blk-mq: add helper to insert requests from irq context
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
55782138
LZ
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/block.h>
1da177e4 38
8324aa91 39#include "blk.h"
5efd6113 40#include "blk-cgroup.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
cbae8d45 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 47
a73f730d
TH
48DEFINE_IDA(blk_queue_ida);
49
1da177e4
LT
50/*
51 * For the allocated request tables
52 */
320ae51f 53struct kmem_cache *request_cachep = NULL;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
6728cb0e 58struct kmem_cache *blk_requestq_cachep;
1da177e4 59
1da177e4
LT
60/*
61 * Controlling structure to kblockd
62 */
ff856bad 63static struct workqueue_struct *kblockd_workqueue;
1da177e4 64
8324aa91 65void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
66{
67 int nr;
68
69 nr = q->nr_requests - (q->nr_requests / 8) + 1;
70 if (nr > q->nr_requests)
71 nr = q->nr_requests;
72 q->nr_congestion_on = nr;
73
74 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
75 if (nr < 1)
76 nr = 1;
77 q->nr_congestion_off = nr;
78}
79
1da177e4
LT
80/**
81 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
82 * @bdev: device
83 *
84 * Locates the passed device's request queue and returns the address of its
85 * backing_dev_info
86 *
87 * Will return NULL if the request queue cannot be located.
88 */
89struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90{
91 struct backing_dev_info *ret = NULL;
165125e1 92 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
93
94 if (q)
95 ret = &q->backing_dev_info;
96 return ret;
97}
1da177e4
LT
98EXPORT_SYMBOL(blk_get_backing_dev_info);
99
2a4aa30c 100void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 101{
1afb20f3
FT
102 memset(rq, 0, sizeof(*rq));
103
1da177e4 104 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 105 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 106 rq->cpu = -1;
63a71386 107 rq->q = q;
a2dec7b3 108 rq->__sector = (sector_t) -1;
2e662b65
JA
109 INIT_HLIST_NODE(&rq->hash);
110 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 111 rq->cmd = rq->__cmd;
e2494e1b 112 rq->cmd_len = BLK_MAX_CDB;
63a71386 113 rq->tag = -1;
b243ddcb 114 rq->start_time = jiffies;
9195291e 115 set_start_time_ns(rq);
09e099d4 116 rq->part = NULL;
1da177e4 117}
2a4aa30c 118EXPORT_SYMBOL(blk_rq_init);
1da177e4 119
5bb23a68
N
120static void req_bio_endio(struct request *rq, struct bio *bio,
121 unsigned int nbytes, int error)
1da177e4 122{
143a87f4
TH
123 if (error)
124 clear_bit(BIO_UPTODATE, &bio->bi_flags);
125 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
126 error = -EIO;
797e7dbb 127
143a87f4
TH
128 if (unlikely(rq->cmd_flags & REQ_QUIET))
129 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 130
f79ea416 131 bio_advance(bio, nbytes);
7ba1ba12 132
143a87f4 133 /* don't actually finish bio if it's part of flush sequence */
4f024f37 134 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
143a87f4 135 bio_endio(bio, error);
1da177e4 136}
1da177e4 137
1da177e4
LT
138void blk_dump_rq_flags(struct request *rq, char *msg)
139{
140 int bit;
141
5953316d 142 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 143 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 144 (unsigned long long) rq->cmd_flags);
1da177e4 145
83096ebf
TH
146 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
147 (unsigned long long)blk_rq_pos(rq),
148 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
149 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
150 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 151
33659ebb 152 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 153 printk(KERN_INFO " cdb: ");
d34c87e4 154 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
155 printk("%02x ", rq->cmd[bit]);
156 printk("\n");
157 }
158}
1da177e4
LT
159EXPORT_SYMBOL(blk_dump_rq_flags);
160
3cca6dc1 161static void blk_delay_work(struct work_struct *work)
1da177e4 162{
3cca6dc1 163 struct request_queue *q;
1da177e4 164
3cca6dc1
JA
165 q = container_of(work, struct request_queue, delay_work.work);
166 spin_lock_irq(q->queue_lock);
24ecfbe2 167 __blk_run_queue(q);
3cca6dc1 168 spin_unlock_irq(q->queue_lock);
1da177e4 169}
1da177e4
LT
170
171/**
3cca6dc1
JA
172 * blk_delay_queue - restart queueing after defined interval
173 * @q: The &struct request_queue in question
174 * @msecs: Delay in msecs
1da177e4
LT
175 *
176 * Description:
3cca6dc1
JA
177 * Sometimes queueing needs to be postponed for a little while, to allow
178 * resources to come back. This function will make sure that queueing is
70460571 179 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
180 */
181void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 182{
70460571
BVA
183 if (likely(!blk_queue_dead(q)))
184 queue_delayed_work(kblockd_workqueue, &q->delay_work,
185 msecs_to_jiffies(msecs));
2ad8b1ef 186}
3cca6dc1 187EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 188
1da177e4
LT
189/**
190 * blk_start_queue - restart a previously stopped queue
165125e1 191 * @q: The &struct request_queue in question
1da177e4
LT
192 *
193 * Description:
194 * blk_start_queue() will clear the stop flag on the queue, and call
195 * the request_fn for the queue if it was in a stopped state when
196 * entered. Also see blk_stop_queue(). Queue lock must be held.
197 **/
165125e1 198void blk_start_queue(struct request_queue *q)
1da177e4 199{
a038e253
PBG
200 WARN_ON(!irqs_disabled());
201
75ad23bc 202 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 203 __blk_run_queue(q);
1da177e4 204}
1da177e4
LT
205EXPORT_SYMBOL(blk_start_queue);
206
207/**
208 * blk_stop_queue - stop a queue
165125e1 209 * @q: The &struct request_queue in question
1da177e4
LT
210 *
211 * Description:
212 * The Linux block layer assumes that a block driver will consume all
213 * entries on the request queue when the request_fn strategy is called.
214 * Often this will not happen, because of hardware limitations (queue
215 * depth settings). If a device driver gets a 'queue full' response,
216 * or if it simply chooses not to queue more I/O at one point, it can
217 * call this function to prevent the request_fn from being called until
218 * the driver has signalled it's ready to go again. This happens by calling
219 * blk_start_queue() to restart queue operations. Queue lock must be held.
220 **/
165125e1 221void blk_stop_queue(struct request_queue *q)
1da177e4 222{
136b5721 223 cancel_delayed_work(&q->delay_work);
75ad23bc 224 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
225}
226EXPORT_SYMBOL(blk_stop_queue);
227
228/**
229 * blk_sync_queue - cancel any pending callbacks on a queue
230 * @q: the queue
231 *
232 * Description:
233 * The block layer may perform asynchronous callback activity
234 * on a queue, such as calling the unplug function after a timeout.
235 * A block device may call blk_sync_queue to ensure that any
236 * such activity is cancelled, thus allowing it to release resources
59c51591 237 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
238 * that its ->make_request_fn will not re-add plugging prior to calling
239 * this function.
240 *
da527770
VG
241 * This function does not cancel any asynchronous activity arising
242 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 243 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 244 *
1da177e4
LT
245 */
246void blk_sync_queue(struct request_queue *q)
247{
70ed28b9 248 del_timer_sync(&q->timeout);
f04c1fe7
ML
249
250 if (q->mq_ops) {
251 struct blk_mq_hw_ctx *hctx;
252 int i;
253
70f4db63
CH
254 queue_for_each_hw_ctx(q, hctx, i) {
255 cancel_delayed_work_sync(&hctx->run_work);
256 cancel_delayed_work_sync(&hctx->delay_work);
257 }
f04c1fe7
ML
258 } else {
259 cancel_delayed_work_sync(&q->delay_work);
260 }
1da177e4
LT
261}
262EXPORT_SYMBOL(blk_sync_queue);
263
c246e80d
BVA
264/**
265 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
266 * @q: The queue to run
267 *
268 * Description:
269 * Invoke request handling on a queue if there are any pending requests.
270 * May be used to restart request handling after a request has completed.
271 * This variant runs the queue whether or not the queue has been
272 * stopped. Must be called with the queue lock held and interrupts
273 * disabled. See also @blk_run_queue.
274 */
275inline void __blk_run_queue_uncond(struct request_queue *q)
276{
277 if (unlikely(blk_queue_dead(q)))
278 return;
279
24faf6f6
BVA
280 /*
281 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
282 * the queue lock internally. As a result multiple threads may be
283 * running such a request function concurrently. Keep track of the
284 * number of active request_fn invocations such that blk_drain_queue()
285 * can wait until all these request_fn calls have finished.
286 */
287 q->request_fn_active++;
c246e80d 288 q->request_fn(q);
24faf6f6 289 q->request_fn_active--;
c246e80d
BVA
290}
291
1da177e4 292/**
80a4b58e 293 * __blk_run_queue - run a single device queue
1da177e4 294 * @q: The queue to run
80a4b58e
JA
295 *
296 * Description:
297 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 298 * held and interrupts disabled.
1da177e4 299 */
24ecfbe2 300void __blk_run_queue(struct request_queue *q)
1da177e4 301{
a538cd03
TH
302 if (unlikely(blk_queue_stopped(q)))
303 return;
304
c246e80d 305 __blk_run_queue_uncond(q);
75ad23bc
NP
306}
307EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 308
24ecfbe2
CH
309/**
310 * blk_run_queue_async - run a single device queue in workqueue context
311 * @q: The queue to run
312 *
313 * Description:
314 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 315 * of us. The caller must hold the queue lock.
24ecfbe2
CH
316 */
317void blk_run_queue_async(struct request_queue *q)
318{
70460571 319 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 320 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 321}
c21e6beb 322EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 323
75ad23bc
NP
324/**
325 * blk_run_queue - run a single device queue
326 * @q: The queue to run
80a4b58e
JA
327 *
328 * Description:
329 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 330 * May be used to restart queueing when a request has completed.
75ad23bc
NP
331 */
332void blk_run_queue(struct request_queue *q)
333{
334 unsigned long flags;
335
336 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 337 __blk_run_queue(q);
1da177e4
LT
338 spin_unlock_irqrestore(q->queue_lock, flags);
339}
340EXPORT_SYMBOL(blk_run_queue);
341
165125e1 342void blk_put_queue(struct request_queue *q)
483f4afc
AV
343{
344 kobject_put(&q->kobj);
345}
d86e0e83 346EXPORT_SYMBOL(blk_put_queue);
483f4afc 347
e3c78ca5 348/**
807592a4 349 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 350 * @q: queue to drain
c9a929dd 351 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 352 *
c9a929dd
TH
353 * Drain requests from @q. If @drain_all is set, all requests are drained.
354 * If not, only ELVPRIV requests are drained. The caller is responsible
355 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 356 */
807592a4
BVA
357static void __blk_drain_queue(struct request_queue *q, bool drain_all)
358 __releases(q->queue_lock)
359 __acquires(q->queue_lock)
e3c78ca5 360{
458f27a9
AH
361 int i;
362
807592a4
BVA
363 lockdep_assert_held(q->queue_lock);
364
e3c78ca5 365 while (true) {
481a7d64 366 bool drain = false;
e3c78ca5 367
b855b04a
TH
368 /*
369 * The caller might be trying to drain @q before its
370 * elevator is initialized.
371 */
372 if (q->elevator)
373 elv_drain_elevator(q);
374
5efd6113 375 blkcg_drain_queue(q);
e3c78ca5 376
4eabc941
TH
377 /*
378 * This function might be called on a queue which failed
b855b04a
TH
379 * driver init after queue creation or is not yet fully
380 * active yet. Some drivers (e.g. fd and loop) get unhappy
381 * in such cases. Kick queue iff dispatch queue has
382 * something on it and @q has request_fn set.
4eabc941 383 */
b855b04a 384 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 385 __blk_run_queue(q);
c9a929dd 386
8a5ecdd4 387 drain |= q->nr_rqs_elvpriv;
24faf6f6 388 drain |= q->request_fn_active;
481a7d64
TH
389
390 /*
391 * Unfortunately, requests are queued at and tracked from
392 * multiple places and there's no single counter which can
393 * be drained. Check all the queues and counters.
394 */
395 if (drain_all) {
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
8a5ecdd4 398 drain |= q->nr_rqs[i];
481a7d64
TH
399 drain |= q->in_flight[i];
400 drain |= !list_empty(&q->flush_queue[i]);
401 }
402 }
e3c78ca5 403
481a7d64 404 if (!drain)
e3c78ca5 405 break;
807592a4
BVA
406
407 spin_unlock_irq(q->queue_lock);
408
e3c78ca5 409 msleep(10);
807592a4
BVA
410
411 spin_lock_irq(q->queue_lock);
e3c78ca5 412 }
458f27a9
AH
413
414 /*
415 * With queue marked dead, any woken up waiter will fail the
416 * allocation path, so the wakeup chaining is lost and we're
417 * left with hung waiters. We need to wake up those waiters.
