block, blk-mq: draining can't be skipped even if bypass_depth was non-zero
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
55782138
LZ
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/block.h>
1da177e4 38
8324aa91 39#include "blk.h"
5efd6113 40#include "blk-cgroup.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 48
a73f730d
TH
49DEFINE_IDA(blk_queue_ida);
50
1da177e4
LT
51/*
52 * For the allocated request tables
53 */
320ae51f 54struct kmem_cache *request_cachep = NULL;
1da177e4
LT
55
56/*
57 * For queue allocation
58 */
6728cb0e 59struct kmem_cache *blk_requestq_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4 65
8324aa91 66void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
67{
68 int nr;
69
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
74
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
79}
80
1da177e4
LT
81/**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
84 *
85 * Locates the passed device's request queue and returns the address of its
86 * backing_dev_info
87 *
88 * Will return NULL if the request queue cannot be located.
89 */
90struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
91{
92 struct backing_dev_info *ret = NULL;
165125e1 93 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
94
95 if (q)
96 ret = &q->backing_dev_info;
97 return ret;
98}
1da177e4
LT
99EXPORT_SYMBOL(blk_get_backing_dev_info);
100
2a4aa30c 101void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 102{
1afb20f3
FT
103 memset(rq, 0, sizeof(*rq));
104
1da177e4 105 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 106 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 107 rq->cpu = -1;
63a71386 108 rq->q = q;
a2dec7b3 109 rq->__sector = (sector_t) -1;
2e662b65
JA
110 INIT_HLIST_NODE(&rq->hash);
111 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 112 rq->cmd = rq->__cmd;
e2494e1b 113 rq->cmd_len = BLK_MAX_CDB;
63a71386 114 rq->tag = -1;
b243ddcb 115 rq->start_time = jiffies;
9195291e 116 set_start_time_ns(rq);
09e099d4 117 rq->part = NULL;
1da177e4 118}
2a4aa30c 119EXPORT_SYMBOL(blk_rq_init);
1da177e4 120
5bb23a68
N
121static void req_bio_endio(struct request *rq, struct bio *bio,
122 unsigned int nbytes, int error)
1da177e4 123{
143a87f4
TH
124 if (error)
125 clear_bit(BIO_UPTODATE, &bio->bi_flags);
126 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
127 error = -EIO;
797e7dbb 128
143a87f4
TH
129 if (unlikely(rq->cmd_flags & REQ_QUIET))
130 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 131
f79ea416 132 bio_advance(bio, nbytes);
7ba1ba12 133
143a87f4 134 /* don't actually finish bio if it's part of flush sequence */
4f024f37 135 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
143a87f4 136 bio_endio(bio, error);
1da177e4 137}
1da177e4 138
1da177e4
LT
139void blk_dump_rq_flags(struct request *rq, char *msg)
140{
141 int bit;
142
5953316d 143 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 144 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 145 (unsigned long long) rq->cmd_flags);
1da177e4 146
83096ebf
TH
147 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
148 (unsigned long long)blk_rq_pos(rq),
149 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
150 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
151 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 152
33659ebb 153 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 154 printk(KERN_INFO " cdb: ");
d34c87e4 155 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
156 printk("%02x ", rq->cmd[bit]);
157 printk("\n");
158 }
159}
1da177e4
LT
160EXPORT_SYMBOL(blk_dump_rq_flags);
161
3cca6dc1 162static void blk_delay_work(struct work_struct *work)
1da177e4 163{
3cca6dc1 164 struct request_queue *q;
1da177e4 165
3cca6dc1
JA
166 q = container_of(work, struct request_queue, delay_work.work);
167 spin_lock_irq(q->queue_lock);
24ecfbe2 168 __blk_run_queue(q);
3cca6dc1 169 spin_unlock_irq(q->queue_lock);
1da177e4 170}
1da177e4
LT
171
172/**
3cca6dc1
JA
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
1da177e4
LT
176 *
177 * Description:
3cca6dc1
JA
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
70460571 180 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
181 */
182void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 183{
70460571
BVA
184 if (likely(!blk_queue_dead(q)))
185 queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 msecs_to_jiffies(msecs));
2ad8b1ef 187}
3cca6dc1 188EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 189
1da177e4
LT
190/**
191 * blk_start_queue - restart a previously stopped queue
165125e1 192 * @q: The &struct request_queue in question
1da177e4
LT
193 *
194 * Description:
195 * blk_start_queue() will clear the stop flag on the queue, and call
196 * the request_fn for the queue if it was in a stopped state when
197 * entered. Also see blk_stop_queue(). Queue lock must be held.
198 **/
165125e1 199void blk_start_queue(struct request_queue *q)
1da177e4 200{
a038e253
PBG
201 WARN_ON(!irqs_disabled());
202
75ad23bc 203 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 204 __blk_run_queue(q);
1da177e4 205}
1da177e4
LT
206EXPORT_SYMBOL(blk_start_queue);
207
208/**
209 * blk_stop_queue - stop a queue
165125e1 210 * @q: The &struct request_queue in question
1da177e4
LT
211 *
212 * Description:
213 * The Linux block layer assumes that a block driver will consume all
214 * entries on the request queue when the request_fn strategy is called.
215 * Often this will not happen, because of hardware limitations (queue
216 * depth settings). If a device driver gets a 'queue full' response,
217 * or if it simply chooses not to queue more I/O at one point, it can
218 * call this function to prevent the request_fn from being called until
219 * the driver has signalled it's ready to go again. This happens by calling
220 * blk_start_queue() to restart queue operations. Queue lock must be held.
221 **/
165125e1 222void blk_stop_queue(struct request_queue *q)
1da177e4 223{
136b5721 224 cancel_delayed_work(&q->delay_work);
75ad23bc 225 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
226}
227EXPORT_SYMBOL(blk_stop_queue);
228
229/**
230 * blk_sync_queue - cancel any pending callbacks on a queue
231 * @q: the queue
232 *
233 * Description:
234 * The block layer may perform asynchronous callback activity
235 * on a queue, such as calling the unplug function after a timeout.
236 * A block device may call blk_sync_queue to ensure that any
237 * such activity is cancelled, thus allowing it to release resources
59c51591 238 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
239 * that its ->make_request_fn will not re-add plugging prior to calling
240 * this function.
241 *
da527770
VG
242 * This function does not cancel any asynchronous activity arising
243 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 244 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 245 *
1da177e4
LT
246 */
247void blk_sync_queue(struct request_queue *q)
248{
70ed28b9 249 del_timer_sync(&q->timeout);
f04c1fe7
ML
250
251 if (q->mq_ops) {
252 struct blk_mq_hw_ctx *hctx;
253 int i;
254
70f4db63
CH
255 queue_for_each_hw_ctx(q, hctx, i) {
256 cancel_delayed_work_sync(&hctx->run_work);
257 cancel_delayed_work_sync(&hctx->delay_work);
258 }
f04c1fe7
ML
259 } else {
260 cancel_delayed_work_sync(&q->delay_work);
261 }
1da177e4
LT
262}
263EXPORT_SYMBOL(blk_sync_queue);
264
c246e80d
BVA
265/**
266 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
267 * @q: The queue to run
268 *
269 * Description:
270 * Invoke request handling on a queue if there are any pending requests.
271 * May be used to restart request handling after a request has completed.
272 * This variant runs the queue whether or not the queue has been
273 * stopped. Must be called with the queue lock held and interrupts
274 * disabled. See also @blk_run_queue.
275 */
276inline void __blk_run_queue_uncond(struct request_queue *q)
277{
278 if (unlikely(blk_queue_dead(q)))
279 return;
280
24faf6f6
BVA
281 /*
282 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
283 * the queue lock internally. As a result multiple threads may be
284 * running such a request function concurrently. Keep track of the
285 * number of active request_fn invocations such that blk_drain_queue()
286 * can wait until all these request_fn calls have finished.
287 */
288 q->request_fn_active++;
c246e80d 289 q->request_fn(q);
24faf6f6 290 q->request_fn_active--;
c246e80d
BVA
291}
292
1da177e4 293/**
80a4b58e 294 * __blk_run_queue - run a single device queue
1da177e4 295 * @q: The queue to run
80a4b58e
JA
296 *
297 * Description:
298 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 299 * held and interrupts disabled.
1da177e4 300 */
24ecfbe2 301void __blk_run_queue(struct request_queue *q)
1da177e4 302{
a538cd03
TH
303 if (unlikely(blk_queue_stopped(q)))
304 return;
305
c246e80d 306 __blk_run_queue_uncond(q);
75ad23bc
NP
307}
308EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 309
24ecfbe2
CH
310/**
311 * blk_run_queue_async - run a single device queue in workqueue context
312 * @q: The queue to run
313 *
314 * Description:
315 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 316 * of us. The caller must hold the queue lock.
24ecfbe2
CH
317 */
318void blk_run_queue_async(struct request_queue *q)
319{
70460571 320 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 321 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 322}
c21e6beb 323EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 324
75ad23bc
NP
325/**
326 * blk_run_queue - run a single device queue
327 * @q: The queue to run
80a4b58e
JA
328 *
329 * Description:
330 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 331 * May be used to restart queueing when a request has completed.
75ad23bc
NP
332 */
333void blk_run_queue(struct request_queue *q)
334{
335 unsigned long flags;
336
337 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 338 __blk_run_queue(q);
1da177e4
LT
339 spin_unlock_irqrestore(q->queue_lock, flags);
340}
341EXPORT_SYMBOL(blk_run_queue);
342
165125e1 343void blk_put_queue(struct request_queue *q)
483f4afc
AV
344{
345 kobject_put(&q->kobj);
346}
d86e0e83 347EXPORT_SYMBOL(blk_put_queue);
483f4afc 348
e3c78ca5 349/**
807592a4 350 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 351 * @q: queue to drain
c9a929dd 352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 353 *
c9a929dd
TH
354 * Drain requests from @q. If @drain_all is set, all requests are drained.
355 * If not, only ELVPRIV requests are drained. The caller is responsible
356 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 357 */
807592a4
BVA
358static void __blk_drain_queue(struct request_queue *q, bool drain_all)
359 __releases(q->queue_lock)
360 __acquires(q->queue_lock)
e3c78ca5 361{
458f27a9
AH
362 int i;
363
807592a4
BVA
364 lockdep_assert_held(q->queue_lock);
365
e3c78ca5 366 while (true) {
481a7d64 367 bool drain = false;
e3c78ca5 368
b855b04a
TH
369 /*
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
372 */
373 if (q->elevator)
374 elv_drain_elevator(q);
375
5efd6113 376 blkcg_drain_queue(q);
e3c78ca5 377
4eabc941
TH
378 /*
379 * This function might be called on a queue which failed
b855b04a
TH
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
4eabc941 384 */
b855b04a 385 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 386 __blk_run_queue(q);
c9a929dd 387
8a5ecdd4 388 drain |= q->nr_rqs_elvpriv;
24faf6f6 389 drain |= q->request_fn_active;
481a7d64
TH
390
391 /*
392 * Unfortunately, requests are queued at and tracked from
393 * multiple places and there's no single counter which can
394 * be drained. Check all the queues and counters.
395 */
396 if (drain_all) {
397 drain |= !list_empty(&q->queue_head);
398 for (i = 0; i < 2; i++) {
8a5ecdd4 399 drain |= q->nr_rqs[i];
481a7d64
TH
400 drain |= q->in_flight[i];
401 drain |= !list_empty(&q->flush_queue[i]);
402 }
403 }
e3c78ca5 404
481a7d64 405 if (!drain)
e3c78ca5 406 break;
807592a4
BVA
407
408 spin_unlock_irq(q->queue_lock);
409
e3c78ca5 410 msleep(10);
807592a4
BVA
411
412 spin_lock_irq(q->queue_lock);
e3c78ca5 413 }
458f27a9
AH
414
415 /*
416 * With queue marked dead, any woken up waiter will fail the
417 * allocation path, so the wakeup chaining is lost and we're
418 * left with hung waiters. We need to wake up those waiters.
419 */
420 if (q->request_fn) {
a051661c
TH
421 struct request_list *rl;
422
a051661c
TH
423 blk_queue_for_each_rl(rl, q)
424 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
425 wake_up_all(&rl->wait[i]);
458f27a9 426 }
e3c78ca5
TH
427}
428
d732580b
TH
429/**
430 * blk_queue_bypass_start - enter queue bypass mode
431 * @q: queue of interest
432 *
433 * In bypass mode, only the dispatch FIFO queue of @q is used. This
434 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 435 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437 * inside queue or RCU read lock.
d732580b
TH
438 */
439void blk_queue_bypass_start(struct request_queue *q)
440{
441 spin_lock_irq(q->queue_lock);
776687bc 442 q->bypass_depth++;
d732580b
TH
443 queue_flag_set(QUEUE_FLAG_BYPASS, q);
444 spin_unlock_irq(q->queue_lock);
445
776687bc
TH
446 /*
447 * Queues start drained. Skip actual draining till init is
448 * complete. This avoids lenghty delays during queue init which
449 * can happen many times during boot.
450 */
451 if (blk_queue_init_done(q)) {
807592a4
BVA
452 spin_lock_irq(q->queue_lock);
453 __blk_drain_queue(q, false);
454 spin_unlock_irq(q->queue_lock);
455
b82d4b19
TH
456 /* ensure blk_queue_bypass() is %true inside RCU read lock */
457 synchronize_rcu();
458 }
d732580b
TH
459}
460EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
461
462/**
463 * blk_queue_bypass_end - leave queue bypass mode
464 * @q: queue of interest
465 *
466 * Leave bypass mode and restore the normal queueing behavior.
