bfs: correct return values
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
55782138
LZ
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/block.h>
1da177e4 38
8324aa91 39#include "blk.h"
5efd6113 40#include "blk-cgroup.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 48
a73f730d
TH
49DEFINE_IDA(blk_queue_ida);
50
1da177e4
LT
51/*
52 * For the allocated request tables
53 */
320ae51f 54struct kmem_cache *request_cachep = NULL;
1da177e4
LT
55
56/*
57 * For queue allocation
58 */
6728cb0e 59struct kmem_cache *blk_requestq_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4 65
8324aa91 66void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
67{
68 int nr;
69
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
74
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
79}
80
1da177e4
LT
81/**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
84 *
85 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
86 * backing_dev_info. This function can only be called if @bdev is opened
87 * and the return value is never NULL.
1da177e4
LT
88 */
89struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90{
165125e1 91 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 92
ff9ea323 93 return &q->backing_dev_info;
1da177e4 94}
1da177e4
LT
95EXPORT_SYMBOL(blk_get_backing_dev_info);
96
2a4aa30c 97void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 98{
1afb20f3
FT
99 memset(rq, 0, sizeof(*rq));
100
1da177e4 101 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 102 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 103 rq->cpu = -1;
63a71386 104 rq->q = q;
a2dec7b3 105 rq->__sector = (sector_t) -1;
2e662b65
JA
106 INIT_HLIST_NODE(&rq->hash);
107 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 108 rq->cmd = rq->__cmd;
e2494e1b 109 rq->cmd_len = BLK_MAX_CDB;
63a71386 110 rq->tag = -1;
b243ddcb 111 rq->start_time = jiffies;
9195291e 112 set_start_time_ns(rq);
09e099d4 113 rq->part = NULL;
1da177e4 114}
2a4aa30c 115EXPORT_SYMBOL(blk_rq_init);
1da177e4 116
5bb23a68
N
117static void req_bio_endio(struct request *rq, struct bio *bio,
118 unsigned int nbytes, int error)
1da177e4 119{
143a87f4
TH
120 if (error)
121 clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 error = -EIO;
797e7dbb 124
143a87f4
TH
125 if (unlikely(rq->cmd_flags & REQ_QUIET))
126 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 127
f79ea416 128 bio_advance(bio, nbytes);
7ba1ba12 129
143a87f4 130 /* don't actually finish bio if it's part of flush sequence */
4f024f37 131 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
143a87f4 132 bio_endio(bio, error);
1da177e4 133}
1da177e4 134
1da177e4
LT
135void blk_dump_rq_flags(struct request *rq, char *msg)
136{
137 int bit;
138
5953316d 139 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 140 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 141 (unsigned long long) rq->cmd_flags);
1da177e4 142
83096ebf
TH
143 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
144 (unsigned long long)blk_rq_pos(rq),
145 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
146 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
147 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 148
33659ebb 149 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 150 printk(KERN_INFO " cdb: ");
d34c87e4 151 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
152 printk("%02x ", rq->cmd[bit]);
153 printk("\n");
154 }
155}
1da177e4
LT
156EXPORT_SYMBOL(blk_dump_rq_flags);
157
3cca6dc1 158static void blk_delay_work(struct work_struct *work)
1da177e4 159{
3cca6dc1 160 struct request_queue *q;
1da177e4 161
3cca6dc1
JA
162 q = container_of(work, struct request_queue, delay_work.work);
163 spin_lock_irq(q->queue_lock);
24ecfbe2 164 __blk_run_queue(q);
3cca6dc1 165 spin_unlock_irq(q->queue_lock);
1da177e4 166}
1da177e4
LT
167
168/**
3cca6dc1
JA
169 * blk_delay_queue - restart queueing after defined interval
170 * @q: The &struct request_queue in question
171 * @msecs: Delay in msecs
1da177e4
LT
172 *
173 * Description:
3cca6dc1
JA
174 * Sometimes queueing needs to be postponed for a little while, to allow
175 * resources to come back. This function will make sure that queueing is
70460571 176 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
177 */
178void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 179{
70460571
BVA
180 if (likely(!blk_queue_dead(q)))
181 queue_delayed_work(kblockd_workqueue, &q->delay_work,
182 msecs_to_jiffies(msecs));
2ad8b1ef 183}
3cca6dc1 184EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 185
1da177e4
LT
186/**
187 * blk_start_queue - restart a previously stopped queue
165125e1 188 * @q: The &struct request_queue in question
1da177e4
LT
189 *
190 * Description:
191 * blk_start_queue() will clear the stop flag on the queue, and call
192 * the request_fn for the queue if it was in a stopped state when
193 * entered. Also see blk_stop_queue(). Queue lock must be held.
194 **/
165125e1 195void blk_start_queue(struct request_queue *q)
1da177e4 196{
a038e253
PBG
197 WARN_ON(!irqs_disabled());
198
75ad23bc 199 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 200 __blk_run_queue(q);
1da177e4 201}
1da177e4
LT
202EXPORT_SYMBOL(blk_start_queue);
203
204/**
205 * blk_stop_queue - stop a queue
165125e1 206 * @q: The &struct request_queue in question
1da177e4
LT
207 *
208 * Description:
209 * The Linux block layer assumes that a block driver will consume all
210 * entries on the request queue when the request_fn strategy is called.
211 * Often this will not happen, because of hardware limitations (queue
212 * depth settings). If a device driver gets a 'queue full' response,
213 * or if it simply chooses not to queue more I/O at one point, it can
214 * call this function to prevent the request_fn from being called until
215 * the driver has signalled it's ready to go again. This happens by calling
216 * blk_start_queue() to restart queue operations. Queue lock must be held.
217 **/
165125e1 218void blk_stop_queue(struct request_queue *q)
1da177e4 219{
136b5721 220 cancel_delayed_work(&q->delay_work);
75ad23bc 221 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
222}
223EXPORT_SYMBOL(blk_stop_queue);
224
225/**
226 * blk_sync_queue - cancel any pending callbacks on a queue
227 * @q: the queue
228 *
229 * Description:
230 * The block layer may perform asynchronous callback activity
231 * on a queue, such as calling the unplug function after a timeout.
232 * A block device may call blk_sync_queue to ensure that any
233 * such activity is cancelled, thus allowing it to release resources
59c51591 234 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
235 * that its ->make_request_fn will not re-add plugging prior to calling
236 * this function.
237 *
da527770 238 * This function does not cancel any asynchronous activity arising
da3dae54 239 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 240 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 241 *
1da177e4
LT
242 */
243void blk_sync_queue(struct request_queue *q)
244{
70ed28b9 245 del_timer_sync(&q->timeout);
f04c1fe7
ML
246
247 if (q->mq_ops) {
248 struct blk_mq_hw_ctx *hctx;
249 int i;
250
70f4db63
CH
251 queue_for_each_hw_ctx(q, hctx, i) {
252 cancel_delayed_work_sync(&hctx->run_work);
253 cancel_delayed_work_sync(&hctx->delay_work);
254 }
f04c1fe7
ML
255 } else {
256 cancel_delayed_work_sync(&q->delay_work);
257 }
1da177e4
LT
258}
259EXPORT_SYMBOL(blk_sync_queue);
260
c246e80d
BVA
261/**
262 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
263 * @q: The queue to run
264 *
265 * Description:
266 * Invoke request handling on a queue if there are any pending requests.
267 * May be used to restart request handling after a request has completed.
268 * This variant runs the queue whether or not the queue has been
269 * stopped. Must be called with the queue lock held and interrupts
270 * disabled. See also @blk_run_queue.
271 */
272inline void __blk_run_queue_uncond(struct request_queue *q)
273{
274 if (unlikely(blk_queue_dead(q)))
275 return;
276
24faf6f6
BVA
277 /*
278 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
279 * the queue lock internally. As a result multiple threads may be
280 * running such a request function concurrently. Keep track of the
281 * number of active request_fn invocations such that blk_drain_queue()
282 * can wait until all these request_fn calls have finished.
283 */
284 q->request_fn_active++;
c246e80d 285 q->request_fn(q);
24faf6f6 286 q->request_fn_active--;
c246e80d
BVA
287}
288
1da177e4 289/**
80a4b58e 290 * __blk_run_queue - run a single device queue
1da177e4 291 * @q: The queue to run
80a4b58e
JA
292 *
293 * Description:
294 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 295 * held and interrupts disabled.
1da177e4 296 */
24ecfbe2 297void __blk_run_queue(struct request_queue *q)
1da177e4 298{
a538cd03
TH
299 if (unlikely(blk_queue_stopped(q)))
300 return;
301
c246e80d 302 __blk_run_queue_uncond(q);
75ad23bc
NP
303}
304EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 305
24ecfbe2
CH
306/**
307 * blk_run_queue_async - run a single device queue in workqueue context
308 * @q: The queue to run
309 *
310 * Description:
311 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 312 * of us. The caller must hold the queue lock.
24ecfbe2
CH
313 */
314void blk_run_queue_async(struct request_queue *q)
315{
70460571 316 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 317 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 318}
c21e6beb 319EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 320
75ad23bc
NP
321/**
322 * blk_run_queue - run a single device queue
323 * @q: The queue to run
80a4b58e
JA
324 *
325 * Description:
326 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 327 * May be used to restart queueing when a request has completed.
75ad23bc
NP
328 */
329void blk_run_queue(struct request_queue *q)
330{
331 unsigned long flags;
332
333 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 334 __blk_run_queue(q);
1da177e4
LT
335 spin_unlock_irqrestore(q->queue_lock, flags);
336}
337EXPORT_SYMBOL(blk_run_queue);
338
165125e1 339void blk_put_queue(struct request_queue *q)
483f4afc
AV
340{
341 kobject_put(&q->kobj);
342}
d86e0e83 343EXPORT_SYMBOL(blk_put_queue);
483f4afc 344
e3c78ca5 345/**
807592a4 346 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 347 * @q: queue to drain
c9a929dd 348 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 349 *
c9a929dd
TH
350 * Drain requests from @q. If @drain_all is set, all requests are drained.
351 * If not, only ELVPRIV requests are drained. The caller is responsible
352 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 353 */
807592a4
BVA
354static void __blk_drain_queue(struct request_queue *q, bool drain_all)
355 __releases(q->queue_lock)
356 __acquires(q->queue_lock)
e3c78ca5 357{
458f27a9
AH
358 int i;
359
807592a4
BVA
360 lockdep_assert_held(q->queue_lock);
361
e3c78ca5 362 while (true) {
481a7d64 363 bool drain = false;
e3c78ca5 364
b855b04a
TH
365 /*
366 * The caller might be trying to drain @q before its
367 * elevator is initialized.
368 */
369 if (q->elevator)
370 elv_drain_elevator(q);
371
5efd6113 372 blkcg_drain_queue(q);
e3c78ca5 373
4eabc941
TH
374 /*
375 * This function might be called on a queue which failed
b855b04a
TH
376 * driver init after queue creation or is not yet fully
377 * active yet. Some drivers (e.g. fd and loop) get unhappy
378 * in such cases. Kick queue iff dispatch queue has
379 * something on it and @q has request_fn set.
4eabc941 380 */
b855b04a 381 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 382 __blk_run_queue(q);
c9a929dd 383
8a5ecdd4 384 drain |= q->nr_rqs_elvpriv;
24faf6f6 385 drain |= q->request_fn_active;
481a7d64
TH
386
387 /*
388 * Unfortunately, requests are queued at and tracked from
389 * multiple places and there's no single counter which can
390 * be drained. Check all the queues and counters.
391 */
392 if (drain_all) {
e97c293c 393 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
394 drain |= !list_empty(&q->queue_head);
395 for (i = 0; i < 2; i++) {
8a5ecdd4 396 drain |= q->nr_rqs[i];
481a7d64 397 drain |= q->in_flight[i];
7c94e1c1
ML
398 if (fq)
399 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
400 }
401 }
e3c78ca5 402
481a7d64 403 if (!drain)
e3c78ca5 404 break;
807592a4
BVA
405
406 spin_unlock_irq(q->queue_lock);
407
e3c78ca5 408 msleep(10);
807592a4
BVA
409
410 spin_lock_irq(q->queue_lock);
e3c78ca5 411 }
458f27a9
AH
412
413 /*
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
417 */
418 if (q->request_fn) {
a051661c
TH
419 struct request_list *rl;
420
a051661c
TH
421 blk_queue_for_each_rl(rl, q)
422 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423 wake_up_all(&rl->wait[i]);
458f27a9 424 }
e3c78ca5
TH
425}
426
d732580b
TH
427/**
428 * blk_queue_bypass_start - enter queue bypass mode
429 * @q: queue of interest
430 *
431 * In bypass mode, only the dispatch FIFO queue of @q is used. This
432 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 433 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
434 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
435 * inside queue or RCU read lock.
d732580b
TH
436 */
437void blk_queue_bypass_start(struct request_queue *q)
438{
439 spin_lock_irq(q->queue_lock);
776687bc 440 q->bypass_depth++;
d732580b
TH
441 queue_flag_set(QUEUE_FLAG_BYPASS, q);
442 spin_unlock_irq(q->queue_lock);
443
776687bc
TH
444 /*
445 * Queues start drained. Skip actual draining till init is
446 * complete. This avoids lenghty delays during queue init which
447 * can happen many times during boot.
448 */
449 if (blk_queue_init_done(q)) {
807592a4
BVA
450 spin_lock_irq(q->queue_lock);
451 __blk_drain_queue(q, false);
452 spin_unlock_irq(q->queue_lock);
453
b82d4b19
TH
454 /* ensure blk_queue_bypass() is %true inside RCU read lock */
455 synchronize_rcu();
456 }
d732580b
TH
457}
458EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
459
460/**
461 * blk_queue_bypass_end - leave queue bypass mode
462 * @q: queue of interest
463 *
464 * Leave bypass mode and restore the normal queueing behavior.