418 */
419 if (q->request_fn) {
a051661c
TH
420 struct request_list *rl;
421
a051661c
TH
422 blk_queue_for_each_rl(rl, q)
423 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
424 wake_up_all(&rl->wait[i]);
458f27a9 425 }
e3c78ca5
TH
426}
427
d732580b
TH
428/**
429 * blk_queue_bypass_start - enter queue bypass mode
430 * @q: queue of interest
431 *
432 * In bypass mode, only the dispatch FIFO queue of @q is used. This
433 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 434 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
435 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
436 * inside queue or RCU read lock.
d732580b
TH
437 */
438void blk_queue_bypass_start(struct request_queue *q)
439{
b82d4b19
TH
440 bool drain;
441
d732580b 442 spin_lock_irq(q->queue_lock);
b82d4b19 443 drain = !q->bypass_depth++;
d732580b
TH
444 queue_flag_set(QUEUE_FLAG_BYPASS, q);
445 spin_unlock_irq(q->queue_lock);
446
b82d4b19 447 if (drain) {
807592a4
BVA
448 spin_lock_irq(q->queue_lock);
449 __blk_drain_queue(q, false);
450 spin_unlock_irq(q->queue_lock);
451
b82d4b19
TH
452 /* ensure blk_queue_bypass() is %true inside RCU read lock */
453 synchronize_rcu();
454 }
d732580b
TH
455}
456EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
457
458/**
459 * blk_queue_bypass_end - leave queue bypass mode
460 * @q: queue of interest
461 *
462 * Leave bypass mode and restore the normal queueing behavior.
463 */
464void blk_queue_bypass_end(struct request_queue *q)
465{
466 spin_lock_irq(q->queue_lock);
467 if (!--q->bypass_depth)
468 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
469 WARN_ON_ONCE(q->bypass_depth < 0);
470 spin_unlock_irq(q->queue_lock);
471}
472EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
473
c9a929dd
TH
474/**
475 * blk_cleanup_queue - shutdown a request queue
476 * @q: request queue to shutdown
477 *
c246e80d
BVA
478 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
479 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 480 */
6728cb0e 481void blk_cleanup_queue(struct request_queue *q)
483f4afc 482{
c9a929dd 483 spinlock_t *lock = q->queue_lock;
e3335de9 484
3f3299d5 485 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 486 mutex_lock(&q->sysfs_lock);
3f3299d5 487 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 488 spin_lock_irq(lock);
6ecf23af 489
80fd9979 490 /*
3f3299d5 491 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
492 * that, unlike blk_queue_bypass_start(), we aren't performing
493 * synchronize_rcu() after entering bypass mode to avoid the delay
494 * as some drivers create and destroy a lot of queues while
495 * probing. This is still safe because blk_release_queue() will be
496 * called only after the queue refcnt drops to zero and nothing,
497 * RCU or not, would be traversing the queue by then.
498 */
6ecf23af
TH
499 q->bypass_depth++;
500 queue_flag_set(QUEUE_FLAG_BYPASS, q);
501
c9a929dd
TH
502 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
503 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 504 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
505 spin_unlock_irq(lock);
506 mutex_unlock(&q->sysfs_lock);
507
c246e80d
BVA
508 /*
509 * Drain all requests queued before DYING marking. Set DEAD flag to
510 * prevent that q->request_fn() gets invoked after draining finished.
511 */
43a5e4e2
ML
512 if (q->mq_ops) {
513 blk_mq_drain_queue(q);
514 spin_lock_irq(lock);
515 } else {
516 spin_lock_irq(lock);
517 __blk_drain_queue(q, true);
518 }
c246e80d 519 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 520 spin_unlock_irq(lock);
c9a929dd
TH
521
522 /* @q won't process any more request, flush async actions */
523 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
524 blk_sync_queue(q);
525
5e5cfac0
AH
526 spin_lock_irq(lock);
527 if (q->queue_lock != &q->__queue_lock)
528 q->queue_lock = &q->__queue_lock;
529 spin_unlock_irq(lock);
530
c9a929dd 531 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
532 blk_put_queue(q);
533}
1da177e4
LT
534EXPORT_SYMBOL(blk_cleanup_queue);
535
5b788ce3
TH
536int blk_init_rl(struct request_list *rl, struct request_queue *q,
537 gfp_t gfp_mask)
1da177e4 538{
1abec4fd
MS
539 if (unlikely(rl->rq_pool))
540 return 0;
541
5b788ce3 542 rl->q = q;
1faa16d2
JA
543 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
544 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
545 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
546 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 547
1946089a 548 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 549 mempool_free_slab, request_cachep,
5b788ce3 550 gfp_mask, q->node);
1da177e4
LT
551 if (!rl->rq_pool)
552 return -ENOMEM;
553
554 return 0;
555}
556
5b788ce3
TH
557void blk_exit_rl(struct request_list *rl)
558{
559 if (rl->rq_pool)
560 mempool_destroy(rl->rq_pool);
561}
562
165125e1 563struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 564{
c304a51b 565 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
566}
567EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 568
165125e1 569struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 570{
165125e1 571 struct request_queue *q;
e0bf68dd 572 int err;
1946089a 573
8324aa91 574 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 575 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
576 if (!q)
577 return NULL;
578
00380a40 579 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 580 if (q->id < 0)
3d2936f4 581 goto fail_q;
a73f730d 582
0989a025
JA
583 q->backing_dev_info.ra_pages =
584 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
585 q->backing_dev_info.state = 0;
586 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 587 q->backing_dev_info.name = "block";
5151412d 588 q->node = node_id;
0989a025 589
e0bf68dd 590 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
591 if (err)
592 goto fail_id;
e0bf68dd 593
31373d09
MG
594 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
595 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 596 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 597 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 598 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 599 INIT_LIST_HEAD(&q->icq_list);
4eef3049 600#ifdef CONFIG_BLK_CGROUP
e8989fae 601 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 602#endif
ae1b1539
TH
603 INIT_LIST_HEAD(&q->flush_queue[0]);
604 INIT_LIST_HEAD(&q->flush_queue[1]);
605 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 606 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 607
8324aa91 608 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 609
483f4afc 610 mutex_init(&q->sysfs_lock);
e7e72bf6 611 spin_lock_init(&q->__queue_lock);
483f4afc 612
c94a96ac
VG
613 /*
614 * By default initialize queue_lock to internal lock and driver can
615 * override it later if need be.
616 */
617 q->queue_lock = &q->__queue_lock;
618
b82d4b19
TH
619 /*
620 * A queue starts its life with bypass turned on to avoid
621 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
622 * init. The initial bypass will be finished when the queue is
623 * registered by blk_register_queue().
b82d4b19
TH
624 */
625 q->bypass_depth = 1;
626 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
627
320ae51f
JA
628 init_waitqueue_head(&q->mq_freeze_wq);
629
5efd6113 630 if (blkcg_init_queue(q))
fff4996b 631 goto fail_bdi;
f51b802c 632
1da177e4 633 return q;
a73f730d 634
fff4996b
MP
635fail_bdi:
636 bdi_destroy(&q->backing_dev_info);
a73f730d
TH
637fail_id:
638 ida_simple_remove(&blk_queue_ida, q->id);
639fail_q:
640 kmem_cache_free(blk_requestq_cachep, q);
641 return NULL;
1da177e4 642}
1946089a 643EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
644
645/**
646 * blk_init_queue - prepare a request queue for use with a block device
647 * @rfn: The function to be called to process requests that have been
648 * placed on the queue.
649 * @lock: Request queue spin lock
650 *
651 * Description:
652 * If a block device wishes to use the standard request handling procedures,
653 * which sorts requests and coalesces adjacent requests, then it must
654 * call blk_init_queue(). The function @rfn will be called when there
655 * are requests on the queue that need to be processed. If the device
656 * supports plugging, then @rfn may not be called immediately when requests
657 * are available on the queue, but may be called at some time later instead.
658 * Plugged queues are generally unplugged when a buffer belonging to one
659 * of the requests on the queue is needed, or due to memory pressure.
660 *
661 * @rfn is not required, or even expected, to remove all requests off the
662 * queue, but only as many as it can handle at a time. If it does leave
663 * requests on the queue, it is responsible for arranging that the requests
664 * get dealt with eventually.
665 *
666 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
667 * request queue; this lock will be taken also from interrupt context, so irq
668 * disabling is needed for it.
1da177e4 669 *
710027a4 670 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
671 * it didn't succeed.
672 *
673 * Note:
674 * blk_init_queue() must be paired with a blk_cleanup_queue() call
675 * when the block device is deactivated (such as at module unload).
676 **/
1946089a 677
165125e1 678struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 679{
c304a51b 680 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
681}
682EXPORT_SYMBOL(blk_init_queue);
683
165125e1 684struct request_queue *
1946089a
CL
685blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
686{
c86d1b8a 687 struct request_queue *uninit_q, *q;
1da177e4 688
c86d1b8a
MS
689 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
690 if (!uninit_q)
691 return NULL;
692
5151412d 693 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 694 if (!q)
7982e90c 695 blk_cleanup_queue(uninit_q);
18741986 696
7982e90c 697 return q;
01effb0d
MS
698}
699EXPORT_SYMBOL(blk_init_queue_node);
700
701struct request_queue *
702blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
703 spinlock_t *lock)
01effb0d 704{
1da177e4
LT
705 if (!q)
706 return NULL;
707
7982e90c
MS
708 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
709 if (!q->flush_rq)
710 return NULL;
711
a051661c 712 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 713 goto fail;
1da177e4
LT
714
715 q->request_fn = rfn;
1da177e4 716 q->prep_rq_fn = NULL;
28018c24 717 q->unprep_rq_fn = NULL;
60ea8226 718 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
719
720 /* Override internal queue lock with supplied lock pointer */
721 if (lock)
722 q->queue_lock = lock;
1da177e4 723
f3b144aa
JA
724 /*
725 * This also sets hw/phys segments, boundary and size
726 */
c20e8de2 727 blk_queue_make_request(q, blk_queue_bio);
1da177e4 728
44ec9542
AS
729 q->sg_reserved_size = INT_MAX;
730
eb1c160b
TS
731 /* Protect q->elevator from elevator_change */
732 mutex_lock(&q->sysfs_lock);
733
b82d4b19 734 /* init elevator */
eb1c160b
TS
735 if (elevator_init(q, NULL)) {
736 mutex_unlock(&q->sysfs_lock);
708f04d2 737 goto fail;
eb1c160b
TS
738 }
739
740 mutex_unlock(&q->sysfs_lock);
741
b82d4b19 742 return q;
708f04d2
DJ
743
744fail:
745 kfree(q->flush_rq);
746 return NULL;
1da177e4 747}
5151412d 748EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 749
09ac46c4 750bool blk_get_queue(struct request_queue *q)
1da177e4 751{
3f3299d5 752 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
753 __blk_get_queue(q);
754 return true;
1da177e4
LT
755 }
756
09ac46c4 757 return false;
1da177e4 758}
d86e0e83 759EXPORT_SYMBOL(blk_get_queue);
1da177e4 760
5b788ce3 761static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 762{
f1f8cc94 763 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 764 elv_put_request(rl->q, rq);
f1f8cc94 765 if (rq->elv.icq)
11a3122f 766 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
767 }
768
5b788ce3 769 mempool_free(rq, rl->rq_pool);
1da177e4
LT
770}
771
1da177e4
LT
772/*
773 * ioc_batching returns true if the ioc is a valid batching request and
774 * should be given priority access to a request.
775 */
165125e1 776static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
777{
778 if (!ioc)
779 return 0;
780
781 /*
782 * Make sure the process is able to allocate at least 1 request
783 * even if the batch times out, otherwise we could theoretically
784 * lose wakeups.
785 */
786 return ioc->nr_batch_requests == q->nr_batching ||
787 (ioc->nr_batch_requests > 0
788 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
789}
790
791/*
792 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
793 * will cause the process to be a "batcher" on all queues in the system. This
794 * is the behaviour we want though - once it gets a wakeup it should be given
795 * a nice run.
796 */
165125e1 797static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
798{
799 if (!ioc || ioc_batching(q, ioc))
800 return;
801
802 ioc->nr_batch_requests = q->nr_batching;
803 ioc->last_waited = jiffies;
804}
805
5b788ce3 806static void __freed_request(struct request_list *rl, int sync)
1da177e4 807{
5b788ce3 808 struct request_queue *q = rl->q;
1da177e4 809
a051661c
TH
810 /*
811 * bdi isn't aware of blkcg yet. As all async IOs end up root
812 * blkcg anyway, just use root blkcg state.
813 */
814 if (rl == &q->root_rl &&
815 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 816 blk_clear_queue_congested(q, sync);
1da177e4 817
1faa16d2
JA
818 if (rl->count[sync] + 1 <= q->nr_requests) {
819 if (waitqueue_active(&rl->wait[sync]))
820 wake_up(&rl->wait[sync]);
1da177e4 821
5b788ce3 822 blk_clear_rl_full(rl, sync);
1da177e4
LT
823 }
824}
825
826/*
827 * A request has just been released. Account for it, update the full and
828 * congestion status, wake up any waiters. Called under q->queue_lock.
829 */
5b788ce3 830static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 831{
5b788ce3 832 struct request_queue *q = rl->q;
75eb6c37 833 int sync = rw_is_sync(flags);
1da177e4 834
8a5ecdd4 835 q->nr_rqs[sync]--;
1faa16d2 836 rl->count[sync]--;
75eb6c37 837 if (flags & REQ_ELVPRIV)
8a5ecdd4 838 q->nr_rqs_elvpriv--;
1da177e4 839
5b788ce3 840 __freed_request(rl, sync);
1da177e4 841
1faa16d2 842 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 843 __freed_request(rl, sync ^ 1);
1da177e4
LT
844}
845
e3a2b3f9
JA
846int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
847{
848 struct request_list *rl;
849
850 spin_lock_irq(q->queue_lock);
851 q->nr_requests = nr;
852 blk_queue_congestion_threshold(q);
853
854 /* congestion isn't cgroup aware and follows root blkcg for now */
855 rl = &q->root_rl;
856
857 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
858 blk_set_queue_congested(q, BLK_RW_SYNC);
859 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
860 blk_clear_queue_congested(q, BLK_RW_SYNC);
861
862 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
863 blk_set_queue_congested(q, BLK_RW_ASYNC);
864 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
865 blk_clear_queue_congested(q, BLK_RW_ASYNC);
866
867 blk_queue_for_each_rl(rl, q) {
868 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
869 blk_set_rl_full(rl, BLK_RW_SYNC);
870 } else {
871 blk_clear_rl_full(rl, BLK_RW_SYNC);
872 wake_up(&rl->wait[BLK_RW_SYNC]);
873 }
874
875 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
876 blk_set_rl_full(rl, BLK_RW_ASYNC);
877 } else {
878 blk_clear_rl_full(rl, BLK_RW_ASYNC);
879 wake_up(&rl->wait[BLK_RW_ASYNC]);
880 }
881 }
882
883 spin_unlock_irq(q->queue_lock);
884 return 0;
885}
886
9d5a4e94
MS
887/*
888 * Determine if elevator data should be initialized when allocating the
889 * request associated with @bio.