467 */
468void blk_queue_bypass_end(struct request_queue *q)
469{
470 spin_lock_irq(q->queue_lock);
471 if (!--q->bypass_depth)
472 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
473 WARN_ON_ONCE(q->bypass_depth < 0);
474 spin_unlock_irq(q->queue_lock);
475}
476EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
477
c9a929dd
TH
478/**
479 * blk_cleanup_queue - shutdown a request queue
480 * @q: request queue to shutdown
481 *
c246e80d
BVA
482 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
483 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 484 */
6728cb0e 485void blk_cleanup_queue(struct request_queue *q)
483f4afc 486{
c9a929dd 487 spinlock_t *lock = q->queue_lock;
e3335de9 488
3f3299d5 489 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 490 mutex_lock(&q->sysfs_lock);
3f3299d5 491 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 492 spin_lock_irq(lock);
6ecf23af 493
80fd9979 494 /*
3f3299d5 495 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
496 * that, unlike blk_queue_bypass_start(), we aren't performing
497 * synchronize_rcu() after entering bypass mode to avoid the delay
498 * as some drivers create and destroy a lot of queues while
499 * probing. This is still safe because blk_release_queue() will be
500 * called only after the queue refcnt drops to zero and nothing,
501 * RCU or not, would be traversing the queue by then.
502 */
6ecf23af
TH
503 q->bypass_depth++;
504 queue_flag_set(QUEUE_FLAG_BYPASS, q);
505
c9a929dd
TH
506 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
507 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 508 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
509 spin_unlock_irq(lock);
510 mutex_unlock(&q->sysfs_lock);
511
c246e80d
BVA
512 /*
513 * Drain all requests queued before DYING marking. Set DEAD flag to
514 * prevent that q->request_fn() gets invoked after draining finished.
515 */
43a5e4e2
ML
516 if (q->mq_ops) {
517 blk_mq_drain_queue(q);
518 spin_lock_irq(lock);
519 } else {
520 spin_lock_irq(lock);
521 __blk_drain_queue(q, true);
522 }
c246e80d 523 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 524 spin_unlock_irq(lock);
c9a929dd
TH
525
526 /* @q won't process any more request, flush async actions */
527 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
528 blk_sync_queue(q);
529
5e5cfac0
AH
530 spin_lock_irq(lock);
531 if (q->queue_lock != &q->__queue_lock)
532 q->queue_lock = &q->__queue_lock;
533 spin_unlock_irq(lock);
534
c9a929dd 535 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
536 blk_put_queue(q);
537}
1da177e4
LT
538EXPORT_SYMBOL(blk_cleanup_queue);
539
5b788ce3
TH
540int blk_init_rl(struct request_list *rl, struct request_queue *q,
541 gfp_t gfp_mask)
1da177e4 542{
1abec4fd
MS
543 if (unlikely(rl->rq_pool))
544 return 0;
545
5b788ce3 546 rl->q = q;
1faa16d2
JA
547 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
548 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
549 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
550 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 551
1946089a 552 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 553 mempool_free_slab, request_cachep,
5b788ce3 554 gfp_mask, q->node);
1da177e4
LT
555 if (!rl->rq_pool)
556 return -ENOMEM;
557
558 return 0;
559}
560
5b788ce3
TH
561void blk_exit_rl(struct request_list *rl)
562{
563 if (rl->rq_pool)
564 mempool_destroy(rl->rq_pool);
565}
566
165125e1 567struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 568{
c304a51b 569 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
570}
571EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 572
165125e1 573struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 574{
165125e1 575 struct request_queue *q;
e0bf68dd 576 int err;
1946089a 577
8324aa91 578 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 579 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
580 if (!q)
581 return NULL;
582
00380a40 583 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 584 if (q->id < 0)
3d2936f4 585 goto fail_q;
a73f730d 586
0989a025
JA
587 q->backing_dev_info.ra_pages =
588 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
589 q->backing_dev_info.state = 0;
590 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 591 q->backing_dev_info.name = "block";
5151412d 592 q->node = node_id;
0989a025 593
e0bf68dd 594 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
595 if (err)
596 goto fail_id;
e0bf68dd 597
31373d09
MG
598 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
599 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 600 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 601 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 602 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 603 INIT_LIST_HEAD(&q->icq_list);
4eef3049 604#ifdef CONFIG_BLK_CGROUP
e8989fae 605 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 606#endif
ae1b1539
TH
607 INIT_LIST_HEAD(&q->flush_queue[0]);
608 INIT_LIST_HEAD(&q->flush_queue[1]);
609 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 610 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 611
8324aa91 612 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 613
483f4afc 614 mutex_init(&q->sysfs_lock);
e7e72bf6 615 spin_lock_init(&q->__queue_lock);
483f4afc 616
c94a96ac
VG
617 /*
618 * By default initialize queue_lock to internal lock and driver can
619 * override it later if need be.
620 */
621 q->queue_lock = &q->__queue_lock;
622
b82d4b19
TH
623 /*
624 * A queue starts its life with bypass turned on to avoid
625 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
626 * init. The initial bypass will be finished when the queue is
627 * registered by blk_register_queue().
b82d4b19
TH
628 */
629 q->bypass_depth = 1;
630 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
631
320ae51f
JA
632 init_waitqueue_head(&q->mq_freeze_wq);
633
5efd6113 634 if (blkcg_init_queue(q))
fff4996b 635 goto fail_bdi;
f51b802c 636
1da177e4 637 return q;
a73f730d 638
fff4996b
MP
639fail_bdi:
640 bdi_destroy(&q->backing_dev_info);
a73f730d
TH
641fail_id:
642 ida_simple_remove(&blk_queue_ida, q->id);
643fail_q:
644 kmem_cache_free(blk_requestq_cachep, q);
645 return NULL;
1da177e4 646}
1946089a 647EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
648
649/**
650 * blk_init_queue - prepare a request queue for use with a block device
651 * @rfn: The function to be called to process requests that have been
652 * placed on the queue.
653 * @lock: Request queue spin lock
654 *
655 * Description:
656 * If a block device wishes to use the standard request handling procedures,
657 * which sorts requests and coalesces adjacent requests, then it must
658 * call blk_init_queue(). The function @rfn will be called when there
659 * are requests on the queue that need to be processed. If the device
660 * supports plugging, then @rfn may not be called immediately when requests
661 * are available on the queue, but may be called at some time later instead.
662 * Plugged queues are generally unplugged when a buffer belonging to one
663 * of the requests on the queue is needed, or due to memory pressure.
664 *
665 * @rfn is not required, or even expected, to remove all requests off the
666 * queue, but only as many as it can handle at a time. If it does leave
667 * requests on the queue, it is responsible for arranging that the requests
668 * get dealt with eventually.
669 *
670 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
671 * request queue; this lock will be taken also from interrupt context, so irq
672 * disabling is needed for it.
1da177e4 673 *
710027a4 674 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
675 * it didn't succeed.
676 *
677 * Note:
678 * blk_init_queue() must be paired with a blk_cleanup_queue() call
679 * when the block device is deactivated (such as at module unload).
680 **/
1946089a 681
165125e1 682struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 683{
c304a51b 684 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
685}
686EXPORT_SYMBOL(blk_init_queue);
687
165125e1 688struct request_queue *
1946089a
CL
689blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
690{
c86d1b8a 691 struct request_queue *uninit_q, *q;
1da177e4 692
c86d1b8a
MS
693 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
694 if (!uninit_q)
695 return NULL;
696
5151412d 697 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 698 if (!q)
7982e90c 699 blk_cleanup_queue(uninit_q);
18741986 700
7982e90c 701 return q;
01effb0d
MS
702}
703EXPORT_SYMBOL(blk_init_queue_node);
704
705struct request_queue *
706blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
707 spinlock_t *lock)
01effb0d 708{
1da177e4
LT
709 if (!q)
710 return NULL;
711
7982e90c
MS
712 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
713 if (!q->flush_rq)
714 return NULL;
715
a051661c 716 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 717 goto fail;
1da177e4
LT
718
719 q->request_fn = rfn;
1da177e4 720 q->prep_rq_fn = NULL;
28018c24 721 q->unprep_rq_fn = NULL;
60ea8226 722 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
723
724 /* Override internal queue lock with supplied lock pointer */
725 if (lock)
726 q->queue_lock = lock;
1da177e4 727
f3b144aa
JA
728 /*
729 * This also sets hw/phys segments, boundary and size
730 */
c20e8de2 731 blk_queue_make_request(q, blk_queue_bio);
1da177e4 732
44ec9542
AS
733 q->sg_reserved_size = INT_MAX;
734
eb1c160b
TS
735 /* Protect q->elevator from elevator_change */
736 mutex_lock(&q->sysfs_lock);
737
b82d4b19 738 /* init elevator */
eb1c160b
TS
739 if (elevator_init(q, NULL)) {
740 mutex_unlock(&q->sysfs_lock);
708f04d2 741 goto fail;
eb1c160b
TS
742 }
743
744 mutex_unlock(&q->sysfs_lock);
745
b82d4b19 746 return q;
708f04d2
DJ
747
748fail:
749 kfree(q->flush_rq);
750 return NULL;
1da177e4 751}
5151412d 752EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 753
09ac46c4 754bool blk_get_queue(struct request_queue *q)
1da177e4 755{
3f3299d5 756 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
757 __blk_get_queue(q);
758 return true;
1da177e4
LT
759 }
760
09ac46c4 761 return false;
1da177e4 762}
d86e0e83 763EXPORT_SYMBOL(blk_get_queue);
1da177e4 764
5b788ce3 765static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 766{
f1f8cc94 767 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 768 elv_put_request(rl->q, rq);
f1f8cc94 769 if (rq->elv.icq)
11a3122f 770 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
771 }
772
5b788ce3 773 mempool_free(rq, rl->rq_pool);
1da177e4
LT
774}
775
1da177e4
LT
776/*
777 * ioc_batching returns true if the ioc is a valid batching request and
778 * should be given priority access to a request.
779 */
165125e1 780static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
781{
782 if (!ioc)
783 return 0;
784
785 /*
786 * Make sure the process is able to allocate at least 1 request
787 * even if the batch times out, otherwise we could theoretically
788 * lose wakeups.
789 */
790 return ioc->nr_batch_requests == q->nr_batching ||
791 (ioc->nr_batch_requests > 0
792 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
793}
794
795/*
796 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
797 * will cause the process to be a "batcher" on all queues in the system. This
798 * is the behaviour we want though - once it gets a wakeup it should be given
799 * a nice run.
800 */
165125e1 801static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
802{
803 if (!ioc || ioc_batching(q, ioc))
804 return;
805
806 ioc->nr_batch_requests = q->nr_batching;
807 ioc->last_waited = jiffies;
808}
809
5b788ce3 810static void __freed_request(struct request_list *rl, int sync)
1da177e4 811{
5b788ce3 812 struct request_queue *q = rl->q;
1da177e4 813
a051661c
TH
814 /*
815 * bdi isn't aware of blkcg yet. As all async IOs end up root
816 * blkcg anyway, just use root blkcg state.
817 */
818 if (rl == &q->root_rl &&
819 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 820 blk_clear_queue_congested(q, sync);
1da177e4 821
1faa16d2
JA
822 if (rl->count[sync] + 1 <= q->nr_requests) {
823 if (waitqueue_active(&rl->wait[sync]))
824 wake_up(&rl->wait[sync]);
1da177e4 825
5b788ce3 826 blk_clear_rl_full(rl, sync);
1da177e4
LT
827 }
828}
829
830/*
831 * A request has just been released. Account for it, update the full and
832 * congestion status, wake up any waiters. Called under q->queue_lock.
833 */
5b788ce3 834static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 835{
5b788ce3 836 struct request_queue *q = rl->q;
75eb6c37 837 int sync = rw_is_sync(flags);
1da177e4 838
8a5ecdd4 839 q->nr_rqs[sync]--;
1faa16d2 840 rl->count[sync]--;
75eb6c37 841 if (flags & REQ_ELVPRIV)
8a5ecdd4 842 q->nr_rqs_elvpriv--;
1da177e4 843
5b788ce3 844 __freed_request(rl, sync);
1da177e4 845
1faa16d2 846 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 847 __freed_request(rl, sync ^ 1);
1da177e4
LT
848}
849
e3a2b3f9
JA
850int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
851{
852 struct request_list *rl;
853
854 spin_lock_irq(q->queue_lock);
855 q->nr_requests = nr;
856 blk_queue_congestion_threshold(q);
857
858 /* congestion isn't cgroup aware and follows root blkcg for now */
859 rl = &q->root_rl;
860
861 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
862 blk_set_queue_congested(q, BLK_RW_SYNC);
863 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
864 blk_clear_queue_congested(q, BLK_RW_SYNC);
865
866 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
867 blk_set_queue_congested(q, BLK_RW_ASYNC);
868 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
869 blk_clear_queue_congested(q, BLK_RW_ASYNC);
870
871 blk_queue_for_each_rl(rl, q) {
872 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
873 blk_set_rl_full(rl, BLK_RW_SYNC);
874 } else {
875 blk_clear_rl_full(rl, BLK_RW_SYNC);
876 wake_up(&rl->wait[BLK_RW_SYNC]);
877 }
878
879 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
880 blk_set_rl_full(rl, BLK_RW_ASYNC);
881 } else {
882 blk_clear_rl_full(rl, BLK_RW_ASYNC);
883 wake_up(&rl->wait[BLK_RW_ASYNC]);
884 }
885 }
886
887 spin_unlock_irq(q->queue_lock);
888 return 0;
889}
890
9d5a4e94
MS
891/*
892 * Determine if elevator data should be initialized when allocating the
893 * request associated with @bio.
