ASoC: 88pm860x: refactor deprecated strncpy
[linux-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
a6e79df9 21#include <linux/shmem_fs.h>
1027e443 22
33a709b2 23#include <asm/mmu_context.h>
1027e443 24#include <asm/tlbflush.h>
2667f50e 25
4bbd4c77
KS
26#include "internal.h"
27
df06b37f
KB
28struct follow_page_context {
29 struct dev_pagemap *pgmap;
30 unsigned int page_mask;
31};
32
b6a2619c
DH
33static inline void sanity_check_pinned_pages(struct page **pages,
34 unsigned long npages)
35{
36 if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 return;
38
39 /*
40 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 * can no longer turn them possibly shared and PageAnonExclusive() will
42 * stick around until the page is freed.
43 *
44 * We'd like to verify that our pinned anonymous pages are still mapped
45 * exclusively. The issue with anon THP is that we don't know how
46 * they are/were mapped when pinning them. However, for anon
47 * THP we can assume that either the given page (PTE-mapped THP) or
48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 * neither is the case, there is certainly something wrong.
50 */
51 for (; npages; npages--, pages++) {
52 struct page *page = *pages;
53 struct folio *folio = page_folio(page);
54
c8070b78
DH
55 if (is_zero_page(page) ||
56 !folio_test_anon(folio))
b6a2619c
DH
57 continue;
58 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 else
61 /* Either a PTE-mapped or a PMD-mapped THP. */
62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 !PageAnonExclusive(page), page);
64 }
65}
66
cd1adf1b 67/*
ece1ed7b 68 * Return the folio with ref appropriately incremented,
cd1adf1b 69 * or NULL if that failed.
a707cdd5 70 */
ece1ed7b 71static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 72{
ece1ed7b 73 struct folio *folio;
a707cdd5 74
59409373 75retry:
ece1ed7b
MWO
76 folio = page_folio(page);
77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 78 return NULL;
ece1ed7b 79 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
a707cdd5 80 return NULL;
c24d3732
JH
81
82 /*
ece1ed7b
MWO
83 * At this point we have a stable reference to the folio; but it
84 * could be that between calling page_folio() and the refcount
85 * increment, the folio was split, in which case we'd end up
86 * holding a reference on a folio that has nothing to do with the page
c24d3732 87 * we were given anymore.
ece1ed7b
MWO
88 * So now that the folio is stable, recheck that the page still
89 * belongs to this folio.
c24d3732 90 */
ece1ed7b 91 if (unlikely(page_folio(page) != folio)) {
f4f451a1
MS
92 if (!put_devmap_managed_page_refs(&folio->page, refs))
93 folio_put_refs(folio, refs);
59409373 94 goto retry;
c24d3732
JH
95 }
96
ece1ed7b 97 return folio;
a707cdd5
JH
98}
99
3967db22 100/**
ece1ed7b 101 * try_grab_folio() - Attempt to get or pin a folio.
3967db22 102 * @page: pointer to page to be grabbed
ece1ed7b 103 * @refs: the value to (effectively) add to the folio's refcount
3967db22
JH
104 * @flags: gup flags: these are the FOLL_* flag values.
105 *
3faa52c0 106 * "grab" names in this file mean, "look at flags to decide whether to use
ece1ed7b 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0
JH
108 *
109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110 * same time. (That's true throughout the get_user_pages*() and
111 * pin_user_pages*() APIs.) Cases:
112 *
ece1ed7b 113 * FOLL_GET: folio's refcount will be incremented by @refs.
3967db22 114 *
ece1ed7b 115 * FOLL_PIN on large folios: folio's refcount will be incremented by
94688e8e 116 * @refs, and its pincount will be incremented by @refs.
3967db22 117 *
ece1ed7b 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
5232c63f 119 * @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0 120 *
ece1ed7b
MWO
121 * Return: The folio containing @page (with refcount appropriately
122 * incremented) for success, or NULL upon failure. If neither FOLL_GET
123 * nor FOLL_PIN was set, that's considered failure, and furthermore,
124 * a likely bug in the caller, so a warning is also emitted.
3faa52c0 125 */
ece1ed7b 126struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
3faa52c0 127{
503670ee
VMO
128 struct folio *folio;
129
130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 return NULL;
132
4003f107
LG
133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 return NULL;
135
3faa52c0 136 if (flags & FOLL_GET)
ece1ed7b 137 return try_get_folio(page, refs);
ece1ed7b 138
503670ee 139 /* FOLL_PIN is set */
c8070b78 140
6e17c6de
LT
141 /*
142 * Don't take a pin on the zero page - it's not going anywhere
143 * and it is used in a *lot* of places.
144 */
145 if (is_zero_page(page))
146 return page_folio(page);
df3a0a21 147
6e17c6de 148 folio = try_get_folio(page, refs);
503670ee
VMO
149 if (!folio)
150 return NULL;
c24d3732 151
503670ee
VMO
152 /*
153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 * right zone, so fail and let the caller fall back to the slow
155 * path.
156 */
157 if (unlikely((flags & FOLL_LONGTERM) &&
158 !folio_is_longterm_pinnable(folio))) {
159 if (!put_devmap_managed_page_refs(&folio->page, refs))
160 folio_put_refs(folio, refs);
161 return NULL;
3faa52c0 162 }
088b8aa5 163
503670ee
VMO
164 /*
165 * When pinning a large folio, use an exact count to track it.
166 *
167 * However, be sure to *also* increment the normal folio
168 * refcount field at least once, so that the folio really
169 * is pinned. That's why the refcount from the earlier
170 * try_get_folio() is left intact.
171 */
172 if (folio_test_large(folio))
173 atomic_add(refs, &folio->_pincount);
174 else
175 folio_ref_add(folio,
176 refs * (GUP_PIN_COUNTING_BIAS - 1));
177 /*
178 * Adjust the pincount before re-checking the PTE for changes.
179 * This is essentially a smp_mb() and is paired with a memory
180 * barrier in page_try_share_anon_rmap().
181 */
182 smp_mb__after_atomic();
47e29d32 183
503670ee 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
3faa52c0 185
503670ee 186 return folio;
3faa52c0
JH
187}
188
d8ddc099 189static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
190{
191 if (flags & FOLL_PIN) {
c8070b78
DH
192 if (is_zero_folio(folio))
193 return;
d8ddc099
MWO
194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 if (folio_test_large(folio))
94688e8e 196 atomic_sub(refs, &folio->_pincount);
4509b42c
JG
197 else
198 refs *= GUP_PIN_COUNTING_BIAS;
199 }
200
f4f451a1
MS
201 if (!put_devmap_managed_page_refs(&folio->page, refs))
202 folio_put_refs(folio, refs);
4509b42c
JG
203}
204
3faa52c0
JH
205/**
206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
5fec0719
MWO
207 * @page: pointer to page to be grabbed
208 * @flags: gup flags: these are the FOLL_* flag values.
3faa52c0
JH
209 *
210 * This might not do anything at all, depending on the flags argument.
211 *
212 * "grab" names in this file mean, "look at flags to decide whether to use
213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214 *
3faa52c0 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
ece1ed7b 216 * time. Cases: please see the try_grab_folio() documentation, with
3967db22 217 * "refs=1".
3faa52c0 218 *
0f089235
LG
219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221 *
222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
223 * be grabbed.
3faa52c0 224 */
0f089235 225int __must_check try_grab_page(struct page *page, unsigned int flags)
3faa52c0 226{
5fec0719
MWO
227 struct folio *folio = page_folio(page);
228
5fec0719 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
0f089235 230 return -ENOMEM;
3faa52c0 231
4003f107
LG
232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 return -EREMOTEIO;
3faa52c0 234
c36c04c2 235 if (flags & FOLL_GET)
5fec0719 236 folio_ref_inc(folio);
c36c04c2 237 else if (flags & FOLL_PIN) {
c8070b78
DH
238 /*
239 * Don't take a pin on the zero page - it's not going anywhere
240 * and it is used in a *lot* of places.
241 */
242 if (is_zero_page(page))
243 return 0;
244
c36c04c2 245 /*
5fec0719 246 * Similar to try_grab_folio(): be sure to *also*
78d9d6ce
MWO
247 * increment the normal page refcount field at least once,
248 * so that the page really is pinned.
c36c04c2 249 */
5fec0719
MWO
250 if (folio_test_large(folio)) {
251 folio_ref_add(folio, 1);
94688e8e 252 atomic_add(1, &folio->_pincount);
8ea2979c 253 } else {
5fec0719 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
8ea2979c 255 }
c36c04c2 256
5fec0719 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
c36c04c2
JH
258 }
259
0f089235 260 return 0;
3faa52c0
JH
261}
262
3faa52c0
JH
263/**
264 * unpin_user_page() - release a dma-pinned page
265 * @page: pointer to page to be released
266 *
267 * Pages that were pinned via pin_user_pages*() must be released via either
268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269 * that such pages can be separately tracked and uniquely handled. In
270 * particular, interactions with RDMA and filesystems need special handling.
271 */
272void unpin_user_page(struct page *page)
273{
b6a2619c 274 sanity_check_pinned_pages(&page, 1);
d8ddc099 275 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
276}
277EXPORT_SYMBOL(unpin_user_page);
278
1101fb8f
DH
279/**
280 * folio_add_pin - Try to get an additional pin on a pinned folio
281 * @folio: The folio to be pinned
282 *
283 * Get an additional pin on a folio we already have a pin on. Makes no change
284 * if the folio is a zero_page.
285 */
286void folio_add_pin(struct folio *folio)
287{
288 if (is_zero_folio(folio))
289 return;
290
291 /*
292 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 * page refcount field at least once, so that the page really is
294 * pinned.
295 */
296 if (folio_test_large(folio)) {
297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 folio_ref_inc(folio);
299 atomic_inc(&folio->_pincount);
300 } else {
301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 }
304}
305
659508f9 306static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 307 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 308{
659508f9
MWO
309 struct page *next = nth_page(start, i);
310 struct folio *folio = page_folio(next);
458a4f78
JM
311 unsigned int nr = 1;
312
659508f9 313 if (folio_test_large(folio))
4c654229 314 nr = min_t(unsigned int, npages - i,
659508f9 315 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 316
458a4f78 317 *ntails = nr;
659508f9 318 return folio;
458a4f78
JM
319}
320
12521c76 321static inline struct folio *gup_folio_next(struct page **list,
28297dbc 322 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 323{
12521c76 324 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
325 unsigned int nr;
326
8745d7f6 327 for (nr = i + 1; nr < npages; nr++) {
12521c76 328 if (page_folio(list[nr]) != folio)
8745d7f6
JM
329 break;
330 }
331
8745d7f6 332 *ntails = nr - i;
12521c76 333 return folio;
8745d7f6
JM
334}
335
fc1d8e7c 336/**
f1f6a7dd 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 338 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 339 * @npages: number of pages in the @pages array.
2d15eb31 340 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
341 *
342 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343 * variants called on that page.
344 *
345 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 346 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
347 * listed as clean. In any case, releases all pages using unpin_user_page(),
348 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 349 *
f1f6a7dd 350 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 351 *
2d15eb31 352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353 * required, then the caller should a) verify that this is really correct,
354 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 355 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
356 *
357 */
f1f6a7dd
JH
358void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 bool make_dirty)
fc1d8e7c 360{
12521c76
MWO
361 unsigned long i;
362 struct folio *folio;
363 unsigned int nr;
2d15eb31 364
365 if (!make_dirty) {
f1f6a7dd 366 unpin_user_pages(pages, npages);
2d15eb31 367 return;
368 }
369
b6a2619c 370 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
371 for (i = 0; i < npages; i += nr) {
372 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31 373 /*
374 * Checking PageDirty at this point may race with
375 * clear_page_dirty_for_io(), but that's OK. Two key
376 * cases:
377 *
378 * 1) This code sees the page as already dirty, so it
379 * skips the call to set_page_dirty(). That could happen
380 * because clear_page_dirty_for_io() called
381 * page_mkclean(), followed by set_page_dirty().
382 * However, now the page is going to get written back,
383 * which meets the original intention of setting it
384 * dirty, so all is well: clear_page_dirty_for_io() goes
385 * on to call TestClearPageDirty(), and write the page
386 * back.
387 *
388 * 2) This code sees the page as clean, so it calls
389 * set_page_dirty(). The page stays dirty, despite being
390 * written back, so it gets written back again in the
391 * next writeback cycle. This is harmless.
392 */
12521c76
MWO
393 if (!folio_test_dirty(folio)) {
394 folio_lock(folio);
395 folio_mark_dirty(folio);
396 folio_unlock(folio);
397 }
398 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 399 }
fc1d8e7c 400}
f1f6a7dd 401EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 402
458a4f78
JM
403/**
404 * unpin_user_page_range_dirty_lock() - release and optionally dirty
405 * gup-pinned page range
406 *
407 * @page: the starting page of a range maybe marked dirty, and definitely released.
408 * @npages: number of consecutive pages to release.
409 * @make_dirty: whether to mark the pages dirty
410 *
411 * "gup-pinned page range" refers to a range of pages that has had one of the
412 * pin_user_pages() variants called on that page.
413 *
414 * For the page ranges defined by [page .. page+npages], make that range (or
415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416 * page range was previously listed as clean.
417 *
418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419 * required, then the caller should a) verify that this is really correct,
420 * because _lock() is usually required, and b) hand code it:
421 * set_page_dirty_lock(), unpin_user_page().
422 *
423 */
424void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 bool make_dirty)
426{
659508f9
MWO
427 unsigned long i;
428 struct folio *folio;
429 unsigned int nr;
430
431 for (i = 0; i < npages; i += nr) {
432 folio = gup_folio_range_next(page, npages, i, &nr);
433 if (make_dirty && !folio_test_dirty(folio)) {
434 folio_lock(folio);
435 folio_mark_dirty(folio);
436 folio_unlock(folio);
437 }
438 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
439 }
440}
441EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442
b6a2619c
DH
443static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444{
445 unsigned long i;
446 struct folio *folio;
447 unsigned int nr;
448
449 /*
450 * Don't perform any sanity checks because we might have raced with
451 * fork() and some anonymous pages might now actually be shared --
452 * which is why we're unpinning after all.
