block: avoid to use q->flush_rq directly
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
55782138
LZ
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/block.h>
1da177e4 38
8324aa91 39#include "blk.h"
5efd6113 40#include "blk-cgroup.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 48
a73f730d
TH
49DEFINE_IDA(blk_queue_ida);
50
1da177e4
LT
51/*
52 * For the allocated request tables
53 */
320ae51f 54struct kmem_cache *request_cachep = NULL;
1da177e4
LT
55
56/*
57 * For queue allocation
58 */
6728cb0e 59struct kmem_cache *blk_requestq_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4 65
8324aa91 66void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
67{
68 int nr;
69
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
74
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
79}
80
1da177e4
LT
81/**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
84 *
85 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
86 * backing_dev_info. This function can only be called if @bdev is opened
87 * and the return value is never NULL.
1da177e4
LT
88 */
89struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90{
165125e1 91 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 92
ff9ea323 93 return &q->backing_dev_info;
1da177e4 94}
1da177e4
LT
95EXPORT_SYMBOL(blk_get_backing_dev_info);
96
2a4aa30c 97void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 98{
1afb20f3
FT
99 memset(rq, 0, sizeof(*rq));
100
1da177e4 101 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 102 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 103 rq->cpu = -1;
63a71386 104 rq->q = q;
a2dec7b3 105 rq->__sector = (sector_t) -1;
2e662b65
JA
106 INIT_HLIST_NODE(&rq->hash);
107 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 108 rq->cmd = rq->__cmd;
e2494e1b 109 rq->cmd_len = BLK_MAX_CDB;
63a71386 110 rq->tag = -1;
b243ddcb 111 rq->start_time = jiffies;
9195291e 112 set_start_time_ns(rq);
09e099d4 113 rq->part = NULL;
1da177e4 114}
2a4aa30c 115EXPORT_SYMBOL(blk_rq_init);
1da177e4 116
5bb23a68
N
117static void req_bio_endio(struct request *rq, struct bio *bio,
118 unsigned int nbytes, int error)
1da177e4 119{
143a87f4
TH
120 if (error)
121 clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 error = -EIO;
797e7dbb 124
143a87f4
TH
125 if (unlikely(rq->cmd_flags & REQ_QUIET))
126 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 127
f79ea416 128 bio_advance(bio, nbytes);
7ba1ba12 129
143a87f4 130 /* don't actually finish bio if it's part of flush sequence */
4f024f37 131 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
143a87f4 132 bio_endio(bio, error);
1da177e4 133}
1da177e4 134
1da177e4
LT
135void blk_dump_rq_flags(struct request *rq, char *msg)
136{
137 int bit;
138
5953316d 139 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 140 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 141 (unsigned long long) rq->cmd_flags);
1da177e4 142
83096ebf
TH
143 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
144 (unsigned long long)blk_rq_pos(rq),
145 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
146 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
147 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 148
33659ebb 149 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 150 printk(KERN_INFO " cdb: ");
d34c87e4 151 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
152 printk("%02x ", rq->cmd[bit]);
153 printk("\n");
154 }
155}
1da177e4
LT
156EXPORT_SYMBOL(blk_dump_rq_flags);
157
3cca6dc1 158static void blk_delay_work(struct work_struct *work)
1da177e4 159{
3cca6dc1 160 struct request_queue *q;
1da177e4 161
3cca6dc1
JA
162 q = container_of(work, struct request_queue, delay_work.work);
163 spin_lock_irq(q->queue_lock);
24ecfbe2 164 __blk_run_queue(q);
3cca6dc1 165 spin_unlock_irq(q->queue_lock);
1da177e4 166}
1da177e4
LT
167
168/**
3cca6dc1
JA
169 * blk_delay_queue - restart queueing after defined interval
170 * @q: The &struct request_queue in question
171 * @msecs: Delay in msecs
1da177e4
LT
172 *
173 * Description:
3cca6dc1
JA
174 * Sometimes queueing needs to be postponed for a little while, to allow
175 * resources to come back. This function will make sure that queueing is
70460571 176 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
177 */
178void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 179{
70460571
BVA
180 if (likely(!blk_queue_dead(q)))
181 queue_delayed_work(kblockd_workqueue, &q->delay_work,
182 msecs_to_jiffies(msecs));
2ad8b1ef 183}
3cca6dc1 184EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 185
1da177e4
LT
186/**
187 * blk_start_queue - restart a previously stopped queue
165125e1 188 * @q: The &struct request_queue in question
1da177e4
LT
189 *
190 * Description:
191 * blk_start_queue() will clear the stop flag on the queue, and call
192 * the request_fn for the queue if it was in a stopped state when
193 * entered. Also see blk_stop_queue(). Queue lock must be held.
194 **/
165125e1 195void blk_start_queue(struct request_queue *q)
1da177e4 196{
a038e253
PBG
197 WARN_ON(!irqs_disabled());
198
75ad23bc 199 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 200 __blk_run_queue(q);
1da177e4 201}
1da177e4
LT
202EXPORT_SYMBOL(blk_start_queue);
203
204/**
205 * blk_stop_queue - stop a queue
165125e1 206 * @q: The &struct request_queue in question
1da177e4
LT
207 *
208 * Description:
209 * The Linux block layer assumes that a block driver will consume all
210 * entries on the request queue when the request_fn strategy is called.
211 * Often this will not happen, because of hardware limitations (queue
212 * depth settings). If a device driver gets a 'queue full' response,
213 * or if it simply chooses not to queue more I/O at one point, it can
214 * call this function to prevent the request_fn from being called until
215 * the driver has signalled it's ready to go again. This happens by calling
216 * blk_start_queue() to restart queue operations. Queue lock must be held.
217 **/
165125e1 218void blk_stop_queue(struct request_queue *q)
1da177e4 219{
136b5721 220 cancel_delayed_work(&q->delay_work);
75ad23bc 221 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
222}
223EXPORT_SYMBOL(blk_stop_queue);
224
225/**
226 * blk_sync_queue - cancel any pending callbacks on a queue
227 * @q: the queue
228 *
229 * Description:
230 * The block layer may perform asynchronous callback activity
231 * on a queue, such as calling the unplug function after a timeout.
232 * A block device may call blk_sync_queue to ensure that any
233 * such activity is cancelled, thus allowing it to release resources
59c51591 234 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
235 * that its ->make_request_fn will not re-add plugging prior to calling
236 * this function.
237 *
da527770
VG
238 * This function does not cancel any asynchronous activity arising
239 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 240 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 241 *
1da177e4
LT
242 */
243void blk_sync_queue(struct request_queue *q)
244{
70ed28b9 245 del_timer_sync(&q->timeout);
f04c1fe7
ML
246
247 if (q->mq_ops) {
248 struct blk_mq_hw_ctx *hctx;
249 int i;
250
70f4db63
CH
251 queue_for_each_hw_ctx(q, hctx, i) {
252 cancel_delayed_work_sync(&hctx->run_work);
253 cancel_delayed_work_sync(&hctx->delay_work);
254 }
f04c1fe7
ML
255 } else {
256 cancel_delayed_work_sync(&q->delay_work);
257 }
1da177e4
LT
258}
259EXPORT_SYMBOL(blk_sync_queue);
260
c246e80d
BVA
261/**
262 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
263 * @q: The queue to run
264 *
265 * Description:
266 * Invoke request handling on a queue if there are any pending requests.
267 * May be used to restart request handling after a request has completed.
268 * This variant runs the queue whether or not the queue has been
269 * stopped. Must be called with the queue lock held and interrupts
270 * disabled. See also @blk_run_queue.
271 */
272inline void __blk_run_queue_uncond(struct request_queue *q)
273{
274 if (unlikely(blk_queue_dead(q)))
275 return;
276
24faf6f6
BVA
277 /*
278 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
279 * the queue lock internally. As a result multiple threads may be
280 * running such a request function concurrently. Keep track of the
281 * number of active request_fn invocations such that blk_drain_queue()
282 * can wait until all these request_fn calls have finished.
283 */
284 q->request_fn_active++;
c246e80d 285 q->request_fn(q);
24faf6f6 286 q->request_fn_active--;
c246e80d
BVA
287}
288
1da177e4 289/**
80a4b58e 290 * __blk_run_queue - run a single device queue
1da177e4 291 * @q: The queue to run
80a4b58e
JA
292 *
293 * Description:
294 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 295 * held and interrupts disabled.
1da177e4 296 */
24ecfbe2 297void __blk_run_queue(struct request_queue *q)
1da177e4 298{
a538cd03
TH
299 if (unlikely(blk_queue_stopped(q)))
300 return;
301
c246e80d 302 __blk_run_queue_uncond(q);
75ad23bc
NP
303}
304EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 305
24ecfbe2
CH
306/**
307 * blk_run_queue_async - run a single device queue in workqueue context
308 * @q: The queue to run
309 *
310 * Description:
311 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 312 * of us. The caller must hold the queue lock.
24ecfbe2
CH
313 */
314void blk_run_queue_async(struct request_queue *q)
315{
70460571 316 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 317 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 318}
c21e6beb 319EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 320
75ad23bc
NP
321/**
322 * blk_run_queue - run a single device queue
323 * @q: The queue to run
80a4b58e
JA
324 *
325 * Description:
326 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 327 * May be used to restart queueing when a request has completed.
75ad23bc
NP
328 */
329void blk_run_queue(struct request_queue *q)
330{
331 unsigned long flags;
332
333 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 334 __blk_run_queue(q);
1da177e4
LT
335 spin_unlock_irqrestore(q->queue_lock, flags);
336}
337EXPORT_SYMBOL(blk_run_queue);
338
165125e1 339void blk_put_queue(struct request_queue *q)
483f4afc
AV
340{
341 kobject_put(&q->kobj);
342}
d86e0e83 343EXPORT_SYMBOL(blk_put_queue);
483f4afc 344
e3c78ca5 345/**
807592a4 346 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 347 * @q: queue to drain
c9a929dd 348 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 349 *
c9a929dd
TH
350 * Drain requests from @q. If @drain_all is set, all requests are drained.
351 * If not, only ELVPRIV requests are drained. The caller is responsible
352 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 353 */
807592a4
BVA
354static void __blk_drain_queue(struct request_queue *q, bool drain_all)
355 __releases(q->queue_lock)
356 __acquires(q->queue_lock)
e3c78ca5 357{
458f27a9
AH
358 int i;
359
807592a4
BVA
360 lockdep_assert_held(q->queue_lock);
361
e3c78ca5 362 while (true) {
481a7d64 363 bool drain = false;
e3c78ca5 364
b855b04a
TH
365 /*
366 * The caller might be trying to drain @q before its
367 * elevator is initialized.
368 */
369 if (q->elevator)
370 elv_drain_elevator(q);
371
5efd6113 372 blkcg_drain_queue(q);
e3c78ca5 373
4eabc941
TH
374 /*
375 * This function might be called on a queue which failed
b855b04a
TH
376 * driver init after queue creation or is not yet fully
377 * active yet. Some drivers (e.g. fd and loop) get unhappy
378 * in such cases. Kick queue iff dispatch queue has
379 * something on it and @q has request_fn set.
4eabc941 380 */
b855b04a 381 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 382 __blk_run_queue(q);
c9a929dd 383
8a5ecdd4 384 drain |= q->nr_rqs_elvpriv;
24faf6f6 385 drain |= q->request_fn_active;
481a7d64
TH
386
387 /*
388 * Unfortunately, requests are queued at and tracked from
389 * multiple places and there's no single counter which can
390 * be drained. Check all the queues and counters.
391 */
392 if (drain_all) {
393 drain |= !list_empty(&q->queue_head);
394 for (i = 0; i < 2; i++) {
8a5ecdd4 395 drain |= q->nr_rqs[i];
481a7d64
TH
396 drain |= q->in_flight[i];
397 drain |= !list_empty(&q->flush_queue[i]);
398 }
399 }
e3c78ca5 400
481a7d64 401 if (!drain)
e3c78ca5 402 break;
807592a4
BVA
403
404 spin_unlock_irq(q->queue_lock);
405
e3c78ca5 406 msleep(10);
807592a4
BVA
407
408 spin_lock_irq(q->queue_lock);
e3c78ca5 409 }
458f27a9
AH
410
411 /*
412 * With queue marked dead, any woken up waiter will fail the
413 * allocation path, so the wakeup chaining is lost and we're
414 * left with hung waiters. We need to wake up those waiters.
415 */
416 if (q->request_fn) {
a051661c
TH
417 struct request_list *rl;
418
a051661c
TH
419 blk_queue_for_each_rl(rl, q)
420 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
421 wake_up_all(&rl->wait[i]);
458f27a9 422 }
e3c78ca5
TH
423}
424
d732580b
TH
425/**
426 * blk_queue_bypass_start - enter queue bypass mode
427 * @q: queue of interest
428 *
429 * In bypass mode, only the dispatch FIFO queue of @q is used. This
430 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 431 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
432 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
433 * inside queue or RCU read lock.
d732580b
TH
434 */
435void blk_queue_bypass_start(struct request_queue *q)
436{
437 spin_lock_irq(q->queue_lock);
776687bc 438 q->bypass_depth++;
d732580b
TH
439 queue_flag_set(QUEUE_FLAG_BYPASS, q);
440 spin_unlock_irq(q->queue_lock);
441
776687bc
TH
442 /*
443 * Queues start drained. Skip actual draining till init is
444 * complete. This avoids lenghty delays during queue init which
445 * can happen many times during boot.