465 */
466void blk_queue_bypass_end(struct request_queue *q)
467{
468 spin_lock_irq(q->queue_lock);
469 if (!--q->bypass_depth)
470 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
471 WARN_ON_ONCE(q->bypass_depth < 0);
472 spin_unlock_irq(q->queue_lock);
473}
474EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
475
aed3ea94
JA
476void blk_set_queue_dying(struct request_queue *q)
477{
478 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
479
480 if (q->mq_ops)
481 blk_mq_wake_waiters(q);
482 else {
483 struct request_list *rl;
484
485 blk_queue_for_each_rl(rl, q) {
486 if (rl->rq_pool) {
487 wake_up(&rl->wait[BLK_RW_SYNC]);
488 wake_up(&rl->wait[BLK_RW_ASYNC]);
489 }
490 }
491 }
492}
493EXPORT_SYMBOL_GPL(blk_set_queue_dying);
494
c9a929dd
TH
495/**
496 * blk_cleanup_queue - shutdown a request queue
497 * @q: request queue to shutdown
498 *
c246e80d
BVA
499 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
500 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 501 */
6728cb0e 502void blk_cleanup_queue(struct request_queue *q)
483f4afc 503{
c9a929dd 504 spinlock_t *lock = q->queue_lock;
e3335de9 505
3f3299d5 506 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 507 mutex_lock(&q->sysfs_lock);
aed3ea94 508 blk_set_queue_dying(q);
c9a929dd 509 spin_lock_irq(lock);
6ecf23af 510
80fd9979 511 /*
3f3299d5 512 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
513 * that, unlike blk_queue_bypass_start(), we aren't performing
514 * synchronize_rcu() after entering bypass mode to avoid the delay
515 * as some drivers create and destroy a lot of queues while
516 * probing. This is still safe because blk_release_queue() will be
517 * called only after the queue refcnt drops to zero and nothing,
518 * RCU or not, would be traversing the queue by then.
519 */
6ecf23af
TH
520 q->bypass_depth++;
521 queue_flag_set(QUEUE_FLAG_BYPASS, q);
522
c9a929dd
TH
523 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
524 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 525 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
526 spin_unlock_irq(lock);
527 mutex_unlock(&q->sysfs_lock);
528
c246e80d
BVA
529 /*
530 * Drain all requests queued before DYING marking. Set DEAD flag to
531 * prevent that q->request_fn() gets invoked after draining finished.
532 */
43a5e4e2 533 if (q->mq_ops) {
780db207 534 blk_mq_freeze_queue(q);
43a5e4e2
ML
535 spin_lock_irq(lock);
536 } else {
537 spin_lock_irq(lock);
538 __blk_drain_queue(q, true);
539 }
c246e80d 540 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 541 spin_unlock_irq(lock);
c9a929dd
TH
542
543 /* @q won't process any more request, flush async actions */
544 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
545 blk_sync_queue(q);
546
45a9c9d9
BVA
547 if (q->mq_ops)
548 blk_mq_free_queue(q);
549
5e5cfac0
AH
550 spin_lock_irq(lock);
551 if (q->queue_lock != &q->__queue_lock)
552 q->queue_lock = &q->__queue_lock;
553 spin_unlock_irq(lock);
554
c9a929dd 555 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
556 blk_put_queue(q);
557}
1da177e4
LT
558EXPORT_SYMBOL(blk_cleanup_queue);
559
5b788ce3
TH
560int blk_init_rl(struct request_list *rl, struct request_queue *q,
561 gfp_t gfp_mask)
1da177e4 562{
1abec4fd
MS
563 if (unlikely(rl->rq_pool))
564 return 0;
565
5b788ce3 566 rl->q = q;
1faa16d2
JA
567 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
568 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
569 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
570 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 571
1946089a 572 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 573 mempool_free_slab, request_cachep,
5b788ce3 574 gfp_mask, q->node);
1da177e4
LT
575 if (!rl->rq_pool)
576 return -ENOMEM;
577
578 return 0;
579}
580
5b788ce3
TH
581void blk_exit_rl(struct request_list *rl)
582{
583 if (rl->rq_pool)
584 mempool_destroy(rl->rq_pool);
585}
586
165125e1 587struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 588{
c304a51b 589 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
590}
591EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 592
165125e1 593struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 594{
165125e1 595 struct request_queue *q;
e0bf68dd 596 int err;
1946089a 597
8324aa91 598 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 599 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
600 if (!q)
601 return NULL;
602
00380a40 603 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 604 if (q->id < 0)
3d2936f4 605 goto fail_q;
a73f730d 606
0989a025
JA
607 q->backing_dev_info.ra_pages =
608 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
609 q->backing_dev_info.state = 0;
b4caecd4 610 q->backing_dev_info.capabilities = 0;
d993831f 611 q->backing_dev_info.name = "block";
5151412d 612 q->node = node_id;
0989a025 613
e0bf68dd 614 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
615 if (err)
616 goto fail_id;
e0bf68dd 617
31373d09
MG
618 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
619 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 620 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 621 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 622 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 623 INIT_LIST_HEAD(&q->icq_list);
4eef3049 624#ifdef CONFIG_BLK_CGROUP
e8989fae 625 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 626#endif
3cca6dc1 627 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 628
8324aa91 629 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 630
483f4afc 631 mutex_init(&q->sysfs_lock);
e7e72bf6 632 spin_lock_init(&q->__queue_lock);
483f4afc 633
c94a96ac
VG
634 /*
635 * By default initialize queue_lock to internal lock and driver can
636 * override it later if need be.
637 */
638 q->queue_lock = &q->__queue_lock;
639
b82d4b19
TH
640 /*
641 * A queue starts its life with bypass turned on to avoid
642 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
643 * init. The initial bypass will be finished when the queue is
644 * registered by blk_register_queue().
b82d4b19
TH
645 */
646 q->bypass_depth = 1;
647 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
648
320ae51f
JA
649 init_waitqueue_head(&q->mq_freeze_wq);
650
5efd6113 651 if (blkcg_init_queue(q))
fff4996b 652 goto fail_bdi;
f51b802c 653
1da177e4 654 return q;
a73f730d 655
fff4996b
MP
656fail_bdi:
657 bdi_destroy(&q->backing_dev_info);
a73f730d
TH
658fail_id:
659 ida_simple_remove(&blk_queue_ida, q->id);
660fail_q:
661 kmem_cache_free(blk_requestq_cachep, q);
662 return NULL;
1da177e4 663}
1946089a 664EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
665
666/**
667 * blk_init_queue - prepare a request queue for use with a block device
668 * @rfn: The function to be called to process requests that have been
669 * placed on the queue.
670 * @lock: Request queue spin lock
671 *
672 * Description:
673 * If a block device wishes to use the standard request handling procedures,
674 * which sorts requests and coalesces adjacent requests, then it must
675 * call blk_init_queue(). The function @rfn will be called when there
676 * are requests on the queue that need to be processed. If the device
677 * supports plugging, then @rfn may not be called immediately when requests
678 * are available on the queue, but may be called at some time later instead.
679 * Plugged queues are generally unplugged when a buffer belonging to one
680 * of the requests on the queue is needed, or due to memory pressure.
681 *
682 * @rfn is not required, or even expected, to remove all requests off the
683 * queue, but only as many as it can handle at a time. If it does leave
684 * requests on the queue, it is responsible for arranging that the requests
685 * get dealt with eventually.
686 *
687 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
688 * request queue; this lock will be taken also from interrupt context, so irq
689 * disabling is needed for it.
1da177e4 690 *
710027a4 691 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
692 * it didn't succeed.
693 *
694 * Note:
695 * blk_init_queue() must be paired with a blk_cleanup_queue() call
696 * when the block device is deactivated (such as at module unload).
697 **/
1946089a 698
165125e1 699struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 700{
c304a51b 701 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
702}
703EXPORT_SYMBOL(blk_init_queue);
704
165125e1 705struct request_queue *
1946089a
CL
706blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
707{
c86d1b8a 708 struct request_queue *uninit_q, *q;
1da177e4 709
c86d1b8a
MS
710 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
711 if (!uninit_q)
712 return NULL;
713
5151412d 714 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 715 if (!q)
7982e90c 716 blk_cleanup_queue(uninit_q);
18741986 717
7982e90c 718 return q;
01effb0d
MS
719}
720EXPORT_SYMBOL(blk_init_queue_node);
721
722struct request_queue *
723blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
724 spinlock_t *lock)
01effb0d 725{
1da177e4
LT
726 if (!q)
727 return NULL;
728
f70ced09 729 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 730 if (!q->fq)
7982e90c
MS
731 return NULL;
732
a051661c 733 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 734 goto fail;
1da177e4
LT
735
736 q->request_fn = rfn;
1da177e4 737 q->prep_rq_fn = NULL;
28018c24 738 q->unprep_rq_fn = NULL;
60ea8226 739 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
740
741 /* Override internal queue lock with supplied lock pointer */
742 if (lock)
743 q->queue_lock = lock;
1da177e4 744
f3b144aa
JA
745 /*
746 * This also sets hw/phys segments, boundary and size
747 */
c20e8de2 748 blk_queue_make_request(q, blk_queue_bio);
1da177e4 749
44ec9542
AS
750 q->sg_reserved_size = INT_MAX;
751
eb1c160b
TS
752 /* Protect q->elevator from elevator_change */
753 mutex_lock(&q->sysfs_lock);
754
b82d4b19 755 /* init elevator */
eb1c160b
TS
756 if (elevator_init(q, NULL)) {
757 mutex_unlock(&q->sysfs_lock);
708f04d2 758 goto fail;
eb1c160b
TS
759 }
760
761 mutex_unlock(&q->sysfs_lock);
762
b82d4b19 763 return q;
708f04d2
DJ
764
765fail:
ba483388 766 blk_free_flush_queue(q->fq);
708f04d2 767 return NULL;
1da177e4 768}
5151412d 769EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 770
09ac46c4 771bool blk_get_queue(struct request_queue *q)
1da177e4 772{
3f3299d5 773 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
774 __blk_get_queue(q);
775 return true;
1da177e4
LT
776 }
777
09ac46c4 778 return false;
1da177e4 779}
d86e0e83 780EXPORT_SYMBOL(blk_get_queue);
1da177e4 781
5b788ce3 782static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 783{
f1f8cc94 784 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 785 elv_put_request(rl->q, rq);
f1f8cc94 786 if (rq->elv.icq)
11a3122f 787 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
788 }
789
5b788ce3 790 mempool_free(rq, rl->rq_pool);
1da177e4
LT
791}
792
1da177e4
LT
793/*
794 * ioc_batching returns true if the ioc is a valid batching request and
795 * should be given priority access to a request.
796 */
165125e1 797static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
798{
799 if (!ioc)
800 return 0;
801
802 /*
803 * Make sure the process is able to allocate at least 1 request
804 * even if the batch times out, otherwise we could theoretically
805 * lose wakeups.
806 */
807 return ioc->nr_batch_requests == q->nr_batching ||
808 (ioc->nr_batch_requests > 0
809 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
810}
811
812/*
813 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
814 * will cause the process to be a "batcher" on all queues in the system. This
815 * is the behaviour we want though - once it gets a wakeup it should be given
816 * a nice run.
817 */
165125e1 818static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
819{
820 if (!ioc || ioc_batching(q, ioc))
821 return;
822
823 ioc->nr_batch_requests = q->nr_batching;
824 ioc->last_waited = jiffies;
825}
826
5b788ce3 827static void __freed_request(struct request_list *rl, int sync)
1da177e4 828{
5b788ce3 829 struct request_queue *q = rl->q;
1da177e4 830
a051661c
TH
831 /*
832 * bdi isn't aware of blkcg yet. As all async IOs end up root
833 * blkcg anyway, just use root blkcg state.
834 */
835 if (rl == &q->root_rl &&
836 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 837 blk_clear_queue_congested(q, sync);
1da177e4 838
1faa16d2
JA
839 if (rl->count[sync] + 1 <= q->nr_requests) {
840 if (waitqueue_active(&rl->wait[sync]))
841 wake_up(&rl->wait[sync]);
1da177e4 842
5b788ce3 843 blk_clear_rl_full(rl, sync);
1da177e4
LT
844 }
845}
846
847/*
848 * A request has just been released. Account for it, update the full and
849 * congestion status, wake up any waiters. Called under q->queue_lock.
850 */
5b788ce3 851static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 852{
5b788ce3 853 struct request_queue *q = rl->q;
75eb6c37 854 int sync = rw_is_sync(flags);
1da177e4 855
8a5ecdd4 856 q->nr_rqs[sync]--;
1faa16d2 857 rl->count[sync]--;
75eb6c37 858 if (flags & REQ_ELVPRIV)
8a5ecdd4 859 q->nr_rqs_elvpriv--;
1da177e4 860
5b788ce3 861 __freed_request(rl, sync);
1da177e4 862
1faa16d2 863 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 864 __freed_request(rl, sync ^ 1);
1da177e4
LT
865}
866
e3a2b3f9
JA
867int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
868{
869 struct request_list *rl;
870
871 spin_lock_irq(q->queue_lock);
872 q->nr_requests = nr;
873 blk_queue_congestion_threshold(q);
874
875 /* congestion isn't cgroup aware and follows root blkcg for now */
876 rl = &q->root_rl;
877
878 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
879 blk_set_queue_congested(q, BLK_RW_SYNC);
880 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
881 blk_clear_queue_congested(q, BLK_RW_SYNC);
882
883 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
884 blk_set_queue_congested(q, BLK_RW_ASYNC);
885 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
886 blk_clear_queue_congested(q, BLK_RW_ASYNC);
887
888 blk_queue_for_each_rl(rl, q) {
889 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
890 blk_set_rl_full(rl, BLK_RW_SYNC);
891 } else {
892 blk_clear_rl_full(rl, BLK_RW_SYNC);
893 wake_up(&rl->wait[BLK_RW_SYNC]);
894 }
895
896 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
897 blk_set_rl_full(rl, BLK_RW_ASYNC);
898 } else {
899 blk_clear_rl_full(rl, BLK_RW_ASYNC);
900 wake_up(&rl->wait[BLK_RW_ASYNC]);
901 }
902 }
903
904 spin_unlock_irq(q->queue_lock);
905 return 0;
906}
907
9d5a4e94
MS
908/*
909 * Determine if elevator data should be initialized when allocating the
910 * request associated with @bio.
