include/linux: apply __malloc attribute
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
1da177e4
LT
171/*
172 * struct array_cache
173 *
1da177e4
LT
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
bda5b655 188 void *entry[]; /*
a737b3e2
AM
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
a737b3e2 192 */
1da177e4
LT
193};
194
c8522a3a
JK
195struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198};
199
e498be7d
CL
200/*
201 * Need this for bootstrapping a per node allocator.
202 */
bf0dea23 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 205#define CACHE_CACHE 0
bf0dea23 206#define SIZE_NODE (MAX_NUMNODES)
e498be7d 207
ed11d9eb 208static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 209 struct kmem_cache_node *n, int tofree);
ed11d9eb 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
211 int node, struct list_head *list);
212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 214static void cache_reap(struct work_struct *unused);
ed11d9eb 215
76b342bd
JK
216static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
217 void **list);
218static inline void fixup_slab_list(struct kmem_cache *cachep,
219 struct kmem_cache_node *n, struct page *page,
220 void **list);
e0a42726
IM
221static int slab_early_init = 1;
222
ce8eb6c4 223#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 224
ce8eb6c4 225static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
226{
227 INIT_LIST_HEAD(&parent->slabs_full);
228 INIT_LIST_HEAD(&parent->slabs_partial);
229 INIT_LIST_HEAD(&parent->slabs_free);
230 parent->shared = NULL;
231 parent->alien = NULL;
2e1217cf 232 parent->colour_next = 0;
e498be7d
CL
233 spin_lock_init(&parent->list_lock);
234 parent->free_objects = 0;
235 parent->free_touched = 0;
236}
237
a737b3e2
AM
238#define MAKE_LIST(cachep, listp, slab, nodeid) \
239 do { \
240 INIT_LIST_HEAD(listp); \
18bf8541 241 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
242 } while (0)
243
a737b3e2
AM
244#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
245 do { \
e498be7d
CL
246 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
247 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
248 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
249 } while (0)
1da177e4 250
b03a017b 251#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
1da177e4 252#define CFLGS_OFF_SLAB (0x80000000UL)
b03a017b 253#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
254#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
255
256#define BATCHREFILL_LIMIT 16
a737b3e2
AM
257/*
258 * Optimization question: fewer reaps means less probability for unnessary
259 * cpucache drain/refill cycles.
1da177e4 260 *
dc6f3f27 261 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
262 * which could lock up otherwise freeable slabs.
263 */
5f0985bb
JZ
264#define REAPTIMEOUT_AC (2*HZ)
265#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
266
267#if STATS
268#define STATS_INC_ACTIVE(x) ((x)->num_active++)
269#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
270#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
271#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 272#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
273#define STATS_SET_HIGH(x) \
274 do { \
275 if ((x)->num_active > (x)->high_mark) \
276 (x)->high_mark = (x)->num_active; \
277 } while (0)
1da177e4
LT
278#define STATS_INC_ERR(x) ((x)->errors++)
279#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 280#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 281#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
282#define STATS_SET_FREEABLE(x, i) \
283 do { \
284 if ((x)->max_freeable < i) \
285 (x)->max_freeable = i; \
286 } while (0)
1da177e4
LT
287#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
288#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
289#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
290#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
291#else
292#define STATS_INC_ACTIVE(x) do { } while (0)
293#define STATS_DEC_ACTIVE(x) do { } while (0)
294#define STATS_INC_ALLOCED(x) do { } while (0)
295#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 296#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
297#define STATS_SET_HIGH(x) do { } while (0)
298#define STATS_INC_ERR(x) do { } while (0)
299#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 300#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 301#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 302#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
303#define STATS_INC_ALLOCHIT(x) do { } while (0)
304#define STATS_INC_ALLOCMISS(x) do { } while (0)
305#define STATS_INC_FREEHIT(x) do { } while (0)
306#define STATS_INC_FREEMISS(x) do { } while (0)
307#endif
308
309#if DEBUG
1da177e4 310
a737b3e2
AM
311/*
312 * memory layout of objects:
1da177e4 313 * 0 : objp
3dafccf2 314 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
315 * the end of an object is aligned with the end of the real
316 * allocation. Catches writes behind the end of the allocation.
3dafccf2 317 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 318 * redzone word.
3dafccf2 319 * cachep->obj_offset: The real object.
3b0efdfa
CL
320 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
321 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 322 * [BYTES_PER_WORD long]
1da177e4 323 */
343e0d7a 324static int obj_offset(struct kmem_cache *cachep)
1da177e4 325{
3dafccf2 326 return cachep->obj_offset;
1da177e4
LT
327}
328
b46b8f19 329static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
330{
331 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
332 return (unsigned long long*) (objp + obj_offset(cachep) -
333 sizeof(unsigned long long));
1da177e4
LT
334}
335
b46b8f19 336static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
337{
338 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
339 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 340 return (unsigned long long *)(objp + cachep->size -
b46b8f19 341 sizeof(unsigned long long) -
87a927c7 342 REDZONE_ALIGN);
3b0efdfa 343 return (unsigned long long *) (objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long));
1da177e4
LT
345}
346
343e0d7a 347static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
348{
349 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 350 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
351}
352
353#else
354
3dafccf2 355#define obj_offset(x) 0
b46b8f19
DW
356#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
357#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
358#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
359
360#endif
361
03787301
JK
362#ifdef CONFIG_DEBUG_SLAB_LEAK
363
d31676df 364static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 365{
d31676df
JK
366 return atomic_read(&cachep->store_user_clean) == 1;
367}
03787301 368
d31676df
JK
369static inline void set_store_user_clean(struct kmem_cache *cachep)
370{
371 atomic_set(&cachep->store_user_clean, 1);
372}
03787301 373
d31676df
JK
374static inline void set_store_user_dirty(struct kmem_cache *cachep)
375{
376 if (is_store_user_clean(cachep))
377 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
378}
379
380#else
d31676df 381static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
382
383#endif
384
1da177e4 385/*
3df1cccd
DR
386 * Do not go above this order unless 0 objects fit into the slab or
387 * overridden on the command line.
1da177e4 388 */
543585cc
DR
389#define SLAB_MAX_ORDER_HI 1
390#define SLAB_MAX_ORDER_LO 0
391static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 392static bool slab_max_order_set __initdata;
1da177e4 393
6ed5eb22
PE
394static inline struct kmem_cache *virt_to_cache(const void *obj)
395{
b49af68f 396 struct page *page = virt_to_head_page(obj);
35026088 397 return page->slab_cache;
6ed5eb22
PE
398}
399
8456a648 400static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
401 unsigned int idx)
402{
8456a648 403 return page->s_mem + cache->size * idx;
8fea4e96
PE
404}
405
6a2d7a95 406/*
3b0efdfa
CL
407 * We want to avoid an expensive divide : (offset / cache->size)
408 * Using the fact that size is a constant for a particular cache,
409 * we can replace (offset / cache->size) by
6a2d7a95
ED
410 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
411 */
412static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 413 const struct page *page, void *obj)
8fea4e96 414{
8456a648 415 u32 offset = (obj - page->s_mem);
6a2d7a95 416 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
417}
418
6fb92430 419#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 420/* internal cache of cache description objs */
9b030cb8 421static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
422 .batchcount = 1,
423 .limit = BOOT_CPUCACHE_ENTRIES,
424 .shared = 1,
3b0efdfa 425 .size = sizeof(struct kmem_cache),
b28a02de 426 .name = "kmem_cache",
1da177e4
LT
427};
428
1871e52c 429static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 430
343e0d7a 431static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 432{
bf0dea23 433 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
434}
435
a737b3e2
AM
436/*
437 * Calculate the number of objects and left-over bytes for a given buffer size.
438 */
70f75067
JK
439static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
440 unsigned long flags, size_t *left_over)
fbaccacf 441{
70f75067 442 unsigned int num;
fbaccacf 443 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 444
fbaccacf
SR
445 /*
446 * The slab management structure can be either off the slab or
447 * on it. For the latter case, the memory allocated for a
448 * slab is used for:
449 *
fbaccacf 450 * - @buffer_size bytes for each object
2e6b3602
JK
451 * - One freelist_idx_t for each object
452 *
453 * We don't need to consider alignment of freelist because
454 * freelist will be at the end of slab page. The objects will be
455 * at the correct alignment.
fbaccacf
SR
456 *
457 * If the slab management structure is off the slab, then the
458 * alignment will already be calculated into the size. Because
459 * the slabs are all pages aligned, the objects will be at the
460 * correct alignment when allocated.
461 */
b03a017b 462 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 463 num = slab_size / buffer_size;
2e6b3602 464 *left_over = slab_size % buffer_size;
fbaccacf 465 } else {
70f75067 466 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
467 *left_over = slab_size %
468 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 469 }
70f75067
JK
470
471 return num;
1da177e4
LT
472}
473
f28510d3 474#if DEBUG
d40cee24 475#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 476
a737b3e2
AM
477static void __slab_error(const char *function, struct kmem_cache *cachep,
478 char *msg)
1da177e4 479{
1170532b 480 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 481 function, cachep->name, msg);
1da177e4 482 dump_stack();
373d4d09 483 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 484}
f28510d3 485#endif
1da177e4 486
3395ee05
PM
487/*
488 * By default on NUMA we use alien caches to stage the freeing of
489 * objects allocated from other nodes. This causes massive memory
490 * inefficiencies when using fake NUMA setup to split memory into a
491 * large number of small nodes, so it can be disabled on the command
492 * line
493 */
494
495static int use_alien_caches __read_mostly = 1;
496static int __init noaliencache_setup(char *s)
497{
498 use_alien_caches = 0;
499 return 1;
500}
501__setup("noaliencache", noaliencache_setup);
502
3df1cccd
DR
503static int __init slab_max_order_setup(char *str)
504{
505 get_option(&str, &slab_max_order);
506 slab_max_order = slab_max_order < 0 ? 0 :
507 min(slab_max_order, MAX_ORDER - 1);
508 slab_max_order_set = true;
509
510 return 1;
511}
512__setup("slab_max_order=", slab_max_order_setup);
513
8fce4d8e
CL
514#ifdef CONFIG_NUMA
515/*
516 * Special reaping functions for NUMA systems called from cache_reap().
517 * These take care of doing round robin flushing of alien caches (containing
518 * objects freed on different nodes from which they were allocated) and the
519 * flushing of remote pcps by calling drain_node_pages.
520 */
1871e52c 521static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
522
523static void init_reap_node(int cpu)
524{
525 int node;
526
7d6e6d09 527 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 528 if (node == MAX_NUMNODES)
442295c9 529 node = first_node(node_online_map);
8fce4d8e 530
1871e52c 531 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
532}
533
534static void next_reap_node(void)
535{
909ea964 536 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 537
8fce4d8e
CL
538 node = next_node(node, node_online_map);
539 if (unlikely(node >= MAX_NUMNODES))
540 node = first_node(node_online_map);
909ea964 541 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
542}
543
544#else
545#define init_reap_node(cpu) do { } while (0)
546#define next_reap_node(void) do { } while (0)
547#endif
548
1da177e4
LT
549/*
550 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
551 * via the workqueue/eventd.
552 * Add the CPU number into the expiration time to minimize the possibility of
553 * the CPUs getting into lockstep and contending for the global cache chain
554 * lock.
555 */
0db0628d 556static void start_cpu_timer(int cpu)
1da177e4 557{
1871e52c 558 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
559
560 /*
561 * When this gets called from do_initcalls via cpucache_init(),
562 * init_workqueues() has already run, so keventd will be setup
563 * at that time.
564 */
52bad64d 565 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 566 init_reap_node(cpu);
203b42f7 567 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
568 schedule_delayed_work_on(cpu, reap_work,
569 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
570 }
571}
572
1fe00d50 573static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 574{
d5cff635
CM
575 /*
576 * The array_cache structures contain pointers to free object.
25985edc 577 * However, when such objects are allocated or transferred to another
d5cff635
CM
578 * cache the pointers are not cleared and they could be counted as
579 * valid references during a kmemleak scan. Therefore, kmemleak must
580 * not scan such objects.
581 */
1fe00d50
JK
582 kmemleak_no_scan(ac);
583 if (ac) {
584 ac->avail = 0;
585 ac->limit = limit;
586 ac->batchcount = batch;
587 ac->touched = 0;
1da177e4 588 }
1fe00d50
JK
589}
590
591static struct array_cache *alloc_arraycache(int node, int entries,
592 int batchcount, gfp_t gfp)
593{
5e804789 594 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
595 struct array_cache *ac = NULL;
596
597 ac = kmalloc_node(memsize, gfp, node);
598 init_arraycache(ac, entries, batchcount);
599 return ac;
1da177e4
LT
600}
601
f68f8ddd
JK
602static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
603 struct page *page, void *objp)
072bb0aa 604{
f68f8ddd
JK
605 struct kmem_cache_node *n;
606 int page_node;
607 LIST_HEAD(list);
072bb0aa 608
f68f8ddd
JK
609 page_node = page_to_nid(page);
610 n = get_node(cachep, page_node);
381760ea 611
f68f8ddd
JK
612 spin_lock(&n->list_lock);
613 free_block(cachep, &objp, 1, page_node, &list);
614 spin_unlock(&n->list_lock);
381760ea 615
f68f8ddd 616 slabs_destroy(cachep, &list);
072bb0aa
MG
617}
618
3ded175a
CL
619/*
620 * Transfer objects in one arraycache to another.
621 * Locking must be handled by the caller.
622 *
623 * Return the number of entries transferred.
624 */
625static int transfer_objects(struct array_cache *to,
626 struct array_cache *from, unsigned int max)
627{
628 /* Figure out how many entries to transfer */
732eacc0 629 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
630
631 if (!nr)
632 return 0;
633
634 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
635 sizeof(void *) *nr);
636
637 from->avail -= nr;
638 to->avail += nr;
3ded175a
CL
639 return nr;
640}
641
765c4507
CL
642#ifndef CONFIG_NUMA
643
644#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 645#define reap_alien(cachep, n) do { } while (0)
765c4507 646
c8522a3a
JK
647static inline struct alien_cache **alloc_alien_cache(int node,
648 int limit, gfp_t gfp)
765c4507 649{
8888177e 650 return NULL;
765c4507
CL
651}
652
c8522a3a 653static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
654{
655}
656
657static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
658{
659 return 0;
660}
661
662static inline void *alternate_node_alloc(struct kmem_cache *cachep,
663 gfp_t flags)
664{
665 return NULL;
666}
667
8b98c169 668static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
669 gfp_t flags, int nodeid)
670{
671 return NULL;
672}
673
4167e9b2
DR
674static inline gfp_t gfp_exact_node(gfp_t flags)
675{
444eb2a4 676 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
677}
678
765c4507
CL
679#else /* CONFIG_NUMA */
680
8b98c169 681static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 682static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 683
c8522a3a
JK
684static struct alien_cache *__alloc_alien_cache(int node, int entries,
685 int batch, gfp_t gfp)
686{
5e804789 687 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
688 struct alien_cache *alc = NULL;
689
690 alc = kmalloc_node(memsize, gfp, node);
691 init_arraycache(&alc->ac, entries, batch);
49dfc304 692 spin_lock_init(&alc->lock);
c8522a3a
JK
693 return alc;
694}
695
696static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 697{
c8522a3a 698 struct alien_cache **alc_ptr;
5e804789 699 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
700 int i;
701
702 if (limit > 1)
703 limit = 12;
c8522a3a
JK
704 alc_ptr = kzalloc_node(memsize, gfp, node);
705 if (!alc_ptr)
706 return NULL;
707
708 for_each_node(i) {
709 if (i == node || !node_online(i))
710 continue;
711 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
712 if (!alc_ptr[i]) {
713 for (i--; i >= 0; i--)
714 kfree(alc_ptr[i]);
715 kfree(alc_ptr);
716 return NULL;
e498be7d
CL
717 }
718 }
c8522a3a 719 return alc_ptr;
e498be7d
CL
720}
721
c8522a3a 722static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
723{
724 int i;
725
c8522a3a 726 if (!alc_ptr)
e498be7d 727 return;
e498be7d 728 for_each_node(i)
c8522a3a
JK
729 kfree(alc_ptr[i]);
730 kfree(alc_ptr);
e498be7d
CL
731}
732
343e0d7a 733static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
734 struct array_cache *ac, int node,
735 struct list_head *list)
e498be7d 736{
18bf8541 737 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
738
739 if (ac->avail) {
ce8eb6c4 740 spin_lock(&n->list_lock);
e00946fe
CL
741 /*
742 * Stuff objects into the remote nodes shared array first.
743 * That way we could avoid the overhead of putting the objects
744 * into the free lists and getting them back later.
745 */
ce8eb6c4
CL
746 if (n->shared)
747 transfer_objects(n->shared, ac, ac->limit);
e00946fe 748
833b706c 749 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 750 ac->avail = 0;
ce8eb6c4 751 spin_unlock(&n->list_lock);
e498be7d
CL
752 }
753}
754
8fce4d8e
CL
755/*
756 * Called from cache_reap() to regularly drain alien caches round robin.