446 */
447 if (blk_queue_init_done(q)) {
807592a4
BVA
448 spin_lock_irq(q->queue_lock);
449 __blk_drain_queue(q, false);
450 spin_unlock_irq(q->queue_lock);
451
b82d4b19
TH
452 /* ensure blk_queue_bypass() is %true inside RCU read lock */
453 synchronize_rcu();
454 }
d732580b
TH
455}
456EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
457
458/**
459 * blk_queue_bypass_end - leave queue bypass mode
460 * @q: queue of interest
461 *
462 * Leave bypass mode and restore the normal queueing behavior.
463 */
464void blk_queue_bypass_end(struct request_queue *q)
465{
466 spin_lock_irq(q->queue_lock);
467 if (!--q->bypass_depth)
468 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
469 WARN_ON_ONCE(q->bypass_depth < 0);
470 spin_unlock_irq(q->queue_lock);
471}
472EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
473
c9a929dd
TH
474/**
475 * blk_cleanup_queue - shutdown a request queue
476 * @q: request queue to shutdown
477 *
c246e80d
BVA
478 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
479 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 480 */
6728cb0e 481void blk_cleanup_queue(struct request_queue *q)
483f4afc 482{
c9a929dd 483 spinlock_t *lock = q->queue_lock;
e3335de9 484
3f3299d5 485 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 486 mutex_lock(&q->sysfs_lock);
3f3299d5 487 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 488 spin_lock_irq(lock);
6ecf23af 489
80fd9979 490 /*
3f3299d5 491 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
492 * that, unlike blk_queue_bypass_start(), we aren't performing
493 * synchronize_rcu() after entering bypass mode to avoid the delay
494 * as some drivers create and destroy a lot of queues while
495 * probing. This is still safe because blk_release_queue() will be
496 * called only after the queue refcnt drops to zero and nothing,
497 * RCU or not, would be traversing the queue by then.
498 */
6ecf23af
TH
499 q->bypass_depth++;
500 queue_flag_set(QUEUE_FLAG_BYPASS, q);
501
c9a929dd
TH
502 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
503 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 504 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
505 spin_unlock_irq(lock);
506 mutex_unlock(&q->sysfs_lock);
507
c246e80d
BVA
508 /*
509 * Drain all requests queued before DYING marking. Set DEAD flag to
510 * prevent that q->request_fn() gets invoked after draining finished.
511 */
43a5e4e2 512 if (q->mq_ops) {
780db207 513 blk_mq_freeze_queue(q);
43a5e4e2
ML
514 spin_lock_irq(lock);
515 } else {
516 spin_lock_irq(lock);
517 __blk_drain_queue(q, true);
518 }
c246e80d 519 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 520 spin_unlock_irq(lock);
c9a929dd
TH
521
522 /* @q won't process any more request, flush async actions */
523 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
524 blk_sync_queue(q);
525
5e5cfac0
AH
526 spin_lock_irq(lock);
527 if (q->queue_lock != &q->__queue_lock)
528 q->queue_lock = &q->__queue_lock;
529 spin_unlock_irq(lock);
530
c9a929dd 531 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
532 blk_put_queue(q);
533}
1da177e4
LT
534EXPORT_SYMBOL(blk_cleanup_queue);
535
5b788ce3
TH
536int blk_init_rl(struct request_list *rl, struct request_queue *q,
537 gfp_t gfp_mask)
1da177e4 538{
1abec4fd
MS
539 if (unlikely(rl->rq_pool))
540 return 0;
541
5b788ce3 542 rl->q = q;
1faa16d2
JA
543 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
544 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
545 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
546 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 547
1946089a 548 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 549 mempool_free_slab, request_cachep,
5b788ce3 550 gfp_mask, q->node);
1da177e4
LT
551 if (!rl->rq_pool)
552 return -ENOMEM;
553
554 return 0;
555}
556
5b788ce3
TH
557void blk_exit_rl(struct request_list *rl)
558{
559 if (rl->rq_pool)
560 mempool_destroy(rl->rq_pool);
561}
562
165125e1 563struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 564{
c304a51b 565 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
566}
567EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 568
165125e1 569struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 570{
165125e1 571 struct request_queue *q;
e0bf68dd 572 int err;
1946089a 573
8324aa91 574 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 575 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
576 if (!q)
577 return NULL;
578
00380a40 579 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 580 if (q->id < 0)
3d2936f4 581 goto fail_q;
a73f730d 582
0989a025
JA
583 q->backing_dev_info.ra_pages =
584 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
585 q->backing_dev_info.state = 0;
586 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 587 q->backing_dev_info.name = "block";
5151412d 588 q->node = node_id;
0989a025 589
e0bf68dd 590 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
591 if (err)
592 goto fail_id;
e0bf68dd 593
31373d09
MG
594 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
595 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 596 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 597 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 598 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 599 INIT_LIST_HEAD(&q->icq_list);
4eef3049 600#ifdef CONFIG_BLK_CGROUP
e8989fae 601 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 602#endif
3cca6dc1 603 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 604
8324aa91 605 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 606
483f4afc 607 mutex_init(&q->sysfs_lock);
e7e72bf6 608 spin_lock_init(&q->__queue_lock);
483f4afc 609
c94a96ac
VG
610 /*
611 * By default initialize queue_lock to internal lock and driver can
612 * override it later if need be.
613 */
614 q->queue_lock = &q->__queue_lock;
615
b82d4b19
TH
616 /*
617 * A queue starts its life with bypass turned on to avoid
618 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
619 * init. The initial bypass will be finished when the queue is
620 * registered by blk_register_queue().
b82d4b19
TH
621 */
622 q->bypass_depth = 1;
623 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
624
320ae51f
JA
625 init_waitqueue_head(&q->mq_freeze_wq);
626
5efd6113 627 if (blkcg_init_queue(q))
fff4996b 628 goto fail_bdi;
f51b802c 629
1da177e4 630 return q;
a73f730d 631
fff4996b
MP
632fail_bdi:
633 bdi_destroy(&q->backing_dev_info);
a73f730d
TH
634fail_id:
635 ida_simple_remove(&blk_queue_ida, q->id);
636fail_q:
637 kmem_cache_free(blk_requestq_cachep, q);
638 return NULL;
1da177e4 639}
1946089a 640EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
641
642/**
643 * blk_init_queue - prepare a request queue for use with a block device
644 * @rfn: The function to be called to process requests that have been
645 * placed on the queue.
646 * @lock: Request queue spin lock
647 *
648 * Description:
649 * If a block device wishes to use the standard request handling procedures,
650 * which sorts requests and coalesces adjacent requests, then it must
651 * call blk_init_queue(). The function @rfn will be called when there
652 * are requests on the queue that need to be processed. If the device
653 * supports plugging, then @rfn may not be called immediately when requests
654 * are available on the queue, but may be called at some time later instead.
655 * Plugged queues are generally unplugged when a buffer belonging to one
656 * of the requests on the queue is needed, or due to memory pressure.
657 *
658 * @rfn is not required, or even expected, to remove all requests off the
659 * queue, but only as many as it can handle at a time. If it does leave
660 * requests on the queue, it is responsible for arranging that the requests
661 * get dealt with eventually.
662 *
663 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
664 * request queue; this lock will be taken also from interrupt context, so irq
665 * disabling is needed for it.
1da177e4 666 *
710027a4 667 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
668 * it didn't succeed.
669 *
670 * Note:
671 * blk_init_queue() must be paired with a blk_cleanup_queue() call
672 * when the block device is deactivated (such as at module unload).
673 **/
1946089a 674
165125e1 675struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 676{
c304a51b 677 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
678}
679EXPORT_SYMBOL(blk_init_queue);
680
165125e1 681struct request_queue *
1946089a
CL
682blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
683{
c86d1b8a 684 struct request_queue *uninit_q, *q;
1da177e4 685
c86d1b8a
MS
686 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
687 if (!uninit_q)
688 return NULL;
689
5151412d 690 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 691 if (!q)
7982e90c 692 blk_cleanup_queue(uninit_q);
18741986 693
7982e90c 694 return q;
01effb0d
MS
695}
696EXPORT_SYMBOL(blk_init_queue_node);
697
698struct request_queue *
699blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
700 spinlock_t *lock)
01effb0d 701{
1da177e4
LT
702 if (!q)
703 return NULL;
704
f3552655 705 if (blk_init_flush(q))
7982e90c
MS
706 return NULL;
707
a051661c 708 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 709 goto fail;
1da177e4
LT
710
711 q->request_fn = rfn;
1da177e4 712 q->prep_rq_fn = NULL;
28018c24 713 q->unprep_rq_fn = NULL;
60ea8226 714 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
715
716 /* Override internal queue lock with supplied lock pointer */
717 if (lock)
718 q->queue_lock = lock;
1da177e4 719
f3b144aa
JA
720 /*
721 * This also sets hw/phys segments, boundary and size
722 */
c20e8de2 723 blk_queue_make_request(q, blk_queue_bio);
1da177e4 724
44ec9542
AS
725 q->sg_reserved_size = INT_MAX;
726
eb1c160b
TS
727 /* Protect q->elevator from elevator_change */
728 mutex_lock(&q->sysfs_lock);
729
b82d4b19 730 /* init elevator */
eb1c160b
TS
731 if (elevator_init(q, NULL)) {
732 mutex_unlock(&q->sysfs_lock);
708f04d2 733 goto fail;
eb1c160b
TS
734 }
735
736 mutex_unlock(&q->sysfs_lock);
737
b82d4b19 738 return q;
708f04d2
DJ
739
740fail:
f3552655 741 blk_exit_flush(q);
708f04d2 742 return NULL;
1da177e4 743}
5151412d 744EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 745
09ac46c4 746bool blk_get_queue(struct request_queue *q)
1da177e4 747{
3f3299d5 748 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
749 __blk_get_queue(q);
750 return true;
1da177e4
LT
751 }
752
09ac46c4 753 return false;
1da177e4 754}
d86e0e83 755EXPORT_SYMBOL(blk_get_queue);
1da177e4 756
5b788ce3 757static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 758{
f1f8cc94 759 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 760 elv_put_request(rl->q, rq);
f1f8cc94 761 if (rq->elv.icq)
11a3122f 762 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
763 }
764
5b788ce3 765 mempool_free(rq, rl->rq_pool);
1da177e4
LT
766}
767
1da177e4
LT
768/*
769 * ioc_batching returns true if the ioc is a valid batching request and
770 * should be given priority access to a request.
771 */
165125e1 772static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
773{
774 if (!ioc)
775 return 0;
776
777 /*
778 * Make sure the process is able to allocate at least 1 request
779 * even if the batch times out, otherwise we could theoretically
780 * lose wakeups.
781 */
782 return ioc->nr_batch_requests == q->nr_batching ||
783 (ioc->nr_batch_requests > 0
784 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
785}
786
787/*
788 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
789 * will cause the process to be a "batcher" on all queues in the system. This
790 * is the behaviour we want though - once it gets a wakeup it should be given
791 * a nice run.
792 */
165125e1 793static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
794{
795 if (!ioc || ioc_batching(q, ioc))
796 return;
797
798 ioc->nr_batch_requests = q->nr_batching;
799 ioc->last_waited = jiffies;
800}
801
5b788ce3 802static void __freed_request(struct request_list *rl, int sync)
1da177e4 803{
5b788ce3 804 struct request_queue *q = rl->q;
1da177e4 805
a051661c
TH
806 /*
807 * bdi isn't aware of blkcg yet. As all async IOs end up root
808 * blkcg anyway, just use root blkcg state.
809 */
810 if (rl == &q->root_rl &&
811 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 812 blk_clear_queue_congested(q, sync);
1da177e4 813
1faa16d2
JA
814 if (rl->count[sync] + 1 <= q->nr_requests) {
815 if (waitqueue_active(&rl->wait[sync]))
816 wake_up(&rl->wait[sync]);
1da177e4 817
5b788ce3 818 blk_clear_rl_full(rl, sync);
1da177e4
LT
819 }
820}
821
822/*
823 * A request has just been released. Account for it, update the full and
824 * congestion status, wake up any waiters. Called under q->queue_lock.
825 */
5b788ce3 826static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 827{
5b788ce3 828 struct request_queue *q = rl->q;
75eb6c37 829 int sync = rw_is_sync(flags);
1da177e4 830
8a5ecdd4 831 q->nr_rqs[sync]--;
1faa16d2 832 rl->count[sync]--;
75eb6c37 833 if (flags & REQ_ELVPRIV)
8a5ecdd4 834 q->nr_rqs_elvpriv--;
1da177e4 835
5b788ce3 836 __freed_request(rl, sync);
1da177e4 837
1faa16d2 838 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 839 __freed_request(rl, sync ^ 1);
1da177e4
LT
840}
841
e3a2b3f9
JA
842int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
843{
844 struct request_list *rl;
845
846 spin_lock_irq(q->queue_lock);
847 q->nr_requests = nr;
848 blk_queue_congestion_threshold(q);
849
850 /* congestion isn't cgroup aware and follows root blkcg for now */
851 rl = &q->root_rl;
852
853 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
854 blk_set_queue_congested(q, BLK_RW_SYNC);
855 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
856 blk_clear_queue_congested(q, BLK_RW_SYNC);
857
858 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
859 blk_set_queue_congested(q, BLK_RW_ASYNC);
860 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
861 blk_clear_queue_congested(q, BLK_RW_ASYNC);
862
863 blk_queue_for_each_rl(rl, q) {
864 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
865 blk_set_rl_full(rl, BLK_RW_SYNC);
866 } else {
867 blk_clear_rl_full(rl, BLK_RW_SYNC);
868 wake_up(&rl->wait[BLK_RW_SYNC]);
869 }
870
871 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
872 blk_set_rl_full(rl, BLK_RW_ASYNC);
873 } else {
874 blk_clear_rl_full(rl, BLK_RW_ASYNC);
875 wake_up(&rl->wait[BLK_RW_ASYNC]);
876 }
877 }
878
879 spin_unlock_irq(q->queue_lock);
880 return 0;
881}
882
9d5a4e94
MS
883/*
884 * Determine if elevator data should be initialized when allocating the
885 * request associated with @bio.