453 */
454 for (i = 0; i < npages; i += nr) {
455 folio = gup_folio_next(pages, npages, i, &nr);
456 gup_put_folio(folio, nr, FOLL_PIN);
457 }
458}
459
fc1d8e7c 460/**
f1f6a7dd 461 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
462 * @pages: array of pages to be marked dirty and released.
463 * @npages: number of pages in the @pages array.
464 *
f1f6a7dd 465 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 466 *
f1f6a7dd 467 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 468 */
f1f6a7dd 469void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 470{
12521c76
MWO
471 unsigned long i;
472 struct folio *folio;
473 unsigned int nr;
fc1d8e7c 474
146608bb
JH
475 /*
476 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 * leaving them pinned), but probably not. More likely, gup/pup returned
478 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 */
480 if (WARN_ON(IS_ERR_VALUE(npages)))
481 return;
31b912de 482
b6a2619c 483 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
484 for (i = 0; i < npages; i += nr) {
485 folio = gup_folio_next(pages, npages, i, &nr);
486 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 487 }
fc1d8e7c 488}
f1f6a7dd 489EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 490
a458b76a
AA
491/*
492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
494 * cache bouncing on large SMP machines for concurrent pinned gups.
495 */
496static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497{
498 if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 set_bit(MMF_HAS_PINNED, mm_flags);
500}
501
050a9adc 502#ifdef CONFIG_MMU
69e68b4f
KS
503static struct page *no_page_table(struct vm_area_struct *vma,
504 unsigned int flags)
4bbd4c77 505{
69e68b4f
KS
506 /*
507 * When core dumping an enormous anonymous area that nobody
508 * has touched so far, we don't want to allocate unnecessary pages or
509 * page tables. Return error instead of NULL to skip handle_mm_fault,
510 * then get_dump_page() will return NULL to leave a hole in the dump.
511 * But we can only make this optimization where a hole would surely
512 * be zero-filled if handle_mm_fault() actually did handle it.
513 */
a0137f16
AK
514 if ((flags & FOLL_DUMP) &&
515 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
516 return ERR_PTR(-EFAULT);
517 return NULL;
518}
4bbd4c77 519
1027e443
KS
520static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
521 pte_t *pte, unsigned int flags)
522{
1027e443 523 if (flags & FOLL_TOUCH) {
c33c7948
RR
524 pte_t orig_entry = ptep_get(pte);
525 pte_t entry = orig_entry;
1027e443
KS
526
527 if (flags & FOLL_WRITE)
528 entry = pte_mkdirty(entry);
529 entry = pte_mkyoung(entry);
530
c33c7948 531 if (!pte_same(orig_entry, entry)) {
1027e443
KS
532 set_pte_at(vma->vm_mm, address, pte, entry);
533 update_mmu_cache(vma, address, pte);
534 }
535 }
536
537 /* Proper page table entry exists, but no corresponding struct page */
538 return -EEXIST;
539}
540
5535be30
DH
541/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
542static inline bool can_follow_write_pte(pte_t pte, struct page *page,
543 struct vm_area_struct *vma,
544 unsigned int flags)
19be0eaf 545{
5535be30
DH
546 /* If the pte is writable, we can write to the page. */
547 if (pte_write(pte))
548 return true;
549
550 /* Maybe FOLL_FORCE is set to override it? */
551 if (!(flags & FOLL_FORCE))
552 return false;
553
554 /* But FOLL_FORCE has no effect on shared mappings */
555 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
556 return false;
557
558 /* ... or read-only private ones */
559 if (!(vma->vm_flags & VM_MAYWRITE))
560 return false;
561
562 /* ... or already writable ones that just need to take a write fault */
563 if (vma->vm_flags & VM_WRITE)
564 return false;
565
566 /*
567 * See can_change_pte_writable(): we broke COW and could map the page
568 * writable if we have an exclusive anonymous page ...
569 */
570 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
571 return false;
572
573 /* ... and a write-fault isn't required for other reasons. */
574 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
575 return false;
576 return !userfaultfd_pte_wp(vma, pte);
19be0eaf
LT
577}
578
69e68b4f 579static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
580 unsigned long address, pmd_t *pmd, unsigned int flags,
581 struct dev_pagemap **pgmap)
69e68b4f
KS
582{
583 struct mm_struct *mm = vma->vm_mm;
584 struct page *page;
585 spinlock_t *ptl;
586 pte_t *ptep, pte;
f28d4363 587 int ret;
4bbd4c77 588
eddb1c22
JH
589 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
590 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
591 (FOLL_PIN | FOLL_GET)))
592 return ERR_PTR(-EINVAL);
4bbd4c77
KS
593
594 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
04dee9e8
HD
595 if (!ptep)
596 return no_page_table(vma, flags);
c33c7948 597 pte = ptep_get(ptep);
f7355e99
DH
598 if (!pte_present(pte))
599 goto no_page;
474098ed 600 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
4bbd4c77 601 goto no_page;
4bbd4c77
KS
602
603 page = vm_normal_page(vma, address, pte);
5535be30
DH
604
605 /*
606 * We only care about anon pages in can_follow_write_pte() and don't
607 * have to worry about pte_devmap() because they are never anon.
608 */
609 if ((flags & FOLL_WRITE) &&
610 !can_follow_write_pte(pte, page, vma, flags)) {
611 page = NULL;
612 goto out;
613 }
614
3faa52c0 615 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 616 /*
3faa52c0
JH
617 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
618 * case since they are only valid while holding the pgmap
619 * reference.
3565fce3 620 */
df06b37f
KB
621 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
622 if (*pgmap)
3565fce3
DW
623 page = pte_page(pte);
624 else
625 goto no_page;
626 } else if (unlikely(!page)) {
1027e443
KS
627 if (flags & FOLL_DUMP) {
628 /* Avoid special (like zero) pages in core dumps */
629 page = ERR_PTR(-EFAULT);
630 goto out;
631 }
632
633 if (is_zero_pfn(pte_pfn(pte))) {
634 page = pte_page(pte);
635 } else {
1027e443
KS
636 ret = follow_pfn_pte(vma, address, ptep, flags);
637 page = ERR_PTR(ret);
638 goto out;
639 }
4bbd4c77
KS
640 }
641
84209e87 642 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
a7f22660
DH
643 page = ERR_PTR(-EMLINK);
644 goto out;
645 }
b6a2619c
DH
646
647 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
648 !PageAnonExclusive(page), page);
649
3faa52c0 650 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
0f089235
LG
651 ret = try_grab_page(page, flags);
652 if (unlikely(ret)) {
653 page = ERR_PTR(ret);
3faa52c0 654 goto out;
8fde12ca 655 }
4003f107 656
f28d4363
CI
657 /*
658 * We need to make the page accessible if and only if we are going
659 * to access its content (the FOLL_PIN case). Please see
660 * Documentation/core-api/pin_user_pages.rst for details.
661 */
662 if (flags & FOLL_PIN) {
663 ret = arch_make_page_accessible(page);
664 if (ret) {
665 unpin_user_page(page);
666 page = ERR_PTR(ret);
667 goto out;
668 }
669 }
4bbd4c77
KS
670 if (flags & FOLL_TOUCH) {
671 if ((flags & FOLL_WRITE) &&
672 !pte_dirty(pte) && !PageDirty(page))
673 set_page_dirty(page);
674 /*
675 * pte_mkyoung() would be more correct here, but atomic care
676 * is needed to avoid losing the dirty bit: it is easier to use
677 * mark_page_accessed().
678 */
679 mark_page_accessed(page);
680 }
1027e443 681out:
4bbd4c77 682 pte_unmap_unlock(ptep, ptl);
4bbd4c77 683 return page;
4bbd4c77
KS
684no_page:
685 pte_unmap_unlock(ptep, ptl);
686 if (!pte_none(pte))
69e68b4f
KS
687 return NULL;
688 return no_page_table(vma, flags);
689}
690
080dbb61
AK
691static struct page *follow_pmd_mask(struct vm_area_struct *vma,
692 unsigned long address, pud_t *pudp,
df06b37f
KB
693 unsigned int flags,
694 struct follow_page_context *ctx)
69e68b4f 695{
68827280 696 pmd_t *pmd, pmdval;
69e68b4f
KS
697 spinlock_t *ptl;
698 struct page *page;
699 struct mm_struct *mm = vma->vm_mm;
700
080dbb61 701 pmd = pmd_offset(pudp, address);
26e1a0c3 702 pmdval = pmdp_get_lockless(pmd);
68827280 703 if (pmd_none(pmdval))
69e68b4f 704 return no_page_table(vma, flags);
f7355e99 705 if (!pmd_present(pmdval))
e66f17ff 706 return no_page_table(vma, flags);
68827280 707 if (pmd_devmap(pmdval)) {
3565fce3 708 ptl = pmd_lock(mm, pmd);
df06b37f 709 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
710 spin_unlock(ptl);
711 if (page)
712 return page;
713 }
68827280 714 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 715 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 716
474098ed 717 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
db08f203
AK
718 return no_page_table(vma, flags);
719
6742d293 720 ptl = pmd_lock(mm, pmd);
84c3fc4e
ZY
721 if (unlikely(!pmd_present(*pmd))) {
722 spin_unlock(ptl);
f7355e99 723 return no_page_table(vma, flags);
84c3fc4e 724 }
6742d293
KS
725 if (unlikely(!pmd_trans_huge(*pmd))) {
726 spin_unlock(ptl);
df06b37f 727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 728 }
4066c119 729 if (flags & FOLL_SPLIT_PMD) {
2378118b
HD
730 spin_unlock(ptl);
731 split_huge_pmd(vma, pmd, address);
732 /* If pmd was left empty, stuff a page table in there quickly */
733 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
df06b37f 734 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 735 }
6742d293
KS
736 page = follow_trans_huge_pmd(vma, address, pmd, flags);
737 spin_unlock(ptl);
df06b37f 738 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 739 return page;
4bbd4c77
KS
740}
741
080dbb61
AK
742static struct page *follow_pud_mask(struct vm_area_struct *vma,
743 unsigned long address, p4d_t *p4dp,
df06b37f
KB
744 unsigned int flags,
745 struct follow_page_context *ctx)
080dbb61
AK
746{
747 pud_t *pud;
748 spinlock_t *ptl;
749 struct page *page;
750 struct mm_struct *mm = vma->vm_mm;
751
752 pud = pud_offset(p4dp, address);
753 if (pud_none(*pud))
754 return no_page_table(vma, flags);
080dbb61
AK
755 if (pud_devmap(*pud)) {
756 ptl = pud_lock(mm, pud);
df06b37f 757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
758 spin_unlock(ptl);
759 if (page)
760 return page;
761 }
762 if (unlikely(pud_bad(*pud)))
763 return no_page_table(vma, flags);
764
df06b37f 765 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
766}
767
080dbb61
AK
768static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 unsigned long address, pgd_t *pgdp,
df06b37f
KB
770 unsigned int flags,
771 struct follow_page_context *ctx)
080dbb61
AK
772{
773 p4d_t *p4d;
774
775 p4d = p4d_offset(pgdp, address);
776 if (p4d_none(*p4d))
777 return no_page_table(vma, flags);
778 BUILD_BUG_ON(p4d_huge(*p4d));
779 if (unlikely(p4d_bad(*p4d)))
780 return no_page_table(vma, flags);
781
df06b37f 782 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
783}
784
785/**
786 * follow_page_mask - look up a page descriptor from a user-virtual address
787 * @vma: vm_area_struct mapping @address
788 * @address: virtual address to look up
789 * @flags: flags modifying lookup behaviour
78179556
MR
790 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791 * pointer to output page_mask
080dbb61
AK
792 *
793 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
794 *
78179556
MR
795 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
797 *
a7f22660
DH
798 * When getting an anonymous page and the caller has to trigger unsharing
799 * of a shared anonymous page first, -EMLINK is returned. The caller should
800 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
801 * relevant with FOLL_PIN and !FOLL_WRITE.
802 *
78179556
MR
803 * On output, the @ctx->page_mask is set according to the size of the page.
804 *
805 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
806 * an error pointer if there is a mapping to something not represented
807 * by a page descriptor (see also vm_normal_page()).
808 */
a7030aea 809static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 810 unsigned long address, unsigned int flags,
df06b37f 811 struct follow_page_context *ctx)
080dbb61
AK
812{
813 pgd_t *pgd;
814 struct page *page;
815 struct mm_struct *mm = vma->vm_mm;
816
df06b37f 817 ctx->page_mask = 0;
080dbb61 818
57a196a5
MK
819 /*
820 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
821 * special hugetlb page table walking code. This eliminates the
822 * need to check for hugetlb entries in the general walking code.
823 *
824 * hugetlb_follow_page_mask is only for follow_page() handling here.