757 */
ce8eb6c4 758static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 759{
909ea964 760 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 761
ce8eb6c4 762 if (n->alien) {
c8522a3a
JK
763 struct alien_cache *alc = n->alien[node];
764 struct array_cache *ac;
765
766 if (alc) {
767 ac = &alc->ac;
49dfc304 768 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
769 LIST_HEAD(list);
770
771 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 772 spin_unlock_irq(&alc->lock);
833b706c 773 slabs_destroy(cachep, &list);
c8522a3a 774 }
8fce4d8e
CL
775 }
776 }
777}
778
a737b3e2 779static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 780 struct alien_cache **alien)
e498be7d 781{
b28a02de 782 int i = 0;
c8522a3a 783 struct alien_cache *alc;
e498be7d
CL
784 struct array_cache *ac;
785 unsigned long flags;
786
787 for_each_online_node(i) {
c8522a3a
JK
788 alc = alien[i];
789 if (alc) {
833b706c
JK
790 LIST_HEAD(list);
791
c8522a3a 792 ac = &alc->ac;
49dfc304 793 spin_lock_irqsave(&alc->lock, flags);
833b706c 794 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 795 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 796 slabs_destroy(cachep, &list);
e498be7d
CL
797 }
798 }
799}
729bd0b7 800
25c4f304
JK
801static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
802 int node, int page_node)
729bd0b7 803{
ce8eb6c4 804 struct kmem_cache_node *n;
c8522a3a
JK
805 struct alien_cache *alien = NULL;
806 struct array_cache *ac;
97654dfa 807 LIST_HEAD(list);
1ca4cb24 808
18bf8541 809 n = get_node(cachep, node);
729bd0b7 810 STATS_INC_NODEFREES(cachep);
25c4f304
JK
811 if (n->alien && n->alien[page_node]) {
812 alien = n->alien[page_node];
c8522a3a 813 ac = &alien->ac;
49dfc304 814 spin_lock(&alien->lock);
c8522a3a 815 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 816 STATS_INC_ACOVERFLOW(cachep);
25c4f304 817 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 818 }
f68f8ddd 819 ac->entry[ac->avail++] = objp;
49dfc304 820 spin_unlock(&alien->lock);
833b706c 821 slabs_destroy(cachep, &list);
729bd0b7 822 } else {
25c4f304 823 n = get_node(cachep, page_node);
18bf8541 824 spin_lock(&n->list_lock);
25c4f304 825 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 826 spin_unlock(&n->list_lock);
97654dfa 827 slabs_destroy(cachep, &list);
729bd0b7
PE
828 }
829 return 1;
830}
25c4f304
JK
831
832static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
833{
834 int page_node = page_to_nid(virt_to_page(objp));
835 int node = numa_mem_id();
836 /*
837 * Make sure we are not freeing a object from another node to the array
838 * cache on this cpu.
839 */
840 if (likely(node == page_node))
841 return 0;
842
843 return __cache_free_alien(cachep, objp, node, page_node);
844}
4167e9b2
DR
845
846/*
444eb2a4
MG
847 * Construct gfp mask to allocate from a specific node but do not reclaim or
848 * warn about failures.
4167e9b2
DR
849 */
850static inline gfp_t gfp_exact_node(gfp_t flags)
851{
444eb2a4 852 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 853}
e498be7d
CL
854#endif
855
ded0ecf6
JK
856static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
857{
858 struct kmem_cache_node *n;
859
860 /*
861 * Set up the kmem_cache_node for cpu before we can
862 * begin anything. Make sure some other cpu on this
863 * node has not already allocated this
864 */
865 n = get_node(cachep, node);
866 if (n) {
867 spin_lock_irq(&n->list_lock);
868 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
869 cachep->num;
870 spin_unlock_irq(&n->list_lock);
871
872 return 0;
873 }
874
875 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
876 if (!n)
877 return -ENOMEM;
878
879 kmem_cache_node_init(n);
880 n->next_reap = jiffies + REAPTIMEOUT_NODE +
881 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
882
883 n->free_limit =
884 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
885
886 /*
887 * The kmem_cache_nodes don't come and go as CPUs
888 * come and go. slab_mutex is sufficient
889 * protection here.
890 */
891 cachep->node[node] = n;
892
893 return 0;
894}
895
8f9f8d9e 896/*
6a67368c 897 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 898 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 899 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 900 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
901 * already in use.
902 *
18004c5d 903 * Must hold slab_mutex.
8f9f8d9e 904 */
6a67368c 905static int init_cache_node_node(int node)
8f9f8d9e 906{
ded0ecf6 907 int ret;
8f9f8d9e 908 struct kmem_cache *cachep;
8f9f8d9e 909
18004c5d 910 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
911 ret = init_cache_node(cachep, node, GFP_KERNEL);
912 if (ret)
913 return ret;
8f9f8d9e 914 }
ded0ecf6 915
8f9f8d9e
DR
916 return 0;
917}
918
c3d332b6
JK
919static int setup_kmem_cache_node(struct kmem_cache *cachep,
920 int node, gfp_t gfp, bool force_change)
921{
922 int ret = -ENOMEM;
923 struct kmem_cache_node *n;
924 struct array_cache *old_shared = NULL;
925 struct array_cache *new_shared = NULL;
926 struct alien_cache **new_alien = NULL;
927 LIST_HEAD(list);
928
929 if (use_alien_caches) {
930 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
931 if (!new_alien)
932 goto fail;
933 }
934
935 if (cachep->shared) {
936 new_shared = alloc_arraycache(node,
937 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
938 if (!new_shared)
939 goto fail;
940 }
941
942 ret = init_cache_node(cachep, node, gfp);
943 if (ret)
944 goto fail;
945
946 n = get_node(cachep, node);
947 spin_lock_irq(&n->list_lock);
948 if (n->shared && force_change) {
949 free_block(cachep, n->shared->entry,
950 n->shared->avail, node, &list);
951 n->shared->avail = 0;
952 }
953
954 if (!n->shared || force_change) {
955 old_shared = n->shared;
956 n->shared = new_shared;
957 new_shared = NULL;
958 }
959
960 if (!n->alien) {
961 n->alien = new_alien;
962 new_alien = NULL;
963 }
964
965 spin_unlock_irq(&n->list_lock);
966 slabs_destroy(cachep, &list);
967
801faf0d
JK
968 /*
969 * To protect lockless access to n->shared during irq disabled context.
970 * If n->shared isn't NULL in irq disabled context, accessing to it is
971 * guaranteed to be valid until irq is re-enabled, because it will be
972 * freed after synchronize_sched().
973 */
974 if (force_change)
975 synchronize_sched();
976
c3d332b6
JK
977fail:
978 kfree(old_shared);
979 kfree(new_shared);
980 free_alien_cache(new_alien);
981
982 return ret;
983}
984
0db0628d 985static void cpuup_canceled(long cpu)
fbf1e473
AM
986{
987 struct kmem_cache *cachep;
ce8eb6c4 988 struct kmem_cache_node *n = NULL;
7d6e6d09 989 int node = cpu_to_mem(cpu);
a70f7302 990 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 991
18004c5d 992 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
993 struct array_cache *nc;
994 struct array_cache *shared;
c8522a3a 995 struct alien_cache **alien;
97654dfa 996 LIST_HEAD(list);
fbf1e473 997
18bf8541 998 n = get_node(cachep, node);
ce8eb6c4 999 if (!n)
bf0dea23 1000 continue;
fbf1e473 1001
ce8eb6c4 1002 spin_lock_irq(&n->list_lock);
fbf1e473 1003
ce8eb6c4
CL
1004 /* Free limit for this kmem_cache_node */
1005 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1006
1007 /* cpu is dead; no one can alloc from it. */
1008 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1009 if (nc) {
97654dfa 1010 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1011 nc->avail = 0;
1012 }
fbf1e473 1013
58463c1f 1014 if (!cpumask_empty(mask)) {
ce8eb6c4 1015 spin_unlock_irq(&n->list_lock);
bf0dea23 1016 goto free_slab;
fbf1e473
AM
1017 }
1018
ce8eb6c4 1019 shared = n->shared;
fbf1e473
AM
1020 if (shared) {
1021 free_block(cachep, shared->entry,
97654dfa 1022 shared->avail, node, &list);
ce8eb6c4 1023 n->shared = NULL;
fbf1e473
AM
1024 }
1025
ce8eb6c4
CL
1026 alien = n->alien;
1027 n->alien = NULL;
fbf1e473 1028
ce8eb6c4 1029 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1030
1031 kfree(shared);
1032 if (alien) {
1033 drain_alien_cache(cachep, alien);
1034 free_alien_cache(alien);
1035 }
bf0dea23
JK
1036
1037free_slab:
97654dfa 1038 slabs_destroy(cachep, &list);
fbf1e473
AM
1039 }
1040 /*
1041 * In the previous loop, all the objects were freed to
1042 * the respective cache's slabs, now we can go ahead and
1043 * shrink each nodelist to its limit.
1044 */
18004c5d 1045 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1046 n = get_node(cachep, node);
ce8eb6c4 1047 if (!n)
fbf1e473 1048 continue;
a5aa63a5 1049 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1050 }
1051}
1052
0db0628d 1053static int cpuup_prepare(long cpu)
1da177e4 1054{
343e0d7a 1055 struct kmem_cache *cachep;
7d6e6d09 1056 int node = cpu_to_mem(cpu);
8f9f8d9e 1057 int err;
1da177e4 1058
fbf1e473
AM
1059 /*
1060 * We need to do this right in the beginning since
1061 * alloc_arraycache's are going to use this list.
1062 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1063 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1064 */
6a67368c 1065 err = init_cache_node_node(node);
8f9f8d9e
DR
1066 if (err < 0)
1067 goto bad;
fbf1e473
AM
1068
1069 /*
1070 * Now we can go ahead with allocating the shared arrays and
1071 * array caches
1072 */
18004c5d 1073 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1074 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1075 if (err)
1076 goto bad;
fbf1e473 1077 }
ce79ddc8 1078
fbf1e473
AM
1079 return 0;
1080bad:
12d00f6a 1081 cpuup_canceled(cpu);
fbf1e473
AM
1082 return -ENOMEM;
1083}
1084
0db0628d 1085static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1086 unsigned long action, void *hcpu)
1087{
1088 long cpu = (long)hcpu;
1089 int err = 0;
1090
1091 switch (action) {
fbf1e473
AM
1092 case CPU_UP_PREPARE:
1093 case CPU_UP_PREPARE_FROZEN:
18004c5d 1094 mutex_lock(&slab_mutex);
fbf1e473 1095 err = cpuup_prepare(cpu);
18004c5d 1096 mutex_unlock(&slab_mutex);
1da177e4
LT
1097 break;
1098 case CPU_ONLINE:
8bb78442 1099 case CPU_ONLINE_FROZEN:
1da177e4
LT
1100 start_cpu_timer(cpu);
1101 break;
1102#ifdef CONFIG_HOTPLUG_CPU
5830c590 1103 case CPU_DOWN_PREPARE:
8bb78442 1104 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1105 /*
18004c5d 1106 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1107 * held so that if cache_reap() is invoked it cannot do
1108 * anything expensive but will only modify reap_work
1109 * and reschedule the timer.
1110 */
afe2c511 1111 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1112 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1113 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1114 break;
1115 case CPU_DOWN_FAILED:
8bb78442 1116 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1117 start_cpu_timer(cpu);
1118 break;
1da177e4 1119 case CPU_DEAD:
8bb78442 1120 case CPU_DEAD_FROZEN:
4484ebf1
RT
1121 /*
1122 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1123 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1124 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1125 * memory from the node of the cpu going down. The node
4484ebf1
RT
1126 * structure is usually allocated from kmem_cache_create() and
1127 * gets destroyed at kmem_cache_destroy().
1128 */
183ff22b 1129 /* fall through */
8f5be20b 1130#endif
1da177e4 1131 case CPU_UP_CANCELED:
8bb78442 1132 case CPU_UP_CANCELED_FROZEN:
18004c5d 1133 mutex_lock(&slab_mutex);
fbf1e473 1134 cpuup_canceled(cpu);
18004c5d 1135 mutex_unlock(&slab_mutex);
1da177e4 1136 break;
1da177e4 1137 }
eac40680 1138 return notifier_from_errno(err);
1da177e4
LT
1139}
1140
0db0628d 1141static struct notifier_block cpucache_notifier = {
74b85f37
CS
1142 &cpuup_callback, NULL, 0
1143};
1da177e4 1144
8f9f8d9e
DR
1145#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1146/*
1147 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1148 * Returns -EBUSY if all objects cannot be drained so that the node is not
1149 * removed.
1150 *
18004c5d 1151 * Must hold slab_mutex.
8f9f8d9e 1152 */
6a67368c 1153static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1154{
1155 struct kmem_cache *cachep;
1156 int ret = 0;
1157
18004c5d 1158 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1159 struct kmem_cache_node *n;
8f9f8d9e 1160
18bf8541 1161 n = get_node(cachep, node);
ce8eb6c4 1162 if (!n)
8f9f8d9e
DR
1163 continue;
1164
a5aa63a5 1165 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1166
ce8eb6c4
CL
1167 if (!list_empty(&n->slabs_full) ||
1168 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1169 ret = -EBUSY;
1170 break;
1171 }
1172 }
1173 return ret;
1174}
1175
1176static int __meminit slab_memory_callback(struct notifier_block *self,
1177 unsigned long action, void *arg)
1178{
1179 struct memory_notify *mnb = arg;
1180 int ret = 0;
1181 int nid;
1182
1183 nid = mnb->status_change_nid;
1184 if (nid < 0)
1185 goto out;
1186
1187 switch (action) {
1188 case MEM_GOING_ONLINE:
18004c5d 1189 mutex_lock(&slab_mutex);
6a67368c 1190 ret = init_cache_node_node(nid);
18004c5d 1191 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1192 break;
1193 case MEM_GOING_OFFLINE:
18004c5d 1194 mutex_lock(&slab_mutex);
6a67368c 1195 ret = drain_cache_node_node(nid);
18004c5d 1196 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1197 break;
1198 case MEM_ONLINE:
1199 case MEM_OFFLINE:
1200 case MEM_CANCEL_ONLINE:
1201 case MEM_CANCEL_OFFLINE:
1202 break;
1203 }
1204out:
5fda1bd5 1205 return notifier_from_errno(ret);
8f9f8d9e
DR
1206}
1207#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1208
e498be7d 1209/*
ce8eb6c4 1210 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1211 */
6744f087 1212static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1213 int nodeid)
e498be7d 1214{
6744f087 1215 struct kmem_cache_node *ptr;
e498be7d 1216
6744f087 1217 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1218 BUG_ON(!ptr);
1219
6744f087 1220 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1221 /*
1222 * Do not assume that spinlocks can be initialized via memcpy:
1223 */
1224 spin_lock_init(&ptr->list_lock);
1225
e498be7d 1226 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1227 cachep->node[nodeid] = ptr;
e498be7d
CL
1228}
1229
556a169d 1230/*
ce8eb6c4
CL
1231 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1232 * size of kmem_cache_node.
556a169d 1233 */
ce8eb6c4 1234static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1235{
1236 int node;
1237
1238 for_each_online_node(node) {
ce8eb6c4 1239 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1240 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1241 REAPTIMEOUT_NODE +
1242 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1243 }
1244}
1245
c7ce4f60
TG
1246#ifdef CONFIG_SLAB_FREELIST_RANDOM
1247static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list,
1248 size_t count)
1249{
1250 size_t i;
1251 unsigned int rand;
1252
1253 for (i = 0; i < count; i++)
1254 list[i] = i;
1255
1256 /* Fisher-Yates shuffle */
1257 for (i = count - 1; i > 0; i--) {
1258 rand = prandom_u32_state(state);
1259 rand %= (i + 1);
1260 swap(list[i], list[rand]);
1261 }
1262}
1263
1264/* Create a random sequence per cache */
1265static int cache_random_seq_create(struct kmem_cache *cachep, gfp_t gfp)
1266{
1267 unsigned int seed, count = cachep->num;
1268 struct rnd_state state;
1269
1270 if (count < 2)
1271 return 0;
1272
1273 /* If it fails, we will just use the global lists */
1274 cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), gfp);
1275 if (!cachep->random_seq)
1276 return -ENOMEM;
1277
1278 /* Get best entropy at this stage */
1279 get_random_bytes_arch(&seed, sizeof(seed));
1280 prandom_seed_state(&state, seed);
1281
1282 freelist_randomize(&state, cachep->random_seq, count);
1283 return 0;
1284}
1285
1286/* Destroy the per-cache random freelist sequence */
1287static void cache_random_seq_destroy(struct kmem_cache *cachep)
1288{
1289 kfree(cachep->random_seq);
1290 cachep->random_seq = NULL;
1291}
1292#else
1293static inline int cache_random_seq_create(struct kmem_cache *cachep, gfp_t gfp)
1294{
1295 return 0;
1296}
1297static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
1298#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1299
1300
a737b3e2
AM
1301/*
1302 * Initialisation. Called after the page allocator have been initialised and
1303 * before smp_init().
1da177e4
LT
1304 */
1305void __init kmem_cache_init(void)
1306{
e498be7d
CL
1307 int i;
1308
68126702
JK
1309 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1310 sizeof(struct rcu_head));
9b030cb8
CL
1311 kmem_cache = &kmem_cache_boot;
1312
8888177e 1313 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1314 use_alien_caches = 0;
1315
3c583465 1316 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1317 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1318
1da177e4
LT
1319 /*
1320 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1321 * page orders on machines with more than 32MB of memory if
1322 * not overridden on the command line.