911 */
912static bool blk_rq_should_init_elevator(struct bio *bio)
913{
914 if (!bio)
915 return true;
916
917 /*
918 * Flush requests do not use the elevator so skip initialization.
919 * This allows a request to share the flush and elevator data.
920 */
921 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
922 return false;
923
924 return true;
925}
926
852c788f
TH
927/**
928 * rq_ioc - determine io_context for request allocation
929 * @bio: request being allocated is for this bio (can be %NULL)
930 *
931 * Determine io_context to use for request allocation for @bio. May return
932 * %NULL if %current->io_context doesn't exist.
933 */
934static struct io_context *rq_ioc(struct bio *bio)
935{
936#ifdef CONFIG_BLK_CGROUP
937 if (bio && bio->bi_ioc)
938 return bio->bi_ioc;
939#endif
940 return current->io_context;
941}
942
da8303c6 943/**
a06e05e6 944 * __get_request - get a free request
5b788ce3 945 * @rl: request list to allocate from
da8303c6
TH
946 * @rw_flags: RW and SYNC flags
947 * @bio: bio to allocate request for (can be %NULL)
948 * @gfp_mask: allocation mask
949 *
950 * Get a free request from @q. This function may fail under memory
951 * pressure or if @q is dead.
952 *
da3dae54 953 * Must be called with @q->queue_lock held and,
a492f075
JL
954 * Returns ERR_PTR on failure, with @q->queue_lock held.
955 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 956 */
5b788ce3 957static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 958 struct bio *bio, gfp_t gfp_mask)
1da177e4 959{
5b788ce3 960 struct request_queue *q = rl->q;
b679281a 961 struct request *rq;
7f4b35d1
TH
962 struct elevator_type *et = q->elevator->type;
963 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 964 struct io_cq *icq = NULL;
1faa16d2 965 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 966 int may_queue;
88ee5ef1 967
3f3299d5 968 if (unlikely(blk_queue_dying(q)))
a492f075 969 return ERR_PTR(-ENODEV);
da8303c6 970
7749a8d4 971 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
972 if (may_queue == ELV_MQUEUE_NO)
973 goto rq_starved;
974
1faa16d2
JA
975 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
976 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
977 /*
978 * The queue will fill after this allocation, so set
979 * it as full, and mark this process as "batching".
980 * This process will be allowed to complete a batch of
981 * requests, others will be blocked.
982 */
5b788ce3 983 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 984 ioc_set_batching(q, ioc);
5b788ce3 985 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
986 } else {
987 if (may_queue != ELV_MQUEUE_MUST
988 && !ioc_batching(q, ioc)) {
989 /*
990 * The queue is full and the allocating
991 * process is not a "batcher", and not
992 * exempted by the IO scheduler
993 */
a492f075 994 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
995 }
996 }
1da177e4 997 }
a051661c
TH
998 /*
999 * bdi isn't aware of blkcg yet. As all async IOs end up
1000 * root blkcg anyway, just use root blkcg state.
1001 */
1002 if (rl == &q->root_rl)
1003 blk_set_queue_congested(q, is_sync);
1da177e4
LT
1004 }
1005
082cf69e
JA
1006 /*
1007 * Only allow batching queuers to allocate up to 50% over the defined
1008 * limit of requests, otherwise we could have thousands of requests
1009 * allocated with any setting of ->nr_requests
1010 */
1faa16d2 1011 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1012 return ERR_PTR(-ENOMEM);
fd782a4a 1013
8a5ecdd4 1014 q->nr_rqs[is_sync]++;
1faa16d2
JA
1015 rl->count[is_sync]++;
1016 rl->starved[is_sync] = 0;
cb98fc8b 1017
f1f8cc94
TH
1018 /*
1019 * Decide whether the new request will be managed by elevator. If
1020 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1021 * prevent the current elevator from being destroyed until the new
1022 * request is freed. This guarantees icq's won't be destroyed and
1023 * makes creating new ones safe.
1024 *
1025 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1026 * it will be created after releasing queue_lock.
1027 */
d732580b 1028 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 1029 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 1030 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1031 if (et->icq_cache && ioc)
1032 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1033 }
cb98fc8b 1034
f253b86b
JA
1035 if (blk_queue_io_stat(q))
1036 rw_flags |= REQ_IO_STAT;
1da177e4
LT
1037 spin_unlock_irq(q->queue_lock);
1038
29e2b09a 1039 /* allocate and init request */
5b788ce3 1040 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1041 if (!rq)
b679281a 1042 goto fail_alloc;
1da177e4 1043
29e2b09a 1044 blk_rq_init(q, rq);
a051661c 1045 blk_rq_set_rl(rq, rl);
29e2b09a
TH
1046 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1047
aaf7c680 1048 /* init elvpriv */
29e2b09a 1049 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 1050 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1051 if (ioc)
1052 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1053 if (!icq)
1054 goto fail_elvpriv;
29e2b09a 1055 }
aaf7c680
TH
1056
1057 rq->elv.icq = icq;
1058 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1059 goto fail_elvpriv;
1060
1061 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1062 if (icq)
1063 get_io_context(icq->ioc);
1064 }
aaf7c680 1065out:
88ee5ef1
JA
1066 /*
1067 * ioc may be NULL here, and ioc_batching will be false. That's
1068 * OK, if the queue is under the request limit then requests need
1069 * not count toward the nr_batch_requests limit. There will always
1070 * be some limit enforced by BLK_BATCH_TIME.
1071 */
1da177e4
LT
1072 if (ioc_batching(q, ioc))
1073 ioc->nr_batch_requests--;
6728cb0e 1074
1faa16d2 1075 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1076 return rq;
b679281a 1077
aaf7c680
TH
1078fail_elvpriv:
1079 /*
1080 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1081 * and may fail indefinitely under memory pressure and thus
1082 * shouldn't stall IO. Treat this request as !elvpriv. This will
1083 * disturb iosched and blkcg but weird is bettern than dead.
1084 */
7b2b10e0
RE
1085 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1086 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680
TH
1087
1088 rq->cmd_flags &= ~REQ_ELVPRIV;
1089 rq->elv.icq = NULL;
1090
1091 spin_lock_irq(q->queue_lock);
8a5ecdd4 1092 q->nr_rqs_elvpriv--;
aaf7c680
TH
1093 spin_unlock_irq(q->queue_lock);
1094 goto out;
1095
b679281a
TH
1096fail_alloc:
1097 /*
1098 * Allocation failed presumably due to memory. Undo anything we
1099 * might have messed up.
1100 *
1101 * Allocating task should really be put onto the front of the wait
1102 * queue, but this is pretty rare.
1103 */
1104 spin_lock_irq(q->queue_lock);
5b788ce3 1105 freed_request(rl, rw_flags);
b679281a
TH
1106
1107 /*
1108 * in the very unlikely event that allocation failed and no
1109 * requests for this direction was pending, mark us starved so that
1110 * freeing of a request in the other direction will notice
1111 * us. another possible fix would be to split the rq mempool into
1112 * READ and WRITE
1113 */
1114rq_starved:
1115 if (unlikely(rl->count[is_sync] == 0))
1116 rl->starved[is_sync] = 1;
a492f075 1117 return ERR_PTR(-ENOMEM);
1da177e4
LT
1118}
1119
da8303c6 1120/**
a06e05e6 1121 * get_request - get a free request
da8303c6
TH
1122 * @q: request_queue to allocate request from
1123 * @rw_flags: RW and SYNC flags
1124 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1125 * @gfp_mask: allocation mask
da8303c6 1126 *
a06e05e6
TH
1127 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1128 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1129 *
da3dae54 1130 * Must be called with @q->queue_lock held and,
a492f075
JL
1131 * Returns ERR_PTR on failure, with @q->queue_lock held.
1132 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1133 */
a06e05e6
TH
1134static struct request *get_request(struct request_queue *q, int rw_flags,
1135 struct bio *bio, gfp_t gfp_mask)
1da177e4 1136{
1faa16d2 1137 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1138 DEFINE_WAIT(wait);
a051661c 1139 struct request_list *rl;
1da177e4 1140 struct request *rq;
a051661c
TH
1141
1142 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1143retry:
a051661c 1144 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a492f075 1145 if (!IS_ERR(rq))
a06e05e6 1146 return rq;
1da177e4 1147
3f3299d5 1148 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1149 blk_put_rl(rl);
a492f075 1150 return rq;
a051661c 1151 }
1da177e4 1152
a06e05e6
TH
1153 /* wait on @rl and retry */
1154 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1155 TASK_UNINTERRUPTIBLE);
1da177e4 1156
a06e05e6 1157 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1158
a06e05e6
TH
1159 spin_unlock_irq(q->queue_lock);
1160 io_schedule();
d6344532 1161
a06e05e6
TH
1162 /*
1163 * After sleeping, we become a "batching" process and will be able
1164 * to allocate at least one request, and up to a big batch of them
1165 * for a small period time. See ioc_batching, ioc_set_batching
1166 */
a06e05e6 1167 ioc_set_batching(q, current->io_context);
05caf8db 1168
a06e05e6
TH
1169 spin_lock_irq(q->queue_lock);
1170 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1171
a06e05e6 1172 goto retry;
1da177e4
LT
1173}
1174
320ae51f
JA
1175static struct request *blk_old_get_request(struct request_queue *q, int rw,
1176 gfp_t gfp_mask)
1da177e4
LT
1177{
1178 struct request *rq;
1179
1180 BUG_ON(rw != READ && rw != WRITE);
1181
7f4b35d1
TH
1182 /* create ioc upfront */
1183 create_io_context(gfp_mask, q->node);
1184
d6344532 1185 spin_lock_irq(q->queue_lock);
a06e05e6 1186 rq = get_request(q, rw, NULL, gfp_mask);
a492f075 1187 if (IS_ERR(rq))
da8303c6 1188 spin_unlock_irq(q->queue_lock);
d6344532 1189 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1190
1191 return rq;
1192}
320ae51f
JA
1193
1194struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1195{
1196 if (q->mq_ops)
4ce01dd1 1197 return blk_mq_alloc_request(q, rw, gfp_mask, false);
320ae51f
JA
1198 else
1199 return blk_old_get_request(q, rw, gfp_mask);
1200}
1da177e4
LT
1201EXPORT_SYMBOL(blk_get_request);
1202
dc72ef4a 1203/**
79eb63e9 1204 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1205 * @q: target request queue
79eb63e9
BH
1206 * @bio: The bio describing the memory mappings that will be submitted for IO.
1207 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1208 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1209 *
79eb63e9
BH
1210 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1211 * type commands. Where the struct request needs to be farther initialized by
1212 * the caller. It is passed a &struct bio, which describes the memory info of
1213 * the I/O transfer.
dc72ef4a 1214 *
79eb63e9
BH
1215 * The caller of blk_make_request must make sure that bi_io_vec
1216 * are set to describe the memory buffers. That bio_data_dir() will return
1217 * the needed direction of the request. (And all bio's in the passed bio-chain
1218 * are properly set accordingly)
1219 *
1220 * If called under none-sleepable conditions, mapped bio buffers must not
1221 * need bouncing, by calling the appropriate masked or flagged allocator,
1222 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1223 * BUG.
53674ac5
JA
1224 *
1225 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1226 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1227 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1228 * completion of a bio that hasn't been submitted yet, thus resulting in a
1229 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1230 * of bio_alloc(), as that avoids the mempool deadlock.
1231 * If possible a big IO should be split into smaller parts when allocation
1232 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1233 */
79eb63e9
BH
1234struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1235 gfp_t gfp_mask)
dc72ef4a 1236{
79eb63e9
BH
1237 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1238
a492f075
JL
1239 if (IS_ERR(rq))
1240 return rq;
79eb63e9 1241
f27b087b
JA
1242 blk_rq_set_block_pc(rq);
1243
79eb63e9
BH
1244 for_each_bio(bio) {
1245 struct bio *bounce_bio = bio;
1246 int ret;
1247
1248 blk_queue_bounce(q, &bounce_bio);
1249 ret = blk_rq_append_bio(q, rq, bounce_bio);
1250 if (unlikely(ret)) {
1251 blk_put_request(rq);
1252 return ERR_PTR(ret);
1253 }
1254 }
1255
1256 return rq;
dc72ef4a 1257}
79eb63e9 1258EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1259
f27b087b 1260/**
da3dae54 1261 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1262 * @rq: request to be initialized
1263 *
1264 */
1265void blk_rq_set_block_pc(struct request *rq)
1266{
1267 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1268 rq->__data_len = 0;
1269 rq->__sector = (sector_t) -1;
1270 rq->bio = rq->biotail = NULL;
1271 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1272}
1273EXPORT_SYMBOL(blk_rq_set_block_pc);
1274
1da177e4
LT
1275/**
1276 * blk_requeue_request - put a request back on queue
1277 * @q: request queue where request should be inserted
1278 * @rq: request to be inserted
1279 *
1280 * Description:
1281 * Drivers often keep queueing requests until the hardware cannot accept
1282 * more, when that condition happens we need to put the request back
1283 * on the queue. Must be called with queue lock held.
