mm/slab: refill cpu cache through a new slab without holding a node lock
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
1da177e4
LT
171/*
172 * struct array_cache
173 *
1da177e4
LT
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
bda5b655 188 void *entry[]; /*
a737b3e2
AM
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
a737b3e2 192 */
1da177e4
LT
193};
194
c8522a3a
JK
195struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198};
199
e498be7d
CL
200/*
201 * Need this for bootstrapping a per node allocator.
202 */
bf0dea23 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 205#define CACHE_CACHE 0
bf0dea23 206#define SIZE_NODE (MAX_NUMNODES)
e498be7d 207
ed11d9eb 208static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 209 struct kmem_cache_node *n, int tofree);
ed11d9eb 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
211 int node, struct list_head *list);
212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 214static void cache_reap(struct work_struct *unused);
ed11d9eb 215
76b342bd
JK
216static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
217 void **list);
218static inline void fixup_slab_list(struct kmem_cache *cachep,
219 struct kmem_cache_node *n, struct page *page,
220 void **list);
e0a42726
IM
221static int slab_early_init = 1;
222
ce8eb6c4 223#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 224
ce8eb6c4 225static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
226{
227 INIT_LIST_HEAD(&parent->slabs_full);
228 INIT_LIST_HEAD(&parent->slabs_partial);
229 INIT_LIST_HEAD(&parent->slabs_free);
230 parent->shared = NULL;
231 parent->alien = NULL;
2e1217cf 232 parent->colour_next = 0;
e498be7d
CL
233 spin_lock_init(&parent->list_lock);
234 parent->free_objects = 0;
235 parent->free_touched = 0;
236}
237
a737b3e2
AM
238#define MAKE_LIST(cachep, listp, slab, nodeid) \
239 do { \
240 INIT_LIST_HEAD(listp); \
18bf8541 241 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
242 } while (0)
243
a737b3e2
AM
244#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
245 do { \
e498be7d
CL
246 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
247 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
248 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
249 } while (0)
1da177e4 250
b03a017b 251#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
1da177e4 252#define CFLGS_OFF_SLAB (0x80000000UL)
b03a017b 253#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
254#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
255
256#define BATCHREFILL_LIMIT 16
a737b3e2
AM
257/*
258 * Optimization question: fewer reaps means less probability for unnessary
259 * cpucache drain/refill cycles.
1da177e4 260 *
dc6f3f27 261 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
262 * which could lock up otherwise freeable slabs.
263 */
5f0985bb
JZ
264#define REAPTIMEOUT_AC (2*HZ)
265#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
266
267#if STATS
268#define STATS_INC_ACTIVE(x) ((x)->num_active++)
269#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
270#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
271#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 272#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
273#define STATS_SET_HIGH(x) \
274 do { \
275 if ((x)->num_active > (x)->high_mark) \
276 (x)->high_mark = (x)->num_active; \
277 } while (0)
1da177e4
LT
278#define STATS_INC_ERR(x) ((x)->errors++)
279#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 280#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 281#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
282#define STATS_SET_FREEABLE(x, i) \
283 do { \
284 if ((x)->max_freeable < i) \
285 (x)->max_freeable = i; \
286 } while (0)
1da177e4
LT
287#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
288#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
289#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
290#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
291#else
292#define STATS_INC_ACTIVE(x) do { } while (0)
293#define STATS_DEC_ACTIVE(x) do { } while (0)
294#define STATS_INC_ALLOCED(x) do { } while (0)
295#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 296#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
297#define STATS_SET_HIGH(x) do { } while (0)
298#define STATS_INC_ERR(x) do { } while (0)
299#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 300#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 301#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 302#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
303#define STATS_INC_ALLOCHIT(x) do { } while (0)
304#define STATS_INC_ALLOCMISS(x) do { } while (0)
305#define STATS_INC_FREEHIT(x) do { } while (0)
306#define STATS_INC_FREEMISS(x) do { } while (0)
307#endif
308
309#if DEBUG
1da177e4 310
a737b3e2
AM
311/*
312 * memory layout of objects:
1da177e4 313 * 0 : objp
3dafccf2 314 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
315 * the end of an object is aligned with the end of the real
316 * allocation. Catches writes behind the end of the allocation.
3dafccf2 317 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 318 * redzone word.
3dafccf2 319 * cachep->obj_offset: The real object.
3b0efdfa
CL
320 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
321 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 322 * [BYTES_PER_WORD long]
1da177e4 323 */
343e0d7a 324static int obj_offset(struct kmem_cache *cachep)
1da177e4 325{
3dafccf2 326 return cachep->obj_offset;
1da177e4
LT
327}
328
b46b8f19 329static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
330{
331 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
332 return (unsigned long long*) (objp + obj_offset(cachep) -
333 sizeof(unsigned long long));
1da177e4
LT
334}
335
b46b8f19 336static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
337{
338 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
339 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 340 return (unsigned long long *)(objp + cachep->size -
b46b8f19 341 sizeof(unsigned long long) -
87a927c7 342 REDZONE_ALIGN);
3b0efdfa 343 return (unsigned long long *) (objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long));
1da177e4
LT
345}
346
343e0d7a 347static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
348{
349 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 350 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
351}
352
353#else
354
3dafccf2 355#define obj_offset(x) 0
b46b8f19
DW
356#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
357#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
358#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
359
360#endif
361
03787301
JK
362#ifdef CONFIG_DEBUG_SLAB_LEAK
363
d31676df 364static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 365{
d31676df
JK
366 return atomic_read(&cachep->store_user_clean) == 1;
367}
03787301 368
d31676df
JK
369static inline void set_store_user_clean(struct kmem_cache *cachep)
370{
371 atomic_set(&cachep->store_user_clean, 1);
372}
03787301 373
d31676df
JK
374static inline void set_store_user_dirty(struct kmem_cache *cachep)
375{
376 if (is_store_user_clean(cachep))
377 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
378}
379
380#else
d31676df 381static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
382
383#endif
384
1da177e4 385/*
3df1cccd
DR
386 * Do not go above this order unless 0 objects fit into the slab or
387 * overridden on the command line.
1da177e4 388 */
543585cc
DR
389#define SLAB_MAX_ORDER_HI 1
390#define SLAB_MAX_ORDER_LO 0
391static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 392static bool slab_max_order_set __initdata;
1da177e4 393
6ed5eb22
PE
394static inline struct kmem_cache *virt_to_cache(const void *obj)
395{
b49af68f 396 struct page *page = virt_to_head_page(obj);
35026088 397 return page->slab_cache;
6ed5eb22
PE
398}
399
8456a648 400static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
401 unsigned int idx)
402{
8456a648 403 return page->s_mem + cache->size * idx;
8fea4e96
PE
404}
405
6a2d7a95 406/*
3b0efdfa
CL
407 * We want to avoid an expensive divide : (offset / cache->size)
408 * Using the fact that size is a constant for a particular cache,
409 * we can replace (offset / cache->size) by
6a2d7a95
ED
410 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
411 */
412static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 413 const struct page *page, void *obj)
8fea4e96 414{
8456a648 415 u32 offset = (obj - page->s_mem);
6a2d7a95 416 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
417}
418
6fb92430 419#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 420/* internal cache of cache description objs */
9b030cb8 421static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
422 .batchcount = 1,
423 .limit = BOOT_CPUCACHE_ENTRIES,
424 .shared = 1,
3b0efdfa 425 .size = sizeof(struct kmem_cache),
b28a02de 426 .name = "kmem_cache",
1da177e4
LT
427};
428
1871e52c 429static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 430
343e0d7a 431static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 432{
bf0dea23 433 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
434}
435
a737b3e2
AM
436/*
437 * Calculate the number of objects and left-over bytes for a given buffer size.
438 */
70f75067
JK
439static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
440 unsigned long flags, size_t *left_over)
fbaccacf 441{
70f75067 442 unsigned int num;
fbaccacf 443 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 444
fbaccacf
SR
445 /*
446 * The slab management structure can be either off the slab or
447 * on it. For the latter case, the memory allocated for a
448 * slab is used for:
449 *
fbaccacf 450 * - @buffer_size bytes for each object
2e6b3602
JK
451 * - One freelist_idx_t for each object
452 *
453 * We don't need to consider alignment of freelist because
454 * freelist will be at the end of slab page. The objects will be
455 * at the correct alignment.
fbaccacf
SR
456 *
457 * If the slab management structure is off the slab, then the
458 * alignment will already be calculated into the size. Because
459 * the slabs are all pages aligned, the objects will be at the
460 * correct alignment when allocated.
461 */
b03a017b 462 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 463 num = slab_size / buffer_size;
2e6b3602 464 *left_over = slab_size % buffer_size;
fbaccacf 465 } else {
70f75067 466 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
467 *left_over = slab_size %
468 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 469 }
70f75067
JK
470
471 return num;
1da177e4
LT
472}
473
f28510d3 474#if DEBUG
d40cee24 475#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 476
a737b3e2
AM
477static void __slab_error(const char *function, struct kmem_cache *cachep,
478 char *msg)
1da177e4 479{
1170532b 480 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 481 function, cachep->name, msg);
1da177e4 482 dump_stack();
373d4d09 483 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 484}
f28510d3 485#endif
1da177e4 486
3395ee05
PM
487/*
488 * By default on NUMA we use alien caches to stage the freeing of
489 * objects allocated from other nodes. This causes massive memory
490 * inefficiencies when using fake NUMA setup to split memory into a
491 * large number of small nodes, so it can be disabled on the command
492 * line
493 */
494
495static int use_alien_caches __read_mostly = 1;
496static int __init noaliencache_setup(char *s)
497{
498 use_alien_caches = 0;
499 return 1;
500}
501__setup("noaliencache", noaliencache_setup);
502
3df1cccd
DR
503static int __init slab_max_order_setup(char *str)
504{
505 get_option(&str, &slab_max_order);
506 slab_max_order = slab_max_order < 0 ? 0 :
507 min(slab_max_order, MAX_ORDER - 1);
508 slab_max_order_set = true;
509
510 return 1;
511}
512__setup("slab_max_order=", slab_max_order_setup);
513
8fce4d8e
CL
514#ifdef CONFIG_NUMA
515/*
516 * Special reaping functions for NUMA systems called from cache_reap().
517 * These take care of doing round robin flushing of alien caches (containing
518 * objects freed on different nodes from which they were allocated) and the
519 * flushing of remote pcps by calling drain_node_pages.
520 */
1871e52c 521static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
522
523static void init_reap_node(int cpu)
524{
525 int node;
526
7d6e6d09 527 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 528 if (node == MAX_NUMNODES)
442295c9 529 node = first_node(node_online_map);
8fce4d8e 530
1871e52c 531 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
532}
533
534static void next_reap_node(void)
535{
909ea964 536 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 537
8fce4d8e
CL
538 node = next_node(node, node_online_map);
539 if (unlikely(node >= MAX_NUMNODES))
540 node = first_node(node_online_map);
909ea964 541 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
542}
543
544#else
545#define init_reap_node(cpu) do { } while (0)
546#define next_reap_node(void) do { } while (0)
547#endif
548
1da177e4
LT
549/*
550 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
551 * via the workqueue/eventd.
552 * Add the CPU number into the expiration time to minimize the possibility of
553 * the CPUs getting into lockstep and contending for the global cache chain
554 * lock.
555 */
0db0628d 556static void start_cpu_timer(int cpu)
1da177e4 557{
1871e52c 558 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
559
560 /*
561 * When this gets called from do_initcalls via cpucache_init(),
562 * init_workqueues() has already run, so keventd will be setup
563 * at that time.
564 */
52bad64d 565 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 566 init_reap_node(cpu);
203b42f7 567 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
568 schedule_delayed_work_on(cpu, reap_work,
569 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
570 }
571}
572
1fe00d50 573static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 574{
d5cff635
CM
575 /*
576 * The array_cache structures contain pointers to free object.
25985edc 577 * However, when such objects are allocated or transferred to another
d5cff635
CM
578 * cache the pointers are not cleared and they could be counted as
579 * valid references during a kmemleak scan. Therefore, kmemleak must
580 * not scan such objects.
581 */
1fe00d50
JK
582 kmemleak_no_scan(ac);
583 if (ac) {
584 ac->avail = 0;
585 ac->limit = limit;
586 ac->batchcount = batch;
587 ac->touched = 0;
1da177e4 588 }
1fe00d50
JK
589}
590
591static struct array_cache *alloc_arraycache(int node, int entries,
592 int batchcount, gfp_t gfp)
593{
5e804789 594 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
595 struct array_cache *ac = NULL;
596
597 ac = kmalloc_node(memsize, gfp, node);
598 init_arraycache(ac, entries, batchcount);
599 return ac;
1da177e4
LT
600}
601
f68f8ddd
JK
602static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
603 struct page *page, void *objp)
072bb0aa 604{
f68f8ddd
JK
605 struct kmem_cache_node *n;
606 int page_node;
607 LIST_HEAD(list);
072bb0aa 608
f68f8ddd
JK
609 page_node = page_to_nid(page);
610 n = get_node(cachep, page_node);
381760ea 611
f68f8ddd
JK
612 spin_lock(&n->list_lock);
613 free_block(cachep, &objp, 1, page_node, &list);
614 spin_unlock(&n->list_lock);
381760ea 615
f68f8ddd 616 slabs_destroy(cachep, &list);
072bb0aa
MG
617}
618
3ded175a
CL
619/*
620 * Transfer objects in one arraycache to another.
621 * Locking must be handled by the caller.
622 *
623 * Return the number of entries transferred.
624 */
625static int transfer_objects(struct array_cache *to,
626 struct array_cache *from, unsigned int max)
627{
628 /* Figure out how many entries to transfer */
732eacc0 629 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
630
631 if (!nr)
632 return 0;
633
634 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
635 sizeof(void *) *nr);
636
637 from->avail -= nr;
638 to->avail += nr;
3ded175a
CL
639 return nr;
640}
641
765c4507
CL
642#ifndef CONFIG_NUMA
643
644#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 645#define reap_alien(cachep, n) do { } while (0)
765c4507 646
c8522a3a
JK
647static inline struct alien_cache **alloc_alien_cache(int node,
648 int limit, gfp_t gfp)
765c4507 649{
8888177e 650 return NULL;
765c4507
CL
651}
652
c8522a3a 653static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
654{
655}
656
657static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
658{
659 return 0;
660}
661
662static inline void *alternate_node_alloc(struct kmem_cache *cachep,
663 gfp_t flags)
664{
665 return NULL;
666}
667
8b98c169 668static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
669 gfp_t flags, int nodeid)
670{
671 return NULL;
672}
673
4167e9b2
DR
674static inline gfp_t gfp_exact_node(gfp_t flags)
675{
444eb2a4 676 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
677}
678
765c4507
CL
679#else /* CONFIG_NUMA */
680
8b98c169 681static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 682static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 683
c8522a3a
JK
684static struct alien_cache *__alloc_alien_cache(int node, int entries,
685 int batch, gfp_t gfp)
686{
5e804789 687 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
688 struct alien_cache *alc = NULL;
689
690 alc = kmalloc_node(memsize, gfp, node);
691 init_arraycache(&alc->ac, entries, batch);
49dfc304 692 spin_lock_init(&alc->lock);
c8522a3a
JK
693 return alc;
694}
695
696static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 697{
c8522a3a 698 struct alien_cache **alc_ptr;
5e804789 699 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
700 int i;
701
702 if (limit > 1)
703 limit = 12;
c8522a3a
JK
704 alc_ptr = kzalloc_node(memsize, gfp, node);
705 if (!alc_ptr)
706 return NULL;
707
708 for_each_node(i) {
709 if (i == node || !node_online(i))
710 continue;
711 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
712 if (!alc_ptr[i]) {
713 for (i--; i >= 0; i--)
714 kfree(alc_ptr[i]);
715 kfree(alc_ptr);
716 return NULL;
e498be7d
CL
717 }
718 }
c8522a3a 719 return alc_ptr;
e498be7d
CL
720}
721
c8522a3a 722static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
723{
724 int i;
725
c8522a3a 726 if (!alc_ptr)
e498be7d 727 return;
e498be7d 728 for_each_node(i)
c8522a3a
JK
729 kfree(alc_ptr[i]);
730 kfree(alc_ptr);
e498be7d
CL
731}
732
343e0d7a 733static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
734 struct array_cache *ac, int node,
735 struct list_head *list)
e498be7d 736{
18bf8541 737 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
738
739 if (ac->avail) {
ce8eb6c4 740 spin_lock(&n->list_lock);
e00946fe
CL
741 /*
742 * Stuff objects into the remote nodes shared array first.
743 * That way we could avoid the overhead of putting the objects
744 * into the free lists and getting them back later.