890 */
891static bool blk_rq_should_init_elevator(struct bio *bio)
892{
893 if (!bio)
894 return true;
895
896 /*
897 * Flush requests do not use the elevator so skip initialization.
898 * This allows a request to share the flush and elevator data.
899 */
900 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
901 return false;
902
903 return true;
904}
905
852c788f
TH
906/**
907 * rq_ioc - determine io_context for request allocation
908 * @bio: request being allocated is for this bio (can be %NULL)
909 *
910 * Determine io_context to use for request allocation for @bio. May return
911 * %NULL if %current->io_context doesn't exist.
912 */
913static struct io_context *rq_ioc(struct bio *bio)
914{
915#ifdef CONFIG_BLK_CGROUP
916 if (bio && bio->bi_ioc)
917 return bio->bi_ioc;
918#endif
919 return current->io_context;
920}
921
da8303c6 922/**
a06e05e6 923 * __get_request - get a free request
5b788ce3 924 * @rl: request list to allocate from
da8303c6
TH
925 * @rw_flags: RW and SYNC flags
926 * @bio: bio to allocate request for (can be %NULL)
927 * @gfp_mask: allocation mask
928 *
929 * Get a free request from @q. This function may fail under memory
930 * pressure or if @q is dead.
931 *
932 * Must be callled with @q->queue_lock held and,
933 * Returns %NULL on failure, with @q->queue_lock held.
934 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 935 */
5b788ce3 936static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 937 struct bio *bio, gfp_t gfp_mask)
1da177e4 938{
5b788ce3 939 struct request_queue *q = rl->q;
b679281a 940 struct request *rq;
7f4b35d1
TH
941 struct elevator_type *et = q->elevator->type;
942 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 943 struct io_cq *icq = NULL;
1faa16d2 944 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 945 int may_queue;
88ee5ef1 946
3f3299d5 947 if (unlikely(blk_queue_dying(q)))
da8303c6
TH
948 return NULL;
949
7749a8d4 950 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
951 if (may_queue == ELV_MQUEUE_NO)
952 goto rq_starved;
953
1faa16d2
JA
954 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
955 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
956 /*
957 * The queue will fill after this allocation, so set
958 * it as full, and mark this process as "batching".
959 * This process will be allowed to complete a batch of
960 * requests, others will be blocked.
961 */
5b788ce3 962 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 963 ioc_set_batching(q, ioc);
5b788ce3 964 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
965 } else {
966 if (may_queue != ELV_MQUEUE_MUST
967 && !ioc_batching(q, ioc)) {
968 /*
969 * The queue is full and the allocating
970 * process is not a "batcher", and not
971 * exempted by the IO scheduler
972 */
b679281a 973 return NULL;
88ee5ef1
JA
974 }
975 }
1da177e4 976 }
a051661c
TH
977 /*
978 * bdi isn't aware of blkcg yet. As all async IOs end up
979 * root blkcg anyway, just use root blkcg state.
980 */
981 if (rl == &q->root_rl)
982 blk_set_queue_congested(q, is_sync);
1da177e4
LT
983 }
984
082cf69e
JA
985 /*
986 * Only allow batching queuers to allocate up to 50% over the defined
987 * limit of requests, otherwise we could have thousands of requests
988 * allocated with any setting of ->nr_requests
989 */
1faa16d2 990 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 991 return NULL;
fd782a4a 992
8a5ecdd4 993 q->nr_rqs[is_sync]++;
1faa16d2
JA
994 rl->count[is_sync]++;
995 rl->starved[is_sync] = 0;
cb98fc8b 996
f1f8cc94
TH
997 /*
998 * Decide whether the new request will be managed by elevator. If
999 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1000 * prevent the current elevator from being destroyed until the new
1001 * request is freed. This guarantees icq's won't be destroyed and
1002 * makes creating new ones safe.
1003 *
1004 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1005 * it will be created after releasing queue_lock.
1006 */
d732580b 1007 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 1008 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 1009 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1010 if (et->icq_cache && ioc)
1011 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1012 }
cb98fc8b 1013
f253b86b
JA
1014 if (blk_queue_io_stat(q))
1015 rw_flags |= REQ_IO_STAT;
1da177e4
LT
1016 spin_unlock_irq(q->queue_lock);
1017
29e2b09a 1018 /* allocate and init request */
5b788ce3 1019 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1020 if (!rq)
b679281a 1021 goto fail_alloc;
1da177e4 1022
29e2b09a 1023 blk_rq_init(q, rq);
a051661c 1024 blk_rq_set_rl(rq, rl);
29e2b09a
TH
1025 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1026
aaf7c680 1027 /* init elvpriv */
29e2b09a 1028 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 1029 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1030 if (ioc)
1031 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1032 if (!icq)
1033 goto fail_elvpriv;
29e2b09a 1034 }
aaf7c680
TH
1035
1036 rq->elv.icq = icq;
1037 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1038 goto fail_elvpriv;
1039
1040 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1041 if (icq)
1042 get_io_context(icq->ioc);
1043 }
aaf7c680 1044out:
88ee5ef1
JA
1045 /*
1046 * ioc may be NULL here, and ioc_batching will be false. That's
1047 * OK, if the queue is under the request limit then requests need
1048 * not count toward the nr_batch_requests limit. There will always
1049 * be some limit enforced by BLK_BATCH_TIME.
1050 */
1da177e4
LT
1051 if (ioc_batching(q, ioc))
1052 ioc->nr_batch_requests--;
6728cb0e 1053
1faa16d2 1054 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1055 return rq;
b679281a 1056
aaf7c680
TH
1057fail_elvpriv:
1058 /*
1059 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1060 * and may fail indefinitely under memory pressure and thus
1061 * shouldn't stall IO. Treat this request as !elvpriv. This will
1062 * disturb iosched and blkcg but weird is bettern than dead.
1063 */
1064 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1065 dev_name(q->backing_dev_info.dev));
1066
1067 rq->cmd_flags &= ~REQ_ELVPRIV;
1068 rq->elv.icq = NULL;
1069
1070 spin_lock_irq(q->queue_lock);
8a5ecdd4 1071 q->nr_rqs_elvpriv--;
aaf7c680
TH
1072 spin_unlock_irq(q->queue_lock);
1073 goto out;
1074
b679281a
TH
1075fail_alloc:
1076 /*
1077 * Allocation failed presumably due to memory. Undo anything we
1078 * might have messed up.
1079 *
1080 * Allocating task should really be put onto the front of the wait
1081 * queue, but this is pretty rare.
1082 */
1083 spin_lock_irq(q->queue_lock);
5b788ce3 1084 freed_request(rl, rw_flags);
b679281a
TH
1085
1086 /*
1087 * in the very unlikely event that allocation failed and no
1088 * requests for this direction was pending, mark us starved so that
1089 * freeing of a request in the other direction will notice
1090 * us. another possible fix would be to split the rq mempool into
1091 * READ and WRITE
1092 */
1093rq_starved:
1094 if (unlikely(rl->count[is_sync] == 0))
1095 rl->starved[is_sync] = 1;
1096 return NULL;
1da177e4
LT
1097}
1098
da8303c6 1099/**
a06e05e6 1100 * get_request - get a free request
da8303c6
TH
1101 * @q: request_queue to allocate request from
1102 * @rw_flags: RW and SYNC flags
1103 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1104 * @gfp_mask: allocation mask
da8303c6 1105 *
a06e05e6
TH
1106 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1107 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1108 *
da8303c6
TH
1109 * Must be callled with @q->queue_lock held and,
1110 * Returns %NULL on failure, with @q->queue_lock held.
1111 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1112 */
a06e05e6
TH
1113static struct request *get_request(struct request_queue *q, int rw_flags,
1114 struct bio *bio, gfp_t gfp_mask)
1da177e4 1115{
1faa16d2 1116 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1117 DEFINE_WAIT(wait);
a051661c 1118 struct request_list *rl;
1da177e4 1119 struct request *rq;
a051661c
TH
1120
1121 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1122retry:
a051661c 1123 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1124 if (rq)
1125 return rq;
1da177e4 1126
3f3299d5 1127 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1128 blk_put_rl(rl);
a06e05e6 1129 return NULL;
a051661c 1130 }
1da177e4 1131
a06e05e6
TH
1132 /* wait on @rl and retry */
1133 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1134 TASK_UNINTERRUPTIBLE);
1da177e4 1135
a06e05e6 1136 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1137
a06e05e6
TH
1138 spin_unlock_irq(q->queue_lock);
1139 io_schedule();
d6344532 1140
a06e05e6
TH
1141 /*
1142 * After sleeping, we become a "batching" process and will be able
1143 * to allocate at least one request, and up to a big batch of them
1144 * for a small period time. See ioc_batching, ioc_set_batching
1145 */
a06e05e6 1146 ioc_set_batching(q, current->io_context);
05caf8db 1147
a06e05e6
TH
1148 spin_lock_irq(q->queue_lock);
1149 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1150
a06e05e6 1151 goto retry;
1da177e4
LT
1152}
1153
320ae51f
JA
1154static struct request *blk_old_get_request(struct request_queue *q, int rw,
1155 gfp_t gfp_mask)
1da177e4
LT
1156{
1157 struct request *rq;
1158
1159 BUG_ON(rw != READ && rw != WRITE);
1160
7f4b35d1
TH
1161 /* create ioc upfront */
1162 create_io_context(gfp_mask, q->node);
1163
d6344532 1164 spin_lock_irq(q->queue_lock);
a06e05e6 1165 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1166 if (!rq)
1167 spin_unlock_irq(q->queue_lock);
d6344532 1168 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1169
1170 return rq;
1171}
320ae51f
JA
1172
1173struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1174{
1175 if (q->mq_ops)
18741986 1176 return blk_mq_alloc_request(q, rw, gfp_mask);
320ae51f
JA
1177 else
1178 return blk_old_get_request(q, rw, gfp_mask);
1179}
1da177e4
LT
1180EXPORT_SYMBOL(blk_get_request);
1181
dc72ef4a 1182/**
79eb63e9 1183 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1184 * @q: target request queue
79eb63e9
BH
1185 * @bio: The bio describing the memory mappings that will be submitted for IO.
1186 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1187 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1188 *
79eb63e9
BH
1189 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1190 * type commands. Where the struct request needs to be farther initialized by
1191 * the caller. It is passed a &struct bio, which describes the memory info of
1192 * the I/O transfer.
dc72ef4a 1193 *
79eb63e9
BH
1194 * The caller of blk_make_request must make sure that bi_io_vec
1195 * are set to describe the memory buffers. That bio_data_dir() will return
1196 * the needed direction of the request. (And all bio's in the passed bio-chain
1197 * are properly set accordingly)
1198 *
1199 * If called under none-sleepable conditions, mapped bio buffers must not
1200 * need bouncing, by calling the appropriate masked or flagged allocator,
1201 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1202 * BUG.
53674ac5
JA
1203 *
1204 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1205 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1206 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1207 * completion of a bio that hasn't been submitted yet, thus resulting in a
1208 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1209 * of bio_alloc(), as that avoids the mempool deadlock.
1210 * If possible a big IO should be split into smaller parts when allocation
1211 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1212 */
79eb63e9
BH
1213struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1214 gfp_t gfp_mask)
dc72ef4a 1215{
79eb63e9
BH
1216 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1217
1218 if (unlikely(!rq))
1219 return ERR_PTR(-ENOMEM);
1220
1221 for_each_bio(bio) {
1222 struct bio *bounce_bio = bio;
1223 int ret;
1224
1225 blk_queue_bounce(q, &bounce_bio);
1226 ret = blk_rq_append_bio(q, rq, bounce_bio);
1227 if (unlikely(ret)) {
1228 blk_put_request(rq);
1229 return ERR_PTR(ret);
1230 }
1231 }
1232
1233 return rq;
dc72ef4a 1234}
79eb63e9 1235EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1236
1da177e4
LT
1237/**
1238 * blk_requeue_request - put a request back on queue
1239 * @q: request queue where request should be inserted
1240 * @rq: request to be inserted
1241 *
1242 * Description:
1243 * Drivers often keep queueing requests until the hardware cannot accept
1244 * more, when that condition happens we need to put the request back
1245 * on the queue. Must be called with queue lock held.