894 */
895static bool blk_rq_should_init_elevator(struct bio *bio)
896{
897 if (!bio)
898 return true;
899
900 /*
901 * Flush requests do not use the elevator so skip initialization.
902 * This allows a request to share the flush and elevator data.
903 */
904 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
905 return false;
906
907 return true;
908}
909
852c788f
TH
910/**
911 * rq_ioc - determine io_context for request allocation
912 * @bio: request being allocated is for this bio (can be %NULL)
913 *
914 * Determine io_context to use for request allocation for @bio. May return
915 * %NULL if %current->io_context doesn't exist.
916 */
917static struct io_context *rq_ioc(struct bio *bio)
918{
919#ifdef CONFIG_BLK_CGROUP
920 if (bio && bio->bi_ioc)
921 return bio->bi_ioc;
922#endif
923 return current->io_context;
924}
925
da8303c6 926/**
a06e05e6 927 * __get_request - get a free request
5b788ce3 928 * @rl: request list to allocate from
da8303c6
TH
929 * @rw_flags: RW and SYNC flags
930 * @bio: bio to allocate request for (can be %NULL)
931 * @gfp_mask: allocation mask
932 *
933 * Get a free request from @q. This function may fail under memory
934 * pressure or if @q is dead.
935 *
936 * Must be callled with @q->queue_lock held and,
937 * Returns %NULL on failure, with @q->queue_lock held.
938 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 939 */
5b788ce3 940static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 941 struct bio *bio, gfp_t gfp_mask)
1da177e4 942{
5b788ce3 943 struct request_queue *q = rl->q;
b679281a 944 struct request *rq;
7f4b35d1
TH
945 struct elevator_type *et = q->elevator->type;
946 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 947 struct io_cq *icq = NULL;
1faa16d2 948 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 949 int may_queue;
88ee5ef1 950
3f3299d5 951 if (unlikely(blk_queue_dying(q)))
da8303c6
TH
952 return NULL;
953
7749a8d4 954 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
955 if (may_queue == ELV_MQUEUE_NO)
956 goto rq_starved;
957
1faa16d2
JA
958 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
959 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
960 /*
961 * The queue will fill after this allocation, so set
962 * it as full, and mark this process as "batching".
963 * This process will be allowed to complete a batch of
964 * requests, others will be blocked.
965 */
5b788ce3 966 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 967 ioc_set_batching(q, ioc);
5b788ce3 968 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
969 } else {
970 if (may_queue != ELV_MQUEUE_MUST
971 && !ioc_batching(q, ioc)) {
972 /*
973 * The queue is full and the allocating
974 * process is not a "batcher", and not
975 * exempted by the IO scheduler
976 */
b679281a 977 return NULL;
88ee5ef1
JA
978 }
979 }
1da177e4 980 }
a051661c
TH
981 /*
982 * bdi isn't aware of blkcg yet. As all async IOs end up
983 * root blkcg anyway, just use root blkcg state.
984 */
985 if (rl == &q->root_rl)
986 blk_set_queue_congested(q, is_sync);
1da177e4
LT
987 }
988
082cf69e
JA
989 /*
990 * Only allow batching queuers to allocate up to 50% over the defined
991 * limit of requests, otherwise we could have thousands of requests
992 * allocated with any setting of ->nr_requests
993 */
1faa16d2 994 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 995 return NULL;
fd782a4a 996
8a5ecdd4 997 q->nr_rqs[is_sync]++;
1faa16d2
JA
998 rl->count[is_sync]++;
999 rl->starved[is_sync] = 0;
cb98fc8b 1000
f1f8cc94
TH
1001 /*
1002 * Decide whether the new request will be managed by elevator. If
1003 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1004 * prevent the current elevator from being destroyed until the new
1005 * request is freed. This guarantees icq's won't be destroyed and
1006 * makes creating new ones safe.
1007 *
1008 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1009 * it will be created after releasing queue_lock.
1010 */
d732580b 1011 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 1012 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 1013 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1014 if (et->icq_cache && ioc)
1015 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1016 }
cb98fc8b 1017
f253b86b
JA
1018 if (blk_queue_io_stat(q))
1019 rw_flags |= REQ_IO_STAT;
1da177e4
LT
1020 spin_unlock_irq(q->queue_lock);
1021
29e2b09a 1022 /* allocate and init request */
5b788ce3 1023 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1024 if (!rq)
b679281a 1025 goto fail_alloc;
1da177e4 1026
29e2b09a 1027 blk_rq_init(q, rq);
a051661c 1028 blk_rq_set_rl(rq, rl);
29e2b09a
TH
1029 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1030
aaf7c680 1031 /* init elvpriv */
29e2b09a 1032 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 1033 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1034 if (ioc)
1035 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1036 if (!icq)
1037 goto fail_elvpriv;
29e2b09a 1038 }
aaf7c680
TH
1039
1040 rq->elv.icq = icq;
1041 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1042 goto fail_elvpriv;
1043
1044 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1045 if (icq)
1046 get_io_context(icq->ioc);
1047 }
aaf7c680 1048out:
88ee5ef1
JA
1049 /*
1050 * ioc may be NULL here, and ioc_batching will be false. That's
1051 * OK, if the queue is under the request limit then requests need
1052 * not count toward the nr_batch_requests limit. There will always
1053 * be some limit enforced by BLK_BATCH_TIME.
1054 */
1da177e4
LT
1055 if (ioc_batching(q, ioc))
1056 ioc->nr_batch_requests--;
6728cb0e 1057
1faa16d2 1058 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1059 return rq;
b679281a 1060
aaf7c680
TH
1061fail_elvpriv:
1062 /*
1063 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1064 * and may fail indefinitely under memory pressure and thus
1065 * shouldn't stall IO. Treat this request as !elvpriv. This will
1066 * disturb iosched and blkcg but weird is bettern than dead.
1067 */
1068 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1069 dev_name(q->backing_dev_info.dev));
1070
1071 rq->cmd_flags &= ~REQ_ELVPRIV;
1072 rq->elv.icq = NULL;
1073
1074 spin_lock_irq(q->queue_lock);
8a5ecdd4 1075 q->nr_rqs_elvpriv--;
aaf7c680
TH
1076 spin_unlock_irq(q->queue_lock);
1077 goto out;
1078
b679281a
TH
1079fail_alloc:
1080 /*
1081 * Allocation failed presumably due to memory. Undo anything we
1082 * might have messed up.
1083 *
1084 * Allocating task should really be put onto the front of the wait
1085 * queue, but this is pretty rare.
1086 */
1087 spin_lock_irq(q->queue_lock);
5b788ce3 1088 freed_request(rl, rw_flags);
b679281a
TH
1089
1090 /*
1091 * in the very unlikely event that allocation failed and no
1092 * requests for this direction was pending, mark us starved so that
1093 * freeing of a request in the other direction will notice
1094 * us. another possible fix would be to split the rq mempool into
1095 * READ and WRITE
1096 */
1097rq_starved:
1098 if (unlikely(rl->count[is_sync] == 0))
1099 rl->starved[is_sync] = 1;
1100 return NULL;
1da177e4
LT
1101}
1102
da8303c6 1103/**
a06e05e6 1104 * get_request - get a free request
da8303c6
TH
1105 * @q: request_queue to allocate request from
1106 * @rw_flags: RW and SYNC flags
1107 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1108 * @gfp_mask: allocation mask
da8303c6 1109 *
a06e05e6
TH
1110 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1111 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1112 *
da8303c6
TH
1113 * Must be callled with @q->queue_lock held and,
1114 * Returns %NULL on failure, with @q->queue_lock held.
1115 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1116 */
a06e05e6
TH
1117static struct request *get_request(struct request_queue *q, int rw_flags,
1118 struct bio *bio, gfp_t gfp_mask)
1da177e4 1119{
1faa16d2 1120 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1121 DEFINE_WAIT(wait);
a051661c 1122 struct request_list *rl;
1da177e4 1123 struct request *rq;
a051661c
TH
1124
1125 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1126retry:
a051661c 1127 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1128 if (rq)
1129 return rq;
1da177e4 1130
3f3299d5 1131 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1132 blk_put_rl(rl);
a06e05e6 1133 return NULL;
a051661c 1134 }
1da177e4 1135
a06e05e6
TH
1136 /* wait on @rl and retry */
1137 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1138 TASK_UNINTERRUPTIBLE);
1da177e4 1139
a06e05e6 1140 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1141
a06e05e6
TH
1142 spin_unlock_irq(q->queue_lock);
1143 io_schedule();
d6344532 1144
a06e05e6
TH
1145 /*
1146 * After sleeping, we become a "batching" process and will be able
1147 * to allocate at least one request, and up to a big batch of them
1148 * for a small period time. See ioc_batching, ioc_set_batching
1149 */
a06e05e6 1150 ioc_set_batching(q, current->io_context);
05caf8db 1151
a06e05e6
TH
1152 spin_lock_irq(q->queue_lock);
1153 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1154
a06e05e6 1155 goto retry;
1da177e4
LT
1156}
1157
320ae51f
JA
1158static struct request *blk_old_get_request(struct request_queue *q, int rw,
1159 gfp_t gfp_mask)
1da177e4
LT
1160{
1161 struct request *rq;
1162
1163 BUG_ON(rw != READ && rw != WRITE);
1164
7f4b35d1
TH
1165 /* create ioc upfront */
1166 create_io_context(gfp_mask, q->node);
1167
d6344532 1168 spin_lock_irq(q->queue_lock);
a06e05e6 1169 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1170 if (!rq)
1171 spin_unlock_irq(q->queue_lock);
d6344532 1172 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1173
1174 return rq;
1175}
320ae51f
JA
1176
1177struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1178{
1179 if (q->mq_ops)
4ce01dd1 1180 return blk_mq_alloc_request(q, rw, gfp_mask, false);
320ae51f
JA
1181 else
1182 return blk_old_get_request(q, rw, gfp_mask);
1183}
1da177e4
LT
1184EXPORT_SYMBOL(blk_get_request);
1185
dc72ef4a 1186/**
79eb63e9 1187 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1188 * @q: target request queue
79eb63e9
BH
1189 * @bio: The bio describing the memory mappings that will be submitted for IO.
1190 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1191 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1192 *
79eb63e9
BH
1193 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1194 * type commands. Where the struct request needs to be farther initialized by
1195 * the caller. It is passed a &struct bio, which describes the memory info of
1196 * the I/O transfer.
dc72ef4a 1197 *
79eb63e9
BH
1198 * The caller of blk_make_request must make sure that bi_io_vec
1199 * are set to describe the memory buffers. That bio_data_dir() will return
1200 * the needed direction of the request. (And all bio's in the passed bio-chain
1201 * are properly set accordingly)
1202 *
1203 * If called under none-sleepable conditions, mapped bio buffers must not
1204 * need bouncing, by calling the appropriate masked or flagged allocator,
1205 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1206 * BUG.
53674ac5
JA
1207 *
1208 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1209 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1210 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1211 * completion of a bio that hasn't been submitted yet, thus resulting in a
1212 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1213 * of bio_alloc(), as that avoids the mempool deadlock.
1214 * If possible a big IO should be split into smaller parts when allocation
1215 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1216 */
79eb63e9
BH
1217struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1218 gfp_t gfp_mask)
dc72ef4a 1219{
79eb63e9
BH
1220 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1221
1222 if (unlikely(!rq))
1223 return ERR_PTR(-ENOMEM);
1224
f27b087b
JA
1225 blk_rq_set_block_pc(rq);
1226
79eb63e9
BH
1227 for_each_bio(bio) {
1228 struct bio *bounce_bio = bio;
1229 int ret;
1230
1231 blk_queue_bounce(q, &bounce_bio);
1232 ret = blk_rq_append_bio(q, rq, bounce_bio);
1233 if (unlikely(ret)) {
1234 blk_put_request(rq);
1235 return ERR_PTR(ret);
1236 }
1237 }
1238
1239 return rq;
dc72ef4a 1240}
79eb63e9 1241EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1242
f27b087b
JA
1243/**
1244 * blk_rq_set_block_pc - initialize a requeest to type BLOCK_PC
1245 * @rq: request to be initialized
1246 *
1247 */
1248void blk_rq_set_block_pc(struct request *rq)
1249{
1250 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1251 rq->__data_len = 0;
1252 rq->__sector = (sector_t) -1;
1253 rq->bio = rq->biotail = NULL;
1254 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1255 rq->cmd = rq->__cmd;
1256}
1257EXPORT_SYMBOL(blk_rq_set_block_pc);
1258
1da177e4
LT
1259/**
1260 * blk_requeue_request - put a request back on queue
1261 * @q: request queue where request should be inserted
1262 * @rq: request to be inserted
1263 *
1264 * Description:
1265 * Drivers often keep queueing requests until the hardware cannot accept
1266 * more, when that condition happens we need to put the request back
1267 * on the queue. Must be called with queue lock held.