745 */
ce8eb6c4
CL
746 if (n->shared)
747 transfer_objects(n->shared, ac, ac->limit);
e00946fe 748
833b706c 749 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 750 ac->avail = 0;
ce8eb6c4 751 spin_unlock(&n->list_lock);
e498be7d
CL
752 }
753}
754
8fce4d8e
CL
755/*
756 * Called from cache_reap() to regularly drain alien caches round robin.
757 */
ce8eb6c4 758static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 759{
909ea964 760 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 761
ce8eb6c4 762 if (n->alien) {
c8522a3a
JK
763 struct alien_cache *alc = n->alien[node];
764 struct array_cache *ac;
765
766 if (alc) {
767 ac = &alc->ac;
49dfc304 768 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
769 LIST_HEAD(list);
770
771 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 772 spin_unlock_irq(&alc->lock);
833b706c 773 slabs_destroy(cachep, &list);
c8522a3a 774 }
8fce4d8e
CL
775 }
776 }
777}
778
a737b3e2 779static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 780 struct alien_cache **alien)
e498be7d 781{
b28a02de 782 int i = 0;
c8522a3a 783 struct alien_cache *alc;
e498be7d
CL
784 struct array_cache *ac;
785 unsigned long flags;
786
787 for_each_online_node(i) {
c8522a3a
JK
788 alc = alien[i];
789 if (alc) {
833b706c
JK
790 LIST_HEAD(list);
791
c8522a3a 792 ac = &alc->ac;
49dfc304 793 spin_lock_irqsave(&alc->lock, flags);
833b706c 794 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 795 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 796 slabs_destroy(cachep, &list);
e498be7d
CL
797 }
798 }
799}
729bd0b7 800
25c4f304
JK
801static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
802 int node, int page_node)
729bd0b7 803{
ce8eb6c4 804 struct kmem_cache_node *n;
c8522a3a
JK
805 struct alien_cache *alien = NULL;
806 struct array_cache *ac;
97654dfa 807 LIST_HEAD(list);
1ca4cb24 808
18bf8541 809 n = get_node(cachep, node);
729bd0b7 810 STATS_INC_NODEFREES(cachep);
25c4f304
JK
811 if (n->alien && n->alien[page_node]) {
812 alien = n->alien[page_node];
c8522a3a 813 ac = &alien->ac;
49dfc304 814 spin_lock(&alien->lock);
c8522a3a 815 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 816 STATS_INC_ACOVERFLOW(cachep);
25c4f304 817 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 818 }
f68f8ddd 819 ac->entry[ac->avail++] = objp;
49dfc304 820 spin_unlock(&alien->lock);
833b706c 821 slabs_destroy(cachep, &list);
729bd0b7 822 } else {
25c4f304 823 n = get_node(cachep, page_node);
18bf8541 824 spin_lock(&n->list_lock);
25c4f304 825 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 826 spin_unlock(&n->list_lock);
97654dfa 827 slabs_destroy(cachep, &list);
729bd0b7
PE
828 }
829 return 1;
830}
25c4f304
JK
831
832static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
833{
834 int page_node = page_to_nid(virt_to_page(objp));
835 int node = numa_mem_id();
836 /*
837 * Make sure we are not freeing a object from another node to the array
838 * cache on this cpu.
839 */
840 if (likely(node == page_node))
841 return 0;
842
843 return __cache_free_alien(cachep, objp, node, page_node);
844}
4167e9b2
DR
845
846/*
444eb2a4
MG
847 * Construct gfp mask to allocate from a specific node but do not reclaim or
848 * warn about failures.
4167e9b2
DR
849 */
850static inline gfp_t gfp_exact_node(gfp_t flags)
851{
444eb2a4 852 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 853}
e498be7d
CL
854#endif
855
ded0ecf6
JK
856static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
857{
858 struct kmem_cache_node *n;
859
860 /*
861 * Set up the kmem_cache_node for cpu before we can
862 * begin anything. Make sure some other cpu on this
863 * node has not already allocated this
864 */
865 n = get_node(cachep, node);
866 if (n) {
867 spin_lock_irq(&n->list_lock);
868 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
869 cachep->num;
870 spin_unlock_irq(&n->list_lock);
871
872 return 0;
873 }
874
875 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
876 if (!n)
877 return -ENOMEM;
878
879 kmem_cache_node_init(n);
880 n->next_reap = jiffies + REAPTIMEOUT_NODE +
881 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
882
883 n->free_limit =
884 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
885
886 /*
887 * The kmem_cache_nodes don't come and go as CPUs
888 * come and go. slab_mutex is sufficient
889 * protection here.
890 */
891 cachep->node[node] = n;
892
893 return 0;
894}
895
8f9f8d9e 896/*
6a67368c 897 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 898 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 899 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 900 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
901 * already in use.
902 *
18004c5d 903 * Must hold slab_mutex.
8f9f8d9e 904 */
6a67368c 905static int init_cache_node_node(int node)
8f9f8d9e 906{
ded0ecf6 907 int ret;
8f9f8d9e 908 struct kmem_cache *cachep;
8f9f8d9e 909
18004c5d 910 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
911 ret = init_cache_node(cachep, node, GFP_KERNEL);
912 if (ret)
913 return ret;
8f9f8d9e 914 }
ded0ecf6 915
8f9f8d9e
DR
916 return 0;
917}
918
c3d332b6
JK
919static int setup_kmem_cache_node(struct kmem_cache *cachep,
920 int node, gfp_t gfp, bool force_change)
921{
922 int ret = -ENOMEM;
923 struct kmem_cache_node *n;
924 struct array_cache *old_shared = NULL;
925 struct array_cache *new_shared = NULL;
926 struct alien_cache **new_alien = NULL;
927 LIST_HEAD(list);
928
929 if (use_alien_caches) {
930 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
931 if (!new_alien)
932 goto fail;
933 }
934
935 if (cachep->shared) {
936 new_shared = alloc_arraycache(node,
937 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
938 if (!new_shared)
939 goto fail;
940 }
941
942 ret = init_cache_node(cachep, node, gfp);
943 if (ret)
944 goto fail;
945
946 n = get_node(cachep, node);
947 spin_lock_irq(&n->list_lock);
948 if (n->shared && force_change) {
949 free_block(cachep, n->shared->entry,
950 n->shared->avail, node, &list);
951 n->shared->avail = 0;
952 }
953
954 if (!n->shared || force_change) {
955 old_shared = n->shared;
956 n->shared = new_shared;
957 new_shared = NULL;
958 }
959
960 if (!n->alien) {
961 n->alien = new_alien;
962 new_alien = NULL;
963 }
964
965 spin_unlock_irq(&n->list_lock);
966 slabs_destroy(cachep, &list);
967
968fail:
969 kfree(old_shared);
970 kfree(new_shared);
971 free_alien_cache(new_alien);
972
973 return ret;
974}
975
0db0628d 976static void cpuup_canceled(long cpu)
fbf1e473
AM
977{
978 struct kmem_cache *cachep;
ce8eb6c4 979 struct kmem_cache_node *n = NULL;
7d6e6d09 980 int node = cpu_to_mem(cpu);
a70f7302 981 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 982
18004c5d 983 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
984 struct array_cache *nc;
985 struct array_cache *shared;
c8522a3a 986 struct alien_cache **alien;
97654dfa 987 LIST_HEAD(list);
fbf1e473 988
18bf8541 989 n = get_node(cachep, node);
ce8eb6c4 990 if (!n)
bf0dea23 991 continue;
fbf1e473 992
ce8eb6c4 993 spin_lock_irq(&n->list_lock);
fbf1e473 994
ce8eb6c4
CL
995 /* Free limit for this kmem_cache_node */
996 n->free_limit -= cachep->batchcount;
bf0dea23
JK
997
998 /* cpu is dead; no one can alloc from it. */
999 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1000 if (nc) {
97654dfa 1001 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1002 nc->avail = 0;
1003 }
fbf1e473 1004
58463c1f 1005 if (!cpumask_empty(mask)) {
ce8eb6c4 1006 spin_unlock_irq(&n->list_lock);
bf0dea23 1007 goto free_slab;
fbf1e473
AM
1008 }
1009
ce8eb6c4 1010 shared = n->shared;
fbf1e473
AM
1011 if (shared) {
1012 free_block(cachep, shared->entry,
97654dfa 1013 shared->avail, node, &list);
ce8eb6c4 1014 n->shared = NULL;
fbf1e473
AM
1015 }
1016
ce8eb6c4
CL
1017 alien = n->alien;
1018 n->alien = NULL;
fbf1e473 1019
ce8eb6c4 1020 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1021
1022 kfree(shared);
1023 if (alien) {
1024 drain_alien_cache(cachep, alien);
1025 free_alien_cache(alien);
1026 }
bf0dea23
JK
1027
1028free_slab:
97654dfa 1029 slabs_destroy(cachep, &list);
fbf1e473
AM
1030 }
1031 /*
1032 * In the previous loop, all the objects were freed to
1033 * the respective cache's slabs, now we can go ahead and
1034 * shrink each nodelist to its limit.
1035 */
18004c5d 1036 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1037 n = get_node(cachep, node);
ce8eb6c4 1038 if (!n)
fbf1e473 1039 continue;
a5aa63a5 1040 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1041 }
1042}
1043
0db0628d 1044static int cpuup_prepare(long cpu)
1da177e4 1045{
343e0d7a 1046 struct kmem_cache *cachep;
7d6e6d09 1047 int node = cpu_to_mem(cpu);
8f9f8d9e 1048 int err;
1da177e4 1049
fbf1e473
AM
1050 /*
1051 * We need to do this right in the beginning since
1052 * alloc_arraycache's are going to use this list.
1053 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1054 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1055 */
6a67368c 1056 err = init_cache_node_node(node);
8f9f8d9e
DR
1057 if (err < 0)
1058 goto bad;
fbf1e473
AM
1059
1060 /*
1061 * Now we can go ahead with allocating the shared arrays and
1062 * array caches
1063 */
18004c5d 1064 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1065 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1066 if (err)
1067 goto bad;
fbf1e473 1068 }
ce79ddc8 1069
fbf1e473
AM
1070 return 0;
1071bad:
12d00f6a 1072 cpuup_canceled(cpu);
fbf1e473
AM
1073 return -ENOMEM;
1074}
1075
0db0628d 1076static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1077 unsigned long action, void *hcpu)
1078{
1079 long cpu = (long)hcpu;
1080 int err = 0;
1081
1082 switch (action) {
fbf1e473
AM
1083 case CPU_UP_PREPARE:
1084 case CPU_UP_PREPARE_FROZEN:
18004c5d 1085 mutex_lock(&slab_mutex);
fbf1e473 1086 err = cpuup_prepare(cpu);
18004c5d 1087 mutex_unlock(&slab_mutex);
1da177e4
LT
1088 break;
1089 case CPU_ONLINE:
8bb78442 1090 case CPU_ONLINE_FROZEN:
1da177e4
LT
1091 start_cpu_timer(cpu);
1092 break;
1093#ifdef CONFIG_HOTPLUG_CPU
5830c590 1094 case CPU_DOWN_PREPARE:
8bb78442 1095 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1096 /*
18004c5d 1097 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1098 * held so that if cache_reap() is invoked it cannot do
1099 * anything expensive but will only modify reap_work
1100 * and reschedule the timer.
1101 */
afe2c511 1102 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1103 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1104 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1105 break;
1106 case CPU_DOWN_FAILED:
8bb78442 1107 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1108 start_cpu_timer(cpu);
1109 break;
1da177e4 1110 case CPU_DEAD:
8bb78442 1111 case CPU_DEAD_FROZEN:
4484ebf1
RT
1112 /*
1113 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1114 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1115 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1116 * memory from the node of the cpu going down. The node
4484ebf1
RT
1117 * structure is usually allocated from kmem_cache_create() and
1118 * gets destroyed at kmem_cache_destroy().
1119 */
183ff22b 1120 /* fall through */
8f5be20b 1121#endif
1da177e4 1122 case CPU_UP_CANCELED:
8bb78442 1123 case CPU_UP_CANCELED_FROZEN:
18004c5d 1124 mutex_lock(&slab_mutex);
fbf1e473 1125 cpuup_canceled(cpu);
18004c5d 1126 mutex_unlock(&slab_mutex);
1da177e4 1127 break;
1da177e4 1128 }
eac40680 1129 return notifier_from_errno(err);
1da177e4
LT
1130}
1131
0db0628d 1132static struct notifier_block cpucache_notifier = {
74b85f37
CS
1133 &cpuup_callback, NULL, 0
1134};
1da177e4 1135
8f9f8d9e
DR
1136#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1137/*
1138 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1139 * Returns -EBUSY if all objects cannot be drained so that the node is not
1140 * removed.
1141 *
18004c5d 1142 * Must hold slab_mutex.
8f9f8d9e 1143 */
6a67368c 1144static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1145{
1146 struct kmem_cache *cachep;
1147 int ret = 0;
1148
18004c5d 1149 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1150 struct kmem_cache_node *n;
8f9f8d9e 1151
18bf8541 1152 n = get_node(cachep, node);
ce8eb6c4 1153 if (!n)
8f9f8d9e
DR
1154 continue;
1155
a5aa63a5 1156 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1157
ce8eb6c4
CL
1158 if (!list_empty(&n->slabs_full) ||
1159 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1160 ret = -EBUSY;
1161 break;
1162 }
1163 }
1164 return ret;
1165}
1166
1167static int __meminit slab_memory_callback(struct notifier_block *self,
1168 unsigned long action, void *arg)
1169{
1170 struct memory_notify *mnb = arg;
1171 int ret = 0;
1172 int nid;
1173
1174 nid = mnb->status_change_nid;
1175 if (nid < 0)
1176 goto out;
1177
1178 switch (action) {
1179 case MEM_GOING_ONLINE:
18004c5d 1180 mutex_lock(&slab_mutex);
6a67368c 1181 ret = init_cache_node_node(nid);
18004c5d 1182 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1183 break;
1184 case MEM_GOING_OFFLINE:
18004c5d 1185 mutex_lock(&slab_mutex);
6a67368c 1186 ret = drain_cache_node_node(nid);
18004c5d 1187 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1188 break;
1189 case MEM_ONLINE:
1190 case MEM_OFFLINE:
1191 case MEM_CANCEL_ONLINE:
1192 case MEM_CANCEL_OFFLINE:
1193 break;
1194 }
1195out:
5fda1bd5 1196 return notifier_from_errno(ret);
8f9f8d9e
DR
1197}
1198#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1199
e498be7d 1200/*
ce8eb6c4 1201 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1202 */
6744f087 1203static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1204 int nodeid)
e498be7d 1205{
6744f087 1206 struct kmem_cache_node *ptr;
e498be7d 1207
6744f087 1208 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1209 BUG_ON(!ptr);
1210
6744f087 1211 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1212 /*
1213 * Do not assume that spinlocks can be initialized via memcpy:
1214 */
1215 spin_lock_init(&ptr->list_lock);
1216
e498be7d 1217 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1218 cachep->node[nodeid] = ptr;
e498be7d
CL
1219}
1220
556a169d 1221/*
ce8eb6c4
CL
1222 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1223 * size of kmem_cache_node.
556a169d 1224 */
ce8eb6c4 1225static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1226{
1227 int node;
1228
1229 for_each_online_node(node) {
ce8eb6c4 1230 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1231 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1232 REAPTIMEOUT_NODE +
1233 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1234 }
1235}
1236
a737b3e2
AM
1237/*
1238 * Initialisation. Called after the page allocator have been initialised and
1239 * before smp_init().
1da177e4
LT
1240 */
1241void __init kmem_cache_init(void)
1242{
e498be7d
CL
1243 int i;
1244
68126702
JK
1245 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1246 sizeof(struct rcu_head));
9b030cb8
CL
1247 kmem_cache = &kmem_cache_boot;
1248
8888177e 1249 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1250 use_alien_caches = 0;
1251
3c583465 1252 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1253 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1254
1da177e4
LT
1255 /*
1256 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1257 * page orders on machines with more than 32MB of memory if
1258 * not overridden on the command line.
1da177e4 1259 */
3df1cccd 1260 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1261 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1262
1da177e4
LT
1263 /* Bootstrap is tricky, because several objects are allocated
1264 * from caches that do not exist yet:
9b030cb8
CL
1265 * 1) initialize the kmem_cache cache: it contains the struct
1266 * kmem_cache structures of all caches, except kmem_cache itself:
1267 * kmem_cache is statically allocated.
e498be7d 1268 * Initially an __init data area is used for the head array and the
ce8eb6c4 1269 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1270 * array at the end of the bootstrap.
1da177e4 1271 * 2) Create the first kmalloc cache.
343e0d7a 1272 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1273 * An __init data area is used for the head array.