886 */
887static bool blk_rq_should_init_elevator(struct bio *bio)
888{
889 if (!bio)
890 return true;
891
892 /*
893 * Flush requests do not use the elevator so skip initialization.
894 * This allows a request to share the flush and elevator data.
895 */
896 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
897 return false;
898
899 return true;
900}
901
852c788f
TH
902/**
903 * rq_ioc - determine io_context for request allocation
904 * @bio: request being allocated is for this bio (can be %NULL)
905 *
906 * Determine io_context to use for request allocation for @bio. May return
907 * %NULL if %current->io_context doesn't exist.
908 */
909static struct io_context *rq_ioc(struct bio *bio)
910{
911#ifdef CONFIG_BLK_CGROUP
912 if (bio && bio->bi_ioc)
913 return bio->bi_ioc;
914#endif
915 return current->io_context;
916}
917
da8303c6 918/**
a06e05e6 919 * __get_request - get a free request
5b788ce3 920 * @rl: request list to allocate from
da8303c6
TH
921 * @rw_flags: RW and SYNC flags
922 * @bio: bio to allocate request for (can be %NULL)
923 * @gfp_mask: allocation mask
924 *
925 * Get a free request from @q. This function may fail under memory
926 * pressure or if @q is dead.
927 *
a492f075
JL
928 * Must be called with @q->queue_lock held and,
929 * Returns ERR_PTR on failure, with @q->queue_lock held.
930 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 931 */
5b788ce3 932static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 933 struct bio *bio, gfp_t gfp_mask)
1da177e4 934{
5b788ce3 935 struct request_queue *q = rl->q;
b679281a 936 struct request *rq;
7f4b35d1
TH
937 struct elevator_type *et = q->elevator->type;
938 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 939 struct io_cq *icq = NULL;
1faa16d2 940 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 941 int may_queue;
88ee5ef1 942
3f3299d5 943 if (unlikely(blk_queue_dying(q)))
a492f075 944 return ERR_PTR(-ENODEV);
da8303c6 945
7749a8d4 946 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
947 if (may_queue == ELV_MQUEUE_NO)
948 goto rq_starved;
949
1faa16d2
JA
950 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
951 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
952 /*
953 * The queue will fill after this allocation, so set
954 * it as full, and mark this process as "batching".
955 * This process will be allowed to complete a batch of
956 * requests, others will be blocked.
957 */
5b788ce3 958 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 959 ioc_set_batching(q, ioc);
5b788ce3 960 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
961 } else {
962 if (may_queue != ELV_MQUEUE_MUST
963 && !ioc_batching(q, ioc)) {
964 /*
965 * The queue is full and the allocating
966 * process is not a "batcher", and not
967 * exempted by the IO scheduler
968 */
a492f075 969 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
970 }
971 }
1da177e4 972 }
a051661c
TH
973 /*
974 * bdi isn't aware of blkcg yet. As all async IOs end up
975 * root blkcg anyway, just use root blkcg state.
976 */
977 if (rl == &q->root_rl)
978 blk_set_queue_congested(q, is_sync);
1da177e4
LT
979 }
980
082cf69e
JA
981 /*
982 * Only allow batching queuers to allocate up to 50% over the defined
983 * limit of requests, otherwise we could have thousands of requests
984 * allocated with any setting of ->nr_requests
985 */
1faa16d2 986 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 987 return ERR_PTR(-ENOMEM);
fd782a4a 988
8a5ecdd4 989 q->nr_rqs[is_sync]++;
1faa16d2
JA
990 rl->count[is_sync]++;
991 rl->starved[is_sync] = 0;
cb98fc8b 992
f1f8cc94
TH
993 /*
994 * Decide whether the new request will be managed by elevator. If
995 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
996 * prevent the current elevator from being destroyed until the new
997 * request is freed. This guarantees icq's won't be destroyed and
998 * makes creating new ones safe.
999 *
1000 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1001 * it will be created after releasing queue_lock.
1002 */
d732580b 1003 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 1004 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 1005 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1006 if (et->icq_cache && ioc)
1007 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1008 }
cb98fc8b 1009
f253b86b
JA
1010 if (blk_queue_io_stat(q))
1011 rw_flags |= REQ_IO_STAT;
1da177e4
LT
1012 spin_unlock_irq(q->queue_lock);
1013
29e2b09a 1014 /* allocate and init request */
5b788ce3 1015 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1016 if (!rq)
b679281a 1017 goto fail_alloc;
1da177e4 1018
29e2b09a 1019 blk_rq_init(q, rq);
a051661c 1020 blk_rq_set_rl(rq, rl);
29e2b09a
TH
1021 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1022
aaf7c680 1023 /* init elvpriv */
29e2b09a 1024 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 1025 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1026 if (ioc)
1027 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1028 if (!icq)
1029 goto fail_elvpriv;
29e2b09a 1030 }
aaf7c680
TH
1031
1032 rq->elv.icq = icq;
1033 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1034 goto fail_elvpriv;
1035
1036 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1037 if (icq)
1038 get_io_context(icq->ioc);
1039 }
aaf7c680 1040out:
88ee5ef1
JA
1041 /*
1042 * ioc may be NULL here, and ioc_batching will be false. That's
1043 * OK, if the queue is under the request limit then requests need
1044 * not count toward the nr_batch_requests limit. There will always
1045 * be some limit enforced by BLK_BATCH_TIME.
1046 */
1da177e4
LT
1047 if (ioc_batching(q, ioc))
1048 ioc->nr_batch_requests--;
6728cb0e 1049
1faa16d2 1050 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1051 return rq;
b679281a 1052
aaf7c680
TH
1053fail_elvpriv:
1054 /*
1055 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1056 * and may fail indefinitely under memory pressure and thus
1057 * shouldn't stall IO. Treat this request as !elvpriv. This will
1058 * disturb iosched and blkcg but weird is bettern than dead.
1059 */
1060 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1061 dev_name(q->backing_dev_info.dev));
1062
1063 rq->cmd_flags &= ~REQ_ELVPRIV;
1064 rq->elv.icq = NULL;
1065
1066 spin_lock_irq(q->queue_lock);
8a5ecdd4 1067 q->nr_rqs_elvpriv--;
aaf7c680
TH
1068 spin_unlock_irq(q->queue_lock);
1069 goto out;
1070
b679281a
TH
1071fail_alloc:
1072 /*
1073 * Allocation failed presumably due to memory. Undo anything we
1074 * might have messed up.
1075 *
1076 * Allocating task should really be put onto the front of the wait
1077 * queue, but this is pretty rare.
1078 */
1079 spin_lock_irq(q->queue_lock);
5b788ce3 1080 freed_request(rl, rw_flags);
b679281a
TH
1081
1082 /*
1083 * in the very unlikely event that allocation failed and no
1084 * requests for this direction was pending, mark us starved so that
1085 * freeing of a request in the other direction will notice
1086 * us. another possible fix would be to split the rq mempool into
1087 * READ and WRITE
1088 */
1089rq_starved:
1090 if (unlikely(rl->count[is_sync] == 0))
1091 rl->starved[is_sync] = 1;
a492f075 1092 return ERR_PTR(-ENOMEM);
1da177e4
LT
1093}
1094
da8303c6 1095/**
a06e05e6 1096 * get_request - get a free request
da8303c6
TH
1097 * @q: request_queue to allocate request from
1098 * @rw_flags: RW and SYNC flags
1099 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1100 * @gfp_mask: allocation mask
da8303c6 1101 *
a06e05e6
TH
1102 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1103 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1104 *
a492f075
JL
1105 * Must be called with @q->queue_lock held and,
1106 * Returns ERR_PTR on failure, with @q->queue_lock held.
1107 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1108 */
a06e05e6
TH
1109static struct request *get_request(struct request_queue *q, int rw_flags,
1110 struct bio *bio, gfp_t gfp_mask)
1da177e4 1111{
1faa16d2 1112 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1113 DEFINE_WAIT(wait);
a051661c 1114 struct request_list *rl;
1da177e4 1115 struct request *rq;
a051661c
TH
1116
1117 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1118retry:
a051661c 1119 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a492f075 1120 if (!IS_ERR(rq))
a06e05e6 1121 return rq;
1da177e4 1122
3f3299d5 1123 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1124 blk_put_rl(rl);
a492f075 1125 return rq;
a051661c 1126 }
1da177e4 1127
a06e05e6
TH
1128 /* wait on @rl and retry */
1129 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1130 TASK_UNINTERRUPTIBLE);
1da177e4 1131
a06e05e6 1132 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1133
a06e05e6
TH
1134 spin_unlock_irq(q->queue_lock);
1135 io_schedule();
d6344532 1136
a06e05e6
TH
1137 /*
1138 * After sleeping, we become a "batching" process and will be able
1139 * to allocate at least one request, and up to a big batch of them
1140 * for a small period time. See ioc_batching, ioc_set_batching
1141 */
a06e05e6 1142 ioc_set_batching(q, current->io_context);
05caf8db 1143
a06e05e6
TH
1144 spin_lock_irq(q->queue_lock);
1145 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1146
a06e05e6 1147 goto retry;
1da177e4
LT
1148}
1149
320ae51f
JA
1150static struct request *blk_old_get_request(struct request_queue *q, int rw,
1151 gfp_t gfp_mask)
1da177e4
LT
1152{
1153 struct request *rq;
1154
1155 BUG_ON(rw != READ && rw != WRITE);
1156
7f4b35d1
TH
1157 /* create ioc upfront */
1158 create_io_context(gfp_mask, q->node);
1159
d6344532 1160 spin_lock_irq(q->queue_lock);
a06e05e6 1161 rq = get_request(q, rw, NULL, gfp_mask);
a492f075 1162 if (IS_ERR(rq))
da8303c6 1163 spin_unlock_irq(q->queue_lock);
d6344532 1164 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1165
1166 return rq;
1167}
320ae51f
JA
1168
1169struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1170{
1171 if (q->mq_ops)
4ce01dd1 1172 return blk_mq_alloc_request(q, rw, gfp_mask, false);
320ae51f
JA
1173 else
1174 return blk_old_get_request(q, rw, gfp_mask);
1175}
1da177e4
LT
1176EXPORT_SYMBOL(blk_get_request);
1177
dc72ef4a 1178/**
79eb63e9 1179 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1180 * @q: target request queue
79eb63e9
BH
1181 * @bio: The bio describing the memory mappings that will be submitted for IO.
1182 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1183 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1184 *
79eb63e9
BH
1185 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1186 * type commands. Where the struct request needs to be farther initialized by
1187 * the caller. It is passed a &struct bio, which describes the memory info of
1188 * the I/O transfer.
dc72ef4a 1189 *
79eb63e9
BH
1190 * The caller of blk_make_request must make sure that bi_io_vec
1191 * are set to describe the memory buffers. That bio_data_dir() will return
1192 * the needed direction of the request. (And all bio's in the passed bio-chain
1193 * are properly set accordingly)
1194 *
1195 * If called under none-sleepable conditions, mapped bio buffers must not
1196 * need bouncing, by calling the appropriate masked or flagged allocator,
1197 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1198 * BUG.
53674ac5
JA
1199 *
1200 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1201 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1202 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1203 * completion of a bio that hasn't been submitted yet, thus resulting in a
1204 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1205 * of bio_alloc(), as that avoids the mempool deadlock.
1206 * If possible a big IO should be split into smaller parts when allocation
1207 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1208 */
79eb63e9
BH
1209struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1210 gfp_t gfp_mask)
dc72ef4a 1211{
79eb63e9
BH
1212 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1213
a492f075
JL
1214 if (IS_ERR(rq))
1215 return rq;
79eb63e9 1216
f27b087b
JA
1217 blk_rq_set_block_pc(rq);
1218
79eb63e9
BH
1219 for_each_bio(bio) {
1220 struct bio *bounce_bio = bio;
1221 int ret;
1222
1223 blk_queue_bounce(q, &bounce_bio);
1224 ret = blk_rq_append_bio(q, rq, bounce_bio);
1225 if (unlikely(ret)) {
1226 blk_put_request(rq);
1227 return ERR_PTR(ret);
1228 }
1229 }
1230
1231 return rq;
dc72ef4a 1232}
79eb63e9 1233EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1234
f27b087b
JA
1235/**
1236 * blk_rq_set_block_pc - initialize a requeest to type BLOCK_PC
1237 * @rq: request to be initialized
1238 *
1239 */
1240void blk_rq_set_block_pc(struct request *rq)
1241{
1242 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1243 rq->__data_len = 0;
1244 rq->__sector = (sector_t) -1;
1245 rq->bio = rq->biotail = NULL;
1246 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1247}
1248EXPORT_SYMBOL(blk_rq_set_block_pc);
1249
1da177e4
LT
1250/**
1251 * blk_requeue_request - put a request back on queue
1252 * @q: request queue where request should be inserted
1253 * @rq: request to be inserted
1254 *
1255 * Description:
1256 * Drivers often keep queueing requests until the hardware cannot accept
1257 * more, when that condition happens we need to put the request back
1258 * on the queue. Must be called with queue lock held.