1da177e4 1323 */
3df1cccd 1324 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1325 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1326
1da177e4
LT
1327 /* Bootstrap is tricky, because several objects are allocated
1328 * from caches that do not exist yet:
9b030cb8
CL
1329 * 1) initialize the kmem_cache cache: it contains the struct
1330 * kmem_cache structures of all caches, except kmem_cache itself:
1331 * kmem_cache is statically allocated.
e498be7d 1332 * Initially an __init data area is used for the head array and the
ce8eb6c4 1333 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1334 * array at the end of the bootstrap.
1da177e4 1335 * 2) Create the first kmalloc cache.
343e0d7a 1336 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1337 * An __init data area is used for the head array.
1338 * 3) Create the remaining kmalloc caches, with minimally sized
1339 * head arrays.
9b030cb8 1340 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1341 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1342 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1343 * the other cache's with kmalloc allocated memory.
1344 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1345 */
1346
9b030cb8 1347 /* 1) create the kmem_cache */
1da177e4 1348
8da3430d 1349 /*
b56efcf0 1350 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1351 */
2f9baa9f 1352 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1353 offsetof(struct kmem_cache, node) +
6744f087 1354 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1355 SLAB_HWCACHE_ALIGN);
1356 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1357 slab_state = PARTIAL;
1da177e4 1358
a737b3e2 1359 /*
bf0dea23
JK
1360 * Initialize the caches that provide memory for the kmem_cache_node
1361 * structures first. Without this, further allocations will bug.
e498be7d 1362 */
bf0dea23 1363 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1364 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1365 slab_state = PARTIAL_NODE;
34cc6990 1366 setup_kmalloc_cache_index_table();
e498be7d 1367
e0a42726
IM
1368 slab_early_init = 0;
1369
ce8eb6c4 1370 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1371 {
1ca4cb24
PE
1372 int nid;
1373
9c09a95c 1374 for_each_online_node(nid) {
ce8eb6c4 1375 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1376
bf0dea23 1377 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1378 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1379 }
1380 }
1da177e4 1381
f97d5f63 1382 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1383}
1384
1385void __init kmem_cache_init_late(void)
1386{
1387 struct kmem_cache *cachep;
1388
97d06609 1389 slab_state = UP;
52cef189 1390
8429db5c 1391 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1392 mutex_lock(&slab_mutex);
1393 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1394 if (enable_cpucache(cachep, GFP_NOWAIT))
1395 BUG();
18004c5d 1396 mutex_unlock(&slab_mutex);
056c6241 1397
97d06609
CL
1398 /* Done! */
1399 slab_state = FULL;
1400
a737b3e2
AM
1401 /*
1402 * Register a cpu startup notifier callback that initializes
1403 * cpu_cache_get for all new cpus
1da177e4
LT
1404 */
1405 register_cpu_notifier(&cpucache_notifier);
1da177e4 1406
8f9f8d9e
DR
1407#ifdef CONFIG_NUMA
1408 /*
1409 * Register a memory hotplug callback that initializes and frees
6a67368c 1410 * node.
8f9f8d9e
DR
1411 */
1412 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1413#endif
1414
a737b3e2
AM
1415 /*
1416 * The reap timers are started later, with a module init call: That part
1417 * of the kernel is not yet operational.
1da177e4
LT
1418 */
1419}
1420
1421static int __init cpucache_init(void)
1422{
1423 int cpu;
1424
a737b3e2
AM
1425 /*
1426 * Register the timers that return unneeded pages to the page allocator
1da177e4 1427 */
e498be7d 1428 for_each_online_cpu(cpu)
a737b3e2 1429 start_cpu_timer(cpu);
a164f896
GC
1430
1431 /* Done! */
97d06609 1432 slab_state = FULL;
1da177e4
LT
1433 return 0;
1434}
1da177e4
LT
1435__initcall(cpucache_init);
1436
8bdec192
RA
1437static noinline void
1438slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1439{
9a02d699 1440#if DEBUG
ce8eb6c4 1441 struct kmem_cache_node *n;
8456a648 1442 struct page *page;
8bdec192
RA
1443 unsigned long flags;
1444 int node;
9a02d699
DR
1445 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1446 DEFAULT_RATELIMIT_BURST);
1447
1448 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1449 return;
8bdec192 1450
5b3810e5
VB
1451 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1452 nodeid, gfpflags, &gfpflags);
1453 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1454 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1455
18bf8541 1456 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1457 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1458 unsigned long active_slabs = 0, num_slabs = 0;
1459
ce8eb6c4 1460 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1461 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1462 active_objs += cachep->num;
1463 active_slabs++;
1464 }
8456a648
JK
1465 list_for_each_entry(page, &n->slabs_partial, lru) {
1466 active_objs += page->active;
8bdec192
RA
1467 active_slabs++;
1468 }
8456a648 1469 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1470 num_slabs++;
1471
ce8eb6c4
CL
1472 free_objects += n->free_objects;
1473 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1474
1475 num_slabs += active_slabs;
1476 num_objs = num_slabs * cachep->num;
5b3810e5 1477 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
8bdec192
RA
1478 node, active_slabs, num_slabs, active_objs, num_objs,
1479 free_objects);
1480 }
9a02d699 1481#endif
8bdec192
RA
1482}
1483
1da177e4 1484/*
8a7d9b43
WSH
1485 * Interface to system's page allocator. No need to hold the
1486 * kmem_cache_node ->list_lock.
1da177e4
LT
1487 *
1488 * If we requested dmaable memory, we will get it. Even if we
1489 * did not request dmaable memory, we might get it, but that
1490 * would be relatively rare and ignorable.
1491 */
0c3aa83e
JK
1492static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1493 int nodeid)
1da177e4
LT
1494{
1495 struct page *page;
e1b6aa6f 1496 int nr_pages;
765c4507 1497
a618e89f 1498 flags |= cachep->allocflags;
e12ba74d
MG
1499 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1500 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1501
96db800f 1502 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1503 if (!page) {
9a02d699 1504 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1505 return NULL;
8bdec192 1506 }
1da177e4 1507
f3ccb2c4
VD
1508 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1509 __free_pages(page, cachep->gfporder);
1510 return NULL;
1511 }
1512
e1b6aa6f 1513 nr_pages = (1 << cachep->gfporder);
1da177e4 1514 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1515 add_zone_page_state(page_zone(page),
1516 NR_SLAB_RECLAIMABLE, nr_pages);
1517 else
1518 add_zone_page_state(page_zone(page),
1519 NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1520
a57a4988 1521 __SetPageSlab(page);
f68f8ddd
JK
1522 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1523 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1524 SetPageSlabPfmemalloc(page);
072bb0aa 1525
b1eeab67
VN
1526 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1527 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1528
1529 if (cachep->ctor)
1530 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1531 else
1532 kmemcheck_mark_unallocated_pages(page, nr_pages);
1533 }
c175eea4 1534
0c3aa83e 1535 return page;
1da177e4
LT
1536}
1537
1538/*
1539 * Interface to system's page release.
1540 */
0c3aa83e 1541static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1542{
27ee57c9
VD
1543 int order = cachep->gfporder;
1544 unsigned long nr_freed = (1 << order);
1da177e4 1545
27ee57c9 1546 kmemcheck_free_shadow(page, order);
c175eea4 1547
972d1a7b
CL
1548 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1549 sub_zone_page_state(page_zone(page),
1550 NR_SLAB_RECLAIMABLE, nr_freed);
1551 else
1552 sub_zone_page_state(page_zone(page),
1553 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1554
a57a4988 1555 BUG_ON(!PageSlab(page));
73293c2f 1556 __ClearPageSlabPfmemalloc(page);
a57a4988 1557 __ClearPageSlab(page);
8456a648
JK
1558 page_mapcount_reset(page);
1559 page->mapping = NULL;
1f458cbf 1560
1da177e4
LT
1561 if (current->reclaim_state)
1562 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1563 memcg_uncharge_slab(page, order, cachep);
1564 __free_pages(page, order);
1da177e4
LT
1565}
1566
1567static void kmem_rcu_free(struct rcu_head *head)
1568{
68126702
JK
1569 struct kmem_cache *cachep;
1570 struct page *page;
1da177e4 1571
68126702
JK
1572 page = container_of(head, struct page, rcu_head);
1573 cachep = page->slab_cache;
1574
1575 kmem_freepages(cachep, page);
1da177e4
LT
1576}
1577
1578#if DEBUG
40b44137
JK
1579static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1580{
1581 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1582 (cachep->size % PAGE_SIZE) == 0)
1583 return true;
1584
1585 return false;
1586}
1da177e4
LT
1587
1588#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1589static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1590 unsigned long caller)
1da177e4 1591{
8c138bc0 1592 int size = cachep->object_size;
1da177e4 1593
3dafccf2 1594 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1595
b28a02de 1596 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1597 return;
1598
b28a02de
PE
1599 *addr++ = 0x12345678;
1600 *addr++ = caller;
1601 *addr++ = smp_processor_id();
1602 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1603 {
1604 unsigned long *sptr = &caller;
1605 unsigned long svalue;
1606
1607 while (!kstack_end(sptr)) {
1608 svalue = *sptr++;
1609 if (kernel_text_address(svalue)) {
b28a02de 1610 *addr++ = svalue;
1da177e4
LT
1611 size -= sizeof(unsigned long);
1612 if (size <= sizeof(unsigned long))
1613 break;
1614 }
1615 }
1616
1617 }
b28a02de 1618 *addr++ = 0x87654321;
1da177e4 1619}
40b44137
JK
1620
1621static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1622 int map, unsigned long caller)
1623{
1624 if (!is_debug_pagealloc_cache(cachep))
1625 return;
1626
1627 if (caller)
1628 store_stackinfo(cachep, objp, caller);
1629
1630 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1631}
1632
1633#else
1634static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1635 int map, unsigned long caller) {}
1636
1da177e4
LT
1637#endif
1638
343e0d7a 1639static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1640{
8c138bc0 1641 int size = cachep->object_size;
3dafccf2 1642 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1643
1644 memset(addr, val, size);
b28a02de 1645 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1646}
1647
1648static void dump_line(char *data, int offset, int limit)
1649{
1650 int i;
aa83aa40
DJ
1651 unsigned char error = 0;
1652 int bad_count = 0;
1653
1170532b 1654 pr_err("%03x: ", offset);
aa83aa40
DJ
1655 for (i = 0; i < limit; i++) {
1656 if (data[offset + i] != POISON_FREE) {
1657 error = data[offset + i];
1658 bad_count++;
1659 }
aa83aa40 1660 }
fdde6abb
SAS
1661 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1662 &data[offset], limit, 1);
aa83aa40
DJ
1663
1664 if (bad_count == 1) {
1665 error ^= POISON_FREE;
1666 if (!(error & (error - 1))) {
1170532b 1667 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1668#ifdef CONFIG_X86
1170532b 1669 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1670#else
1170532b 1671 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1672#endif
1673 }
1674 }
1da177e4
LT
1675}
1676#endif
1677
1678#if DEBUG
1679
343e0d7a 1680static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1681{
1682 int i, size;
1683 char *realobj;
1684
1685 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1686 pr_err("Redzone: 0x%llx/0x%llx\n",
1687 *dbg_redzone1(cachep, objp),
1688 *dbg_redzone2(cachep, objp));
1da177e4
LT
1689 }
1690
1691 if (cachep->flags & SLAB_STORE_USER) {
1170532b 1692 pr_err("Last user: [<%p>](%pSR)\n",
071361d3
JP
1693 *dbg_userword(cachep, objp),
1694 *dbg_userword(cachep, objp));
1da177e4 1695 }
3dafccf2 1696 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1697 size = cachep->object_size;
b28a02de 1698 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1699 int limit;
1700 limit = 16;
b28a02de
PE
1701 if (i + limit > size)
1702 limit = size - i;
1da177e4
LT
1703 dump_line(realobj, i, limit);
1704 }
1705}
1706
343e0d7a 1707static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1708{
1709 char *realobj;
1710 int size, i;
1711 int lines = 0;
1712
40b44137
JK
1713 if (is_debug_pagealloc_cache(cachep))
1714 return;
1715
3dafccf2 1716 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1717 size = cachep->object_size;
1da177e4 1718
b28a02de 1719 for (i = 0; i < size; i++) {
1da177e4 1720 char exp = POISON_FREE;
b28a02de 1721 if (i == size - 1)
1da177e4
LT
1722 exp = POISON_END;
1723 if (realobj[i] != exp) {
1724 int limit;
1725 /* Mismatch ! */
1726 /* Print header */
1727 if (lines == 0) {
1170532b
JP
1728 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1729 print_tainted(), cachep->name,
1730 realobj, size);
1da177e4
LT
1731 print_objinfo(cachep, objp, 0);
1732 }
1733 /* Hexdump the affected line */
b28a02de 1734 i = (i / 16) * 16;
1da177e4 1735 limit = 16;
b28a02de
PE
1736 if (i + limit > size)
1737 limit = size - i;
1da177e4
LT
1738 dump_line(realobj, i, limit);
1739 i += 16;
1740 lines++;
1741 /* Limit to 5 lines */
1742 if (lines > 5)
1743 break;
1744 }
1745 }
1746 if (lines != 0) {
1747 /* Print some data about the neighboring objects, if they
1748 * exist:
1749 */
8456a648 1750 struct page *page = virt_to_head_page(objp);
8fea4e96 1751 unsigned int objnr;
1da177e4 1752
8456a648 1753 objnr = obj_to_index(cachep, page, objp);
1da177e4 1754 if (objnr) {
8456a648 1755 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1756 realobj = (char *)objp + obj_offset(cachep);
1170532b 1757 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1758 print_objinfo(cachep, objp, 2);
1759 }
b28a02de 1760 if (objnr + 1 < cachep->num) {
8456a648 1761 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1762 realobj = (char *)objp + obj_offset(cachep);
1170532b 1763 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1764 print_objinfo(cachep, objp, 2);
1765 }
1766 }
1767}
1768#endif
1769
12dd36fa 1770#if DEBUG
8456a648
JK
1771static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1772 struct page *page)
1da177e4 1773{
1da177e4 1774 int i;
b03a017b
JK
1775
1776 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1777 poison_obj(cachep, page->freelist - obj_offset(cachep),
1778 POISON_FREE);
1779 }
1780
1da177e4 1781 for (i = 0; i < cachep->num; i++) {
8456a648 1782 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1783
1784 if (cachep->flags & SLAB_POISON) {
1da177e4 1785 check_poison_obj(cachep, objp);
40b44137 1786 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1787 }
1788 if (cachep->flags & SLAB_RED_ZONE) {
1789 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1790 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1791 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1792 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1793 }
1da177e4 1794 }
12dd36fa 1795}
1da177e4 1796#else
8456a648
JK
1797static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1798 struct page *page)
12dd36fa 1799{
12dd36fa 1800}
1da177e4
LT
1801#endif
1802
911851e6
RD
1803/**
1804 * slab_destroy - destroy and release all objects in a slab
1805 * @cachep: cache pointer being destroyed
cb8ee1a3 1806 * @page: page pointer being destroyed
911851e6 1807 *
8a7d9b43
WSH
1808 * Destroy all the objs in a slab page, and release the mem back to the system.
1809 * Before calling the slab page must have been unlinked from the cache. The
1810 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1811 */
8456a648 1812static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1813{
7e007355 1814 void *freelist;
12dd36fa 1815
8456a648
JK
1816 freelist = page->freelist;
1817 slab_destroy_debugcheck(cachep, page);
bc4f610d
KS
1818 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1819 call_rcu(&page->rcu_head, kmem_rcu_free);
1820 else
0c3aa83e 1821 kmem_freepages(cachep, page);
68126702
JK
1822
1823 /*
8456a648 1824 * From now on, we don't use freelist
68126702
JK
1825 * although actual page can be freed in rcu context
1826 */
1827 if (OFF_SLAB(cachep))
8456a648 1828 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1829}
1830
97654dfa
JK
1831static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1832{
1833 struct page *page, *n;
1834
1835 list_for_each_entry_safe(page, n, list, lru) {
1836 list_del(&page->lru);
1837 slab_destroy(cachep, page);
1838 }
1839}
1840
4d268eba 1841/**
a70773dd
RD
1842 * calculate_slab_order - calculate size (page order) of slabs
1843 * @cachep: pointer to the cache that is being created
1844 * @size: size of objects to be created in this cache.
a70773dd
RD
1845 * @flags: slab allocation flags
1846 *
1847 * Also calculates the number of objects per slab.
4d268eba
PE
1848 *
1849 * This could be made much more intelligent. For now, try to avoid using
1850 * high order pages for slabs. When the gfp() functions are more friendly
1851 * towards high-order requests, this should be changed.