1246 */
165125e1 1247void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1248{
242f9dcb
JA
1249 blk_delete_timer(rq);
1250 blk_clear_rq_complete(rq);
5f3ea37c 1251 trace_block_rq_requeue(q, rq);
2056a782 1252
1da177e4
LT
1253 if (blk_rq_tagged(rq))
1254 blk_queue_end_tag(q, rq);
1255
ba396a6c
JB
1256 BUG_ON(blk_queued_rq(rq));
1257
1da177e4
LT
1258 elv_requeue_request(q, rq);
1259}
1da177e4
LT
1260EXPORT_SYMBOL(blk_requeue_request);
1261
73c10101
JA
1262static void add_acct_request(struct request_queue *q, struct request *rq,
1263 int where)
1264{
320ae51f 1265 blk_account_io_start(rq, true);
7eaceacc 1266 __elv_add_request(q, rq, where);
73c10101
JA
1267}
1268
074a7aca
TH
1269static void part_round_stats_single(int cpu, struct hd_struct *part,
1270 unsigned long now)
1271{
7276d02e
JA
1272 int inflight;
1273
074a7aca
TH
1274 if (now == part->stamp)
1275 return;
1276
7276d02e
JA
1277 inflight = part_in_flight(part);
1278 if (inflight) {
074a7aca 1279 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1280 inflight * (now - part->stamp));
074a7aca
TH
1281 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1282 }
1283 part->stamp = now;
1284}
1285
1286/**
496aa8a9
RD
1287 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1288 * @cpu: cpu number for stats access
1289 * @part: target partition
1da177e4
LT
1290 *
1291 * The average IO queue length and utilisation statistics are maintained
1292 * by observing the current state of the queue length and the amount of
1293 * time it has been in this state for.
1294 *
1295 * Normally, that accounting is done on IO completion, but that can result
1296 * in more than a second's worth of IO being accounted for within any one
1297 * second, leading to >100% utilisation. To deal with that, we call this
1298 * function to do a round-off before returning the results when reading
1299 * /proc/diskstats. This accounts immediately for all queue usage up to
1300 * the current jiffies and restarts the counters again.
1301 */
c9959059 1302void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1303{
1304 unsigned long now = jiffies;
1305
074a7aca
TH
1306 if (part->partno)
1307 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1308 part_round_stats_single(cpu, part, now);
6f2576af 1309}
074a7aca 1310EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1311
c8158819
LM
1312#ifdef CONFIG_PM_RUNTIME
1313static void blk_pm_put_request(struct request *rq)
1314{
1315 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1316 pm_runtime_mark_last_busy(rq->q->dev);
1317}
1318#else
1319static inline void blk_pm_put_request(struct request *rq) {}
1320#endif
1321
1da177e4
LT
1322/*
1323 * queue lock must be held
1324 */
165125e1 1325void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1326{
1da177e4
LT
1327 if (unlikely(!q))
1328 return;
1da177e4 1329
6f5ba581
CH
1330 if (q->mq_ops) {
1331 blk_mq_free_request(req);
1332 return;
1333 }
1334
c8158819
LM
1335 blk_pm_put_request(req);
1336
8922e16c
TH
1337 elv_completed_request(q, req);
1338
1cd96c24
BH
1339 /* this is a bio leak */
1340 WARN_ON(req->bio != NULL);
1341
1da177e4
LT
1342 /*
1343 * Request may not have originated from ll_rw_blk. if not,
1344 * it didn't come out of our reserved rq pools
1345 */
49171e5c 1346 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1347 unsigned int flags = req->cmd_flags;
a051661c 1348 struct request_list *rl = blk_rq_rl(req);
1da177e4 1349
1da177e4 1350 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1351 BUG_ON(ELV_ON_HASH(req));
1da177e4 1352
a051661c
TH
1353 blk_free_request(rl, req);
1354 freed_request(rl, flags);
1355 blk_put_rl(rl);
1da177e4
LT
1356 }
1357}
6e39b69e
MC
1358EXPORT_SYMBOL_GPL(__blk_put_request);
1359
1da177e4
LT
1360void blk_put_request(struct request *req)
1361{
165125e1 1362 struct request_queue *q = req->q;
8922e16c 1363
320ae51f
JA
1364 if (q->mq_ops)
1365 blk_mq_free_request(req);
1366 else {
1367 unsigned long flags;
1368
1369 spin_lock_irqsave(q->queue_lock, flags);
1370 __blk_put_request(q, req);
1371 spin_unlock_irqrestore(q->queue_lock, flags);
1372 }
1da177e4 1373}
1da177e4
LT
1374EXPORT_SYMBOL(blk_put_request);
1375
66ac0280
CH
1376/**
1377 * blk_add_request_payload - add a payload to a request
1378 * @rq: request to update
1379 * @page: page backing the payload
1380 * @len: length of the payload.
1381 *
1382 * This allows to later add a payload to an already submitted request by
1383 * a block driver. The driver needs to take care of freeing the payload
1384 * itself.
1385 *
1386 * Note that this is a quite horrible hack and nothing but handling of
1387 * discard requests should ever use it.
1388 */
1389void blk_add_request_payload(struct request *rq, struct page *page,
1390 unsigned int len)
1391{
1392 struct bio *bio = rq->bio;
1393
1394 bio->bi_io_vec->bv_page = page;
1395 bio->bi_io_vec->bv_offset = 0;
1396 bio->bi_io_vec->bv_len = len;
1397
4f024f37 1398 bio->bi_iter.bi_size = len;
66ac0280
CH
1399 bio->bi_vcnt = 1;
1400 bio->bi_phys_segments = 1;
1401
1402 rq->__data_len = rq->resid_len = len;
1403 rq->nr_phys_segments = 1;
66ac0280
CH
1404}
1405EXPORT_SYMBOL_GPL(blk_add_request_payload);
1406
320ae51f
JA
1407bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1408 struct bio *bio)
73c10101
JA
1409{
1410 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1411
73c10101
JA
1412 if (!ll_back_merge_fn(q, req, bio))
1413 return false;
1414
8c1cf6bb 1415 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1416
1417 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1418 blk_rq_set_mixed_merge(req);
1419
1420 req->biotail->bi_next = bio;
1421 req->biotail = bio;
4f024f37 1422 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1423 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1424
320ae51f 1425 blk_account_io_start(req, false);
73c10101
JA
1426 return true;
1427}
1428
320ae51f
JA
1429bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1430 struct bio *bio)
73c10101
JA
1431{
1432 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1433
73c10101
JA
1434 if (!ll_front_merge_fn(q, req, bio))
1435 return false;
1436
8c1cf6bb 1437 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1438
1439 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1440 blk_rq_set_mixed_merge(req);
1441
73c10101
JA
1442 bio->bi_next = req->bio;
1443 req->bio = bio;
1444
4f024f37
KO
1445 req->__sector = bio->bi_iter.bi_sector;
1446 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1447 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1448
320ae51f 1449 blk_account_io_start(req, false);
73c10101
JA
1450 return true;
1451}
1452
bd87b589 1453/**
320ae51f 1454 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1455 * @q: request_queue new bio is being queued at
1456 * @bio: new bio being queued
1457 * @request_count: out parameter for number of traversed plugged requests
1458 *
1459 * Determine whether @bio being queued on @q can be merged with a request
1460 * on %current's plugged list. Returns %true if merge was successful,
1461 * otherwise %false.
1462 *
07c2bd37
TH
1463 * Plugging coalesces IOs from the same issuer for the same purpose without
1464 * going through @q->queue_lock. As such it's more of an issuing mechanism
1465 * than scheduling, and the request, while may have elvpriv data, is not
1466 * added on the elevator at this point. In addition, we don't have
1467 * reliable access to the elevator outside queue lock. Only check basic
1468 * merging parameters without querying the elevator.
da41a589
RE
1469 *
1470 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1471 */
320ae51f
JA
1472bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1473 unsigned int *request_count)
73c10101
JA
1474{
1475 struct blk_plug *plug;
1476 struct request *rq;
1477 bool ret = false;
92f399c7 1478 struct list_head *plug_list;
73c10101 1479
bd87b589 1480 plug = current->plug;
73c10101
JA
1481 if (!plug)
1482 goto out;
56ebdaf2 1483 *request_count = 0;
73c10101 1484
92f399c7
SL
1485 if (q->mq_ops)
1486 plug_list = &plug->mq_list;
1487 else
1488 plug_list = &plug->list;
1489
1490 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1491 int el_ret;
1492
1b2e19f1
SL
1493 if (rq->q == q)
1494 (*request_count)++;
56ebdaf2 1495
07c2bd37 1496 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1497 continue;
1498
050c8ea8 1499 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1500 if (el_ret == ELEVATOR_BACK_MERGE) {
1501 ret = bio_attempt_back_merge(q, rq, bio);
1502 if (ret)
1503 break;
1504 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1505 ret = bio_attempt_front_merge(q, rq, bio);
1506 if (ret)
1507 break;
1508 }
1509 }
1510out:
1511 return ret;
1512}
1513
86db1e29 1514void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1515{
4aff5e23 1516 req->cmd_type = REQ_TYPE_FS;
52d9e675 1517
7b6d91da
CH
1518 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1519 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1520 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1521
52d9e675 1522 req->errors = 0;
4f024f37 1523 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1524 req->ioprio = bio_prio(bio);
bc1c56fd 1525 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1526}
1527
5a7bbad2 1528void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1529{
5e00d1b5 1530 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1531 struct blk_plug *plug;
1532 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1533 struct request *req;
56ebdaf2 1534 unsigned int request_count = 0;
1da177e4 1535
1da177e4
LT
1536 /*
1537 * low level driver can indicate that it wants pages above a
1538 * certain limit bounced to low memory (ie for highmem, or even
1539 * ISA dma in theory)
1540 */
1541 blk_queue_bounce(q, &bio);
1542
ffecfd1a
DW
1543 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1544 bio_endio(bio, -EIO);
1545 return;
1546 }
1547
4fed947c 1548 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1549 spin_lock_irq(q->queue_lock);
ae1b1539 1550 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1551 goto get_rq;
1552 }
1553
73c10101
JA
1554 /*
1555 * Check if we can merge with the plugged list before grabbing
1556 * any locks.
1557 */
da41a589
RE
1558 if (!blk_queue_nomerges(q) &&
1559 blk_attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1560 return;
1da177e4 1561
73c10101 1562 spin_lock_irq(q->queue_lock);
2056a782 1563
73c10101
JA
1564 el_ret = elv_merge(q, &req, bio);
1565 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1566 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1567 elv_bio_merged(q, req, bio);
73c10101
JA
1568 if (!attempt_back_merge(q, req))
1569 elv_merged_request(q, req, el_ret);
1570 goto out_unlock;
1571 }
1572 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1573 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1574 elv_bio_merged(q, req, bio);
73c10101
JA
1575 if (!attempt_front_merge(q, req))
1576 elv_merged_request(q, req, el_ret);
1577 goto out_unlock;
80a761fd 1578 }
1da177e4
LT
1579 }
1580
450991bc 1581get_rq:
7749a8d4
JA
1582 /*
1583 * This sync check and mask will be re-done in init_request_from_bio(),
1584 * but we need to set it earlier to expose the sync flag to the
1585 * rq allocator and io schedulers.
1586 */
1587 rw_flags = bio_data_dir(bio);
1588 if (sync)
7b6d91da 1589 rw_flags |= REQ_SYNC;
7749a8d4 1590
1da177e4 1591 /*
450991bc 1592 * Grab a free request. This is might sleep but can not fail.
d6344532 1593 * Returns with the queue unlocked.
450991bc 1594 */
a06e05e6 1595 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1596 if (unlikely(!req)) {
1597 bio_endio(bio, -ENODEV); /* @q is dead */
1598 goto out_unlock;
1599 }
d6344532 1600
450991bc
NP
1601 /*
1602 * After dropping the lock and possibly sleeping here, our request
1603 * may now be mergeable after it had proven unmergeable (above).
1604 * We don't worry about that case for efficiency. It won't happen
1605 * often, and the elevators are able to handle it.
1da177e4 1606 */
52d9e675 1607 init_request_from_bio(req, bio);
1da177e4 1608
9562ad9a 1609 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1610 req->cpu = raw_smp_processor_id();
73c10101
JA
1611
1612 plug = current->plug;
721a9602 1613 if (plug) {
dc6d36c9
JA
1614 /*
1615 * If this is the first request added after a plug, fire
7aef2e78 1616 * of a plug trace.
dc6d36c9 1617 */
7aef2e78 1618 if (!request_count)
dc6d36c9 1619 trace_block_plug(q);
3540d5e8 1620 else {
019ceb7d 1621 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1622 blk_flush_plug_list(plug, false);
019ceb7d
SL
1623 trace_block_plug(q);
1624 }
73c10101 1625 }
73c10101 1626 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1627 blk_account_io_start(req, true);
73c10101
JA
1628 } else {
1629 spin_lock_irq(q->queue_lock);
1630 add_acct_request(q, req, where);
24ecfbe2 1631 __blk_run_queue(q);
73c10101
JA
1632out_unlock:
1633 spin_unlock_irq(q->queue_lock);
1634 }
1da177e4 1635}
c20e8de2 1636EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1637
1638/*
1639 * If bio->bi_dev is a partition, remap the location
1640 */
1641static inline void blk_partition_remap(struct bio *bio)
1642{
1643 struct block_device *bdev = bio->bi_bdev;
1644
bf2de6f5 1645 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1646 struct hd_struct *p = bdev->bd_part;
1647
4f024f37 1648 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1649 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1650
d07335e5
MS
1651 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1652 bdev->bd_dev,
4f024f37 1653 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1654 }
1655}
1656
1da177e4
LT
1657static void handle_bad_sector(struct bio *bio)
1658{
1659 char b[BDEVNAME_SIZE];
1660
1661 printk(KERN_INFO "attempt to access beyond end of device\n");
1662 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1663 bdevname(bio->bi_bdev, b),
1664 bio->bi_rw,
f73a1c7d 1665 (unsigned long long)bio_end_sector(bio),
77304d2a 1666 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1667
1668 set_bit(BIO_EOF, &bio->bi_flags);
1669}
1670
c17bb495
AM
1671#ifdef CONFIG_FAIL_MAKE_REQUEST
1672
1673static DECLARE_FAULT_ATTR(fail_make_request);
1674
1675static int __init setup_fail_make_request(char *str)
1676{
1677 return setup_fault_attr(&fail_make_request, str);
1678}
1679__setup("fail_make_request=", setup_fail_make_request);
1680
b2c9cd37 1681static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1682{
b2c9cd37 1683 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1684}
1685
1686static int __init fail_make_request_debugfs(void)
1687{
dd48c085
AM
1688 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1689 NULL, &fail_make_request);
1690
21f9fcd8 1691 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1692}
1693
1694late_initcall(fail_make_request_debugfs);
1695
1696#else /* CONFIG_FAIL_MAKE_REQUEST */
1697
b2c9cd37
AM
1698static inline bool should_fail_request(struct hd_struct *part,
1699 unsigned int bytes)
c17bb495 1700{
b2c9cd37 1701 return false;
c17bb495
AM
1702}
1703
1704#endif /* CONFIG_FAIL_MAKE_REQUEST */
1705
c07e2b41
JA
1706/*
1707 * Check whether this bio extends beyond the end of the device.