825 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
826 */
827 if (is_vm_hugetlb_page(vma)) {
828 page = hugetlb_follow_page_mask(vma, address, flags);
829 if (!page)
830 page = no_page_table(vma, flags);
080dbb61
AK
831 return page;
832 }
833
834 pgd = pgd_offset(mm, address);
835
836 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
837 return no_page_table(vma, flags);
838
df06b37f
KB
839 return follow_p4d_mask(vma, address, pgd, flags, ctx);
840}
841
842struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
843 unsigned int foll_flags)
844{
845 struct follow_page_context ctx = { NULL };
846 struct page *page;
847
1507f512
MR
848 if (vma_is_secretmem(vma))
849 return NULL;
850
d64e2dbc 851 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
8909691b
DH
852 return NULL;
853
df06b37f
KB
854 page = follow_page_mask(vma, address, foll_flags, &ctx);
855 if (ctx.pgmap)
856 put_dev_pagemap(ctx.pgmap);
857 return page;
080dbb61
AK
858}
859
f2b495ca
KS
860static int get_gate_page(struct mm_struct *mm, unsigned long address,
861 unsigned int gup_flags, struct vm_area_struct **vma,
862 struct page **page)
863{
864 pgd_t *pgd;
c2febafc 865 p4d_t *p4d;
f2b495ca
KS
866 pud_t *pud;
867 pmd_t *pmd;
868 pte_t *pte;
c33c7948 869 pte_t entry;
f2b495ca
KS
870 int ret = -EFAULT;
871
872 /* user gate pages are read-only */
873 if (gup_flags & FOLL_WRITE)
874 return -EFAULT;
875 if (address > TASK_SIZE)
876 pgd = pgd_offset_k(address);
877 else
878 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
879 if (pgd_none(*pgd))
880 return -EFAULT;
c2febafc 881 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
882 if (p4d_none(*p4d))
883 return -EFAULT;
c2febafc 884 pud = pud_offset(p4d, address);
b5d1c39f
AL
885 if (pud_none(*pud))
886 return -EFAULT;
f2b495ca 887 pmd = pmd_offset(pud, address);
84c3fc4e 888 if (!pmd_present(*pmd))
f2b495ca 889 return -EFAULT;
f2b495ca 890 pte = pte_offset_map(pmd, address);
04dee9e8
HD
891 if (!pte)
892 return -EFAULT;
c33c7948
RR
893 entry = ptep_get(pte);
894 if (pte_none(entry))
f2b495ca
KS
895 goto unmap;
896 *vma = get_gate_vma(mm);
897 if (!page)
898 goto out;
c33c7948 899 *page = vm_normal_page(*vma, address, entry);
f2b495ca 900 if (!*page) {
c33c7948 901 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
f2b495ca 902 goto unmap;
c33c7948 903 *page = pte_page(entry);
f2b495ca 904 }
0f089235
LG
905 ret = try_grab_page(*page, gup_flags);
906 if (unlikely(ret))
8fde12ca 907 goto unmap;
f2b495ca
KS
908out:
909 ret = 0;
910unmap:
911 pte_unmap(pte);
912 return ret;
913}
914
9a95f3cf 915/*
9a863a6a
JG
916 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
917 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
918 * to 0 and -EBUSY returned.
9a95f3cf 919 */
64019a2e 920static int faultin_page(struct vm_area_struct *vma,
a7f22660
DH
921 unsigned long address, unsigned int *flags, bool unshare,
922 int *locked)
16744483 923{
16744483 924 unsigned int fault_flags = 0;
2b740303 925 vm_fault_t ret;
16744483 926
55b8fe70
AG
927 if (*flags & FOLL_NOFAULT)
928 return -EFAULT;
16744483
KS
929 if (*flags & FOLL_WRITE)
930 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
931 if (*flags & FOLL_REMOTE)
932 fault_flags |= FAULT_FLAG_REMOTE;
f04740f5 933 if (*flags & FOLL_UNLOCKABLE) {
71335f37 934 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
93c5c61d
PX
935 /*
936 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
937 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
938 * That's because some callers may not be prepared to
939 * handle early exits caused by non-fatal signals.
940 */
941 if (*flags & FOLL_INTERRUPTIBLE)
942 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
943 }
16744483
KS
944 if (*flags & FOLL_NOWAIT)
945 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 946 if (*flags & FOLL_TRIED) {
4426e945
PX
947 /*
948 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
949 * can co-exist
950 */
234b239b
ALC
951 fault_flags |= FAULT_FLAG_TRIED;
952 }
a7f22660
DH
953 if (unshare) {
954 fault_flags |= FAULT_FLAG_UNSHARE;
955 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
956 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
957 }
16744483 958
bce617ed 959 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
960
961 if (ret & VM_FAULT_COMPLETED) {
962 /*
963 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
964 * mmap lock in the page fault handler. Sanity check this.
965 */
966 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
9a863a6a
JG
967 *locked = 0;
968
d9272525
PX
969 /*
970 * We should do the same as VM_FAULT_RETRY, but let's not
971 * return -EBUSY since that's not reflecting the reality of
972 * what has happened - we've just fully completed a page
973 * fault, with the mmap lock released. Use -EAGAIN to show
974 * that we want to take the mmap lock _again_.
975 */
976 return -EAGAIN;
977 }
978
16744483 979 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
980 int err = vm_fault_to_errno(ret, *flags);
981
982 if (err)
983 return err;
16744483
KS
984 BUG();
985 }
986
16744483 987 if (ret & VM_FAULT_RETRY) {
9a863a6a 988 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 989 *locked = 0;
16744483
KS
990 return -EBUSY;
991 }
992
16744483
KS
993 return 0;
994}
995
8ac26843
LS
996/*
997 * Writing to file-backed mappings which require folio dirty tracking using GUP
998 * is a fundamentally broken operation, as kernel write access to GUP mappings
999 * do not adhere to the semantics expected by a file system.
1000 *
1001 * Consider the following scenario:-
1002 *
1003 * 1. A folio is written to via GUP which write-faults the memory, notifying
1004 * the file system and dirtying the folio.
1005 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1006 * the PTE being marked read-only.
1007 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1008 * direct mapping.
1009 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1010 * (though it does not have to).
1011 *
1012 * This results in both data being written to a folio without writenotify, and
1013 * the folio being dirtied unexpectedly (if the caller decides to do so).
1014 */
1015static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1016 unsigned long gup_flags)
1017{
1018 /*
1019 * If we aren't pinning then no problematic write can occur. A long term
1020 * pin is the most egregious case so this is the case we disallow.
1021 */
1022 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1023 (FOLL_PIN | FOLL_LONGTERM))
1024 return true;
1025
1026 /*
1027 * If the VMA does not require dirty tracking then no problematic write
1028 * can occur either.
1029 */
1030 return !vma_needs_dirty_tracking(vma);
1031}
1032
fa5bb209
KS
1033static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1034{
1035 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
1036 int write = (gup_flags & FOLL_WRITE);
1037 int foreign = (gup_flags & FOLL_REMOTE);
8ac26843 1038 bool vma_anon = vma_is_anonymous(vma);
fa5bb209
KS
1039
1040 if (vm_flags & (VM_IO | VM_PFNMAP))
1041 return -EFAULT;
1042
8ac26843 1043 if ((gup_flags & FOLL_ANON) && !vma_anon)
7f7ccc2c
WT
1044 return -EFAULT;
1045
52650c8b
JG
1046 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1047 return -EOPNOTSUPP;
1048
1507f512
MR
1049 if (vma_is_secretmem(vma))
1050 return -EFAULT;
1051
1b2ee126 1052 if (write) {
8ac26843
LS
1053 if (!vma_anon &&
1054 !writable_file_mapping_allowed(vma, gup_flags))
1055 return -EFAULT;
1056
fa5bb209
KS
1057 if (!(vm_flags & VM_WRITE)) {
1058 if (!(gup_flags & FOLL_FORCE))
1059 return -EFAULT;
f347454d
DH
1060 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1061 if (is_vm_hugetlb_page(vma))
1062 return -EFAULT;
fa5bb209
KS
1063 /*
1064 * We used to let the write,force case do COW in a
1065 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1066 * set a breakpoint in a read-only mapping of an
1067 * executable, without corrupting the file (yet only
1068 * when that file had been opened for writing!).
1069 * Anon pages in shared mappings are surprising: now
1070 * just reject it.
1071 */
46435364 1072 if (!is_cow_mapping(vm_flags))
fa5bb209 1073 return -EFAULT;
fa5bb209
KS
1074 }
1075 } else if (!(vm_flags & VM_READ)) {
1076 if (!(gup_flags & FOLL_FORCE))
1077 return -EFAULT;
1078 /*
1079 * Is there actually any vma we can reach here which does not
1080 * have VM_MAYREAD set?
1081 */
1082 if (!(vm_flags & VM_MAYREAD))
1083 return -EFAULT;
1084 }
d61172b4
DH
1085 /*
1086 * gups are always data accesses, not instruction
1087 * fetches, so execute=false here
1088 */
1089 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1090 return -EFAULT;
fa5bb209
KS
1091 return 0;
1092}
1093
6cd06ab1
LT
1094/*
1095 * This is "vma_lookup()", but with a warning if we would have
1096 * historically expanded the stack in the GUP code.
1097 */
1098static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1099 unsigned long addr)
1100{
1101#ifdef CONFIG_STACK_GROWSUP
1102 return vma_lookup(mm, addr);
1103#else
1104 static volatile unsigned long next_warn;
1105 struct vm_area_struct *vma;
1106 unsigned long now, next;
1107
1108 vma = find_vma(mm, addr);
1109 if (!vma || (addr >= vma->vm_start))
1110 return vma;
1111
1112 /* Only warn for half-way relevant accesses */
1113 if (!(vma->vm_flags & VM_GROWSDOWN))
1114 return NULL;
1115 if (vma->vm_start - addr > 65536)
1116 return NULL;
1117
1118 /* Let's not warn more than once an hour.. */
1119 now = jiffies; next = next_warn;
1120 if (next && time_before(now, next))
1121 return NULL;
1122 next_warn = now + 60*60*HZ;
1123
1124 /* Let people know things may have changed. */
1125 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1126 current->comm, task_pid_nr(current),
1127 vma->vm_start, vma->vm_end, addr);
1128 dump_stack();
1129 return NULL;
1130#endif
1131}
1132
4bbd4c77
KS
1133/**
1134 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1135 * @mm: mm_struct of target mm
1136 * @start: starting user address
1137 * @nr_pages: number of pages from start to pin
1138 * @gup_flags: flags modifying pin behaviour
1139 * @pages: array that receives pointers to the pages pinned.
1140 * Should be at least nr_pages long. Or NULL, if caller
1141 * only intends to ensure the pages are faulted in.
c1e8d7c6 1142 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1143 *
d2dfbe47
LX
1144 * Returns either number of pages pinned (which may be less than the
1145 * number requested), or an error. Details about the return value:
1146 *
1147 * -- If nr_pages is 0, returns 0.
1148 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1149 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1150 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1151 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1152 *
1153 * The caller is responsible for releasing returned @pages, via put_page().
1154 *
c1e8d7c6 1155 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1156 *
1157 * __get_user_pages walks a process's page tables and takes a reference to
1158 * each struct page that each user address corresponds to at a given
1159 * instant. That is, it takes the page that would be accessed if a user
1160 * thread accesses the given user virtual address at that instant.
1161 *
1162 * This does not guarantee that the page exists in the user mappings when
1163 * __get_user_pages returns, and there may even be a completely different
1164 * page there in some cases (eg. if mmapped pagecache has been invalidated
c5acf1f6 1165 * and subsequently re-faulted). However it does guarantee that the page
4bbd4c77
KS
1166 * won't be freed completely. And mostly callers simply care that the page
1167 * contains data that was valid *at some point in time*. Typically, an IO
1168 * or similar operation cannot guarantee anything stronger anyway because
1169 * locks can't be held over the syscall boundary.
1170 *
1171 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1172 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1173 * appropriate) must be called after the page is finished with, and
1174 * before put_page is called.
1175 *
9a863a6a
JG
1176 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1177 * be released. If this happens *@locked will be set to 0 on return.
9a95f3cf 1178 *
9a863a6a
JG
1179 * A caller using such a combination of @gup_flags must therefore hold the
1180 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1181 * it must be held for either reading or writing and will not be released.
4bbd4c77
KS
1182 *
1183 * In most cases, get_user_pages or get_user_pages_fast should be used
1184 * instead of __get_user_pages. __get_user_pages should be used only if
1185 * you need some special @gup_flags.
1186 */
64019a2e 1187static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1188 unsigned long start, unsigned long nr_pages,
1189 unsigned int gup_flags, struct page **pages,
b2cac248 1190 int *locked)
4bbd4c77 1191{
df06b37f 1192 long ret = 0, i = 0;
fa5bb209 1193 struct vm_area_struct *vma = NULL;
df06b37f 1194 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1195
1196 if (!nr_pages)
1197 return 0;
1198
428e106a 1199 start = untagged_addr_remote(mm, start);
f9652594 1200
eddb1c22 1201 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77 1202
4bbd4c77 1203 do {
fa5bb209
KS
1204 struct page *page;
1205 unsigned int foll_flags = gup_flags;
1206 unsigned int page_increm;
1207
1208 /* first iteration or cross vma bound */
1209 if (!vma || start >= vma->vm_end) {
6cd06ab1 1210 vma = gup_vma_lookup(mm, start);
fa5bb209 1211 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1212 ret = get_gate_page(mm, start & PAGE_MASK,
1213 gup_flags, &vma,
1214 pages ? &pages[i] : NULL);
1215 if (ret)
08be37b7 1216 goto out;
df06b37f 1217 ctx.page_mask = 0;
fa5bb209
KS
1218 goto next_page;
1219 }
4bbd4c77 1220
52650c8b 1221 if (!vma) {
df06b37f
KB
1222 ret = -EFAULT;
1223 goto out;
1224 }
52650c8b
JG
1225 ret = check_vma_flags(vma, gup_flags);
1226 if (ret)
1227 goto out;
1228
fa5bb209 1229 if (is_vm_hugetlb_page(vma)) {
b2cac248
LS
1230 i = follow_hugetlb_page(mm, vma, pages,
1231 &start, &nr_pages, i,
1232 gup_flags, locked);
9a863a6a 1233 if (!*locked) {
ad415db8
PX
1234 /*
1235 * We've got a VM_FAULT_RETRY
c1e8d7c6 1236 * and we've lost mmap_lock.
ad415db8
PX
1237 * We must stop here.
1238 */
1239 BUG_ON(gup_flags & FOLL_NOWAIT);
ad415db8
PX
1240 goto out;
1241 }
fa5bb209 1242 continue;
4bbd4c77 1243 }
fa5bb209
KS
1244 }
1245retry:
1246 /*
1247 * If we have a pending SIGKILL, don't keep faulting pages and
1248 * potentially allocating memory.