1852 */
a737b3e2 1853static size_t calculate_slab_order(struct kmem_cache *cachep,
2e6b3602 1854 size_t size, unsigned long flags)
4d268eba
PE
1855{
1856 size_t left_over = 0;
9888e6fa 1857 int gfporder;
4d268eba 1858
0aa817f0 1859 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1860 unsigned int num;
1861 size_t remainder;
1862
70f75067 1863 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1864 if (!num)
1865 continue;
9888e6fa 1866
f315e3fa
JK
1867 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1868 if (num > SLAB_OBJ_MAX_NUM)
1869 break;
1870
b1ab41c4 1871 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1872 struct kmem_cache *freelist_cache;
1873 size_t freelist_size;
1874
1875 freelist_size = num * sizeof(freelist_idx_t);
1876 freelist_cache = kmalloc_slab(freelist_size, 0u);
1877 if (!freelist_cache)
1878 continue;
1879
b1ab41c4 1880 /*
3217fd9b 1881 * Needed to avoid possible looping condition
76b342bd 1882 * in cache_grow_begin()
b1ab41c4 1883 */
3217fd9b
JK
1884 if (OFF_SLAB(freelist_cache))
1885 continue;
b1ab41c4 1886
3217fd9b
JK
1887 /* check if off slab has enough benefit */
1888 if (freelist_cache->size > cachep->size / 2)
1889 continue;
b1ab41c4 1890 }
4d268eba 1891
9888e6fa 1892 /* Found something acceptable - save it away */
4d268eba 1893 cachep->num = num;
9888e6fa 1894 cachep->gfporder = gfporder;
4d268eba
PE
1895 left_over = remainder;
1896
f78bb8ad
LT
1897 /*
1898 * A VFS-reclaimable slab tends to have most allocations
1899 * as GFP_NOFS and we really don't want to have to be allocating
1900 * higher-order pages when we are unable to shrink dcache.
1901 */
1902 if (flags & SLAB_RECLAIM_ACCOUNT)
1903 break;
1904
4d268eba
PE
1905 /*
1906 * Large number of objects is good, but very large slabs are
1907 * currently bad for the gfp()s.
1908 */
543585cc 1909 if (gfporder >= slab_max_order)
4d268eba
PE
1910 break;
1911
9888e6fa
LT
1912 /*
1913 * Acceptable internal fragmentation?
1914 */
a737b3e2 1915 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1916 break;
1917 }
1918 return left_over;
1919}
1920
bf0dea23
JK
1921static struct array_cache __percpu *alloc_kmem_cache_cpus(
1922 struct kmem_cache *cachep, int entries, int batchcount)
1923{
1924 int cpu;
1925 size_t size;
1926 struct array_cache __percpu *cpu_cache;
1927
1928 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1929 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1930
1931 if (!cpu_cache)
1932 return NULL;
1933
1934 for_each_possible_cpu(cpu) {
1935 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1936 entries, batchcount);
1937 }
1938
1939 return cpu_cache;
1940}
1941
83b519e8 1942static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1943{
97d06609 1944 if (slab_state >= FULL)
83b519e8 1945 return enable_cpucache(cachep, gfp);
2ed3a4ef 1946
bf0dea23
JK
1947 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1948 if (!cachep->cpu_cache)
1949 return 1;
1950
97d06609 1951 if (slab_state == DOWN) {
bf0dea23
JK
1952 /* Creation of first cache (kmem_cache). */
1953 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1954 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1955 /* For kmem_cache_node */
1956 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1957 } else {
bf0dea23 1958 int node;
f30cf7d1 1959
bf0dea23
JK
1960 for_each_online_node(node) {
1961 cachep->node[node] = kmalloc_node(
1962 sizeof(struct kmem_cache_node), gfp, node);
1963 BUG_ON(!cachep->node[node]);
1964 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1965 }
1966 }
bf0dea23 1967
6a67368c 1968 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1969 jiffies + REAPTIMEOUT_NODE +
1970 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1971
1972 cpu_cache_get(cachep)->avail = 0;
1973 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1974 cpu_cache_get(cachep)->batchcount = 1;
1975 cpu_cache_get(cachep)->touched = 0;
1976 cachep->batchcount = 1;
1977 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1978 return 0;
f30cf7d1
PE
1979}
1980
12220dea
JK
1981unsigned long kmem_cache_flags(unsigned long object_size,
1982 unsigned long flags, const char *name,
1983 void (*ctor)(void *))
1984{
1985 return flags;
1986}
1987
1988struct kmem_cache *
1989__kmem_cache_alias(const char *name, size_t size, size_t align,
1990 unsigned long flags, void (*ctor)(void *))
1991{
1992 struct kmem_cache *cachep;
1993
1994 cachep = find_mergeable(size, align, flags, name, ctor);
1995 if (cachep) {
1996 cachep->refcount++;
1997
1998 /*
1999 * Adjust the object sizes so that we clear
2000 * the complete object on kzalloc.
2001 */
2002 cachep->object_size = max_t(int, cachep->object_size, size);
2003 }
2004 return cachep;
2005}
2006
b03a017b
JK
2007static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
2008 size_t size, unsigned long flags)
2009{
2010 size_t left;
2011
2012 cachep->num = 0;
2013
2014 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
2015 return false;
2016
2017 left = calculate_slab_order(cachep, size,
2018 flags | CFLGS_OBJFREELIST_SLAB);
2019 if (!cachep->num)
2020 return false;
2021
2022 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
2023 return false;
2024
2025 cachep->colour = left / cachep->colour_off;
2026
2027 return true;
2028}
2029
158e319b
JK
2030static bool set_off_slab_cache(struct kmem_cache *cachep,
2031 size_t size, unsigned long flags)
2032{
2033 size_t left;
2034
2035 cachep->num = 0;
2036
2037 /*
3217fd9b
JK
2038 * Always use on-slab management when SLAB_NOLEAKTRACE
2039 * to avoid recursive calls into kmemleak.
158e319b 2040 */
158e319b
JK
2041 if (flags & SLAB_NOLEAKTRACE)
2042 return false;
2043
2044 /*
2045 * Size is large, assume best to place the slab management obj
2046 * off-slab (should allow better packing of objs).
2047 */
2048 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
2049 if (!cachep->num)
2050 return false;
2051
2052 /*
2053 * If the slab has been placed off-slab, and we have enough space then
2054 * move it on-slab. This is at the expense of any extra colouring.
2055 */
2056 if (left >= cachep->num * sizeof(freelist_idx_t))
2057 return false;
2058
2059 cachep->colour = left / cachep->colour_off;
2060
2061 return true;
2062}
2063
2064static bool set_on_slab_cache(struct kmem_cache *cachep,
2065 size_t size, unsigned long flags)
2066{
2067 size_t left;
2068
2069 cachep->num = 0;
2070
2071 left = calculate_slab_order(cachep, size, flags);
2072 if (!cachep->num)
2073 return false;
2074
2075 cachep->colour = left / cachep->colour_off;
2076
2077 return true;
2078}
2079
1da177e4 2080/**
039363f3 2081 * __kmem_cache_create - Create a cache.
a755b76a 2082 * @cachep: cache management descriptor
1da177e4 2083 * @flags: SLAB flags
1da177e4
LT
2084 *
2085 * Returns a ptr to the cache on success, NULL on failure.
2086 * Cannot be called within a int, but can be interrupted.
20c2df83 2087 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2088 *
1da177e4
LT
2089 * The flags are
2090 *
2091 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2092 * to catch references to uninitialised memory.
2093 *
2094 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2095 * for buffer overruns.
2096 *
1da177e4
LT
2097 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2098 * cacheline. This can be beneficial if you're counting cycles as closely
2099 * as davem.
2100 */
278b1bb1 2101int
8a13a4cc 2102__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2103{
d4a5fca5 2104 size_t ralign = BYTES_PER_WORD;
83b519e8 2105 gfp_t gfp;
278b1bb1 2106 int err;
8a13a4cc 2107 size_t size = cachep->size;
1da177e4 2108
1da177e4 2109#if DEBUG
1da177e4
LT
2110#if FORCED_DEBUG
2111 /*
2112 * Enable redzoning and last user accounting, except for caches with
2113 * large objects, if the increased size would increase the object size
2114 * above the next power of two: caches with object sizes just above a
2115 * power of two have a significant amount of internal fragmentation.
2116 */
87a927c7
DW
2117 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2118 2 * sizeof(unsigned long long)))
b28a02de 2119 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2120 if (!(flags & SLAB_DESTROY_BY_RCU))
2121 flags |= SLAB_POISON;
2122#endif
1da177e4 2123#endif
1da177e4 2124
a737b3e2
AM
2125 /*
2126 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2127 * unaligned accesses for some archs when redzoning is used, and makes
2128 * sure any on-slab bufctl's are also correctly aligned.
2129 */
b28a02de
PE
2130 if (size & (BYTES_PER_WORD - 1)) {
2131 size += (BYTES_PER_WORD - 1);
2132 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2133 }
2134
87a927c7
DW
2135 if (flags & SLAB_RED_ZONE) {
2136 ralign = REDZONE_ALIGN;
2137 /* If redzoning, ensure that the second redzone is suitably
2138 * aligned, by adjusting the object size accordingly. */
2139 size += REDZONE_ALIGN - 1;
2140 size &= ~(REDZONE_ALIGN - 1);
2141 }
ca5f9703 2142
a44b56d3 2143 /* 3) caller mandated alignment */
8a13a4cc
CL
2144 if (ralign < cachep->align) {
2145 ralign = cachep->align;
1da177e4 2146 }
3ff84a7f
PE
2147 /* disable debug if necessary */
2148 if (ralign > __alignof__(unsigned long long))
a44b56d3 2149 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2150 /*
ca5f9703 2151 * 4) Store it.
1da177e4 2152 */
8a13a4cc 2153 cachep->align = ralign;
158e319b
JK
2154 cachep->colour_off = cache_line_size();
2155 /* Offset must be a multiple of the alignment. */
2156 if (cachep->colour_off < cachep->align)
2157 cachep->colour_off = cachep->align;
1da177e4 2158
83b519e8
PE
2159 if (slab_is_available())
2160 gfp = GFP_KERNEL;
2161 else
2162 gfp = GFP_NOWAIT;
2163
1da177e4 2164#if DEBUG
1da177e4 2165
ca5f9703
PE
2166 /*
2167 * Both debugging options require word-alignment which is calculated
2168 * into align above.
2169 */
1da177e4 2170 if (flags & SLAB_RED_ZONE) {
1da177e4 2171 /* add space for red zone words */
3ff84a7f
PE
2172 cachep->obj_offset += sizeof(unsigned long long);
2173 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2174 }
2175 if (flags & SLAB_STORE_USER) {
ca5f9703 2176 /* user store requires one word storage behind the end of
87a927c7
DW
2177 * the real object. But if the second red zone needs to be
2178 * aligned to 64 bits, we must allow that much space.
1da177e4 2179 */
87a927c7
DW
2180 if (flags & SLAB_RED_ZONE)
2181 size += REDZONE_ALIGN;
2182 else
2183 size += BYTES_PER_WORD;
1da177e4 2184 }
832a15d2
JK
2185#endif
2186
7ed2f9e6
AP
2187 kasan_cache_create(cachep, &size, &flags);
2188
832a15d2
JK
2189 size = ALIGN(size, cachep->align);
2190 /*
2191 * We should restrict the number of objects in a slab to implement
2192 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2193 */
2194 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2195 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2196
2197#if DEBUG
03a2d2a3
JK
2198 /*
2199 * To activate debug pagealloc, off-slab management is necessary
2200 * requirement. In early phase of initialization, small sized slab
2201 * doesn't get initialized so it would not be possible. So, we need
2202 * to check size >= 256. It guarantees that all necessary small
2203 * sized slab is initialized in current slab initialization sequence.
2204 */
40323278 2205 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2206 size >= 256 && cachep->object_size > cache_line_size()) {
2207 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2208 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2209
2210 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2211 flags |= CFLGS_OFF_SLAB;
2212 cachep->obj_offset += tmp_size - size;
2213 size = tmp_size;
2214 goto done;
2215 }
2216 }
1da177e4 2217 }
1da177e4
LT
2218#endif
2219
b03a017b
JK
2220 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2221 flags |= CFLGS_OBJFREELIST_SLAB;
2222 goto done;
2223 }
2224
158e319b 2225 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2226 flags |= CFLGS_OFF_SLAB;
158e319b 2227 goto done;
832a15d2 2228 }
1da177e4 2229
158e319b
JK
2230 if (set_on_slab_cache(cachep, size, flags))
2231 goto done;
1da177e4 2232
158e319b 2233 return -E2BIG;
1da177e4 2234
158e319b
JK
2235done:
2236 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2237 cachep->flags = flags;
a57a4988 2238 cachep->allocflags = __GFP_COMP;
a3187e43 2239 if (flags & SLAB_CACHE_DMA)
a618e89f 2240 cachep->allocflags |= GFP_DMA;
3b0efdfa 2241 cachep->size = size;
6a2d7a95 2242 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2243
40b44137
JK
2244#if DEBUG
2245 /*
2246 * If we're going to use the generic kernel_map_pages()
2247 * poisoning, then it's going to smash the contents of
2248 * the redzone and userword anyhow, so switch them off.
2249 */
2250 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2251 (cachep->flags & SLAB_POISON) &&
2252 is_debug_pagealloc_cache(cachep))
2253 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2254#endif
2255
2256 if (OFF_SLAB(cachep)) {
158e319b
JK
2257 cachep->freelist_cache =
2258 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2259 }
1da177e4 2260
278b1bb1
CL
2261 err = setup_cpu_cache(cachep, gfp);
2262 if (err) {
52b4b950 2263 __kmem_cache_release(cachep);
278b1bb1 2264 return err;
2ed3a4ef 2265 }
1da177e4 2266
278b1bb1 2267 return 0;
1da177e4 2268}
1da177e4
LT
2269
2270#if DEBUG
2271static void check_irq_off(void)
2272{
2273 BUG_ON(!irqs_disabled());
2274}
2275
2276static void check_irq_on(void)
2277{
2278 BUG_ON(irqs_disabled());
2279}
2280
18726ca8
JK
2281static void check_mutex_acquired(void)
2282{
2283 BUG_ON(!mutex_is_locked(&slab_mutex));
2284}
2285
343e0d7a 2286static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2287{
2288#ifdef CONFIG_SMP
2289 check_irq_off();
18bf8541 2290 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2291#endif
2292}
e498be7d 2293
343e0d7a 2294static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2295{
2296#ifdef CONFIG_SMP
2297 check_irq_off();
18bf8541 2298 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2299#endif
2300}
2301
1da177e4
LT
2302#else
2303#define check_irq_off() do { } while(0)
2304#define check_irq_on() do { } while(0)
18726ca8 2305#define check_mutex_acquired() do { } while(0)
1da177e4 2306#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2307#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2308#endif
2309
18726ca8
JK
2310static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2311 int node, bool free_all, struct list_head *list)
2312{
2313 int tofree;
2314
2315 if (!ac || !ac->avail)
2316 return;
2317
2318 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2319 if (tofree > ac->avail)
2320 tofree = (ac->avail + 1) / 2;
2321
2322 free_block(cachep, ac->entry, tofree, node, list);
2323 ac->avail -= tofree;
2324 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2325}
aab2207c 2326
1da177e4
LT
2327static void do_drain(void *arg)
2328{
a737b3e2 2329 struct kmem_cache *cachep = arg;
1da177e4 2330 struct array_cache *ac;
7d6e6d09 2331 int node = numa_mem_id();
18bf8541 2332 struct kmem_cache_node *n;
97654dfa 2333 LIST_HEAD(list);
1da177e4
LT
2334
2335 check_irq_off();
9a2dba4b 2336 ac = cpu_cache_get(cachep);
18bf8541
CL
2337 n = get_node(cachep, node);
2338 spin_lock(&n->list_lock);
97654dfa 2339 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2340 spin_unlock(&n->list_lock);
97654dfa 2341 slabs_destroy(cachep, &list);
1da177e4
LT
2342 ac->avail = 0;
2343}
2344
343e0d7a 2345static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2346{
ce8eb6c4 2347 struct kmem_cache_node *n;
e498be7d 2348 int node;
18726ca8 2349 LIST_HEAD(list);
e498be7d 2350
15c8b6c1 2351 on_each_cpu(do_drain, cachep, 1);
1da177e4 2352 check_irq_on();
18bf8541
CL
2353 for_each_kmem_cache_node(cachep, node, n)
2354 if (n->alien)
ce8eb6c4 2355 drain_alien_cache(cachep, n->alien);
a4523a8b 2356
18726ca8
JK
2357 for_each_kmem_cache_node(cachep, node, n) {
2358 spin_lock_irq(&n->list_lock);
2359 drain_array_locked(cachep, n->shared, node, true, &list);
2360 spin_unlock_irq(&n->list_lock);
2361
2362 slabs_destroy(cachep, &list);
2363 }
1da177e4
LT
2364}
2365
ed11d9eb
CL
2366/*
2367 * Remove slabs from the list of free slabs.
2368 * Specify the number of slabs to drain in tofree.
2369 *
2370 * Returns the actual number of slabs released.
2371 */
2372static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2373 struct kmem_cache_node *n, int tofree)
1da177e4 2374{
ed11d9eb
CL
2375 struct list_head *p;
2376 int nr_freed;
8456a648 2377 struct page *page;
1da177e4 2378
ed11d9eb 2379 nr_freed = 0;
ce8eb6c4 2380 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2381
ce8eb6c4
CL
2382 spin_lock_irq(&n->list_lock);
2383 p = n->slabs_free.prev;
2384 if (p == &n->slabs_free) {
2385 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2386 goto out;
2387 }
1da177e4 2388
8456a648 2389 page = list_entry(p, struct page, lru);
8456a648 2390 list_del(&page->lru);
ed11d9eb
CL
2391 /*
2392 * Safe to drop the lock. The slab is no longer linked
2393 * to the cache.