1708 */
1709static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1710{
1711 sector_t maxsector;
1712
1713 if (!nr_sectors)
1714 return 0;
1715
1716 /* Test device or partition size, when known. */
77304d2a 1717 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1718 if (maxsector) {
4f024f37 1719 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1720
1721 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1722 /*
1723 * This may well happen - the kernel calls bread()
1724 * without checking the size of the device, e.g., when
1725 * mounting a device.
1726 */
1727 handle_bad_sector(bio);
1728 return 1;
1729 }
1730 }
1731
1732 return 0;
1733}
1734
27a84d54
CH
1735static noinline_for_stack bool
1736generic_make_request_checks(struct bio *bio)
1da177e4 1737{
165125e1 1738 struct request_queue *q;
5a7bbad2 1739 int nr_sectors = bio_sectors(bio);
51fd77bd 1740 int err = -EIO;
5a7bbad2
CH
1741 char b[BDEVNAME_SIZE];
1742 struct hd_struct *part;
1da177e4
LT
1743
1744 might_sleep();
1da177e4 1745
c07e2b41
JA
1746 if (bio_check_eod(bio, nr_sectors))
1747 goto end_io;
1da177e4 1748
5a7bbad2
CH
1749 q = bdev_get_queue(bio->bi_bdev);
1750 if (unlikely(!q)) {
1751 printk(KERN_ERR
1752 "generic_make_request: Trying to access "
1753 "nonexistent block-device %s (%Lu)\n",
1754 bdevname(bio->bi_bdev, b),
4f024f37 1755 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1756 goto end_io;
1757 }
c17bb495 1758
e2a60da7
MP
1759 if (likely(bio_is_rw(bio) &&
1760 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1761 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1762 bdevname(bio->bi_bdev, b),
1763 bio_sectors(bio),
1764 queue_max_hw_sectors(q));
1765 goto end_io;
1766 }
1da177e4 1767
5a7bbad2 1768 part = bio->bi_bdev->bd_part;
4f024f37 1769 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1770 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1771 bio->bi_iter.bi_size))
5a7bbad2 1772 goto end_io;
2056a782 1773
5a7bbad2
CH
1774 /*
1775 * If this device has partitions, remap block n
1776 * of partition p to block n+start(p) of the disk.
1777 */
1778 blk_partition_remap(bio);
2056a782 1779
5a7bbad2
CH
1780 if (bio_check_eod(bio, nr_sectors))
1781 goto end_io;
1e87901e 1782
5a7bbad2
CH
1783 /*
1784 * Filter flush bio's early so that make_request based
1785 * drivers without flush support don't have to worry
1786 * about them.
1787 */
1788 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1789 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1790 if (!nr_sectors) {
1791 err = 0;
51fd77bd
JA
1792 goto end_io;
1793 }
5a7bbad2 1794 }
5ddfe969 1795
5a7bbad2
CH
1796 if ((bio->bi_rw & REQ_DISCARD) &&
1797 (!blk_queue_discard(q) ||
e2a60da7 1798 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1799 err = -EOPNOTSUPP;
1800 goto end_io;
1801 }
01edede4 1802
4363ac7c 1803 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1804 err = -EOPNOTSUPP;
1805 goto end_io;
1806 }
01edede4 1807
7f4b35d1
TH
1808 /*
1809 * Various block parts want %current->io_context and lazy ioc
1810 * allocation ends up trading a lot of pain for a small amount of
1811 * memory. Just allocate it upfront. This may fail and block
1812 * layer knows how to live with it.
1813 */
1814 create_io_context(GFP_ATOMIC, q->node);
1815
bc16a4f9
TH
1816 if (blk_throtl_bio(q, bio))
1817 return false; /* throttled, will be resubmitted later */
27a84d54 1818
5a7bbad2 1819 trace_block_bio_queue(q, bio);
27a84d54 1820 return true;
a7384677
TH
1821
1822end_io:
1823 bio_endio(bio, err);
27a84d54 1824 return false;
1da177e4
LT
1825}
1826
27a84d54
CH
1827/**
1828 * generic_make_request - hand a buffer to its device driver for I/O
1829 * @bio: The bio describing the location in memory and on the device.
1830 *
1831 * generic_make_request() is used to make I/O requests of block
1832 * devices. It is passed a &struct bio, which describes the I/O that needs
1833 * to be done.
1834 *
1835 * generic_make_request() does not return any status. The
1836 * success/failure status of the request, along with notification of
1837 * completion, is delivered asynchronously through the bio->bi_end_io
1838 * function described (one day) else where.
1839 *
1840 * The caller of generic_make_request must make sure that bi_io_vec
1841 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1842 * set to describe the device address, and the
1843 * bi_end_io and optionally bi_private are set to describe how
1844 * completion notification should be signaled.
1845 *
1846 * generic_make_request and the drivers it calls may use bi_next if this
1847 * bio happens to be merged with someone else, and may resubmit the bio to
1848 * a lower device by calling into generic_make_request recursively, which
1849 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1850 */
1851void generic_make_request(struct bio *bio)
1852{
bddd87c7
AM
1853 struct bio_list bio_list_on_stack;
1854
27a84d54
CH
1855 if (!generic_make_request_checks(bio))
1856 return;
1857
1858 /*
1859 * We only want one ->make_request_fn to be active at a time, else
1860 * stack usage with stacked devices could be a problem. So use
1861 * current->bio_list to keep a list of requests submited by a
1862 * make_request_fn function. current->bio_list is also used as a
1863 * flag to say if generic_make_request is currently active in this
1864 * task or not. If it is NULL, then no make_request is active. If
1865 * it is non-NULL, then a make_request is active, and new requests
1866 * should be added at the tail
1867 */
bddd87c7 1868 if (current->bio_list) {
bddd87c7 1869 bio_list_add(current->bio_list, bio);
d89d8796
NB
1870 return;
1871 }
27a84d54 1872
d89d8796
NB
1873 /* following loop may be a bit non-obvious, and so deserves some
1874 * explanation.
1875 * Before entering the loop, bio->bi_next is NULL (as all callers
1876 * ensure that) so we have a list with a single bio.
1877 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1878 * we assign bio_list to a pointer to the bio_list_on_stack,
1879 * thus initialising the bio_list of new bios to be
27a84d54 1880 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1881 * through a recursive call to generic_make_request. If it
1882 * did, we find a non-NULL value in bio_list and re-enter the loop
1883 * from the top. In this case we really did just take the bio
bddd87c7 1884 * of the top of the list (no pretending) and so remove it from
27a84d54 1885 * bio_list, and call into ->make_request() again.
d89d8796
NB
1886 */
1887 BUG_ON(bio->bi_next);
bddd87c7
AM
1888 bio_list_init(&bio_list_on_stack);
1889 current->bio_list = &bio_list_on_stack;
d89d8796 1890 do {
27a84d54
CH
1891 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1892
1893 q->make_request_fn(q, bio);
1894
bddd87c7 1895 bio = bio_list_pop(current->bio_list);
d89d8796 1896 } while (bio);
bddd87c7 1897 current->bio_list = NULL; /* deactivate */
d89d8796 1898}
1da177e4
LT
1899EXPORT_SYMBOL(generic_make_request);
1900
1901/**
710027a4 1902 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1903 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1904 * @bio: The &struct bio which describes the I/O
1905 *
1906 * submit_bio() is very similar in purpose to generic_make_request(), and
1907 * uses that function to do most of the work. Both are fairly rough
710027a4 1908 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1909 *
1910 */
1911void submit_bio(int rw, struct bio *bio)
1912{
22e2c507 1913 bio->bi_rw |= rw;
1da177e4 1914
bf2de6f5
JA
1915 /*
1916 * If it's a regular read/write or a barrier with data attached,
1917 * go through the normal accounting stuff before submission.
1918 */
e2a60da7 1919 if (bio_has_data(bio)) {
4363ac7c
MP
1920 unsigned int count;
1921
1922 if (unlikely(rw & REQ_WRITE_SAME))
1923 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1924 else
1925 count = bio_sectors(bio);
1926
bf2de6f5
JA
1927 if (rw & WRITE) {
1928 count_vm_events(PGPGOUT, count);
1929 } else {
4f024f37 1930 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1931 count_vm_events(PGPGIN, count);
1932 }
1933
1934 if (unlikely(block_dump)) {
1935 char b[BDEVNAME_SIZE];
8dcbdc74 1936 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1937 current->comm, task_pid_nr(current),
bf2de6f5 1938 (rw & WRITE) ? "WRITE" : "READ",
4f024f37 1939 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
1940 bdevname(bio->bi_bdev, b),
1941 count);
bf2de6f5 1942 }
1da177e4
LT
1943 }
1944
1945 generic_make_request(bio);
1946}
1da177e4
LT
1947EXPORT_SYMBOL(submit_bio);
1948
82124d60
KU
1949/**
1950 * blk_rq_check_limits - Helper function to check a request for the queue limit
1951 * @q: the queue
1952 * @rq: the request being checked
1953 *
1954 * Description:
1955 * @rq may have been made based on weaker limitations of upper-level queues
1956 * in request stacking drivers, and it may violate the limitation of @q.
1957 * Since the block layer and the underlying device driver trust @rq
1958 * after it is inserted to @q, it should be checked against @q before
1959 * the insertion using this generic function.
1960 *
1961 * This function should also be useful for request stacking drivers
eef35c2d 1962 * in some cases below, so export this function.
82124d60
KU
1963 * Request stacking drivers like request-based dm may change the queue
1964 * limits while requests are in the queue (e.g. dm's table swapping).
e227867f 1965 * Such request stacking drivers should check those requests against
82124d60
KU
1966 * the new queue limits again when they dispatch those requests,
1967 * although such checkings are also done against the old queue limits
1968 * when submitting requests.
1969 */
1970int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1971{
e2a60da7 1972 if (!rq_mergeable(rq))
3383977f
S
1973 return 0;
1974
f31dc1cd 1975 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1976 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1977 return -EIO;
1978 }
1979
1980 /*
1981 * queue's settings related to segment counting like q->bounce_pfn
1982 * may differ from that of other stacking queues.
1983 * Recalculate it to check the request correctly on this queue's
1984 * limitation.
1985 */
1986 blk_recalc_rq_segments(rq);
8a78362c 1987 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1988 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1989 return -EIO;
1990 }
1991
1992 return 0;
1993}
1994EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1995
1996/**
1997 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1998 * @q: the queue to submit the request
1999 * @rq: the request being queued
2000 */
2001int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2002{
2003 unsigned long flags;
4853abaa 2004 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
2005
2006 if (blk_rq_check_limits(q, rq))
2007 return -EIO;
2008
b2c9cd37
AM
2009 if (rq->rq_disk &&
2010 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2011 return -EIO;
82124d60
KU
2012
2013 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2014 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2015 spin_unlock_irqrestore(q->queue_lock, flags);
2016 return -ENODEV;
2017 }
82124d60
KU
2018
2019 /*
2020 * Submitting request must be dequeued before calling this function
2021 * because it will be linked to another request_queue
2022 */
2023 BUG_ON(blk_queued_rq(rq));
2024
4853abaa
JM
2025 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2026 where = ELEVATOR_INSERT_FLUSH;
2027
2028 add_acct_request(q, rq, where);
e67b77c7
JM
2029 if (where == ELEVATOR_INSERT_FLUSH)
2030 __blk_run_queue(q);
82124d60
KU
2031 spin_unlock_irqrestore(q->queue_lock, flags);
2032
2033 return 0;
2034}
2035EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2036
80a761fd
TH
2037/**
2038 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2039 * @rq: request to examine
2040 *
2041 * Description:
2042 * A request could be merge of IOs which require different failure
2043 * handling. This function determines the number of bytes which
2044 * can be failed from the beginning of the request without
2045 * crossing into area which need to be retried further.
2046 *
2047 * Return:
2048 * The number of bytes to fail.
2049 *
2050 * Context:
2051 * queue_lock must be held.
2052 */
2053unsigned int blk_rq_err_bytes(const struct request *rq)
2054{
2055 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2056 unsigned int bytes = 0;
2057 struct bio *bio;
2058
2059 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2060 return blk_rq_bytes(rq);
2061
2062 /*
2063 * Currently the only 'mixing' which can happen is between
2064 * different fastfail types. We can safely fail portions
2065 * which have all the failfast bits that the first one has -
2066 * the ones which are at least as eager to fail as the first
2067 * one.