1274 * 3) Create the remaining kmalloc caches, with minimally sized
1275 * head arrays.
9b030cb8 1276 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1277 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1278 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1279 * the other cache's with kmalloc allocated memory.
1280 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1281 */
1282
9b030cb8 1283 /* 1) create the kmem_cache */
1da177e4 1284
8da3430d 1285 /*
b56efcf0 1286 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1287 */
2f9baa9f 1288 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1289 offsetof(struct kmem_cache, node) +
6744f087 1290 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1291 SLAB_HWCACHE_ALIGN);
1292 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1293 slab_state = PARTIAL;
1da177e4 1294
a737b3e2 1295 /*
bf0dea23
JK
1296 * Initialize the caches that provide memory for the kmem_cache_node
1297 * structures first. Without this, further allocations will bug.
e498be7d 1298 */
bf0dea23 1299 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1300 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1301 slab_state = PARTIAL_NODE;
34cc6990 1302 setup_kmalloc_cache_index_table();
e498be7d 1303
e0a42726
IM
1304 slab_early_init = 0;
1305
ce8eb6c4 1306 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1307 {
1ca4cb24
PE
1308 int nid;
1309
9c09a95c 1310 for_each_online_node(nid) {
ce8eb6c4 1311 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1312
bf0dea23 1313 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1314 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1315 }
1316 }
1da177e4 1317
f97d5f63 1318 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1319}
1320
1321void __init kmem_cache_init_late(void)
1322{
1323 struct kmem_cache *cachep;
1324
97d06609 1325 slab_state = UP;
52cef189 1326
8429db5c 1327 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1328 mutex_lock(&slab_mutex);
1329 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1330 if (enable_cpucache(cachep, GFP_NOWAIT))
1331 BUG();
18004c5d 1332 mutex_unlock(&slab_mutex);
056c6241 1333
97d06609
CL
1334 /* Done! */
1335 slab_state = FULL;
1336
a737b3e2
AM
1337 /*
1338 * Register a cpu startup notifier callback that initializes
1339 * cpu_cache_get for all new cpus
1da177e4
LT
1340 */
1341 register_cpu_notifier(&cpucache_notifier);
1da177e4 1342
8f9f8d9e
DR
1343#ifdef CONFIG_NUMA
1344 /*
1345 * Register a memory hotplug callback that initializes and frees
6a67368c 1346 * node.
8f9f8d9e
DR
1347 */
1348 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1349#endif
1350
a737b3e2
AM
1351 /*
1352 * The reap timers are started later, with a module init call: That part
1353 * of the kernel is not yet operational.
1da177e4
LT
1354 */
1355}
1356
1357static int __init cpucache_init(void)
1358{
1359 int cpu;
1360
a737b3e2
AM
1361 /*
1362 * Register the timers that return unneeded pages to the page allocator
1da177e4 1363 */
e498be7d 1364 for_each_online_cpu(cpu)
a737b3e2 1365 start_cpu_timer(cpu);
a164f896
GC
1366
1367 /* Done! */
97d06609 1368 slab_state = FULL;
1da177e4
LT
1369 return 0;
1370}
1da177e4
LT
1371__initcall(cpucache_init);
1372
8bdec192
RA
1373static noinline void
1374slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1375{
9a02d699 1376#if DEBUG
ce8eb6c4 1377 struct kmem_cache_node *n;
8456a648 1378 struct page *page;
8bdec192
RA
1379 unsigned long flags;
1380 int node;
9a02d699
DR
1381 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1382 DEFAULT_RATELIMIT_BURST);
1383
1384 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1385 return;
8bdec192 1386
5b3810e5
VB
1387 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1388 nodeid, gfpflags, &gfpflags);
1389 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1390 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1391
18bf8541 1392 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1393 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1394 unsigned long active_slabs = 0, num_slabs = 0;
1395
ce8eb6c4 1396 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1397 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1398 active_objs += cachep->num;
1399 active_slabs++;
1400 }
8456a648
JK
1401 list_for_each_entry(page, &n->slabs_partial, lru) {
1402 active_objs += page->active;
8bdec192
RA
1403 active_slabs++;
1404 }
8456a648 1405 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1406 num_slabs++;
1407
ce8eb6c4
CL
1408 free_objects += n->free_objects;
1409 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1410
1411 num_slabs += active_slabs;
1412 num_objs = num_slabs * cachep->num;
5b3810e5 1413 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
8bdec192
RA
1414 node, active_slabs, num_slabs, active_objs, num_objs,
1415 free_objects);
1416 }
9a02d699 1417#endif
8bdec192
RA
1418}
1419
1da177e4 1420/*
8a7d9b43
WSH
1421 * Interface to system's page allocator. No need to hold the
1422 * kmem_cache_node ->list_lock.
1da177e4
LT
1423 *
1424 * If we requested dmaable memory, we will get it. Even if we
1425 * did not request dmaable memory, we might get it, but that
1426 * would be relatively rare and ignorable.
1427 */
0c3aa83e
JK
1428static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1429 int nodeid)
1da177e4
LT
1430{
1431 struct page *page;
e1b6aa6f 1432 int nr_pages;
765c4507 1433
a618e89f 1434 flags |= cachep->allocflags;
e12ba74d
MG
1435 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1436 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1437
96db800f 1438 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1439 if (!page) {
9a02d699 1440 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1441 return NULL;
8bdec192 1442 }
1da177e4 1443
f3ccb2c4
VD
1444 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1445 __free_pages(page, cachep->gfporder);
1446 return NULL;
1447 }
1448
e1b6aa6f 1449 nr_pages = (1 << cachep->gfporder);
1da177e4 1450 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1451 add_zone_page_state(page_zone(page),
1452 NR_SLAB_RECLAIMABLE, nr_pages);
1453 else
1454 add_zone_page_state(page_zone(page),
1455 NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1456
a57a4988 1457 __SetPageSlab(page);
f68f8ddd
JK
1458 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1459 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1460 SetPageSlabPfmemalloc(page);
072bb0aa 1461
b1eeab67
VN
1462 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1463 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1464
1465 if (cachep->ctor)
1466 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1467 else
1468 kmemcheck_mark_unallocated_pages(page, nr_pages);
1469 }
c175eea4 1470
0c3aa83e 1471 return page;
1da177e4
LT
1472}
1473
1474/*
1475 * Interface to system's page release.
1476 */
0c3aa83e 1477static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1478{
27ee57c9
VD
1479 int order = cachep->gfporder;
1480 unsigned long nr_freed = (1 << order);
1da177e4 1481
27ee57c9 1482 kmemcheck_free_shadow(page, order);
c175eea4 1483
972d1a7b
CL
1484 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1485 sub_zone_page_state(page_zone(page),
1486 NR_SLAB_RECLAIMABLE, nr_freed);
1487 else
1488 sub_zone_page_state(page_zone(page),
1489 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1490
a57a4988 1491 BUG_ON(!PageSlab(page));
73293c2f 1492 __ClearPageSlabPfmemalloc(page);
a57a4988 1493 __ClearPageSlab(page);
8456a648
JK
1494 page_mapcount_reset(page);
1495 page->mapping = NULL;
1f458cbf 1496
1da177e4
LT
1497 if (current->reclaim_state)
1498 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1499 memcg_uncharge_slab(page, order, cachep);
1500 __free_pages(page, order);
1da177e4
LT
1501}
1502
1503static void kmem_rcu_free(struct rcu_head *head)
1504{
68126702
JK
1505 struct kmem_cache *cachep;
1506 struct page *page;
1da177e4 1507
68126702
JK
1508 page = container_of(head, struct page, rcu_head);
1509 cachep = page->slab_cache;
1510
1511 kmem_freepages(cachep, page);
1da177e4
LT
1512}
1513
1514#if DEBUG
40b44137
JK
1515static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1516{
1517 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1518 (cachep->size % PAGE_SIZE) == 0)
1519 return true;
1520
1521 return false;
1522}
1da177e4
LT
1523
1524#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1525static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1526 unsigned long caller)
1da177e4 1527{
8c138bc0 1528 int size = cachep->object_size;
1da177e4 1529
3dafccf2 1530 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1531
b28a02de 1532 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1533 return;
1534
b28a02de
PE
1535 *addr++ = 0x12345678;
1536 *addr++ = caller;
1537 *addr++ = smp_processor_id();
1538 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1539 {
1540 unsigned long *sptr = &caller;
1541 unsigned long svalue;
1542
1543 while (!kstack_end(sptr)) {
1544 svalue = *sptr++;
1545 if (kernel_text_address(svalue)) {
b28a02de 1546 *addr++ = svalue;
1da177e4
LT
1547 size -= sizeof(unsigned long);
1548 if (size <= sizeof(unsigned long))
1549 break;
1550 }
1551 }
1552
1553 }
b28a02de 1554 *addr++ = 0x87654321;
1da177e4 1555}
40b44137
JK
1556
1557static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1558 int map, unsigned long caller)
1559{
1560 if (!is_debug_pagealloc_cache(cachep))
1561 return;
1562
1563 if (caller)
1564 store_stackinfo(cachep, objp, caller);
1565
1566 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1567}
1568
1569#else
1570static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1571 int map, unsigned long caller) {}
1572
1da177e4
LT
1573#endif
1574
343e0d7a 1575static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1576{
8c138bc0 1577 int size = cachep->object_size;
3dafccf2 1578 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1579
1580 memset(addr, val, size);
b28a02de 1581 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1582}
1583
1584static void dump_line(char *data, int offset, int limit)
1585{
1586 int i;
aa83aa40
DJ
1587 unsigned char error = 0;
1588 int bad_count = 0;
1589
1170532b 1590 pr_err("%03x: ", offset);
aa83aa40
DJ
1591 for (i = 0; i < limit; i++) {
1592 if (data[offset + i] != POISON_FREE) {
1593 error = data[offset + i];
1594 bad_count++;
1595 }
aa83aa40 1596 }
fdde6abb
SAS
1597 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1598 &data[offset], limit, 1);
aa83aa40
DJ
1599
1600 if (bad_count == 1) {
1601 error ^= POISON_FREE;
1602 if (!(error & (error - 1))) {
1170532b 1603 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1604#ifdef CONFIG_X86
1170532b 1605 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1606#else
1170532b 1607 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1608#endif
1609 }
1610 }
1da177e4
LT
1611}
1612#endif
1613
1614#if DEBUG
1615
343e0d7a 1616static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1617{
1618 int i, size;
1619 char *realobj;
1620
1621 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1622 pr_err("Redzone: 0x%llx/0x%llx\n",
1623 *dbg_redzone1(cachep, objp),
1624 *dbg_redzone2(cachep, objp));
1da177e4
LT
1625 }
1626
1627 if (cachep->flags & SLAB_STORE_USER) {
1170532b 1628 pr_err("Last user: [<%p>](%pSR)\n",
071361d3
JP
1629 *dbg_userword(cachep, objp),
1630 *dbg_userword(cachep, objp));
1da177e4 1631 }
3dafccf2 1632 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1633 size = cachep->object_size;
b28a02de 1634 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1635 int limit;
1636 limit = 16;
b28a02de
PE
1637 if (i + limit > size)
1638 limit = size - i;
1da177e4
LT
1639 dump_line(realobj, i, limit);
1640 }
1641}
1642
343e0d7a 1643static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1644{
1645 char *realobj;
1646 int size, i;
1647 int lines = 0;
1648
40b44137
JK
1649 if (is_debug_pagealloc_cache(cachep))
1650 return;
1651
3dafccf2 1652 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1653 size = cachep->object_size;
1da177e4 1654
b28a02de 1655 for (i = 0; i < size; i++) {
1da177e4 1656 char exp = POISON_FREE;
b28a02de 1657 if (i == size - 1)
1da177e4
LT
1658 exp = POISON_END;
1659 if (realobj[i] != exp) {
1660 int limit;
1661 /* Mismatch ! */
1662 /* Print header */
1663 if (lines == 0) {
1170532b
JP
1664 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1665 print_tainted(), cachep->name,
1666 realobj, size);
1da177e4
LT
1667 print_objinfo(cachep, objp, 0);
1668 }
1669 /* Hexdump the affected line */
b28a02de 1670 i = (i / 16) * 16;
1da177e4 1671 limit = 16;
b28a02de
PE
1672 if (i + limit > size)
1673 limit = size - i;
1da177e4
LT
1674 dump_line(realobj, i, limit);
1675 i += 16;
1676 lines++;
1677 /* Limit to 5 lines */
1678 if (lines > 5)
1679 break;
1680 }
1681 }
1682 if (lines != 0) {
1683 /* Print some data about the neighboring objects, if they
1684 * exist:
1685 */
8456a648 1686 struct page *page = virt_to_head_page(objp);
8fea4e96 1687 unsigned int objnr;
1da177e4 1688
8456a648 1689 objnr = obj_to_index(cachep, page, objp);
1da177e4 1690 if (objnr) {
8456a648 1691 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1692 realobj = (char *)objp + obj_offset(cachep);
1170532b 1693 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1694 print_objinfo(cachep, objp, 2);
1695 }
b28a02de 1696 if (objnr + 1 < cachep->num) {
8456a648 1697 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1698 realobj = (char *)objp + obj_offset(cachep);
1170532b 1699 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1700 print_objinfo(cachep, objp, 2);
1701 }
1702 }
1703}
1704#endif
1705
12dd36fa 1706#if DEBUG
8456a648
JK
1707static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1708 struct page *page)
1da177e4 1709{
1da177e4 1710 int i;
b03a017b
JK
1711
1712 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1713 poison_obj(cachep, page->freelist - obj_offset(cachep),
1714 POISON_FREE);
1715 }
1716
1da177e4 1717 for (i = 0; i < cachep->num; i++) {
8456a648 1718 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1719
1720 if (cachep->flags & SLAB_POISON) {
1da177e4 1721 check_poison_obj(cachep, objp);
40b44137 1722 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1723 }
1724 if (cachep->flags & SLAB_RED_ZONE) {
1725 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1726 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1727 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1728 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1729 }
1da177e4 1730 }
12dd36fa 1731}
1da177e4 1732#else
8456a648
JK
1733static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1734 struct page *page)
12dd36fa 1735{
12dd36fa 1736}
1da177e4
LT
1737#endif
1738
911851e6
RD
1739/**
1740 * slab_destroy - destroy and release all objects in a slab
1741 * @cachep: cache pointer being destroyed
cb8ee1a3 1742 * @page: page pointer being destroyed
911851e6 1743 *
8a7d9b43
WSH
1744 * Destroy all the objs in a slab page, and release the mem back to the system.
1745 * Before calling the slab page must have been unlinked from the cache. The
1746 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1747 */
8456a648 1748static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1749{
7e007355 1750 void *freelist;
12dd36fa 1751
8456a648
JK
1752 freelist = page->freelist;
1753 slab_destroy_debugcheck(cachep, page);
bc4f610d
KS
1754 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1755 call_rcu(&page->rcu_head, kmem_rcu_free);
1756 else
0c3aa83e 1757 kmem_freepages(cachep, page);
68126702
JK
1758
1759 /*
8456a648 1760 * From now on, we don't use freelist
68126702
JK
1761 * although actual page can be freed in rcu context
1762 */
1763 if (OFF_SLAB(cachep))
8456a648 1764 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1765}
1766
97654dfa
JK
1767static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1768{
1769 struct page *page, *n;
1770
1771 list_for_each_entry_safe(page, n, list, lru) {
1772 list_del(&page->lru);
1773 slab_destroy(cachep, page);
1774 }
1775}
1776
4d268eba 1777/**
a70773dd
RD
1778 * calculate_slab_order - calculate size (page order) of slabs
1779 * @cachep: pointer to the cache that is being created
1780 * @size: size of objects to be created in this cache.
a70773dd
RD
1781 * @flags: slab allocation flags
1782 *
1783 * Also calculates the number of objects per slab.
4d268eba
PE
1784 *
1785 * This could be made much more intelligent. For now, try to avoid using
1786 * high order pages for slabs. When the gfp() functions are more friendly
1787 * towards high-order requests, this should be changed.