2394 */
ce8eb6c4
CL
2395 n->free_objects -= cache->num;
2396 spin_unlock_irq(&n->list_lock);
8456a648 2397 slab_destroy(cache, page);
ed11d9eb 2398 nr_freed++;
1da177e4 2399 }
ed11d9eb
CL
2400out:
2401 return nr_freed;
1da177e4
LT
2402}
2403
d6e0b7fa 2404int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
e498be7d 2405{
18bf8541
CL
2406 int ret = 0;
2407 int node;
ce8eb6c4 2408 struct kmem_cache_node *n;
e498be7d
CL
2409
2410 drain_cpu_caches(cachep);
2411
2412 check_irq_on();
18bf8541 2413 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2414 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2415
ce8eb6c4
CL
2416 ret += !list_empty(&n->slabs_full) ||
2417 !list_empty(&n->slabs_partial);
e498be7d
CL
2418 }
2419 return (ret ? 1 : 0);
2420}
2421
945cf2b6 2422int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950
DS
2423{
2424 return __kmem_cache_shrink(cachep, false);
2425}
2426
2427void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2428{
12c3667f 2429 int i;
ce8eb6c4 2430 struct kmem_cache_node *n;
1da177e4 2431
c7ce4f60
TG
2432 cache_random_seq_destroy(cachep);
2433
bf0dea23 2434 free_percpu(cachep->cpu_cache);
1da177e4 2435
ce8eb6c4 2436 /* NUMA: free the node structures */
18bf8541
CL
2437 for_each_kmem_cache_node(cachep, i, n) {
2438 kfree(n->shared);
2439 free_alien_cache(n->alien);
2440 kfree(n);
2441 cachep->node[i] = NULL;
12c3667f 2442 }
1da177e4 2443}
1da177e4 2444
e5ac9c5a
RT
2445/*
2446 * Get the memory for a slab management obj.
5f0985bb
JZ
2447 *
2448 * For a slab cache when the slab descriptor is off-slab, the
2449 * slab descriptor can't come from the same cache which is being created,
2450 * Because if it is the case, that means we defer the creation of
2451 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2452 * And we eventually call down to __kmem_cache_create(), which
2453 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2454 * This is a "chicken-and-egg" problem.
2455 *
2456 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2457 * which are all initialized during kmem_cache_init().
e5ac9c5a 2458 */
7e007355 2459static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2460 struct page *page, int colour_off,
2461 gfp_t local_flags, int nodeid)
1da177e4 2462{
7e007355 2463 void *freelist;
0c3aa83e 2464 void *addr = page_address(page);
b28a02de 2465
2e6b3602
JK
2466 page->s_mem = addr + colour_off;
2467 page->active = 0;
2468
b03a017b
JK
2469 if (OBJFREELIST_SLAB(cachep))
2470 freelist = NULL;
2471 else if (OFF_SLAB(cachep)) {
1da177e4 2472 /* Slab management obj is off-slab. */
8456a648 2473 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2474 local_flags, nodeid);
8456a648 2475 if (!freelist)
1da177e4
LT
2476 return NULL;
2477 } else {
2e6b3602
JK
2478 /* We will use last bytes at the slab for freelist */
2479 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2480 cachep->freelist_size;
1da177e4 2481 }
2e6b3602 2482
8456a648 2483 return freelist;
1da177e4
LT
2484}
2485
7cc68973 2486static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2487{
a41adfaa 2488 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2489}
2490
2491static inline void set_free_obj(struct page *page,
7cc68973 2492 unsigned int idx, freelist_idx_t val)
e5c58dfd 2493{
a41adfaa 2494 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2495}
2496
10b2e9e8 2497static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2498{
10b2e9e8 2499#if DEBUG
1da177e4
LT
2500 int i;
2501
2502 for (i = 0; i < cachep->num; i++) {
8456a648 2503 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2504
1da177e4
LT
2505 if (cachep->flags & SLAB_STORE_USER)
2506 *dbg_userword(cachep, objp) = NULL;
2507
2508 if (cachep->flags & SLAB_RED_ZONE) {
2509 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2510 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2511 }
2512 /*
a737b3e2
AM
2513 * Constructors are not allowed to allocate memory from the same
2514 * cache which they are a constructor for. Otherwise, deadlock.
2515 * They must also be threaded.
1da177e4 2516 */
7ed2f9e6
AP
2517 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2518 kasan_unpoison_object_data(cachep,
2519 objp + obj_offset(cachep));
51cc5068 2520 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2521 kasan_poison_object_data(
2522 cachep, objp + obj_offset(cachep));
2523 }
1da177e4
LT
2524
2525 if (cachep->flags & SLAB_RED_ZONE) {
2526 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2527 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2528 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2529 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2530 }
40b44137
JK
2531 /* need to poison the objs? */
2532 if (cachep->flags & SLAB_POISON) {
2533 poison_obj(cachep, objp, POISON_FREE);
2534 slab_kernel_map(cachep, objp, 0, 0);
2535 }
10b2e9e8 2536 }
1da177e4 2537#endif
10b2e9e8
JK
2538}
2539
c7ce4f60
TG
2540#ifdef CONFIG_SLAB_FREELIST_RANDOM
2541/* Hold information during a freelist initialization */
2542union freelist_init_state {
2543 struct {
2544 unsigned int pos;
2545 freelist_idx_t *list;
2546 unsigned int count;
2547 unsigned int rand;
2548 };
2549 struct rnd_state rnd_state;
2550};
2551
2552/*
2553 * Initialize the state based on the randomization methode available.
2554 * return true if the pre-computed list is available, false otherwize.
2555 */
2556static bool freelist_state_initialize(union freelist_init_state *state,
2557 struct kmem_cache *cachep,
2558 unsigned int count)
2559{
2560 bool ret;
2561 unsigned int rand;
2562
2563 /* Use best entropy available to define a random shift */
2564 get_random_bytes_arch(&rand, sizeof(rand));
2565
2566 /* Use a random state if the pre-computed list is not available */
2567 if (!cachep->random_seq) {
2568 prandom_seed_state(&state->rnd_state, rand);
2569 ret = false;
2570 } else {
2571 state->list = cachep->random_seq;
2572 state->count = count;
2573 state->pos = 0;
2574 state->rand = rand;
2575 ret = true;
2576 }
2577 return ret;
2578}
2579
2580/* Get the next entry on the list and randomize it using a random shift */
2581static freelist_idx_t next_random_slot(union freelist_init_state *state)
2582{
2583 return (state->list[state->pos++] + state->rand) % state->count;
2584}
2585
2586/*
2587 * Shuffle the freelist initialization state based on pre-computed lists.
2588 * return true if the list was successfully shuffled, false otherwise.
2589 */
2590static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2591{
2592 unsigned int objfreelist = 0, i, count = cachep->num;
2593 union freelist_init_state state;
2594 bool precomputed;
2595
2596 if (count < 2)
2597 return false;
2598
2599 precomputed = freelist_state_initialize(&state, cachep, count);
2600
2601 /* Take a random entry as the objfreelist */
2602 if (OBJFREELIST_SLAB(cachep)) {
2603 if (!precomputed)
2604 objfreelist = count - 1;
2605 else
2606 objfreelist = next_random_slot(&state);
2607 page->freelist = index_to_obj(cachep, page, objfreelist) +
2608 obj_offset(cachep);
2609 count--;
2610 }
2611
2612 /*
2613 * On early boot, generate the list dynamically.
2614 * Later use a pre-computed list for speed.
2615 */
2616 if (!precomputed) {
2617 freelist_randomize(&state.rnd_state, page->freelist, count);
2618 } else {
2619 for (i = 0; i < count; i++)
2620 set_free_obj(page, i, next_random_slot(&state));
2621 }
2622
2623 if (OBJFREELIST_SLAB(cachep))
2624 set_free_obj(page, cachep->num - 1, objfreelist);
2625
2626 return true;
2627}
2628#else
2629static inline bool shuffle_freelist(struct kmem_cache *cachep,
2630 struct page *page)
2631{
2632 return false;
2633}
2634#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2635
10b2e9e8
JK
2636static void cache_init_objs(struct kmem_cache *cachep,
2637 struct page *page)
2638{
2639 int i;
7ed2f9e6 2640 void *objp;
c7ce4f60 2641 bool shuffled;
10b2e9e8
JK
2642
2643 cache_init_objs_debug(cachep, page);
2644
c7ce4f60
TG
2645 /* Try to randomize the freelist if enabled */
2646 shuffled = shuffle_freelist(cachep, page);
2647
2648 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2649 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2650 obj_offset(cachep);
2651 }
2652
10b2e9e8
JK
2653 for (i = 0; i < cachep->num; i++) {
2654 /* constructor could break poison info */
7ed2f9e6
AP
2655 if (DEBUG == 0 && cachep->ctor) {
2656 objp = index_to_obj(cachep, page, i);
2657 kasan_unpoison_object_data(cachep, objp);
2658 cachep->ctor(objp);
2659 kasan_poison_object_data(cachep, objp);
2660 }
10b2e9e8 2661
c7ce4f60
TG
2662 if (!shuffled)
2663 set_free_obj(page, i, i);
1da177e4 2664 }
1da177e4
LT
2665}
2666
260b61dd 2667static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2668{
b1cb0982 2669 void *objp;
78d382d7 2670
e5c58dfd 2671 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2672 page->active++;
78d382d7 2673
d31676df
JK
2674#if DEBUG
2675 if (cachep->flags & SLAB_STORE_USER)
2676 set_store_user_dirty(cachep);
2677#endif
2678
78d382d7
MD
2679 return objp;
2680}
2681
260b61dd
JK
2682static void slab_put_obj(struct kmem_cache *cachep,
2683 struct page *page, void *objp)
78d382d7 2684{
8456a648 2685 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2686#if DEBUG
16025177 2687 unsigned int i;
b1cb0982 2688
b1cb0982 2689 /* Verify double free bug */
8456a648 2690 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2691 if (get_free_obj(page, i) == objnr) {
1170532b 2692 pr_err("slab: double free detected in cache '%s', objp %p\n",
756a025f 2693 cachep->name, objp);
b1cb0982
JK
2694 BUG();
2695 }
78d382d7
MD
2696 }
2697#endif
8456a648 2698 page->active--;
b03a017b
JK
2699 if (!page->freelist)
2700 page->freelist = objp + obj_offset(cachep);
2701
e5c58dfd 2702 set_free_obj(page, page->active, objnr);
78d382d7
MD
2703}
2704
4776874f
PE
2705/*
2706 * Map pages beginning at addr to the given cache and slab. This is required
2707 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2708 * virtual address for kfree, ksize, and slab debugging.
4776874f 2709 */
8456a648 2710static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2711 void *freelist)
1da177e4 2712{
a57a4988 2713 page->slab_cache = cache;
8456a648 2714 page->freelist = freelist;
1da177e4
LT
2715}
2716
2717/*
2718 * Grow (by 1) the number of slabs within a cache. This is called by
2719 * kmem_cache_alloc() when there are no active objs left in a cache.
2720 */
76b342bd
JK
2721static struct page *cache_grow_begin(struct kmem_cache *cachep,
2722 gfp_t flags, int nodeid)
1da177e4 2723{
7e007355 2724 void *freelist;
b28a02de
PE
2725 size_t offset;
2726 gfp_t local_flags;
511e3a05 2727 int page_node;
ce8eb6c4 2728 struct kmem_cache_node *n;
511e3a05 2729 struct page *page;
1da177e4 2730
a737b3e2
AM
2731 /*
2732 * Be lazy and only check for valid flags here, keeping it out of the
2733 * critical path in kmem_cache_alloc().
1da177e4 2734 */
c871ac4e
AM
2735 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2736 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2737 BUG();
2738 }
6cb06229 2739 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2740
1da177e4 2741 check_irq_off();
d0164adc 2742 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2743 local_irq_enable();
2744
a737b3e2
AM
2745 /*
2746 * Get mem for the objs. Attempt to allocate a physical page from
2747 * 'nodeid'.
e498be7d 2748 */
511e3a05 2749 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2750 if (!page)
1da177e4
LT
2751 goto failed;
2752
511e3a05
JK
2753 page_node = page_to_nid(page);
2754 n = get_node(cachep, page_node);
03d1d43a
JK
2755
2756 /* Get colour for the slab, and cal the next value. */
2757 n->colour_next++;
2758 if (n->colour_next >= cachep->colour)
2759 n->colour_next = 0;
2760
2761 offset = n->colour_next;
2762 if (offset >= cachep->colour)
2763 offset = 0;
2764
2765 offset *= cachep->colour_off;
2766
1da177e4 2767 /* Get slab management. */
8456a648 2768 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2769 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2770 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2771 goto opps1;
2772
8456a648 2773 slab_map_pages(cachep, page, freelist);
1da177e4 2774
7ed2f9e6 2775 kasan_poison_slab(page);
8456a648 2776 cache_init_objs(cachep, page);
1da177e4 2777
d0164adc 2778 if (gfpflags_allow_blocking(local_flags))
1da177e4 2779 local_irq_disable();
1da177e4 2780
76b342bd
JK
2781 return page;
2782
a737b3e2 2783opps1:
0c3aa83e 2784 kmem_freepages(cachep, page);
a737b3e2 2785failed:
d0164adc 2786 if (gfpflags_allow_blocking(local_flags))
1da177e4 2787 local_irq_disable();
76b342bd
JK
2788 return NULL;
2789}
2790
2791static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2792{
2793 struct kmem_cache_node *n;
2794 void *list = NULL;
2795
2796 check_irq_off();
2797
2798 if (!page)
2799 return;
2800
2801 INIT_LIST_HEAD(&page->lru);
2802 n = get_node(cachep, page_to_nid(page));
2803
2804 spin_lock(&n->list_lock);
2805 if (!page->active)
2806 list_add_tail(&page->lru, &(n->slabs_free));
2807 else
2808 fixup_slab_list(cachep, n, page, &list);
2809 STATS_INC_GROWN(cachep);
2810 n->free_objects += cachep->num - page->active;
2811 spin_unlock(&n->list_lock);
2812
2813 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2814}
2815
2816#if DEBUG
2817
2818/*
2819 * Perform extra freeing checks:
2820 * - detect bad pointers.
2821 * - POISON/RED_ZONE checking
1da177e4
LT
2822 */
2823static void kfree_debugcheck(const void *objp)
2824{
1da177e4 2825 if (!virt_addr_valid(objp)) {
1170532b 2826 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2827 (unsigned long)objp);
2828 BUG();
1da177e4 2829 }
1da177e4
LT
2830}
2831
58ce1fd5
PE
2832static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2833{
b46b8f19 2834 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2835
2836 redzone1 = *dbg_redzone1(cache, obj);
2837 redzone2 = *dbg_redzone2(cache, obj);
2838
2839 /*
2840 * Redzone is ok.