1284 */
165125e1 1285void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1286{
242f9dcb
JA
1287 blk_delete_timer(rq);
1288 blk_clear_rq_complete(rq);
5f3ea37c 1289 trace_block_rq_requeue(q, rq);
2056a782 1290
125c99bc 1291 if (rq->cmd_flags & REQ_QUEUED)
1da177e4
LT
1292 blk_queue_end_tag(q, rq);
1293
ba396a6c
JB
1294 BUG_ON(blk_queued_rq(rq));
1295
1da177e4
LT
1296 elv_requeue_request(q, rq);
1297}
1da177e4
LT
1298EXPORT_SYMBOL(blk_requeue_request);
1299
73c10101
JA
1300static void add_acct_request(struct request_queue *q, struct request *rq,
1301 int where)
1302{
320ae51f 1303 blk_account_io_start(rq, true);
7eaceacc 1304 __elv_add_request(q, rq, where);
73c10101
JA
1305}
1306
074a7aca
TH
1307static void part_round_stats_single(int cpu, struct hd_struct *part,
1308 unsigned long now)
1309{
7276d02e
JA
1310 int inflight;
1311
074a7aca
TH
1312 if (now == part->stamp)
1313 return;
1314
7276d02e
JA
1315 inflight = part_in_flight(part);
1316 if (inflight) {
074a7aca 1317 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1318 inflight * (now - part->stamp));
074a7aca
TH
1319 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1320 }
1321 part->stamp = now;
1322}
1323
1324/**
496aa8a9
RD
1325 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1326 * @cpu: cpu number for stats access
1327 * @part: target partition
1da177e4
LT
1328 *
1329 * The average IO queue length and utilisation statistics are maintained
1330 * by observing the current state of the queue length and the amount of
1331 * time it has been in this state for.
1332 *
1333 * Normally, that accounting is done on IO completion, but that can result
1334 * in more than a second's worth of IO being accounted for within any one
1335 * second, leading to >100% utilisation. To deal with that, we call this
1336 * function to do a round-off before returning the results when reading
1337 * /proc/diskstats. This accounts immediately for all queue usage up to
1338 * the current jiffies and restarts the counters again.
1339 */
c9959059 1340void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1341{
1342 unsigned long now = jiffies;
1343
074a7aca
TH
1344 if (part->partno)
1345 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1346 part_round_stats_single(cpu, part, now);
6f2576af 1347}
074a7aca 1348EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1349
47fafbc7 1350#ifdef CONFIG_PM
c8158819
LM
1351static void blk_pm_put_request(struct request *rq)
1352{
1353 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1354 pm_runtime_mark_last_busy(rq->q->dev);
1355}
1356#else
1357static inline void blk_pm_put_request(struct request *rq) {}
1358#endif
1359
1da177e4
LT
1360/*
1361 * queue lock must be held
1362 */
165125e1 1363void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1364{
1da177e4
LT
1365 if (unlikely(!q))
1366 return;
1da177e4 1367
6f5ba581
CH
1368 if (q->mq_ops) {
1369 blk_mq_free_request(req);
1370 return;
1371 }
1372
c8158819
LM
1373 blk_pm_put_request(req);
1374
8922e16c
TH
1375 elv_completed_request(q, req);
1376
1cd96c24
BH
1377 /* this is a bio leak */
1378 WARN_ON(req->bio != NULL);
1379
1da177e4
LT
1380 /*
1381 * Request may not have originated from ll_rw_blk. if not,
1382 * it didn't come out of our reserved rq pools
1383 */
49171e5c 1384 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1385 unsigned int flags = req->cmd_flags;
a051661c 1386 struct request_list *rl = blk_rq_rl(req);
1da177e4 1387
1da177e4 1388 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1389 BUG_ON(ELV_ON_HASH(req));
1da177e4 1390
a051661c
TH
1391 blk_free_request(rl, req);
1392 freed_request(rl, flags);
1393 blk_put_rl(rl);
1da177e4
LT
1394 }
1395}
6e39b69e
MC
1396EXPORT_SYMBOL_GPL(__blk_put_request);
1397
1da177e4
LT
1398void blk_put_request(struct request *req)
1399{
165125e1 1400 struct request_queue *q = req->q;
8922e16c 1401
320ae51f
JA
1402 if (q->mq_ops)
1403 blk_mq_free_request(req);
1404 else {
1405 unsigned long flags;
1406
1407 spin_lock_irqsave(q->queue_lock, flags);
1408 __blk_put_request(q, req);
1409 spin_unlock_irqrestore(q->queue_lock, flags);
1410 }
1da177e4 1411}
1da177e4
LT
1412EXPORT_SYMBOL(blk_put_request);
1413
66ac0280
CH
1414/**
1415 * blk_add_request_payload - add a payload to a request
1416 * @rq: request to update
1417 * @page: page backing the payload
1418 * @len: length of the payload.
1419 *
1420 * This allows to later add a payload to an already submitted request by
1421 * a block driver. The driver needs to take care of freeing the payload
1422 * itself.
1423 *
1424 * Note that this is a quite horrible hack and nothing but handling of
1425 * discard requests should ever use it.
1426 */
1427void blk_add_request_payload(struct request *rq, struct page *page,
1428 unsigned int len)
1429{
1430 struct bio *bio = rq->bio;
1431
1432 bio->bi_io_vec->bv_page = page;
1433 bio->bi_io_vec->bv_offset = 0;
1434 bio->bi_io_vec->bv_len = len;
1435
4f024f37 1436 bio->bi_iter.bi_size = len;
66ac0280
CH
1437 bio->bi_vcnt = 1;
1438 bio->bi_phys_segments = 1;
1439
1440 rq->__data_len = rq->resid_len = len;
1441 rq->nr_phys_segments = 1;
66ac0280
CH
1442}
1443EXPORT_SYMBOL_GPL(blk_add_request_payload);
1444
320ae51f
JA
1445bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1446 struct bio *bio)
73c10101
JA
1447{
1448 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1449
73c10101
JA
1450 if (!ll_back_merge_fn(q, req, bio))
1451 return false;
1452
8c1cf6bb 1453 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1454
1455 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1456 blk_rq_set_mixed_merge(req);
1457
1458 req->biotail->bi_next = bio;
1459 req->biotail = bio;
4f024f37 1460 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1461 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1462
320ae51f 1463 blk_account_io_start(req, false);
73c10101
JA
1464 return true;
1465}
1466
320ae51f
JA
1467bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1468 struct bio *bio)
73c10101
JA
1469{
1470 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1471
73c10101
JA
1472 if (!ll_front_merge_fn(q, req, bio))
1473 return false;
1474
8c1cf6bb 1475 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1476
1477 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1478 blk_rq_set_mixed_merge(req);
1479
73c10101
JA
1480 bio->bi_next = req->bio;
1481 req->bio = bio;
1482
4f024f37
KO
1483 req->__sector = bio->bi_iter.bi_sector;
1484 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1485 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1486
320ae51f 1487 blk_account_io_start(req, false);
73c10101
JA
1488 return true;
1489}
1490
bd87b589 1491/**
320ae51f 1492 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1493 * @q: request_queue new bio is being queued at
1494 * @bio: new bio being queued
1495 * @request_count: out parameter for number of traversed plugged requests
1496 *
1497 * Determine whether @bio being queued on @q can be merged with a request
1498 * on %current's plugged list. Returns %true if merge was successful,
1499 * otherwise %false.
1500 *
07c2bd37
TH
1501 * Plugging coalesces IOs from the same issuer for the same purpose without
1502 * going through @q->queue_lock. As such it's more of an issuing mechanism
1503 * than scheduling, and the request, while may have elvpriv data, is not
1504 * added on the elevator at this point. In addition, we don't have
1505 * reliable access to the elevator outside queue lock. Only check basic
1506 * merging parameters without querying the elevator.
da41a589
RE
1507 *
1508 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1509 */
320ae51f
JA
1510bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1511 unsigned int *request_count)
73c10101
JA
1512{
1513 struct blk_plug *plug;
1514 struct request *rq;
1515 bool ret = false;
92f399c7 1516 struct list_head *plug_list;
73c10101 1517
bd87b589 1518 plug = current->plug;
73c10101
JA
1519 if (!plug)
1520 goto out;
56ebdaf2 1521 *request_count = 0;
73c10101 1522
92f399c7
SL
1523 if (q->mq_ops)
1524 plug_list = &plug->mq_list;
1525 else
1526 plug_list = &plug->list;
1527
1528 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1529 int el_ret;
1530
1b2e19f1
SL
1531 if (rq->q == q)
1532 (*request_count)++;
56ebdaf2 1533
07c2bd37 1534 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1535 continue;
1536
050c8ea8 1537 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1538 if (el_ret == ELEVATOR_BACK_MERGE) {
1539 ret = bio_attempt_back_merge(q, rq, bio);
1540 if (ret)
1541 break;
1542 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1543 ret = bio_attempt_front_merge(q, rq, bio);
1544 if (ret)
1545 break;
1546 }
1547 }
1548out:
1549 return ret;
1550}
1551
86db1e29 1552void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1553{
4aff5e23 1554 req->cmd_type = REQ_TYPE_FS;
52d9e675 1555
7b6d91da
CH
1556 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1557 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1558 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1559
52d9e675 1560 req->errors = 0;
4f024f37 1561 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1562 req->ioprio = bio_prio(bio);
bc1c56fd 1563 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1564}
1565
5a7bbad2 1566void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1567{
5e00d1b5 1568 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1569 struct blk_plug *plug;
1570 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1571 struct request *req;
56ebdaf2 1572 unsigned int request_count = 0;
1da177e4 1573
1da177e4
LT
1574 /*
1575 * low level driver can indicate that it wants pages above a
1576 * certain limit bounced to low memory (ie for highmem, or even
1577 * ISA dma in theory)
1578 */
1579 blk_queue_bounce(q, &bio);
1580
ffecfd1a
DW
1581 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1582 bio_endio(bio, -EIO);
1583 return;
1584 }
1585
4fed947c 1586 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1587 spin_lock_irq(q->queue_lock);
ae1b1539 1588 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1589 goto get_rq;
1590 }
1591
73c10101
JA
1592 /*
1593 * Check if we can merge with the plugged list before grabbing
1594 * any locks.
1595 */
da41a589
RE
1596 if (!blk_queue_nomerges(q) &&
1597 blk_attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1598 return;
1da177e4 1599
73c10101 1600 spin_lock_irq(q->queue_lock);
2056a782 1601
73c10101
JA
1602 el_ret = elv_merge(q, &req, bio);
1603 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1604 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1605 elv_bio_merged(q, req, bio);
73c10101
JA
1606 if (!attempt_back_merge(q, req))
1607 elv_merged_request(q, req, el_ret);
1608 goto out_unlock;
1609 }
1610 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1611 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1612 elv_bio_merged(q, req, bio);
73c10101
JA
1613 if (!attempt_front_merge(q, req))
1614 elv_merged_request(q, req, el_ret);
1615 goto out_unlock;
80a761fd 1616 }
1da177e4
LT
1617 }
1618
450991bc 1619get_rq:
7749a8d4
JA
1620 /*
1621 * This sync check and mask will be re-done in init_request_from_bio(),
1622 * but we need to set it earlier to expose the sync flag to the
1623 * rq allocator and io schedulers.
1624 */
1625 rw_flags = bio_data_dir(bio);
1626 if (sync)
7b6d91da 1627 rw_flags |= REQ_SYNC;
7749a8d4 1628
1da177e4 1629 /*
450991bc 1630 * Grab a free request. This is might sleep but can not fail.
d6344532 1631 * Returns with the queue unlocked.
450991bc 1632 */
a06e05e6 1633 req = get_request(q, rw_flags, bio, GFP_NOIO);
a492f075
JL
1634 if (IS_ERR(req)) {
1635 bio_endio(bio, PTR_ERR(req)); /* @q is dead */
da8303c6
TH
1636 goto out_unlock;
1637 }
d6344532 1638
450991bc
NP
1639 /*
1640 * After dropping the lock and possibly sleeping here, our request
1641 * may now be mergeable after it had proven unmergeable (above).
1642 * We don't worry about that case for efficiency. It won't happen
1643 * often, and the elevators are able to handle it.