1788 */
a737b3e2 1789static size_t calculate_slab_order(struct kmem_cache *cachep,
2e6b3602 1790 size_t size, unsigned long flags)
4d268eba
PE
1791{
1792 size_t left_over = 0;
9888e6fa 1793 int gfporder;
4d268eba 1794
0aa817f0 1795 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1796 unsigned int num;
1797 size_t remainder;
1798
70f75067 1799 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1800 if (!num)
1801 continue;
9888e6fa 1802
f315e3fa
JK
1803 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1804 if (num > SLAB_OBJ_MAX_NUM)
1805 break;
1806
b1ab41c4 1807 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1808 struct kmem_cache *freelist_cache;
1809 size_t freelist_size;
1810
1811 freelist_size = num * sizeof(freelist_idx_t);
1812 freelist_cache = kmalloc_slab(freelist_size, 0u);
1813 if (!freelist_cache)
1814 continue;
1815
b1ab41c4 1816 /*
3217fd9b 1817 * Needed to avoid possible looping condition
76b342bd 1818 * in cache_grow_begin()
b1ab41c4 1819 */
3217fd9b
JK
1820 if (OFF_SLAB(freelist_cache))
1821 continue;
b1ab41c4 1822
3217fd9b
JK
1823 /* check if off slab has enough benefit */
1824 if (freelist_cache->size > cachep->size / 2)
1825 continue;
b1ab41c4 1826 }
4d268eba 1827
9888e6fa 1828 /* Found something acceptable - save it away */
4d268eba 1829 cachep->num = num;
9888e6fa 1830 cachep->gfporder = gfporder;
4d268eba
PE
1831 left_over = remainder;
1832
f78bb8ad
LT
1833 /*
1834 * A VFS-reclaimable slab tends to have most allocations
1835 * as GFP_NOFS and we really don't want to have to be allocating
1836 * higher-order pages when we are unable to shrink dcache.
1837 */
1838 if (flags & SLAB_RECLAIM_ACCOUNT)
1839 break;
1840
4d268eba
PE
1841 /*
1842 * Large number of objects is good, but very large slabs are
1843 * currently bad for the gfp()s.
1844 */
543585cc 1845 if (gfporder >= slab_max_order)
4d268eba
PE
1846 break;
1847
9888e6fa
LT
1848 /*
1849 * Acceptable internal fragmentation?
1850 */
a737b3e2 1851 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1852 break;
1853 }
1854 return left_over;
1855}
1856
bf0dea23
JK
1857static struct array_cache __percpu *alloc_kmem_cache_cpus(
1858 struct kmem_cache *cachep, int entries, int batchcount)
1859{
1860 int cpu;
1861 size_t size;
1862 struct array_cache __percpu *cpu_cache;
1863
1864 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1865 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1866
1867 if (!cpu_cache)
1868 return NULL;
1869
1870 for_each_possible_cpu(cpu) {
1871 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1872 entries, batchcount);
1873 }
1874
1875 return cpu_cache;
1876}
1877
83b519e8 1878static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1879{
97d06609 1880 if (slab_state >= FULL)
83b519e8 1881 return enable_cpucache(cachep, gfp);
2ed3a4ef 1882
bf0dea23
JK
1883 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1884 if (!cachep->cpu_cache)
1885 return 1;
1886
97d06609 1887 if (slab_state == DOWN) {
bf0dea23
JK
1888 /* Creation of first cache (kmem_cache). */
1889 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1890 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1891 /* For kmem_cache_node */
1892 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1893 } else {
bf0dea23 1894 int node;
f30cf7d1 1895
bf0dea23
JK
1896 for_each_online_node(node) {
1897 cachep->node[node] = kmalloc_node(
1898 sizeof(struct kmem_cache_node), gfp, node);
1899 BUG_ON(!cachep->node[node]);
1900 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1901 }
1902 }
bf0dea23 1903
6a67368c 1904 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1905 jiffies + REAPTIMEOUT_NODE +
1906 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1907
1908 cpu_cache_get(cachep)->avail = 0;
1909 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1910 cpu_cache_get(cachep)->batchcount = 1;
1911 cpu_cache_get(cachep)->touched = 0;
1912 cachep->batchcount = 1;
1913 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1914 return 0;
f30cf7d1
PE
1915}
1916
12220dea
JK
1917unsigned long kmem_cache_flags(unsigned long object_size,
1918 unsigned long flags, const char *name,
1919 void (*ctor)(void *))
1920{
1921 return flags;
1922}
1923
1924struct kmem_cache *
1925__kmem_cache_alias(const char *name, size_t size, size_t align,
1926 unsigned long flags, void (*ctor)(void *))
1927{
1928 struct kmem_cache *cachep;
1929
1930 cachep = find_mergeable(size, align, flags, name, ctor);
1931 if (cachep) {
1932 cachep->refcount++;
1933
1934 /*
1935 * Adjust the object sizes so that we clear
1936 * the complete object on kzalloc.
1937 */
1938 cachep->object_size = max_t(int, cachep->object_size, size);
1939 }
1940 return cachep;
1941}
1942
b03a017b
JK
1943static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1944 size_t size, unsigned long flags)
1945{
1946 size_t left;
1947
1948 cachep->num = 0;
1949
1950 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1951 return false;
1952
1953 left = calculate_slab_order(cachep, size,
1954 flags | CFLGS_OBJFREELIST_SLAB);
1955 if (!cachep->num)
1956 return false;
1957
1958 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1959 return false;
1960
1961 cachep->colour = left / cachep->colour_off;
1962
1963 return true;
1964}
1965
158e319b
JK
1966static bool set_off_slab_cache(struct kmem_cache *cachep,
1967 size_t size, unsigned long flags)
1968{
1969 size_t left;
1970
1971 cachep->num = 0;
1972
1973 /*
3217fd9b
JK
1974 * Always use on-slab management when SLAB_NOLEAKTRACE
1975 * to avoid recursive calls into kmemleak.
158e319b 1976 */
158e319b
JK
1977 if (flags & SLAB_NOLEAKTRACE)
1978 return false;
1979
1980 /*
1981 * Size is large, assume best to place the slab management obj
1982 * off-slab (should allow better packing of objs).
1983 */
1984 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1985 if (!cachep->num)
1986 return false;
1987
1988 /*
1989 * If the slab has been placed off-slab, and we have enough space then
1990 * move it on-slab. This is at the expense of any extra colouring.
1991 */
1992 if (left >= cachep->num * sizeof(freelist_idx_t))
1993 return false;
1994
1995 cachep->colour = left / cachep->colour_off;
1996
1997 return true;
1998}
1999
2000static bool set_on_slab_cache(struct kmem_cache *cachep,
2001 size_t size, unsigned long flags)
2002{
2003 size_t left;
2004
2005 cachep->num = 0;
2006
2007 left = calculate_slab_order(cachep, size, flags);
2008 if (!cachep->num)
2009 return false;
2010
2011 cachep->colour = left / cachep->colour_off;
2012
2013 return true;
2014}
2015
1da177e4 2016/**
039363f3 2017 * __kmem_cache_create - Create a cache.
a755b76a 2018 * @cachep: cache management descriptor
1da177e4 2019 * @flags: SLAB flags
1da177e4
LT
2020 *
2021 * Returns a ptr to the cache on success, NULL on failure.
2022 * Cannot be called within a int, but can be interrupted.
20c2df83 2023 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2024 *
1da177e4
LT
2025 * The flags are
2026 *
2027 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2028 * to catch references to uninitialised memory.
2029 *
2030 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2031 * for buffer overruns.
2032 *
1da177e4
LT
2033 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2034 * cacheline. This can be beneficial if you're counting cycles as closely
2035 * as davem.
2036 */
278b1bb1 2037int
8a13a4cc 2038__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2039{
d4a5fca5 2040 size_t ralign = BYTES_PER_WORD;
83b519e8 2041 gfp_t gfp;
278b1bb1 2042 int err;
8a13a4cc 2043 size_t size = cachep->size;
1da177e4 2044
1da177e4 2045#if DEBUG
1da177e4
LT
2046#if FORCED_DEBUG
2047 /*
2048 * Enable redzoning and last user accounting, except for caches with
2049 * large objects, if the increased size would increase the object size
2050 * above the next power of two: caches with object sizes just above a
2051 * power of two have a significant amount of internal fragmentation.
2052 */
87a927c7
DW
2053 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2054 2 * sizeof(unsigned long long)))
b28a02de 2055 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2056 if (!(flags & SLAB_DESTROY_BY_RCU))
2057 flags |= SLAB_POISON;
2058#endif
1da177e4 2059#endif
1da177e4 2060
a737b3e2
AM
2061 /*
2062 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2063 * unaligned accesses for some archs when redzoning is used, and makes
2064 * sure any on-slab bufctl's are also correctly aligned.
2065 */
b28a02de
PE
2066 if (size & (BYTES_PER_WORD - 1)) {
2067 size += (BYTES_PER_WORD - 1);
2068 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2069 }
2070
87a927c7
DW
2071 if (flags & SLAB_RED_ZONE) {
2072 ralign = REDZONE_ALIGN;
2073 /* If redzoning, ensure that the second redzone is suitably
2074 * aligned, by adjusting the object size accordingly. */
2075 size += REDZONE_ALIGN - 1;
2076 size &= ~(REDZONE_ALIGN - 1);
2077 }
ca5f9703 2078
a44b56d3 2079 /* 3) caller mandated alignment */
8a13a4cc
CL
2080 if (ralign < cachep->align) {
2081 ralign = cachep->align;
1da177e4 2082 }
3ff84a7f
PE
2083 /* disable debug if necessary */
2084 if (ralign > __alignof__(unsigned long long))
a44b56d3 2085 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2086 /*
ca5f9703 2087 * 4) Store it.
1da177e4 2088 */
8a13a4cc 2089 cachep->align = ralign;
158e319b
JK
2090 cachep->colour_off = cache_line_size();
2091 /* Offset must be a multiple of the alignment. */
2092 if (cachep->colour_off < cachep->align)
2093 cachep->colour_off = cachep->align;
1da177e4 2094
83b519e8
PE
2095 if (slab_is_available())
2096 gfp = GFP_KERNEL;
2097 else
2098 gfp = GFP_NOWAIT;
2099
1da177e4 2100#if DEBUG
1da177e4 2101
ca5f9703
PE
2102 /*
2103 * Both debugging options require word-alignment which is calculated
2104 * into align above.
2105 */
1da177e4 2106 if (flags & SLAB_RED_ZONE) {
1da177e4 2107 /* add space for red zone words */
3ff84a7f
PE
2108 cachep->obj_offset += sizeof(unsigned long long);
2109 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2110 }
2111 if (flags & SLAB_STORE_USER) {
ca5f9703 2112 /* user store requires one word storage behind the end of
87a927c7
DW
2113 * the real object. But if the second red zone needs to be
2114 * aligned to 64 bits, we must allow that much space.
1da177e4 2115 */
87a927c7
DW
2116 if (flags & SLAB_RED_ZONE)
2117 size += REDZONE_ALIGN;
2118 else
2119 size += BYTES_PER_WORD;
1da177e4 2120 }
832a15d2
JK
2121#endif
2122
7ed2f9e6
AP
2123 kasan_cache_create(cachep, &size, &flags);
2124
832a15d2
JK
2125 size = ALIGN(size, cachep->align);
2126 /*
2127 * We should restrict the number of objects in a slab to implement
2128 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2129 */
2130 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2131 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2132
2133#if DEBUG
03a2d2a3
JK
2134 /*
2135 * To activate debug pagealloc, off-slab management is necessary
2136 * requirement. In early phase of initialization, small sized slab
2137 * doesn't get initialized so it would not be possible. So, we need
2138 * to check size >= 256. It guarantees that all necessary small
2139 * sized slab is initialized in current slab initialization sequence.
2140 */
40323278 2141 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2142 size >= 256 && cachep->object_size > cache_line_size()) {
2143 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2144 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2145
2146 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2147 flags |= CFLGS_OFF_SLAB;
2148 cachep->obj_offset += tmp_size - size;
2149 size = tmp_size;
2150 goto done;
2151 }
2152 }
1da177e4 2153 }
1da177e4
LT
2154#endif
2155
b03a017b
JK
2156 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2157 flags |= CFLGS_OBJFREELIST_SLAB;
2158 goto done;
2159 }
2160
158e319b 2161 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2162 flags |= CFLGS_OFF_SLAB;
158e319b 2163 goto done;
832a15d2 2164 }
1da177e4 2165
158e319b
JK
2166 if (set_on_slab_cache(cachep, size, flags))
2167 goto done;
1da177e4 2168
158e319b 2169 return -E2BIG;
1da177e4 2170
158e319b
JK
2171done:
2172 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2173 cachep->flags = flags;
a57a4988 2174 cachep->allocflags = __GFP_COMP;
4b51d669 2175 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2176 cachep->allocflags |= GFP_DMA;
3b0efdfa 2177 cachep->size = size;
6a2d7a95 2178 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2179
40b44137
JK
2180#if DEBUG
2181 /*
2182 * If we're going to use the generic kernel_map_pages()
2183 * poisoning, then it's going to smash the contents of
2184 * the redzone and userword anyhow, so switch them off.
2185 */
2186 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2187 (cachep->flags & SLAB_POISON) &&
2188 is_debug_pagealloc_cache(cachep))
2189 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2190#endif
2191
2192 if (OFF_SLAB(cachep)) {
158e319b
JK
2193 cachep->freelist_cache =
2194 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2195 }
1da177e4 2196
278b1bb1
CL
2197 err = setup_cpu_cache(cachep, gfp);
2198 if (err) {
52b4b950 2199 __kmem_cache_release(cachep);
278b1bb1 2200 return err;
2ed3a4ef 2201 }
1da177e4 2202
278b1bb1 2203 return 0;
1da177e4 2204}
1da177e4
LT
2205
2206#if DEBUG
2207static void check_irq_off(void)
2208{
2209 BUG_ON(!irqs_disabled());
2210}
2211
2212static void check_irq_on(void)
2213{
2214 BUG_ON(irqs_disabled());
2215}
2216
18726ca8
JK
2217static void check_mutex_acquired(void)
2218{
2219 BUG_ON(!mutex_is_locked(&slab_mutex));
2220}
2221
343e0d7a 2222static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2223{
2224#ifdef CONFIG_SMP
2225 check_irq_off();
18bf8541 2226 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2227#endif
2228}
e498be7d 2229
343e0d7a 2230static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2231{
2232#ifdef CONFIG_SMP
2233 check_irq_off();
18bf8541 2234 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2235#endif
2236}
2237
1da177e4
LT
2238#else
2239#define check_irq_off() do { } while(0)
2240#define check_irq_on() do { } while(0)
18726ca8 2241#define check_mutex_acquired() do { } while(0)
1da177e4 2242#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2243#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2244#endif
2245
18726ca8
JK
2246static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2247 int node, bool free_all, struct list_head *list)
2248{
2249 int tofree;
2250
2251 if (!ac || !ac->avail)
2252 return;
2253
2254 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2255 if (tofree > ac->avail)
2256 tofree = (ac->avail + 1) / 2;
2257
2258 free_block(cachep, ac->entry, tofree, node, list);
2259 ac->avail -= tofree;
2260 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2261}
aab2207c 2262
1da177e4
LT
2263static void do_drain(void *arg)
2264{
a737b3e2 2265 struct kmem_cache *cachep = arg;
1da177e4 2266 struct array_cache *ac;
7d6e6d09 2267 int node = numa_mem_id();
18bf8541 2268 struct kmem_cache_node *n;
97654dfa 2269 LIST_HEAD(list);
1da177e4
LT
2270
2271 check_irq_off();
9a2dba4b 2272 ac = cpu_cache_get(cachep);
18bf8541
CL
2273 n = get_node(cachep, node);
2274 spin_lock(&n->list_lock);
97654dfa 2275 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2276 spin_unlock(&n->list_lock);
97654dfa 2277 slabs_destroy(cachep, &list);
1da177e4
LT
2278 ac->avail = 0;
2279}
2280
343e0d7a 2281static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2282{
ce8eb6c4 2283 struct kmem_cache_node *n;
e498be7d 2284 int node;
18726ca8 2285 LIST_HEAD(list);
e498be7d 2286
15c8b6c1 2287 on_each_cpu(do_drain, cachep, 1);
1da177e4 2288 check_irq_on();
18bf8541
CL
2289 for_each_kmem_cache_node(cachep, node, n)
2290 if (n->alien)
ce8eb6c4 2291 drain_alien_cache(cachep, n->alien);
a4523a8b 2292
18726ca8
JK
2293 for_each_kmem_cache_node(cachep, node, n) {
2294 spin_lock_irq(&n->list_lock);
2295 drain_array_locked(cachep, n->shared, node, true, &list);
2296 spin_unlock_irq(&n->list_lock);
2297
2298 slabs_destroy(cachep, &list);
2299 }
1da177e4
LT
2300}
2301
ed11d9eb
CL
2302/*
2303 * Remove slabs from the list of free slabs.
2304 * Specify the number of slabs to drain in tofree.
2305 *
2306 * Returns the actual number of slabs released.