1268 */
165125e1 1269void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1270{
242f9dcb
JA
1271 blk_delete_timer(rq);
1272 blk_clear_rq_complete(rq);
5f3ea37c 1273 trace_block_rq_requeue(q, rq);
2056a782 1274
1da177e4
LT
1275 if (blk_rq_tagged(rq))
1276 blk_queue_end_tag(q, rq);
1277
ba396a6c
JB
1278 BUG_ON(blk_queued_rq(rq));
1279
1da177e4
LT
1280 elv_requeue_request(q, rq);
1281}
1da177e4
LT
1282EXPORT_SYMBOL(blk_requeue_request);
1283
73c10101
JA
1284static void add_acct_request(struct request_queue *q, struct request *rq,
1285 int where)
1286{
320ae51f 1287 blk_account_io_start(rq, true);
7eaceacc 1288 __elv_add_request(q, rq, where);
73c10101
JA
1289}
1290
074a7aca
TH
1291static void part_round_stats_single(int cpu, struct hd_struct *part,
1292 unsigned long now)
1293{
7276d02e
JA
1294 int inflight;
1295
074a7aca
TH
1296 if (now == part->stamp)
1297 return;
1298
7276d02e
JA
1299 inflight = part_in_flight(part);
1300 if (inflight) {
074a7aca 1301 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1302 inflight * (now - part->stamp));
074a7aca
TH
1303 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1304 }
1305 part->stamp = now;
1306}
1307
1308/**
496aa8a9
RD
1309 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1310 * @cpu: cpu number for stats access
1311 * @part: target partition
1da177e4
LT
1312 *
1313 * The average IO queue length and utilisation statistics are maintained
1314 * by observing the current state of the queue length and the amount of
1315 * time it has been in this state for.
1316 *
1317 * Normally, that accounting is done on IO completion, but that can result
1318 * in more than a second's worth of IO being accounted for within any one
1319 * second, leading to >100% utilisation. To deal with that, we call this
1320 * function to do a round-off before returning the results when reading
1321 * /proc/diskstats. This accounts immediately for all queue usage up to
1322 * the current jiffies and restarts the counters again.
1323 */
c9959059 1324void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1325{
1326 unsigned long now = jiffies;
1327
074a7aca
TH
1328 if (part->partno)
1329 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1330 part_round_stats_single(cpu, part, now);
6f2576af 1331}
074a7aca 1332EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1333
c8158819
LM
1334#ifdef CONFIG_PM_RUNTIME
1335static void blk_pm_put_request(struct request *rq)
1336{
1337 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1338 pm_runtime_mark_last_busy(rq->q->dev);
1339}
1340#else
1341static inline void blk_pm_put_request(struct request *rq) {}
1342#endif
1343
1da177e4
LT
1344/*
1345 * queue lock must be held
1346 */
165125e1 1347void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1348{
1da177e4
LT
1349 if (unlikely(!q))
1350 return;
1da177e4 1351
6f5ba581
CH
1352 if (q->mq_ops) {
1353 blk_mq_free_request(req);
1354 return;
1355 }
1356
c8158819
LM
1357 blk_pm_put_request(req);
1358
8922e16c
TH
1359 elv_completed_request(q, req);
1360
1cd96c24
BH
1361 /* this is a bio leak */
1362 WARN_ON(req->bio != NULL);
1363
1da177e4
LT
1364 /*
1365 * Request may not have originated from ll_rw_blk. if not,
1366 * it didn't come out of our reserved rq pools
1367 */
49171e5c 1368 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1369 unsigned int flags = req->cmd_flags;
a051661c 1370 struct request_list *rl = blk_rq_rl(req);
1da177e4 1371
1da177e4 1372 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1373 BUG_ON(ELV_ON_HASH(req));
1da177e4 1374
a051661c
TH
1375 blk_free_request(rl, req);
1376 freed_request(rl, flags);
1377 blk_put_rl(rl);
1da177e4
LT
1378 }
1379}
6e39b69e
MC
1380EXPORT_SYMBOL_GPL(__blk_put_request);
1381
1da177e4
LT
1382void blk_put_request(struct request *req)
1383{
165125e1 1384 struct request_queue *q = req->q;
8922e16c 1385
320ae51f
JA
1386 if (q->mq_ops)
1387 blk_mq_free_request(req);
1388 else {
1389 unsigned long flags;
1390
1391 spin_lock_irqsave(q->queue_lock, flags);
1392 __blk_put_request(q, req);
1393 spin_unlock_irqrestore(q->queue_lock, flags);
1394 }
1da177e4 1395}
1da177e4
LT
1396EXPORT_SYMBOL(blk_put_request);
1397
66ac0280
CH
1398/**
1399 * blk_add_request_payload - add a payload to a request
1400 * @rq: request to update
1401 * @page: page backing the payload
1402 * @len: length of the payload.
1403 *
1404 * This allows to later add a payload to an already submitted request by
1405 * a block driver. The driver needs to take care of freeing the payload
1406 * itself.
1407 *
1408 * Note that this is a quite horrible hack and nothing but handling of
1409 * discard requests should ever use it.
1410 */
1411void blk_add_request_payload(struct request *rq, struct page *page,
1412 unsigned int len)
1413{
1414 struct bio *bio = rq->bio;
1415
1416 bio->bi_io_vec->bv_page = page;
1417 bio->bi_io_vec->bv_offset = 0;
1418 bio->bi_io_vec->bv_len = len;
1419
4f024f37 1420 bio->bi_iter.bi_size = len;
66ac0280
CH
1421 bio->bi_vcnt = 1;
1422 bio->bi_phys_segments = 1;
1423
1424 rq->__data_len = rq->resid_len = len;
1425 rq->nr_phys_segments = 1;
66ac0280
CH
1426}
1427EXPORT_SYMBOL_GPL(blk_add_request_payload);
1428
320ae51f
JA
1429bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1430 struct bio *bio)
73c10101
JA
1431{
1432 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1433
73c10101
JA
1434 if (!ll_back_merge_fn(q, req, bio))
1435 return false;
1436
8c1cf6bb 1437 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1438
1439 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1440 blk_rq_set_mixed_merge(req);
1441
1442 req->biotail->bi_next = bio;
1443 req->biotail = bio;
4f024f37 1444 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1445 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1446
320ae51f 1447 blk_account_io_start(req, false);
73c10101
JA
1448 return true;
1449}
1450
320ae51f
JA
1451bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1452 struct bio *bio)
73c10101
JA
1453{
1454 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1455
73c10101
JA
1456 if (!ll_front_merge_fn(q, req, bio))
1457 return false;
1458
8c1cf6bb 1459 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1460
1461 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1462 blk_rq_set_mixed_merge(req);
1463
73c10101
JA
1464 bio->bi_next = req->bio;
1465 req->bio = bio;
1466
4f024f37
KO
1467 req->__sector = bio->bi_iter.bi_sector;
1468 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1469 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1470
320ae51f 1471 blk_account_io_start(req, false);
73c10101
JA
1472 return true;
1473}
1474
bd87b589 1475/**
320ae51f 1476 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1477 * @q: request_queue new bio is being queued at
1478 * @bio: new bio being queued
1479 * @request_count: out parameter for number of traversed plugged requests
1480 *
1481 * Determine whether @bio being queued on @q can be merged with a request
1482 * on %current's plugged list. Returns %true if merge was successful,
1483 * otherwise %false.
1484 *
07c2bd37
TH
1485 * Plugging coalesces IOs from the same issuer for the same purpose without
1486 * going through @q->queue_lock. As such it's more of an issuing mechanism
1487 * than scheduling, and the request, while may have elvpriv data, is not
1488 * added on the elevator at this point. In addition, we don't have
1489 * reliable access to the elevator outside queue lock. Only check basic
1490 * merging parameters without querying the elevator.
da41a589
RE
1491 *
1492 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1493 */
320ae51f
JA
1494bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1495 unsigned int *request_count)
73c10101
JA
1496{
1497 struct blk_plug *plug;
1498 struct request *rq;
1499 bool ret = false;
92f399c7 1500 struct list_head *plug_list;
73c10101 1501
bd87b589 1502 plug = current->plug;
73c10101
JA
1503 if (!plug)
1504 goto out;
56ebdaf2 1505 *request_count = 0;
73c10101 1506
92f399c7
SL
1507 if (q->mq_ops)
1508 plug_list = &plug->mq_list;
1509 else
1510 plug_list = &plug->list;
1511
1512 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1513 int el_ret;
1514
1b2e19f1
SL
1515 if (rq->q == q)
1516 (*request_count)++;
56ebdaf2 1517
07c2bd37 1518 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1519 continue;
1520
050c8ea8 1521 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1522 if (el_ret == ELEVATOR_BACK_MERGE) {
1523 ret = bio_attempt_back_merge(q, rq, bio);
1524 if (ret)
1525 break;
1526 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1527 ret = bio_attempt_front_merge(q, rq, bio);
1528 if (ret)
1529 break;
1530 }
1531 }
1532out:
1533 return ret;
1534}
1535
86db1e29 1536void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1537{
4aff5e23 1538 req->cmd_type = REQ_TYPE_FS;
52d9e675 1539
7b6d91da
CH
1540 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1541 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1542 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1543
52d9e675 1544 req->errors = 0;
4f024f37 1545 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1546 req->ioprio = bio_prio(bio);
bc1c56fd 1547 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1548}
1549
5a7bbad2 1550void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1551{
5e00d1b5 1552 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1553 struct blk_plug *plug;
1554 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1555 struct request *req;
56ebdaf2 1556 unsigned int request_count = 0;
1da177e4 1557
1da177e4
LT
1558 /*
1559 * low level driver can indicate that it wants pages above a
1560 * certain limit bounced to low memory (ie for highmem, or even
1561 * ISA dma in theory)
1562 */
1563 blk_queue_bounce(q, &bio);
1564
ffecfd1a
DW
1565 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1566 bio_endio(bio, -EIO);
1567 return;
1568 }
1569
4fed947c 1570 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1571 spin_lock_irq(q->queue_lock);
ae1b1539 1572 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1573 goto get_rq;
1574 }
1575
73c10101
JA
1576 /*
1577 * Check if we can merge with the plugged list before grabbing
1578 * any locks.
1579 */
da41a589
RE
1580 if (!blk_queue_nomerges(q) &&
1581 blk_attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1582 return;
1da177e4 1583
73c10101 1584 spin_lock_irq(q->queue_lock);
2056a782 1585
73c10101
JA
1586 el_ret = elv_merge(q, &req, bio);
1587 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1588 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1589 elv_bio_merged(q, req, bio);
73c10101
JA
1590 if (!attempt_back_merge(q, req))
1591 elv_merged_request(q, req, el_ret);
1592 goto out_unlock;
1593 }
1594 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1595 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1596 elv_bio_merged(q, req, bio);
73c10101
JA
1597 if (!attempt_front_merge(q, req))
1598 elv_merged_request(q, req, el_ret);
1599 goto out_unlock;
80a761fd 1600 }
1da177e4
LT
1601 }
1602
450991bc 1603get_rq:
7749a8d4
JA
1604 /*
1605 * This sync check and mask will be re-done in init_request_from_bio(),
1606 * but we need to set it earlier to expose the sync flag to the
1607 * rq allocator and io schedulers.
1608 */
1609 rw_flags = bio_data_dir(bio);
1610 if (sync)
7b6d91da 1611 rw_flags |= REQ_SYNC;
7749a8d4 1612
1da177e4 1613 /*
450991bc 1614 * Grab a free request. This is might sleep but can not fail.
d6344532 1615 * Returns with the queue unlocked.
450991bc 1616 */
a06e05e6 1617 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1618 if (unlikely(!req)) {
1619 bio_endio(bio, -ENODEV); /* @q is dead */
1620 goto out_unlock;
1621 }
d6344532 1622
450991bc
NP
1623 /*
1624 * After dropping the lock and possibly sleeping here, our request
1625 * may now be mergeable after it had proven unmergeable (above).
1626 * We don't worry about that case for efficiency. It won't happen
1627 * often, and the elevators are able to handle it.
1da177e4 1628 */
52d9e675 1629 init_request_from_bio(req, bio);
1da177e4 1630
9562ad9a 1631 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1632 req->cpu = raw_smp_processor_id();
73c10101
JA
1633
1634 plug = current->plug;
721a9602 1635 if (plug) {
dc6d36c9
JA
1636 /*
1637 * If this is the first request added after a plug, fire
7aef2e78 1638 * of a plug trace.
dc6d36c9 1639 */
7aef2e78 1640 if (!request_count)
dc6d36c9 1641 trace_block_plug(q);
3540d5e8 1642 else {
019ceb7d 1643 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1644 blk_flush_plug_list(plug, false);
019ceb7d
SL
1645 trace_block_plug(q);
1646 }
73c10101 1647 }
73c10101 1648 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1649 blk_account_io_start(req, true);
73c10101
JA
1650 } else {
1651 spin_lock_irq(q->queue_lock);
1652 add_acct_request(q, req, where);
24ecfbe2 1653 __blk_run_queue(q);
73c10101
JA
1654out_unlock:
1655 spin_unlock_irq(q->queue_lock);
1656 }
1da177e4 1657}
c20e8de2 1658EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1659
1660/*
1661 * If bio->bi_dev is a partition, remap the location
1662 */
1663static inline void blk_partition_remap(struct bio *bio)
1664{
1665 struct block_device *bdev = bio->bi_bdev;
1666
bf2de6f5 1667 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1668 struct hd_struct *p = bdev->bd_part;
1669
4f024f37 1670 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1671 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1672
d07335e5
MS
1673 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1674 bdev->bd_dev,
4f024f37 1675 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1676 }
1677}
1678
1da177e4
LT
1679static void handle_bad_sector(struct bio *bio)
1680{
1681 char b[BDEVNAME_SIZE];
1682
1683 printk(KERN_INFO "attempt to access beyond end of device\n");
1684 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1685 bdevname(bio->bi_bdev, b),
1686 bio->bi_rw,
f73a1c7d 1687 (unsigned long long)bio_end_sector(bio),
77304d2a 1688 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1689
1690 set_bit(BIO_EOF, &bio->bi_flags);
1691}
1692
c17bb495
AM
1693#ifdef CONFIG_FAIL_MAKE_REQUEST
1694
1695static DECLARE_FAULT_ATTR(fail_make_request);
1696
1697static int __init setup_fail_make_request(char *str)
1698{
1699 return setup_fault_attr(&fail_make_request, str);
1700}
1701__setup("fail_make_request=", setup_fail_make_request);
1702
b2c9cd37 1703static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1704{
b2c9cd37 1705 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1706}
1707
1708static int __init fail_make_request_debugfs(void)
1709{
dd48c085
AM
1710 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1711 NULL, &fail_make_request);
1712
21f9fcd8 1713 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1714}
1715
1716late_initcall(fail_make_request_debugfs);
1717
1718#else /* CONFIG_FAIL_MAKE_REQUEST */
1719
b2c9cd37
AM
1720static inline bool should_fail_request(struct hd_struct *part,
1721 unsigned int bytes)
c17bb495 1722{
b2c9cd37 1723 return false;
c17bb495
AM
1724}
1725
1726#endif /* CONFIG_FAIL_MAKE_REQUEST */
1727
c07e2b41
JA
1728/*
1729 * Check whether this bio extends beyond the end of the device.