1249 */
fa45f116 1250 if (fatal_signal_pending(current)) {
d180870d 1251 ret = -EINTR;
df06b37f
KB
1252 goto out;
1253 }
fa5bb209 1254 cond_resched();
df06b37f
KB
1255
1256 page = follow_page_mask(vma, start, foll_flags, &ctx);
a7f22660
DH
1257 if (!page || PTR_ERR(page) == -EMLINK) {
1258 ret = faultin_page(vma, start, &foll_flags,
1259 PTR_ERR(page) == -EMLINK, locked);
fa5bb209
KS
1260 switch (ret) {
1261 case 0:
1262 goto retry;
df06b37f 1263 case -EBUSY:
d9272525 1264 case -EAGAIN:
df06b37f 1265 ret = 0;
e4a9bc58 1266 fallthrough;
fa5bb209
KS
1267 case -EFAULT:
1268 case -ENOMEM:
1269 case -EHWPOISON:
df06b37f 1270 goto out;
4bbd4c77 1271 }
fa5bb209 1272 BUG();
1027e443
KS
1273 } else if (PTR_ERR(page) == -EEXIST) {
1274 /*
1275 * Proper page table entry exists, but no corresponding
65462462
JH
1276 * struct page. If the caller expects **pages to be
1277 * filled in, bail out now, because that can't be done
1278 * for this page.
1027e443 1279 */
65462462
JH
1280 if (pages) {
1281 ret = PTR_ERR(page);
1282 goto out;
1283 }
1284
1027e443
KS
1285 goto next_page;
1286 } else if (IS_ERR(page)) {
df06b37f
KB
1287 ret = PTR_ERR(page);
1288 goto out;
1027e443 1289 }
fa5bb209
KS
1290 if (pages) {
1291 pages[i] = page;
1292 flush_anon_page(vma, page, start);
1293 flush_dcache_page(page);
df06b37f 1294 ctx.page_mask = 0;
4bbd4c77 1295 }
4bbd4c77 1296next_page:
df06b37f 1297 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1298 if (page_increm > nr_pages)
1299 page_increm = nr_pages;
1300 i += page_increm;
1301 start += page_increm * PAGE_SIZE;
1302 nr_pages -= page_increm;
4bbd4c77 1303 } while (nr_pages);
df06b37f
KB
1304out:
1305 if (ctx.pgmap)
1306 put_dev_pagemap(ctx.pgmap);
1307 return i ? i : ret;
4bbd4c77 1308}
4bbd4c77 1309
771ab430
TK
1310static bool vma_permits_fault(struct vm_area_struct *vma,
1311 unsigned int fault_flags)
d4925e00 1312{
1b2ee126
DH
1313 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1314 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1315 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1316
1317 if (!(vm_flags & vma->vm_flags))
1318 return false;
1319
33a709b2
DH
1320 /*
1321 * The architecture might have a hardware protection
1b2ee126 1322 * mechanism other than read/write that can deny access.
d61172b4
DH
1323 *
1324 * gup always represents data access, not instruction
1325 * fetches, so execute=false here:
33a709b2 1326 */
d61172b4 1327 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1328 return false;
1329
d4925e00
DH
1330 return true;
1331}
1332
adc8cb40 1333/**
4bbd4c77 1334 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1335 * @mm: mm_struct of target mm
1336 * @address: user address
1337 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1338 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1339 * does not allow retry. If NULL, the caller must guarantee
1340 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1341 *
1342 * This is meant to be called in the specific scenario where for locking reasons
1343 * we try to access user memory in atomic context (within a pagefault_disable()
1344 * section), this returns -EFAULT, and we want to resolve the user fault before
1345 * trying again.
1346 *
1347 * Typically this is meant to be used by the futex code.
1348 *
1349 * The main difference with get_user_pages() is that this function will
1350 * unconditionally call handle_mm_fault() which will in turn perform all the
1351 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1352 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1353 *
1354 * This is important for some architectures where those bits also gate the
1355 * access permission to the page because they are maintained in software. On
1356 * such architectures, gup() will not be enough to make a subsequent access
1357 * succeed.
1358 *
c1e8d7c6
ML
1359 * This function will not return with an unlocked mmap_lock. So it has not the
1360 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1361 */
64019a2e 1362int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1363 unsigned long address, unsigned int fault_flags,
1364 bool *unlocked)
4bbd4c77
KS
1365{
1366 struct vm_area_struct *vma;
8fed2f3c 1367 vm_fault_t ret;
4a9e1cda 1368
428e106a 1369 address = untagged_addr_remote(mm, address);
f9652594 1370
4a9e1cda 1371 if (unlocked)
71335f37 1372 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1373
4a9e1cda 1374retry:
6cd06ab1 1375 vma = gup_vma_lookup(mm, address);
8d7071af 1376 if (!vma)
4bbd4c77
KS
1377 return -EFAULT;
1378
d4925e00 1379 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1380 return -EFAULT;
1381
475f4dfc
PX
1382 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1383 fatal_signal_pending(current))
1384 return -EINTR;
1385
bce617ed 1386 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1387
1388 if (ret & VM_FAULT_COMPLETED) {
1389 /*
1390 * NOTE: it's a pity that we need to retake the lock here
1391 * to pair with the unlock() in the callers. Ideally we
1392 * could tell the callers so they do not need to unlock.
1393 */
1394 mmap_read_lock(mm);
1395 *unlocked = true;
1396 return 0;
1397 }
1398
4bbd4c77 1399 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1400 int err = vm_fault_to_errno(ret, 0);
1401
1402 if (err)
1403 return err;
4bbd4c77
KS
1404 BUG();
1405 }
4a9e1cda
DD
1406
1407 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1408 mmap_read_lock(mm);
475f4dfc
PX
1409 *unlocked = true;
1410 fault_flags |= FAULT_FLAG_TRIED;
1411 goto retry;
4a9e1cda
DD
1412 }
1413
4bbd4c77
KS
1414 return 0;
1415}
add6a0cd 1416EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1417
93c5c61d
PX
1418/*
1419 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1420 * specified, it'll also respond to generic signals. The caller of GUP
1421 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1422 */
1423static bool gup_signal_pending(unsigned int flags)
1424{
1425 if (fatal_signal_pending(current))
1426 return true;
1427
1428 if (!(flags & FOLL_INTERRUPTIBLE))
1429 return false;
1430
1431 return signal_pending(current);
1432}
1433
2d3a36a4 1434/*
b2a72dff
JG
1435 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1436 * the caller. This function may drop the mmap_lock. If it does so, then it will
1437 * set (*locked = 0).
1438 *
1439 * (*locked == 0) means that the caller expects this function to acquire and
1440 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1441 * the function returns, even though it may have changed temporarily during
1442 * function execution.
1443 *
1444 * Please note that this function, unlike __get_user_pages(), will not return 0
1445 * for nr_pages > 0, unless FOLL_NOWAIT is used.
2d3a36a4 1446 */
64019a2e 1447static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1448 unsigned long start,
1449 unsigned long nr_pages,
f0818f47 1450 struct page **pages,
e716712f 1451 int *locked,
0fd71a56 1452 unsigned int flags)
f0818f47 1453{
f0818f47 1454 long ret, pages_done;
b2a72dff 1455 bool must_unlock = false;
f0818f47 1456
b2a72dff
JG
1457 /*
1458 * The internal caller expects GUP to manage the lock internally and the
1459 * lock must be released when this returns.
1460 */
9a863a6a 1461 if (!*locked) {
b2a72dff
JG
1462 if (mmap_read_lock_killable(mm))
1463 return -EAGAIN;
1464 must_unlock = true;
1465 *locked = 1;
f0818f47 1466 }
961ba472
JG
1467 else
1468 mmap_assert_locked(mm);
f0818f47 1469
a458b76a
AA
1470 if (flags & FOLL_PIN)
1471 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1472
eddb1c22
JH
1473 /*
1474 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1475 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1476 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1477 * for FOLL_GET, not for the newer FOLL_PIN.
1478 *
1479 * FOLL_PIN always expects pages to be non-null, but no need to assert
1480 * that here, as any failures will be obvious enough.
1481 */
1482 if (pages && !(flags & FOLL_PIN))
f0818f47 1483 flags |= FOLL_GET;
f0818f47
AA
1484
1485 pages_done = 0;
f0818f47 1486 for (;;) {
64019a2e 1487 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
b2cac248 1488 locked);
f04740f5 1489 if (!(flags & FOLL_UNLOCKABLE)) {
f0818f47 1490 /* VM_FAULT_RETRY couldn't trigger, bypass */
f04740f5
JG
1491 pages_done = ret;
1492 break;
1493 }
f0818f47 1494
d9272525 1495 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
f0818f47
AA
1496 if (!*locked) {
1497 BUG_ON(ret < 0);
1498 BUG_ON(ret >= nr_pages);
1499 }
1500
f0818f47
AA
1501 if (ret > 0) {
1502 nr_pages -= ret;
1503 pages_done += ret;
1504 if (!nr_pages)
1505 break;
1506 }
1507 if (*locked) {
96312e61
AA
1508 /*
1509 * VM_FAULT_RETRY didn't trigger or it was a
1510 * FOLL_NOWAIT.
1511 */
f0818f47
AA
1512 if (!pages_done)
1513 pages_done = ret;
1514 break;
1515 }
df17277b
MR
1516 /*
1517 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1518 * For the prefault case (!pages) we only update counts.
1519 */
1520 if (likely(pages))
1521 pages += ret;
f0818f47 1522 start += ret << PAGE_SHIFT;
b2a72dff
JG
1523
1524 /* The lock was temporarily dropped, so we must unlock later */
1525 must_unlock = true;
f0818f47 1526
4426e945 1527retry:
f0818f47
AA
1528 /*
1529 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1530 * with both FAULT_FLAG_ALLOW_RETRY and
1531 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
93c5c61d
PX
1532 * by fatal signals of even common signals, depending on
1533 * the caller's request. So we need to check it before we
4426e945 1534 * start trying again otherwise it can loop forever.
f0818f47 1535 */
93c5c61d 1536 if (gup_signal_pending(flags)) {
ae46d2aa
HD
1537 if (!pages_done)
1538 pages_done = -EINTR;
4426e945 1539 break;
ae46d2aa 1540 }
4426e945 1541
d8ed45c5 1542 ret = mmap_read_lock_killable(mm);
71335f37
PX
1543 if (ret) {
1544 BUG_ON(ret > 0);
1545 if (!pages_done)
1546 pages_done = ret;
1547 break;
1548 }
4426e945 1549
c7b6a566 1550 *locked = 1;
64019a2e 1551 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
b2cac248 1552 pages, locked);
4426e945
PX
1553 if (!*locked) {
1554 /* Continue to retry until we succeeded */
1555 BUG_ON(ret != 0);
1556 goto retry;
1557 }
f0818f47
AA
1558 if (ret != 1) {
1559 BUG_ON(ret > 1);
1560 if (!pages_done)
1561 pages_done = ret;
1562 break;
1563 }
1564 nr_pages--;
1565 pages_done++;
1566 if (!nr_pages)
1567 break;
df17277b
MR
1568 if (likely(pages))
1569 pages++;
f0818f47
AA
1570 start += PAGE_SIZE;
1571 }
b2a72dff 1572 if (must_unlock && *locked) {
f0818f47 1573 /*
b2a72dff
JG
1574 * We either temporarily dropped the lock, or the caller
1575 * requested that we both acquire and drop the lock. Either way,
1576 * we must now unlock, and notify the caller of that state.
f0818f47 1577 */
d8ed45c5 1578 mmap_read_unlock(mm);
f0818f47
AA
1579 *locked = 0;
1580 }
1581 return pages_done;
1582}
1583
d3649f68
CH
1584/**
1585 * populate_vma_page_range() - populate a range of pages in the vma.
1586 * @vma: target vma
1587 * @start: start address
1588 * @end: end address
c1e8d7c6 1589 * @locked: whether the mmap_lock is still held
d3649f68
CH
1590 *
1591 * This takes care of mlocking the pages too if VM_LOCKED is set.
1592 *
0a36f7f8
TY
1593 * Return either number of pages pinned in the vma, or a negative error
1594 * code on error.
d3649f68 1595 *
c1e8d7c6 1596 * vma->vm_mm->mmap_lock must be held.
d3649f68 1597 *
4f6da934 1598 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1599 * be unperturbed.
1600 *
4f6da934
PX
1601 * If @locked is non-NULL, it must held for read only and may be
1602 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1603 */
1604long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1605 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1606{
1607 struct mm_struct *mm = vma->vm_mm;
1608 unsigned long nr_pages = (end - start) / PAGE_SIZE;
9a863a6a 1609 int local_locked = 1;
d3649f68 1610 int gup_flags;
ece369c7 1611 long ret;
d3649f68 1612
be51eb18
ML
1613 VM_BUG_ON(!PAGE_ALIGNED(start));
1614 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1615 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1616 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1617 mmap_assert_locked(mm);
d3649f68 1618
b67bf49c
HD
1619 /*
1620 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1621 * faultin_page() to break COW, so it has no work to do here.
1622 */
d3649f68 1623 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1624 return nr_pages;
1625
1626 gup_flags = FOLL_TOUCH;
d3649f68
CH
1627 /*
1628 * We want to touch writable mappings with a write fault in order
1629 * to break COW, except for shared mappings because these don't COW
1630 * and we would not want to dirty them for nothing.
1631 */
1632 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1633 gup_flags |= FOLL_WRITE;
1634
1635 /*
1636 * We want mlock to succeed for regions that have any permissions
1637 * other than PROT_NONE.
1638 */
3122e80e 1639 if (vma_is_accessible(vma))
d3649f68
CH
1640 gup_flags |= FOLL_FORCE;
1641
f04740f5
JG
1642 if (locked)
1643 gup_flags |= FOLL_UNLOCKABLE;
1644
d3649f68
CH
1645 /*
1646 * We made sure addr is within a VMA, so the following will
1647 * not result in a stack expansion that recurses back here.
1648 */
ece369c7 1649 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
b2cac248 1650 NULL, locked ? locked : &local_locked);
ece369c7
HD
1651 lru_add_drain();
1652 return ret;
d3649f68
CH
1653}
1654
4ca9b385
DH
1655/*
1656 * faultin_vma_page_range() - populate (prefault) page tables inside the
1657 * given VMA range readable/writable
1658 *
1659 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1660 *
1661 * @vma: target vma
1662 * @start: start address
1663 * @end: end address
1664 * @write: whether to prefault readable or writable
1665 * @locked: whether the mmap_lock is still held
1666 *
1667 * Returns either number of processed pages in the vma, or a negative error
1668 * code on error (see __get_user_pages()).