1259 */
165125e1 1260void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1261{
242f9dcb
JA
1262 blk_delete_timer(rq);
1263 blk_clear_rq_complete(rq);
5f3ea37c 1264 trace_block_rq_requeue(q, rq);
2056a782 1265
1da177e4
LT
1266 if (blk_rq_tagged(rq))
1267 blk_queue_end_tag(q, rq);
1268
ba396a6c
JB
1269 BUG_ON(blk_queued_rq(rq));
1270
1da177e4
LT
1271 elv_requeue_request(q, rq);
1272}
1da177e4
LT
1273EXPORT_SYMBOL(blk_requeue_request);
1274
73c10101
JA
1275static void add_acct_request(struct request_queue *q, struct request *rq,
1276 int where)
1277{
320ae51f 1278 blk_account_io_start(rq, true);
7eaceacc 1279 __elv_add_request(q, rq, where);
73c10101
JA
1280}
1281
074a7aca
TH
1282static void part_round_stats_single(int cpu, struct hd_struct *part,
1283 unsigned long now)
1284{
7276d02e
JA
1285 int inflight;
1286
074a7aca
TH
1287 if (now == part->stamp)
1288 return;
1289
7276d02e
JA
1290 inflight = part_in_flight(part);
1291 if (inflight) {
074a7aca 1292 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1293 inflight * (now - part->stamp));
074a7aca
TH
1294 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1295 }
1296 part->stamp = now;
1297}
1298
1299/**
496aa8a9
RD
1300 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1301 * @cpu: cpu number for stats access
1302 * @part: target partition
1da177e4
LT
1303 *
1304 * The average IO queue length and utilisation statistics are maintained
1305 * by observing the current state of the queue length and the amount of
1306 * time it has been in this state for.
1307 *
1308 * Normally, that accounting is done on IO completion, but that can result
1309 * in more than a second's worth of IO being accounted for within any one
1310 * second, leading to >100% utilisation. To deal with that, we call this
1311 * function to do a round-off before returning the results when reading
1312 * /proc/diskstats. This accounts immediately for all queue usage up to
1313 * the current jiffies and restarts the counters again.
1314 */
c9959059 1315void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1316{
1317 unsigned long now = jiffies;
1318
074a7aca
TH
1319 if (part->partno)
1320 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1321 part_round_stats_single(cpu, part, now);
6f2576af 1322}
074a7aca 1323EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1324
c8158819
LM
1325#ifdef CONFIG_PM_RUNTIME
1326static void blk_pm_put_request(struct request *rq)
1327{
1328 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1329 pm_runtime_mark_last_busy(rq->q->dev);
1330}
1331#else
1332static inline void blk_pm_put_request(struct request *rq) {}
1333#endif
1334
1da177e4
LT
1335/*
1336 * queue lock must be held
1337 */
165125e1 1338void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1339{
1da177e4
LT
1340 if (unlikely(!q))
1341 return;
1da177e4 1342
6f5ba581
CH
1343 if (q->mq_ops) {
1344 blk_mq_free_request(req);
1345 return;
1346 }
1347
c8158819
LM
1348 blk_pm_put_request(req);
1349
8922e16c
TH
1350 elv_completed_request(q, req);
1351
1cd96c24
BH
1352 /* this is a bio leak */
1353 WARN_ON(req->bio != NULL);
1354
1da177e4
LT
1355 /*
1356 * Request may not have originated from ll_rw_blk. if not,
1357 * it didn't come out of our reserved rq pools
1358 */
49171e5c 1359 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1360 unsigned int flags = req->cmd_flags;
a051661c 1361 struct request_list *rl = blk_rq_rl(req);
1da177e4 1362
1da177e4 1363 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1364 BUG_ON(ELV_ON_HASH(req));
1da177e4 1365
a051661c
TH
1366 blk_free_request(rl, req);
1367 freed_request(rl, flags);
1368 blk_put_rl(rl);
1da177e4
LT
1369 }
1370}
6e39b69e
MC
1371EXPORT_SYMBOL_GPL(__blk_put_request);
1372
1da177e4
LT
1373void blk_put_request(struct request *req)
1374{
165125e1 1375 struct request_queue *q = req->q;
8922e16c 1376
320ae51f
JA
1377 if (q->mq_ops)
1378 blk_mq_free_request(req);
1379 else {
1380 unsigned long flags;
1381
1382 spin_lock_irqsave(q->queue_lock, flags);
1383 __blk_put_request(q, req);
1384 spin_unlock_irqrestore(q->queue_lock, flags);
1385 }
1da177e4 1386}
1da177e4
LT
1387EXPORT_SYMBOL(blk_put_request);
1388
66ac0280
CH
1389/**
1390 * blk_add_request_payload - add a payload to a request
1391 * @rq: request to update
1392 * @page: page backing the payload
1393 * @len: length of the payload.
1394 *
1395 * This allows to later add a payload to an already submitted request by
1396 * a block driver. The driver needs to take care of freeing the payload
1397 * itself.
1398 *
1399 * Note that this is a quite horrible hack and nothing but handling of
1400 * discard requests should ever use it.
1401 */
1402void blk_add_request_payload(struct request *rq, struct page *page,
1403 unsigned int len)
1404{
1405 struct bio *bio = rq->bio;
1406
1407 bio->bi_io_vec->bv_page = page;
1408 bio->bi_io_vec->bv_offset = 0;
1409 bio->bi_io_vec->bv_len = len;
1410
4f024f37 1411 bio->bi_iter.bi_size = len;
66ac0280
CH
1412 bio->bi_vcnt = 1;
1413 bio->bi_phys_segments = 1;
1414
1415 rq->__data_len = rq->resid_len = len;
1416 rq->nr_phys_segments = 1;
66ac0280
CH
1417}
1418EXPORT_SYMBOL_GPL(blk_add_request_payload);
1419
320ae51f
JA
1420bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1421 struct bio *bio)
73c10101
JA
1422{
1423 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1424
73c10101
JA
1425 if (!ll_back_merge_fn(q, req, bio))
1426 return false;
1427
8c1cf6bb 1428 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1429
1430 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1431 blk_rq_set_mixed_merge(req);
1432
1433 req->biotail->bi_next = bio;
1434 req->biotail = bio;
4f024f37 1435 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1436 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1437
320ae51f 1438 blk_account_io_start(req, false);
73c10101
JA
1439 return true;
1440}
1441
320ae51f
JA
1442bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1443 struct bio *bio)
73c10101
JA
1444{
1445 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1446
73c10101
JA
1447 if (!ll_front_merge_fn(q, req, bio))
1448 return false;
1449
8c1cf6bb 1450 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1451
1452 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1453 blk_rq_set_mixed_merge(req);
1454
73c10101
JA
1455 bio->bi_next = req->bio;
1456 req->bio = bio;
1457
4f024f37
KO
1458 req->__sector = bio->bi_iter.bi_sector;
1459 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1460 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1461
320ae51f 1462 blk_account_io_start(req, false);
73c10101
JA
1463 return true;
1464}
1465
bd87b589 1466/**
320ae51f 1467 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1468 * @q: request_queue new bio is being queued at
1469 * @bio: new bio being queued
1470 * @request_count: out parameter for number of traversed plugged requests
1471 *
1472 * Determine whether @bio being queued on @q can be merged with a request
1473 * on %current's plugged list. Returns %true if merge was successful,
1474 * otherwise %false.
1475 *
07c2bd37
TH
1476 * Plugging coalesces IOs from the same issuer for the same purpose without
1477 * going through @q->queue_lock. As such it's more of an issuing mechanism
1478 * than scheduling, and the request, while may have elvpriv data, is not
1479 * added on the elevator at this point. In addition, we don't have
1480 * reliable access to the elevator outside queue lock. Only check basic
1481 * merging parameters without querying the elevator.
da41a589
RE
1482 *
1483 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1484 */
320ae51f
JA
1485bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1486 unsigned int *request_count)
73c10101
JA
1487{
1488 struct blk_plug *plug;
1489 struct request *rq;
1490 bool ret = false;
92f399c7 1491 struct list_head *plug_list;
73c10101 1492
bd87b589 1493 plug = current->plug;
73c10101
JA
1494 if (!plug)
1495 goto out;
56ebdaf2 1496 *request_count = 0;
73c10101 1497
92f399c7
SL
1498 if (q->mq_ops)
1499 plug_list = &plug->mq_list;
1500 else
1501 plug_list = &plug->list;
1502
1503 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1504 int el_ret;
1505
1b2e19f1
SL
1506 if (rq->q == q)
1507 (*request_count)++;
56ebdaf2 1508
07c2bd37 1509 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1510 continue;
1511
050c8ea8 1512 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1513 if (el_ret == ELEVATOR_BACK_MERGE) {
1514 ret = bio_attempt_back_merge(q, rq, bio);
1515 if (ret)
1516 break;
1517 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1518 ret = bio_attempt_front_merge(q, rq, bio);
1519 if (ret)
1520 break;
1521 }
1522 }
1523out:
1524 return ret;
1525}
1526
86db1e29 1527void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1528{
4aff5e23 1529 req->cmd_type = REQ_TYPE_FS;
52d9e675 1530
7b6d91da
CH
1531 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1532 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1533 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1534
52d9e675 1535 req->errors = 0;
4f024f37 1536 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1537 req->ioprio = bio_prio(bio);
bc1c56fd 1538 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1539}
1540
5a7bbad2 1541void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1542{
5e00d1b5 1543 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1544 struct blk_plug *plug;
1545 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1546 struct request *req;
56ebdaf2 1547 unsigned int request_count = 0;
1da177e4 1548
1da177e4
LT
1549 /*
1550 * low level driver can indicate that it wants pages above a
1551 * certain limit bounced to low memory (ie for highmem, or even
1552 * ISA dma in theory)
1553 */
1554 blk_queue_bounce(q, &bio);
1555
ffecfd1a
DW
1556 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1557 bio_endio(bio, -EIO);
1558 return;
1559 }
1560
4fed947c 1561 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1562 spin_lock_irq(q->queue_lock);
ae1b1539 1563 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1564 goto get_rq;
1565 }
1566
73c10101
JA
1567 /*
1568 * Check if we can merge with the plugged list before grabbing
1569 * any locks.
1570 */
da41a589
RE
1571 if (!blk_queue_nomerges(q) &&
1572 blk_attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1573 return;
1da177e4 1574
73c10101 1575 spin_lock_irq(q->queue_lock);
2056a782 1576
73c10101
JA
1577 el_ret = elv_merge(q, &req, bio);
1578 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1579 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1580 elv_bio_merged(q, req, bio);
73c10101
JA
1581 if (!attempt_back_merge(q, req))
1582 elv_merged_request(q, req, el_ret);
1583 goto out_unlock;
1584 }
1585 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1586 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1587 elv_bio_merged(q, req, bio);
73c10101
JA
1588 if (!attempt_front_merge(q, req))
1589 elv_merged_request(q, req, el_ret);
1590 goto out_unlock;
80a761fd 1591 }
1da177e4
LT
1592 }
1593
450991bc 1594get_rq:
7749a8d4
JA
1595 /*
1596 * This sync check and mask will be re-done in init_request_from_bio(),
1597 * but we need to set it earlier to expose the sync flag to the
1598 * rq allocator and io schedulers.
1599 */
1600 rw_flags = bio_data_dir(bio);
1601 if (sync)
7b6d91da 1602 rw_flags |= REQ_SYNC;
7749a8d4 1603
1da177e4 1604 /*
450991bc 1605 * Grab a free request. This is might sleep but can not fail.
d6344532 1606 * Returns with the queue unlocked.
450991bc 1607 */
a06e05e6 1608 req = get_request(q, rw_flags, bio, GFP_NOIO);
a492f075
JL
1609 if (IS_ERR(req)) {
1610 bio_endio(bio, PTR_ERR(req)); /* @q is dead */
da8303c6
TH
1611 goto out_unlock;
1612 }
d6344532 1613
450991bc
NP
1614 /*
1615 * After dropping the lock and possibly sleeping here, our request
1616 * may now be mergeable after it had proven unmergeable (above).
1617 * We don't worry about that case for efficiency. It won't happen
1618 * often, and the elevators are able to handle it.