1da177e4 1644 */
52d9e675 1645 init_request_from_bio(req, bio);
1da177e4 1646
9562ad9a 1647 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1648 req->cpu = raw_smp_processor_id();
73c10101
JA
1649
1650 plug = current->plug;
721a9602 1651 if (plug) {
dc6d36c9
JA
1652 /*
1653 * If this is the first request added after a plug, fire
7aef2e78 1654 * of a plug trace.
dc6d36c9 1655 */
7aef2e78 1656 if (!request_count)
dc6d36c9 1657 trace_block_plug(q);
3540d5e8 1658 else {
019ceb7d 1659 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1660 blk_flush_plug_list(plug, false);
019ceb7d
SL
1661 trace_block_plug(q);
1662 }
73c10101 1663 }
73c10101 1664 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1665 blk_account_io_start(req, true);
73c10101
JA
1666 } else {
1667 spin_lock_irq(q->queue_lock);
1668 add_acct_request(q, req, where);
24ecfbe2 1669 __blk_run_queue(q);
73c10101
JA
1670out_unlock:
1671 spin_unlock_irq(q->queue_lock);
1672 }
1da177e4 1673}
c20e8de2 1674EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1675
1676/*
1677 * If bio->bi_dev is a partition, remap the location
1678 */
1679static inline void blk_partition_remap(struct bio *bio)
1680{
1681 struct block_device *bdev = bio->bi_bdev;
1682
bf2de6f5 1683 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1684 struct hd_struct *p = bdev->bd_part;
1685
4f024f37 1686 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1687 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1688
d07335e5
MS
1689 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1690 bdev->bd_dev,
4f024f37 1691 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1692 }
1693}
1694
1da177e4
LT
1695static void handle_bad_sector(struct bio *bio)
1696{
1697 char b[BDEVNAME_SIZE];
1698
1699 printk(KERN_INFO "attempt to access beyond end of device\n");
1700 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1701 bdevname(bio->bi_bdev, b),
1702 bio->bi_rw,
f73a1c7d 1703 (unsigned long long)bio_end_sector(bio),
77304d2a 1704 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1705
1706 set_bit(BIO_EOF, &bio->bi_flags);
1707}
1708
c17bb495
AM
1709#ifdef CONFIG_FAIL_MAKE_REQUEST
1710
1711static DECLARE_FAULT_ATTR(fail_make_request);
1712
1713static int __init setup_fail_make_request(char *str)
1714{
1715 return setup_fault_attr(&fail_make_request, str);
1716}
1717__setup("fail_make_request=", setup_fail_make_request);
1718
b2c9cd37 1719static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1720{
b2c9cd37 1721 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1722}
1723
1724static int __init fail_make_request_debugfs(void)
1725{
dd48c085
AM
1726 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1727 NULL, &fail_make_request);
1728
21f9fcd8 1729 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1730}
1731
1732late_initcall(fail_make_request_debugfs);
1733
1734#else /* CONFIG_FAIL_MAKE_REQUEST */
1735
b2c9cd37
AM
1736static inline bool should_fail_request(struct hd_struct *part,
1737 unsigned int bytes)
c17bb495 1738{
b2c9cd37 1739 return false;
c17bb495
AM
1740}
1741
1742#endif /* CONFIG_FAIL_MAKE_REQUEST */
1743
c07e2b41
JA
1744/*
1745 * Check whether this bio extends beyond the end of the device.
1746 */
1747static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1748{
1749 sector_t maxsector;
1750
1751 if (!nr_sectors)
1752 return 0;
1753
1754 /* Test device or partition size, when known. */
77304d2a 1755 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1756 if (maxsector) {
4f024f37 1757 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1758
1759 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1760 /*
1761 * This may well happen - the kernel calls bread()
1762 * without checking the size of the device, e.g., when
1763 * mounting a device.
1764 */
1765 handle_bad_sector(bio);
1766 return 1;
1767 }
1768 }
1769
1770 return 0;
1771}
1772
27a84d54
CH
1773static noinline_for_stack bool
1774generic_make_request_checks(struct bio *bio)
1da177e4 1775{
165125e1 1776 struct request_queue *q;
5a7bbad2 1777 int nr_sectors = bio_sectors(bio);
51fd77bd 1778 int err = -EIO;
5a7bbad2
CH
1779 char b[BDEVNAME_SIZE];
1780 struct hd_struct *part;
1da177e4
LT
1781
1782 might_sleep();
1da177e4 1783
c07e2b41
JA
1784 if (bio_check_eod(bio, nr_sectors))
1785 goto end_io;
1da177e4 1786
5a7bbad2
CH
1787 q = bdev_get_queue(bio->bi_bdev);
1788 if (unlikely(!q)) {
1789 printk(KERN_ERR
1790 "generic_make_request: Trying to access "
1791 "nonexistent block-device %s (%Lu)\n",
1792 bdevname(bio->bi_bdev, b),
4f024f37 1793 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1794 goto end_io;
1795 }
c17bb495 1796
e2a60da7
MP
1797 if (likely(bio_is_rw(bio) &&
1798 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1799 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1800 bdevname(bio->bi_bdev, b),
1801 bio_sectors(bio),
1802 queue_max_hw_sectors(q));
1803 goto end_io;
1804 }
1da177e4 1805
5a7bbad2 1806 part = bio->bi_bdev->bd_part;
4f024f37 1807 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1808 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1809 bio->bi_iter.bi_size))
5a7bbad2 1810 goto end_io;
2056a782 1811
5a7bbad2
CH
1812 /*
1813 * If this device has partitions, remap block n
1814 * of partition p to block n+start(p) of the disk.
1815 */
1816 blk_partition_remap(bio);
2056a782 1817
5a7bbad2
CH
1818 if (bio_check_eod(bio, nr_sectors))
1819 goto end_io;
1e87901e 1820
5a7bbad2
CH
1821 /*
1822 * Filter flush bio's early so that make_request based
1823 * drivers without flush support don't have to worry
1824 * about them.
1825 */
1826 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1827 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1828 if (!nr_sectors) {
1829 err = 0;
51fd77bd
JA
1830 goto end_io;
1831 }
5a7bbad2 1832 }
5ddfe969 1833
5a7bbad2
CH
1834 if ((bio->bi_rw & REQ_DISCARD) &&
1835 (!blk_queue_discard(q) ||
e2a60da7 1836 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1837 err = -EOPNOTSUPP;
1838 goto end_io;
1839 }
01edede4 1840
4363ac7c 1841 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1842 err = -EOPNOTSUPP;
1843 goto end_io;
1844 }
01edede4 1845
7f4b35d1
TH
1846 /*
1847 * Various block parts want %current->io_context and lazy ioc
1848 * allocation ends up trading a lot of pain for a small amount of
1849 * memory. Just allocate it upfront. This may fail and block
1850 * layer knows how to live with it.
1851 */
1852 create_io_context(GFP_ATOMIC, q->node);
1853
bc16a4f9
TH
1854 if (blk_throtl_bio(q, bio))
1855 return false; /* throttled, will be resubmitted later */
27a84d54 1856
5a7bbad2 1857 trace_block_bio_queue(q, bio);
27a84d54 1858 return true;
a7384677
TH
1859
1860end_io:
1861 bio_endio(bio, err);
27a84d54 1862 return false;
1da177e4
LT
1863}
1864
27a84d54
CH
1865/**
1866 * generic_make_request - hand a buffer to its device driver for I/O
1867 * @bio: The bio describing the location in memory and on the device.
1868 *
1869 * generic_make_request() is used to make I/O requests of block
1870 * devices. It is passed a &struct bio, which describes the I/O that needs
1871 * to be done.
1872 *
1873 * generic_make_request() does not return any status. The
1874 * success/failure status of the request, along with notification of
1875 * completion, is delivered asynchronously through the bio->bi_end_io
1876 * function described (one day) else where.
1877 *
1878 * The caller of generic_make_request must make sure that bi_io_vec
1879 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1880 * set to describe the device address, and the
1881 * bi_end_io and optionally bi_private are set to describe how
1882 * completion notification should be signaled.
1883 *
1884 * generic_make_request and the drivers it calls may use bi_next if this
1885 * bio happens to be merged with someone else, and may resubmit the bio to
1886 * a lower device by calling into generic_make_request recursively, which
1887 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1888 */
1889void generic_make_request(struct bio *bio)
1890{
bddd87c7
AM
1891 struct bio_list bio_list_on_stack;
1892
27a84d54
CH
1893 if (!generic_make_request_checks(bio))
1894 return;
1895
1896 /*
1897 * We only want one ->make_request_fn to be active at a time, else
1898 * stack usage with stacked devices could be a problem. So use
1899 * current->bio_list to keep a list of requests submited by a
1900 * make_request_fn function. current->bio_list is also used as a
1901 * flag to say if generic_make_request is currently active in this
1902 * task or not. If it is NULL, then no make_request is active. If
1903 * it is non-NULL, then a make_request is active, and new requests
1904 * should be added at the tail
1905 */
bddd87c7 1906 if (current->bio_list) {
bddd87c7 1907 bio_list_add(current->bio_list, bio);
d89d8796
NB
1908 return;
1909 }
27a84d54 1910
d89d8796
NB
1911 /* following loop may be a bit non-obvious, and so deserves some
1912 * explanation.
1913 * Before entering the loop, bio->bi_next is NULL (as all callers
1914 * ensure that) so we have a list with a single bio.
1915 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1916 * we assign bio_list to a pointer to the bio_list_on_stack,
1917 * thus initialising the bio_list of new bios to be
27a84d54 1918 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1919 * through a recursive call to generic_make_request. If it
1920 * did, we find a non-NULL value in bio_list and re-enter the loop
1921 * from the top. In this case we really did just take the bio
bddd87c7 1922 * of the top of the list (no pretending) and so remove it from
27a84d54 1923 * bio_list, and call into ->make_request() again.
d89d8796
NB
1924 */
1925 BUG_ON(bio->bi_next);
bddd87c7
AM
1926 bio_list_init(&bio_list_on_stack);
1927 current->bio_list = &bio_list_on_stack;
d89d8796 1928 do {
27a84d54
CH
1929 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1930
1931 q->make_request_fn(q, bio);
1932
bddd87c7 1933 bio = bio_list_pop(current->bio_list);
d89d8796 1934 } while (bio);
bddd87c7 1935 current->bio_list = NULL; /* deactivate */
d89d8796 1936}
1da177e4
LT
1937EXPORT_SYMBOL(generic_make_request);
1938
1939/**
710027a4 1940 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1941 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1942 * @bio: The &struct bio which describes the I/O
1943 *
1944 * submit_bio() is very similar in purpose to generic_make_request(), and
1945 * uses that function to do most of the work. Both are fairly rough
710027a4 1946 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1947 *
1948 */
1949void submit_bio(int rw, struct bio *bio)
1950{
22e2c507 1951 bio->bi_rw |= rw;
1da177e4 1952
bf2de6f5
JA
1953 /*
1954 * If it's a regular read/write or a barrier with data attached,
1955 * go through the normal accounting stuff before submission.
1956 */
e2a60da7 1957 if (bio_has_data(bio)) {
4363ac7c
MP
1958 unsigned int count;
1959
1960 if (unlikely(rw & REQ_WRITE_SAME))
1961 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1962 else
1963 count = bio_sectors(bio);
1964
bf2de6f5
JA
1965 if (rw & WRITE) {
1966 count_vm_events(PGPGOUT, count);
1967 } else {
4f024f37 1968 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1969 count_vm_events(PGPGIN, count);
1970 }
1971
1972 if (unlikely(block_dump)) {
1973 char b[BDEVNAME_SIZE];
8dcbdc74 1974 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1975 current->comm, task_pid_nr(current),
bf2de6f5 1976 (rw & WRITE) ? "WRITE" : "READ",
4f024f37 1977 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
1978 bdevname(bio->bi_bdev, b),
1979 count);
bf2de6f5 1980 }
1da177e4
LT
1981 }
1982
1983 generic_make_request(bio);
1984}
1da177e4
LT
1985EXPORT_SYMBOL(submit_bio);
1986
82124d60
KU
1987/**
1988 * blk_rq_check_limits - Helper function to check a request for the queue limit
1989 * @q: the queue
1990 * @rq: the request being checked
1991 *
1992 * Description:
1993 * @rq may have been made based on weaker limitations of upper-level queues
1994 * in request stacking drivers, and it may violate the limitation of @q.
1995 * Since the block layer and the underlying device driver trust @rq
1996 * after it is inserted to @q, it should be checked against @q before
1997 * the insertion using this generic function.
1998 *
1999 * This function should also be useful for request stacking drivers
eef35c2d 2000 * in some cases below, so export this function.
82124d60
KU
2001 * Request stacking drivers like request-based dm may change the queue
2002 * limits while requests are in the queue (e.g. dm's table swapping).
e227867f 2003 * Such request stacking drivers should check those requests against
82124d60
KU
2004 * the new queue limits again when they dispatch those requests,
2005 * although such checkings are also done against the old queue limits
2006 * when submitting requests.
2007 */
2008int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2009{
e2a60da7 2010 if (!rq_mergeable(rq))
3383977f
S
2011 return 0;
2012
f31dc1cd 2013 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
2014 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2015 return -EIO;
2016 }
2017
2018 /*
2019 * queue's settings related to segment counting like q->bounce_pfn
2020 * may differ from that of other stacking queues.
2021 * Recalculate it to check the request correctly on this queue's
2022 * limitation.
2023 */
2024 blk_recalc_rq_segments(rq);
8a78362c 2025 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2026 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2027 return -EIO;
2028 }
2029
2030 return 0;
2031}
2032EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2033
2034/**
2035 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2036 * @q: the queue to submit the request
2037 * @rq: the request being queued
2038 */
2039int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2040{
2041 unsigned long flags;
4853abaa 2042 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
2043
2044 if (blk_rq_check_limits(q, rq))
2045 return -EIO;
2046
b2c9cd37
AM
2047 if (rq->rq_disk &&
2048 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2049 return -EIO;
82124d60 2050
7fb4898e
KB
2051 if (q->mq_ops) {
2052 if (blk_queue_io_stat(q))
2053 blk_account_io_start(rq, true);
2054 blk_mq_insert_request(rq, false, true, true);
2055 return 0;
2056 }
2057
82124d60 2058 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2059 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2060 spin_unlock_irqrestore(q->queue_lock, flags);
2061 return -ENODEV;
2062 }
82124d60
KU
2063
2064 /*
2065 * Submitting request must be dequeued before calling this function
2066 * because it will be linked to another request_queue
2067 */
2068 BUG_ON(blk_queued_rq(rq));
2069
4853abaa
JM
2070 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2071 where = ELEVATOR_INSERT_FLUSH;
2072
2073 add_acct_request(q, rq, where);
e67b77c7
JM
2074 if (where == ELEVATOR_INSERT_FLUSH)
2075 __blk_run_queue(q);
82124d60
KU
2076 spin_unlock_irqrestore(q->queue_lock, flags);
2077
2078 return 0;
2079}
2080EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2081
80a761fd
TH
2082/**
2083 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2084 * @rq: request to examine
2085 *
2086 * Description:
2087 * A request could be merge of IOs which require different failure
2088 * handling. This function determines the number of bytes which
2089 * can be failed from the beginning of the request without
2090 * crossing into area which need to be retried further.
