unlock_irq(q->queue_lock);
3153}
3154EXPORT_SYMBOL(blk_pre_runtime_resume);
3155
3156/**
3157 * blk_post_runtime_resume - Post runtime resume processing
3158 * @q: the queue of the device
3159 * @err: return value of the device's runtime_resume function
3160 *
3161 * Description:
3162 * Update the queue's runtime status according to the return value of the
3163 * device's runtime_resume function. If it is successfully resumed, process
3164 * the requests that are queued into the device's queue when it is resuming
3165 * and then mark last busy and initiate autosuspend for it.
3166 *
3167 * This function should be called near the end of the device's
3168 * runtime_resume callback.
3169 */
3170void blk_post_runtime_resume(struct request_queue *q, int err)
3171{
3172 spin_lock_irq(q->queue_lock);
3173 if (!err) {
3174 q->rpm_status = RPM_ACTIVE;
3175 __blk_run_queue(q);
3176 pm_runtime_mark_last_busy(q->dev);
c60855cd 3177 pm_request_autosuspend(q->dev);
6c954667
LM
3178 } else {
3179 q->rpm_status = RPM_SUSPENDED;
3180 }
3181 spin_unlock_irq(q->queue_lock);
3182}
3183EXPORT_SYMBOL(blk_post_runtime_resume);
3184#endif
3185
1da177e4
LT
3186int __init blk_dev_init(void)
3187{
9eb55b03
NK
3188 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3189 sizeof(((struct request *)0)->cmd_flags));
3190
89b90be2
TH
3191 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3192 kblockd_workqueue = alloc_workqueue("kblockd",
695588f9
VK
3193 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3194 WQ_POWER_EFFICIENT, 0);
1da177e4
LT
3195 if (!kblockd_workqueue)
3196 panic("Failed to create kblockd\n");
3197
3198 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3199 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3200
8324aa91 3201 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3202 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3203
d38ecf93 3204 return 0;
1da177e4 3205}