1da177e4 1619 */
52d9e675 1620 init_request_from_bio(req, bio);
1da177e4 1621
9562ad9a 1622 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1623 req->cpu = raw_smp_processor_id();
73c10101
JA
1624
1625 plug = current->plug;
721a9602 1626 if (plug) {
dc6d36c9
JA
1627 /*
1628 * If this is the first request added after a plug, fire
7aef2e78 1629 * of a plug trace.
dc6d36c9 1630 */
7aef2e78 1631 if (!request_count)
dc6d36c9 1632 trace_block_plug(q);
3540d5e8 1633 else {
019ceb7d 1634 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1635 blk_flush_plug_list(plug, false);
019ceb7d
SL
1636 trace_block_plug(q);
1637 }
73c10101 1638 }
73c10101 1639 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1640 blk_account_io_start(req, true);
73c10101
JA
1641 } else {
1642 spin_lock_irq(q->queue_lock);
1643 add_acct_request(q, req, where);
24ecfbe2 1644 __blk_run_queue(q);
73c10101
JA
1645out_unlock:
1646 spin_unlock_irq(q->queue_lock);
1647 }
1da177e4 1648}
c20e8de2 1649EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1650
1651/*
1652 * If bio->bi_dev is a partition, remap the location
1653 */
1654static inline void blk_partition_remap(struct bio *bio)
1655{
1656 struct block_device *bdev = bio->bi_bdev;
1657
bf2de6f5 1658 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1659 struct hd_struct *p = bdev->bd_part;
1660
4f024f37 1661 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1662 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1663
d07335e5
MS
1664 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1665 bdev->bd_dev,
4f024f37 1666 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1667 }
1668}
1669
1da177e4
LT
1670static void handle_bad_sector(struct bio *bio)
1671{
1672 char b[BDEVNAME_SIZE];
1673
1674 printk(KERN_INFO "attempt to access beyond end of device\n");
1675 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1676 bdevname(bio->bi_bdev, b),
1677 bio->bi_rw,
f73a1c7d 1678 (unsigned long long)bio_end_sector(bio),
77304d2a 1679 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1680
1681 set_bit(BIO_EOF, &bio->bi_flags);
1682}
1683
c17bb495
AM
1684#ifdef CONFIG_FAIL_MAKE_REQUEST
1685
1686static DECLARE_FAULT_ATTR(fail_make_request);
1687
1688static int __init setup_fail_make_request(char *str)
1689{
1690 return setup_fault_attr(&fail_make_request, str);
1691}
1692__setup("fail_make_request=", setup_fail_make_request);
1693
b2c9cd37 1694static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1695{
b2c9cd37 1696 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1697}
1698
1699static int __init fail_make_request_debugfs(void)
1700{
dd48c085
AM
1701 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1702 NULL, &fail_make_request);
1703
21f9fcd8 1704 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1705}
1706
1707late_initcall(fail_make_request_debugfs);
1708
1709#else /* CONFIG_FAIL_MAKE_REQUEST */
1710
b2c9cd37
AM
1711static inline bool should_fail_request(struct hd_struct *part,
1712 unsigned int bytes)
c17bb495 1713{
b2c9cd37 1714 return false;
c17bb495
AM
1715}
1716
1717#endif /* CONFIG_FAIL_MAKE_REQUEST */
1718
c07e2b41
JA
1719/*
1720 * Check whether this bio extends beyond the end of the device.
1721 */
1722static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1723{
1724 sector_t maxsector;
1725
1726 if (!nr_sectors)
1727 return 0;
1728
1729 /* Test device or partition size, when known. */
77304d2a 1730 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1731 if (maxsector) {
4f024f37 1732 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1733
1734 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1735 /*
1736 * This may well happen - the kernel calls bread()
1737 * without checking the size of the device, e.g., when
1738 * mounting a device.
1739 */
1740 handle_bad_sector(bio);
1741 return 1;
1742 }
1743 }
1744
1745 return 0;
1746}
1747
27a84d54
CH
1748static noinline_for_stack bool
1749generic_make_request_checks(struct bio *bio)
1da177e4 1750{
165125e1 1751 struct request_queue *q;
5a7bbad2 1752 int nr_sectors = bio_sectors(bio);
51fd77bd 1753 int err = -EIO;
5a7bbad2
CH
1754 char b[BDEVNAME_SIZE];
1755 struct hd_struct *part;
1da177e4
LT
1756
1757 might_sleep();
1da177e4 1758
c07e2b41
JA
1759 if (bio_check_eod(bio, nr_sectors))
1760 goto end_io;
1da177e4 1761
5a7bbad2
CH
1762 q = bdev_get_queue(bio->bi_bdev);
1763 if (unlikely(!q)) {
1764 printk(KERN_ERR
1765 "generic_make_request: Trying to access "
1766 "nonexistent block-device %s (%Lu)\n",
1767 bdevname(bio->bi_bdev, b),
4f024f37 1768 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1769 goto end_io;
1770 }
c17bb495 1771
e2a60da7
MP
1772 if (likely(bio_is_rw(bio) &&
1773 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1774 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1775 bdevname(bio->bi_bdev, b),
1776 bio_sectors(bio),
1777 queue_max_hw_sectors(q));
1778 goto end_io;
1779 }
1da177e4 1780
5a7bbad2 1781 part = bio->bi_bdev->bd_part;
4f024f37 1782 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1783 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1784 bio->bi_iter.bi_size))
5a7bbad2 1785 goto end_io;
2056a782 1786
5a7bbad2
CH
1787 /*
1788 * If this device has partitions, remap block n
1789 * of partition p to block n+start(p) of the disk.
1790 */
1791 blk_partition_remap(bio);
2056a782 1792
5a7bbad2
CH
1793 if (bio_check_eod(bio, nr_sectors))
1794 goto end_io;
1e87901e 1795
5a7bbad2
CH
1796 /*
1797 * Filter flush bio's early so that make_request based
1798 * drivers without flush support don't have to worry
1799 * about them.
1800 */
1801 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1802 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1803 if (!nr_sectors) {
1804 err = 0;
51fd77bd
JA
1805 goto end_io;
1806 }
5a7bbad2 1807 }
5ddfe969 1808
5a7bbad2
CH
1809 if ((bio->bi_rw & REQ_DISCARD) &&
1810 (!blk_queue_discard(q) ||
e2a60da7 1811 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1812 err = -EOPNOTSUPP;
1813 goto end_io;
1814 }
01edede4 1815
4363ac7c 1816 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1817 err = -EOPNOTSUPP;
1818 goto end_io;
1819 }
01edede4 1820
7f4b35d1
TH
1821 /*
1822 * Various block parts want %current->io_context and lazy ioc
1823 * allocation ends up trading a lot of pain for a small amount of
1824 * memory. Just allocate it upfront. This may fail and block
1825 * layer knows how to live with it.
1826 */
1827 create_io_context(GFP_ATOMIC, q->node);
1828
bc16a4f9
TH
1829 if (blk_throtl_bio(q, bio))
1830 return false; /* throttled, will be resubmitted later */
27a84d54 1831
5a7bbad2 1832 trace_block_bio_queue(q, bio);
27a84d54 1833 return true;
a7384677
TH
1834
1835end_io:
1836 bio_endio(bio, err);
27a84d54 1837 return false;
1da177e4
LT
1838}
1839
27a84d54
CH
1840/**
1841 * generic_make_request - hand a buffer to its device driver for I/O
1842 * @bio: The bio describing the location in memory and on the device.
1843 *
1844 * generic_make_request() is used to make I/O requests of block
1845 * devices. It is passed a &struct bio, which describes the I/O that needs
1846 * to be done.
1847 *
1848 * generic_make_request() does not return any status. The
1849 * success/failure status of the request, along with notification of
1850 * completion, is delivered asynchronously through the bio->bi_end_io
1851 * function described (one day) else where.
1852 *
1853 * The caller of generic_make_request must make sure that bi_io_vec
1854 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1855 * set to describe the device address, and the
1856 * bi_end_io and optionally bi_private are set to describe how
1857 * completion notification should be signaled.
1858 *
1859 * generic_make_request and the drivers it calls may use bi_next if this
1860 * bio happens to be merged with someone else, and may resubmit the bio to
1861 * a lower device by calling into generic_make_request recursively, which
1862 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1863 */
1864void generic_make_request(struct bio *bio)
1865{
bddd87c7
AM
1866 struct bio_list bio_list_on_stack;
1867
27a84d54
CH
1868 if (!generic_make_request_checks(bio))
1869 return;
1870
1871 /*
1872 * We only want one ->make_request_fn to be active at a time, else
1873 * stack usage with stacked devices could be a problem. So use
1874 * current->bio_list to keep a list of requests submited by a
1875 * make_request_fn function. current->bio_list is also used as a
1876 * flag to say if generic_make_request is currently active in this
1877 * task or not. If it is NULL, then no make_request is active. If
1878 * it is non-NULL, then a make_request is active, and new requests
1879 * should be added at the tail
1880 */
bddd87c7 1881 if (current->bio_list) {
bddd87c7 1882 bio_list_add(current->bio_list, bio);
d89d8796
NB
1883 return;
1884 }
27a84d54 1885
d89d8796
NB
1886 /* following loop may be a bit non-obvious, and so deserves some
1887 * explanation.
1888 * Before entering the loop, bio->bi_next is NULL (as all callers
1889 * ensure that) so we have a list with a single bio.
1890 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1891 * we assign bio_list to a pointer to the bio_list_on_stack,
1892 * thus initialising the bio_list of new bios to be
27a84d54 1893 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1894 * through a recursive call to generic_make_request. If it
1895 * did, we find a non-NULL value in bio_list and re-enter the loop
1896 * from the top. In this case we really did just take the bio
bddd87c7 1897 * of the top of the list (no pretending) and so remove it from
27a84d54 1898 * bio_list, and call into ->make_request() again.
d89d8796
NB
1899 */
1900 BUG_ON(bio->bi_next);
bddd87c7
AM
1901 bio_list_init(&bio_list_on_stack);
1902 current->bio_list = &bio_list_on_stack;
d89d8796 1903 do {
27a84d54
CH
1904 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1905
1906 q->make_request_fn(q, bio);
1907
bddd87c7 1908 bio = bio_list_pop(current->bio_list);
d89d8796 1909 } while (bio);
bddd87c7 1910 current->bio_list = NULL; /* deactivate */
d89d8796 1911}
1da177e4
LT
1912EXPORT_SYMBOL(generic_make_request);
1913
1914/**
710027a4 1915 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1916 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1917 * @bio: The &struct bio which describes the I/O
1918 *
1919 * submit_bio() is very similar in purpose to generic_make_request(), and
1920 * uses that function to do most of the work. Both are fairly rough
710027a4 1921 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1922 *
1923 */
1924void submit_bio(int rw, struct bio *bio)
1925{
22e2c507 1926 bio->bi_rw |= rw;
1da177e4 1927
bf2de6f5
JA
1928 /*
1929 * If it's a regular read/write or a barrier with data attached,
1930 * go through the normal accounting stuff before submission.
1931 */
e2a60da7 1932 if (bio_has_data(bio)) {
4363ac7c
MP
1933 unsigned int count;
1934
1935 if (unlikely(rw & REQ_WRITE_SAME))
1936 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1937 else
1938 count = bio_sectors(bio);
1939
bf2de6f5
JA
1940 if (rw & WRITE) {
1941 count_vm_events(PGPGOUT, count);
1942 } else {
4f024f37 1943 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1944 count_vm_events(PGPGIN, count);
1945 }
1946
1947 if (unlikely(block_dump)) {
1948 char b[BDEVNAME_SIZE];
8dcbdc74 1949 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1950 current->comm, task_pid_nr(current),
bf2de6f5 1951 (rw & WRITE) ? "WRITE" : "READ",
4f024f37 1952 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
1953 bdevname(bio->bi_bdev, b),
1954 count);
bf2de6f5 1955 }
1da177e4
LT
1956 }
1957
1958 generic_make_request(bio);
1959}
1da177e4
LT
1960EXPORT_SYMBOL(submit_bio);
1961
82124d60
KU
1962/**
1963 * blk_rq_check_limits - Helper function to check a request for the queue limit
1964 * @q: the queue
1965 * @rq: the request being checked
1966 *
1967 * Description:
1968 * @rq may have been made based on weaker limitations of upper-level queues
1969 * in request stacking drivers, and it may violate the limitation of @q.
1970 * Since the block layer and the underlying device driver trust @rq
1971 * after it is inserted to @q, it should be checked against @q before
1972 * the insertion using this generic function.
1973 *
1974 * This function should also be useful for request stacking drivers
eef35c2d 1975 * in some cases below, so export this function.
82124d60
KU
1976 * Request stacking drivers like request-based dm may change the queue
1977 * limits while requests are in the queue (e.g. dm's table swapping).
e227867f 1978 * Such request stacking drivers should check those requests against
82124d60
KU
1979 * the new queue limits again when they dispatch those requests,
1980 * although such checkings are also done against the old queue limits
1981 * when submitting requests.
1982 */
1983int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1984{
e2a60da7 1985 if (!rq_mergeable(rq))
3383977f
S
1986 return 0;
1987
f31dc1cd 1988 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1989 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1990 return -EIO;
1991 }
1992
1993 /*
1994 * queue's settings related to segment counting like q->bounce_pfn
1995 * may differ from that of other stacking queues.
1996 * Recalculate it to check the request correctly on this queue's
1997 * limitation.
1998 */
1999 blk_recalc_rq_segments(rq);
8a78362c 2000 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2001 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2002 return -EIO;
2003 }
2004
2005 return 0;
2006}
2007EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2008
2009/**
2010 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2011 * @q: the queue to submit the request
2012 * @rq: the request being queued
2013 */
2014int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2015{
2016 unsigned long flags;
4853abaa 2017 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
2018
2019 if (blk_rq_check_limits(q, rq))
2020 return -EIO;
2021
b2c9cd37
AM
2022 if (rq->rq_disk &&
2023 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2024 return -EIO;
82124d60
KU
2025
2026 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2027 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2028 spin_unlock_irqrestore(q->queue_lock, flags);
2029 return -ENODEV;
2030 }
82124d60
KU
2031
2032 /*
2033 * Submitting request must be dequeued before calling this function
2034 * because it will be linked to another request_queue
2035 */
2036 BUG_ON(blk_queued_rq(rq));
2037
4853abaa
JM
2038 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2039 where = ELEVATOR_INSERT_FLUSH;
2040
2041 add_acct_request(q, rq, where);
e67b77c7
JM
2042 if (where == ELEVATOR_INSERT_FLUSH)
2043 __blk_run_queue(q);
82124d60
KU
2044 spin_unlock_irqrestore(q->queue_lock, flags);
2045
2046 return 0;
2047}
2048EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2049
80a761fd
TH
2050/**
2051 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2052 * @rq: request to examine
2053 *
2054 * Description:
2055 * A request could be merge of IOs which require different failure
2056 * handling. This function determines the number of bytes which
2057 * can be failed from the beginning of the request without
2058 * crossing into area which need to be retried further.