2091 *
2092 * Return:
2093 * The number of bytes to fail.
2094 *
2095 * Context:
2096 * queue_lock must be held.
2097 */
2098unsigned int blk_rq_err_bytes(const struct request *rq)
2099{
2100 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2101 unsigned int bytes = 0;
2102 struct bio *bio;
2103
2104 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2105 return blk_rq_bytes(rq);
2106
2107 /*
2108 * Currently the only 'mixing' which can happen is between
2109 * different fastfail types. We can safely fail portions
2110 * which have all the failfast bits that the first one has -
2111 * the ones which are at least as eager to fail as the first
2112 * one.
2113 */
2114 for (bio = rq->bio; bio; bio = bio->bi_next) {
2115 if ((bio->bi_rw & ff) != ff)
2116 break;
4f024f37 2117 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2118 }
2119
2120 /* this could lead to infinite loop */
2121 BUG_ON(blk_rq_bytes(rq) && !bytes);
2122 return bytes;
2123}
2124EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2125
320ae51f 2126void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2127{
c2553b58 2128 if (blk_do_io_stat(req)) {
bc58ba94
JA
2129 const int rw = rq_data_dir(req);
2130 struct hd_struct *part;
2131 int cpu;
2132
2133 cpu = part_stat_lock();
09e099d4 2134 part = req->part;
bc58ba94
JA
2135 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2136 part_stat_unlock();
2137 }
2138}
2139
320ae51f 2140void blk_account_io_done(struct request *req)
bc58ba94 2141{
bc58ba94 2142 /*
dd4c133f
TH
2143 * Account IO completion. flush_rq isn't accounted as a
2144 * normal IO on queueing nor completion. Accounting the
2145 * containing request is enough.
bc58ba94 2146 */
414b4ff5 2147 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2148 unsigned long duration = jiffies - req->start_time;
2149 const int rw = rq_data_dir(req);
2150 struct hd_struct *part;
2151 int cpu;
2152
2153 cpu = part_stat_lock();
09e099d4 2154 part = req->part;
bc58ba94
JA
2155
2156 part_stat_inc(cpu, part, ios[rw]);
2157 part_stat_add(cpu, part, ticks[rw], duration);
2158 part_round_stats(cpu, part);
316d315b 2159 part_dec_in_flight(part, rw);
bc58ba94 2160
6c23a968 2161 hd_struct_put(part);
bc58ba94
JA
2162 part_stat_unlock();
2163 }
2164}
2165
47fafbc7 2166#ifdef CONFIG_PM
c8158819
LM
2167/*
2168 * Don't process normal requests when queue is suspended
2169 * or in the process of suspending/resuming
2170 */
2171static struct request *blk_pm_peek_request(struct request_queue *q,
2172 struct request *rq)
2173{
2174 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2175 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2176 return NULL;
2177 else
2178 return rq;
2179}
2180#else
2181static inline struct request *blk_pm_peek_request(struct request_queue *q,
2182 struct request *rq)
2183{
2184 return rq;
2185}
2186#endif
2187
320ae51f
JA
2188void blk_account_io_start(struct request *rq, bool new_io)
2189{
2190 struct hd_struct *part;
2191 int rw = rq_data_dir(rq);
2192 int cpu;
2193
2194 if (!blk_do_io_stat(rq))
2195 return;
2196
2197 cpu = part_stat_lock();
2198
2199 if (!new_io) {
2200 part = rq->part;
2201 part_stat_inc(cpu, part, merges[rw]);
2202 } else {
2203 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2204 if (!hd_struct_try_get(part)) {
2205 /*
2206 * The partition is already being removed,
2207 * the request will be accounted on the disk only
2208 *
2209 * We take a reference on disk->part0 although that
2210 * partition will never be deleted, so we can treat
2211 * it as any other partition.
2212 */
2213 part = &rq->rq_disk->part0;
2214 hd_struct_get(part);
2215 }
2216 part_round_stats(cpu, part);
2217 part_inc_in_flight(part, rw);
2218 rq->part = part;
2219 }
2220
2221 part_stat_unlock();
2222}
2223
3bcddeac 2224/**
9934c8c0
TH
2225 * blk_peek_request - peek at the top of a request queue
2226 * @q: request queue to peek at
2227 *
2228 * Description:
2229 * Return the request at the top of @q. The returned request
2230 * should be started using blk_start_request() before LLD starts
2231 * processing it.
2232 *
2233 * Return:
2234 * Pointer to the request at the top of @q if available. Null
2235 * otherwise.
2236 *
2237 * Context:
2238 * queue_lock must be held.
2239 */
2240struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2241{
2242 struct request *rq;
2243 int ret;
2244
2245 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2246
2247 rq = blk_pm_peek_request(q, rq);
2248 if (!rq)
2249 break;
2250
158dbda0
TH
2251 if (!(rq->cmd_flags & REQ_STARTED)) {
2252 /*
2253 * This is the first time the device driver
2254 * sees this request (possibly after
2255 * requeueing). Notify IO scheduler.
2256 */
33659ebb 2257 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2258 elv_activate_rq(q, rq);
2259
2260 /*
2261 * just mark as started even if we don't start
2262 * it, a request that has been delayed should
2263 * not be passed by new incoming requests
2264 */
2265 rq->cmd_flags |= REQ_STARTED;
2266 trace_block_rq_issue(q, rq);
2267 }
2268
2269 if (!q->boundary_rq || q->boundary_rq == rq) {
2270 q->end_sector = rq_end_sector(rq);
2271 q->boundary_rq = NULL;
2272 }
2273
2274 if (rq->cmd_flags & REQ_DONTPREP)
2275 break;
2276
2e46e8b2 2277 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2278 /*
2279 * make sure space for the drain appears we
2280 * know we can do this because max_hw_segments
2281 * has been adjusted to be one fewer than the
2282 * device can handle
2283 */
2284 rq->nr_phys_segments++;
2285 }
2286
2287 if (!q->prep_rq_fn)
2288 break;
2289
2290 ret = q->prep_rq_fn(q, rq);
2291 if (ret == BLKPREP_OK) {
2292 break;
2293 } else if (ret == BLKPREP_DEFER) {
2294 /*
2295 * the request may have been (partially) prepped.
2296 * we need to keep this request in the front to
2297 * avoid resource deadlock. REQ_STARTED will
2298 * prevent other fs requests from passing this one.
2299 */
2e46e8b2 2300 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2301 !(rq->cmd_flags & REQ_DONTPREP)) {
2302 /*
2303 * remove the space for the drain we added
2304 * so that we don't add it again
2305 */
2306 --rq->nr_phys_segments;
2307 }
2308
2309 rq = NULL;
2310 break;
2311 } else if (ret == BLKPREP_KILL) {
2312 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2313 /*
2314 * Mark this request as started so we don't trigger
2315 * any debug logic in the end I/O path.
2316 */
2317 blk_start_request(rq);
40cbbb78 2318 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2319 } else {
2320 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2321 break;
2322 }
2323 }
2324
2325 return rq;
2326}
9934c8c0 2327EXPORT_SYMBOL(blk_peek_request);
158dbda0 2328
9934c8c0 2329void blk_dequeue_request(struct request *rq)
158dbda0 2330{
9934c8c0
TH
2331 struct request_queue *q = rq->q;
2332
158dbda0
TH
2333 BUG_ON(list_empty(&rq->queuelist));
2334 BUG_ON(ELV_ON_HASH(rq));
2335
2336 list_del_init(&rq->queuelist);
2337
2338 /*
2339 * the time frame between a request being removed from the lists
2340 * and to it is freed is accounted as io that is in progress at
2341 * the driver side.
2342 */
9195291e 2343 if (blk_account_rq(rq)) {
0a7ae2ff 2344 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2345 set_io_start_time_ns(rq);
2346 }
158dbda0
TH
2347}
2348
9934c8c0
TH
2349/**
2350 * blk_start_request - start request processing on the driver
2351 * @req: request to dequeue
2352 *
2353 * Description:
2354 * Dequeue @req and start timeout timer on it. This hands off the
2355 * request to the driver.
2356 *
2357 * Block internal functions which don't want to start timer should
2358 * call blk_dequeue_request().
2359 *
2360 * Context:
2361 * queue_lock must be held.
2362 */
2363void blk_start_request(struct request *req)
2364{
2365 blk_dequeue_request(req);
2366
2367 /*
5f49f631
TH
2368 * We are now handing the request to the hardware, initialize
2369 * resid_len to full count and add the timeout handler.
9934c8c0 2370 */
5f49f631 2371 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2372 if (unlikely(blk_bidi_rq(req)))
2373 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2374
4912aa6c 2375 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2376 blk_add_timer(req);
2377}
2378EXPORT_SYMBOL(blk_start_request);
2379
2380/**
2381 * blk_fetch_request - fetch a request from a request queue
2382 * @q: request queue to fetch a request from
2383 *
2384 * Description:
2385 * Return the request at the top of @q. The request is started on
2386 * return and LLD can start processing it immediately.
2387 *
2388 * Return:
2389 * Pointer to the request at the top of @q if available. Null
2390 * otherwise.
2391 *
2392 * Context:
2393 * queue_lock must be held.
2394 */
2395struct request *blk_fetch_request(struct request_queue *q)
2396{
2397 struct request *rq;
2398
2399 rq = blk_peek_request(q);
2400 if (rq)
2401 blk_start_request(rq);
2402 return rq;
2403}
2404EXPORT_SYMBOL(blk_fetch_request);
2405
3bcddeac 2406/**
2e60e022 2407 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2408 * @req: the request being processed
710027a4 2409 * @error: %0 for success, < %0 for error
8ebf9756 2410 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2411 *
2412 * Description:
8ebf9756
RD
2413 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2414 * the request structure even if @req doesn't have leftover.
2415 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2416 *
2417 * This special helper function is only for request stacking drivers
2418 * (e.g. request-based dm) so that they can handle partial completion.
2419 * Actual device drivers should use blk_end_request instead.
2420 *
2421 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2422 * %false return from this function.
3bcddeac
KU
2423 *
2424 * Return:
2e60e022
TH
2425 * %false - this request doesn't have any more data
2426 * %true - this request has more data
3bcddeac 2427 **/
2e60e022 2428bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2429{
f79ea416 2430 int total_bytes;
1da177e4 2431
4a0efdc9
HR
2432 trace_block_rq_complete(req->q, req, nr_bytes);
2433
2e60e022
TH
2434 if (!req->bio)
2435 return false;
2436
1da177e4 2437 /*
6f41469c
TH
2438 * For fs requests, rq is just carrier of independent bio's
2439 * and each partial completion should be handled separately.
2440 * Reset per-request error on each partial completion.
2441 *
2442 * TODO: tj: This is too subtle. It would be better to let
2443 * low level drivers do what they see fit.
1da177e4 2444 */
33659ebb 2445 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2446 req->errors = 0;
2447
33659ebb
CH
2448 if (error && req->cmd_type == REQ_TYPE_FS &&
2449 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2450 char *error_type;
2451
2452 switch (error) {
2453 case -ENOLINK:
2454 error_type = "recoverable transport";
2455 break;
2456 case -EREMOTEIO:
2457 error_type = "critical target";
2458 break;
2459 case -EBADE:
2460 error_type = "critical nexus";
2461 break;
d1ffc1f8
HR
2462 case -ETIMEDOUT:
2463 error_type = "timeout";
2464 break;
a9d6ceb8
HR
2465 case -ENOSPC:
2466 error_type = "critical space allocation";
2467 break;
7e782af5
HR
2468 case -ENODATA:
2469 error_type = "critical medium";
2470 break;
79775567
HR
2471 case -EIO:
2472 default:
2473 error_type = "I/O";
2474 break;
2475 }
ef3ecb66
RE
2476 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2477 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2478 req->rq_disk->disk_name : "?",
2479 (unsigned long long)blk_rq_pos(req));
2480
1da177e4
LT
2481 }
2482
bc58ba94 2483 blk_account_io_completion(req, nr_bytes);
d72d904a 2484
f79ea416
KO
2485 total_bytes = 0;
2486 while (req->bio) {
2487 struct bio *bio = req->bio;
4f024f37 2488 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2489
4f024f37 2490 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2491 req->bio = bio->bi_next;
1da177e4 2492
f79ea416 2493 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2494
f79ea416
KO
2495 total_bytes += bio_bytes;
2496 nr_bytes -= bio_bytes;
1da177e4 2497
f79ea416
KO
2498 if (!nr_bytes)
2499 break;
1da177e4
LT
2500 }
2501
2502 /*
2503 * completely done
2504 */
2e60e022
TH
2505 if (!req->bio) {
2506 /*
2507 * Reset counters so that the request stacking driver
2508 * can find how many bytes remain in the request
2509 * later.
2510 */
a2dec7b3 2511 req->__data_len = 0;
2e60e022
TH
2512 return false;
2513 }
1da177e4 2514
a2dec7b3 2515 req->__data_len -= total_bytes;
2e46e8b2
TH
2516
2517 /* update sector only for requests with clear definition of sector */
e2a60da7 2518 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2519 req->__sector += total_bytes >> 9;
2e46e8b2 2520
80a761fd
TH
2521 /* mixed attributes always follow the first bio */
2522 if (req->cmd_flags & REQ_MIXED_MERGE) {
2523 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2524 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2525 }
2526
2e46e8b2
TH
2527 /*
2528 * If total number of sectors is less than the first segment
2529 * size, something has gone terribly wrong.