2841 */
2842 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2843 return;
2844
2845 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2846 slab_error(cache, "double free detected");
2847 else
2848 slab_error(cache, "memory outside object was overwritten");
2849
1170532b
JP
2850 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2851 obj, redzone1, redzone2);
58ce1fd5
PE
2852}
2853
343e0d7a 2854static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2855 unsigned long caller)
1da177e4 2856{
1da177e4 2857 unsigned int objnr;
8456a648 2858 struct page *page;
1da177e4 2859
80cbd911
MW
2860 BUG_ON(virt_to_cache(objp) != cachep);
2861
3dafccf2 2862 objp -= obj_offset(cachep);
1da177e4 2863 kfree_debugcheck(objp);
b49af68f 2864 page = virt_to_head_page(objp);
1da177e4 2865
1da177e4 2866 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2867 verify_redzone_free(cachep, objp);
1da177e4
LT
2868 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2869 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2870 }
d31676df
JK
2871 if (cachep->flags & SLAB_STORE_USER) {
2872 set_store_user_dirty(cachep);
7c0cb9c6 2873 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2874 }
1da177e4 2875
8456a648 2876 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2877
2878 BUG_ON(objnr >= cachep->num);
8456a648 2879 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2880
1da177e4 2881 if (cachep->flags & SLAB_POISON) {
1da177e4 2882 poison_obj(cachep, objp, POISON_FREE);
40b44137 2883 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2884 }
2885 return objp;
2886}
2887
1da177e4
LT
2888#else
2889#define kfree_debugcheck(x) do { } while(0)
2890#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2891#endif
2892
b03a017b
JK
2893static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2894 void **list)
2895{
2896#if DEBUG
2897 void *next = *list;
2898 void *objp;
2899
2900 while (next) {
2901 objp = next - obj_offset(cachep);
2902 next = *(void **)next;
2903 poison_obj(cachep, objp, POISON_FREE);
2904 }
2905#endif
2906}
2907
d8410234 2908static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2909 struct kmem_cache_node *n, struct page *page,
2910 void **list)
d8410234
JK
2911{
2912 /* move slabp to correct slabp list: */
2913 list_del(&page->lru);
b03a017b 2914 if (page->active == cachep->num) {
d8410234 2915 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2916 if (OBJFREELIST_SLAB(cachep)) {
2917#if DEBUG
2918 /* Poisoning will be done without holding the lock */
2919 if (cachep->flags & SLAB_POISON) {
2920 void **objp = page->freelist;
2921
2922 *objp = *list;
2923 *list = objp;
2924 }
2925#endif
2926 page->freelist = NULL;
2927 }
2928 } else
d8410234
JK
2929 list_add(&page->lru, &n->slabs_partial);
2930}
2931
f68f8ddd
JK
2932/* Try to find non-pfmemalloc slab if needed */
2933static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2934 struct page *page, bool pfmemalloc)
2935{
2936 if (!page)
2937 return NULL;
2938
2939 if (pfmemalloc)
2940 return page;
2941
2942 if (!PageSlabPfmemalloc(page))
2943 return page;
2944
2945 /* No need to keep pfmemalloc slab if we have enough free objects */
2946 if (n->free_objects > n->free_limit) {
2947 ClearPageSlabPfmemalloc(page);
2948 return page;
2949 }
2950
2951 /* Move pfmemalloc slab to the end of list to speed up next search */
2952 list_del(&page->lru);
2953 if (!page->active)
2954 list_add_tail(&page->lru, &n->slabs_free);
2955 else
2956 list_add_tail(&page->lru, &n->slabs_partial);
2957
2958 list_for_each_entry(page, &n->slabs_partial, lru) {
2959 if (!PageSlabPfmemalloc(page))
2960 return page;
2961 }
2962
2963 list_for_each_entry(page, &n->slabs_free, lru) {
2964 if (!PageSlabPfmemalloc(page))
2965 return page;
2966 }
2967
2968 return NULL;
2969}
2970
2971static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2972{
2973 struct page *page;
2974
2975 page = list_first_entry_or_null(&n->slabs_partial,
2976 struct page, lru);
2977 if (!page) {
2978 n->free_touched = 1;
2979 page = list_first_entry_or_null(&n->slabs_free,
2980 struct page, lru);
2981 }
2982
f68f8ddd
JK
2983 if (sk_memalloc_socks())
2984 return get_valid_first_slab(n, page, pfmemalloc);
2985
7aa0d227
GT
2986 return page;
2987}
2988
f68f8ddd
JK
2989static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2990 struct kmem_cache_node *n, gfp_t flags)
2991{
2992 struct page *page;
2993 void *obj;
2994 void *list = NULL;
2995
2996 if (!gfp_pfmemalloc_allowed(flags))
2997 return NULL;
2998
2999 spin_lock(&n->list_lock);
3000 page = get_first_slab(n, true);
3001 if (!page) {
3002 spin_unlock(&n->list_lock);
3003 return NULL;
3004 }
3005
3006 obj = slab_get_obj(cachep, page);
3007 n->free_objects--;
3008
3009 fixup_slab_list(cachep, n, page, &list);
3010
3011 spin_unlock(&n->list_lock);
3012 fixup_objfreelist_debug(cachep, &list);
3013
3014 return obj;
3015}
3016
213b4695
JK
3017/*
3018 * Slab list should be fixed up by fixup_slab_list() for existing slab
3019 * or cache_grow_end() for new slab
3020 */
3021static __always_inline int alloc_block(struct kmem_cache *cachep,
3022 struct array_cache *ac, struct page *page, int batchcount)
3023{
3024 /*
3025 * There must be at least one object available for
3026 * allocation.
3027 */
3028 BUG_ON(page->active >= cachep->num);
3029
3030 while (page->active < cachep->num && batchcount--) {
3031 STATS_INC_ALLOCED(cachep);
3032 STATS_INC_ACTIVE(cachep);
3033 STATS_SET_HIGH(cachep);
3034
3035 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
3036 }
3037
3038 return batchcount;
3039}
3040
f68f8ddd 3041static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
3042{
3043 int batchcount;
ce8eb6c4 3044 struct kmem_cache_node *n;
801faf0d 3045 struct array_cache *ac, *shared;
1ca4cb24 3046 int node;
b03a017b 3047 void *list = NULL;
76b342bd 3048 struct page *page;
1ca4cb24 3049
1da177e4 3050 check_irq_off();
7d6e6d09 3051 node = numa_mem_id();
f68f8ddd 3052
9a2dba4b 3053 ac = cpu_cache_get(cachep);
1da177e4
LT
3054 batchcount = ac->batchcount;
3055 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3056 /*
3057 * If there was little recent activity on this cache, then
3058 * perform only a partial refill. Otherwise we could generate
3059 * refill bouncing.
1da177e4
LT
3060 */
3061 batchcount = BATCHREFILL_LIMIT;
3062 }
18bf8541 3063 n = get_node(cachep, node);
e498be7d 3064
ce8eb6c4 3065 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
3066 shared = READ_ONCE(n->shared);
3067 if (!n->free_objects && (!shared || !shared->avail))
3068 goto direct_grow;
3069
ce8eb6c4 3070 spin_lock(&n->list_lock);
801faf0d 3071 shared = READ_ONCE(n->shared);
1da177e4 3072
3ded175a 3073 /* See if we can refill from the shared array */
801faf0d
JK
3074 if (shared && transfer_objects(ac, shared, batchcount)) {
3075 shared->touched = 1;
3ded175a 3076 goto alloc_done;
44b57f1c 3077 }
3ded175a 3078
1da177e4 3079 while (batchcount > 0) {
1da177e4 3080 /* Get slab alloc is to come from. */
f68f8ddd 3081 page = get_first_slab(n, false);
7aa0d227
GT
3082 if (!page)
3083 goto must_grow;
1da177e4 3084
1da177e4 3085 check_spinlock_acquired(cachep);
714b8171 3086
213b4695 3087 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 3088 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
3089 }
3090
a737b3e2 3091must_grow:
ce8eb6c4 3092 n->free_objects -= ac->avail;
a737b3e2 3093alloc_done:
ce8eb6c4 3094 spin_unlock(&n->list_lock);
b03a017b 3095 fixup_objfreelist_debug(cachep, &list);
1da177e4 3096
801faf0d 3097direct_grow:
1da177e4 3098 if (unlikely(!ac->avail)) {
f68f8ddd
JK
3099 /* Check if we can use obj in pfmemalloc slab */
3100 if (sk_memalloc_socks()) {
3101 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3102
3103 if (obj)
3104 return obj;
3105 }
3106
76b342bd 3107 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 3108
76b342bd
JK
3109 /*
3110 * cache_grow_begin() can reenable interrupts,
3111 * then ac could change.
3112 */
9a2dba4b 3113 ac = cpu_cache_get(cachep);
213b4695
JK
3114 if (!ac->avail && page)
3115 alloc_block(cachep, ac, page, batchcount);
3116 cache_grow_end(cachep, page);
072bb0aa 3117
213b4695 3118 if (!ac->avail)
1da177e4 3119 return NULL;
1da177e4
LT
3120 }
3121 ac->touched = 1;
072bb0aa 3122
f68f8ddd 3123 return ac->entry[--ac->avail];
1da177e4
LT
3124}
3125
a737b3e2
AM
3126static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3127 gfp_t flags)
1da177e4 3128{
d0164adc 3129 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
3130}
3131
3132#if DEBUG
a737b3e2 3133static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3134 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3135{
b28a02de 3136 if (!objp)
1da177e4 3137 return objp;
b28a02de 3138 if (cachep->flags & SLAB_POISON) {
1da177e4 3139 check_poison_obj(cachep, objp);
40b44137 3140 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
3141 poison_obj(cachep, objp, POISON_INUSE);
3142 }
3143 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3144 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3145
3146 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3147 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3148 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3149 slab_error(cachep, "double free, or memory outside object was overwritten");
1170532b
JP
3150 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3151 objp, *dbg_redzone1(cachep, objp),
3152 *dbg_redzone2(cachep, objp));
1da177e4
LT
3153 }
3154 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3155 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3156 }
03787301 3157
3dafccf2 3158 objp += obj_offset(cachep);
4f104934 3159 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3160 cachep->ctor(objp);
7ea466f2
TH
3161 if (ARCH_SLAB_MINALIGN &&
3162 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
1170532b 3163 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3164 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3165 }
1da177e4
LT
3166 return objp;
3167}
3168#else
3169#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3170#endif
3171
343e0d7a 3172static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3173{
b28a02de 3174 void *objp;
1da177e4
LT
3175 struct array_cache *ac;
3176
5c382300 3177 check_irq_off();
8a8b6502 3178
9a2dba4b 3179 ac = cpu_cache_get(cachep);
1da177e4 3180 if (likely(ac->avail)) {
1da177e4 3181 ac->touched = 1;
f68f8ddd 3182 objp = ac->entry[--ac->avail];
072bb0aa 3183
f68f8ddd
JK
3184 STATS_INC_ALLOCHIT(cachep);
3185 goto out;
1da177e4 3186 }
072bb0aa
MG
3187
3188 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3189 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3190 /*
3191 * the 'ac' may be updated by cache_alloc_refill(),
3192 * and kmemleak_erase() requires its correct value.
3193 */
3194 ac = cpu_cache_get(cachep);
3195
3196out:
d5cff635
CM
3197 /*
3198 * To avoid a false negative, if an object that is in one of the
3199 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3200 * treat the array pointers as a reference to the object.
3201 */
f3d8b53a
O
3202 if (objp)
3203 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3204 return objp;
3205}
3206
e498be7d 3207#ifdef CONFIG_NUMA
c61afb18 3208/*
2ad654bc 3209 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3210 *
3211 * If we are in_interrupt, then process context, including cpusets and
3212 * mempolicy, may not apply and should not be used for allocation policy.
3213 */
3214static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3215{
3216 int nid_alloc, nid_here;
3217
765c4507 3218 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3219 return NULL;
7d6e6d09 3220 nid_alloc = nid_here = numa_mem_id();
c61afb18 3221 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3222 nid_alloc = cpuset_slab_spread_node();
c61afb18 3223 else if (current->mempolicy)
2a389610 3224 nid_alloc = mempolicy_slab_node();
c61afb18 3225 if (nid_alloc != nid_here)
8b98c169 3226 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3227 return NULL;
3228}
3229
765c4507
CL
3230/*
3231 * Fallback function if there was no memory available and no objects on a
3c517a61 3232 * certain node and fall back is permitted. First we scan all the
6a67368c 3233 * available node for available objects. If that fails then we
3c517a61
CL
3234 * perform an allocation without specifying a node. This allows the page
3235 * allocator to do its reclaim / fallback magic. We then insert the
3236 * slab into the proper nodelist and then allocate from it.
765c4507 3237 */
8c8cc2c1 3238static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3239{
8c8cc2c1 3240 struct zonelist *zonelist;
dd1a239f 3241 struct zoneref *z;
54a6eb5c
MG
3242 struct zone *zone;
3243 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3244 void *obj = NULL;
76b342bd 3245 struct page *page;
3c517a61 3246 int nid;
cc9a6c87 3247 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3248
3249 if (flags & __GFP_THISNODE)
3250 return NULL;
3251
cc9a6c87 3252retry_cpuset:
d26914d1 3253 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3254 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3255
3c517a61
CL
3256retry:
3257 /*
3258 * Look through allowed nodes for objects available
3259 * from existing per node queues.
3260 */
54a6eb5c
MG
3261 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3262 nid = zone_to_nid(zone);
aedb0eb1 3263
061d7074 3264 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3265 get_node(cache, nid) &&
3266 get_node(cache, nid)->free_objects) {
3c517a61 3267 obj = ____cache_alloc_node(cache,
4167e9b2 3268 gfp_exact_node(flags), nid);
481c5346
CL
3269 if (obj)
3270 break;
3271 }
3c517a61
CL
3272 }
3273
cfce6604 3274 if (!obj) {
3c517a61
CL
3275 /*
3276 * This allocation will be performed within the constraints
3277 * of the current cpuset / memory policy requirements.
3278 * We may trigger various forms of reclaim on the allowed
3279 * set and go into memory reserves if necessary.
3280 */
76b342bd
JK
3281 page = cache_grow_begin(cache, flags, numa_mem_id());
3282 cache_grow_end(cache, page);
3283 if (page) {
3284 nid = page_to_nid(page);
511e3a05
JK
3285 obj = ____cache_alloc_node(cache,
3286 gfp_exact_node(flags), nid);
0c3aa83e 3287
3c517a61 3288 /*
511e3a05
JK
3289 * Another processor may allocate the objects in
3290 * the slab since we are not holding any locks.
3c517a61 3291 */
511e3a05
JK
3292 if (!obj)
3293 goto retry;
3c517a61 3294 }
aedb0eb1 3295 }
cc9a6c87 3296
d26914d1 3297 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3298 goto retry_cpuset;
765c4507
CL
3299 return obj;
3300}
3301
e498be7d
CL
3302/*
3303 * A interface to enable slab creation on nodeid
1da177e4 3304 */
8b98c169 3305static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3306 int nodeid)
e498be7d 3307{
8456a648 3308 struct page *page;
ce8eb6c4 3309 struct kmem_cache_node *n;
213b4695 3310 void *obj = NULL;
b03a017b 3311 void *list = NULL;
b28a02de 3312
7c3fbbdd 3313 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3314 n = get_node(cachep, nodeid);
ce8eb6c4 3315 BUG_ON(!n);
b28a02de 3316
ca3b9b91 3317 check_irq_off();
ce8eb6c4 3318 spin_lock(&n->list_lock);
f68f8ddd 3319 page = get_first_slab(n, false);
7aa0d227
GT
3320 if (!page)
3321 goto must_grow;
b28a02de 3322
b28a02de 3323 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3324
3325 STATS_INC_NODEALLOCS(cachep);
3326 STATS_INC_ACTIVE(cachep);
3327 STATS_SET_HIGH(cachep);
3328
8456a648 3329 BUG_ON(page->active == cachep->num);
b28a02de 3330
260b61dd 3331 obj = slab_get_obj(cachep, page);
ce8eb6c4 3332 n->free_objects--;
b28a02de 3333
b03a017b 3334 fixup_slab_list(cachep, n, page, &list);
e498be7d 3335
ce8eb6c4 3336 spin_unlock(&n->list_lock);
b03a017b 3337 fixup_objfreelist_debug(cachep, &list);
213b4695 3338 return obj;
e498be7d 3339
a737b3e2 3340must_grow:
ce8eb6c4 3341 spin_unlock(&n->list_lock);
76b342bd 3342 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3343 if (page) {
3344 /* This slab isn't counted yet so don't update free_objects */
3345 obj = slab_get_obj(cachep, page);
3346 }
76b342bd 3347 cache_grow_end(cachep, page);
1da177e4 3348
213b4695 3349 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3350}
8c8cc2c1 3351
8c8cc2c1 3352static __always_inline void *
48356303 3353slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3354 unsigned long caller)
8c8cc2c1
PE
3355{
3356 unsigned long save_flags;
3357 void *ptr;
7d6e6d09 3358 int slab_node = numa_mem_id();
8c8cc2c1 3359
dcce284a 3360 flags &= gfp_allowed_mask;
011eceaf
JDB
3361 cachep = slab_pre_alloc_hook(cachep, flags);
3362 if (unlikely(!cachep))
824ebef1
AM
3363 return NULL;
3364
8c8cc2c1
PE
3365 cache_alloc_debugcheck_before(cachep, flags);
3366 local_irq_save(save_flags);
3367
eacbbae3 3368 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3369 nodeid = slab_node;
8c8cc2c1 3370
18bf8541 3371 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3372 /* Node not bootstrapped yet */
3373 ptr = fallback_alloc(cachep, flags);
3374 goto out;
3375 }
3376
7d6e6d09 3377 if (nodeid == slab_node) {
8c8cc2c1
PE
3378 /*
3379 * Use the locally cached objects if possible.
3380 * However ____cache_alloc does not allow fallback
3381 * to other nodes. It may fail while we still have
3382 * objects on other nodes available.
3383 */
3384 ptr = ____cache_alloc(cachep, flags);
3385 if (ptr)
3386 goto out;
3387 }
3388 /* ___cache_alloc_node can fall back to other nodes */
3389 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3390 out:
3391 local_irq_restore(save_flags);
3392 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3393
d5e3ed66
JDB
3394 if (unlikely(flags & __GFP_ZERO) && ptr)
3395 memset(ptr, 0, cachep->object_size);
d07dbea4 3396
d5e3ed66 3397 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3398 return ptr;
3399}
3400
3401static __always_inline void *
3402__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3403{
3404 void *objp;
3405
2ad654bc 3406 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3407 objp = alternate_node_alloc(cache, flags);
3408 if (objp)
3409 goto out;
3410 }
3411 objp = ____cache_alloc(cache, flags);
3412
3413 /*
3414 * We may just have run out of memory on the local node.