2059 *
2060 * Return:
2061 * The number of bytes to fail.
2062 *
2063 * Context:
2064 * queue_lock must be held.
2065 */
2066unsigned int blk_rq_err_bytes(const struct request *rq)
2067{
2068 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2069 unsigned int bytes = 0;
2070 struct bio *bio;
2071
2072 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2073 return blk_rq_bytes(rq);
2074
2075 /*
2076 * Currently the only 'mixing' which can happen is between
2077 * different fastfail types. We can safely fail portions
2078 * which have all the failfast bits that the first one has -
2079 * the ones which are at least as eager to fail as the first
2080 * one.
2081 */
2082 for (bio = rq->bio; bio; bio = bio->bi_next) {
2083 if ((bio->bi_rw & ff) != ff)
2084 break;
4f024f37 2085 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2086 }
2087
2088 /* this could lead to infinite loop */
2089 BUG_ON(blk_rq_bytes(rq) && !bytes);
2090 return bytes;
2091}
2092EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2093
320ae51f 2094void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2095{
c2553b58 2096 if (blk_do_io_stat(req)) {
bc58ba94
JA
2097 const int rw = rq_data_dir(req);
2098 struct hd_struct *part;
2099 int cpu;
2100
2101 cpu = part_stat_lock();
09e099d4 2102 part = req->part;
bc58ba94
JA
2103 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2104 part_stat_unlock();
2105 }
2106}
2107
320ae51f 2108void blk_account_io_done(struct request *req)
bc58ba94 2109{
bc58ba94 2110 /*
dd4c133f
TH
2111 * Account IO completion. flush_rq isn't accounted as a
2112 * normal IO on queueing nor completion. Accounting the
2113 * containing request is enough.
bc58ba94 2114 */
414b4ff5 2115 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2116 unsigned long duration = jiffies - req->start_time;
2117 const int rw = rq_data_dir(req);
2118 struct hd_struct *part;
2119 int cpu;
2120
2121 cpu = part_stat_lock();
09e099d4 2122 part = req->part;
bc58ba94
JA
2123
2124 part_stat_inc(cpu, part, ios[rw]);
2125 part_stat_add(cpu, part, ticks[rw], duration);
2126 part_round_stats(cpu, part);
316d315b 2127 part_dec_in_flight(part, rw);
bc58ba94 2128
6c23a968 2129 hd_struct_put(part);
bc58ba94
JA
2130 part_stat_unlock();
2131 }
2132}
2133
c8158819
LM
2134#ifdef CONFIG_PM_RUNTIME
2135/*
2136 * Don't process normal requests when queue is suspended
2137 * or in the process of suspending/resuming
2138 */
2139static struct request *blk_pm_peek_request(struct request_queue *q,
2140 struct request *rq)
2141{
2142 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2143 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2144 return NULL;
2145 else
2146 return rq;
2147}
2148#else
2149static inline struct request *blk_pm_peek_request(struct request_queue *q,
2150 struct request *rq)
2151{
2152 return rq;
2153}
2154#endif
2155
320ae51f
JA
2156void blk_account_io_start(struct request *rq, bool new_io)
2157{
2158 struct hd_struct *part;
2159 int rw = rq_data_dir(rq);
2160 int cpu;
2161
2162 if (!blk_do_io_stat(rq))
2163 return;
2164
2165 cpu = part_stat_lock();
2166
2167 if (!new_io) {
2168 part = rq->part;
2169 part_stat_inc(cpu, part, merges[rw]);
2170 } else {
2171 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2172 if (!hd_struct_try_get(part)) {
2173 /*
2174 * The partition is already being removed,
2175 * the request will be accounted on the disk only
2176 *
2177 * We take a reference on disk->part0 although that
2178 * partition will never be deleted, so we can treat
2179 * it as any other partition.
2180 */
2181 part = &rq->rq_disk->part0;
2182 hd_struct_get(part);
2183 }
2184 part_round_stats(cpu, part);
2185 part_inc_in_flight(part, rw);
2186 rq->part = part;
2187 }
2188
2189 part_stat_unlock();
2190}
2191
3bcddeac 2192/**
9934c8c0
TH
2193 * blk_peek_request - peek at the top of a request queue
2194 * @q: request queue to peek at
2195 *
2196 * Description:
2197 * Return the request at the top of @q. The returned request
2198 * should be started using blk_start_request() before LLD starts
2199 * processing it.
2200 *
2201 * Return:
2202 * Pointer to the request at the top of @q if available. Null
2203 * otherwise.
2204 *
2205 * Context:
2206 * queue_lock must be held.
2207 */
2208struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2209{
2210 struct request *rq;
2211 int ret;
2212
2213 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2214
2215 rq = blk_pm_peek_request(q, rq);
2216 if (!rq)
2217 break;
2218
158dbda0
TH
2219 if (!(rq->cmd_flags & REQ_STARTED)) {
2220 /*
2221 * This is the first time the device driver
2222 * sees this request (possibly after
2223 * requeueing). Notify IO scheduler.
2224 */
33659ebb 2225 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2226 elv_activate_rq(q, rq);
2227
2228 /*
2229 * just mark as started even if we don't start
2230 * it, a request that has been delayed should
2231 * not be passed by new incoming requests
2232 */
2233 rq->cmd_flags |= REQ_STARTED;
2234 trace_block_rq_issue(q, rq);
2235 }
2236
2237 if (!q->boundary_rq || q->boundary_rq == rq) {
2238 q->end_sector = rq_end_sector(rq);
2239 q->boundary_rq = NULL;
2240 }
2241
2242 if (rq->cmd_flags & REQ_DONTPREP)
2243 break;
2244
2e46e8b2 2245 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2246 /*
2247 * make sure space for the drain appears we
2248 * know we can do this because max_hw_segments
2249 * has been adjusted to be one fewer than the
2250 * device can handle
2251 */
2252 rq->nr_phys_segments++;
2253 }
2254
2255 if (!q->prep_rq_fn)
2256 break;
2257
2258 ret = q->prep_rq_fn(q, rq);
2259 if (ret == BLKPREP_OK) {
2260 break;
2261 } else if (ret == BLKPREP_DEFER) {
2262 /*
2263 * the request may have been (partially) prepped.
2264 * we need to keep this request in the front to
2265 * avoid resource deadlock. REQ_STARTED will
2266 * prevent other fs requests from passing this one.
2267 */
2e46e8b2 2268 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2269 !(rq->cmd_flags & REQ_DONTPREP)) {
2270 /*
2271 * remove the space for the drain we added
2272 * so that we don't add it again
2273 */
2274 --rq->nr_phys_segments;
2275 }
2276
2277 rq = NULL;
2278 break;
2279 } else if (ret == BLKPREP_KILL) {
2280 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2281 /*
2282 * Mark this request as started so we don't trigger
2283 * any debug logic in the end I/O path.
2284 */
2285 blk_start_request(rq);
40cbbb78 2286 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2287 } else {
2288 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2289 break;
2290 }
2291 }
2292
2293 return rq;
2294}
9934c8c0 2295EXPORT_SYMBOL(blk_peek_request);
158dbda0 2296
9934c8c0 2297void blk_dequeue_request(struct request *rq)
158dbda0 2298{
9934c8c0
TH
2299 struct request_queue *q = rq->q;
2300
158dbda0
TH
2301 BUG_ON(list_empty(&rq->queuelist));
2302 BUG_ON(ELV_ON_HASH(rq));
2303
2304 list_del_init(&rq->queuelist);
2305
2306 /*
2307 * the time frame between a request being removed from the lists
2308 * and to it is freed is accounted as io that is in progress at
2309 * the driver side.
2310 */
9195291e 2311 if (blk_account_rq(rq)) {
0a7ae2ff 2312 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2313 set_io_start_time_ns(rq);
2314 }
158dbda0
TH
2315}
2316
9934c8c0
TH
2317/**
2318 * blk_start_request - start request processing on the driver
2319 * @req: request to dequeue
2320 *
2321 * Description:
2322 * Dequeue @req and start timeout timer on it. This hands off the
2323 * request to the driver.
2324 *
2325 * Block internal functions which don't want to start timer should
2326 * call blk_dequeue_request().
2327 *
2328 * Context:
2329 * queue_lock must be held.
2330 */
2331void blk_start_request(struct request *req)
2332{
2333 blk_dequeue_request(req);
2334
2335 /*
5f49f631
TH
2336 * We are now handing the request to the hardware, initialize
2337 * resid_len to full count and add the timeout handler.
9934c8c0 2338 */
5f49f631 2339 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2340 if (unlikely(blk_bidi_rq(req)))
2341 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2342
4912aa6c 2343 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2344 blk_add_timer(req);
2345}
2346EXPORT_SYMBOL(blk_start_request);
2347
2348/**
2349 * blk_fetch_request - fetch a request from a request queue
2350 * @q: request queue to fetch a request from
2351 *
2352 * Description:
2353 * Return the request at the top of @q. The request is started on
2354 * return and LLD can start processing it immediately.
2355 *
2356 * Return:
2357 * Pointer to the request at the top of @q if available. Null
2358 * otherwise.
2359 *
2360 * Context:
2361 * queue_lock must be held.
2362 */
2363struct request *blk_fetch_request(struct request_queue *q)
2364{
2365 struct request *rq;
2366
2367 rq = blk_peek_request(q);
2368 if (rq)
2369 blk_start_request(rq);
2370 return rq;
2371}
2372EXPORT_SYMBOL(blk_fetch_request);
2373
3bcddeac 2374/**
2e60e022 2375 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2376 * @req: the request being processed
710027a4 2377 * @error: %0 for success, < %0 for error
8ebf9756 2378 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2379 *
2380 * Description:
8ebf9756
RD
2381 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2382 * the request structure even if @req doesn't have leftover.
2383 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2384 *
2385 * This special helper function is only for request stacking drivers
2386 * (e.g. request-based dm) so that they can handle partial completion.
2387 * Actual device drivers should use blk_end_request instead.
2388 *
2389 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2390 * %false return from this function.
3bcddeac
KU
2391 *
2392 * Return:
2e60e022
TH
2393 * %false - this request doesn't have any more data
2394 * %true - this request has more data
3bcddeac 2395 **/
2e60e022 2396bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2397{
f79ea416 2398 int total_bytes;
1da177e4 2399
2e60e022
TH
2400 if (!req->bio)
2401 return false;
2402
af5040da 2403 trace_block_rq_complete(req->q, req, nr_bytes);
2056a782 2404
1da177e4 2405 /*
6f41469c
TH
2406 * For fs requests, rq is just carrier of independent bio's
2407 * and each partial completion should be handled separately.
2408 * Reset per-request error on each partial completion.
2409 *
2410 * TODO: tj: This is too subtle. It would be better to let
2411 * low level drivers do what they see fit.
1da177e4 2412 */
33659ebb 2413 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2414 req->errors = 0;
2415
33659ebb
CH
2416 if (error && req->cmd_type == REQ_TYPE_FS &&
2417 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2418 char *error_type;
2419
2420 switch (error) {
2421 case -ENOLINK:
2422 error_type = "recoverable transport";
2423 break;
2424 case -EREMOTEIO:
2425 error_type = "critical target";
2426 break;
2427 case -EBADE:
2428 error_type = "critical nexus";
2429 break;
d1ffc1f8
HR
2430 case -ETIMEDOUT:
2431 error_type = "timeout";
2432 break;
a9d6ceb8
HR
2433 case -ENOSPC:
2434 error_type = "critical space allocation";
2435 break;
7e782af5
HR
2436 case -ENODATA:
2437 error_type = "critical medium";
2438 break;
79775567
HR
2439 case -EIO:
2440 default:
2441 error_type = "I/O";
2442 break;
2443 }
37d7b34f
YZ
2444 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2445 error_type, req->rq_disk ?
2446 req->rq_disk->disk_name : "?",
2447 (unsigned long long)blk_rq_pos(req));
2448
1da177e4
LT
2449 }
2450
bc58ba94 2451 blk_account_io_completion(req, nr_bytes);
d72d904a 2452
f79ea416
KO
2453 total_bytes = 0;
2454 while (req->bio) {
2455 struct bio *bio = req->bio;
4f024f37 2456 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2457
4f024f37 2458 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2459 req->bio = bio->bi_next;
1da177e4 2460
f79ea416 2461 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2462
f79ea416
KO
2463 total_bytes += bio_bytes;
2464 nr_bytes -= bio_bytes;
1da177e4 2465
f79ea416
KO
2466 if (!nr_bytes)
2467 break;
1da177e4
LT
2468 }
2469
2470 /*
2471 * completely done
2472 */
2e60e022
TH
2473 if (!req->bio) {
2474 /*
2475 * Reset counters so that the request stacking driver
2476 * can find how many bytes remain in the request
2477 * later.
2478 */
a2dec7b3 2479 req->__data_len = 0;
2e60e022
TH
2480 return false;
2481 }
1da177e4 2482
a2dec7b3 2483 req->__data_len -= total_bytes;
2e46e8b2
TH
2484
2485 /* update sector only for requests with clear definition of sector */
e2a60da7 2486 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2487 req->__sector += total_bytes >> 9;
2e46e8b2 2488
80a761fd
TH
2489 /* mixed attributes always follow the first bio */
2490 if (req->cmd_flags & REQ_MIXED_MERGE) {
2491 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2492 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2493 }
2494
2e46e8b2
TH
2495 /*
2496 * If total number of sectors is less than the first segment
2497 * size, something has gone terribly wrong.