2307 */
2308static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2309 struct kmem_cache_node *n, int tofree)
1da177e4 2310{
ed11d9eb
CL
2311 struct list_head *p;
2312 int nr_freed;
8456a648 2313 struct page *page;
1da177e4 2314
ed11d9eb 2315 nr_freed = 0;
ce8eb6c4 2316 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2317
ce8eb6c4
CL
2318 spin_lock_irq(&n->list_lock);
2319 p = n->slabs_free.prev;
2320 if (p == &n->slabs_free) {
2321 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2322 goto out;
2323 }
1da177e4 2324
8456a648 2325 page = list_entry(p, struct page, lru);
8456a648 2326 list_del(&page->lru);
ed11d9eb
CL
2327 /*
2328 * Safe to drop the lock. The slab is no longer linked
2329 * to the cache.
2330 */
ce8eb6c4
CL
2331 n->free_objects -= cache->num;
2332 spin_unlock_irq(&n->list_lock);
8456a648 2333 slab_destroy(cache, page);
ed11d9eb 2334 nr_freed++;
1da177e4 2335 }
ed11d9eb
CL
2336out:
2337 return nr_freed;
1da177e4
LT
2338}
2339
d6e0b7fa 2340int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
e498be7d 2341{
18bf8541
CL
2342 int ret = 0;
2343 int node;
ce8eb6c4 2344 struct kmem_cache_node *n;
e498be7d
CL
2345
2346 drain_cpu_caches(cachep);
2347
2348 check_irq_on();
18bf8541 2349 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2350 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2351
ce8eb6c4
CL
2352 ret += !list_empty(&n->slabs_full) ||
2353 !list_empty(&n->slabs_partial);
e498be7d
CL
2354 }
2355 return (ret ? 1 : 0);
2356}
2357
945cf2b6 2358int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950
DS
2359{
2360 return __kmem_cache_shrink(cachep, false);
2361}
2362
2363void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2364{
12c3667f 2365 int i;
ce8eb6c4 2366 struct kmem_cache_node *n;
1da177e4 2367
bf0dea23 2368 free_percpu(cachep->cpu_cache);
1da177e4 2369
ce8eb6c4 2370 /* NUMA: free the node structures */
18bf8541
CL
2371 for_each_kmem_cache_node(cachep, i, n) {
2372 kfree(n->shared);
2373 free_alien_cache(n->alien);
2374 kfree(n);
2375 cachep->node[i] = NULL;
12c3667f 2376 }
1da177e4 2377}
1da177e4 2378
e5ac9c5a
RT
2379/*
2380 * Get the memory for a slab management obj.
5f0985bb
JZ
2381 *
2382 * For a slab cache when the slab descriptor is off-slab, the
2383 * slab descriptor can't come from the same cache which is being created,
2384 * Because if it is the case, that means we defer the creation of
2385 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2386 * And we eventually call down to __kmem_cache_create(), which
2387 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2388 * This is a "chicken-and-egg" problem.
2389 *
2390 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2391 * which are all initialized during kmem_cache_init().
e5ac9c5a 2392 */
7e007355 2393static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2394 struct page *page, int colour_off,
2395 gfp_t local_flags, int nodeid)
1da177e4 2396{
7e007355 2397 void *freelist;
0c3aa83e 2398 void *addr = page_address(page);
b28a02de 2399
2e6b3602
JK
2400 page->s_mem = addr + colour_off;
2401 page->active = 0;
2402
b03a017b
JK
2403 if (OBJFREELIST_SLAB(cachep))
2404 freelist = NULL;
2405 else if (OFF_SLAB(cachep)) {
1da177e4 2406 /* Slab management obj is off-slab. */
8456a648 2407 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2408 local_flags, nodeid);
8456a648 2409 if (!freelist)
1da177e4
LT
2410 return NULL;
2411 } else {
2e6b3602
JK
2412 /* We will use last bytes at the slab for freelist */
2413 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2414 cachep->freelist_size;
1da177e4 2415 }
2e6b3602 2416
8456a648 2417 return freelist;
1da177e4
LT
2418}
2419
7cc68973 2420static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2421{
a41adfaa 2422 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2423}
2424
2425static inline void set_free_obj(struct page *page,
7cc68973 2426 unsigned int idx, freelist_idx_t val)
e5c58dfd 2427{
a41adfaa 2428 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2429}
2430
10b2e9e8 2431static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2432{
10b2e9e8 2433#if DEBUG
1da177e4
LT
2434 int i;
2435
2436 for (i = 0; i < cachep->num; i++) {
8456a648 2437 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2438
1da177e4
LT
2439 if (cachep->flags & SLAB_STORE_USER)
2440 *dbg_userword(cachep, objp) = NULL;
2441
2442 if (cachep->flags & SLAB_RED_ZONE) {
2443 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2444 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2445 }
2446 /*
a737b3e2
AM
2447 * Constructors are not allowed to allocate memory from the same
2448 * cache which they are a constructor for. Otherwise, deadlock.
2449 * They must also be threaded.
1da177e4 2450 */
7ed2f9e6
AP
2451 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2452 kasan_unpoison_object_data(cachep,
2453 objp + obj_offset(cachep));
51cc5068 2454 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2455 kasan_poison_object_data(
2456 cachep, objp + obj_offset(cachep));
2457 }
1da177e4
LT
2458
2459 if (cachep->flags & SLAB_RED_ZONE) {
2460 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2461 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2462 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2463 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2464 }
40b44137
JK
2465 /* need to poison the objs? */
2466 if (cachep->flags & SLAB_POISON) {
2467 poison_obj(cachep, objp, POISON_FREE);
2468 slab_kernel_map(cachep, objp, 0, 0);
2469 }
10b2e9e8 2470 }
1da177e4 2471#endif
10b2e9e8
JK
2472}
2473
2474static void cache_init_objs(struct kmem_cache *cachep,
2475 struct page *page)
2476{
2477 int i;
7ed2f9e6 2478 void *objp;
10b2e9e8
JK
2479
2480 cache_init_objs_debug(cachep, page);
2481
b03a017b
JK
2482 if (OBJFREELIST_SLAB(cachep)) {
2483 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2484 obj_offset(cachep);
2485 }
2486
10b2e9e8
JK
2487 for (i = 0; i < cachep->num; i++) {
2488 /* constructor could break poison info */
7ed2f9e6
AP
2489 if (DEBUG == 0 && cachep->ctor) {
2490 objp = index_to_obj(cachep, page, i);
2491 kasan_unpoison_object_data(cachep, objp);
2492 cachep->ctor(objp);
2493 kasan_poison_object_data(cachep, objp);
2494 }
10b2e9e8 2495
e5c58dfd 2496 set_free_obj(page, i, i);
1da177e4 2497 }
1da177e4
LT
2498}
2499
343e0d7a 2500static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2501{
4b51d669
CL
2502 if (CONFIG_ZONE_DMA_FLAG) {
2503 if (flags & GFP_DMA)
a618e89f 2504 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2505 else
a618e89f 2506 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2507 }
1da177e4
LT
2508}
2509
260b61dd 2510static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2511{
b1cb0982 2512 void *objp;
78d382d7 2513
e5c58dfd 2514 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2515 page->active++;
78d382d7 2516
d31676df
JK
2517#if DEBUG
2518 if (cachep->flags & SLAB_STORE_USER)
2519 set_store_user_dirty(cachep);
2520#endif
2521
78d382d7
MD
2522 return objp;
2523}
2524
260b61dd
JK
2525static void slab_put_obj(struct kmem_cache *cachep,
2526 struct page *page, void *objp)
78d382d7 2527{
8456a648 2528 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2529#if DEBUG
16025177 2530 unsigned int i;
b1cb0982 2531
b1cb0982 2532 /* Verify double free bug */
8456a648 2533 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2534 if (get_free_obj(page, i) == objnr) {
1170532b 2535 pr_err("slab: double free detected in cache '%s', objp %p\n",
756a025f 2536 cachep->name, objp);
b1cb0982
JK
2537 BUG();
2538 }
78d382d7
MD
2539 }
2540#endif
8456a648 2541 page->active--;
b03a017b
JK
2542 if (!page->freelist)
2543 page->freelist = objp + obj_offset(cachep);
2544
e5c58dfd 2545 set_free_obj(page, page->active, objnr);
78d382d7
MD
2546}
2547
4776874f
PE
2548/*
2549 * Map pages beginning at addr to the given cache and slab. This is required
2550 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2551 * virtual address for kfree, ksize, and slab debugging.
4776874f 2552 */
8456a648 2553static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2554 void *freelist)
1da177e4 2555{
a57a4988 2556 page->slab_cache = cache;
8456a648 2557 page->freelist = freelist;
1da177e4
LT
2558}
2559
2560/*
2561 * Grow (by 1) the number of slabs within a cache. This is called by
2562 * kmem_cache_alloc() when there are no active objs left in a cache.
2563 */
76b342bd
JK
2564static struct page *cache_grow_begin(struct kmem_cache *cachep,
2565 gfp_t flags, int nodeid)
1da177e4 2566{
7e007355 2567 void *freelist;
b28a02de
PE
2568 size_t offset;
2569 gfp_t local_flags;
511e3a05 2570 int page_node;
ce8eb6c4 2571 struct kmem_cache_node *n;
511e3a05 2572 struct page *page;
1da177e4 2573
a737b3e2
AM
2574 /*
2575 * Be lazy and only check for valid flags here, keeping it out of the
2576 * critical path in kmem_cache_alloc().
1da177e4 2577 */
c871ac4e
AM
2578 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2579 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2580 BUG();
2581 }
6cb06229 2582 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2583
1da177e4 2584 check_irq_off();
d0164adc 2585 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2586 local_irq_enable();
2587
2588 /*
2589 * The test for missing atomic flag is performed here, rather than
2590 * the more obvious place, simply to reduce the critical path length
2591 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2592 * will eventually be caught here (where it matters).
2593 */
2594 kmem_flagcheck(cachep, flags);
2595
a737b3e2
AM
2596 /*
2597 * Get mem for the objs. Attempt to allocate a physical page from
2598 * 'nodeid'.
e498be7d 2599 */
511e3a05 2600 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2601 if (!page)
1da177e4
LT
2602 goto failed;
2603
511e3a05
JK
2604 page_node = page_to_nid(page);
2605 n = get_node(cachep, page_node);
03d1d43a
JK
2606
2607 /* Get colour for the slab, and cal the next value. */
2608 n->colour_next++;
2609 if (n->colour_next >= cachep->colour)
2610 n->colour_next = 0;
2611
2612 offset = n->colour_next;
2613 if (offset >= cachep->colour)
2614 offset = 0;
2615
2616 offset *= cachep->colour_off;
2617
1da177e4 2618 /* Get slab management. */
8456a648 2619 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2620 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2621 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2622 goto opps1;
2623
8456a648 2624 slab_map_pages(cachep, page, freelist);
1da177e4 2625
7ed2f9e6 2626 kasan_poison_slab(page);
8456a648 2627 cache_init_objs(cachep, page);
1da177e4 2628
d0164adc 2629 if (gfpflags_allow_blocking(local_flags))
1da177e4 2630 local_irq_disable();
1da177e4 2631
76b342bd
JK
2632 return page;
2633
a737b3e2 2634opps1:
0c3aa83e 2635 kmem_freepages(cachep, page);
a737b3e2 2636failed:
d0164adc 2637 if (gfpflags_allow_blocking(local_flags))
1da177e4 2638 local_irq_disable();
76b342bd
JK
2639 return NULL;
2640}
2641
2642static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2643{
2644 struct kmem_cache_node *n;
2645 void *list = NULL;
2646
2647 check_irq_off();
2648
2649 if (!page)
2650 return;
2651
2652 INIT_LIST_HEAD(&page->lru);
2653 n = get_node(cachep, page_to_nid(page));
2654
2655 spin_lock(&n->list_lock);
2656 if (!page->active)
2657 list_add_tail(&page->lru, &(n->slabs_free));
2658 else
2659 fixup_slab_list(cachep, n, page, &list);
2660 STATS_INC_GROWN(cachep);
2661 n->free_objects += cachep->num - page->active;
2662 spin_unlock(&n->list_lock);
2663
2664 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2665}
2666
2667#if DEBUG
2668
2669/*
2670 * Perform extra freeing checks:
2671 * - detect bad pointers.
2672 * - POISON/RED_ZONE checking
1da177e4
LT
2673 */
2674static void kfree_debugcheck(const void *objp)
2675{
1da177e4 2676 if (!virt_addr_valid(objp)) {
1170532b 2677 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2678 (unsigned long)objp);
2679 BUG();
1da177e4 2680 }
1da177e4
LT
2681}
2682
58ce1fd5
PE
2683static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2684{
b46b8f19 2685 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2686
2687 redzone1 = *dbg_redzone1(cache, obj);
2688 redzone2 = *dbg_redzone2(cache, obj);
2689
2690 /*
2691 * Redzone is ok.
2692 */
2693 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2694 return;
2695
2696 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2697 slab_error(cache, "double free detected");
2698 else
2699 slab_error(cache, "memory outside object was overwritten");
2700
1170532b
JP
2701 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2702 obj, redzone1, redzone2);
58ce1fd5
PE
2703}
2704
343e0d7a 2705static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2706 unsigned long caller)
1da177e4 2707{
1da177e4 2708 unsigned int objnr;
8456a648 2709 struct page *page;
1da177e4 2710
80cbd911
MW
2711 BUG_ON(virt_to_cache(objp) != cachep);
2712
3dafccf2 2713 objp -= obj_offset(cachep);
1da177e4 2714 kfree_debugcheck(objp);
b49af68f 2715 page = virt_to_head_page(objp);
1da177e4 2716
1da177e4 2717 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2718 verify_redzone_free(cachep, objp);
1da177e4
LT
2719 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2720 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2721 }
d31676df
JK
2722 if (cachep->flags & SLAB_STORE_USER) {
2723 set_store_user_dirty(cachep);
7c0cb9c6 2724 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2725 }
1da177e4 2726
8456a648 2727 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2728
2729 BUG_ON(objnr >= cachep->num);
8456a648 2730 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2731
1da177e4 2732 if (cachep->flags & SLAB_POISON) {
1da177e4 2733 poison_obj(cachep, objp, POISON_FREE);
40b44137 2734 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2735 }
2736 return objp;
2737}
2738
1da177e4
LT
2739#else
2740#define kfree_debugcheck(x) do { } while(0)
2741#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2742#endif
2743
b03a017b
JK
2744static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2745 void **list)
2746{
2747#if DEBUG
2748 void *next = *list;
2749 void *objp;
2750
2751 while (next) {
2752 objp = next - obj_offset(cachep);
2753 next = *(void **)next;
2754 poison_obj(cachep, objp, POISON_FREE);
2755 }
2756#endif
2757}
2758
d8410234 2759static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2760 struct kmem_cache_node *n, struct page *page,
2761 void **list)
d8410234
JK
2762{
2763 /* move slabp to correct slabp list: */
2764 list_del(&page->lru);
b03a017b 2765 if (page->active == cachep->num) {
d8410234 2766 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2767 if (OBJFREELIST_SLAB(cachep)) {
2768#if DEBUG
2769 /* Poisoning will be done without holding the lock */
2770 if (cachep->flags & SLAB_POISON) {
2771 void **objp = page->freelist;
2772
2773 *objp = *list;
2774 *list = objp;
2775 }
2776#endif
2777 page->freelist = NULL;
2778 }
2779 } else
d8410234
JK
2780 list_add(&page->lru, &n->slabs_partial);
2781}
2782
f68f8ddd
JK
2783/* Try to find non-pfmemalloc slab if needed */
2784static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2785 struct page *page, bool pfmemalloc)
2786{
2787 if (!page)
2788 return NULL;
2789
2790 if (pfmemalloc)
2791 return page;
2792
2793 if (!PageSlabPfmemalloc(page))
2794 return page;
2795
2796 /* No need to keep pfmemalloc slab if we have enough free objects */
2797 if (n->free_objects > n->free_limit) {
2798 ClearPageSlabPfmemalloc(page);
2799 return page;
2800 }
2801
2802 /* Move pfmemalloc slab to the end of list to speed up next search */
2803 list_del(&page->lru);
2804 if (!page->active)
2805 list_add_tail(&page->lru, &n->slabs_free);
2806 else
2807 list_add_tail(&page->lru, &n->slabs_partial);
2808
2809 list_for_each_entry(page, &n->slabs_partial, lru) {
2810 if (!PageSlabPfmemalloc(page))
2811 return page;
2812 }
2813
2814 list_for_each_entry(page, &n->slabs_free, lru) {
2815 if (!PageSlabPfmemalloc(page))
2816 return page;
2817 }
2818
2819 return NULL;
2820}
2821
2822static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2823{
2824 struct page *page;
2825
2826 page = list_first_entry_or_null(&n->slabs_partial,
2827 struct page, lru);
2828 if (!page) {
2829 n->free_touched = 1;
2830 page = list_first_entry_or_null(&n->slabs_free,
2831 struct page, lru);
2832 }
2833
f68f8ddd
JK
2834 if (sk_memalloc_socks())
2835 return get_valid_first_slab(n, page, pfmemalloc);
2836
7aa0d227
GT
2837 return page;
2838}
2839
f68f8ddd
JK
2840static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2841 struct kmem_cache_node *n, gfp_t flags)
2842{
2843 struct page *page;
2844 void *obj;
2845 void *list = NULL;
2846
2847 if (!gfp_pfmemalloc_allowed(flags))
2848 return NULL;
2849
2850 spin_lock(&n->list_lock);
2851 page = get_first_slab(n, true);
2852 if (!page) {
2853 spin_unlock(&n->list_lock);
2854 return NULL;
2855 }
2856
2857 obj = slab_get_obj(cachep, page);
2858 n->free_objects--;
2859
2860 fixup_slab_list(cachep, n, page, &list);
2861
2862 spin_unlock(&n->list_lock);
2863 fixup_objfreelist_debug(cachep, &list);
2864
2865 return obj;
2866}
2867
213b4695
JK
2868/*
2869 * Slab list should be fixed up by fixup_slab_list() for existing slab
2870 * or cache_grow_end() for new slab
2871 */
2872static __always_inline int alloc_block(struct kmem_cache *cachep,
2873 struct array_cache *ac, struct page *page, int batchcount)
2874{
2875 /*
2876 * There must be at least one object available for
2877 * allocation.