2530 */
2531 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2532 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2533 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2534 }
2535
2536 /* recalculate the number of segments */
1da177e4 2537 blk_recalc_rq_segments(req);
2e46e8b2 2538
2e60e022 2539 return true;
1da177e4 2540}
2e60e022 2541EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2542
2e60e022
TH
2543static bool blk_update_bidi_request(struct request *rq, int error,
2544 unsigned int nr_bytes,
2545 unsigned int bidi_bytes)
5efccd17 2546{
2e60e022
TH
2547 if (blk_update_request(rq, error, nr_bytes))
2548 return true;
5efccd17 2549
2e60e022
TH
2550 /* Bidi request must be completed as a whole */
2551 if (unlikely(blk_bidi_rq(rq)) &&
2552 blk_update_request(rq->next_rq, error, bidi_bytes))
2553 return true;
5efccd17 2554
e2e1a148
JA
2555 if (blk_queue_add_random(rq->q))
2556 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2557
2558 return false;
1da177e4
LT
2559}
2560
28018c24
JB
2561/**
2562 * blk_unprep_request - unprepare a request
2563 * @req: the request
2564 *
2565 * This function makes a request ready for complete resubmission (or
2566 * completion). It happens only after all error handling is complete,
2567 * so represents the appropriate moment to deallocate any resources
2568 * that were allocated to the request in the prep_rq_fn. The queue
2569 * lock is held when calling this.
2570 */
2571void blk_unprep_request(struct request *req)
2572{
2573 struct request_queue *q = req->q;
2574
2575 req->cmd_flags &= ~REQ_DONTPREP;
2576 if (q->unprep_rq_fn)
2577 q->unprep_rq_fn(q, req);
2578}
2579EXPORT_SYMBOL_GPL(blk_unprep_request);
2580
1da177e4
LT
2581/*
2582 * queue lock must be held
2583 */
12120077 2584void blk_finish_request(struct request *req, int error)
1da177e4 2585{
125c99bc 2586 if (req->cmd_flags & REQ_QUEUED)
b8286239
KU
2587 blk_queue_end_tag(req->q, req);
2588
ba396a6c 2589 BUG_ON(blk_queued_rq(req));
1da177e4 2590
33659ebb 2591 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2592 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2593
e78042e5
MA
2594 blk_delete_timer(req);
2595
28018c24
JB
2596 if (req->cmd_flags & REQ_DONTPREP)
2597 blk_unprep_request(req);
2598
bc58ba94 2599 blk_account_io_done(req);
b8286239 2600
1da177e4 2601 if (req->end_io)
8ffdc655 2602 req->end_io(req, error);
b8286239
KU
2603 else {
2604 if (blk_bidi_rq(req))
2605 __blk_put_request(req->next_rq->q, req->next_rq);
2606
1da177e4 2607 __blk_put_request(req->q, req);
b8286239 2608 }
1da177e4 2609}
12120077 2610EXPORT_SYMBOL(blk_finish_request);
1da177e4 2611
3b11313a 2612/**
2e60e022
TH
2613 * blk_end_bidi_request - Complete a bidi request
2614 * @rq: the request to complete
2615 * @error: %0 for success, < %0 for error
2616 * @nr_bytes: number of bytes to complete @rq
2617 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2618 *
2619 * Description:
e3a04fe3 2620 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2621 * Drivers that supports bidi can safely call this member for any
2622 * type of request, bidi or uni. In the later case @bidi_bytes is
2623 * just ignored.
336cdb40
KU
2624 *
2625 * Return:
2e60e022
TH
2626 * %false - we are done with this request
2627 * %true - still buffers pending for this request
a0cd1285 2628 **/
b1f74493 2629static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2630 unsigned int nr_bytes, unsigned int bidi_bytes)
2631{
336cdb40 2632 struct request_queue *q = rq->q;
2e60e022 2633 unsigned long flags;
32fab448 2634
2e60e022
TH
2635 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2636 return true;
32fab448 2637
336cdb40 2638 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2639 blk_finish_request(rq, error);
336cdb40
KU
2640 spin_unlock_irqrestore(q->queue_lock, flags);
2641
2e60e022 2642 return false;
32fab448
KU
2643}
2644
336cdb40 2645/**
2e60e022
TH
2646 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2647 * @rq: the request to complete
710027a4 2648 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2649 * @nr_bytes: number of bytes to complete @rq
2650 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2651 *
2652 * Description:
2e60e022
TH
2653 * Identical to blk_end_bidi_request() except that queue lock is
2654 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2655 *
2656 * Return:
2e60e022
TH
2657 * %false - we are done with this request
2658 * %true - still buffers pending for this request
336cdb40 2659 **/
4853abaa 2660bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2661 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2662{
2e60e022
TH
2663 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2664 return true;
336cdb40 2665
2e60e022 2666 blk_finish_request(rq, error);
336cdb40 2667
2e60e022 2668 return false;
336cdb40 2669}
e19a3ab0
KU
2670
2671/**
2672 * blk_end_request - Helper function for drivers to complete the request.
2673 * @rq: the request being processed
710027a4 2674 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2675 * @nr_bytes: number of bytes to complete
2676 *
2677 * Description:
2678 * Ends I/O on a number of bytes attached to @rq.
2679 * If @rq has leftover, sets it up for the next range of segments.
2680 *
2681 * Return:
b1f74493
FT
2682 * %false - we are done with this request
2683 * %true - still buffers pending for this request
e19a3ab0 2684 **/
b1f74493 2685bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2686{
b1f74493 2687 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2688}
56ad1740 2689EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2690
2691/**
b1f74493
FT
2692 * blk_end_request_all - Helper function for drives to finish the request.
2693 * @rq: the request to finish
8ebf9756 2694 * @error: %0 for success, < %0 for error
336cdb40
KU
2695 *
2696 * Description:
b1f74493
FT
2697 * Completely finish @rq.
2698 */
2699void blk_end_request_all(struct request *rq, int error)
336cdb40 2700{
b1f74493
FT
2701 bool pending;
2702 unsigned int bidi_bytes = 0;
336cdb40 2703
b1f74493
FT
2704 if (unlikely(blk_bidi_rq(rq)))
2705 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2706
b1f74493
FT
2707 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2708 BUG_ON(pending);
2709}
56ad1740 2710EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2711
b1f74493
FT
2712/**
2713 * blk_end_request_cur - Helper function to finish the current request chunk.
2714 * @rq: the request to finish the current chunk for
8ebf9756 2715 * @error: %0 for success, < %0 for error
b1f74493
FT
2716 *
2717 * Description:
2718 * Complete the current consecutively mapped chunk from @rq.
2719 *
2720 * Return:
2721 * %false - we are done with this request
2722 * %true - still buffers pending for this request
2723 */
2724bool blk_end_request_cur(struct request *rq, int error)
2725{
2726 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2727}
56ad1740 2728EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2729
80a761fd
TH
2730/**
2731 * blk_end_request_err - Finish a request till the next failure boundary.
2732 * @rq: the request to finish till the next failure boundary for
2733 * @error: must be negative errno
2734 *
2735 * Description:
2736 * Complete @rq till the next failure boundary.
2737 *
2738 * Return:
2739 * %false - we are done with this request
2740 * %true - still buffers pending for this request
2741 */
2742bool blk_end_request_err(struct request *rq, int error)
2743{
2744 WARN_ON(error >= 0);
2745 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2746}
2747EXPORT_SYMBOL_GPL(blk_end_request_err);
2748
e3a04fe3 2749/**
b1f74493
FT
2750 * __blk_end_request - Helper function for drivers to complete the request.
2751 * @rq: the request being processed
2752 * @error: %0 for success, < %0 for error
2753 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2754 *
2755 * Description:
b1f74493 2756 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2757 *
2758 * Return:
b1f74493
FT
2759 * %false - we are done with this request
2760 * %true - still buffers pending for this request
e3a04fe3 2761 **/
b1f74493 2762bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2763{
b1f74493 2764 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2765}
56ad1740 2766EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2767
32fab448 2768/**
b1f74493
FT
2769 * __blk_end_request_all - Helper function for drives to finish the request.
2770 * @rq: the request to finish
8ebf9756 2771 * @error: %0 for success, < %0 for error
32fab448
KU
2772 *
2773 * Description:
b1f74493 2774 * Completely finish @rq. Must be called with queue lock held.
32fab448 2775 */
b1f74493 2776void __blk_end_request_all(struct request *rq, int error)
32fab448 2777{
b1f74493
FT
2778 bool pending;
2779 unsigned int bidi_bytes = 0;
2780
2781 if (unlikely(blk_bidi_rq(rq)))
2782 bidi_bytes = blk_rq_bytes(rq->next_rq);
2783
2784 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2785 BUG_ON(pending);
32fab448 2786}
56ad1740 2787EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2788
e19a3ab0 2789/**
b1f74493
FT
2790 * __blk_end_request_cur - Helper function to finish the current request chunk.
2791 * @rq: the request to finish the current chunk for
8ebf9756 2792 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2793 *
2794 * Description:
b1f74493
FT
2795 * Complete the current consecutively mapped chunk from @rq. Must
2796 * be called with queue lock held.
e19a3ab0
KU
2797 *
2798 * Return:
b1f74493
FT
2799 * %false - we are done with this request
2800 * %true - still buffers pending for this request
2801 */
2802bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2803{
b1f74493 2804 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2805}
56ad1740 2806EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2807
80a761fd
TH
2808/**
2809 * __blk_end_request_err - Finish a request till the next failure boundary.
2810 * @rq: the request to finish till the next failure boundary for
2811 * @error: must be negative errno
2812 *
2813 * Description:
2814 * Complete @rq till the next failure boundary. Must be called
2815 * with queue lock held.
2816 *
2817 * Return:
2818 * %false - we are done with this request
2819 * %true - still buffers pending for this request
2820 */
2821bool __blk_end_request_err(struct request *rq, int error)
2822{
2823 WARN_ON(error >= 0);
2824 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2825}
2826EXPORT_SYMBOL_GPL(__blk_end_request_err);
2827
86db1e29
JA
2828void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2829 struct bio *bio)
1da177e4 2830{
a82afdfc 2831 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2832 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2833
b4f42e28 2834 if (bio_has_data(bio))
fb2dce86 2835 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2836
4f024f37 2837 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2838 rq->bio = rq->biotail = bio;
1da177e4 2839
66846572
N
2840 if (bio->bi_bdev)
2841 rq->rq_disk = bio->bi_bdev->bd_disk;
2842}
1da177e4 2843
2d4dc890
IL
2844#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2845/**
2846 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2847 * @rq: the request to be flushed
2848 *
2849 * Description:
2850 * Flush all pages in @rq.
2851 */
2852void rq_flush_dcache_pages(struct request *rq)
2853{
2854 struct req_iterator iter;
7988613b 2855 struct bio_vec bvec;
2d4dc890
IL
2856
2857 rq_for_each_segment(bvec, rq, iter)
7988613b 2858 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2859}
2860EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2861#endif
2862
ef9e3fac
KU
2863/**
2864 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2865 * @q : the queue of the device being checked
2866 *
2867 * Description:
2868 * Check if underlying low-level drivers of a device are busy.
2869 * If the drivers want to export their busy state, they must set own
2870 * exporting function using blk_queue_lld_busy() first.
2871 *
2872 * Basically, this function is used only by request stacking drivers
2873 * to stop dispatching requests to underlying devices when underlying
2874 * devices are busy. This behavior helps more I/O merging on the queue
2875 * of the request stacking driver and prevents I/O throughput regression
2876 * on burst I/O load.
2877 *
2878 * Return:
2879 * 0 - Not busy (The request stacking driver should dispatch request)
2880 * 1 - Busy (The request stacking driver should stop dispatching request)
2881 */
2882int blk_lld_busy(struct request_queue *q)
2883{
2884 if (q->lld_busy_fn)
2885 return q->lld_busy_fn(q);
2886
2887 return 0;
2888}
2889EXPORT_SYMBOL_GPL(blk_lld_busy);
2890
b0fd271d
KU
2891/**
2892 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2893 * @rq: the clone request to be cleaned up
2894 *
2895 * Description:
2896 * Free all bios in @rq for a cloned request.
2897 */
2898void blk_rq_unprep_clone(struct request *rq)
2899{
2900 struct bio *bio;
2901
2902 while ((bio = rq->bio) != NULL) {
2903 rq->bio = bio->bi_next;
2904
2905 bio_put(bio);
2906 }
2907}
2908EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2909
2910/*
2911 * Copy attributes of the original request to the clone request.
b4f42e28 2912 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
b0fd271d
KU
2913 */
2914static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2915{
2916 dst->cpu = src->cpu;
77a08689 2917 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2918 dst->cmd_type = src->cmd_type;
2919 dst->__sector = blk_rq_pos(src);
2920 dst->__data_len = blk_rq_bytes(src);
2921 dst->nr_phys_segments = src->nr_phys_segments;
2922 dst->ioprio = src->ioprio;
2923 dst->extra_len = src->extra_len;
2924}
2925
2926/**
2927 * blk_rq_prep_clone - Helper function to setup clone request
2928 * @rq: the request to be setup
2929 * @rq_src: original request to be cloned
2930 * @bs: bio_set that bios for clone are allocated from
2931 * @gfp_mask: memory allocation mask for bio
2932 * @bio_ctr: setup function to be called for each clone bio.
2933 * Returns %0 for success, non %0 for failure.
2934 * @data: private data to be passed to @bio_ctr
2935 *
2936 * Description:
2937 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
b4f42e28 2938 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
b0fd271d
KU
2939 * are not copied, and copying such parts is the caller's responsibility.
2940 * Also, pages which the original bios are pointing to are not copied
2941 * and the cloned bios just point same pages.