1669 *
1670 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
6e4382c7 1671 * covered by the VMA. If it's released, *@locked will be set to 0.
4ca9b385
DH
1672 */
1673long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1674 unsigned long end, bool write, int *locked)
1675{
1676 struct mm_struct *mm = vma->vm_mm;
1677 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1678 int gup_flags;
ece369c7 1679 long ret;
4ca9b385
DH
1680
1681 VM_BUG_ON(!PAGE_ALIGNED(start));
1682 VM_BUG_ON(!PAGE_ALIGNED(end));
1683 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1684 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1685 mmap_assert_locked(mm);
1686
1687 /*
1688 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1689 * the page dirty with FOLL_WRITE -- which doesn't make a
1690 * difference with !FOLL_FORCE, because the page is writable
1691 * in the page table.
1692 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1693 * a poisoned page.
4ca9b385
DH
1694 * !FOLL_FORCE: Require proper access permissions.
1695 */
f04740f5 1696 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
4ca9b385
DH
1697 if (write)
1698 gup_flags |= FOLL_WRITE;
1699
1700 /*
eb2faa51
DH
1701 * We want to report -EINVAL instead of -EFAULT for any permission
1702 * problems or incompatible mappings.
4ca9b385 1703 */
eb2faa51
DH
1704 if (check_vma_flags(vma, gup_flags))
1705 return -EINVAL;
1706
ece369c7 1707 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
b2cac248 1708 NULL, locked);
ece369c7
HD
1709 lru_add_drain();
1710 return ret;
4ca9b385
DH
1711}
1712
d3649f68
CH
1713/*
1714 * __mm_populate - populate and/or mlock pages within a range of address space.
1715 *
1716 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1717 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1718 * mmap_lock must not be held.
d3649f68
CH
1719 */
1720int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1721{
1722 struct mm_struct *mm = current->mm;
1723 unsigned long end, nstart, nend;
1724 struct vm_area_struct *vma = NULL;
1725 int locked = 0;
1726 long ret = 0;
1727
1728 end = start + len;
1729
1730 for (nstart = start; nstart < end; nstart = nend) {
1731 /*
1732 * We want to fault in pages for [nstart; end) address range.
1733 * Find first corresponding VMA.
1734 */
1735 if (!locked) {
1736 locked = 1;
d8ed45c5 1737 mmap_read_lock(mm);
c4d1a92d 1738 vma = find_vma_intersection(mm, nstart, end);
d3649f68 1739 } else if (nstart >= vma->vm_end)
c4d1a92d
LH
1740 vma = find_vma_intersection(mm, vma->vm_end, end);
1741
1742 if (!vma)
d3649f68
CH
1743 break;
1744 /*
1745 * Set [nstart; nend) to intersection of desired address
1746 * range with the first VMA. Also, skip undesirable VMA types.
1747 */
1748 nend = min(end, vma->vm_end);
1749 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1750 continue;
1751 if (nstart < vma->vm_start)
1752 nstart = vma->vm_start;
1753 /*
1754 * Now fault in a range of pages. populate_vma_page_range()
1755 * double checks the vma flags, so that it won't mlock pages
1756 * if the vma was already munlocked.
1757 */
1758 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1759 if (ret < 0) {
1760 if (ignore_errors) {
1761 ret = 0;
1762 continue; /* continue at next VMA */
1763 }
1764 break;
1765 }
1766 nend = nstart + ret * PAGE_SIZE;
1767 ret = 0;
1768 }
1769 if (locked)
d8ed45c5 1770 mmap_read_unlock(mm);
d3649f68
CH
1771 return ret; /* 0 or negative error code */
1772}
050a9adc 1773#else /* CONFIG_MMU */
64019a2e 1774static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc 1775 unsigned long nr_pages, struct page **pages,
b2cac248 1776 int *locked, unsigned int foll_flags)
050a9adc
CH
1777{
1778 struct vm_area_struct *vma;
b2a72dff 1779 bool must_unlock = false;
050a9adc 1780 unsigned long vm_flags;
24dc20c7 1781 long i;
050a9adc 1782
b2a72dff
JG
1783 if (!nr_pages)
1784 return 0;
1785
1786 /*
1787 * The internal caller expects GUP to manage the lock internally and the
1788 * lock must be released when this returns.
1789 */
9a863a6a 1790 if (!*locked) {
b2a72dff
JG
1791 if (mmap_read_lock_killable(mm))
1792 return -EAGAIN;
1793 must_unlock = true;
1794 *locked = 1;
1795 }
1796
050a9adc
CH
1797 /* calculate required read or write permissions.
1798 * If FOLL_FORCE is set, we only require the "MAY" flags.
1799 */
1800 vm_flags = (foll_flags & FOLL_WRITE) ?
1801 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1802 vm_flags &= (foll_flags & FOLL_FORCE) ?
1803 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1804
1805 for (i = 0; i < nr_pages; i++) {
1806 vma = find_vma(mm, start);
1807 if (!vma)
b2a72dff 1808 break;
050a9adc
CH
1809
1810 /* protect what we can, including chardevs */
1811 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1812 !(vm_flags & vma->vm_flags))
b2a72dff 1813 break;
050a9adc
CH
1814
1815 if (pages) {
396a400b 1816 pages[i] = virt_to_page((void *)start);
050a9adc
CH
1817 if (pages[i])
1818 get_page(pages[i]);
1819 }
b2cac248 1820
050a9adc
CH
1821 start = (start + PAGE_SIZE) & PAGE_MASK;
1822 }
1823
b2a72dff
JG
1824 if (must_unlock && *locked) {
1825 mmap_read_unlock(mm);
1826 *locked = 0;
1827 }
050a9adc 1828
050a9adc
CH
1829 return i ? : -EFAULT;
1830}
1831#endif /* !CONFIG_MMU */
d3649f68 1832
bb523b40
AG
1833/**
1834 * fault_in_writeable - fault in userspace address range for writing
1835 * @uaddr: start of address range
1836 * @size: size of address range
1837 *
1838 * Returns the number of bytes not faulted in (like copy_to_user() and
1839 * copy_from_user()).
1840 */
1841size_t fault_in_writeable(char __user *uaddr, size_t size)
1842{
1843 char __user *start = uaddr, *end;
1844
1845 if (unlikely(size == 0))
1846 return 0;
677b2a8c
CL
1847 if (!user_write_access_begin(uaddr, size))
1848 return size;
bb523b40 1849 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1850 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1851 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1852 }
1853 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1854 if (unlikely(end < start))
1855 end = NULL;
1856 while (uaddr != end) {
677b2a8c 1857 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1858 uaddr += PAGE_SIZE;
1859 }
1860
1861out:
677b2a8c 1862 user_write_access_end();
bb523b40
AG
1863 if (size > uaddr - start)
1864 return size - (uaddr - start);
1865 return 0;
1866}
1867EXPORT_SYMBOL(fault_in_writeable);
1868
da32b581
CM
1869/**
1870 * fault_in_subpage_writeable - fault in an address range for writing
1871 * @uaddr: start of address range
1872 * @size: size of address range
1873 *
1874 * Fault in a user address range for writing while checking for permissions at
1875 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1876 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1877 *
1878 * Returns the number of bytes not faulted in (like copy_to_user() and
1879 * copy_from_user()).
1880 */
1881size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1882{
1883 size_t faulted_in;
1884
1885 /*
1886 * Attempt faulting in at page granularity first for page table
1887 * permission checking. The arch-specific probe_subpage_writeable()
1888 * functions may not check for this.
1889 */
1890 faulted_in = size - fault_in_writeable(uaddr, size);
1891 if (faulted_in)
1892 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1893
1894 return size - faulted_in;
1895}
1896EXPORT_SYMBOL(fault_in_subpage_writeable);
1897
cdd591fc
AG
1898/*
1899 * fault_in_safe_writeable - fault in an address range for writing
1900 * @uaddr: start of address range
1901 * @size: length of address range
1902 *
fe673d3f
LT
1903 * Faults in an address range for writing. This is primarily useful when we
1904 * already know that some or all of the pages in the address range aren't in
1905 * memory.
cdd591fc 1906 *
fe673d3f 1907 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
1908 *
1909 * Note that we don't pin or otherwise hold the pages referenced that we fault
1910 * in. There's no guarantee that they'll stay in memory for any duration of
1911 * time.
1912 *
1913 * Returns the number of bytes not faulted in, like copy_to_user() and
1914 * copy_from_user().
1915 */
1916size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1917{
fe673d3f 1918 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 1919 struct mm_struct *mm = current->mm;
fe673d3f 1920 bool unlocked = false;
cdd591fc 1921
fe673d3f
LT
1922 if (unlikely(size == 0))
1923 return 0;
cdd591fc 1924 end = PAGE_ALIGN(start + size);
fe673d3f 1925 if (end < start)
cdd591fc 1926 end = 0;
cdd591fc 1927
fe673d3f
LT
1928 mmap_read_lock(mm);
1929 do {
1930 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 1931 break;
fe673d3f
LT
1932 start = (start + PAGE_SIZE) & PAGE_MASK;
1933 } while (start != end);
1934 mmap_read_unlock(mm);
1935
1936 if (size > (unsigned long)uaddr - start)
1937 return size - ((unsigned long)uaddr - start);
1938 return 0;
cdd591fc
AG
1939}
1940EXPORT_SYMBOL(fault_in_safe_writeable);
1941
bb523b40
AG
1942/**
1943 * fault_in_readable - fault in userspace address range for reading
1944 * @uaddr: start of user address range
1945 * @size: size of user address range
1946 *
1947 * Returns the number of bytes not faulted in (like copy_to_user() and
1948 * copy_from_user()).
1949 */
1950size_t fault_in_readable(const char __user *uaddr, size_t size)
1951{
1952 const char __user *start = uaddr, *end;
1953 volatile char c;
1954
1955 if (unlikely(size == 0))
1956 return 0;
677b2a8c
CL
1957 if (!user_read_access_begin(uaddr, size))
1958 return size;
bb523b40 1959 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1960 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1961 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1962 }
1963 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1964 if (unlikely(end < start))
1965 end = NULL;
1966 while (uaddr != end) {
677b2a8c 1967 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1968 uaddr += PAGE_SIZE;
1969 }
1970
1971out:
677b2a8c 1972 user_read_access_end();
bb523b40
AG
1973 (void)c;
1974 if (size > uaddr - start)
1975 return size - (uaddr - start);
1976 return 0;
1977}
1978EXPORT_SYMBOL(fault_in_readable);
1979
8f942eea
JH
1980/**
1981 * get_dump_page() - pin user page in memory while writing it to core dump
1982 * @addr: user address
1983 *
1984 * Returns struct page pointer of user page pinned for dump,
1985 * to be freed afterwards by put_page().
1986 *
1987 * Returns NULL on any kind of failure - a hole must then be inserted into
1988 * the corefile, to preserve alignment with its headers; and also returns
1989 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1990 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1991 *
7f3bfab5 1992 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1993 */
1994#ifdef CONFIG_ELF_CORE
1995struct page *get_dump_page(unsigned long addr)
1996{
8f942eea 1997 struct page *page;
b2a72dff 1998 int locked = 0;
7f3bfab5 1999 int ret;
8f942eea 2000
b2cac248 2001 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
7f3bfab5 2002 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
7f3bfab5 2003 return (ret == 1) ? page : NULL;
8f942eea
JH
2004}
2005#endif /* CONFIG_ELF_CORE */
2006
d1e153fe 2007#ifdef CONFIG_MIGRATION
f68749ec 2008/*
67e139b0 2009 * Returns the number of collected pages. Return value is always >= 0.
f68749ec 2010 */
67e139b0
AP
2011static unsigned long collect_longterm_unpinnable_pages(
2012 struct list_head *movable_page_list,
2013 unsigned long nr_pages,
2014 struct page **pages)
9a4e9f3b 2015{
67e139b0 2016 unsigned long i, collected = 0;
1b7f7e58 2017 struct folio *prev_folio = NULL;
67e139b0 2018 bool drain_allow = true;
9a4e9f3b 2019
83c02c23 2020 for (i = 0; i < nr_pages; i++) {
1b7f7e58 2021 struct folio *folio = page_folio(pages[i]);
f9f38f78 2022
1b7f7e58 2023 if (folio == prev_folio)
83c02c23 2024 continue;
1b7f7e58 2025 prev_folio = folio;
f9f38f78 2026
67e139b0
AP
2027 if (folio_is_longterm_pinnable(folio))
2028 continue;
b05a79d4 2029
67e139b0 2030 collected++;
b05a79d4 2031
67e139b0 2032 if (folio_is_device_coherent(folio))
f9f38f78
CH
2033 continue;
2034
1b7f7e58 2035 if (folio_test_hugetlb(folio)) {
6aa3a920 2036 isolate_hugetlb(folio, movable_page_list);
f9f38f78
CH
2037 continue;
2038 }
9a4e9f3b 2039
1b7f7e58 2040 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
2041 lru_add_drain_all();
2042 drain_allow = false;
2043 }
2044
be2d5756 2045 if (!folio_isolate_lru(folio))
f9f38f78 2046 continue;
67e139b0
AP
2047
2048 list_add_tail(&folio->lru, movable_page_list);
1b7f7e58
MWO
2049 node_stat_mod_folio(folio,
2050 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2051 folio_nr_pages(folio));
9a4e9f3b
AK
2052 }
2053
67e139b0
AP
2054 return collected;
2055}
2056
2057/*
2058 * Unpins all pages and migrates device coherent pages and movable_page_list.
2059 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2060 * (or partial success).