2878 */
2879 BUG_ON(page->active >= cachep->num);
2880
2881 while (page->active < cachep->num && batchcount--) {
2882 STATS_INC_ALLOCED(cachep);
2883 STATS_INC_ACTIVE(cachep);
2884 STATS_SET_HIGH(cachep);
2885
2886 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2887 }
2888
2889 return batchcount;
2890}
2891
f68f8ddd 2892static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2893{
2894 int batchcount;
ce8eb6c4 2895 struct kmem_cache_node *n;
1da177e4 2896 struct array_cache *ac;
1ca4cb24 2897 int node;
b03a017b 2898 void *list = NULL;
76b342bd 2899 struct page *page;
1ca4cb24 2900
1da177e4 2901 check_irq_off();
7d6e6d09 2902 node = numa_mem_id();
f68f8ddd 2903
9a2dba4b 2904 ac = cpu_cache_get(cachep);
1da177e4
LT
2905 batchcount = ac->batchcount;
2906 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2907 /*
2908 * If there was little recent activity on this cache, then
2909 * perform only a partial refill. Otherwise we could generate
2910 * refill bouncing.
1da177e4
LT
2911 */
2912 batchcount = BATCHREFILL_LIMIT;
2913 }
18bf8541 2914 n = get_node(cachep, node);
e498be7d 2915
ce8eb6c4
CL
2916 BUG_ON(ac->avail > 0 || !n);
2917 spin_lock(&n->list_lock);
1da177e4 2918
3ded175a 2919 /* See if we can refill from the shared array */
ce8eb6c4
CL
2920 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2921 n->shared->touched = 1;
3ded175a 2922 goto alloc_done;
44b57f1c 2923 }
3ded175a 2924
1da177e4 2925 while (batchcount > 0) {
1da177e4 2926 /* Get slab alloc is to come from. */
f68f8ddd 2927 page = get_first_slab(n, false);
7aa0d227
GT
2928 if (!page)
2929 goto must_grow;
1da177e4 2930
1da177e4 2931 check_spinlock_acquired(cachep);
714b8171 2932
213b4695 2933 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 2934 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
2935 }
2936
a737b3e2 2937must_grow:
ce8eb6c4 2938 n->free_objects -= ac->avail;
a737b3e2 2939alloc_done:
ce8eb6c4 2940 spin_unlock(&n->list_lock);
b03a017b 2941 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2942
2943 if (unlikely(!ac->avail)) {
f68f8ddd
JK
2944 /* Check if we can use obj in pfmemalloc slab */
2945 if (sk_memalloc_socks()) {
2946 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2947
2948 if (obj)
2949 return obj;
2950 }
2951
76b342bd 2952 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 2953
76b342bd
JK
2954 /*
2955 * cache_grow_begin() can reenable interrupts,
2956 * then ac could change.
2957 */
9a2dba4b 2958 ac = cpu_cache_get(cachep);
213b4695
JK
2959 if (!ac->avail && page)
2960 alloc_block(cachep, ac, page, batchcount);
2961 cache_grow_end(cachep, page);
072bb0aa 2962
213b4695 2963 if (!ac->avail)
1da177e4 2964 return NULL;
1da177e4
LT
2965 }
2966 ac->touched = 1;
072bb0aa 2967
f68f8ddd 2968 return ac->entry[--ac->avail];
1da177e4
LT
2969}
2970
a737b3e2
AM
2971static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2972 gfp_t flags)
1da177e4 2973{
d0164adc 2974 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
2975#if DEBUG
2976 kmem_flagcheck(cachep, flags);
2977#endif
2978}
2979
2980#if DEBUG
a737b3e2 2981static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2982 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2983{
b28a02de 2984 if (!objp)
1da177e4 2985 return objp;
b28a02de 2986 if (cachep->flags & SLAB_POISON) {
1da177e4 2987 check_poison_obj(cachep, objp);
40b44137 2988 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
2989 poison_obj(cachep, objp, POISON_INUSE);
2990 }
2991 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2992 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2993
2994 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2995 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2996 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 2997 slab_error(cachep, "double free, or memory outside object was overwritten");
1170532b
JP
2998 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2999 objp, *dbg_redzone1(cachep, objp),
3000 *dbg_redzone2(cachep, objp));
1da177e4
LT
3001 }
3002 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3003 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3004 }
03787301 3005
3dafccf2 3006 objp += obj_offset(cachep);
4f104934 3007 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3008 cachep->ctor(objp);
7ea466f2
TH
3009 if (ARCH_SLAB_MINALIGN &&
3010 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
1170532b 3011 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3012 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3013 }
1da177e4
LT
3014 return objp;
3015}
3016#else
3017#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3018#endif
3019
343e0d7a 3020static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3021{
b28a02de 3022 void *objp;
1da177e4
LT
3023 struct array_cache *ac;
3024
5c382300 3025 check_irq_off();
8a8b6502 3026
9a2dba4b 3027 ac = cpu_cache_get(cachep);
1da177e4 3028 if (likely(ac->avail)) {
1da177e4 3029 ac->touched = 1;
f68f8ddd 3030 objp = ac->entry[--ac->avail];
072bb0aa 3031
f68f8ddd
JK
3032 STATS_INC_ALLOCHIT(cachep);
3033 goto out;
1da177e4 3034 }
072bb0aa
MG
3035
3036 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3037 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3038 /*
3039 * the 'ac' may be updated by cache_alloc_refill(),
3040 * and kmemleak_erase() requires its correct value.
3041 */
3042 ac = cpu_cache_get(cachep);
3043
3044out:
d5cff635
CM
3045 /*
3046 * To avoid a false negative, if an object that is in one of the
3047 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3048 * treat the array pointers as a reference to the object.
3049 */
f3d8b53a
O
3050 if (objp)
3051 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3052 return objp;
3053}
3054
e498be7d 3055#ifdef CONFIG_NUMA
c61afb18 3056/*
2ad654bc 3057 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3058 *
3059 * If we are in_interrupt, then process context, including cpusets and
3060 * mempolicy, may not apply and should not be used for allocation policy.
3061 */
3062static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3063{
3064 int nid_alloc, nid_here;
3065
765c4507 3066 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3067 return NULL;
7d6e6d09 3068 nid_alloc = nid_here = numa_mem_id();
c61afb18 3069 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3070 nid_alloc = cpuset_slab_spread_node();
c61afb18 3071 else if (current->mempolicy)
2a389610 3072 nid_alloc = mempolicy_slab_node();
c61afb18 3073 if (nid_alloc != nid_here)
8b98c169 3074 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3075 return NULL;
3076}
3077
765c4507
CL
3078/*
3079 * Fallback function if there was no memory available and no objects on a
3c517a61 3080 * certain node and fall back is permitted. First we scan all the
6a67368c 3081 * available node for available objects. If that fails then we
3c517a61
CL
3082 * perform an allocation without specifying a node. This allows the page
3083 * allocator to do its reclaim / fallback magic. We then insert the
3084 * slab into the proper nodelist and then allocate from it.
765c4507 3085 */
8c8cc2c1 3086static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3087{
8c8cc2c1 3088 struct zonelist *zonelist;
dd1a239f 3089 struct zoneref *z;
54a6eb5c
MG
3090 struct zone *zone;
3091 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3092 void *obj = NULL;
76b342bd 3093 struct page *page;
3c517a61 3094 int nid;
cc9a6c87 3095 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3096
3097 if (flags & __GFP_THISNODE)
3098 return NULL;
3099
cc9a6c87 3100retry_cpuset:
d26914d1 3101 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3102 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3103
3c517a61
CL
3104retry:
3105 /*
3106 * Look through allowed nodes for objects available
3107 * from existing per node queues.
3108 */
54a6eb5c
MG
3109 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3110 nid = zone_to_nid(zone);
aedb0eb1 3111
061d7074 3112 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3113 get_node(cache, nid) &&
3114 get_node(cache, nid)->free_objects) {
3c517a61 3115 obj = ____cache_alloc_node(cache,
4167e9b2 3116 gfp_exact_node(flags), nid);
481c5346
CL
3117 if (obj)
3118 break;
3119 }
3c517a61
CL
3120 }
3121
cfce6604 3122 if (!obj) {
3c517a61
CL
3123 /*
3124 * This allocation will be performed within the constraints
3125 * of the current cpuset / memory policy requirements.
3126 * We may trigger various forms of reclaim on the allowed
3127 * set and go into memory reserves if necessary.
3128 */
76b342bd
JK
3129 page = cache_grow_begin(cache, flags, numa_mem_id());
3130 cache_grow_end(cache, page);
3131 if (page) {
3132 nid = page_to_nid(page);
511e3a05
JK
3133 obj = ____cache_alloc_node(cache,
3134 gfp_exact_node(flags), nid);
0c3aa83e 3135
3c517a61 3136 /*
511e3a05
JK
3137 * Another processor may allocate the objects in
3138 * the slab since we are not holding any locks.
3c517a61 3139 */
511e3a05
JK
3140 if (!obj)
3141 goto retry;
3c517a61 3142 }
aedb0eb1 3143 }
cc9a6c87 3144
d26914d1 3145 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3146 goto retry_cpuset;
765c4507
CL
3147 return obj;
3148}
3149
e498be7d
CL
3150/*
3151 * A interface to enable slab creation on nodeid
1da177e4 3152 */
8b98c169 3153static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3154 int nodeid)
e498be7d 3155{
8456a648 3156 struct page *page;
ce8eb6c4 3157 struct kmem_cache_node *n;
213b4695 3158 void *obj = NULL;
b03a017b 3159 void *list = NULL;
b28a02de 3160
7c3fbbdd 3161 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3162 n = get_node(cachep, nodeid);
ce8eb6c4 3163 BUG_ON(!n);
b28a02de 3164
ca3b9b91 3165 check_irq_off();
ce8eb6c4 3166 spin_lock(&n->list_lock);
f68f8ddd 3167 page = get_first_slab(n, false);
7aa0d227
GT
3168 if (!page)
3169 goto must_grow;
b28a02de 3170
b28a02de 3171 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3172
3173 STATS_INC_NODEALLOCS(cachep);
3174 STATS_INC_ACTIVE(cachep);
3175 STATS_SET_HIGH(cachep);
3176
8456a648 3177 BUG_ON(page->active == cachep->num);
b28a02de 3178
260b61dd 3179 obj = slab_get_obj(cachep, page);
ce8eb6c4 3180 n->free_objects--;
b28a02de 3181
b03a017b 3182 fixup_slab_list(cachep, n, page, &list);
e498be7d 3183
ce8eb6c4 3184 spin_unlock(&n->list_lock);
b03a017b 3185 fixup_objfreelist_debug(cachep, &list);
213b4695 3186 return obj;
e498be7d 3187
a737b3e2 3188must_grow:
ce8eb6c4 3189 spin_unlock(&n->list_lock);
76b342bd 3190 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3191 if (page) {
3192 /* This slab isn't counted yet so don't update free_objects */
3193 obj = slab_get_obj(cachep, page);
3194 }
76b342bd 3195 cache_grow_end(cachep, page);
1da177e4 3196
213b4695 3197 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3198}
8c8cc2c1 3199
8c8cc2c1 3200static __always_inline void *
48356303 3201slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3202 unsigned long caller)
8c8cc2c1
PE
3203{
3204 unsigned long save_flags;
3205 void *ptr;
7d6e6d09 3206 int slab_node = numa_mem_id();
8c8cc2c1 3207
dcce284a 3208 flags &= gfp_allowed_mask;
011eceaf
JDB
3209 cachep = slab_pre_alloc_hook(cachep, flags);
3210 if (unlikely(!cachep))
824ebef1
AM
3211 return NULL;
3212
8c8cc2c1
PE
3213 cache_alloc_debugcheck_before(cachep, flags);
3214 local_irq_save(save_flags);
3215
eacbbae3 3216 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3217 nodeid = slab_node;
8c8cc2c1 3218
18bf8541 3219 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3220 /* Node not bootstrapped yet */
3221 ptr = fallback_alloc(cachep, flags);
3222 goto out;
3223 }
3224
7d6e6d09 3225 if (nodeid == slab_node) {
8c8cc2c1
PE
3226 /*
3227 * Use the locally cached objects if possible.
3228 * However ____cache_alloc does not allow fallback
3229 * to other nodes. It may fail while we still have
3230 * objects on other nodes available.
3231 */
3232 ptr = ____cache_alloc(cachep, flags);
3233 if (ptr)
3234 goto out;
3235 }
3236 /* ___cache_alloc_node can fall back to other nodes */
3237 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3238 out:
3239 local_irq_restore(save_flags);
3240 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3241
d5e3ed66
JDB
3242 if (unlikely(flags & __GFP_ZERO) && ptr)
3243 memset(ptr, 0, cachep->object_size);
d07dbea4 3244
d5e3ed66 3245 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3246 return ptr;
3247}
3248
3249static __always_inline void *
3250__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3251{
3252 void *objp;
3253
2ad654bc 3254 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3255 objp = alternate_node_alloc(cache, flags);
3256 if (objp)
3257 goto out;
3258 }
3259 objp = ____cache_alloc(cache, flags);
3260
3261 /*
3262 * We may just have run out of memory on the local node.
3263 * ____cache_alloc_node() knows how to locate memory on other nodes
3264 */
7d6e6d09
LS
3265 if (!objp)
3266 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3267
3268 out:
3269 return objp;
3270}
3271#else
3272
3273static __always_inline void *
3274__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3275{
3276 return ____cache_alloc(cachep, flags);
3277}
3278
3279#endif /* CONFIG_NUMA */
3280
3281static __always_inline void *
48356303 3282slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3283{
3284 unsigned long save_flags;
3285 void *objp;
3286
dcce284a 3287 flags &= gfp_allowed_mask;
011eceaf
JDB
3288 cachep = slab_pre_alloc_hook(cachep, flags);
3289 if (unlikely(!cachep))
824ebef1
AM
3290 return NULL;
3291
8c8cc2c1
PE
3292 cache_alloc_debugcheck_before(cachep, flags);
3293 local_irq_save(save_flags);
3294 objp = __do_cache_alloc(cachep, flags);
3295 local_irq_restore(save_flags);
3296 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3297 prefetchw(objp);
3298
d5e3ed66
JDB
3299 if (unlikely(flags & __GFP_ZERO) && objp)
3300 memset(objp, 0, cachep->object_size);
d07dbea4 3301
d5e3ed66 3302 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3303 return objp;
3304}
e498be7d
CL
3305
3306/*
5f0985bb 3307 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3308 * @list: List of detached free slabs should be freed by caller
e498be7d 3309 */
97654dfa
JK
3310static void free_block(struct kmem_cache *cachep, void **objpp,
3311 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3312{
3313 int i;
25c063fb 3314 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3315 struct page *page;
3316
3317 n->free_objects += nr_objects;
1da177e4
LT
3318
3319 for (i = 0; i < nr_objects; i++) {
072bb0aa 3320 void *objp;
8456a648 3321 struct page *page;
1da177e4 3322
072bb0aa
MG
3323 objp = objpp[i];
3324
8456a648 3325 page = virt_to_head_page(objp);
8456a648 3326 list_del(&page->lru);
ff69416e 3327 check_spinlock_acquired_node(cachep, node);
260b61dd 3328 slab_put_obj(cachep, page, objp);
1da177e4 3329 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3330
3331 /* fixup slab chains */
6052b788
JK
3332 if (page->active == 0)
3333 list_add(&page->lru, &n->slabs_free);
3334 else {
1da177e4
LT
3335 /* Unconditionally move a slab to the end of the
3336 * partial list on free - maximum time for the
3337 * other objects to be freed, too.