3415 * ____cache_alloc_node() knows how to locate memory on other nodes
3416 */
7d6e6d09
LS
3417 if (!objp)
3418 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3419
3420 out:
3421 return objp;
3422}
3423#else
3424
3425static __always_inline void *
3426__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3427{
3428 return ____cache_alloc(cachep, flags);
3429}
3430
3431#endif /* CONFIG_NUMA */
3432
3433static __always_inline void *
48356303 3434slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3435{
3436 unsigned long save_flags;
3437 void *objp;
3438
dcce284a 3439 flags &= gfp_allowed_mask;
011eceaf
JDB
3440 cachep = slab_pre_alloc_hook(cachep, flags);
3441 if (unlikely(!cachep))
824ebef1
AM
3442 return NULL;
3443
8c8cc2c1
PE
3444 cache_alloc_debugcheck_before(cachep, flags);
3445 local_irq_save(save_flags);
3446 objp = __do_cache_alloc(cachep, flags);
3447 local_irq_restore(save_flags);
3448 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3449 prefetchw(objp);
3450
d5e3ed66
JDB
3451 if (unlikely(flags & __GFP_ZERO) && objp)
3452 memset(objp, 0, cachep->object_size);
d07dbea4 3453
d5e3ed66 3454 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3455 return objp;
3456}
e498be7d
CL
3457
3458/*
5f0985bb 3459 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3460 * @list: List of detached free slabs should be freed by caller
e498be7d 3461 */
97654dfa
JK
3462static void free_block(struct kmem_cache *cachep, void **objpp,
3463 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3464{
3465 int i;
25c063fb 3466 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3467 struct page *page;
3468
3469 n->free_objects += nr_objects;
1da177e4
LT
3470
3471 for (i = 0; i < nr_objects; i++) {
072bb0aa 3472 void *objp;
8456a648 3473 struct page *page;
1da177e4 3474
072bb0aa
MG
3475 objp = objpp[i];
3476
8456a648 3477 page = virt_to_head_page(objp);
8456a648 3478 list_del(&page->lru);
ff69416e 3479 check_spinlock_acquired_node(cachep, node);
260b61dd 3480 slab_put_obj(cachep, page, objp);
1da177e4 3481 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3482
3483 /* fixup slab chains */
6052b788
JK
3484 if (page->active == 0)
3485 list_add(&page->lru, &n->slabs_free);
3486 else {
1da177e4
LT
3487 /* Unconditionally move a slab to the end of the
3488 * partial list on free - maximum time for the
3489 * other objects to be freed, too.
3490 */
8456a648 3491 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3492 }
3493 }
6052b788
JK
3494
3495 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3496 n->free_objects -= cachep->num;
3497
3498 page = list_last_entry(&n->slabs_free, struct page, lru);
3499 list_del(&page->lru);
3500 list_add(&page->lru, list);
3501 }
1da177e4
LT
3502}
3503
343e0d7a 3504static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3505{
3506 int batchcount;
ce8eb6c4 3507 struct kmem_cache_node *n;
7d6e6d09 3508 int node = numa_mem_id();
97654dfa 3509 LIST_HEAD(list);
1da177e4
LT
3510
3511 batchcount = ac->batchcount;
260b61dd 3512
1da177e4 3513 check_irq_off();
18bf8541 3514 n = get_node(cachep, node);
ce8eb6c4
CL
3515 spin_lock(&n->list_lock);
3516 if (n->shared) {
3517 struct array_cache *shared_array = n->shared;
b28a02de 3518 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3519 if (max) {
3520 if (batchcount > max)
3521 batchcount = max;
e498be7d 3522 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3523 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3524 shared_array->avail += batchcount;
3525 goto free_done;
3526 }
3527 }
3528
97654dfa 3529 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3530free_done:
1da177e4
LT
3531#if STATS
3532 {
3533 int i = 0;
73c0219d 3534 struct page *page;
1da177e4 3535
73c0219d 3536 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3537 BUG_ON(page->active);
1da177e4
LT
3538
3539 i++;
1da177e4
LT
3540 }
3541 STATS_SET_FREEABLE(cachep, i);
3542 }
3543#endif
ce8eb6c4 3544 spin_unlock(&n->list_lock);
97654dfa 3545 slabs_destroy(cachep, &list);
1da177e4 3546 ac->avail -= batchcount;
a737b3e2 3547 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3548}
3549
3550/*
a737b3e2
AM
3551 * Release an obj back to its cache. If the obj has a constructed state, it must
3552 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3553 */
a947eb95 3554static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3555 unsigned long caller)
1da177e4 3556{
9a2dba4b 3557 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4 3558
7ed2f9e6
AP
3559 kasan_slab_free(cachep, objp);
3560
1da177e4 3561 check_irq_off();
d5cff635 3562 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3563 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3564
8c138bc0 3565 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3566
1807a1aa
SS
3567 /*
3568 * Skip calling cache_free_alien() when the platform is not numa.
3569 * This will avoid cache misses that happen while accessing slabp (which
3570 * is per page memory reference) to get nodeid. Instead use a global
3571 * variable to skip the call, which is mostly likely to be present in
3572 * the cache.
3573 */
b6e68bc1 3574 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3575 return;
3576
3d880194 3577 if (ac->avail < ac->limit) {
1da177e4 3578 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3579 } else {
3580 STATS_INC_FREEMISS(cachep);
3581 cache_flusharray(cachep, ac);
1da177e4 3582 }
42c8c99c 3583
f68f8ddd
JK
3584 if (sk_memalloc_socks()) {
3585 struct page *page = virt_to_head_page(objp);
3586
3587 if (unlikely(PageSlabPfmemalloc(page))) {
3588 cache_free_pfmemalloc(cachep, page, objp);
3589 return;
3590 }
3591 }
3592
3593 ac->entry[ac->avail++] = objp;
1da177e4
LT
3594}
3595
3596/**
3597 * kmem_cache_alloc - Allocate an object
3598 * @cachep: The cache to allocate from.
3599 * @flags: See kmalloc().
3600 *
3601 * Allocate an object from this cache. The flags are only relevant
3602 * if the cache has no available objects.
3603 */
343e0d7a 3604void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3605{
48356303 3606 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3607
505f5dcb 3608 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3609 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3610 cachep->object_size, cachep->size, flags);
36555751
EGM
3611
3612 return ret;
1da177e4
LT
3613}
3614EXPORT_SYMBOL(kmem_cache_alloc);
3615
7b0501dd
JDB
3616static __always_inline void
3617cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3618 size_t size, void **p, unsigned long caller)
3619{
3620 size_t i;
3621
3622 for (i = 0; i < size; i++)
3623 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3624}
3625
865762a8 3626int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3627 void **p)
484748f0 3628{
2a777eac
JDB
3629 size_t i;
3630
3631 s = slab_pre_alloc_hook(s, flags);
3632 if (!s)
3633 return 0;
3634
3635 cache_alloc_debugcheck_before(s, flags);
3636
3637 local_irq_disable();
3638 for (i = 0; i < size; i++) {
3639 void *objp = __do_cache_alloc(s, flags);
3640
2a777eac
JDB
3641 if (unlikely(!objp))
3642 goto error;
3643 p[i] = objp;
3644 }
3645 local_irq_enable();
3646
7b0501dd
JDB
3647 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3648
2a777eac
JDB
3649 /* Clear memory outside IRQ disabled section */
3650 if (unlikely(flags & __GFP_ZERO))
3651 for (i = 0; i < size; i++)
3652 memset(p[i], 0, s->object_size);
3653
3654 slab_post_alloc_hook(s, flags, size, p);
3655 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3656 return size;
3657error:
3658 local_irq_enable();
7b0501dd 3659 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3660 slab_post_alloc_hook(s, flags, i, p);
3661 __kmem_cache_free_bulk(s, i, p);
3662 return 0;
484748f0
CL
3663}
3664EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3665
0f24f128 3666#ifdef CONFIG_TRACING
85beb586 3667void *
4052147c 3668kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3669{
85beb586
SR
3670 void *ret;
3671
48356303 3672 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3673
505f5dcb 3674 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3675 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3676 size, cachep->size, flags);
85beb586 3677 return ret;
36555751 3678}
85beb586 3679EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3680#endif
3681
1da177e4 3682#ifdef CONFIG_NUMA
d0d04b78
ZL
3683/**
3684 * kmem_cache_alloc_node - Allocate an object on the specified node
3685 * @cachep: The cache to allocate from.
3686 * @flags: See kmalloc().
3687 * @nodeid: node number of the target node.
3688 *
3689 * Identical to kmem_cache_alloc but it will allocate memory on the given
3690 * node, which can improve the performance for cpu bound structures.
3691 *
3692 * Fallback to other node is possible if __GFP_THISNODE is not set.
3693 */
8b98c169
CH
3694void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3695{
48356303 3696 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3697
505f5dcb 3698 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3699 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3700 cachep->object_size, cachep->size,
ca2b84cb 3701 flags, nodeid);
36555751
EGM
3702
3703 return ret;
8b98c169 3704}
1da177e4
LT
3705EXPORT_SYMBOL(kmem_cache_alloc_node);
3706
0f24f128 3707#ifdef CONFIG_TRACING
4052147c 3708void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3709 gfp_t flags,
4052147c
EG
3710 int nodeid,
3711 size_t size)
36555751 3712{
85beb586
SR
3713 void *ret;
3714
592f4145 3715 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3716
3717 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3718 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3719 size, cachep->size,
85beb586
SR
3720 flags, nodeid);
3721 return ret;
36555751 3722}
85beb586 3723EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3724#endif
3725
8b98c169 3726static __always_inline void *
7c0cb9c6 3727__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3728{
343e0d7a 3729 struct kmem_cache *cachep;
7ed2f9e6 3730 void *ret;
97e2bde4 3731
2c59dd65 3732 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3733 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3734 return cachep;
7ed2f9e6 3735 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3736 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3737
3738 return ret;
97e2bde4 3739}
8b98c169 3740
8b98c169
CH
3741void *__kmalloc_node(size_t size, gfp_t flags, int node)
3742{
7c0cb9c6 3743 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3744}
dbe5e69d 3745EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3746
3747void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3748 int node, unsigned long caller)
8b98c169 3749{
7c0cb9c6 3750 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3751}
3752EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3753#endif /* CONFIG_NUMA */
1da177e4
LT
3754
3755/**
800590f5 3756 * __do_kmalloc - allocate memory
1da177e4 3757 * @size: how many bytes of memory are required.
800590f5 3758 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3759 * @caller: function caller for debug tracking of the caller
1da177e4 3760 */
7fd6b141 3761static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3762 unsigned long caller)
1da177e4 3763{
343e0d7a 3764 struct kmem_cache *cachep;
36555751 3765 void *ret;
1da177e4 3766
2c59dd65 3767 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3768 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3769 return cachep;
48356303 3770 ret = slab_alloc(cachep, flags, caller);
36555751 3771
505f5dcb 3772 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3773 trace_kmalloc(caller, ret,
3b0efdfa 3774 size, cachep->size, flags);
36555751
EGM
3775
3776 return ret;
7fd6b141
PE
3777}
3778
7fd6b141
PE
3779void *__kmalloc(size_t size, gfp_t flags)
3780{
7c0cb9c6 3781 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3782}
3783EXPORT_SYMBOL(__kmalloc);
3784
ce71e27c 3785void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3786{
7c0cb9c6 3787 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3788}
3789EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3790
1da177e4
LT
3791/**
3792 * kmem_cache_free - Deallocate an object
3793 * @cachep: The cache the allocation was from.
3794 * @objp: The previously allocated object.
3795 *
3796 * Free an object which was previously allocated from this
3797 * cache.
3798 */
343e0d7a 3799void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3800{
3801 unsigned long flags;
b9ce5ef4
GC
3802 cachep = cache_from_obj(cachep, objp);
3803 if (!cachep)
3804 return;
1da177e4
LT
3805
3806 local_irq_save(flags);
d97d476b 3807 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3808 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3809 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3810 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3811 local_irq_restore(flags);
36555751 3812
ca2b84cb 3813 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3814}
3815EXPORT_SYMBOL(kmem_cache_free);
3816
e6cdb58d
JDB
3817void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3818{
3819 struct kmem_cache *s;
3820 size_t i;
3821
3822 local_irq_disable();
3823 for (i = 0; i < size; i++) {
3824 void *objp = p[i];
3825
ca257195
JDB
3826 if (!orig_s) /* called via kfree_bulk */
3827 s = virt_to_cache(objp);
3828 else
3829 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3830
3831 debug_check_no_locks_freed(objp, s->object_size);
3832 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3833 debug_check_no_obj_freed(objp, s->object_size);
3834
3835 __cache_free(s, objp, _RET_IP_);
3836 }
3837 local_irq_enable();
3838
3839 /* FIXME: add tracing */
3840}
3841EXPORT_SYMBOL(kmem_cache_free_bulk);
3842
1da177e4
LT
3843/**
3844 * kfree - free previously allocated memory
3845 * @objp: pointer returned by kmalloc.
3846 *
80e93eff
PE
3847 * If @objp is NULL, no operation is performed.
3848 *
1da177e4
LT
3849 * Don't free memory not originally allocated by kmalloc()
3850 * or you will run into trouble.
3851 */
3852void kfree(const void *objp)
3853{
343e0d7a 3854 struct kmem_cache *c;
1da177e4
LT
3855 unsigned long flags;
3856
2121db74
PE
3857 trace_kfree(_RET_IP_, objp);
3858
6cb8f913 3859 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3860 return;
3861 local_irq_save(flags);
3862 kfree_debugcheck(objp);
6ed5eb22 3863 c = virt_to_cache(objp);
8c138bc0
CL
3864 debug_check_no_locks_freed(objp, c->object_size);
3865
3866 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3867 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3868 local_irq_restore(flags);
3869}
3870EXPORT_SYMBOL(kfree);
3871
e498be7d 3872/*
ce8eb6c4 3873 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3874 */
c3d332b6 3875static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3876{
c3d332b6 3877 int ret;
e498be7d 3878 int node;
ce8eb6c4 3879 struct kmem_cache_node *n;
e498be7d 3880
9c09a95c 3881 for_each_online_node(node) {
c3d332b6
JK
3882 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3883 if (ret)
e498be7d
CL
3884 goto fail;
3885
e498be7d 3886 }
c3d332b6 3887
cafeb02e 3888 return 0;
0718dc2a 3889
a737b3e2 3890fail:
3b0efdfa 3891 if (!cachep->list.next) {
0718dc2a
CL
3892 /* Cache is not active yet. Roll back what we did */
3893 node--;
3894 while (node >= 0) {
18bf8541
CL
3895 n = get_node(cachep, node);
3896 if (n) {
ce8eb6c4
CL
3897 kfree(n->shared);
3898 free_alien_cache(n->alien);
3899 kfree(n);
6a67368c 3900 cachep->node[node] = NULL;
0718dc2a
CL
3901 }
3902 node--;
3903 }
3904 }
cafeb02e 3905 return -ENOMEM;
e498be7d
CL
3906}
3907
18004c5d 3908/* Always called with the slab_mutex held */
943a451a 3909static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3910 int batchcount, int shared, gfp_t gfp)
1da177e4 3911{
bf0dea23
JK
3912 struct array_cache __percpu *cpu_cache, *prev;
3913 int cpu;
1da177e4 3914
bf0dea23
JK
3915 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3916 if (!cpu_cache)
d2e7b7d0
SS
3917 return -ENOMEM;
3918
bf0dea23
JK
3919 prev = cachep->cpu_cache;
3920 cachep->cpu_cache = cpu_cache;
3921 kick_all_cpus_sync();
e498be7d 3922
1da177e4 3923 check_irq_on();
1da177e4
LT
3924 cachep->batchcount = batchcount;
3925 cachep->limit = limit;
e498be7d 3926 cachep->shared = shared;
1da177e4 3927
bf0dea23 3928 if (!prev)
c3d332b6 3929 goto setup_node;
bf0dea23
JK
3930
3931 for_each_online_cpu(cpu) {
97654dfa 3932 LIST_HEAD(list);
18bf8541
CL
3933 int node;
3934 struct kmem_cache_node *n;
bf0dea23 3935 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3936
bf0dea23 3937 node = cpu_to_mem(cpu);
18bf8541
CL
3938 n = get_node(cachep, node);
3939 spin_lock_irq(&n->list_lock);
bf0dea23 3940 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3941 spin_unlock_irq(&n->list_lock);
97654dfa 3942 slabs_destroy(cachep, &list);
1da177e4 3943 }
bf0dea23
JK
3944 free_percpu(prev);
3945
c3d332b6
JK
3946setup_node:
3947 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3948}
3949
943a451a
GC
3950static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3951 int batchcount, int shared, gfp_t gfp)
3952{
3953 int ret;
426589f5 3954 struct kmem_cache *c;
943a451a
GC
3955
3956 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3957
3958 if (slab_state < FULL)
3959 return ret;
3960
3961 if ((ret < 0) || !is_root_cache(cachep))
3962 return ret;
3963
426589f5
VD
3964 lockdep_assert_held(&slab_mutex);
3965 for_each_memcg_cache(c, cachep) {
3966 /* return value determined by the root cache only */
3967 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3968 }
3969
3970 return ret;
3971}
3972
18004c5d 3973/* Called with slab_mutex held always */
83b519e8 3974static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3975{
3976 int err;
943a451a
GC
3977 int limit = 0;
3978 int shared = 0;
3979 int batchcount = 0;
3980
c7ce4f60
TG
3981 err = cache_random_seq_create(cachep, gfp);
3982 if (err)
3983 goto end;
3984
943a451a
GC
3985 if (!is_root_cache(cachep)) {
3986 struct kmem_cache *root = memcg_root_cache(cachep);
3987 limit = root->limit;
3988 shared = root->shared;
3989 batchcount = root->batchcount;
3990 }
1da177e4 3991
943a451a
GC
3992 if (limit && shared && batchcount)
3993 goto skip_setup;
a737b3e2
AM
3994 /*
3995 * The head array serves three purposes:
1da177e4
LT
3996 * - create a LIFO ordering, i.e. return objects that are cache-warm
3997 * - reduce the number of spinlock operations.
a737b3e2 3998 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3999 * bufctl chains: array operations are cheaper.
4000 * The numbers are guessed, we should auto-tune as described by
4001 * Bonwick.