2068 */
2069 for (bio = rq->bio; bio; bio = bio->bi_next) {
2070 if ((bio->bi_rw & ff) != ff)
2071 break;
4f024f37 2072 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2073 }
2074
2075 /* this could lead to infinite loop */
2076 BUG_ON(blk_rq_bytes(rq) && !bytes);
2077 return bytes;
2078}
2079EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2080
320ae51f 2081void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2082{
c2553b58 2083 if (blk_do_io_stat(req)) {
bc58ba94
JA
2084 const int rw = rq_data_dir(req);
2085 struct hd_struct *part;
2086 int cpu;
2087
2088 cpu = part_stat_lock();
09e099d4 2089 part = req->part;
bc58ba94
JA
2090 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2091 part_stat_unlock();
2092 }
2093}
2094
320ae51f 2095void blk_account_io_done(struct request *req)
bc58ba94 2096{
bc58ba94 2097 /*
dd4c133f
TH
2098 * Account IO completion. flush_rq isn't accounted as a
2099 * normal IO on queueing nor completion. Accounting the
2100 * containing request is enough.
bc58ba94 2101 */
414b4ff5 2102 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2103 unsigned long duration = jiffies - req->start_time;
2104 const int rw = rq_data_dir(req);
2105 struct hd_struct *part;
2106 int cpu;
2107
2108 cpu = part_stat_lock();
09e099d4 2109 part = req->part;
bc58ba94
JA
2110
2111 part_stat_inc(cpu, part, ios[rw]);
2112 part_stat_add(cpu, part, ticks[rw], duration);
2113 part_round_stats(cpu, part);
316d315b 2114 part_dec_in_flight(part, rw);
bc58ba94 2115
6c23a968 2116 hd_struct_put(part);
bc58ba94
JA
2117 part_stat_unlock();
2118 }
2119}
2120
c8158819
LM
2121#ifdef CONFIG_PM_RUNTIME
2122/*
2123 * Don't process normal requests when queue is suspended
2124 * or in the process of suspending/resuming
2125 */
2126static struct request *blk_pm_peek_request(struct request_queue *q,
2127 struct request *rq)
2128{
2129 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2130 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2131 return NULL;
2132 else
2133 return rq;
2134}
2135#else
2136static inline struct request *blk_pm_peek_request(struct request_queue *q,
2137 struct request *rq)
2138{
2139 return rq;
2140}
2141#endif
2142
320ae51f
JA
2143void blk_account_io_start(struct request *rq, bool new_io)
2144{
2145 struct hd_struct *part;
2146 int rw = rq_data_dir(rq);
2147 int cpu;
2148
2149 if (!blk_do_io_stat(rq))
2150 return;
2151
2152 cpu = part_stat_lock();
2153
2154 if (!new_io) {
2155 part = rq->part;
2156 part_stat_inc(cpu, part, merges[rw]);
2157 } else {
2158 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2159 if (!hd_struct_try_get(part)) {
2160 /*
2161 * The partition is already being removed,
2162 * the request will be accounted on the disk only
2163 *
2164 * We take a reference on disk->part0 although that
2165 * partition will never be deleted, so we can treat
2166 * it as any other partition.
2167 */
2168 part = &rq->rq_disk->part0;
2169 hd_struct_get(part);
2170 }
2171 part_round_stats(cpu, part);
2172 part_inc_in_flight(part, rw);
2173 rq->part = part;
2174 }
2175
2176 part_stat_unlock();
2177}
2178
3bcddeac 2179/**
9934c8c0
TH
2180 * blk_peek_request - peek at the top of a request queue
2181 * @q: request queue to peek at
2182 *
2183 * Description:
2184 * Return the request at the top of @q. The returned request
2185 * should be started using blk_start_request() before LLD starts
2186 * processing it.
2187 *
2188 * Return:
2189 * Pointer to the request at the top of @q if available. Null
2190 * otherwise.
2191 *
2192 * Context:
2193 * queue_lock must be held.
2194 */
2195struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2196{
2197 struct request *rq;
2198 int ret;
2199
2200 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2201
2202 rq = blk_pm_peek_request(q, rq);
2203 if (!rq)
2204 break;
2205
158dbda0
TH
2206 if (!(rq->cmd_flags & REQ_STARTED)) {
2207 /*
2208 * This is the first time the device driver
2209 * sees this request (possibly after
2210 * requeueing). Notify IO scheduler.
2211 */
33659ebb 2212 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2213 elv_activate_rq(q, rq);
2214
2215 /*
2216 * just mark as started even if we don't start
2217 * it, a request that has been delayed should
2218 * not be passed by new incoming requests
2219 */
2220 rq->cmd_flags |= REQ_STARTED;
2221 trace_block_rq_issue(q, rq);
2222 }
2223
2224 if (!q->boundary_rq || q->boundary_rq == rq) {
2225 q->end_sector = rq_end_sector(rq);
2226 q->boundary_rq = NULL;
2227 }
2228
2229 if (rq->cmd_flags & REQ_DONTPREP)
2230 break;
2231
2e46e8b2 2232 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2233 /*
2234 * make sure space for the drain appears we
2235 * know we can do this because max_hw_segments
2236 * has been adjusted to be one fewer than the
2237 * device can handle
2238 */
2239 rq->nr_phys_segments++;
2240 }
2241
2242 if (!q->prep_rq_fn)
2243 break;
2244
2245 ret = q->prep_rq_fn(q, rq);
2246 if (ret == BLKPREP_OK) {
2247 break;
2248 } else if (ret == BLKPREP_DEFER) {
2249 /*
2250 * the request may have been (partially) prepped.
2251 * we need to keep this request in the front to
2252 * avoid resource deadlock. REQ_STARTED will
2253 * prevent other fs requests from passing this one.
2254 */
2e46e8b2 2255 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2256 !(rq->cmd_flags & REQ_DONTPREP)) {
2257 /*
2258 * remove the space for the drain we added
2259 * so that we don't add it again
2260 */
2261 --rq->nr_phys_segments;
2262 }
2263
2264 rq = NULL;
2265 break;
2266 } else if (ret == BLKPREP_KILL) {
2267 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2268 /*
2269 * Mark this request as started so we don't trigger
2270 * any debug logic in the end I/O path.
2271 */
2272 blk_start_request(rq);
40cbbb78 2273 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2274 } else {
2275 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2276 break;
2277 }
2278 }
2279
2280 return rq;
2281}
9934c8c0 2282EXPORT_SYMBOL(blk_peek_request);
158dbda0 2283
9934c8c0 2284void blk_dequeue_request(struct request *rq)
158dbda0 2285{
9934c8c0
TH
2286 struct request_queue *q = rq->q;
2287
158dbda0
TH
2288 BUG_ON(list_empty(&rq->queuelist));
2289 BUG_ON(ELV_ON_HASH(rq));
2290
2291 list_del_init(&rq->queuelist);
2292
2293 /*
2294 * the time frame between a request being removed from the lists
2295 * and to it is freed is accounted as io that is in progress at
2296 * the driver side.
2297 */
9195291e 2298 if (blk_account_rq(rq)) {
0a7ae2ff 2299 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2300 set_io_start_time_ns(rq);
2301 }
158dbda0
TH
2302}
2303
9934c8c0
TH
2304/**
2305 * blk_start_request - start request processing on the driver
2306 * @req: request to dequeue
2307 *
2308 * Description:
2309 * Dequeue @req and start timeout timer on it. This hands off the
2310 * request to the driver.
2311 *
2312 * Block internal functions which don't want to start timer should
2313 * call blk_dequeue_request().
2314 *
2315 * Context:
2316 * queue_lock must be held.
2317 */
2318void blk_start_request(struct request *req)
2319{
2320 blk_dequeue_request(req);
2321
2322 /*
5f49f631
TH
2323 * We are now handing the request to the hardware, initialize
2324 * resid_len to full count and add the timeout handler.
9934c8c0 2325 */
5f49f631 2326 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2327 if (unlikely(blk_bidi_rq(req)))
2328 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2329
4912aa6c 2330 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2331 blk_add_timer(req);
2332}
2333EXPORT_SYMBOL(blk_start_request);
2334
2335/**
2336 * blk_fetch_request - fetch a request from a request queue
2337 * @q: request queue to fetch a request from
2338 *
2339 * Description:
2340 * Return the request at the top of @q. The request is started on
2341 * return and LLD can start processing it immediately.
2342 *
2343 * Return:
2344 * Pointer to the request at the top of @q if available. Null
2345 * otherwise.
2346 *
2347 * Context:
2348 * queue_lock must be held.
2349 */
2350struct request *blk_fetch_request(struct request_queue *q)
2351{
2352 struct request *rq;
2353
2354 rq = blk_peek_request(q);
2355 if (rq)
2356 blk_start_request(rq);
2357 return rq;
2358}
2359EXPORT_SYMBOL(blk_fetch_request);
2360
3bcddeac 2361/**
2e60e022 2362 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2363 * @req: the request being processed
710027a4 2364 * @error: %0 for success, < %0 for error
8ebf9756 2365 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2366 *
2367 * Description:
8ebf9756
RD
2368 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2369 * the request structure even if @req doesn't have leftover.
2370 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2371 *
2372 * This special helper function is only for request stacking drivers
2373 * (e.g. request-based dm) so that they can handle partial completion.
2374 * Actual device drivers should use blk_end_request instead.
2375 *
2376 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2377 * %false return from this function.
3bcddeac
KU
2378 *
2379 * Return:
2e60e022
TH
2380 * %false - this request doesn't have any more data
2381 * %true - this request has more data
3bcddeac 2382 **/
2e60e022 2383bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2384{
f79ea416 2385 int total_bytes;
1da177e4 2386
2e60e022
TH
2387 if (!req->bio)
2388 return false;
2389
af5040da 2390 trace_block_rq_complete(req->q, req, nr_bytes);
2056a782 2391
1da177e4 2392 /*
6f41469c
TH
2393 * For fs requests, rq is just carrier of independent bio's
2394 * and each partial completion should be handled separately.
2395 * Reset per-request error on each partial completion.
2396 *
2397 * TODO: tj: This is too subtle. It would be better to let
2398 * low level drivers do what they see fit.
1da177e4 2399 */
33659ebb 2400 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2401 req->errors = 0;
2402
33659ebb
CH
2403 if (error && req->cmd_type == REQ_TYPE_FS &&
2404 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2405 char *error_type;
2406
2407 switch (error) {
2408 case -ENOLINK:
2409 error_type = "recoverable transport";
2410 break;
2411 case -EREMOTEIO:
2412 error_type = "critical target";
2413 break;
2414 case -EBADE:
2415 error_type = "critical nexus";
2416 break;
d1ffc1f8
HR
2417 case -ETIMEDOUT:
2418 error_type = "timeout";
2419 break;
a9d6ceb8
HR
2420 case -ENOSPC:
2421 error_type = "critical space allocation";
2422 break;
7e782af5
HR
2423 case -ENODATA:
2424 error_type = "critical medium";
2425 break;
79775567
HR
2426 case -EIO:
2427 default:
2428 error_type = "I/O";
2429 break;
2430 }
37d7b34f
YZ
2431 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2432 error_type, req->rq_disk ?
2433 req->rq_disk->disk_name : "?",
2434 (unsigned long long)blk_rq_pos(req));
2435
1da177e4
LT
2436 }
2437
bc58ba94 2438 blk_account_io_completion(req, nr_bytes);
d72d904a 2439
f79ea416
KO
2440 total_bytes = 0;
2441 while (req->bio) {
2442 struct bio *bio = req->bio;
4f024f37 2443 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2444
4f024f37 2445 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2446 req->bio = bio->bi_next;
1da177e4 2447
f79ea416 2448 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2449
f79ea416
KO
2450 total_bytes += bio_bytes;
2451 nr_bytes -= bio_bytes;
1da177e4 2452
f79ea416
KO
2453 if (!nr_bytes)
2454 break;
1da177e4
LT
2455 }
2456
2457 /*
2458 * completely done
2459 */
2e60e022
TH
2460 if (!req->bio) {
2461 /*
2462 * Reset counters so that the request stacking driver
2463 * can find how many bytes remain in the request
2464 * later.
2465 */
a2dec7b3 2466 req->__data_len = 0;
2e60e022
TH
2467 return false;
2468 }
1da177e4 2469
a2dec7b3 2470 req->__data_len -= total_bytes;
2e46e8b2
TH
2471
2472 /* update sector only for requests with clear definition of sector */
e2a60da7 2473 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2474 req->__sector += total_bytes >> 9;
2e46e8b2 2475
80a761fd
TH
2476 /* mixed attributes always follow the first bio */
2477 if (req->cmd_flags & REQ_MIXED_MERGE) {
2478 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2479 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2480 }
2481
2e46e8b2
TH
2482 /*
2483 * If total number of sectors is less than the first segment
2484 * size, something has gone terribly wrong.