3338 */
8456a648 3339 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3340 }
3341 }
6052b788
JK
3342
3343 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3344 n->free_objects -= cachep->num;
3345
3346 page = list_last_entry(&n->slabs_free, struct page, lru);
3347 list_del(&page->lru);
3348 list_add(&page->lru, list);
3349 }
1da177e4
LT
3350}
3351
343e0d7a 3352static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3353{
3354 int batchcount;
ce8eb6c4 3355 struct kmem_cache_node *n;
7d6e6d09 3356 int node = numa_mem_id();
97654dfa 3357 LIST_HEAD(list);
1da177e4
LT
3358
3359 batchcount = ac->batchcount;
260b61dd 3360
1da177e4 3361 check_irq_off();
18bf8541 3362 n = get_node(cachep, node);
ce8eb6c4
CL
3363 spin_lock(&n->list_lock);
3364 if (n->shared) {
3365 struct array_cache *shared_array = n->shared;
b28a02de 3366 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3367 if (max) {
3368 if (batchcount > max)
3369 batchcount = max;
e498be7d 3370 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3371 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3372 shared_array->avail += batchcount;
3373 goto free_done;
3374 }
3375 }
3376
97654dfa 3377 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3378free_done:
1da177e4
LT
3379#if STATS
3380 {
3381 int i = 0;
73c0219d 3382 struct page *page;
1da177e4 3383
73c0219d 3384 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3385 BUG_ON(page->active);
1da177e4
LT
3386
3387 i++;
1da177e4
LT
3388 }
3389 STATS_SET_FREEABLE(cachep, i);
3390 }
3391#endif
ce8eb6c4 3392 spin_unlock(&n->list_lock);
97654dfa 3393 slabs_destroy(cachep, &list);
1da177e4 3394 ac->avail -= batchcount;
a737b3e2 3395 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3396}
3397
3398/*
a737b3e2
AM
3399 * Release an obj back to its cache. If the obj has a constructed state, it must
3400 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3401 */
a947eb95 3402static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3403 unsigned long caller)
1da177e4 3404{
9a2dba4b 3405 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4 3406
7ed2f9e6
AP
3407 kasan_slab_free(cachep, objp);
3408
1da177e4 3409 check_irq_off();
d5cff635 3410 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3411 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3412
8c138bc0 3413 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3414
1807a1aa
SS
3415 /*
3416 * Skip calling cache_free_alien() when the platform is not numa.
3417 * This will avoid cache misses that happen while accessing slabp (which
3418 * is per page memory reference) to get nodeid. Instead use a global
3419 * variable to skip the call, which is mostly likely to be present in
3420 * the cache.
3421 */
b6e68bc1 3422 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3423 return;
3424
3d880194 3425 if (ac->avail < ac->limit) {
1da177e4 3426 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3427 } else {
3428 STATS_INC_FREEMISS(cachep);
3429 cache_flusharray(cachep, ac);
1da177e4 3430 }
42c8c99c 3431
f68f8ddd
JK
3432 if (sk_memalloc_socks()) {
3433 struct page *page = virt_to_head_page(objp);
3434
3435 if (unlikely(PageSlabPfmemalloc(page))) {
3436 cache_free_pfmemalloc(cachep, page, objp);
3437 return;
3438 }
3439 }
3440
3441 ac->entry[ac->avail++] = objp;
1da177e4
LT
3442}
3443
3444/**
3445 * kmem_cache_alloc - Allocate an object
3446 * @cachep: The cache to allocate from.
3447 * @flags: See kmalloc().
3448 *
3449 * Allocate an object from this cache. The flags are only relevant
3450 * if the cache has no available objects.
3451 */
343e0d7a 3452void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3453{
48356303 3454 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3455
505f5dcb 3456 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3457 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3458 cachep->object_size, cachep->size, flags);
36555751
EGM
3459
3460 return ret;
1da177e4
LT
3461}
3462EXPORT_SYMBOL(kmem_cache_alloc);
3463
7b0501dd
JDB
3464static __always_inline void
3465cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3466 size_t size, void **p, unsigned long caller)
3467{
3468 size_t i;
3469
3470 for (i = 0; i < size; i++)
3471 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3472}
3473
865762a8 3474int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3475 void **p)
484748f0 3476{
2a777eac
JDB
3477 size_t i;
3478
3479 s = slab_pre_alloc_hook(s, flags);
3480 if (!s)
3481 return 0;
3482
3483 cache_alloc_debugcheck_before(s, flags);
3484
3485 local_irq_disable();
3486 for (i = 0; i < size; i++) {
3487 void *objp = __do_cache_alloc(s, flags);
3488
2a777eac
JDB
3489 if (unlikely(!objp))
3490 goto error;
3491 p[i] = objp;
3492 }
3493 local_irq_enable();
3494
7b0501dd
JDB
3495 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3496
2a777eac
JDB
3497 /* Clear memory outside IRQ disabled section */
3498 if (unlikely(flags & __GFP_ZERO))
3499 for (i = 0; i < size; i++)
3500 memset(p[i], 0, s->object_size);
3501
3502 slab_post_alloc_hook(s, flags, size, p);
3503 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3504 return size;
3505error:
3506 local_irq_enable();
7b0501dd 3507 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3508 slab_post_alloc_hook(s, flags, i, p);
3509 __kmem_cache_free_bulk(s, i, p);
3510 return 0;
484748f0
CL
3511}
3512EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3513
0f24f128 3514#ifdef CONFIG_TRACING
85beb586 3515void *
4052147c 3516kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3517{
85beb586
SR
3518 void *ret;
3519
48356303 3520 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3521
505f5dcb 3522 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3523 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3524 size, cachep->size, flags);
85beb586 3525 return ret;
36555751 3526}
85beb586 3527EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3528#endif
3529
1da177e4 3530#ifdef CONFIG_NUMA
d0d04b78
ZL
3531/**
3532 * kmem_cache_alloc_node - Allocate an object on the specified node
3533 * @cachep: The cache to allocate from.
3534 * @flags: See kmalloc().
3535 * @nodeid: node number of the target node.
3536 *
3537 * Identical to kmem_cache_alloc but it will allocate memory on the given
3538 * node, which can improve the performance for cpu bound structures.
3539 *
3540 * Fallback to other node is possible if __GFP_THISNODE is not set.
3541 */
8b98c169
CH
3542void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3543{
48356303 3544 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3545
505f5dcb 3546 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3547 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3548 cachep->object_size, cachep->size,
ca2b84cb 3549 flags, nodeid);
36555751
EGM
3550
3551 return ret;
8b98c169 3552}
1da177e4
LT
3553EXPORT_SYMBOL(kmem_cache_alloc_node);
3554
0f24f128 3555#ifdef CONFIG_TRACING
4052147c 3556void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3557 gfp_t flags,
4052147c
EG
3558 int nodeid,
3559 size_t size)
36555751 3560{
85beb586
SR
3561 void *ret;
3562
592f4145 3563 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3564
3565 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3566 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3567 size, cachep->size,
85beb586
SR
3568 flags, nodeid);
3569 return ret;
36555751 3570}
85beb586 3571EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3572#endif
3573
8b98c169 3574static __always_inline void *
7c0cb9c6 3575__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3576{
343e0d7a 3577 struct kmem_cache *cachep;
7ed2f9e6 3578 void *ret;
97e2bde4 3579
2c59dd65 3580 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3581 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3582 return cachep;
7ed2f9e6 3583 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3584 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3585
3586 return ret;
97e2bde4 3587}
8b98c169 3588
8b98c169
CH
3589void *__kmalloc_node(size_t size, gfp_t flags, int node)
3590{
7c0cb9c6 3591 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3592}
dbe5e69d 3593EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3594
3595void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3596 int node, unsigned long caller)
8b98c169 3597{
7c0cb9c6 3598 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3599}
3600EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3601#endif /* CONFIG_NUMA */
1da177e4
LT
3602
3603/**
800590f5 3604 * __do_kmalloc - allocate memory
1da177e4 3605 * @size: how many bytes of memory are required.
800590f5 3606 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3607 * @caller: function caller for debug tracking of the caller
1da177e4 3608 */
7fd6b141 3609static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3610 unsigned long caller)
1da177e4 3611{
343e0d7a 3612 struct kmem_cache *cachep;
36555751 3613 void *ret;
1da177e4 3614
2c59dd65 3615 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3616 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3617 return cachep;
48356303 3618 ret = slab_alloc(cachep, flags, caller);
36555751 3619
505f5dcb 3620 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3621 trace_kmalloc(caller, ret,
3b0efdfa 3622 size, cachep->size, flags);
36555751
EGM
3623
3624 return ret;
7fd6b141
PE
3625}
3626
7fd6b141
PE
3627void *__kmalloc(size_t size, gfp_t flags)
3628{
7c0cb9c6 3629 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3630}
3631EXPORT_SYMBOL(__kmalloc);
3632
ce71e27c 3633void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3634{
7c0cb9c6 3635 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3636}
3637EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3638
1da177e4
LT
3639/**
3640 * kmem_cache_free - Deallocate an object
3641 * @cachep: The cache the allocation was from.
3642 * @objp: The previously allocated object.
3643 *
3644 * Free an object which was previously allocated from this
3645 * cache.
3646 */
343e0d7a 3647void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3648{
3649 unsigned long flags;
b9ce5ef4
GC
3650 cachep = cache_from_obj(cachep, objp);
3651 if (!cachep)
3652 return;
1da177e4
LT
3653
3654 local_irq_save(flags);
d97d476b 3655 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3656 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3657 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3658 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3659 local_irq_restore(flags);
36555751 3660
ca2b84cb 3661 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3662}
3663EXPORT_SYMBOL(kmem_cache_free);
3664
e6cdb58d
JDB
3665void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3666{
3667 struct kmem_cache *s;
3668 size_t i;
3669
3670 local_irq_disable();
3671 for (i = 0; i < size; i++) {
3672 void *objp = p[i];
3673
ca257195
JDB
3674 if (!orig_s) /* called via kfree_bulk */
3675 s = virt_to_cache(objp);
3676 else
3677 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3678
3679 debug_check_no_locks_freed(objp, s->object_size);
3680 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3681 debug_check_no_obj_freed(objp, s->object_size);
3682
3683 __cache_free(s, objp, _RET_IP_);
3684 }
3685 local_irq_enable();
3686
3687 /* FIXME: add tracing */
3688}
3689EXPORT_SYMBOL(kmem_cache_free_bulk);
3690
1da177e4
LT
3691/**
3692 * kfree - free previously allocated memory
3693 * @objp: pointer returned by kmalloc.
3694 *
80e93eff
PE
3695 * If @objp is NULL, no operation is performed.
3696 *
1da177e4
LT
3697 * Don't free memory not originally allocated by kmalloc()
3698 * or you will run into trouble.
3699 */
3700void kfree(const void *objp)
3701{
343e0d7a 3702 struct kmem_cache *c;
1da177e4
LT
3703 unsigned long flags;
3704
2121db74
PE
3705 trace_kfree(_RET_IP_, objp);
3706
6cb8f913 3707 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3708 return;
3709 local_irq_save(flags);
3710 kfree_debugcheck(objp);
6ed5eb22 3711 c = virt_to_cache(objp);
8c138bc0
CL
3712 debug_check_no_locks_freed(objp, c->object_size);
3713
3714 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3715 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3716 local_irq_restore(flags);
3717}
3718EXPORT_SYMBOL(kfree);
3719
e498be7d 3720/*
ce8eb6c4 3721 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3722 */
c3d332b6 3723static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3724{
c3d332b6 3725 int ret;
e498be7d 3726 int node;
ce8eb6c4 3727 struct kmem_cache_node *n;
e498be7d 3728
9c09a95c 3729 for_each_online_node(node) {
c3d332b6
JK
3730 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3731 if (ret)
e498be7d
CL
3732 goto fail;
3733
e498be7d 3734 }
c3d332b6 3735
cafeb02e 3736 return 0;
0718dc2a 3737
a737b3e2 3738fail:
3b0efdfa 3739 if (!cachep->list.next) {
0718dc2a
CL
3740 /* Cache is not active yet. Roll back what we did */
3741 node--;
3742 while (node >= 0) {
18bf8541
CL
3743 n = get_node(cachep, node);
3744 if (n) {
ce8eb6c4
CL
3745 kfree(n->shared);
3746 free_alien_cache(n->alien);
3747 kfree(n);
6a67368c 3748 cachep->node[node] = NULL;
0718dc2a
CL
3749 }
3750 node--;
3751 }
3752 }
cafeb02e 3753 return -ENOMEM;
e498be7d
CL
3754}
3755
18004c5d 3756/* Always called with the slab_mutex held */
943a451a 3757static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3758 int batchcount, int shared, gfp_t gfp)
1da177e4 3759{
bf0dea23
JK
3760 struct array_cache __percpu *cpu_cache, *prev;
3761 int cpu;
1da177e4 3762
bf0dea23
JK
3763 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3764 if (!cpu_cache)
d2e7b7d0
SS
3765 return -ENOMEM;
3766
bf0dea23
JK
3767 prev = cachep->cpu_cache;
3768 cachep->cpu_cache = cpu_cache;
3769 kick_all_cpus_sync();
e498be7d 3770
1da177e4 3771 check_irq_on();
1da177e4
LT
3772 cachep->batchcount = batchcount;
3773 cachep->limit = limit;
e498be7d 3774 cachep->shared = shared;
1da177e4 3775
bf0dea23 3776 if (!prev)
c3d332b6 3777 goto setup_node;
bf0dea23
JK
3778
3779 for_each_online_cpu(cpu) {
97654dfa 3780 LIST_HEAD(list);
18bf8541
CL
3781 int node;
3782 struct kmem_cache_node *n;
bf0dea23 3783 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3784
bf0dea23 3785 node = cpu_to_mem(cpu);
18bf8541
CL
3786 n = get_node(cachep, node);
3787 spin_lock_irq(&n->list_lock);
bf0dea23 3788 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3789 spin_unlock_irq(&n->list_lock);
97654dfa 3790 slabs_destroy(cachep, &list);
1da177e4 3791 }
bf0dea23
JK
3792 free_percpu(prev);
3793
c3d332b6
JK
3794setup_node:
3795 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3796}
3797
943a451a
GC
3798static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3799 int batchcount, int shared, gfp_t gfp)
3800{
3801 int ret;
426589f5 3802 struct kmem_cache *c;
943a451a
GC
3803
3804 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3805
3806 if (slab_state < FULL)
3807 return ret;
3808
3809 if ((ret < 0) || !is_root_cache(cachep))
3810 return ret;
3811
426589f5
VD
3812 lockdep_assert_held(&slab_mutex);
3813 for_each_memcg_cache(c, cachep) {
3814 /* return value determined by the root cache only */
3815 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3816 }
3817
3818 return ret;
3819}
3820
18004c5d 3821/* Called with slab_mutex held always */
83b519e8 3822static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3823{
3824 int err;
943a451a
GC
3825 int limit = 0;
3826 int shared = 0;
3827 int batchcount = 0;
3828
3829 if (!is_root_cache(cachep)) {
3830 struct kmem_cache *root = memcg_root_cache(cachep);
3831 limit = root->limit;
3832 shared = root->shared;
3833 batchcount = root->batchcount;
3834 }
1da177e4 3835
943a451a
GC
3836 if (limit && shared && batchcount)
3837 goto skip_setup;
a737b3e2
AM
3838 /*
3839 * The head array serves three purposes:
1da177e4
LT
3840 * - create a LIFO ordering, i.e. return objects that are cache-warm
3841 * - reduce the number of spinlock operations.
a737b3e2 3842 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3843 * bufctl chains: array operations are cheaper.
3844 * The numbers are guessed, we should auto-tune as described by
3845 * Bonwick.
3846 */
3b0efdfa 3847 if (cachep->size > 131072)
1da177e4 3848 limit = 1;
3b0efdfa 3849 else if (cachep->size > PAGE_SIZE)
1da177e4 3850 limit = 8;
3b0efdfa 3851 else if (cachep->size > 1024)
1da177e4 3852 limit = 24;
3b0efdfa 3853 else if (cachep->size > 256)
1da177e4
LT
3854 limit = 54;
3855 else
3856 limit = 120;
3857
a737b3e2
AM
3858 /*
3859 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3860 * allocation behaviour: Most allocs on one cpu, most free operations
3861 * on another cpu. For these cases, an efficient object passing between
3862 * cpus is necessary. This is provided by a shared array. The array
3863 * replaces Bonwick's magazine layer.