1730 */
1731static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1732{
1733 sector_t maxsector;
1734
1735 if (!nr_sectors)
1736 return 0;
1737
1738 /* Test device or partition size, when known. */
77304d2a 1739 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1740 if (maxsector) {
4f024f37 1741 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1742
1743 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1744 /*
1745 * This may well happen - the kernel calls bread()
1746 * without checking the size of the device, e.g., when
1747 * mounting a device.
1748 */
1749 handle_bad_sector(bio);
1750 return 1;
1751 }
1752 }
1753
1754 return 0;
1755}
1756
27a84d54
CH
1757static noinline_for_stack bool
1758generic_make_request_checks(struct bio *bio)
1da177e4 1759{
165125e1 1760 struct request_queue *q;
5a7bbad2 1761 int nr_sectors = bio_sectors(bio);
51fd77bd 1762 int err = -EIO;
5a7bbad2
CH
1763 char b[BDEVNAME_SIZE];
1764 struct hd_struct *part;
1da177e4
LT
1765
1766 might_sleep();
1da177e4 1767
c07e2b41
JA
1768 if (bio_check_eod(bio, nr_sectors))
1769 goto end_io;
1da177e4 1770
5a7bbad2
CH
1771 q = bdev_get_queue(bio->bi_bdev);
1772 if (unlikely(!q)) {
1773 printk(KERN_ERR
1774 "generic_make_request: Trying to access "
1775 "nonexistent block-device %s (%Lu)\n",
1776 bdevname(bio->bi_bdev, b),
4f024f37 1777 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1778 goto end_io;
1779 }
c17bb495 1780
e2a60da7
MP
1781 if (likely(bio_is_rw(bio) &&
1782 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1783 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1784 bdevname(bio->bi_bdev, b),
1785 bio_sectors(bio),
1786 queue_max_hw_sectors(q));
1787 goto end_io;
1788 }
1da177e4 1789
5a7bbad2 1790 part = bio->bi_bdev->bd_part;
4f024f37 1791 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1792 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1793 bio->bi_iter.bi_size))
5a7bbad2 1794 goto end_io;
2056a782 1795
5a7bbad2
CH
1796 /*
1797 * If this device has partitions, remap block n
1798 * of partition p to block n+start(p) of the disk.
1799 */
1800 blk_partition_remap(bio);
2056a782 1801
5a7bbad2
CH
1802 if (bio_check_eod(bio, nr_sectors))
1803 goto end_io;
1e87901e 1804
5a7bbad2
CH
1805 /*
1806 * Filter flush bio's early so that make_request based
1807 * drivers without flush support don't have to worry
1808 * about them.
1809 */
1810 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1811 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1812 if (!nr_sectors) {
1813 err = 0;
51fd77bd
JA
1814 goto end_io;
1815 }
5a7bbad2 1816 }
5ddfe969 1817
5a7bbad2
CH
1818 if ((bio->bi_rw & REQ_DISCARD) &&
1819 (!blk_queue_discard(q) ||
e2a60da7 1820 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1821 err = -EOPNOTSUPP;
1822 goto end_io;
1823 }
01edede4 1824
4363ac7c 1825 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1826 err = -EOPNOTSUPP;
1827 goto end_io;
1828 }
01edede4 1829
7f4b35d1
TH
1830 /*
1831 * Various block parts want %current->io_context and lazy ioc
1832 * allocation ends up trading a lot of pain for a small amount of
1833 * memory. Just allocate it upfront. This may fail and block
1834 * layer knows how to live with it.
1835 */
1836 create_io_context(GFP_ATOMIC, q->node);
1837
bc16a4f9
TH
1838 if (blk_throtl_bio(q, bio))
1839 return false; /* throttled, will be resubmitted later */
27a84d54 1840
5a7bbad2 1841 trace_block_bio_queue(q, bio);
27a84d54 1842 return true;
a7384677
TH
1843
1844end_io:
1845 bio_endio(bio, err);
27a84d54 1846 return false;
1da177e4
LT
1847}
1848
27a84d54
CH
1849/**
1850 * generic_make_request - hand a buffer to its device driver for I/O
1851 * @bio: The bio describing the location in memory and on the device.
1852 *
1853 * generic_make_request() is used to make I/O requests of block
1854 * devices. It is passed a &struct bio, which describes the I/O that needs
1855 * to be done.
1856 *
1857 * generic_make_request() does not return any status. The
1858 * success/failure status of the request, along with notification of
1859 * completion, is delivered asynchronously through the bio->bi_end_io
1860 * function described (one day) else where.
1861 *
1862 * The caller of generic_make_request must make sure that bi_io_vec
1863 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1864 * set to describe the device address, and the
1865 * bi_end_io and optionally bi_private are set to describe how
1866 * completion notification should be signaled.
1867 *
1868 * generic_make_request and the drivers it calls may use bi_next if this
1869 * bio happens to be merged with someone else, and may resubmit the bio to
1870 * a lower device by calling into generic_make_request recursively, which
1871 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1872 */
1873void generic_make_request(struct bio *bio)
1874{
bddd87c7
AM
1875 struct bio_list bio_list_on_stack;
1876
27a84d54
CH
1877 if (!generic_make_request_checks(bio))
1878 return;
1879
1880 /*
1881 * We only want one ->make_request_fn to be active at a time, else
1882 * stack usage with stacked devices could be a problem. So use
1883 * current->bio_list to keep a list of requests submited by a
1884 * make_request_fn function. current->bio_list is also used as a
1885 * flag to say if generic_make_request is currently active in this
1886 * task or not. If it is NULL, then no make_request is active. If
1887 * it is non-NULL, then a make_request is active, and new requests
1888 * should be added at the tail
1889 */
bddd87c7 1890 if (current->bio_list) {
bddd87c7 1891 bio_list_add(current->bio_list, bio);
d89d8796
NB
1892 return;
1893 }
27a84d54 1894
d89d8796
NB
1895 /* following loop may be a bit non-obvious, and so deserves some
1896 * explanation.
1897 * Before entering the loop, bio->bi_next is NULL (as all callers
1898 * ensure that) so we have a list with a single bio.
1899 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1900 * we assign bio_list to a pointer to the bio_list_on_stack,
1901 * thus initialising the bio_list of new bios to be
27a84d54 1902 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1903 * through a recursive call to generic_make_request. If it
1904 * did, we find a non-NULL value in bio_list and re-enter the loop
1905 * from the top. In this case we really did just take the bio
bddd87c7 1906 * of the top of the list (no pretending) and so remove it from
27a84d54 1907 * bio_list, and call into ->make_request() again.
d89d8796
NB
1908 */
1909 BUG_ON(bio->bi_next);
bddd87c7
AM
1910 bio_list_init(&bio_list_on_stack);
1911 current->bio_list = &bio_list_on_stack;
d89d8796 1912 do {
27a84d54
CH
1913 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1914
1915 q->make_request_fn(q, bio);
1916
bddd87c7 1917 bio = bio_list_pop(current->bio_list);
d89d8796 1918 } while (bio);
bddd87c7 1919 current->bio_list = NULL; /* deactivate */
d89d8796 1920}
1da177e4
LT
1921EXPORT_SYMBOL(generic_make_request);
1922
1923/**
710027a4 1924 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1925 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1926 * @bio: The &struct bio which describes the I/O
1927 *
1928 * submit_bio() is very similar in purpose to generic_make_request(), and
1929 * uses that function to do most of the work. Both are fairly rough
710027a4 1930 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1931 *
1932 */
1933void submit_bio(int rw, struct bio *bio)
1934{
22e2c507 1935 bio->bi_rw |= rw;
1da177e4 1936
bf2de6f5
JA
1937 /*
1938 * If it's a regular read/write or a barrier with data attached,
1939 * go through the normal accounting stuff before submission.
1940 */
e2a60da7 1941 if (bio_has_data(bio)) {
4363ac7c
MP
1942 unsigned int count;
1943
1944 if (unlikely(rw & REQ_WRITE_SAME))
1945 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1946 else
1947 count = bio_sectors(bio);
1948
bf2de6f5
JA
1949 if (rw & WRITE) {
1950 count_vm_events(PGPGOUT, count);
1951 } else {
4f024f37 1952 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1953 count_vm_events(PGPGIN, count);
1954 }
1955
1956 if (unlikely(block_dump)) {
1957 char b[BDEVNAME_SIZE];
8dcbdc74 1958 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1959 current->comm, task_pid_nr(current),
bf2de6f5 1960 (rw & WRITE) ? "WRITE" : "READ",
4f024f37 1961 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
1962 bdevname(bio->bi_bdev, b),
1963 count);
bf2de6f5 1964 }
1da177e4
LT
1965 }
1966
1967 generic_make_request(bio);
1968}
1da177e4
LT
1969EXPORT_SYMBOL(submit_bio);
1970
82124d60
KU
1971/**
1972 * blk_rq_check_limits - Helper function to check a request for the queue limit
1973 * @q: the queue
1974 * @rq: the request being checked
1975 *
1976 * Description:
1977 * @rq may have been made based on weaker limitations of upper-level queues
1978 * in request stacking drivers, and it may violate the limitation of @q.
1979 * Since the block layer and the underlying device driver trust @rq
1980 * after it is inserted to @q, it should be checked against @q before
1981 * the insertion using this generic function.
1982 *
1983 * This function should also be useful for request stacking drivers
eef35c2d 1984 * in some cases below, so export this function.
82124d60
KU
1985 * Request stacking drivers like request-based dm may change the queue
1986 * limits while requests are in the queue (e.g. dm's table swapping).
e227867f 1987 * Such request stacking drivers should check those requests against
82124d60
KU
1988 * the new queue limits again when they dispatch those requests,
1989 * although such checkings are also done against the old queue limits
1990 * when submitting requests.
1991 */
1992int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1993{
e2a60da7 1994 if (!rq_mergeable(rq))
3383977f
S
1995 return 0;
1996
f31dc1cd 1997 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1998 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1999 return -EIO;
2000 }
2001
2002 /*
2003 * queue's settings related to segment counting like q->bounce_pfn
2004 * may differ from that of other stacking queues.
2005 * Recalculate it to check the request correctly on this queue's
2006 * limitation.
2007 */
2008 blk_recalc_rq_segments(rq);
8a78362c 2009 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2010 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2011 return -EIO;
2012 }
2013
2014 return 0;
2015}
2016EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2017
2018/**
2019 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2020 * @q: the queue to submit the request
2021 * @rq: the request being queued
2022 */
2023int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2024{
2025 unsigned long flags;
4853abaa 2026 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
2027
2028 if (blk_rq_check_limits(q, rq))
2029 return -EIO;
2030
b2c9cd37
AM
2031 if (rq->rq_disk &&
2032 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2033 return -EIO;
82124d60
KU
2034
2035 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2036 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2037 spin_unlock_irqrestore(q->queue_lock, flags);
2038 return -ENODEV;
2039 }
82124d60
KU
2040
2041 /*
2042 * Submitting request must be dequeued before calling this function
2043 * because it will be linked to another request_queue
2044 */
2045 BUG_ON(blk_queued_rq(rq));
2046
4853abaa
JM
2047 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2048 where = ELEVATOR_INSERT_FLUSH;
2049
2050 add_acct_request(q, rq, where);
e67b77c7
JM
2051 if (where == ELEVATOR_INSERT_FLUSH)
2052 __blk_run_queue(q);
82124d60
KU
2053 spin_unlock_irqrestore(q->queue_lock, flags);
2054
2055 return 0;
2056}
2057EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2058
80a761fd
TH
2059/**
2060 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2061 * @rq: request to examine
2062 *
2063 * Description:
2064 * A request could be merge of IOs which require different failure
2065 * handling. This function determines the number of bytes which
2066 * can be failed from the beginning of the request without
2067 * crossing into area which need to be retried further.
2068 *
2069 * Return:
2070 * The number of bytes to fail.
2071 *
2072 * Context:
2073 * queue_lock must be held.