2498 */
2499 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2500 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2501 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2502 }
2503
2504 /* recalculate the number of segments */
1da177e4 2505 blk_recalc_rq_segments(req);
2e46e8b2 2506
2e60e022 2507 return true;
1da177e4 2508}
2e60e022 2509EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2510
2e60e022
TH
2511static bool blk_update_bidi_request(struct request *rq, int error,
2512 unsigned int nr_bytes,
2513 unsigned int bidi_bytes)
5efccd17 2514{
2e60e022
TH
2515 if (blk_update_request(rq, error, nr_bytes))
2516 return true;
5efccd17 2517
2e60e022
TH
2518 /* Bidi request must be completed as a whole */
2519 if (unlikely(blk_bidi_rq(rq)) &&
2520 blk_update_request(rq->next_rq, error, bidi_bytes))
2521 return true;
5efccd17 2522
e2e1a148
JA
2523 if (blk_queue_add_random(rq->q))
2524 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2525
2526 return false;
1da177e4
LT
2527}
2528
28018c24
JB
2529/**
2530 * blk_unprep_request - unprepare a request
2531 * @req: the request
2532 *
2533 * This function makes a request ready for complete resubmission (or
2534 * completion). It happens only after all error handling is complete,
2535 * so represents the appropriate moment to deallocate any resources
2536 * that were allocated to the request in the prep_rq_fn. The queue
2537 * lock is held when calling this.
2538 */
2539void blk_unprep_request(struct request *req)
2540{
2541 struct request_queue *q = req->q;
2542
2543 req->cmd_flags &= ~REQ_DONTPREP;
2544 if (q->unprep_rq_fn)
2545 q->unprep_rq_fn(q, req);
2546}
2547EXPORT_SYMBOL_GPL(blk_unprep_request);
2548
1da177e4
LT
2549/*
2550 * queue lock must be held
2551 */
12120077 2552void blk_finish_request(struct request *req, int error)
1da177e4 2553{
b8286239
KU
2554 if (blk_rq_tagged(req))
2555 blk_queue_end_tag(req->q, req);
2556
ba396a6c 2557 BUG_ON(blk_queued_rq(req));
1da177e4 2558
33659ebb 2559 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2560 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2561
e78042e5
MA
2562 blk_delete_timer(req);
2563
28018c24
JB
2564 if (req->cmd_flags & REQ_DONTPREP)
2565 blk_unprep_request(req);
2566
bc58ba94 2567 blk_account_io_done(req);
b8286239 2568
1da177e4 2569 if (req->end_io)
8ffdc655 2570 req->end_io(req, error);
b8286239
KU
2571 else {
2572 if (blk_bidi_rq(req))
2573 __blk_put_request(req->next_rq->q, req->next_rq);
2574
1da177e4 2575 __blk_put_request(req->q, req);
b8286239 2576 }
1da177e4 2577}
12120077 2578EXPORT_SYMBOL(blk_finish_request);
1da177e4 2579
3b11313a 2580/**
2e60e022
TH
2581 * blk_end_bidi_request - Complete a bidi request
2582 * @rq: the request to complete
2583 * @error: %0 for success, < %0 for error
2584 * @nr_bytes: number of bytes to complete @rq
2585 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2586 *
2587 * Description:
e3a04fe3 2588 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2589 * Drivers that supports bidi can safely call this member for any
2590 * type of request, bidi or uni. In the later case @bidi_bytes is
2591 * just ignored.
336cdb40
KU
2592 *
2593 * Return:
2e60e022
TH
2594 * %false - we are done with this request
2595 * %true - still buffers pending for this request
a0cd1285 2596 **/
b1f74493 2597static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2598 unsigned int nr_bytes, unsigned int bidi_bytes)
2599{
336cdb40 2600 struct request_queue *q = rq->q;
2e60e022 2601 unsigned long flags;
32fab448 2602
2e60e022
TH
2603 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2604 return true;
32fab448 2605
336cdb40 2606 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2607 blk_finish_request(rq, error);
336cdb40
KU
2608 spin_unlock_irqrestore(q->queue_lock, flags);
2609
2e60e022 2610 return false;
32fab448
KU
2611}
2612
336cdb40 2613/**
2e60e022
TH
2614 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2615 * @rq: the request to complete
710027a4 2616 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2617 * @nr_bytes: number of bytes to complete @rq
2618 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2619 *
2620 * Description:
2e60e022
TH
2621 * Identical to blk_end_bidi_request() except that queue lock is
2622 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2623 *
2624 * Return:
2e60e022
TH
2625 * %false - we are done with this request
2626 * %true - still buffers pending for this request
336cdb40 2627 **/
4853abaa 2628bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2629 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2630{
2e60e022
TH
2631 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2632 return true;
336cdb40 2633
2e60e022 2634 blk_finish_request(rq, error);
336cdb40 2635
2e60e022 2636 return false;
336cdb40 2637}
e19a3ab0
KU
2638
2639/**
2640 * blk_end_request - Helper function for drivers to complete the request.
2641 * @rq: the request being processed
710027a4 2642 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2643 * @nr_bytes: number of bytes to complete
2644 *
2645 * Description:
2646 * Ends I/O on a number of bytes attached to @rq.
2647 * If @rq has leftover, sets it up for the next range of segments.
2648 *
2649 * Return:
b1f74493
FT
2650 * %false - we are done with this request
2651 * %true - still buffers pending for this request
e19a3ab0 2652 **/
b1f74493 2653bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2654{
b1f74493 2655 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2656}
56ad1740 2657EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2658
2659/**
b1f74493
FT
2660 * blk_end_request_all - Helper function for drives to finish the request.
2661 * @rq: the request to finish
8ebf9756 2662 * @error: %0 for success, < %0 for error
336cdb40
KU
2663 *
2664 * Description:
b1f74493
FT
2665 * Completely finish @rq.
2666 */
2667void blk_end_request_all(struct request *rq, int error)
336cdb40 2668{
b1f74493
FT
2669 bool pending;
2670 unsigned int bidi_bytes = 0;
336cdb40 2671
b1f74493
FT
2672 if (unlikely(blk_bidi_rq(rq)))
2673 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2674
b1f74493
FT
2675 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2676 BUG_ON(pending);
2677}
56ad1740 2678EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2679
b1f74493
FT
2680/**
2681 * blk_end_request_cur - Helper function to finish the current request chunk.
2682 * @rq: the request to finish the current chunk for
8ebf9756 2683 * @error: %0 for success, < %0 for error
b1f74493
FT
2684 *
2685 * Description:
2686 * Complete the current consecutively mapped chunk from @rq.
2687 *
2688 * Return:
2689 * %false - we are done with this request
2690 * %true - still buffers pending for this request
2691 */
2692bool blk_end_request_cur(struct request *rq, int error)
2693{
2694 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2695}
56ad1740 2696EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2697
80a761fd
TH
2698/**
2699 * blk_end_request_err - Finish a request till the next failure boundary.
2700 * @rq: the request to finish till the next failure boundary for
2701 * @error: must be negative errno
2702 *
2703 * Description:
2704 * Complete @rq till the next failure boundary.
2705 *
2706 * Return:
2707 * %false - we are done with this request
2708 * %true - still buffers pending for this request
2709 */
2710bool blk_end_request_err(struct request *rq, int error)
2711{
2712 WARN_ON(error >= 0);
2713 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2714}
2715EXPORT_SYMBOL_GPL(blk_end_request_err);
2716
e3a04fe3 2717/**
b1f74493
FT
2718 * __blk_end_request - Helper function for drivers to complete the request.
2719 * @rq: the request being processed
2720 * @error: %0 for success, < %0 for error
2721 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2722 *
2723 * Description:
b1f74493 2724 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2725 *
2726 * Return:
b1f74493
FT
2727 * %false - we are done with this request
2728 * %true - still buffers pending for this request
e3a04fe3 2729 **/
b1f74493 2730bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2731{
b1f74493 2732 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2733}
56ad1740 2734EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2735
32fab448 2736/**
b1f74493
FT
2737 * __blk_end_request_all - Helper function for drives to finish the request.
2738 * @rq: the request to finish
8ebf9756 2739 * @error: %0 for success, < %0 for error
32fab448
KU
2740 *
2741 * Description:
b1f74493 2742 * Completely finish @rq. Must be called with queue lock held.
32fab448 2743 */
b1f74493 2744void __blk_end_request_all(struct request *rq, int error)
32fab448 2745{
b1f74493
FT
2746 bool pending;
2747 unsigned int bidi_bytes = 0;
2748
2749 if (unlikely(blk_bidi_rq(rq)))
2750 bidi_bytes = blk_rq_bytes(rq->next_rq);
2751
2752 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2753 BUG_ON(pending);
32fab448 2754}
56ad1740 2755EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2756
e19a3ab0 2757/**
b1f74493
FT
2758 * __blk_end_request_cur - Helper function to finish the current request chunk.
2759 * @rq: the request to finish the current chunk for
8ebf9756 2760 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2761 *
2762 * Description:
b1f74493
FT
2763 * Complete the current consecutively mapped chunk from @rq. Must
2764 * be called with queue lock held.
e19a3ab0
KU
2765 *
2766 * Return:
b1f74493
FT
2767 * %false - we are done with this request
2768 * %true - still buffers pending for this request
2769 */
2770bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2771{
b1f74493 2772 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2773}
56ad1740 2774EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2775
80a761fd
TH
2776/**
2777 * __blk_end_request_err - Finish a request till the next failure boundary.
2778 * @rq: the request to finish till the next failure boundary for
2779 * @error: must be negative errno
2780 *
2781 * Description:
2782 * Complete @rq till the next failure boundary. Must be called
2783 * with queue lock held.
2784 *
2785 * Return:
2786 * %false - we are done with this request
2787 * %true - still buffers pending for this request
2788 */
2789bool __blk_end_request_err(struct request *rq, int error)
2790{
2791 WARN_ON(error >= 0);
2792 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2793}
2794EXPORT_SYMBOL_GPL(__blk_end_request_err);
2795
86db1e29
JA
2796void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2797 struct bio *bio)
1da177e4 2798{
a82afdfc 2799 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2800 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2801
b4f42e28 2802 if (bio_has_data(bio))
fb2dce86 2803 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2804
4f024f37 2805 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2806 rq->bio = rq->biotail = bio;
1da177e4 2807
66846572
N
2808 if (bio->bi_bdev)
2809 rq->rq_disk = bio->bi_bdev->bd_disk;
2810}
1da177e4 2811
2d4dc890
IL
2812#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2813/**
2814 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2815 * @rq: the request to be flushed
2816 *
2817 * Description:
2818 * Flush all pages in @rq.
2819 */
2820void rq_flush_dcache_pages(struct request *rq)
2821{
2822 struct req_iterator iter;
7988613b 2823 struct bio_vec bvec;
2d4dc890
IL
2824
2825 rq_for_each_segment(bvec, rq, iter)
7988613b 2826 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2827}
2828EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2829#endif
2830
ef9e3fac
KU
2831/**
2832 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2833 * @q : the queue of the device being checked
2834 *
2835 * Description:
2836 * Check if underlying low-level drivers of a device are busy.
2837 * If the drivers want to export their busy state, they must set own
2838 * exporting function using blk_queue_lld_busy() first.
2839 *
2840 * Basically, this function is used only by request stacking drivers
2841 * to stop dispatching requests to underlying devices when underlying
2842 * devices are busy. This behavior helps more I/O merging on the queue
2843 * of the request stacking driver and prevents I/O throughput regression
2844 * on burst I/O load.
2845 *
2846 * Return:
2847 * 0 - Not busy (The request stacking driver should dispatch request)
2848 * 1 - Busy (The request stacking driver should stop dispatching request)
2849 */
2850int blk_lld_busy(struct request_queue *q)
2851{
2852 if (q->lld_busy_fn)
2853 return q->lld_busy_fn(q);
2854
2855 return 0;
2856}
2857EXPORT_SYMBOL_GPL(blk_lld_busy);
2858
b0fd271d
KU
2859/**
2860 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2861 * @rq: the clone request to be cleaned up
2862 *
2863 * Description:
2864 * Free all bios in @rq for a cloned request.
2865 */
2866void blk_rq_unprep_clone(struct request *rq)
2867{
2868 struct bio *bio;
2869
2870 while ((bio = rq->bio) != NULL) {
2871 rq->bio = bio->bi_next;
2872
2873 bio_put(bio);
2874 }
2875}
2876EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2877
2878/*
2879 * Copy attributes of the original request to the clone request.
b4f42e28 2880 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
b0fd271d
KU
2881 */
2882static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2883{
2884 dst->cpu = src->cpu;
3a2edd0d 2885 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2886 dst->cmd_type = src->cmd_type;
2887 dst->__sector = blk_rq_pos(src);
2888 dst->__data_len = blk_rq_bytes(src);
2889 dst->nr_phys_segments = src->nr_phys_segments;
2890 dst->ioprio = src->ioprio;
2891 dst->extra_len = src->extra_len;
2892}
2893
2894/**
2895 * blk_rq_prep_clone - Helper function to setup clone request
2896 * @rq: the request to be setup
2897 * @rq_src: original request to be cloned
2898 * @bs: bio_set that bios for clone are allocated from
2899 * @gfp_mask: memory allocation mask for bio
2900 * @bio_ctr: setup function to be called for each clone bio.
2901 * Returns %0 for success, non %0 for failure.
2902 * @data: private data to be passed to @bio_ctr
2903 *
2904 * Description:
2905 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
b4f42e28 2906 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
b0fd271d
KU
2907 * are not copied, and copying such parts is the caller's responsibility.
2908 * Also, pages which the original bios are pointing to are not copied
2909 * and the cloned bios just point same pages.