2061 */
2062static int migrate_longterm_unpinnable_pages(
2063 struct list_head *movable_page_list,
2064 unsigned long nr_pages,
2065 struct page **pages)
2066{
2067 int ret;
2068 unsigned long i;
6e7f34eb 2069
b05a79d4 2070 for (i = 0; i < nr_pages; i++) {
67e139b0
AP
2071 struct folio *folio = page_folio(pages[i]);
2072
2073 if (folio_is_device_coherent(folio)) {
2074 /*
2075 * Migration will fail if the page is pinned, so convert
2076 * the pin on the source page to a normal reference.
2077 */
2078 pages[i] = NULL;
2079 folio_get(folio);
2080 gup_put_folio(folio, 1, FOLL_PIN);
2081
2082 if (migrate_device_coherent_page(&folio->page)) {
2083 ret = -EBUSY;
2084 goto err;
2085 }
2086
b05a79d4 2087 continue;
67e139b0 2088 }
b05a79d4 2089
67e139b0
AP
2090 /*
2091 * We can't migrate pages with unexpected references, so drop
2092 * the reference obtained by __get_user_pages_locked().
2093 * Migrating pages have been added to movable_page_list after
2094 * calling folio_isolate_lru() which takes a reference so the
2095 * page won't be freed if it's migrating.
2096 */
f6d299ec 2097 unpin_user_page(pages[i]);
67e139b0 2098 pages[i] = NULL;
f68749ec 2099 }
f9f38f78 2100
67e139b0 2101 if (!list_empty(movable_page_list)) {
f9f38f78
CH
2102 struct migration_target_control mtc = {
2103 .nid = NUMA_NO_NODE,
2104 .gfp_mask = GFP_USER | __GFP_NOWARN,
2105 };
2106
67e139b0
AP
2107 if (migrate_pages(movable_page_list, alloc_migration_target,
2108 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2109 MR_LONGTERM_PIN, NULL)) {
f9f38f78 2110 ret = -ENOMEM;
67e139b0
AP
2111 goto err;
2112 }
9a4e9f3b
AK
2113 }
2114
67e139b0
AP
2115 putback_movable_pages(movable_page_list);
2116
2117 return -EAGAIN;
2118
2119err:
2120 for (i = 0; i < nr_pages; i++)
2121 if (pages[i])
2122 unpin_user_page(pages[i]);
2123 putback_movable_pages(movable_page_list);
24a95998 2124
67e139b0
AP
2125 return ret;
2126}
2127
2128/*
2129 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2130 * pages in the range are required to be pinned via FOLL_PIN, before calling
2131 * this routine.
2132 *
2133 * If any pages in the range are not allowed to be pinned, then this routine
2134 * will migrate those pages away, unpin all the pages in the range and return
2135 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2136 * call this routine again.
2137 *
2138 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2139 * The caller should give up, and propagate the error back up the call stack.
2140 *
2141 * If everything is OK and all pages in the range are allowed to be pinned, then
2142 * this routine leaves all pages pinned and returns zero for success.
2143 */
2144static long check_and_migrate_movable_pages(unsigned long nr_pages,
2145 struct page **pages)
2146{
2147 unsigned long collected;
2148 LIST_HEAD(movable_page_list);
2149
2150 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2151 nr_pages, pages);
2152 if (!collected)
2153 return 0;
2154
2155 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2156 pages);
9a4e9f3b
AK
2157}
2158#else
f68749ec 2159static long check_and_migrate_movable_pages(unsigned long nr_pages,
f6d299ec 2160 struct page **pages)
9a4e9f3b 2161{
24a95998 2162 return 0;
9a4e9f3b 2163}
d1e153fe 2164#endif /* CONFIG_MIGRATION */
9a4e9f3b 2165
2bb6d283 2166/*
932f4a63
IW
2167 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2168 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 2169 */
64019a2e 2170static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
2171 unsigned long start,
2172 unsigned long nr_pages,
2173 struct page **pages,
53b2d09b 2174 int *locked,
932f4a63 2175 unsigned int gup_flags)
2bb6d283 2176{
f68749ec 2177 unsigned int flags;
24a95998 2178 long rc, nr_pinned_pages;
2bb6d283 2179
f68749ec 2180 if (!(gup_flags & FOLL_LONGTERM))
b2cac248 2181 return __get_user_pages_locked(mm, start, nr_pages, pages,
53b2d09b 2182 locked, gup_flags);
67e139b0 2183
f68749ec
PT
2184 flags = memalloc_pin_save();
2185 do {
24a95998 2186 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
b2cac248 2187 pages, locked,
24a95998
AP
2188 gup_flags);
2189 if (nr_pinned_pages <= 0) {
2190 rc = nr_pinned_pages;
f68749ec 2191 break;
24a95998 2192 }
d64e2dbc
JG
2193
2194 /* FOLL_LONGTERM implies FOLL_PIN */
f6d299ec 2195 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
24a95998 2196 } while (rc == -EAGAIN);
f68749ec 2197 memalloc_pin_restore(flags);
24a95998 2198 return rc ? rc : nr_pinned_pages;
2bb6d283 2199}
932f4a63 2200
d64e2dbc
JG
2201/*
2202 * Check that the given flags are valid for the exported gup/pup interface, and
2203 * update them with the required flags that the caller must have set.
2204 */
b2cac248
LS
2205static bool is_valid_gup_args(struct page **pages, int *locked,
2206 unsigned int *gup_flags_p, unsigned int to_set)
447f3e45 2207{
d64e2dbc
JG
2208 unsigned int gup_flags = *gup_flags_p;
2209
447f3e45 2210 /*
d64e2dbc
JG
2211 * These flags not allowed to be specified externally to the gup
2212 * interfaces:
2213 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2214 * - FOLL_REMOTE is internal only and used on follow_page()
f04740f5 2215 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
447f3e45 2216 */
f04740f5 2217 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
d64e2dbc
JG
2218 FOLL_REMOTE | FOLL_FAST_ONLY)))
2219 return false;
2220
2221 gup_flags |= to_set;
f04740f5
JG
2222 if (locked) {
2223 /* At the external interface locked must be set */
2224 if (WARN_ON_ONCE(*locked != 1))
2225 return false;
2226
2227 gup_flags |= FOLL_UNLOCKABLE;
2228 }
d64e2dbc
JG
2229
2230 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2231 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2232 (FOLL_PIN | FOLL_GET)))
2233 return false;
2234
2235 /* LONGTERM can only be specified when pinning */
2236 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2237 return false;
2238
2239 /* Pages input must be given if using GET/PIN */
2240 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
447f3e45 2241 return false;
d64e2dbc 2242
d64e2dbc
JG
2243 /* We want to allow the pgmap to be hot-unplugged at all times */
2244 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2245 (gup_flags & FOLL_PCI_P2PDMA)))
2246 return false;
2247
d64e2dbc 2248 *gup_flags_p = gup_flags;
447f3e45
BS
2249 return true;
2250}
2251
22bf29b6 2252#ifdef CONFIG_MMU
adc8cb40 2253/**
c4237f8b 2254 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2255 * @mm: mm_struct of target mm
2256 * @start: starting user address
2257 * @nr_pages: number of pages from start to pin
2258 * @gup_flags: flags modifying lookup behaviour
2259 * @pages: array that receives pointers to the pages pinned.
2260 * Should be at least nr_pages long. Or NULL, if caller
2261 * only intends to ensure the pages are faulted in.
c4237f8b
JH
2262 * @locked: pointer to lock flag indicating whether lock is held and
2263 * subsequently whether VM_FAULT_RETRY functionality can be
2264 * utilised. Lock must initially be held.
2265 *
2266 * Returns either number of pages pinned (which may be less than the
2267 * number requested), or an error. Details about the return value:
2268 *
2269 * -- If nr_pages is 0, returns 0.
2270 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2271 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2272 * pages pinned. Again, this may be less than nr_pages.
2273 *
2274 * The caller is responsible for releasing returned @pages, via put_page().
2275 *
c1e8d7c6 2276 * Must be called with mmap_lock held for read or write.
c4237f8b 2277 *
adc8cb40
SJ
2278 * get_user_pages_remote walks a process's page tables and takes a reference
2279 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2280 * instant. That is, it takes the page that would be accessed if a user
2281 * thread accesses the given user virtual address at that instant.
2282 *
2283 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2284 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b 2285 * page there in some cases (eg. if mmapped pagecache has been invalidated
5da1a868 2286 * and subsequently re-faulted). However it does guarantee that the page
c4237f8b
JH
2287 * won't be freed completely. And mostly callers simply care that the page
2288 * contains data that was valid *at some point in time*. Typically, an IO
2289 * or similar operation cannot guarantee anything stronger anyway because
2290 * locks can't be held over the syscall boundary.
2291 *
2292 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2293 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2294 * be called after the page is finished with, and before put_page is called.
2295 *
adc8cb40
SJ
2296 * get_user_pages_remote is typically used for fewer-copy IO operations,
2297 * to get a handle on the memory by some means other than accesses
2298 * via the user virtual addresses. The pages may be submitted for
2299 * DMA to devices or accessed via their kernel linear mapping (via the
2300 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2301 *
2302 * See also get_user_pages_fast, for performance critical applications.
2303 *
adc8cb40 2304 * get_user_pages_remote should be phased out in favor of
c4237f8b 2305 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2306 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2307 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2308 */
64019a2e 2309long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2310 unsigned long start, unsigned long nr_pages,
2311 unsigned int gup_flags, struct page **pages,
ca5e8632 2312 int *locked)
c4237f8b 2313{
9a863a6a
JG
2314 int local_locked = 1;
2315
b2cac248 2316 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc 2317 FOLL_TOUCH | FOLL_REMOTE))
eddb1c22
JH
2318 return -EINVAL;
2319
b2cac248 2320 return __get_user_pages_locked(mm, start, nr_pages, pages,
9a863a6a 2321 locked ? locked : &local_locked,
d64e2dbc 2322 gup_flags);
c4237f8b
JH
2323}
2324EXPORT_SYMBOL(get_user_pages_remote);
2325
eddb1c22 2326#else /* CONFIG_MMU */
64019a2e 2327long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2328 unsigned long start, unsigned long nr_pages,
2329 unsigned int gup_flags, struct page **pages,
ca5e8632 2330 int *locked)
eddb1c22
JH
2331{
2332 return 0;
2333}
2334#endif /* !CONFIG_MMU */
2335
adc8cb40
SJ
2336/**
2337 * get_user_pages() - pin user pages in memory
2338 * @start: starting user address
2339 * @nr_pages: number of pages from start to pin
2340 * @gup_flags: flags modifying lookup behaviour
2341 * @pages: array that receives pointers to the pages pinned.
2342 * Should be at least nr_pages long. Or NULL, if caller
2343 * only intends to ensure the pages are faulted in.
adc8cb40 2344 *
64019a2e
PX
2345 * This is the same as get_user_pages_remote(), just with a less-flexible
2346 * calling convention where we assume that the mm being operated on belongs to
2347 * the current task, and doesn't allow passing of a locked parameter. We also
2348 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2349 */
2350long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2351 unsigned int gup_flags, struct page **pages)
932f4a63 2352{
9a863a6a
JG
2353 int locked = 1;
2354
b2cac248 2355 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
eddb1c22
JH
2356 return -EINVAL;
2357
afa3c33e 2358 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2359 &locked, gup_flags);
932f4a63
IW
2360}
2361EXPORT_SYMBOL(get_user_pages);
2bb6d283 2362
acc3c8d1 2363/*
d3649f68 2364 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2365 *
3e4e28c5 2366 * mmap_read_lock(mm);
64019a2e 2367 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2368 * mmap_read_unlock(mm);
d3649f68
CH
2369 *
2370 * with:
2371 *
64019a2e 2372 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2373 *
2374 * It is functionally equivalent to get_user_pages_fast so
2375 * get_user_pages_fast should be used instead if specific gup_flags
2376 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2377 */
d3649f68
CH
2378long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2379 struct page **pages, unsigned int gup_flags)
acc3c8d1 2380{
b2a72dff 2381 int locked = 0;
acc3c8d1 2382
b2cac248 2383 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 2384 FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc
JG
2385 return -EINVAL;
2386
afa3c33e 2387 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2388 &locked, gup_flags);
4bbd4c77 2389}
d3649f68 2390EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2391
2392/*
67a929e0 2393 * Fast GUP
2667f50e
SC
2394 *
2395 * get_user_pages_fast attempts to pin user pages by walking the page
2396 * tables directly and avoids taking locks. Thus the walker needs to be
2397 * protected from page table pages being freed from under it, and should
2398 * block any THP splits.
2399 *
2400 * One way to achieve this is to have the walker disable interrupts, and
2401 * rely on IPIs from the TLB flushing code blocking before the page table
2402 * pages are freed. This is unsuitable for architectures that do not need
2403 * to broadcast an IPI when invalidating TLBs.
2404 *
2405 * Another way to achieve this is to batch up page table containing pages
2406 * belonging to more than one mm_user, then rcu_sched a callback to free those
2407 * pages. Disabling interrupts will allow the fast_gup walker to both block
2408 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2409 * (which is a relatively rare event). The code below adopts this strategy.
2410 *
2411 * Before activating this code, please be aware that the following assumptions
2412 * are currently made:
2413 *
ff2e6d72 2414 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2415 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2416 *
2667f50e
SC
2417 * *) ptes can be read atomically by the architecture.
2418 *
2419 * *) access_ok is sufficient to validate userspace address ranges.
2420 *
2421 * The last two assumptions can be relaxed by the addition of helper functions.
2422 *
2423 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2424 */
67a929e0 2425#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2426
a6e79df9
LS
2427/*
2428 * Used in the GUP-fast path to determine whether a pin is permitted for a
2429 * specific folio.
2430 *
2431 * This call assumes the caller has pinned the folio, that the lowest page table
2432 * level still points to this folio, and that interrupts have been disabled.
2433 *
2434 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2435 * (see comment describing the writable_file_mapping_allowed() function). We
2436 * therefore try to avoid the most egregious case of a long-term mapping doing
2437 * so.
2438 *
2439 * This function cannot be as thorough as that one as the VMA is not available
2440 * in the fast path, so instead we whitelist known good cases and if in doubt,
2441 * fall back to the slow path.