2485 */
2486 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2487 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2488 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2489 }
2490
2491 /* recalculate the number of segments */
1da177e4 2492 blk_recalc_rq_segments(req);
2e46e8b2 2493
2e60e022 2494 return true;
1da177e4 2495}
2e60e022 2496EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2497
2e60e022
TH
2498static bool blk_update_bidi_request(struct request *rq, int error,
2499 unsigned int nr_bytes,
2500 unsigned int bidi_bytes)
5efccd17 2501{
2e60e022
TH
2502 if (blk_update_request(rq, error, nr_bytes))
2503 return true;
5efccd17 2504
2e60e022
TH
2505 /* Bidi request must be completed as a whole */
2506 if (unlikely(blk_bidi_rq(rq)) &&
2507 blk_update_request(rq->next_rq, error, bidi_bytes))
2508 return true;
5efccd17 2509
e2e1a148
JA
2510 if (blk_queue_add_random(rq->q))
2511 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2512
2513 return false;
1da177e4
LT
2514}
2515
28018c24
JB
2516/**
2517 * blk_unprep_request - unprepare a request
2518 * @req: the request
2519 *
2520 * This function makes a request ready for complete resubmission (or
2521 * completion). It happens only after all error handling is complete,
2522 * so represents the appropriate moment to deallocate any resources
2523 * that were allocated to the request in the prep_rq_fn. The queue
2524 * lock is held when calling this.
2525 */
2526void blk_unprep_request(struct request *req)
2527{
2528 struct request_queue *q = req->q;
2529
2530 req->cmd_flags &= ~REQ_DONTPREP;
2531 if (q->unprep_rq_fn)
2532 q->unprep_rq_fn(q, req);
2533}
2534EXPORT_SYMBOL_GPL(blk_unprep_request);
2535
1da177e4
LT
2536/*
2537 * queue lock must be held
2538 */
12120077 2539void blk_finish_request(struct request *req, int error)
1da177e4 2540{
b8286239
KU
2541 if (blk_rq_tagged(req))
2542 blk_queue_end_tag(req->q, req);
2543
ba396a6c 2544 BUG_ON(blk_queued_rq(req));
1da177e4 2545
33659ebb 2546 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2547 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2548
e78042e5
MA
2549 blk_delete_timer(req);
2550
28018c24
JB
2551 if (req->cmd_flags & REQ_DONTPREP)
2552 blk_unprep_request(req);
2553
bc58ba94 2554 blk_account_io_done(req);
b8286239 2555
1da177e4 2556 if (req->end_io)
8ffdc655 2557 req->end_io(req, error);
b8286239
KU
2558 else {
2559 if (blk_bidi_rq(req))
2560 __blk_put_request(req->next_rq->q, req->next_rq);
2561
1da177e4 2562 __blk_put_request(req->q, req);
b8286239 2563 }
1da177e4 2564}
12120077 2565EXPORT_SYMBOL(blk_finish_request);
1da177e4 2566
3b11313a 2567/**
2e60e022
TH
2568 * blk_end_bidi_request - Complete a bidi request
2569 * @rq: the request to complete
2570 * @error: %0 for success, < %0 for error
2571 * @nr_bytes: number of bytes to complete @rq
2572 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2573 *
2574 * Description:
e3a04fe3 2575 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2576 * Drivers that supports bidi can safely call this member for any
2577 * type of request, bidi or uni. In the later case @bidi_bytes is
2578 * just ignored.
336cdb40
KU
2579 *
2580 * Return:
2e60e022
TH
2581 * %false - we are done with this request
2582 * %true - still buffers pending for this request
a0cd1285 2583 **/
b1f74493 2584static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2585 unsigned int nr_bytes, unsigned int bidi_bytes)
2586{
336cdb40 2587 struct request_queue *q = rq->q;
2e60e022 2588 unsigned long flags;
32fab448 2589
2e60e022
TH
2590 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2591 return true;
32fab448 2592
336cdb40 2593 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2594 blk_finish_request(rq, error);
336cdb40
KU
2595 spin_unlock_irqrestore(q->queue_lock, flags);
2596
2e60e022 2597 return false;
32fab448
KU
2598}
2599
336cdb40 2600/**
2e60e022
TH
2601 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2602 * @rq: the request to complete
710027a4 2603 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2604 * @nr_bytes: number of bytes to complete @rq
2605 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2606 *
2607 * Description:
2e60e022
TH
2608 * Identical to blk_end_bidi_request() except that queue lock is
2609 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2610 *
2611 * Return:
2e60e022
TH
2612 * %false - we are done with this request
2613 * %true - still buffers pending for this request
336cdb40 2614 **/
4853abaa 2615bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2616 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2617{
2e60e022
TH
2618 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2619 return true;
336cdb40 2620
2e60e022 2621 blk_finish_request(rq, error);
336cdb40 2622
2e60e022 2623 return false;
336cdb40 2624}
e19a3ab0
KU
2625
2626/**
2627 * blk_end_request - Helper function for drivers to complete the request.
2628 * @rq: the request being processed
710027a4 2629 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2630 * @nr_bytes: number of bytes to complete
2631 *
2632 * Description:
2633 * Ends I/O on a number of bytes attached to @rq.
2634 * If @rq has leftover, sets it up for the next range of segments.
2635 *
2636 * Return:
b1f74493
FT
2637 * %false - we are done with this request
2638 * %true - still buffers pending for this request
e19a3ab0 2639 **/
b1f74493 2640bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2641{
b1f74493 2642 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2643}
56ad1740 2644EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2645
2646/**
b1f74493
FT
2647 * blk_end_request_all - Helper function for drives to finish the request.
2648 * @rq: the request to finish
8ebf9756 2649 * @error: %0 for success, < %0 for error
336cdb40
KU
2650 *
2651 * Description:
b1f74493
FT
2652 * Completely finish @rq.
2653 */
2654void blk_end_request_all(struct request *rq, int error)
336cdb40 2655{
b1f74493
FT
2656 bool pending;
2657 unsigned int bidi_bytes = 0;
336cdb40 2658
b1f74493
FT
2659 if (unlikely(blk_bidi_rq(rq)))
2660 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2661
b1f74493
FT
2662 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2663 BUG_ON(pending);
2664}
56ad1740 2665EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2666
b1f74493
FT
2667/**
2668 * blk_end_request_cur - Helper function to finish the current request chunk.
2669 * @rq: the request to finish the current chunk for
8ebf9756 2670 * @error: %0 for success, < %0 for error
b1f74493
FT
2671 *
2672 * Description:
2673 * Complete the current consecutively mapped chunk from @rq.
2674 *
2675 * Return:
2676 * %false - we are done with this request
2677 * %true - still buffers pending for this request
2678 */
2679bool blk_end_request_cur(struct request *rq, int error)
2680{
2681 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2682}
56ad1740 2683EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2684
80a761fd
TH
2685/**
2686 * blk_end_request_err - Finish a request till the next failure boundary.
2687 * @rq: the request to finish till the next failure boundary for
2688 * @error: must be negative errno
2689 *
2690 * Description:
2691 * Complete @rq till the next failure boundary.
2692 *
2693 * Return:
2694 * %false - we are done with this request
2695 * %true - still buffers pending for this request
2696 */
2697bool blk_end_request_err(struct request *rq, int error)
2698{
2699 WARN_ON(error >= 0);
2700 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2701}
2702EXPORT_SYMBOL_GPL(blk_end_request_err);
2703
e3a04fe3 2704/**
b1f74493
FT
2705 * __blk_end_request - Helper function for drivers to complete the request.
2706 * @rq: the request being processed
2707 * @error: %0 for success, < %0 for error
2708 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2709 *
2710 * Description:
b1f74493 2711 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2712 *
2713 * Return:
b1f74493
FT
2714 * %false - we are done with this request
2715 * %true - still buffers pending for this request
e3a04fe3 2716 **/
b1f74493 2717bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2718{
b1f74493 2719 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2720}
56ad1740 2721EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2722
32fab448 2723/**
b1f74493
FT
2724 * __blk_end_request_all - Helper function for drives to finish the request.
2725 * @rq: the request to finish
8ebf9756 2726 * @error: %0 for success, < %0 for error
32fab448
KU
2727 *
2728 * Description:
b1f74493 2729 * Completely finish @rq. Must be called with queue lock held.
32fab448 2730 */
b1f74493 2731void __blk_end_request_all(struct request *rq, int error)
32fab448 2732{
b1f74493
FT
2733 bool pending;
2734 unsigned int bidi_bytes = 0;
2735
2736 if (unlikely(blk_bidi_rq(rq)))
2737 bidi_bytes = blk_rq_bytes(rq->next_rq);
2738
2739 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2740 BUG_ON(pending);
32fab448 2741}
56ad1740 2742EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2743
e19a3ab0 2744/**
b1f74493
FT
2745 * __blk_end_request_cur - Helper function to finish the current request chunk.
2746 * @rq: the request to finish the current chunk for
8ebf9756 2747 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2748 *
2749 * Description:
b1f74493
FT
2750 * Complete the current consecutively mapped chunk from @rq. Must
2751 * be called with queue lock held.
e19a3ab0
KU
2752 *
2753 * Return:
b1f74493
FT
2754 * %false - we are done with this request
2755 * %true - still buffers pending for this request
2756 */
2757bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2758{
b1f74493 2759 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2760}
56ad1740 2761EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2762
80a761fd
TH
2763/**
2764 * __blk_end_request_err - Finish a request till the next failure boundary.
2765 * @rq: the request to finish till the next failure boundary for
2766 * @error: must be negative errno
2767 *
2768 * Description:
2769 * Complete @rq till the next failure boundary. Must be called
2770 * with queue lock held.
2771 *
2772 * Return:
2773 * %false - we are done with this request
2774 * %true - still buffers pending for this request
2775 */
2776bool __blk_end_request_err(struct request *rq, int error)
2777{
2778 WARN_ON(error >= 0);
2779 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2780}
2781EXPORT_SYMBOL_GPL(__blk_end_request_err);
2782
86db1e29
JA
2783void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2784 struct bio *bio)
1da177e4 2785{
a82afdfc 2786 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2787 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2788
b4f42e28 2789 if (bio_has_data(bio))
fb2dce86 2790 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2791
4f024f37 2792 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2793 rq->bio = rq->biotail = bio;
1da177e4 2794
66846572
N
2795 if (bio->bi_bdev)
2796 rq->rq_disk = bio->bi_bdev->bd_disk;
2797}
1da177e4 2798
2d4dc890
IL
2799#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2800/**
2801 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2802 * @rq: the request to be flushed
2803 *
2804 * Description:
2805 * Flush all pages in @rq.
2806 */
2807void rq_flush_dcache_pages(struct request *rq)
2808{
2809 struct req_iterator iter;
7988613b 2810 struct bio_vec bvec;
2d4dc890
IL
2811
2812 rq_for_each_segment(bvec, rq, iter)
7988613b 2813 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2814}
2815EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2816#endif
2817
ef9e3fac
KU
2818/**
2819 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2820 * @q : the queue of the device being checked
2821 *
2822 * Description:
2823 * Check if underlying low-level drivers of a device are busy.
2824 * If the drivers want to export their busy state, they must set own
2825 * exporting function using blk_queue_lld_busy() first.
2826 *
2827 * Basically, this function is used only by request stacking drivers
2828 * to stop dispatching requests to underlying devices when underlying
2829 * devices are busy. This behavior helps more I/O merging on the queue
2830 * of the request stacking driver and prevents I/O throughput regression
2831 * on burst I/O load.
2832 *
2833 * Return:
2834 * 0 - Not busy (The request stacking driver should dispatch request)
2835 * 1 - Busy (The request stacking driver should stop dispatching request)
2836 */
2837int blk_lld_busy(struct request_queue *q)
2838{
2839 if (q->lld_busy_fn)
2840 return q->lld_busy_fn(q);
2841
2842 return 0;
2843}
2844EXPORT_SYMBOL_GPL(blk_lld_busy);
2845
b0fd271d
KU
2846/**
2847 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2848 * @rq: the clone request to be cleaned up
2849 *
2850 * Description:
2851 * Free all bios in @rq for a cloned request.
2852 */
2853void blk_rq_unprep_clone(struct request *rq)
2854{
2855 struct bio *bio;
2856
2857 while ((bio = rq->bio) != NULL) {
2858 rq->bio = bio->bi_next;
2859
2860 bio_put(bio);
2861 }
2862}
2863EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2864
2865/*
2866 * Copy attributes of the original request to the clone request.
b4f42e28 2867 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
b0fd271d
KU
2868 */
2869static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2870{
2871 dst->cpu = src->cpu;
3a2edd0d 2872 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2873 dst->cmd_type = src->cmd_type;
2874 dst->__sector = blk_rq_pos(src);
2875 dst->__data_len = blk_rq_bytes(src);
2876 dst->nr_phys_segments = src->nr_phys_segments;
2877 dst->ioprio = src->ioprio;
2878 dst->extra_len = src->extra_len;
2879}
2880
2881/**
2882 * blk_rq_prep_clone - Helper function to setup clone request
2883 * @rq: the request to be setup
2884 * @rq_src: original request to be cloned
2885 * @bs: bio_set that bios for clone are allocated from
2886 * @gfp_mask: memory allocation mask for bio
2887 * @bio_ctr: setup function to be called for each clone bio.
2888 * Returns %0 for success, non %0 for failure.
2889 * @data: private data to be passed to @bio_ctr
2890 *
2891 * Description:
2892 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
b4f42e28 2893 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
b0fd271d
KU
2894 * are not copied, and copying such parts is the caller's responsibility.
2895 * Also, pages which the original bios are pointing to are not copied
2896 * and the cloned bios just point same pages.
2897 * So cloned bios must be completed before original bios, which means
2898 * the caller must complete @rq before @rq_src.