2074 */
2075unsigned int blk_rq_err_bytes(const struct request *rq)
2076{
2077 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2078 unsigned int bytes = 0;
2079 struct bio *bio;
2080
2081 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2082 return blk_rq_bytes(rq);
2083
2084 /*
2085 * Currently the only 'mixing' which can happen is between
2086 * different fastfail types. We can safely fail portions
2087 * which have all the failfast bits that the first one has -
2088 * the ones which are at least as eager to fail as the first
2089 * one.
2090 */
2091 for (bio = rq->bio; bio; bio = bio->bi_next) {
2092 if ((bio->bi_rw & ff) != ff)
2093 break;
4f024f37 2094 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2095 }
2096
2097 /* this could lead to infinite loop */
2098 BUG_ON(blk_rq_bytes(rq) && !bytes);
2099 return bytes;
2100}
2101EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2102
320ae51f 2103void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2104{
c2553b58 2105 if (blk_do_io_stat(req)) {
bc58ba94
JA
2106 const int rw = rq_data_dir(req);
2107 struct hd_struct *part;
2108 int cpu;
2109
2110 cpu = part_stat_lock();
09e099d4 2111 part = req->part;
bc58ba94
JA
2112 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2113 part_stat_unlock();
2114 }
2115}
2116
320ae51f 2117void blk_account_io_done(struct request *req)
bc58ba94 2118{
bc58ba94 2119 /*
dd4c133f
TH
2120 * Account IO completion. flush_rq isn't accounted as a
2121 * normal IO on queueing nor completion. Accounting the
2122 * containing request is enough.
bc58ba94 2123 */
414b4ff5 2124 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2125 unsigned long duration = jiffies - req->start_time;
2126 const int rw = rq_data_dir(req);
2127 struct hd_struct *part;
2128 int cpu;
2129
2130 cpu = part_stat_lock();
09e099d4 2131 part = req->part;
bc58ba94
JA
2132
2133 part_stat_inc(cpu, part, ios[rw]);
2134 part_stat_add(cpu, part, ticks[rw], duration);
2135 part_round_stats(cpu, part);
316d315b 2136 part_dec_in_flight(part, rw);
bc58ba94 2137
6c23a968 2138 hd_struct_put(part);
bc58ba94
JA
2139 part_stat_unlock();
2140 }
2141}
2142
c8158819
LM
2143#ifdef CONFIG_PM_RUNTIME
2144/*
2145 * Don't process normal requests when queue is suspended
2146 * or in the process of suspending/resuming
2147 */
2148static struct request *blk_pm_peek_request(struct request_queue *q,
2149 struct request *rq)
2150{
2151 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2152 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2153 return NULL;
2154 else
2155 return rq;
2156}
2157#else
2158static inline struct request *blk_pm_peek_request(struct request_queue *q,
2159 struct request *rq)
2160{
2161 return rq;
2162}
2163#endif
2164
320ae51f
JA
2165void blk_account_io_start(struct request *rq, bool new_io)
2166{
2167 struct hd_struct *part;
2168 int rw = rq_data_dir(rq);
2169 int cpu;
2170
2171 if (!blk_do_io_stat(rq))
2172 return;
2173
2174 cpu = part_stat_lock();
2175
2176 if (!new_io) {
2177 part = rq->part;
2178 part_stat_inc(cpu, part, merges[rw]);
2179 } else {
2180 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2181 if (!hd_struct_try_get(part)) {
2182 /*
2183 * The partition is already being removed,
2184 * the request will be accounted on the disk only
2185 *
2186 * We take a reference on disk->part0 although that
2187 * partition will never be deleted, so we can treat
2188 * it as any other partition.
2189 */
2190 part = &rq->rq_disk->part0;
2191 hd_struct_get(part);
2192 }
2193 part_round_stats(cpu, part);
2194 part_inc_in_flight(part, rw);
2195 rq->part = part;
2196 }
2197
2198 part_stat_unlock();
2199}
2200
3bcddeac 2201/**
9934c8c0
TH
2202 * blk_peek_request - peek at the top of a request queue
2203 * @q: request queue to peek at
2204 *
2205 * Description:
2206 * Return the request at the top of @q. The returned request
2207 * should be started using blk_start_request() before LLD starts
2208 * processing it.
2209 *
2210 * Return:
2211 * Pointer to the request at the top of @q if available. Null
2212 * otherwise.
2213 *
2214 * Context:
2215 * queue_lock must be held.
2216 */
2217struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2218{
2219 struct request *rq;
2220 int ret;
2221
2222 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2223
2224 rq = blk_pm_peek_request(q, rq);
2225 if (!rq)
2226 break;
2227
158dbda0
TH
2228 if (!(rq->cmd_flags & REQ_STARTED)) {
2229 /*
2230 * This is the first time the device driver
2231 * sees this request (possibly after
2232 * requeueing). Notify IO scheduler.
2233 */
33659ebb 2234 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2235 elv_activate_rq(q, rq);
2236
2237 /*
2238 * just mark as started even if we don't start
2239 * it, a request that has been delayed should
2240 * not be passed by new incoming requests
2241 */
2242 rq->cmd_flags |= REQ_STARTED;
2243 trace_block_rq_issue(q, rq);
2244 }
2245
2246 if (!q->boundary_rq || q->boundary_rq == rq) {
2247 q->end_sector = rq_end_sector(rq);
2248 q->boundary_rq = NULL;
2249 }
2250
2251 if (rq->cmd_flags & REQ_DONTPREP)
2252 break;
2253
2e46e8b2 2254 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2255 /*
2256 * make sure space for the drain appears we
2257 * know we can do this because max_hw_segments
2258 * has been adjusted to be one fewer than the
2259 * device can handle
2260 */
2261 rq->nr_phys_segments++;
2262 }
2263
2264 if (!q->prep_rq_fn)
2265 break;
2266
2267 ret = q->prep_rq_fn(q, rq);
2268 if (ret == BLKPREP_OK) {
2269 break;
2270 } else if (ret == BLKPREP_DEFER) {
2271 /*
2272 * the request may have been (partially) prepped.
2273 * we need to keep this request in the front to
2274 * avoid resource deadlock. REQ_STARTED will
2275 * prevent other fs requests from passing this one.
2276 */
2e46e8b2 2277 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2278 !(rq->cmd_flags & REQ_DONTPREP)) {
2279 /*
2280 * remove the space for the drain we added
2281 * so that we don't add it again
2282 */
2283 --rq->nr_phys_segments;
2284 }
2285
2286 rq = NULL;
2287 break;
2288 } else if (ret == BLKPREP_KILL) {
2289 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2290 /*
2291 * Mark this request as started so we don't trigger
2292 * any debug logic in the end I/O path.
2293 */
2294 blk_start_request(rq);
40cbbb78 2295 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2296 } else {
2297 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2298 break;
2299 }
2300 }
2301
2302 return rq;
2303}
9934c8c0 2304EXPORT_SYMBOL(blk_peek_request);
158dbda0 2305
9934c8c0 2306void blk_dequeue_request(struct request *rq)
158dbda0 2307{
9934c8c0
TH
2308 struct request_queue *q = rq->q;
2309
158dbda0
TH
2310 BUG_ON(list_empty(&rq->queuelist));
2311 BUG_ON(ELV_ON_HASH(rq));
2312
2313 list_del_init(&rq->queuelist);
2314
2315 /*
2316 * the time frame between a request being removed from the lists
2317 * and to it is freed is accounted as io that is in progress at
2318 * the driver side.
2319 */
9195291e 2320 if (blk_account_rq(rq)) {
0a7ae2ff 2321 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2322 set_io_start_time_ns(rq);
2323 }
158dbda0
TH
2324}
2325
9934c8c0
TH
2326/**
2327 * blk_start_request - start request processing on the driver
2328 * @req: request to dequeue
2329 *
2330 * Description:
2331 * Dequeue @req and start timeout timer on it. This hands off the
2332 * request to the driver.
2333 *
2334 * Block internal functions which don't want to start timer should
2335 * call blk_dequeue_request().
2336 *
2337 * Context:
2338 * queue_lock must be held.
2339 */
2340void blk_start_request(struct request *req)
2341{
2342 blk_dequeue_request(req);
2343
2344 /*
5f49f631
TH
2345 * We are now handing the request to the hardware, initialize
2346 * resid_len to full count and add the timeout handler.
9934c8c0 2347 */
5f49f631 2348 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2349 if (unlikely(blk_bidi_rq(req)))
2350 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2351
4912aa6c 2352 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2353 blk_add_timer(req);
2354}
2355EXPORT_SYMBOL(blk_start_request);
2356
2357/**
2358 * blk_fetch_request - fetch a request from a request queue
2359 * @q: request queue to fetch a request from
2360 *
2361 * Description:
2362 * Return the request at the top of @q. The request is started on
2363 * return and LLD can start processing it immediately.
2364 *
2365 * Return:
2366 * Pointer to the request at the top of @q if available. Null
2367 * otherwise.
2368 *
2369 * Context:
2370 * queue_lock must be held.
2371 */
2372struct request *blk_fetch_request(struct request_queue *q)
2373{
2374 struct request *rq;
2375
2376 rq = blk_peek_request(q);
2377 if (rq)
2378 blk_start_request(rq);
2379 return rq;
2380}
2381EXPORT_SYMBOL(blk_fetch_request);
2382
3bcddeac 2383/**
2e60e022 2384 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2385 * @req: the request being processed
710027a4 2386 * @error: %0 for success, < %0 for error
8ebf9756 2387 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2388 *
2389 * Description:
8ebf9756
RD
2390 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2391 * the request structure even if @req doesn't have leftover.
2392 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2393 *
2394 * This special helper function is only for request stacking drivers
2395 * (e.g. request-based dm) so that they can handle partial completion.
2396 * Actual device drivers should use blk_end_request instead.
2397 *
2398 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2399 * %false return from this function.
3bcddeac
KU
2400 *
2401 * Return:
2e60e022
TH
2402 * %false - this request doesn't have any more data
2403 * %true - this request has more data
3bcddeac 2404 **/
2e60e022 2405bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2406{
f79ea416 2407 int total_bytes;
1da177e4 2408
2e60e022
TH
2409 if (!req->bio)
2410 return false;
2411
af5040da 2412 trace_block_rq_complete(req->q, req, nr_bytes);
2056a782 2413
1da177e4 2414 /*
6f41469c
TH
2415 * For fs requests, rq is just carrier of independent bio's
2416 * and each partial completion should be handled separately.
2417 * Reset per-request error on each partial completion.
2418 *
2419 * TODO: tj: This is too subtle. It would be better to let
2420 * low level drivers do what they see fit.
1da177e4 2421 */
33659ebb 2422 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2423 req->errors = 0;
2424
33659ebb
CH
2425 if (error && req->cmd_type == REQ_TYPE_FS &&
2426 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2427 char *error_type;
2428
2429 switch (error) {
2430 case -ENOLINK:
2431 error_type = "recoverable transport";
2432 break;
2433 case -EREMOTEIO:
2434 error_type = "critical target";
2435 break;
2436 case -EBADE:
2437 error_type = "critical nexus";
2438 break;
d1ffc1f8
HR
2439 case -ETIMEDOUT:
2440 error_type = "timeout";
2441 break;
a9d6ceb8
HR
2442 case -ENOSPC:
2443 error_type = "critical space allocation";
2444 break;
7e782af5
HR
2445 case -ENODATA:
2446 error_type = "critical medium";
2447 break;
79775567
HR
2448 case -EIO:
2449 default:
2450 error_type = "I/O";
2451 break;
2452 }
37d7b34f
YZ
2453 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2454 error_type, req->rq_disk ?
2455 req->rq_disk->disk_name : "?",
2456 (unsigned long long)blk_rq_pos(req));
2457
1da177e4
LT
2458 }
2459
bc58ba94 2460 blk_account_io_completion(req, nr_bytes);
d72d904a 2461
f79ea416
KO
2462 total_bytes = 0;
2463 while (req->bio) {
2464 struct bio *bio = req->bio;
4f024f37 2465 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2466
4f024f37 2467 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2468 req->bio = bio->bi_next;
1da177e4 2469
f79ea416 2470 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2471
f79ea416
KO
2472 total_bytes += bio_bytes;
2473 nr_bytes -= bio_bytes;
1da177e4 2474
f79ea416
KO
2475 if (!nr_bytes)
2476 break;
1da177e4
LT
2477 }
2478
2479 /*
2480 * completely done
2481 */
2e60e022
TH
2482 if (!req->bio) {
2483 /*
2484 * Reset counters so that the request stacking driver
2485 * can find how many bytes remain in the request
2486 * later.
2487 */
a2dec7b3 2488 req->__data_len = 0;
2e60e022
TH
2489 return false;
2490 }
1da177e4 2491
a2dec7b3 2492 req->__data_len -= total_bytes;
2e46e8b2
TH
2493
2494 /* update sector only for requests with clear definition of sector */
e2a60da7 2495 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2496 req->__sector += total_bytes >> 9;
2e46e8b2 2497
80a761fd
TH
2498 /* mixed attributes always follow the first bio */
2499 if (req->cmd_flags & REQ_MIXED_MERGE) {
2500 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2501 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2502 }
2503
2e46e8b2
TH
2504 /*
2505 * If total number of sectors is less than the first segment
2506 * size, something has gone terribly wrong.