2442 */
2443static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2444{
2445 struct address_space *mapping;
2446 unsigned long mapping_flags;
2447
2448 /*
2449 * If we aren't pinning then no problematic write can occur. A long term
2450 * pin is the most egregious case so this is the one we disallow.
2451 */
2452 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2453 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2454 return true;
2455
2456 /* The folio is pinned, so we can safely access folio fields. */
2457
2458 if (WARN_ON_ONCE(folio_test_slab(folio)))
2459 return false;
2460
2461 /* hugetlb mappings do not require dirty-tracking. */
2462 if (folio_test_hugetlb(folio))
2463 return true;
2464
2465 /*
2466 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2467 * cannot proceed, which means no actions performed under RCU can
2468 * proceed either.
2469 *
2470 * inodes and thus their mappings are freed under RCU, which means the
2471 * mapping cannot be freed beneath us and thus we can safely dereference
2472 * it.
2473 */
2474 lockdep_assert_irqs_disabled();
2475
2476 /*
2477 * However, there may be operations which _alter_ the mapping, so ensure
2478 * we read it once and only once.
2479 */
2480 mapping = READ_ONCE(folio->mapping);
2481
2482 /*
2483 * The mapping may have been truncated, in any case we cannot determine
2484 * if this mapping is safe - fall back to slow path to determine how to
2485 * proceed.
2486 */
2487 if (!mapping)
2488 return false;
2489
2490 /* Anonymous folios pose no problem. */
2491 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2492 if (mapping_flags)
2493 return mapping_flags & PAGE_MAPPING_ANON;
2494
2495 /*
2496 * At this point, we know the mapping is non-null and points to an
2497 * address_space object. The only remaining whitelisted file system is
2498 * shmem.
2499 */
2500 return shmem_mapping(mapping);
2501}
2502
790c7369 2503static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2504 unsigned int flags,
790c7369 2505 struct page **pages)
b59f65fa
KS
2506{
2507 while ((*nr) - nr_start) {
2508 struct page *page = pages[--(*nr)];
2509
2510 ClearPageReferenced(page);
3faa52c0
JH
2511 if (flags & FOLL_PIN)
2512 unpin_user_page(page);
2513 else
2514 put_page(page);
b59f65fa
KS
2515 }
2516}
2517
3010a5ea 2518#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
70cbc3cc
YS
2519/*
2520 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2521 * operations.
2522 *
2523 * To pin the page, fast-gup needs to do below in order:
2524 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2525 *
2526 * For the rest of pgtable operations where pgtable updates can be racy
2527 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2528 * is pinned.
2529 *
2530 * Above will work for all pte-level operations, including THP split.
2531 *
2532 * For THP collapse, it's a bit more complicated because fast-gup may be
2533 * walking a pgtable page that is being freed (pte is still valid but pmd
2534 * can be cleared already). To avoid race in such condition, we need to
2535 * also check pmd here to make sure pmd doesn't change (corresponds to
2536 * pmdp_collapse_flush() in the THP collapse code path).
2537 */
2538static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2539 unsigned long end, unsigned int flags,
2540 struct page **pages, int *nr)
2667f50e 2541{
b59f65fa
KS
2542 struct dev_pagemap *pgmap = NULL;
2543 int nr_start = *nr, ret = 0;
2667f50e 2544 pte_t *ptep, *ptem;
2667f50e
SC
2545
2546 ptem = ptep = pte_offset_map(&pmd, addr);
04dee9e8
HD
2547 if (!ptep)
2548 return 0;
2667f50e 2549 do {
2a4a06da 2550 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2551 struct page *page;
2552 struct folio *folio;
2667f50e 2553
0cf45986 2554 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
e7884f8e
KS
2555 goto pte_unmap;
2556
b798bec4 2557 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2558 goto pte_unmap;
2559
b59f65fa 2560 if (pte_devmap(pte)) {
7af75561
IW
2561 if (unlikely(flags & FOLL_LONGTERM))
2562 goto pte_unmap;
2563
b59f65fa
KS
2564 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2565 if (unlikely(!pgmap)) {
3b78d834 2566 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2567 goto pte_unmap;
2568 }
2569 } else if (pte_special(pte))
2667f50e
SC
2570 goto pte_unmap;
2571
2572 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2573 page = pte_page(pte);
2574
b0496fe4
MWO
2575 folio = try_grab_folio(page, 1, flags);
2576 if (!folio)
2667f50e
SC
2577 goto pte_unmap;
2578
1507f512 2579 if (unlikely(page_is_secretmem(page))) {
b0496fe4 2580 gup_put_folio(folio, 1, flags);
1507f512
MR
2581 goto pte_unmap;
2582 }
2583
70cbc3cc 2584 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
c33c7948 2585 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
b0496fe4 2586 gup_put_folio(folio, 1, flags);
2667f50e
SC
2587 goto pte_unmap;
2588 }
2589
a6e79df9 2590 if (!folio_fast_pin_allowed(folio, flags)) {
b0496fe4 2591 gup_put_folio(folio, 1, flags);
2667f50e
SC
2592 goto pte_unmap;
2593 }
2594
84209e87 2595 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
a7f22660
DH
2596 gup_put_folio(folio, 1, flags);
2597 goto pte_unmap;
2598 }
2599
f28d4363
CI
2600 /*
2601 * We need to make the page accessible if and only if we are
2602 * going to access its content (the FOLL_PIN case). Please
2603 * see Documentation/core-api/pin_user_pages.rst for
2604 * details.
2605 */
2606 if (flags & FOLL_PIN) {
2607 ret = arch_make_page_accessible(page);
2608 if (ret) {
b0496fe4 2609 gup_put_folio(folio, 1, flags);
f28d4363
CI
2610 goto pte_unmap;
2611 }
2612 }
b0496fe4 2613 folio_set_referenced(folio);
2667f50e
SC
2614 pages[*nr] = page;
2615 (*nr)++;
2667f50e
SC
2616 } while (ptep++, addr += PAGE_SIZE, addr != end);
2617
2618 ret = 1;
2619
2620pte_unmap:
832d7aa0
CH
2621 if (pgmap)
2622 put_dev_pagemap(pgmap);
2667f50e
SC
2623 pte_unmap(ptem);
2624 return ret;
2625}
2626#else
2627
2628/*
2629 * If we can't determine whether or not a pte is special, then fail immediately
2630 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2631 * to be special.
2632 *
2633 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2634 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2635 * useful to have gup_huge_pmd even if we can't operate on ptes.
2636 */
70cbc3cc
YS
2637static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2638 unsigned long end, unsigned int flags,
2639 struct page **pages, int *nr)
2667f50e
SC
2640{
2641 return 0;
2642}
3010a5ea 2643#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2644
17596731 2645#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2646static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2647 unsigned long end, unsigned int flags,
2648 struct page **pages, int *nr)
b59f65fa
KS
2649{
2650 int nr_start = *nr;
2651 struct dev_pagemap *pgmap = NULL;
2652
2653 do {
2654 struct page *page = pfn_to_page(pfn);
2655
2656 pgmap = get_dev_pagemap(pfn, pgmap);
2657 if (unlikely(!pgmap)) {
3b78d834 2658 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2659 break;
b59f65fa 2660 }
4003f107
LG
2661
2662 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2663 undo_dev_pagemap(nr, nr_start, flags, pages);
2664 break;
2665 }
2666
b59f65fa
KS
2667 SetPageReferenced(page);
2668 pages[*nr] = page;
0f089235 2669 if (unlikely(try_grab_page(page, flags))) {
3faa52c0 2670 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2671 break;
3faa52c0 2672 }
b59f65fa
KS
2673 (*nr)++;
2674 pfn++;
2675 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2676
6401c4eb 2677 put_dev_pagemap(pgmap);
20b7fee7 2678 return addr == end;
b59f65fa
KS
2679}
2680
a9b6de77 2681static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2682 unsigned long end, unsigned int flags,
2683 struct page **pages, int *nr)
b59f65fa
KS
2684{
2685 unsigned long fault_pfn;
a9b6de77
DW
2686 int nr_start = *nr;
2687
2688 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2689 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2690 return 0;
b59f65fa 2691
a9b6de77 2692 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2693 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2694 return 0;
2695 }
2696 return 1;
b59f65fa
KS
2697}
2698
a9b6de77 2699static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2700 unsigned long end, unsigned int flags,
2701 struct page **pages, int *nr)
b59f65fa
KS
2702{
2703 unsigned long fault_pfn;
a9b6de77
DW
2704 int nr_start = *nr;
2705
2706 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2707 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2708 return 0;
b59f65fa 2709
a9b6de77 2710 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2711 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2712 return 0;
2713 }
2714 return 1;
b59f65fa
KS
2715}
2716#else
a9b6de77 2717static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2718 unsigned long end, unsigned int flags,
2719 struct page **pages, int *nr)
b59f65fa
KS
2720{
2721 BUILD_BUG();
2722 return 0;
2723}
2724
a9b6de77 2725static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2726 unsigned long end, unsigned int flags,
2727 struct page **pages, int *nr)
b59f65fa
KS
2728{
2729 BUILD_BUG();
2730 return 0;
2731}
2732#endif
2733
a43e9820
JH
2734static int record_subpages(struct page *page, unsigned long addr,
2735 unsigned long end, struct page **pages)
2736{
2737 int nr;
2738
c228afb1
MWO
2739 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2740 pages[nr] = nth_page(page, nr);
a43e9820
JH
2741
2742 return nr;
2743}
2744
cbd34da7
CH
2745#ifdef CONFIG_ARCH_HAS_HUGEPD
2746static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2747 unsigned long sz)
2748{
2749 unsigned long __boundary = (addr + sz) & ~(sz-1);
2750 return (__boundary - 1 < end - 1) ? __boundary : end;
2751}
2752
2753static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2754 unsigned long end, unsigned int flags,
2755 struct page **pages, int *nr)
cbd34da7
CH
2756{
2757 unsigned long pte_end;
09a1626e
MWO
2758 struct page *page;
2759 struct folio *folio;
cbd34da7
CH
2760 pte_t pte;
2761 int refs;
2762
2763 pte_end = (addr + sz) & ~(sz-1);
2764 if (pte_end < end)
2765 end = pte_end;
2766
55ca2263 2767 pte = huge_ptep_get(ptep);
cbd34da7 2768
0cd22afd 2769 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2770 return 0;
2771
2772 /* hugepages are never "special" */
2773 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2774
09a1626e 2775 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
a43e9820 2776 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2777
09a1626e
MWO
2778 folio = try_grab_folio(page, refs, flags);
2779 if (!folio)
cbd34da7 2780 return 0;
cbd34da7 2781
c33c7948 2782 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
09a1626e 2783 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2784 return 0;
2785 }
2786
a6e79df9 2787 if (!folio_fast_pin_allowed(folio, flags)) {
09a1626e 2788 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2789 return 0;
2790 }
2791
84209e87 2792 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2793 gup_put_folio(folio, refs, flags);
2794 return 0;
2795 }
2796
a43e9820 2797 *nr += refs;
09a1626e 2798 folio_set_referenced(folio);
cbd34da7
CH
2799 return 1;
2800}
2801
2802static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2803 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2804 struct page **pages, int *nr)
2805{
2806 pte_t *ptep;
2807 unsigned long sz = 1UL << hugepd_shift(hugepd);
2808 unsigned long next;
2809
2810 ptep = hugepte_offset(hugepd, addr, pdshift);
2811 do {
2812 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2813 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2814 return 0;
2815 } while (ptep++, addr = next, addr != end);
2816
2817 return 1;
2818}
2819#else
2820static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2821 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2822 struct page **pages, int *nr)
2823{
2824 return 0;
2825}
2826#endif /* CONFIG_ARCH_HAS_HUGEPD */
2827
2667f50e 2828static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2829 unsigned long end, unsigned int flags,
2830 struct page **pages, int *nr)
2667f50e 2831{
667ed1f7
MWO
2832 struct page *page;
2833 struct folio *folio;
2667f50e
SC
2834 int refs;
2835
b798bec4 2836 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2837 return 0;
2838
7af75561
IW
2839 if (pmd_devmap(orig)) {
2840 if (unlikely(flags & FOLL_LONGTERM))
2841 return 0;
86dfbed4
JH
2842 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2843 pages, nr);
7af75561 2844 }
b59f65fa 2845
c228afb1 2846 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2847 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2848
667ed1f7
MWO
2849 folio = try_grab_folio(page, refs, flags);
2850 if (!folio)
2667f50e 2851 return 0;
2667f50e
SC
2852
2853 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 2854 gup_put_folio(folio, refs, flags);
2667f50e
SC
2855 return 0;
2856 }
2857
a6e79df9
LS
2858 if (!folio_fast_pin_allowed(folio, flags)) {
2859 gup_put_folio(folio, refs, flags);
2860 return 0;
2861 }
84209e87 2862 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2863 gup_put_folio(folio, refs, flags);
2864 return 0;
2865 }
2866
a43e9820 2867 *nr += refs;
667ed1f7 2868 folio_set_referenced(folio);
2667f50e
SC
2869 return 1;
2870}
2871
2872static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2873 unsigned long end, unsigned int flags,
2874 struct page **pages, int *nr)
2667f50e 2875{
83afb52e
MWO
2876 struct page *page;
2877 struct folio *folio;
2667f50e
SC
2878 int refs;
2879
b798bec4 2880 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2881 return 0;
2882
7af75561
IW
2883 if (pud_devmap(orig)) {
2884 if (unlikely(flags & FOLL_LONGTERM))
2885 return 0;
86dfbed4
JH
2886 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2887 pages, nr);
7af75561 2888 }
b59f65fa 2889
c228afb1 2890 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2891 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2892
83afb52e
MWO
2893 folio = try_grab_folio(page, refs, flags);
2894 if (!folio)
2667f50e 2895 return 0;
2667f50e
SC
2896
2897 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 2898 gup_put_folio(folio, refs, flags);
2667f50e
SC
2899 return 0;
2900 }
2901
a6e79df9
LS
2902 if (!folio_fast_pin_allowed(folio, flags)) {
2903 gup_put_folio(folio, refs, flags);
2904 return 0;
2905 }
2906
84209e87 2907 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2908 gup_put_folio(folio, refs, flags);
2909 return 0;
2910 }
2911
a43e9820 2912 *nr += refs;
83afb52e 2913 folio_set_referenced(folio);
2667f50e
SC
2914 return 1;
2915}
2916
f30c59e9 2917static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2918 unsigned long end, unsigned int flags,
f30c59e9
AK