2899 */
2900int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2901 struct bio_set *bs, gfp_t gfp_mask,
2902 int (*bio_ctr)(struct bio *, struct bio *, void *),
2903 void *data)
2904{
2905 struct bio *bio, *bio_src;
2906
2907 if (!bs)
2908 bs = fs_bio_set;
2909
2910 blk_rq_init(NULL, rq);
2911
2912 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2913 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2914 if (!bio)
2915 goto free_and_out;
2916
b0fd271d
KU
2917 if (bio_ctr && bio_ctr(bio, bio_src, data))
2918 goto free_and_out;
2919
2920 if (rq->bio) {
2921 rq->biotail->bi_next = bio;
2922 rq->biotail = bio;
2923 } else
2924 rq->bio = rq->biotail = bio;
2925 }
2926
2927 __blk_rq_prep_clone(rq, rq_src);
2928
2929 return 0;
2930
2931free_and_out:
2932 if (bio)
4254bba1 2933 bio_put(bio);
b0fd271d
KU
2934 blk_rq_unprep_clone(rq);
2935
2936 return -ENOMEM;
2937}
2938EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2939
59c3d45e 2940int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
2941{
2942 return queue_work(kblockd_workqueue, work);
2943}
1da177e4
LT
2944EXPORT_SYMBOL(kblockd_schedule_work);
2945
59c3d45e
JA
2946int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2947 unsigned long delay)
e43473b7
VG
2948{
2949 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2950}
2951EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2952
8ab14595
JA
2953int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2954 unsigned long delay)
2955{
2956 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2957}
2958EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2959
73c10101
JA
2960#define PLUG_MAGIC 0x91827364
2961
75df7136
SJ
2962/**
2963 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2964 * @plug: The &struct blk_plug that needs to be initialized
2965 *
2966 * Description:
2967 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2968 * pending I/O should the task end up blocking between blk_start_plug() and
2969 * blk_finish_plug(). This is important from a performance perspective, but
2970 * also ensures that we don't deadlock. For instance, if the task is blocking
2971 * for a memory allocation, memory reclaim could end up wanting to free a
2972 * page belonging to that request that is currently residing in our private
2973 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2974 * this kind of deadlock.
2975 */
73c10101
JA
2976void blk_start_plug(struct blk_plug *plug)
2977{
2978 struct task_struct *tsk = current;
2979
2980 plug->magic = PLUG_MAGIC;
2981 INIT_LIST_HEAD(&plug->list);
320ae51f 2982 INIT_LIST_HEAD(&plug->mq_list);
048c9374 2983 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2984
2985 /*
2986 * If this is a nested plug, don't actually assign it. It will be
2987 * flushed on its own.
2988 */
2989 if (!tsk->plug) {
2990 /*
2991 * Store ordering should not be needed here, since a potential
2992 * preempt will imply a full memory barrier
2993 */
2994 tsk->plug = plug;
2995 }
2996}
2997EXPORT_SYMBOL(blk_start_plug);
2998
2999static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3000{
3001 struct request *rqa = container_of(a, struct request, queuelist);
3002 struct request *rqb = container_of(b, struct request, queuelist);
3003
975927b9
JM
3004 return !(rqa->q < rqb->q ||
3005 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3006}
3007
49cac01e
JA
3008/*
3009 * If 'from_schedule' is true, then postpone the dispatch of requests
3010 * until a safe kblockd context. We due this to avoid accidental big
3011 * additional stack usage in driver dispatch, in places where the originally
3012 * plugger did not intend it.
3013 */
f6603783 3014static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3015 bool from_schedule)
99e22598 3016 __releases(q->queue_lock)
94b5eb28 3017{
49cac01e 3018 trace_block_unplug(q, depth, !from_schedule);
99e22598 3019
70460571 3020 if (from_schedule)
24ecfbe2 3021 blk_run_queue_async(q);
70460571 3022 else
24ecfbe2 3023 __blk_run_queue(q);
70460571 3024 spin_unlock(q->queue_lock);
94b5eb28
JA
3025}
3026
74018dc3 3027static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3028{
3029 LIST_HEAD(callbacks);
3030
2a7d5559
SL
3031 while (!list_empty(&plug->cb_list)) {
3032 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3033
2a7d5559
SL
3034 while (!list_empty(&callbacks)) {
3035 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3036 struct blk_plug_cb,
3037 list);
2a7d5559 3038 list_del(&cb->list);
74018dc3 3039 cb->callback(cb, from_schedule);
2a7d5559 3040 }
048c9374
N
3041 }
3042}
3043
9cbb1750
N
3044struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3045 int size)
3046{
3047 struct blk_plug *plug = current->plug;
3048 struct blk_plug_cb *cb;
3049
3050 if (!plug)
3051 return NULL;
3052
3053 list_for_each_entry(cb, &plug->cb_list, list)
3054 if (cb->callback == unplug && cb->data == data)
3055 return cb;
3056
3057 /* Not currently on the callback list */
3058 BUG_ON(size < sizeof(*cb));
3059 cb = kzalloc(size, GFP_ATOMIC);
3060 if (cb) {
3061 cb->data = data;
3062 cb->callback = unplug;
3063 list_add(&cb->list, &plug->cb_list);
3064 }
3065 return cb;
3066}
3067EXPORT_SYMBOL(blk_check_plugged);
3068
49cac01e 3069void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3070{
3071 struct request_queue *q;
3072 unsigned long flags;
3073 struct request *rq;
109b8129 3074 LIST_HEAD(list);
94b5eb28 3075 unsigned int depth;
73c10101
JA
3076
3077 BUG_ON(plug->magic != PLUG_MAGIC);
3078
74018dc3 3079 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3080
3081 if (!list_empty(&plug->mq_list))
3082 blk_mq_flush_plug_list(plug, from_schedule);
3083
73c10101
JA
3084 if (list_empty(&plug->list))
3085 return;
3086
109b8129
N
3087 list_splice_init(&plug->list, &list);
3088
422765c2 3089 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3090
3091 q = NULL;
94b5eb28 3092 depth = 0;
18811272
JA
3093
3094 /*
3095 * Save and disable interrupts here, to avoid doing it for every
3096 * queue lock we have to take.
3097 */
73c10101 3098 local_irq_save(flags);
109b8129
N
3099 while (!list_empty(&list)) {
3100 rq = list_entry_rq(list.next);
73c10101 3101 list_del_init(&rq->queuelist);
73c10101
JA
3102 BUG_ON(!rq->q);
3103 if (rq->q != q) {
99e22598
JA
3104 /*
3105 * This drops the queue lock
3106 */
3107 if (q)
49cac01e 3108 queue_unplugged(q, depth, from_schedule);
73c10101 3109 q = rq->q;
94b5eb28 3110 depth = 0;
73c10101
JA
3111 spin_lock(q->queue_lock);
3112 }
8ba61435
TH
3113
3114 /*
3115 * Short-circuit if @q is dead
3116 */
3f3299d5 3117 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3118 __blk_end_request_all(rq, -ENODEV);
3119 continue;
3120 }
3121
73c10101
JA
3122 /*
3123 * rq is already accounted, so use raw insert
3124 */
401a18e9
JA
3125 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3126 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3127 else
3128 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3129
3130 depth++;
73c10101
JA
3131 }
3132
99e22598
JA
3133 /*
3134 * This drops the queue lock
3135 */
3136 if (q)
49cac01e 3137 queue_unplugged(q, depth, from_schedule);
73c10101 3138
73c10101
JA
3139 local_irq_restore(flags);
3140}
73c10101
JA
3141
3142void blk_finish_plug(struct blk_plug *plug)
3143{
f6603783 3144 blk_flush_plug_list(plug, false);
73c10101 3145
88b996cd
CH
3146 if (plug == current->plug)
3147 current->plug = NULL;
73c10101 3148}
88b996cd 3149EXPORT_SYMBOL(blk_finish_plug);
73c10101 3150
6c954667
LM
3151#ifdef CONFIG_PM_RUNTIME
3152/**
3153 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3154 * @q: the queue of the device
3155 * @dev: the device the queue belongs to
3156 *
3157 * Description:
3158 * Initialize runtime-PM-related fields for @q and start auto suspend for
3159 * @dev. Drivers that want to take advantage of request-based runtime PM
3160 * should call this function after @dev has been initialized, and its
3161 * request queue @q has been allocated, and runtime PM for it can not happen
3162 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3163 * cases, driver should call this function before any I/O has taken place.
3164 *
3165 * This function takes care of setting up using auto suspend for the device,
3166 * the autosuspend delay is set to -1 to make runtime suspend impossible
3167 * until an updated value is either set by user or by driver. Drivers do
3168 * not need to touch other autosuspend settings.
3169 *
3170 * The block layer runtime PM is request based, so only works for drivers
3171 * that use request as their IO unit instead of those directly use bio's.
3172 */
3173void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3174{
3175 q->dev = dev;
3176 q->rpm_status = RPM_ACTIVE;
3177 pm_runtime_set_autosuspend_delay(q->dev, -1);
3178 pm_runtime_use_autosuspend(q->dev);
3179}
3180EXPORT_SYMBOL(blk_pm_runtime_init);
3181
3182/**
3183 * blk_pre_runtime_suspend - Pre runtime suspend check
3184 * @q: the queue of the device
3185 *
3186 * Description:
3187 * This function will check if runtime suspend is allowed for the device
3188 * by examining if there are any requests pending in the queue. If there
3189 * are requests pending, the device can not be runtime suspended; otherwise,
3190 * the queue's status will be updated to SUSPENDING and the driver can
3191 * proceed to suspend the device.
3192 *
3193 * For the not allowed case, we mark last busy for the device so that
3194 * runtime PM core will try to autosuspend it some time later.
3195 *
3196 * This function should be called near the start of the device's
3197 * runtime_suspend callback.
3198 *
3199 * Return:
3200 * 0 - OK to runtime suspend the device
3201 * -EBUSY - Device should not be runtime suspended
3202 */
3203int blk_pre_runtime_suspend(struct request_queue *q)
3204{
3205 int ret = 0;
3206
3207 spin_lock_irq(q->queue_lock);
3208 if (q->nr_pending) {
3209 ret = -EBUSY;
3210 pm_runtime_mark_last_busy(q->dev);
3211 } else {
3212 q->rpm_status = RPM_SUSPENDING;
3213 }
3214 spin_unlock_irq(q->queue_lock);
3215 return ret;
3216}
3217EXPORT_SYMBOL(blk_pre_runtime_suspend);
3218
3219/**
3220 * blk_post_runtime_suspend - Post runtime suspend processing
3221 * @q: the queue of the device
3222 * @err: return value of the device's runtime_suspend function
3223 *
3224 * Description:
3225 * Update the queue's runtime status according to the return value of the
3226 * device's runtime suspend function and mark last busy for the device so
3227 * that PM core will try to auto suspend the device at a later time.
3228 *
3229 * This function should be called near the end of the device's
3230 * runtime_suspend callback.
3231 */
3232void blk_post_runtime_suspend(struct request_queue *q, int err)
3233{
3234 spin_lock_irq(q->queue_lock);
3235 if (!err) {
3236 q->rpm_status = RPM_SUSPENDED;
3237 } else {
3238 q->rpm_status = RPM_ACTIVE;
3239 pm_runtime_mark_last_busy(q->dev);
3240 }
3241 spin_unlock_irq(q->queue_lock);
3242}
3243EXPORT_SYMBOL(blk_post_runtime_suspend);
3244
3245/**
3246 * blk_pre_runtime_resume - Pre runtime resume processing
3247 * @q: the queue of the device
3248 *
3249 * Description:
3250 * Update the queue's runtime status to RESUMING in preparation for the
3251 * runtime resume of the device.
3252 *
3253 * This function should be called near the start of the device's
3254 * runtime_resume callback.
3255 */
3256void blk_pre_runtime_resume(struct request_queue *q)
3257{
3258 spin_lock_irq(q->queue_lock);
3259 q->rpm_status = RPM_RESUMING;
3260 spin_unlock_irq(q->queue_lock);
3261}
3262EXPORT_SYMBOL(blk_pre_runtime_resume);
3263
3264/**
3265 * blk_post_runtime_resume - Post runtime resume processing
3266 * @q: the queue of the device
3267 * @err: return value of the device's runtime_resume function
3268 *
3269 * Description:
3270 * Update the queue's runtime status according to the return value of the
3271 * device's runtime_resume function. If it is successfully resumed, process
3272 * the requests that are queued into the device's queue when it is resuming
3273 * and then mark last busy and initiate autosuspend for it.
3274 *
3275 * This function should be called near the end of the device's
3276 * runtime_resume callback.
3277 */
3278void blk_post_runtime_resume(struct request_queue *q, int err)
3279{
3280 spin_lock_irq(q->queue_lock);
3281 if (!err) {
3282 q->rpm_status = RPM_ACTIVE;
3283 __blk_run_queue(q);
3284 pm_runtime_mark_last_busy(q->dev);
c60855cd 3285 pm_request_autosuspend(q->dev);
6c954667
LM
3286 } else {
3287 q->rpm_status = RPM_SUSPENDED;
3288 }
3289 spin_unlock_irq(q->queue_lock);
3290}
3291EXPORT_SYMBOL(blk_post_runtime_resume);
3292#endif
3293
1da177e4
LT
3294int __init blk_dev_init(void)
3295{
9eb55b03
NK
3296 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3297 sizeof(((struct request *)0)->cmd_flags));
3298
89b90be2
TH
3299 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3300 kblockd_workqueue = alloc_workqueue("kblockd",
695588f9
VK
3301 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3302 WQ_POWER_EFFICIENT, 0);
1da177e4
LT
3303 if (!kblockd_workqueue)
3304 panic("Failed to create kblockd\n");
3305
3306 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3307 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3308
8324aa91 3309 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3310 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3311
d38ecf93 3312 return 0;
1da177e4 3313}