4002 */
3b0efdfa 4003 if (cachep->size > 131072)
1da177e4 4004 limit = 1;
3b0efdfa 4005 else if (cachep->size > PAGE_SIZE)
1da177e4 4006 limit = 8;
3b0efdfa 4007 else if (cachep->size > 1024)
1da177e4 4008 limit = 24;
3b0efdfa 4009 else if (cachep->size > 256)
1da177e4
LT
4010 limit = 54;
4011 else
4012 limit = 120;
4013
a737b3e2
AM
4014 /*
4015 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4016 * allocation behaviour: Most allocs on one cpu, most free operations
4017 * on another cpu. For these cases, an efficient object passing between
4018 * cpus is necessary. This is provided by a shared array. The array
4019 * replaces Bonwick's magazine layer.
4020 * On uniprocessor, it's functionally equivalent (but less efficient)
4021 * to a larger limit. Thus disabled by default.
4022 */
4023 shared = 0;
3b0efdfa 4024 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4025 shared = 8;
1da177e4
LT
4026
4027#if DEBUG
a737b3e2
AM
4028 /*
4029 * With debugging enabled, large batchcount lead to excessively long
4030 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4031 */
4032 if (limit > 32)
4033 limit = 32;
4034#endif
943a451a
GC
4035 batchcount = (limit + 1) / 2;
4036skip_setup:
4037 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 4038end:
1da177e4 4039 if (err)
1170532b 4040 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 4041 cachep->name, -err);
2ed3a4ef 4042 return err;
1da177e4
LT
4043}
4044
1b55253a 4045/*
ce8eb6c4
CL
4046 * Drain an array if it contains any elements taking the node lock only if
4047 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 4048 * if drain_array() is used on the shared array.
1b55253a 4049 */
ce8eb6c4 4050static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 4051 struct array_cache *ac, int node)
1da177e4 4052{
97654dfa 4053 LIST_HEAD(list);
18726ca8
JK
4054
4055 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4056 check_mutex_acquired();
1da177e4 4057
1b55253a
CL
4058 if (!ac || !ac->avail)
4059 return;
18726ca8
JK
4060
4061 if (ac->touched) {
1da177e4 4062 ac->touched = 0;
18726ca8 4063 return;
1da177e4 4064 }
18726ca8
JK
4065
4066 spin_lock_irq(&n->list_lock);
4067 drain_array_locked(cachep, ac, node, false, &list);
4068 spin_unlock_irq(&n->list_lock);
4069
4070 slabs_destroy(cachep, &list);
1da177e4
LT
4071}
4072
4073/**
4074 * cache_reap - Reclaim memory from caches.
05fb6bf0 4075 * @w: work descriptor
1da177e4
LT
4076 *
4077 * Called from workqueue/eventd every few seconds.
4078 * Purpose:
4079 * - clear the per-cpu caches for this CPU.
4080 * - return freeable pages to the main free memory pool.
4081 *
a737b3e2
AM
4082 * If we cannot acquire the cache chain mutex then just give up - we'll try
4083 * again on the next iteration.
1da177e4 4084 */
7c5cae36 4085static void cache_reap(struct work_struct *w)
1da177e4 4086{
7a7c381d 4087 struct kmem_cache *searchp;
ce8eb6c4 4088 struct kmem_cache_node *n;
7d6e6d09 4089 int node = numa_mem_id();
bf6aede7 4090 struct delayed_work *work = to_delayed_work(w);
1da177e4 4091
18004c5d 4092 if (!mutex_trylock(&slab_mutex))
1da177e4 4093 /* Give up. Setup the next iteration. */
7c5cae36 4094 goto out;
1da177e4 4095
18004c5d 4096 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4097 check_irq_on();
4098
35386e3b 4099 /*
ce8eb6c4 4100 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4101 * have established with reasonable certainty that
4102 * we can do some work if the lock was obtained.
4103 */
18bf8541 4104 n = get_node(searchp, node);
35386e3b 4105
ce8eb6c4 4106 reap_alien(searchp, n);
1da177e4 4107
18726ca8 4108 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4109
35386e3b
CL
4110 /*
4111 * These are racy checks but it does not matter
4112 * if we skip one check or scan twice.
4113 */
ce8eb6c4 4114 if (time_after(n->next_reap, jiffies))
35386e3b 4115 goto next;
1da177e4 4116
5f0985bb 4117 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4118
18726ca8 4119 drain_array(searchp, n, n->shared, node);
1da177e4 4120
ce8eb6c4
CL
4121 if (n->free_touched)
4122 n->free_touched = 0;
ed11d9eb
CL
4123 else {
4124 int freed;
1da177e4 4125
ce8eb6c4 4126 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4127 5 * searchp->num - 1) / (5 * searchp->num));
4128 STATS_ADD_REAPED(searchp, freed);
4129 }
35386e3b 4130next:
1da177e4
LT
4131 cond_resched();
4132 }
4133 check_irq_on();
18004c5d 4134 mutex_unlock(&slab_mutex);
8fce4d8e 4135 next_reap_node();
7c5cae36 4136out:
a737b3e2 4137 /* Set up the next iteration */
5f0985bb 4138 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4139}
4140
158a9624 4141#ifdef CONFIG_SLABINFO
0d7561c6 4142void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4143{
8456a648 4144 struct page *page;
b28a02de
PE
4145 unsigned long active_objs;
4146 unsigned long num_objs;
4147 unsigned long active_slabs = 0;
4148 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4149 const char *name;
1da177e4 4150 char *error = NULL;
e498be7d 4151 int node;
ce8eb6c4 4152 struct kmem_cache_node *n;
1da177e4 4153
1da177e4
LT
4154 active_objs = 0;
4155 num_slabs = 0;
18bf8541 4156 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 4157
ca3b9b91 4158 check_irq_on();
ce8eb6c4 4159 spin_lock_irq(&n->list_lock);
e498be7d 4160
8456a648
JK
4161 list_for_each_entry(page, &n->slabs_full, lru) {
4162 if (page->active != cachep->num && !error)
e498be7d
CL
4163 error = "slabs_full accounting error";
4164 active_objs += cachep->num;
4165 active_slabs++;
4166 }
8456a648
JK
4167 list_for_each_entry(page, &n->slabs_partial, lru) {
4168 if (page->active == cachep->num && !error)
106a74e1 4169 error = "slabs_partial accounting error";
8456a648 4170 if (!page->active && !error)
106a74e1 4171 error = "slabs_partial accounting error";
8456a648 4172 active_objs += page->active;
e498be7d
CL
4173 active_slabs++;
4174 }
8456a648
JK
4175 list_for_each_entry(page, &n->slabs_free, lru) {
4176 if (page->active && !error)
106a74e1 4177 error = "slabs_free accounting error";
e498be7d
CL
4178 num_slabs++;
4179 }
ce8eb6c4
CL
4180 free_objects += n->free_objects;
4181 if (n->shared)
4182 shared_avail += n->shared->avail;
e498be7d 4183
ce8eb6c4 4184 spin_unlock_irq(&n->list_lock);
1da177e4 4185 }
b28a02de
PE
4186 num_slabs += active_slabs;
4187 num_objs = num_slabs * cachep->num;
e498be7d 4188 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4189 error = "free_objects accounting error";
4190
b28a02de 4191 name = cachep->name;
1da177e4 4192 if (error)
1170532b 4193 pr_err("slab: cache %s error: %s\n", name, error);
1da177e4 4194
0d7561c6
GC
4195 sinfo->active_objs = active_objs;
4196 sinfo->num_objs = num_objs;
4197 sinfo->active_slabs = active_slabs;
4198 sinfo->num_slabs = num_slabs;
4199 sinfo->shared_avail = shared_avail;
4200 sinfo->limit = cachep->limit;
4201 sinfo->batchcount = cachep->batchcount;
4202 sinfo->shared = cachep->shared;
4203 sinfo->objects_per_slab = cachep->num;
4204 sinfo->cache_order = cachep->gfporder;
4205}
4206
4207void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4208{
1da177e4 4209#if STATS
ce8eb6c4 4210 { /* node stats */
1da177e4
LT
4211 unsigned long high = cachep->high_mark;
4212 unsigned long allocs = cachep->num_allocations;
4213 unsigned long grown = cachep->grown;
4214 unsigned long reaped = cachep->reaped;
4215 unsigned long errors = cachep->errors;
4216 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4217 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4218 unsigned long node_frees = cachep->node_frees;
fb7faf33 4219 unsigned long overflows = cachep->node_overflow;
1da177e4 4220
756a025f 4221 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4222 allocs, high, grown,
4223 reaped, errors, max_freeable, node_allocs,
4224 node_frees, overflows);
1da177e4
LT
4225 }
4226 /* cpu stats */
4227 {
4228 unsigned long allochit = atomic_read(&cachep->allochit);
4229 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4230 unsigned long freehit = atomic_read(&cachep->freehit);
4231 unsigned long freemiss = atomic_read(&cachep->freemiss);
4232
4233 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4234 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4235 }
4236#endif
1da177e4
LT
4237}
4238
1da177e4
LT
4239#define MAX_SLABINFO_WRITE 128
4240/**
4241 * slabinfo_write - Tuning for the slab allocator
4242 * @file: unused
4243 * @buffer: user buffer
4244 * @count: data length
4245 * @ppos: unused
4246 */
b7454ad3 4247ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4248 size_t count, loff_t *ppos)
1da177e4 4249{
b28a02de 4250 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4251 int limit, batchcount, shared, res;
7a7c381d 4252 struct kmem_cache *cachep;
b28a02de 4253
1da177e4
LT
4254 if (count > MAX_SLABINFO_WRITE)
4255 return -EINVAL;
4256 if (copy_from_user(&kbuf, buffer, count))
4257 return -EFAULT;
b28a02de 4258 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4259
4260 tmp = strchr(kbuf, ' ');
4261 if (!tmp)
4262 return -EINVAL;
4263 *tmp = '\0';
4264 tmp++;
4265 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4266 return -EINVAL;
4267
4268 /* Find the cache in the chain of caches. */
18004c5d 4269 mutex_lock(&slab_mutex);
1da177e4 4270 res = -EINVAL;
18004c5d 4271 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4272 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4273 if (limit < 1 || batchcount < 1 ||
4274 batchcount > limit || shared < 0) {
e498be7d 4275 res = 0;
1da177e4 4276 } else {
e498be7d 4277 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4278 batchcount, shared,
4279 GFP_KERNEL);
1da177e4
LT
4280 }
4281 break;
4282 }
4283 }
18004c5d 4284 mutex_unlock(&slab_mutex);
1da177e4
LT
4285 if (res >= 0)
4286 res = count;
4287 return res;
4288}
871751e2
AV
4289
4290#ifdef CONFIG_DEBUG_SLAB_LEAK
4291
871751e2
AV
4292static inline int add_caller(unsigned long *n, unsigned long v)
4293{
4294 unsigned long *p;
4295 int l;
4296 if (!v)
4297 return 1;
4298 l = n[1];
4299 p = n + 2;
4300 while (l) {
4301 int i = l/2;
4302 unsigned long *q = p + 2 * i;
4303 if (*q == v) {
4304 q[1]++;
4305 return 1;
4306 }
4307 if (*q > v) {
4308 l = i;
4309 } else {
4310 p = q + 2;
4311 l -= i + 1;
4312 }
4313 }
4314 if (++n[1] == n[0])
4315 return 0;
4316 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4317 p[0] = v;
4318 p[1] = 1;
4319 return 1;
4320}
4321
8456a648
JK
4322static void handle_slab(unsigned long *n, struct kmem_cache *c,
4323 struct page *page)
871751e2
AV
4324{
4325 void *p;
d31676df
JK
4326 int i, j;
4327 unsigned long v;
b1cb0982 4328
871751e2
AV
4329 if (n[0] == n[1])
4330 return;
8456a648 4331 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4332 bool active = true;
4333
4334 for (j = page->active; j < c->num; j++) {
4335 if (get_free_obj(page, j) == i) {
4336 active = false;
4337 break;
4338 }
4339 }
4340
4341 if (!active)
871751e2 4342 continue;
b1cb0982 4343
d31676df
JK
4344 /*
4345 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4346 * mapping is established when actual object allocation and
4347 * we could mistakenly access the unmapped object in the cpu
4348 * cache.
4349 */
4350 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4351 continue;
4352
4353 if (!add_caller(n, v))
871751e2
AV
4354 return;
4355 }
4356}
4357
4358static void show_symbol(struct seq_file *m, unsigned long address)
4359{
4360#ifdef CONFIG_KALLSYMS
871751e2 4361 unsigned long offset, size;
9281acea 4362 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4363
a5c43dae 4364 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4365 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4366 if (modname[0])
871751e2
AV
4367 seq_printf(m, " [%s]", modname);
4368 return;
4369 }
4370#endif
4371 seq_printf(m, "%p", (void *)address);
4372}
4373
4374static int leaks_show(struct seq_file *m, void *p)
4375{
0672aa7c 4376 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4377 struct page *page;
ce8eb6c4 4378 struct kmem_cache_node *n;
871751e2 4379 const char *name;
db845067 4380 unsigned long *x = m->private;
871751e2
AV
4381 int node;
4382 int i;
4383
4384 if (!(cachep->flags & SLAB_STORE_USER))
4385 return 0;
4386 if (!(cachep->flags & SLAB_RED_ZONE))
4387 return 0;
4388
d31676df
JK
4389 /*
4390 * Set store_user_clean and start to grab stored user information
4391 * for all objects on this cache. If some alloc/free requests comes
4392 * during the processing, information would be wrong so restart
4393 * whole processing.
4394 */
4395 do {
4396 set_store_user_clean(cachep);
4397 drain_cpu_caches(cachep);
4398
4399 x[1] = 0;
871751e2 4400
d31676df 4401 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4402
d31676df
JK
4403 check_irq_on();
4404 spin_lock_irq(&n->list_lock);
871751e2 4405
d31676df
JK
4406 list_for_each_entry(page, &n->slabs_full, lru)
4407 handle_slab(x, cachep, page);
4408 list_for_each_entry(page, &n->slabs_partial, lru)
4409 handle_slab(x, cachep, page);
4410 spin_unlock_irq(&n->list_lock);
4411 }
4412 } while (!is_store_user_clean(cachep));
871751e2 4413
871751e2 4414 name = cachep->name;
db845067 4415 if (x[0] == x[1]) {
871751e2 4416 /* Increase the buffer size */
18004c5d 4417 mutex_unlock(&slab_mutex);
db845067 4418 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4419 if (!m->private) {
4420 /* Too bad, we are really out */
db845067 4421 m->private = x;
18004c5d 4422 mutex_lock(&slab_mutex);
871751e2
AV
4423 return -ENOMEM;
4424 }
db845067
CL
4425 *(unsigned long *)m->private = x[0] * 2;
4426 kfree(x);
18004c5d 4427 mutex_lock(&slab_mutex);
871751e2
AV
4428 /* Now make sure this entry will be retried */
4429 m->count = m->size;
4430 return 0;
4431 }
db845067
CL
4432 for (i = 0; i < x[1]; i++) {
4433 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4434 show_symbol(m, x[2*i+2]);
871751e2
AV
4435 seq_putc(m, '\n');
4436 }
d2e7b7d0 4437
871751e2
AV
4438 return 0;
4439}
4440
a0ec95a8 4441static const struct seq_operations slabstats_op = {
1df3b26f 4442 .start = slab_start,
276a2439
WL
4443 .next = slab_next,
4444 .stop = slab_stop,
871751e2
AV
4445 .show = leaks_show,
4446};
a0ec95a8
AD
4447
4448static int slabstats_open(struct inode *inode, struct file *file)
4449{
b208ce32
RJ
4450 unsigned long *n;
4451
4452 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4453 if (!n)
4454 return -ENOMEM;
4455
4456 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4457
4458 return 0;
a0ec95a8
AD
4459}
4460
4461static const struct file_operations proc_slabstats_operations = {
4462 .open = slabstats_open,
4463 .read = seq_read,
4464 .llseek = seq_lseek,
4465 .release = seq_release_private,
4466};
4467#endif
4468
4469static int __init slab_proc_init(void)
4470{
4471#ifdef CONFIG_DEBUG_SLAB_LEAK
4472 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4473#endif
a0ec95a8
AD
4474 return 0;
4475}
4476module_init(slab_proc_init);
1da177e4
LT
4477#endif
4478
00e145b6
MS
4479/**
4480 * ksize - get the actual amount of memory allocated for a given object
4481 * @objp: Pointer to the object
4482 *
4483 * kmalloc may internally round up allocations and return more memory
4484 * than requested. ksize() can be used to determine the actual amount of
4485 * memory allocated. The caller may use this additional memory, even though
4486 * a smaller amount of memory was initially specified with the kmalloc call.
4487 * The caller must guarantee that objp points to a valid object previously
4488 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4489 * must not be freed during the duration of the call.
4490 */
fd76bab2 4491size_t ksize(const void *objp)
1da177e4 4492{
7ed2f9e6
AP
4493 size_t size;
4494
ef8b4520
CL
4495 BUG_ON(!objp);
4496 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4497 return 0;
1da177e4 4498
7ed2f9e6
AP
4499 size = virt_to_cache(objp)->object_size;
4500 /* We assume that ksize callers could use the whole allocated area,
4501 * so we need to unpoison this area.
4502 */
505f5dcb 4503 kasan_krealloc(objp, size, GFP_NOWAIT);
7ed2f9e6
AP
4504
4505 return size;
1da177e4 4506}
b1aabecd 4507EXPORT_SYMBOL(ksize);