3864 * On uniprocessor, it's functionally equivalent (but less efficient)
3865 * to a larger limit. Thus disabled by default.
3866 */
3867 shared = 0;
3b0efdfa 3868 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3869 shared = 8;
1da177e4
LT
3870
3871#if DEBUG
a737b3e2
AM
3872 /*
3873 * With debugging enabled, large batchcount lead to excessively long
3874 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3875 */
3876 if (limit > 32)
3877 limit = 32;
3878#endif
943a451a
GC
3879 batchcount = (limit + 1) / 2;
3880skip_setup:
3881 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4 3882 if (err)
1170532b 3883 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3884 cachep->name, -err);
2ed3a4ef 3885 return err;
1da177e4
LT
3886}
3887
1b55253a 3888/*
ce8eb6c4
CL
3889 * Drain an array if it contains any elements taking the node lock only if
3890 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3891 * if drain_array() is used on the shared array.
1b55253a 3892 */
ce8eb6c4 3893static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 3894 struct array_cache *ac, int node)
1da177e4 3895{
97654dfa 3896 LIST_HEAD(list);
18726ca8
JK
3897
3898 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3899 check_mutex_acquired();
1da177e4 3900
1b55253a
CL
3901 if (!ac || !ac->avail)
3902 return;
18726ca8
JK
3903
3904 if (ac->touched) {
1da177e4 3905 ac->touched = 0;
18726ca8 3906 return;
1da177e4 3907 }
18726ca8
JK
3908
3909 spin_lock_irq(&n->list_lock);
3910 drain_array_locked(cachep, ac, node, false, &list);
3911 spin_unlock_irq(&n->list_lock);
3912
3913 slabs_destroy(cachep, &list);
1da177e4
LT
3914}
3915
3916/**
3917 * cache_reap - Reclaim memory from caches.
05fb6bf0 3918 * @w: work descriptor
1da177e4
LT
3919 *
3920 * Called from workqueue/eventd every few seconds.
3921 * Purpose:
3922 * - clear the per-cpu caches for this CPU.
3923 * - return freeable pages to the main free memory pool.
3924 *
a737b3e2
AM
3925 * If we cannot acquire the cache chain mutex then just give up - we'll try
3926 * again on the next iteration.
1da177e4 3927 */
7c5cae36 3928static void cache_reap(struct work_struct *w)
1da177e4 3929{
7a7c381d 3930 struct kmem_cache *searchp;
ce8eb6c4 3931 struct kmem_cache_node *n;
7d6e6d09 3932 int node = numa_mem_id();
bf6aede7 3933 struct delayed_work *work = to_delayed_work(w);
1da177e4 3934
18004c5d 3935 if (!mutex_trylock(&slab_mutex))
1da177e4 3936 /* Give up. Setup the next iteration. */
7c5cae36 3937 goto out;
1da177e4 3938
18004c5d 3939 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3940 check_irq_on();
3941
35386e3b 3942 /*
ce8eb6c4 3943 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3944 * have established with reasonable certainty that
3945 * we can do some work if the lock was obtained.
3946 */
18bf8541 3947 n = get_node(searchp, node);
35386e3b 3948
ce8eb6c4 3949 reap_alien(searchp, n);
1da177e4 3950
18726ca8 3951 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 3952
35386e3b
CL
3953 /*
3954 * These are racy checks but it does not matter
3955 * if we skip one check or scan twice.
3956 */
ce8eb6c4 3957 if (time_after(n->next_reap, jiffies))
35386e3b 3958 goto next;
1da177e4 3959
5f0985bb 3960 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 3961
18726ca8 3962 drain_array(searchp, n, n->shared, node);
1da177e4 3963
ce8eb6c4
CL
3964 if (n->free_touched)
3965 n->free_touched = 0;
ed11d9eb
CL
3966 else {
3967 int freed;
1da177e4 3968
ce8eb6c4 3969 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
3970 5 * searchp->num - 1) / (5 * searchp->num));
3971 STATS_ADD_REAPED(searchp, freed);
3972 }
35386e3b 3973next:
1da177e4
LT
3974 cond_resched();
3975 }
3976 check_irq_on();
18004c5d 3977 mutex_unlock(&slab_mutex);
8fce4d8e 3978 next_reap_node();
7c5cae36 3979out:
a737b3e2 3980 /* Set up the next iteration */
5f0985bb 3981 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
3982}
3983
158a9624 3984#ifdef CONFIG_SLABINFO
0d7561c6 3985void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 3986{
8456a648 3987 struct page *page;
b28a02de
PE
3988 unsigned long active_objs;
3989 unsigned long num_objs;
3990 unsigned long active_slabs = 0;
3991 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3992 const char *name;
1da177e4 3993 char *error = NULL;
e498be7d 3994 int node;
ce8eb6c4 3995 struct kmem_cache_node *n;
1da177e4 3996
1da177e4
LT
3997 active_objs = 0;
3998 num_slabs = 0;
18bf8541 3999 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 4000
ca3b9b91 4001 check_irq_on();
ce8eb6c4 4002 spin_lock_irq(&n->list_lock);
e498be7d 4003
8456a648
JK
4004 list_for_each_entry(page, &n->slabs_full, lru) {
4005 if (page->active != cachep->num && !error)
e498be7d
CL
4006 error = "slabs_full accounting error";
4007 active_objs += cachep->num;
4008 active_slabs++;
4009 }
8456a648
JK
4010 list_for_each_entry(page, &n->slabs_partial, lru) {
4011 if (page->active == cachep->num && !error)
106a74e1 4012 error = "slabs_partial accounting error";
8456a648 4013 if (!page->active && !error)
106a74e1 4014 error = "slabs_partial accounting error";
8456a648 4015 active_objs += page->active;
e498be7d
CL
4016 active_slabs++;
4017 }
8456a648
JK
4018 list_for_each_entry(page, &n->slabs_free, lru) {
4019 if (page->active && !error)
106a74e1 4020 error = "slabs_free accounting error";
e498be7d
CL
4021 num_slabs++;
4022 }
ce8eb6c4
CL
4023 free_objects += n->free_objects;
4024 if (n->shared)
4025 shared_avail += n->shared->avail;
e498be7d 4026
ce8eb6c4 4027 spin_unlock_irq(&n->list_lock);
1da177e4 4028 }
b28a02de
PE
4029 num_slabs += active_slabs;
4030 num_objs = num_slabs * cachep->num;
e498be7d 4031 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4032 error = "free_objects accounting error";
4033
b28a02de 4034 name = cachep->name;
1da177e4 4035 if (error)
1170532b 4036 pr_err("slab: cache %s error: %s\n", name, error);
1da177e4 4037
0d7561c6
GC
4038 sinfo->active_objs = active_objs;
4039 sinfo->num_objs = num_objs;
4040 sinfo->active_slabs = active_slabs;
4041 sinfo->num_slabs = num_slabs;
4042 sinfo->shared_avail = shared_avail;
4043 sinfo->limit = cachep->limit;
4044 sinfo->batchcount = cachep->batchcount;
4045 sinfo->shared = cachep->shared;
4046 sinfo->objects_per_slab = cachep->num;
4047 sinfo->cache_order = cachep->gfporder;
4048}
4049
4050void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4051{
1da177e4 4052#if STATS
ce8eb6c4 4053 { /* node stats */
1da177e4
LT
4054 unsigned long high = cachep->high_mark;
4055 unsigned long allocs = cachep->num_allocations;
4056 unsigned long grown = cachep->grown;
4057 unsigned long reaped = cachep->reaped;
4058 unsigned long errors = cachep->errors;
4059 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4060 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4061 unsigned long node_frees = cachep->node_frees;
fb7faf33 4062 unsigned long overflows = cachep->node_overflow;
1da177e4 4063
756a025f 4064 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4065 allocs, high, grown,
4066 reaped, errors, max_freeable, node_allocs,
4067 node_frees, overflows);
1da177e4
LT
4068 }
4069 /* cpu stats */
4070 {
4071 unsigned long allochit = atomic_read(&cachep->allochit);
4072 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4073 unsigned long freehit = atomic_read(&cachep->freehit);
4074 unsigned long freemiss = atomic_read(&cachep->freemiss);
4075
4076 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4077 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4078 }
4079#endif
1da177e4
LT
4080}
4081
1da177e4
LT
4082#define MAX_SLABINFO_WRITE 128
4083/**
4084 * slabinfo_write - Tuning for the slab allocator
4085 * @file: unused
4086 * @buffer: user buffer
4087 * @count: data length
4088 * @ppos: unused
4089 */
b7454ad3 4090ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4091 size_t count, loff_t *ppos)
1da177e4 4092{
b28a02de 4093 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4094 int limit, batchcount, shared, res;
7a7c381d 4095 struct kmem_cache *cachep;
b28a02de 4096
1da177e4
LT
4097 if (count > MAX_SLABINFO_WRITE)
4098 return -EINVAL;
4099 if (copy_from_user(&kbuf, buffer, count))
4100 return -EFAULT;
b28a02de 4101 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4102
4103 tmp = strchr(kbuf, ' ');
4104 if (!tmp)
4105 return -EINVAL;
4106 *tmp = '\0';
4107 tmp++;
4108 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4109 return -EINVAL;
4110
4111 /* Find the cache in the chain of caches. */
18004c5d 4112 mutex_lock(&slab_mutex);
1da177e4 4113 res = -EINVAL;
18004c5d 4114 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4115 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4116 if (limit < 1 || batchcount < 1 ||
4117 batchcount > limit || shared < 0) {
e498be7d 4118 res = 0;
1da177e4 4119 } else {
e498be7d 4120 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4121 batchcount, shared,
4122 GFP_KERNEL);
1da177e4
LT
4123 }
4124 break;
4125 }
4126 }
18004c5d 4127 mutex_unlock(&slab_mutex);
1da177e4
LT
4128 if (res >= 0)
4129 res = count;
4130 return res;
4131}
871751e2
AV
4132
4133#ifdef CONFIG_DEBUG_SLAB_LEAK
4134
871751e2
AV
4135static inline int add_caller(unsigned long *n, unsigned long v)
4136{
4137 unsigned long *p;
4138 int l;
4139 if (!v)
4140 return 1;
4141 l = n[1];
4142 p = n + 2;
4143 while (l) {
4144 int i = l/2;
4145 unsigned long *q = p + 2 * i;
4146 if (*q == v) {
4147 q[1]++;
4148 return 1;
4149 }
4150 if (*q > v) {
4151 l = i;
4152 } else {
4153 p = q + 2;
4154 l -= i + 1;
4155 }
4156 }
4157 if (++n[1] == n[0])
4158 return 0;
4159 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4160 p[0] = v;
4161 p[1] = 1;
4162 return 1;
4163}
4164
8456a648
JK
4165static void handle_slab(unsigned long *n, struct kmem_cache *c,
4166 struct page *page)
871751e2
AV
4167{
4168 void *p;
d31676df
JK
4169 int i, j;
4170 unsigned long v;
b1cb0982 4171
871751e2
AV
4172 if (n[0] == n[1])
4173 return;
8456a648 4174 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4175 bool active = true;
4176
4177 for (j = page->active; j < c->num; j++) {
4178 if (get_free_obj(page, j) == i) {
4179 active = false;
4180 break;
4181 }
4182 }
4183
4184 if (!active)
871751e2 4185 continue;
b1cb0982 4186
d31676df
JK
4187 /*
4188 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4189 * mapping is established when actual object allocation and
4190 * we could mistakenly access the unmapped object in the cpu
4191 * cache.
4192 */
4193 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4194 continue;
4195
4196 if (!add_caller(n, v))
871751e2
AV
4197 return;
4198 }
4199}
4200
4201static void show_symbol(struct seq_file *m, unsigned long address)
4202{
4203#ifdef CONFIG_KALLSYMS
871751e2 4204 unsigned long offset, size;
9281acea 4205 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4206
a5c43dae 4207 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4208 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4209 if (modname[0])
871751e2
AV
4210 seq_printf(m, " [%s]", modname);
4211 return;
4212 }
4213#endif
4214 seq_printf(m, "%p", (void *)address);
4215}
4216
4217static int leaks_show(struct seq_file *m, void *p)
4218{
0672aa7c 4219 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4220 struct page *page;
ce8eb6c4 4221 struct kmem_cache_node *n;
871751e2 4222 const char *name;
db845067 4223 unsigned long *x = m->private;
871751e2
AV
4224 int node;
4225 int i;
4226
4227 if (!(cachep->flags & SLAB_STORE_USER))
4228 return 0;
4229 if (!(cachep->flags & SLAB_RED_ZONE))
4230 return 0;
4231
d31676df
JK
4232 /*
4233 * Set store_user_clean and start to grab stored user information
4234 * for all objects on this cache. If some alloc/free requests comes
4235 * during the processing, information would be wrong so restart
4236 * whole processing.
4237 */
4238 do {
4239 set_store_user_clean(cachep);
4240 drain_cpu_caches(cachep);
4241
4242 x[1] = 0;
871751e2 4243
d31676df 4244 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4245
d31676df
JK
4246 check_irq_on();
4247 spin_lock_irq(&n->list_lock);
871751e2 4248
d31676df
JK
4249 list_for_each_entry(page, &n->slabs_full, lru)
4250 handle_slab(x, cachep, page);
4251 list_for_each_entry(page, &n->slabs_partial, lru)
4252 handle_slab(x, cachep, page);
4253 spin_unlock_irq(&n->list_lock);
4254 }
4255 } while (!is_store_user_clean(cachep));
871751e2 4256
871751e2 4257 name = cachep->name;
db845067 4258 if (x[0] == x[1]) {
871751e2 4259 /* Increase the buffer size */
18004c5d 4260 mutex_unlock(&slab_mutex);
db845067 4261 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4262 if (!m->private) {
4263 /* Too bad, we are really out */
db845067 4264 m->private = x;
18004c5d 4265 mutex_lock(&slab_mutex);
871751e2
AV
4266 return -ENOMEM;
4267 }
db845067
CL
4268 *(unsigned long *)m->private = x[0] * 2;
4269 kfree(x);
18004c5d 4270 mutex_lock(&slab_mutex);
871751e2
AV
4271 /* Now make sure this entry will be retried */
4272 m->count = m->size;
4273 return 0;
4274 }
db845067
CL
4275 for (i = 0; i < x[1]; i++) {
4276 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4277 show_symbol(m, x[2*i+2]);
871751e2
AV
4278 seq_putc(m, '\n');
4279 }
d2e7b7d0 4280
871751e2
AV
4281 return 0;
4282}
4283
a0ec95a8 4284static const struct seq_operations slabstats_op = {
1df3b26f 4285 .start = slab_start,
276a2439
WL
4286 .next = slab_next,
4287 .stop = slab_stop,
871751e2
AV
4288 .show = leaks_show,
4289};
a0ec95a8
AD
4290
4291static int slabstats_open(struct inode *inode, struct file *file)
4292{
b208ce32
RJ
4293 unsigned long *n;
4294
4295 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4296 if (!n)
4297 return -ENOMEM;
4298
4299 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4300
4301 return 0;
a0ec95a8
AD
4302}
4303
4304static const struct file_operations proc_slabstats_operations = {
4305 .open = slabstats_open,
4306 .read = seq_read,
4307 .llseek = seq_lseek,
4308 .release = seq_release_private,
4309};
4310#endif
4311
4312static int __init slab_proc_init(void)
4313{
4314#ifdef CONFIG_DEBUG_SLAB_LEAK
4315 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4316#endif
a0ec95a8
AD
4317 return 0;
4318}
4319module_init(slab_proc_init);
1da177e4
LT
4320#endif
4321
00e145b6
MS
4322/**
4323 * ksize - get the actual amount of memory allocated for a given object
4324 * @objp: Pointer to the object
4325 *
4326 * kmalloc may internally round up allocations and return more memory
4327 * than requested. ksize() can be used to determine the actual amount of
4328 * memory allocated. The caller may use this additional memory, even though
4329 * a smaller amount of memory was initially specified with the kmalloc call.
4330 * The caller must guarantee that objp points to a valid object previously
4331 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4332 * must not be freed during the duration of the call.
4333 */
fd76bab2 4334size_t ksize(const void *objp)
1da177e4 4335{
7ed2f9e6
AP
4336 size_t size;
4337
ef8b4520
CL
4338 BUG_ON(!objp);
4339 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4340 return 0;
1da177e4 4341
7ed2f9e6
AP
4342 size = virt_to_cache(objp)->object_size;
4343 /* We assume that ksize callers could use the whole allocated area,
4344 * so we need to unpoison this area.
4345 */
505f5dcb 4346 kasan_krealloc(objp, size, GFP_NOWAIT);
7ed2f9e6
AP
4347
4348 return size;
1da177e4 4349}
b1aabecd 4350EXPORT_SYMBOL(ksize);