2507 */
2508 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2509 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2510 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2511 }
2512
2513 /* recalculate the number of segments */
1da177e4 2514 blk_recalc_rq_segments(req);
2e46e8b2 2515
2e60e022 2516 return true;
1da177e4 2517}
2e60e022 2518EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2519
2e60e022
TH
2520static bool blk_update_bidi_request(struct request *rq, int error,
2521 unsigned int nr_bytes,
2522 unsigned int bidi_bytes)
5efccd17 2523{
2e60e022
TH
2524 if (blk_update_request(rq, error, nr_bytes))
2525 return true;
5efccd17 2526
2e60e022
TH
2527 /* Bidi request must be completed as a whole */
2528 if (unlikely(blk_bidi_rq(rq)) &&
2529 blk_update_request(rq->next_rq, error, bidi_bytes))
2530 return true;
5efccd17 2531
e2e1a148
JA
2532 if (blk_queue_add_random(rq->q))
2533 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2534
2535 return false;
1da177e4
LT
2536}
2537
28018c24
JB
2538/**
2539 * blk_unprep_request - unprepare a request
2540 * @req: the request
2541 *
2542 * This function makes a request ready for complete resubmission (or
2543 * completion). It happens only after all error handling is complete,
2544 * so represents the appropriate moment to deallocate any resources
2545 * that were allocated to the request in the prep_rq_fn. The queue
2546 * lock is held when calling this.
2547 */
2548void blk_unprep_request(struct request *req)
2549{
2550 struct request_queue *q = req->q;
2551
2552 req->cmd_flags &= ~REQ_DONTPREP;
2553 if (q->unprep_rq_fn)
2554 q->unprep_rq_fn(q, req);
2555}
2556EXPORT_SYMBOL_GPL(blk_unprep_request);
2557
1da177e4
LT
2558/*
2559 * queue lock must be held
2560 */
12120077 2561void blk_finish_request(struct request *req, int error)
1da177e4 2562{
b8286239
KU
2563 if (blk_rq_tagged(req))
2564 blk_queue_end_tag(req->q, req);
2565
ba396a6c 2566 BUG_ON(blk_queued_rq(req));
1da177e4 2567
33659ebb 2568 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2569 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2570
e78042e5
MA
2571 blk_delete_timer(req);
2572
28018c24
JB
2573 if (req->cmd_flags & REQ_DONTPREP)
2574 blk_unprep_request(req);
2575
bc58ba94 2576 blk_account_io_done(req);
b8286239 2577
1da177e4 2578 if (req->end_io)
8ffdc655 2579 req->end_io(req, error);
b8286239
KU
2580 else {
2581 if (blk_bidi_rq(req))
2582 __blk_put_request(req->next_rq->q, req->next_rq);
2583
1da177e4 2584 __blk_put_request(req->q, req);
b8286239 2585 }
1da177e4 2586}
12120077 2587EXPORT_SYMBOL(blk_finish_request);
1da177e4 2588
3b11313a 2589/**
2e60e022
TH
2590 * blk_end_bidi_request - Complete a bidi request
2591 * @rq: the request to complete
2592 * @error: %0 for success, < %0 for error
2593 * @nr_bytes: number of bytes to complete @rq
2594 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2595 *
2596 * Description:
e3a04fe3 2597 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2598 * Drivers that supports bidi can safely call this member for any
2599 * type of request, bidi or uni. In the later case @bidi_bytes is
2600 * just ignored.
336cdb40
KU
2601 *
2602 * Return:
2e60e022
TH
2603 * %false - we are done with this request
2604 * %true - still buffers pending for this request
a0cd1285 2605 **/
b1f74493 2606static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2607 unsigned int nr_bytes, unsigned int bidi_bytes)
2608{
336cdb40 2609 struct request_queue *q = rq->q;
2e60e022 2610 unsigned long flags;
32fab448 2611
2e60e022
TH
2612 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2613 return true;
32fab448 2614
336cdb40 2615 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2616 blk_finish_request(rq, error);
336cdb40
KU
2617 spin_unlock_irqrestore(q->queue_lock, flags);
2618
2e60e022 2619 return false;
32fab448
KU
2620}
2621
336cdb40 2622/**
2e60e022
TH
2623 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2624 * @rq: the request to complete
710027a4 2625 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2626 * @nr_bytes: number of bytes to complete @rq
2627 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2628 *
2629 * Description:
2e60e022
TH
2630 * Identical to blk_end_bidi_request() except that queue lock is
2631 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2632 *
2633 * Return:
2e60e022
TH
2634 * %false - we are done with this request
2635 * %true - still buffers pending for this request
336cdb40 2636 **/
4853abaa 2637bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2638 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2639{
2e60e022
TH
2640 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2641 return true;
336cdb40 2642
2e60e022 2643 blk_finish_request(rq, error);
336cdb40 2644
2e60e022 2645 return false;
336cdb40 2646}
e19a3ab0
KU
2647
2648/**
2649 * blk_end_request - Helper function for drivers to complete the request.
2650 * @rq: the request being processed
710027a4 2651 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2652 * @nr_bytes: number of bytes to complete
2653 *
2654 * Description:
2655 * Ends I/O on a number of bytes attached to @rq.
2656 * If @rq has leftover, sets it up for the next range of segments.
2657 *
2658 * Return:
b1f74493
FT
2659 * %false - we are done with this request
2660 * %true - still buffers pending for this request
e19a3ab0 2661 **/
b1f74493 2662bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2663{
b1f74493 2664 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2665}
56ad1740 2666EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2667
2668/**
b1f74493
FT
2669 * blk_end_request_all - Helper function for drives to finish the request.
2670 * @rq: the request to finish
8ebf9756 2671 * @error: %0 for success, < %0 for error
336cdb40
KU
2672 *
2673 * Description:
b1f74493
FT
2674 * Completely finish @rq.
2675 */
2676void blk_end_request_all(struct request *rq, int error)
336cdb40 2677{
b1f74493
FT
2678 bool pending;
2679 unsigned int bidi_bytes = 0;
336cdb40 2680
b1f74493
FT
2681 if (unlikely(blk_bidi_rq(rq)))
2682 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2683
b1f74493
FT
2684 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2685 BUG_ON(pending);
2686}
56ad1740 2687EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2688
b1f74493
FT
2689/**
2690 * blk_end_request_cur - Helper function to finish the current request chunk.
2691 * @rq: the request to finish the current chunk for
8ebf9756 2692 * @error: %0 for success, < %0 for error
b1f74493
FT
2693 *
2694 * Description:
2695 * Complete the current consecutively mapped chunk from @rq.
2696 *
2697 * Return:
2698 * %false - we are done with this request
2699 * %true - still buffers pending for this request
2700 */
2701bool blk_end_request_cur(struct request *rq, int error)
2702{
2703 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2704}
56ad1740 2705EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2706
80a761fd
TH
2707/**
2708 * blk_end_request_err - Finish a request till the next failure boundary.
2709 * @rq: the request to finish till the next failure boundary for
2710 * @error: must be negative errno
2711 *
2712 * Description:
2713 * Complete @rq till the next failure boundary.
2714 *
2715 * Return:
2716 * %false - we are done with this request
2717 * %true - still buffers pending for this request
2718 */
2719bool blk_end_request_err(struct request *rq, int error)
2720{
2721 WARN_ON(error >= 0);
2722 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2723}
2724EXPORT_SYMBOL_GPL(blk_end_request_err);
2725
e3a04fe3 2726/**
b1f74493
FT
2727 * __blk_end_request - Helper function for drivers to complete the request.
2728 * @rq: the request being processed
2729 * @error: %0 for success, < %0 for error
2730 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2731 *
2732 * Description:
b1f74493 2733 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2734 *
2735 * Return:
b1f74493
FT
2736 * %false - we are done with this request
2737 * %true - still buffers pending for this request
e3a04fe3 2738 **/
b1f74493 2739bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2740{
b1f74493 2741 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2742}
56ad1740 2743EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2744
32fab448 2745/**
b1f74493
FT
2746 * __blk_end_request_all - Helper function for drives to finish the request.
2747 * @rq: the request to finish
8ebf9756 2748 * @error: %0 for success, < %0 for error
32fab448
KU
2749 *
2750 * Description:
b1f74493 2751 * Completely finish @rq. Must be called with queue lock held.
32fab448 2752 */
b1f74493 2753void __blk_end_request_all(struct request *rq, int error)
32fab448 2754{
b1f74493
FT
2755 bool pending;
2756 unsigned int bidi_bytes = 0;
2757
2758 if (unlikely(blk_bidi_rq(rq)))
2759 bidi_bytes = blk_rq_bytes(rq->next_rq);
2760
2761 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2762 BUG_ON(pending);
32fab448 2763}
56ad1740 2764EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2765
e19a3ab0 2766/**
b1f74493
FT
2767 * __blk_end_request_cur - Helper function to finish the current request chunk.
2768 * @rq: the request to finish the current chunk for
8ebf9756 2769 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2770 *
2771 * Description:
b1f74493
FT
2772 * Complete the current consecutively mapped chunk from @rq. Must
2773 * be called with queue lock held.
e19a3ab0
KU
2774 *
2775 * Return:
b1f74493
FT
2776 * %false - we are done with this request
2777 * %true - still buffers pending for this request
2778 */
2779bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2780{
b1f74493 2781 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2782}
56ad1740 2783EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2784
80a761fd
TH
2785/**
2786 * __blk_end_request_err - Finish a request till the next failure boundary.
2787 * @rq: the request to finish till the next failure boundary for
2788 * @error: must be negative errno
2789 *
2790 * Description:
2791 * Complete @rq till the next failure boundary. Must be called
2792 * with queue lock held.
2793 *
2794 * Return:
2795 * %false - we are done with this request
2796 * %true - still buffers pending for this request
2797 */
2798bool __blk_end_request_err(struct request *rq, int error)
2799{
2800 WARN_ON(error >= 0);
2801 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2802}
2803EXPORT_SYMBOL_GPL(__blk_end_request_err);
2804
86db1e29
JA
2805void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2806 struct bio *bio)
1da177e4 2807{
a82afdfc 2808 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2809 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2810
b4f42e28 2811 if (bio_has_data(bio))
fb2dce86 2812 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2813
4f024f37 2814 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2815 rq->bio = rq->biotail = bio;
1da177e4 2816
66846572
N
2817 if (bio->bi_bdev)
2818 rq->rq_disk = bio->bi_bdev->bd_disk;
2819}
1da177e4 2820
2d4dc890
IL
2821#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2822/**
2823 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2824 * @rq: the request to be flushed
2825 *
2826 * Description:
2827 * Flush all pages in @rq.
2828 */
2829void rq_flush_dcache_pages(struct request *rq)
2830{
2831 struct req_iterator iter;
7988613b 2832 struct bio_vec bvec;
2d4dc890
IL
2833
2834 rq_for_each_segment(bvec, rq, iter)
7988613b 2835 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2836}
2837EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2838#endif
2839
ef9e3fac
KU
2840/**
2841 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2842 * @q : the queue of the device being checked
2843 *
2844 * Description:
2845 * Check if underlying low-level drivers of a device are busy.
2846 * If the drivers want to export their busy state, they must set own
2847 * exporting function using blk_queue_lld_busy() first.
2848 *
2849 * Basically, this function is used only by request stacking drivers
2850 * to stop dispatching requests to underlying devices when underlying
2851 * devices are busy. This behavior helps more I/O merging on the queue
2852 * of the request stacking driver and prevents I/O throughput regression
2853 * on burst I/O load.
2854 *
2855 * Return:
2856 * 0 - Not busy (The request stacking driver should dispatch request)
2857 * 1 - Busy (The request stacking driver should stop dispatching request)
2858 */
2859int blk_lld_busy(struct request_queue *q)
2860{
2861 if (q->lld_busy_fn)
2862 return q->lld_busy_fn(q);
2863
2864 return 0;
2865}
2866EXPORT_SYMBOL_GPL(blk_lld_busy);
2867
b0fd271d
KU
2868/**
2869 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2870 * @rq: the clone request to be cleaned up
2871 *
2872 * Description:
2873 * Free all bios in @rq for a cloned request.
2874 */
2875void blk_rq_unprep_clone(struct request *rq)
2876{
2877 struct bio *bio;
2878
2879 while ((bio = rq->bio) != NULL) {
2880 rq->bio = bio->bi_next;
2881
2882 bio_put(bio);
2883 }
2884}
2885EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2886
2887/*
2888 * Copy attributes of the original request to the clone request.
b4f42e28 2889 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
b0fd271d
KU
2890 */
2891static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2892{
2893 dst->cpu = src->cpu;
3a2edd0d 2894 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2895 dst->cmd_type = src->cmd_type;
2896 dst->__sector = blk_rq_pos(src);
2897 dst->__data_len = blk_rq_bytes(src);
2898 dst->nr_phys_segments = src->nr_phys_segments;
2899 dst->ioprio = src->ioprio;
2900 dst->extra_len = src->extra_len;
2901}
2902
2903/**
2904 * blk_rq_prep_clone - Helper function to setup clone request
2905 * @rq: the request to be setup
2906 * @rq_src: original request to be cloned
2907 * @bs: bio_set that bios for clone are allocated from
2908 * @gfp_mask: memory allocation mask for bio
2909 * @bio_ctr: setup function to be called for each clone bio.
2910 * Returns %0 for success, non %0 for failure.
2911 * @data: private data to be passed to @bio_ctr
2912 *
2913 * Description:
2914 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
b4f42e28 2915 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
b0fd271d
KU
2916 * are not copied, and copying such parts is the caller's responsibility.
2917 * Also, pages which the original bios are pointing to are not copied
2918 * and the cloned bios just point same pages.