2942 * So cloned bios must be completed before original bios, which means
2943 * the caller must complete @rq before @rq_src.
2944 */
2945int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2946 struct bio_set *bs, gfp_t gfp_mask,
2947 int (*bio_ctr)(struct bio *, struct bio *, void *),
2948 void *data)
2949{
2950 struct bio *bio, *bio_src;
2951
2952 if (!bs)
2953 bs = fs_bio_set;
2954
b0fd271d 2955 __rq_for_each_bio(bio_src, rq_src) {
11dfce50 2956 bio = bio_clone_fast(bio_src, gfp_mask, bs);
b0fd271d
KU
2957 if (!bio)
2958 goto free_and_out;
2959
b0fd271d
KU
2960 if (bio_ctr && bio_ctr(bio, bio_src, data))
2961 goto free_and_out;
2962
2963 if (rq->bio) {
2964 rq->biotail->bi_next = bio;
2965 rq->biotail = bio;
2966 } else
2967 rq->bio = rq->biotail = bio;
2968 }
2969
2970 __blk_rq_prep_clone(rq, rq_src);
2971
2972 return 0;
2973
2974free_and_out:
2975 if (bio)
4254bba1 2976 bio_put(bio);
b0fd271d
KU
2977 blk_rq_unprep_clone(rq);
2978
2979 return -ENOMEM;
2980}
2981EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2982
59c3d45e 2983int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
2984{
2985 return queue_work(kblockd_workqueue, work);
2986}
1da177e4
LT
2987EXPORT_SYMBOL(kblockd_schedule_work);
2988
59c3d45e
JA
2989int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2990 unsigned long delay)
e43473b7
VG
2991{
2992 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2993}
2994EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2995
8ab14595
JA
2996int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2997 unsigned long delay)
2998{
2999 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3000}
3001EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3002
75df7136
SJ
3003/**
3004 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3005 * @plug: The &struct blk_plug that needs to be initialized
3006 *
3007 * Description:
3008 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3009 * pending I/O should the task end up blocking between blk_start_plug() and
3010 * blk_finish_plug(). This is important from a performance perspective, but
3011 * also ensures that we don't deadlock. For instance, if the task is blocking
3012 * for a memory allocation, memory reclaim could end up wanting to free a
3013 * page belonging to that request that is currently residing in our private
3014 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3015 * this kind of deadlock.
3016 */
73c10101
JA
3017void blk_start_plug(struct blk_plug *plug)
3018{
3019 struct task_struct *tsk = current;
3020
73c10101 3021 INIT_LIST_HEAD(&plug->list);
320ae51f 3022 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3023 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
3024
3025 /*
3026 * If this is a nested plug, don't actually assign it. It will be
3027 * flushed on its own.
3028 */
3029 if (!tsk->plug) {
3030 /*
3031 * Store ordering should not be needed here, since a potential
3032 * preempt will imply a full memory barrier
3033 */
3034 tsk->plug = plug;
3035 }
3036}
3037EXPORT_SYMBOL(blk_start_plug);
3038
3039static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3040{
3041 struct request *rqa = container_of(a, struct request, queuelist);
3042 struct request *rqb = container_of(b, struct request, queuelist);
3043
975927b9
JM
3044 return !(rqa->q < rqb->q ||
3045 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3046}
3047
49cac01e
JA
3048/*
3049 * If 'from_schedule' is true, then postpone the dispatch of requests
3050 * until a safe kblockd context. We due this to avoid accidental big
3051 * additional stack usage in driver dispatch, in places where the originally
3052 * plugger did not intend it.
3053 */
f6603783 3054static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3055 bool from_schedule)
99e22598 3056 __releases(q->queue_lock)
94b5eb28 3057{
49cac01e 3058 trace_block_unplug(q, depth, !from_schedule);
99e22598 3059
70460571 3060 if (from_schedule)
24ecfbe2 3061 blk_run_queue_async(q);
70460571 3062 else
24ecfbe2 3063 __blk_run_queue(q);
70460571 3064 spin_unlock(q->queue_lock);
94b5eb28
JA
3065}
3066
74018dc3 3067static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3068{
3069 LIST_HEAD(callbacks);
3070
2a7d5559
SL
3071 while (!list_empty(&plug->cb_list)) {
3072 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3073
2a7d5559
SL
3074 while (!list_empty(&callbacks)) {
3075 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3076 struct blk_plug_cb,
3077 list);
2a7d5559 3078 list_del(&cb->list);
74018dc3 3079 cb->callback(cb, from_schedule);
2a7d5559 3080 }
048c9374
N
3081 }
3082}
3083
9cbb1750
N
3084struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3085 int size)
3086{
3087 struct blk_plug *plug = current->plug;
3088 struct blk_plug_cb *cb;
3089
3090 if (!plug)
3091 return NULL;
3092
3093 list_for_each_entry(cb, &plug->cb_list, list)
3094 if (cb->callback == unplug && cb->data == data)
3095 return cb;
3096
3097 /* Not currently on the callback list */
3098 BUG_ON(size < sizeof(*cb));
3099 cb = kzalloc(size, GFP_ATOMIC);
3100 if (cb) {
3101 cb->data = data;
3102 cb->callback = unplug;
3103 list_add(&cb->list, &plug->cb_list);
3104 }
3105 return cb;
3106}
3107EXPORT_SYMBOL(blk_check_plugged);
3108
49cac01e 3109void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3110{
3111 struct request_queue *q;
3112 unsigned long flags;
3113 struct request *rq;
109b8129 3114 LIST_HEAD(list);
94b5eb28 3115 unsigned int depth;
73c10101 3116
74018dc3 3117 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3118
3119 if (!list_empty(&plug->mq_list))
3120 blk_mq_flush_plug_list(plug, from_schedule);
3121
73c10101
JA
3122 if (list_empty(&plug->list))
3123 return;
3124
109b8129
N
3125 list_splice_init(&plug->list, &list);
3126
422765c2 3127 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3128
3129 q = NULL;
94b5eb28 3130 depth = 0;
18811272
JA
3131
3132 /*
3133 * Save and disable interrupts here, to avoid doing it for every
3134 * queue lock we have to take.
3135 */
73c10101 3136 local_irq_save(flags);
109b8129
N
3137 while (!list_empty(&list)) {
3138 rq = list_entry_rq(list.next);
73c10101 3139 list_del_init(&rq->queuelist);
73c10101
JA
3140 BUG_ON(!rq->q);
3141 if (rq->q != q) {
99e22598
JA
3142 /*
3143 * This drops the queue lock
3144 */
3145 if (q)
49cac01e 3146 queue_unplugged(q, depth, from_schedule);
73c10101 3147 q = rq->q;
94b5eb28 3148 depth = 0;
73c10101
JA
3149 spin_lock(q->queue_lock);
3150 }
8ba61435
TH
3151
3152 /*
3153 * Short-circuit if @q is dead
3154 */
3f3299d5 3155 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3156 __blk_end_request_all(rq, -ENODEV);
3157 continue;
3158 }
3159
73c10101
JA
3160 /*
3161 * rq is already accounted, so use raw insert
3162 */
401a18e9
JA
3163 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3164 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3165 else
3166 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3167
3168 depth++;
73c10101
JA
3169 }
3170
99e22598
JA
3171 /*
3172 * This drops the queue lock
3173 */
3174 if (q)
49cac01e 3175 queue_unplugged(q, depth, from_schedule);
73c10101 3176
73c10101
JA
3177 local_irq_restore(flags);
3178}
73c10101
JA
3179
3180void blk_finish_plug(struct blk_plug *plug)
3181{
f6603783 3182 blk_flush_plug_list(plug, false);
73c10101 3183
88b996cd
CH
3184 if (plug == current->plug)
3185 current->plug = NULL;
73c10101 3186}
88b996cd 3187EXPORT_SYMBOL(blk_finish_plug);
73c10101 3188
47fafbc7 3189#ifdef CONFIG_PM
6c954667
LM
3190/**
3191 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3192 * @q: the queue of the device
3193 * @dev: the device the queue belongs to
3194 *
3195 * Description:
3196 * Initialize runtime-PM-related fields for @q and start auto suspend for
3197 * @dev. Drivers that want to take advantage of request-based runtime PM
3198 * should call this function after @dev has been initialized, and its
3199 * request queue @q has been allocated, and runtime PM for it can not happen
3200 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3201 * cases, driver should call this function before any I/O has taken place.
3202 *
3203 * This function takes care of setting up using auto suspend for the device,
3204 * the autosuspend delay is set to -1 to make runtime suspend impossible
3205 * until an updated value is either set by user or by driver. Drivers do
3206 * not need to touch other autosuspend settings.
3207 *
3208 * The block layer runtime PM is request based, so only works for drivers
3209 * that use request as their IO unit instead of those directly use bio's.
3210 */
3211void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3212{
3213 q->dev = dev;
3214 q->rpm_status = RPM_ACTIVE;
3215 pm_runtime_set_autosuspend_delay(q->dev, -1);
3216 pm_runtime_use_autosuspend(q->dev);
3217}
3218EXPORT_SYMBOL(blk_pm_runtime_init);
3219
3220/**
3221 * blk_pre_runtime_suspend - Pre runtime suspend check
3222 * @q: the queue of the device
3223 *
3224 * Description:
3225 * This function will check if runtime suspend is allowed for the device
3226 * by examining if there are any requests pending in the queue. If there
3227 * are requests pending, the device can not be runtime suspended; otherwise,
3228 * the queue's status will be updated to SUSPENDING and the driver can
3229 * proceed to suspend the device.
3230 *
3231 * For the not allowed case, we mark last busy for the device so that
3232 * runtime PM core will try to autosuspend it some time later.
3233 *
3234 * This function should be called near the start of the device's
3235 * runtime_suspend callback.
3236 *
3237 * Return:
3238 * 0 - OK to runtime suspend the device
3239 * -EBUSY - Device should not be runtime suspended
3240 */
3241int blk_pre_runtime_suspend(struct request_queue *q)
3242{
3243 int ret = 0;
3244
3245 spin_lock_irq(q->queue_lock);
3246 if (q->nr_pending) {
3247 ret = -EBUSY;
3248 pm_runtime_mark_last_busy(q->dev);
3249 } else {
3250 q->rpm_status = RPM_SUSPENDING;
3251 }
3252 spin_unlock_irq(q->queue_lock);
3253 return ret;
3254}
3255EXPORT_SYMBOL(blk_pre_runtime_suspend);
3256
3257/**
3258 * blk_post_runtime_suspend - Post runtime suspend processing
3259 * @q: the queue of the device
3260 * @err: return value of the device's runtime_suspend function
3261 *
3262 * Description:
3263 * Update the queue's runtime status according to the return value of the
3264 * device's runtime suspend function and mark last busy for the device so
3265 * that PM core will try to auto suspend the device at a later time.
3266 *
3267 * This function should be called near the end of the device's
3268 * runtime_suspend callback.
3269 */
3270void blk_post_runtime_suspend(struct request_queue *q, int err)
3271{
3272 spin_lock_irq(q->queue_lock);
3273 if (!err) {
3274 q->rpm_status = RPM_SUSPENDED;
3275 } else {
3276 q->rpm_status = RPM_ACTIVE;
3277 pm_runtime_mark_last_busy(q->dev);
3278 }
3279 spin_unlock_irq(q->queue_lock);
3280}
3281EXPORT_SYMBOL(blk_post_runtime_suspend);
3282
3283/**
3284 * blk_pre_runtime_resume - Pre runtime resume processing
3285 * @q: the queue of the device
3286 *
3287 * Description:
3288 * Update the queue's runtime status to RESUMING in preparation for the
3289 * runtime resume of the device.
3290 *
3291 * This function should be called near the start of the device's
3292 * runtime_resume callback.
3293 */
3294void blk_pre_runtime_resume(struct request_queue *q)
3295{
3296 spin_lock_irq(q->queue_lock);
3297 q->rpm_status = RPM_RESUMING;
3298 spin_unlock_irq(q->queue_lock);
3299}
3300EXPORT_SYMBOL(blk_pre_runtime_resume);
3301
3302/**
3303 * blk_post_runtime_resume - Post runtime resume processing
3304 * @q: the queue of the device
3305 * @err: return value of the device's runtime_resume function
3306 *
3307 * Description:
3308 * Update the queue's runtime status according to the return value of the
3309 * device's runtime_resume function. If it is successfully resumed, process
3310 * the requests that are queued into the device's queue when it is resuming
3311 * and then mark last busy and initiate autosuspend for it.
3312 *
3313 * This function should be called near the end of the device's
3314 * runtime_resume callback.
3315 */
3316void blk_post_runtime_resume(struct request_queue *q, int err)
3317{
3318 spin_lock_irq(q->queue_lock);
3319 if (!err) {
3320 q->rpm_status = RPM_ACTIVE;
3321 __blk_run_queue(q);
3322 pm_runtime_mark_last_busy(q->dev);
c60855cd 3323 pm_request_autosuspend(q->dev);
6c954667
LM
3324 } else {
3325 q->rpm_status = RPM_SUSPENDED;
3326 }
3327 spin_unlock_irq(q->queue_lock);
3328}
3329EXPORT_SYMBOL(blk_post_runtime_resume);
3330#endif
3331
1da177e4
LT
3332int __init blk_dev_init(void)
3333{
9eb55b03
NK
3334 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3335 sizeof(((struct request *)0)->cmd_flags));
3336
89b90be2
TH
3337 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3338 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3339 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3340 if (!kblockd_workqueue)
3341 panic("Failed to create kblockd\n");
3342
3343 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3344 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3345
8324aa91 3346 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3347 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3348
d38ecf93 3349 return 0;
1da177e4 3350}