2910 * So cloned bios must be completed before original bios, which means
2911 * the caller must complete @rq before @rq_src.
2912 */
2913int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2914 struct bio_set *bs, gfp_t gfp_mask,
2915 int (*bio_ctr)(struct bio *, struct bio *, void *),
2916 void *data)
2917{
2918 struct bio *bio, *bio_src;
2919
2920 if (!bs)
2921 bs = fs_bio_set;
2922
2923 blk_rq_init(NULL, rq);
2924
2925 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2926 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2927 if (!bio)
2928 goto free_and_out;
2929
b0fd271d
KU
2930 if (bio_ctr && bio_ctr(bio, bio_src, data))
2931 goto free_and_out;
2932
2933 if (rq->bio) {
2934 rq->biotail->bi_next = bio;
2935 rq->biotail = bio;
2936 } else
2937 rq->bio = rq->biotail = bio;
2938 }
2939
2940 __blk_rq_prep_clone(rq, rq_src);
2941
2942 return 0;
2943
2944free_and_out:
2945 if (bio)
4254bba1 2946 bio_put(bio);
b0fd271d
KU
2947 blk_rq_unprep_clone(rq);
2948
2949 return -ENOMEM;
2950}
2951EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2952
59c3d45e 2953int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
2954{
2955 return queue_work(kblockd_workqueue, work);
2956}
1da177e4
LT
2957EXPORT_SYMBOL(kblockd_schedule_work);
2958
59c3d45e
JA
2959int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2960 unsigned long delay)
e43473b7
VG
2961{
2962 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2963}
2964EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2965
8ab14595
JA
2966int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2967 unsigned long delay)
2968{
2969 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2970}
2971EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2972
75df7136
SJ
2973/**
2974 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2975 * @plug: The &struct blk_plug that needs to be initialized
2976 *
2977 * Description:
2978 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2979 * pending I/O should the task end up blocking between blk_start_plug() and
2980 * blk_finish_plug(). This is important from a performance perspective, but
2981 * also ensures that we don't deadlock. For instance, if the task is blocking
2982 * for a memory allocation, memory reclaim could end up wanting to free a
2983 * page belonging to that request that is currently residing in our private
2984 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2985 * this kind of deadlock.
2986 */
73c10101
JA
2987void blk_start_plug(struct blk_plug *plug)
2988{
2989 struct task_struct *tsk = current;
2990
73c10101 2991 INIT_LIST_HEAD(&plug->list);
320ae51f 2992 INIT_LIST_HEAD(&plug->mq_list);
048c9374 2993 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2994
2995 /*
2996 * If this is a nested plug, don't actually assign it. It will be
2997 * flushed on its own.
2998 */
2999 if (!tsk->plug) {
3000 /*
3001 * Store ordering should not be needed here, since a potential
3002 * preempt will imply a full memory barrier
3003 */
3004 tsk->plug = plug;
3005 }
3006}
3007EXPORT_SYMBOL(blk_start_plug);
3008
3009static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3010{
3011 struct request *rqa = container_of(a, struct request, queuelist);
3012 struct request *rqb = container_of(b, struct request, queuelist);
3013
975927b9
JM
3014 return !(rqa->q < rqb->q ||
3015 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3016}
3017
49cac01e
JA
3018/*
3019 * If 'from_schedule' is true, then postpone the dispatch of requests
3020 * until a safe kblockd context. We due this to avoid accidental big
3021 * additional stack usage in driver dispatch, in places where the originally
3022 * plugger did not intend it.
3023 */
f6603783 3024static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3025 bool from_schedule)
99e22598 3026 __releases(q->queue_lock)
94b5eb28 3027{
49cac01e 3028 trace_block_unplug(q, depth, !from_schedule);
99e22598 3029
70460571 3030 if (from_schedule)
24ecfbe2 3031 blk_run_queue_async(q);
70460571 3032 else
24ecfbe2 3033 __blk_run_queue(q);
70460571 3034 spin_unlock(q->queue_lock);
94b5eb28
JA
3035}
3036
74018dc3 3037static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3038{
3039 LIST_HEAD(callbacks);
3040
2a7d5559
SL
3041 while (!list_empty(&plug->cb_list)) {
3042 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3043
2a7d5559
SL
3044 while (!list_empty(&callbacks)) {
3045 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3046 struct blk_plug_cb,
3047 list);
2a7d5559 3048 list_del(&cb->list);
74018dc3 3049 cb->callback(cb, from_schedule);
2a7d5559 3050 }
048c9374
N
3051 }
3052}
3053
9cbb1750
N
3054struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3055 int size)
3056{
3057 struct blk_plug *plug = current->plug;
3058 struct blk_plug_cb *cb;
3059
3060 if (!plug)
3061 return NULL;
3062
3063 list_for_each_entry(cb, &plug->cb_list, list)
3064 if (cb->callback == unplug && cb->data == data)
3065 return cb;
3066
3067 /* Not currently on the callback list */
3068 BUG_ON(size < sizeof(*cb));
3069 cb = kzalloc(size, GFP_ATOMIC);
3070 if (cb) {
3071 cb->data = data;
3072 cb->callback = unplug;
3073 list_add(&cb->list, &plug->cb_list);
3074 }
3075 return cb;
3076}
3077EXPORT_SYMBOL(blk_check_plugged);
3078
49cac01e 3079void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3080{
3081 struct request_queue *q;
3082 unsigned long flags;
3083 struct request *rq;
109b8129 3084 LIST_HEAD(list);
94b5eb28 3085 unsigned int depth;
73c10101 3086
74018dc3 3087 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3088
3089 if (!list_empty(&plug->mq_list))
3090 blk_mq_flush_plug_list(plug, from_schedule);
3091
73c10101
JA
3092 if (list_empty(&plug->list))
3093 return;
3094
109b8129
N
3095 list_splice_init(&plug->list, &list);
3096
422765c2 3097 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3098
3099 q = NULL;
94b5eb28 3100 depth = 0;
18811272
JA
3101
3102 /*
3103 * Save and disable interrupts here, to avoid doing it for every
3104 * queue lock we have to take.
3105 */
73c10101 3106 local_irq_save(flags);
109b8129
N
3107 while (!list_empty(&list)) {
3108 rq = list_entry_rq(list.next);
73c10101 3109 list_del_init(&rq->queuelist);
73c10101
JA
3110 BUG_ON(!rq->q);
3111 if (rq->q != q) {
99e22598
JA
3112 /*
3113 * This drops the queue lock
3114 */
3115 if (q)
49cac01e 3116 queue_unplugged(q, depth, from_schedule);
73c10101 3117 q = rq->q;
94b5eb28 3118 depth = 0;
73c10101
JA
3119 spin_lock(q->queue_lock);
3120 }
8ba61435
TH
3121
3122 /*
3123 * Short-circuit if @q is dead
3124 */
3f3299d5 3125 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3126 __blk_end_request_all(rq, -ENODEV);
3127 continue;
3128 }
3129
73c10101
JA
3130 /*
3131 * rq is already accounted, so use raw insert
3132 */
401a18e9
JA
3133 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3134 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3135 else
3136 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3137
3138 depth++;
73c10101
JA
3139 }
3140
99e22598
JA
3141 /*
3142 * This drops the queue lock
3143 */
3144 if (q)
49cac01e 3145 queue_unplugged(q, depth, from_schedule);
73c10101 3146
73c10101
JA
3147 local_irq_restore(flags);
3148}
73c10101
JA
3149
3150void blk_finish_plug(struct blk_plug *plug)
3151{
f6603783 3152 blk_flush_plug_list(plug, false);
73c10101 3153
88b996cd
CH
3154 if (plug == current->plug)
3155 current->plug = NULL;
73c10101 3156}
88b996cd 3157EXPORT_SYMBOL(blk_finish_plug);
73c10101 3158
6c954667
LM
3159#ifdef CONFIG_PM_RUNTIME
3160/**
3161 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3162 * @q: the queue of the device
3163 * @dev: the device the queue belongs to
3164 *
3165 * Description:
3166 * Initialize runtime-PM-related fields for @q and start auto suspend for
3167 * @dev. Drivers that want to take advantage of request-based runtime PM
3168 * should call this function after @dev has been initialized, and its
3169 * request queue @q has been allocated, and runtime PM for it can not happen
3170 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3171 * cases, driver should call this function before any I/O has taken place.
3172 *
3173 * This function takes care of setting up using auto suspend for the device,
3174 * the autosuspend delay is set to -1 to make runtime suspend impossible
3175 * until an updated value is either set by user or by driver. Drivers do
3176 * not need to touch other autosuspend settings.
3177 *
3178 * The block layer runtime PM is request based, so only works for drivers
3179 * that use request as their IO unit instead of those directly use bio's.
3180 */
3181void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3182{
3183 q->dev = dev;
3184 q->rpm_status = RPM_ACTIVE;
3185 pm_runtime_set_autosuspend_delay(q->dev, -1);
3186 pm_runtime_use_autosuspend(q->dev);
3187}
3188EXPORT_SYMBOL(blk_pm_runtime_init);
3189
3190/**
3191 * blk_pre_runtime_suspend - Pre runtime suspend check
3192 * @q: the queue of the device
3193 *
3194 * Description:
3195 * This function will check if runtime suspend is allowed for the device
3196 * by examining if there are any requests pending in the queue. If there
3197 * are requests pending, the device can not be runtime suspended; otherwise,
3198 * the queue's status will be updated to SUSPENDING and the driver can
3199 * proceed to suspend the device.
3200 *
3201 * For the not allowed case, we mark last busy for the device so that
3202 * runtime PM core will try to autosuspend it some time later.
3203 *
3204 * This function should be called near the start of the device's
3205 * runtime_suspend callback.
3206 *
3207 * Return:
3208 * 0 - OK to runtime suspend the device
3209 * -EBUSY - Device should not be runtime suspended
3210 */
3211int blk_pre_runtime_suspend(struct request_queue *q)
3212{
3213 int ret = 0;
3214
3215 spin_lock_irq(q->queue_lock);
3216 if (q->nr_pending) {
3217 ret = -EBUSY;
3218 pm_runtime_mark_last_busy(q->dev);
3219 } else {
3220 q->rpm_status = RPM_SUSPENDING;
3221 }
3222 spin_unlock_irq(q->queue_lock);
3223 return ret;
3224}
3225EXPORT_SYMBOL(blk_pre_runtime_suspend);
3226
3227/**
3228 * blk_post_runtime_suspend - Post runtime suspend processing
3229 * @q: the queue of the device
3230 * @err: return value of the device's runtime_suspend function
3231 *
3232 * Description:
3233 * Update the queue's runtime status according to the return value of the
3234 * device's runtime suspend function and mark last busy for the device so
3235 * that PM core will try to auto suspend the device at a later time.
3236 *
3237 * This function should be called near the end of the device's
3238 * runtime_suspend callback.
3239 */
3240void blk_post_runtime_suspend(struct request_queue *q, int err)
3241{
3242 spin_lock_irq(q->queue_lock);
3243 if (!err) {
3244 q->rpm_status = RPM_SUSPENDED;
3245 } else {
3246 q->rpm_status = RPM_ACTIVE;
3247 pm_runtime_mark_last_busy(q->dev);
3248 }
3249 spin_unlock_irq(q->queue_lock);
3250}
3251EXPORT_SYMBOL(blk_post_runtime_suspend);
3252
3253/**
3254 * blk_pre_runtime_resume - Pre runtime resume processing
3255 * @q: the queue of the device
3256 *
3257 * Description:
3258 * Update the queue's runtime status to RESUMING in preparation for the
3259 * runtime resume of the device.
3260 *
3261 * This function should be called near the start of the device's
3262 * runtime_resume callback.
3263 */
3264void blk_pre_runtime_resume(struct request_queue *q)
3265{
3266 spin_lock_irq(q->queue_lock);
3267 q->rpm_status = RPM_RESUMING;
3268 spin_unlock_irq(q->queue_lock);
3269}
3270EXPORT_SYMBOL(blk_pre_runtime_resume);
3271
3272/**
3273 * blk_post_runtime_resume - Post runtime resume processing
3274 * @q: the queue of the device
3275 * @err: return value of the device's runtime_resume function
3276 *
3277 * Description:
3278 * Update the queue's runtime status according to the return value of the
3279 * device's runtime_resume function. If it is successfully resumed, process
3280 * the requests that are queued into the device's queue when it is resuming
3281 * and then mark last busy and initiate autosuspend for it.
3282 *
3283 * This function should be called near the end of the device's
3284 * runtime_resume callback.
3285 */
3286void blk_post_runtime_resume(struct request_queue *q, int err)
3287{
3288 spin_lock_irq(q->queue_lock);
3289 if (!err) {
3290 q->rpm_status = RPM_ACTIVE;
3291 __blk_run_queue(q);
3292 pm_runtime_mark_last_busy(q->dev);
c60855cd 3293 pm_request_autosuspend(q->dev);
6c954667
LM
3294 } else {
3295 q->rpm_status = RPM_SUSPENDED;
3296 }
3297 spin_unlock_irq(q->queue_lock);
3298}
3299EXPORT_SYMBOL(blk_post_runtime_resume);
3300#endif
3301
1da177e4
LT
3302int __init blk_dev_init(void)
3303{
9eb55b03
NK
3304 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3305 sizeof(((struct request *)0)->cmd_flags));
3306
89b90be2
TH
3307 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3308 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3309 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3310 if (!kblockd_workqueue)
3311 panic("Failed to create kblockd\n");
3312
3313 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3314 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3315
8324aa91 3316 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3317 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3318
d38ecf93 3319 return 0;
1da177e4 3320}