2919 * So cloned bios must be completed before original bios, which means
2920 * the caller must complete @rq before @rq_src.
2921 */
2922int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2923 struct bio_set *bs, gfp_t gfp_mask,
2924 int (*bio_ctr)(struct bio *, struct bio *, void *),
2925 void *data)
2926{
2927 struct bio *bio, *bio_src;
2928
2929 if (!bs)
2930 bs = fs_bio_set;
2931
2932 blk_rq_init(NULL, rq);
2933
2934 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2935 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2936 if (!bio)
2937 goto free_and_out;
2938
b0fd271d
KU
2939 if (bio_ctr && bio_ctr(bio, bio_src, data))
2940 goto free_and_out;
2941
2942 if (rq->bio) {
2943 rq->biotail->bi_next = bio;
2944 rq->biotail = bio;
2945 } else
2946 rq->bio = rq->biotail = bio;
2947 }
2948
2949 __blk_rq_prep_clone(rq, rq_src);
2950
2951 return 0;
2952
2953free_and_out:
2954 if (bio)
4254bba1 2955 bio_put(bio);
b0fd271d
KU
2956 blk_rq_unprep_clone(rq);
2957
2958 return -ENOMEM;
2959}
2960EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2961
59c3d45e 2962int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
2963{
2964 return queue_work(kblockd_workqueue, work);
2965}
1da177e4
LT
2966EXPORT_SYMBOL(kblockd_schedule_work);
2967
59c3d45e
JA
2968int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2969 unsigned long delay)
e43473b7
VG
2970{
2971 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2972}
2973EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2974
8ab14595
JA
2975int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2976 unsigned long delay)
2977{
2978 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2979}
2980EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2981
75df7136
SJ
2982/**
2983 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2984 * @plug: The &struct blk_plug that needs to be initialized
2985 *
2986 * Description:
2987 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2988 * pending I/O should the task end up blocking between blk_start_plug() and
2989 * blk_finish_plug(). This is important from a performance perspective, but
2990 * also ensures that we don't deadlock. For instance, if the task is blocking
2991 * for a memory allocation, memory reclaim could end up wanting to free a
2992 * page belonging to that request that is currently residing in our private
2993 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2994 * this kind of deadlock.
2995 */
73c10101
JA
2996void blk_start_plug(struct blk_plug *plug)
2997{
2998 struct task_struct *tsk = current;
2999
73c10101 3000 INIT_LIST_HEAD(&plug->list);
320ae51f 3001 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3002 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
3003
3004 /*
3005 * If this is a nested plug, don't actually assign it. It will be
3006 * flushed on its own.
3007 */
3008 if (!tsk->plug) {
3009 /*
3010 * Store ordering should not be needed here, since a potential
3011 * preempt will imply a full memory barrier
3012 */
3013 tsk->plug = plug;
3014 }
3015}
3016EXPORT_SYMBOL(blk_start_plug);
3017
3018static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3019{
3020 struct request *rqa = container_of(a, struct request, queuelist);
3021 struct request *rqb = container_of(b, struct request, queuelist);
3022
975927b9
JM
3023 return !(rqa->q < rqb->q ||
3024 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3025}
3026
49cac01e
JA
3027/*
3028 * If 'from_schedule' is true, then postpone the dispatch of requests
3029 * until a safe kblockd context. We due this to avoid accidental big
3030 * additional stack usage in driver dispatch, in places where the originally
3031 * plugger did not intend it.
3032 */
f6603783 3033static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3034 bool from_schedule)
99e22598 3035 __releases(q->queue_lock)
94b5eb28 3036{
49cac01e 3037 trace_block_unplug(q, depth, !from_schedule);
99e22598 3038
70460571 3039 if (from_schedule)
24ecfbe2 3040 blk_run_queue_async(q);
70460571 3041 else
24ecfbe2 3042 __blk_run_queue(q);
70460571 3043 spin_unlock(q->queue_lock);
94b5eb28
JA
3044}
3045
74018dc3 3046static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3047{
3048 LIST_HEAD(callbacks);
3049
2a7d5559
SL
3050 while (!list_empty(&plug->cb_list)) {
3051 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3052
2a7d5559
SL
3053 while (!list_empty(&callbacks)) {
3054 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3055 struct blk_plug_cb,
3056 list);
2a7d5559 3057 list_del(&cb->list);
74018dc3 3058 cb->callback(cb, from_schedule);
2a7d5559 3059 }
048c9374
N
3060 }
3061}
3062
9cbb1750
N
3063struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3064 int size)
3065{
3066 struct blk_plug *plug = current->plug;
3067 struct blk_plug_cb *cb;
3068
3069 if (!plug)
3070 return NULL;
3071
3072 list_for_each_entry(cb, &plug->cb_list, list)
3073 if (cb->callback == unplug && cb->data == data)
3074 return cb;
3075
3076 /* Not currently on the callback list */
3077 BUG_ON(size < sizeof(*cb));
3078 cb = kzalloc(size, GFP_ATOMIC);
3079 if (cb) {
3080 cb->data = data;
3081 cb->callback = unplug;
3082 list_add(&cb->list, &plug->cb_list);
3083 }
3084 return cb;
3085}
3086EXPORT_SYMBOL(blk_check_plugged);
3087
49cac01e 3088void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3089{
3090 struct request_queue *q;
3091 unsigned long flags;
3092 struct request *rq;
109b8129 3093 LIST_HEAD(list);
94b5eb28 3094 unsigned int depth;
73c10101 3095
74018dc3 3096 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3097
3098 if (!list_empty(&plug->mq_list))
3099 blk_mq_flush_plug_list(plug, from_schedule);
3100
73c10101
JA
3101 if (list_empty(&plug->list))
3102 return;
3103
109b8129
N
3104 list_splice_init(&plug->list, &list);
3105
422765c2 3106 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3107
3108 q = NULL;
94b5eb28 3109 depth = 0;
18811272
JA
3110
3111 /*
3112 * Save and disable interrupts here, to avoid doing it for every
3113 * queue lock we have to take.
3114 */
73c10101 3115 local_irq_save(flags);
109b8129
N
3116 while (!list_empty(&list)) {
3117 rq = list_entry_rq(list.next);
73c10101 3118 list_del_init(&rq->queuelist);
73c10101
JA
3119 BUG_ON(!rq->q);
3120 if (rq->q != q) {
99e22598
JA
3121 /*
3122 * This drops the queue lock
3123 */
3124 if (q)
49cac01e 3125 queue_unplugged(q, depth, from_schedule);
73c10101 3126 q = rq->q;
94b5eb28 3127 depth = 0;
73c10101
JA
3128 spin_lock(q->queue_lock);
3129 }
8ba61435
TH
3130
3131 /*
3132 * Short-circuit if @q is dead
3133 */
3f3299d5 3134 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3135 __blk_end_request_all(rq, -ENODEV);
3136 continue;
3137 }
3138
73c10101
JA
3139 /*
3140 * rq is already accounted, so use raw insert
3141 */
401a18e9
JA
3142 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3143 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3144 else
3145 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3146
3147 depth++;
73c10101
JA
3148 }
3149
99e22598
JA
3150 /*
3151 * This drops the queue lock
3152 */
3153 if (q)
49cac01e 3154 queue_unplugged(q, depth, from_schedule);
73c10101 3155
73c10101
JA
3156 local_irq_restore(flags);
3157}
73c10101
JA
3158
3159void blk_finish_plug(struct blk_plug *plug)
3160{
f6603783 3161 blk_flush_plug_list(plug, false);
73c10101 3162
88b996cd
CH
3163 if (plug == current->plug)
3164 current->plug = NULL;
73c10101 3165}
88b996cd 3166EXPORT_SYMBOL(blk_finish_plug);
73c10101 3167
6c954667
LM
3168#ifdef CONFIG_PM_RUNTIME
3169/**
3170 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3171 * @q: the queue of the device
3172 * @dev: the device the queue belongs to
3173 *
3174 * Description:
3175 * Initialize runtime-PM-related fields for @q and start auto suspend for
3176 * @dev. Drivers that want to take advantage of request-based runtime PM
3177 * should call this function after @dev has been initialized, and its
3178 * request queue @q has been allocated, and runtime PM for it can not happen
3179 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3180 * cases, driver should call this function before any I/O has taken place.
3181 *
3182 * This function takes care of setting up using auto suspend for the device,
3183 * the autosuspend delay is set to -1 to make runtime suspend impossible
3184 * until an updated value is either set by user or by driver. Drivers do
3185 * not need to touch other autosuspend settings.
3186 *
3187 * The block layer runtime PM is request based, so only works for drivers
3188 * that use request as their IO unit instead of those directly use bio's.
3189 */
3190void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3191{
3192 q->dev = dev;
3193 q->rpm_status = RPM_ACTIVE;
3194 pm_runtime_set_autosuspend_delay(q->dev, -1);
3195 pm_runtime_use_autosuspend(q->dev);
3196}
3197EXPORT_SYMBOL(blk_pm_runtime_init);
3198
3199/**
3200 * blk_pre_runtime_suspend - Pre runtime suspend check
3201 * @q: the queue of the device
3202 *
3203 * Description:
3204 * This function will check if runtime suspend is allowed for the device
3205 * by examining if there are any requests pending in the queue. If there
3206 * are requests pending, the device can not be runtime suspended; otherwise,
3207 * the queue's status will be updated to SUSPENDING and the driver can
3208 * proceed to suspend the device.
3209 *
3210 * For the not allowed case, we mark last busy for the device so that
3211 * runtime PM core will try to autosuspend it some time later.
3212 *
3213 * This function should be called near the start of the device's
3214 * runtime_suspend callback.
3215 *
3216 * Return:
3217 * 0 - OK to runtime suspend the device
3218 * -EBUSY - Device should not be runtime suspended
3219 */
3220int blk_pre_runtime_suspend(struct request_queue *q)
3221{
3222 int ret = 0;
3223
3224 spin_lock_irq(q->queue_lock);
3225 if (q->nr_pending) {
3226 ret = -EBUSY;
3227 pm_runtime_mark_last_busy(q->dev);
3228 } else {
3229 q->rpm_status = RPM_SUSPENDING;
3230 }
3231 spin_unlock_irq(q->queue_lock);
3232 return ret;
3233}
3234EXPORT_SYMBOL(blk_pre_runtime_suspend);
3235
3236/**
3237 * blk_post_runtime_suspend - Post runtime suspend processing
3238 * @q: the queue of the device
3239 * @err: return value of the device's runtime_suspend function
3240 *
3241 * Description:
3242 * Update the queue's runtime status according to the return value of the
3243 * device's runtime suspend function and mark last busy for the device so
3244 * that PM core will try to auto suspend the device at a later time.
3245 *
3246 * This function should be called near the end of the device's
3247 * runtime_suspend callback.
3248 */
3249void blk_post_runtime_suspend(struct request_queue *q, int err)
3250{
3251 spin_lock_irq(q->queue_lock);
3252 if (!err) {
3253 q->rpm_status = RPM_SUSPENDED;
3254 } else {
3255 q->rpm_status = RPM_ACTIVE;
3256 pm_runtime_mark_last_busy(q->dev);
3257 }
3258 spin_unlock_irq(q->queue_lock);
3259}
3260EXPORT_SYMBOL(blk_post_runtime_suspend);
3261
3262/**
3263 * blk_pre_runtime_resume - Pre runtime resume processing
3264 * @q: the queue of the device
3265 *
3266 * Description:
3267 * Update the queue's runtime status to RESUMING in preparation for the
3268 * runtime resume of the device.
3269 *
3270 * This function should be called near the start of the device's
3271 * runtime_resume callback.
3272 */
3273void blk_pre_runtime_resume(struct request_queue *q)
3274{
3275 spin_lock_irq(q->queue_lock);
3276 q->rpm_status = RPM_RESUMING;
3277 spin_unlock_irq(q->queue_lock);
3278}
3279EXPORT_SYMBOL(blk_pre_runtime_resume);
3280
3281/**
3282 * blk_post_runtime_resume - Post runtime resume processing
3283 * @q: the queue of the device
3284 * @err: return value of the device's runtime_resume function
3285 *
3286 * Description:
3287 * Update the queue's runtime status according to the return value of the
3288 * device's runtime_resume function. If it is successfully resumed, process
3289 * the requests that are queued into the device's queue when it is resuming
3290 * and then mark last busy and initiate autosuspend for it.
3291 *
3292 * This function should be called near the end of the device's
3293 * runtime_resume callback.
3294 */
3295void blk_post_runtime_resume(struct request_queue *q, int err)
3296{
3297 spin_lock_irq(q->queue_lock);
3298 if (!err) {
3299 q->rpm_status = RPM_ACTIVE;
3300 __blk_run_queue(q);
3301 pm_runtime_mark_last_busy(q->dev);
c60855cd 3302 pm_request_autosuspend(q->dev);
6c954667
LM
3303 } else {
3304 q->rpm_status = RPM_SUSPENDED;
3305 }
3306 spin_unlock_irq(q->queue_lock);
3307}
3308EXPORT_SYMBOL(blk_post_runtime_resume);
3309#endif
3310
1da177e4
LT
3311int __init blk_dev_init(void)
3312{
9eb55b03
NK
3313 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3314 sizeof(((struct request *)0)->cmd_flags));
3315
89b90be2
TH
3316 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3317 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3318 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3319 if (!kblockd_workqueue)
3320 panic("Failed to create kblockd\n");
3321
3322 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3323 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3324
8324aa91 3325 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3326 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3327
d38ecf93 3328 return 0;
1da177e4 3329}