2919 struct page **pages, int *nr)
2920{
2921 int refs;
2d7919a2
MWO
2922 struct page *page;
2923 struct folio *folio;
f30c59e9 2924
b798bec4 2925 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2926 return 0;
2927
b59f65fa 2928 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2929
c228afb1 2930 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2931 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2932
2d7919a2
MWO
2933 folio = try_grab_folio(page, refs, flags);
2934 if (!folio)
f30c59e9 2935 return 0;
f30c59e9
AK
2936
2937 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 2938 gup_put_folio(folio, refs, flags);
f30c59e9
AK
2939 return 0;
2940 }
2941
31115034
LS
2942 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2943 gup_put_folio(folio, refs, flags);
2944 return 0;
2945 }
2946
a6e79df9
LS
2947 if (!folio_fast_pin_allowed(folio, flags)) {
2948 gup_put_folio(folio, refs, flags);
2949 return 0;
2950 }
2951
a43e9820 2952 *nr += refs;
2d7919a2 2953 folio_set_referenced(folio);
f30c59e9
AK
2954 return 1;
2955}
2956
d3f7b1bb 2957static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2958 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2959{
2960 unsigned long next;
2961 pmd_t *pmdp;
2962
d3f7b1bb 2963 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2964 do {
1180e732 2965 pmd_t pmd = pmdp_get_lockless(pmdp);
2667f50e
SC
2966
2967 next = pmd_addr_end(addr, end);
84c3fc4e 2968 if (!pmd_present(pmd))
2667f50e
SC
2969 return 0;
2970
414fd080
YZ
2971 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2972 pmd_devmap(pmd))) {
0cf45986
DH
2973 if (pmd_protnone(pmd) &&
2974 !gup_can_follow_protnone(flags))
2667f50e
SC
2975 return 0;
2976
b798bec4 2977 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2978 pages, nr))
2979 return 0;
2980
f30c59e9
AK
2981 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2982 /*
2983 * architecture have different format for hugetlbfs
2984 * pmd format and THP pmd format
2985 */
2986 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2987 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2988 return 0;
70cbc3cc 2989 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2923117b 2990 return 0;
2667f50e
SC
2991 } while (pmdp++, addr = next, addr != end);
2992
2993 return 1;
2994}
2995
d3f7b1bb 2996static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2997 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2998{
2999 unsigned long next;
3000 pud_t *pudp;
3001
d3f7b1bb 3002 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 3003 do {
e37c6982 3004 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
3005
3006 next = pud_addr_end(addr, end);
15494520 3007 if (unlikely(!pud_present(pud)))
2667f50e 3008 return 0;
fcd0ccd8 3009 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
b798bec4 3010 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
3011 pages, nr))
3012 return 0;
3013 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3014 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 3015 PUD_SHIFT, next, flags, pages, nr))
2667f50e 3016 return 0;
d3f7b1bb 3017 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
3018 return 0;
3019 } while (pudp++, addr = next, addr != end);
3020
3021 return 1;
3022}
3023
d3f7b1bb 3024static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 3025 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
3026{
3027 unsigned long next;
3028 p4d_t *p4dp;
3029
d3f7b1bb 3030 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
3031 do {
3032 p4d_t p4d = READ_ONCE(*p4dp);
3033
3034 next = p4d_addr_end(addr, end);
3035 if (p4d_none(p4d))
3036 return 0;
3037 BUILD_BUG_ON(p4d_huge(p4d));
3038 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3039 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 3040 P4D_SHIFT, next, flags, pages, nr))
c2febafc 3041 return 0;
d3f7b1bb 3042 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
3043 return 0;
3044 } while (p4dp++, addr = next, addr != end);
3045
3046 return 1;
3047}
3048
5b65c467 3049static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 3050 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
3051{
3052 unsigned long next;
3053 pgd_t *pgdp;
3054
3055 pgdp = pgd_offset(current->mm, addr);
3056 do {
3057 pgd_t pgd = READ_ONCE(*pgdp);
3058
3059 next = pgd_addr_end(addr, end);
3060 if (pgd_none(pgd))
3061 return;
3062 if (unlikely(pgd_huge(pgd))) {
b798bec4 3063 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
3064 pages, nr))
3065 return;
3066 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3067 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 3068 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 3069 return;
d3f7b1bb 3070 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
3071 return;
3072 } while (pgdp++, addr = next, addr != end);
3073}
050a9adc
CH
3074#else
3075static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3076 unsigned int flags, struct page **pages, int *nr)
3077{
3078}
3079#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
3080
3081#ifndef gup_fast_permitted
3082/*
dadbb612 3083 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
3084 * we need to fall back to the slow version:
3085 */
26f4c328 3086static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 3087{
26f4c328 3088 return true;
5b65c467
KS
3089}
3090#endif
3091
c28b1fc7
JG
3092static unsigned long lockless_pages_from_mm(unsigned long start,
3093 unsigned long end,
3094 unsigned int gup_flags,
3095 struct page **pages)
3096{
3097 unsigned long flags;
3098 int nr_pinned = 0;
57efa1fe 3099 unsigned seq;
c28b1fc7
JG
3100
3101 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3102 !gup_fast_permitted(start, end))
3103 return 0;
3104
57efa1fe
JG
3105 if (gup_flags & FOLL_PIN) {
3106 seq = raw_read_seqcount(&current->mm->write_protect_seq);
3107 if (seq & 1)
3108 return 0;
3109 }
3110
c28b1fc7
JG
3111 /*
3112 * Disable interrupts. The nested form is used, in order to allow full,
3113 * general purpose use of this routine.
3114 *
3115 * With interrupts disabled, we block page table pages from being freed
3116 * from under us. See struct mmu_table_batch comments in
3117 * include/asm-generic/tlb.h for more details.
3118 *
3119 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3120 * that come from THPs splitting.
3121 */
3122 local_irq_save(flags);
3123 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3124 local_irq_restore(flags);
57efa1fe
JG
3125
3126 /*
3127 * When pinning pages for DMA there could be a concurrent write protect
3128 * from fork() via copy_page_range(), in this case always fail fast GUP.
3129 */
3130 if (gup_flags & FOLL_PIN) {
3131 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
b6a2619c 3132 unpin_user_pages_lockless(pages, nr_pinned);
57efa1fe 3133 return 0;
b6a2619c
DH
3134 } else {
3135 sanity_check_pinned_pages(pages, nr_pinned);
57efa1fe
JG
3136 }
3137 }
c28b1fc7
JG
3138 return nr_pinned;
3139}
3140
3141static int internal_get_user_pages_fast(unsigned long start,
3142 unsigned long nr_pages,
eddb1c22
JH
3143 unsigned int gup_flags,
3144 struct page **pages)
2667f50e 3145{
c28b1fc7
JG
3146 unsigned long len, end;
3147 unsigned long nr_pinned;
b2a72dff 3148 int locked = 0;
c28b1fc7 3149 int ret;
2667f50e 3150
f4000fdf 3151 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 3152 FOLL_FORCE | FOLL_PIN | FOLL_GET |
4003f107
LG
3153 FOLL_FAST_ONLY | FOLL_NOFAULT |
3154 FOLL_PCI_P2PDMA)))
817be129
CH
3155 return -EINVAL;
3156
a458b76a
AA
3157 if (gup_flags & FOLL_PIN)
3158 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 3159
f81cd178 3160 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 3161 might_lock_read(&current->mm->mmap_lock);
f81cd178 3162
f455c854 3163 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
3164 len = nr_pages << PAGE_SHIFT;
3165 if (check_add_overflow(start, len, &end))
9883c7f8 3166 return -EOVERFLOW;
6014bc27
LT
3167 if (end > TASK_SIZE_MAX)
3168 return -EFAULT;
96d4f267 3169 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 3170 return -EFAULT;
73e10a61 3171
c28b1fc7
JG
3172 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3173 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3174 return nr_pinned;
2667f50e 3175
c28b1fc7
JG
3176 /* Slow path: try to get the remaining pages with get_user_pages */
3177 start += nr_pinned << PAGE_SHIFT;
3178 pages += nr_pinned;
b2a72dff 3179 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
b2cac248 3180 pages, &locked,
f04740f5 3181 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
c28b1fc7
JG
3182 if (ret < 0) {
3183 /*
3184 * The caller has to unpin the pages we already pinned so
3185 * returning -errno is not an option
3186 */
3187 if (nr_pinned)
3188 return nr_pinned;
3189 return ret;
2667f50e 3190 }
c28b1fc7 3191 return ret + nr_pinned;
2667f50e 3192}
c28b1fc7 3193
dadbb612
SJ
3194/**
3195 * get_user_pages_fast_only() - pin user pages in memory
3196 * @start: starting user address
3197 * @nr_pages: number of pages from start to pin
3198 * @gup_flags: flags modifying pin behaviour
3199 * @pages: array that receives pointers to the pages pinned.
3200 * Should be at least nr_pages long.
3201 *
9e1f0580
JH
3202 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3203 * the regular GUP.
9e1f0580
JH
3204 *
3205 * If the architecture does not support this function, simply return with no
3206 * pages pinned.
3207 *
3208 * Careful, careful! COW breaking can go either way, so a non-write
3209 * access can get ambiguous page results. If you call this function without
3210 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3211 */
dadbb612
SJ
3212int get_user_pages_fast_only(unsigned long start, int nr_pages,
3213 unsigned int gup_flags, struct page **pages)
9e1f0580 3214{
9e1f0580
JH
3215 /*
3216 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3217 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
3218 *
3219 * FOLL_FAST_ONLY is required in order to match the API description of
3220 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 3221 */
b2cac248 3222 if (!is_valid_gup_args(pages, NULL, &gup_flags,
d64e2dbc
JG
3223 FOLL_GET | FOLL_FAST_ONLY))
3224 return -EINVAL;
9e1f0580 3225
9198a919 3226 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
9e1f0580 3227}
dadbb612 3228EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 3229
eddb1c22
JH
3230/**
3231 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
3232 * @start: starting user address
3233 * @nr_pages: number of pages from start to pin
3234 * @gup_flags: flags modifying pin behaviour
3235 * @pages: array that receives pointers to the pages pinned.
3236 * Should be at least nr_pages long.
eddb1c22 3237 *
c1e8d7c6 3238 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
3239 * If not successful, it will fall back to taking the lock and
3240 * calling get_user_pages().
3241 *
3242 * Returns number of pages pinned. This may be fewer than the number requested.
3243 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3244 * -errno.
3245 */
3246int get_user_pages_fast(unsigned long start, int nr_pages,
3247 unsigned int gup_flags, struct page **pages)
3248{
94202f12
JH
3249 /*
3250 * The caller may or may not have explicitly set FOLL_GET; either way is
3251 * OK. However, internally (within mm/gup.c), gup fast variants must set
3252 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3253 * request.
3254 */
b2cac248 3255 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
d64e2dbc 3256 return -EINVAL;
eddb1c22
JH
3257 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3258}
050a9adc 3259EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
3260
3261/**
3262 * pin_user_pages_fast() - pin user pages in memory without taking locks
3263 *
3faa52c0
JH
3264 * @start: starting user address
3265 * @nr_pages: number of pages from start to pin
3266 * @gup_flags: flags modifying pin behaviour
3267 * @pages: array that receives pointers to the pages pinned.
3268 * Should be at least nr_pages long.
3269 *
3270 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3271 * get_user_pages_fast() for documentation on the function arguments, because
3272 * the arguments here are identical.
3273 *
3274 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3275 * see Documentation/core-api/pin_user_pages.rst for further details.
c8070b78
DH
3276 *
3277 * Note that if a zero_page is amongst the returned pages, it will not have
3278 * pins in it and unpin_user_page() will not remove pins from it.
eddb1c22
JH
3279 */
3280int pin_user_pages_fast(unsigned long start, int nr_pages,
3281 unsigned int gup_flags, struct page **pages)
3282{
b2cac248 3283 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3faa52c0 3284 return -EINVAL;
3faa52c0 3285 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
3286}
3287EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3288
3289/**
64019a2e 3290 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3291 *
3faa52c0
JH
3292 * @mm: mm_struct of target mm
3293 * @start: starting user address
3294 * @nr_pages: number of pages from start to pin
3295 * @gup_flags: flags modifying lookup behaviour
3296 * @pages: array that receives pointers to the pages pinned.
0768c8de 3297 * Should be at least nr_pages long.
3faa52c0
JH
3298 * @locked: pointer to lock flag indicating whether lock is held and
3299 * subsequently whether VM_FAULT_RETRY functionality can be
3300 * utilised. Lock must initially be held.
3301 *
3302 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3303 * get_user_pages_remote() for documentation on the function arguments, because
3304 * the arguments here are identical.
3305 *
3306 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3307 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3308 *
3309 * Note that if a zero_page is amongst the returned pages, it will not have
3310 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22 3311 */
64019a2e 3312long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3313 unsigned long start, unsigned long nr_pages,
3314 unsigned int gup_flags, struct page **pages,
0b295316 3315 int *locked)
eddb1c22 3316{
9a863a6a
JG
3317 int local_locked = 1;
3318
b2cac248 3319 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc
JG
3320 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3321 return 0;
b2cac248 3322 return __gup_longterm_locked(mm, start, nr_pages, pages,
9a863a6a 3323 locked ? locked : &local_locked,
d64e2dbc 3324 gup_flags);
eddb1c22
JH
3325}
3326EXPORT_SYMBOL(pin_user_pages_remote);
3327
3328/**
3329 * pin_user_pages() - pin user pages in memory for use by other devices
3330 *
3faa52c0
JH
3331 * @start: starting user address
3332 * @nr_pages: number of pages from start to pin
3333 * @gup_flags: flags modifying lookup behaviour
3334 * @pages: array that receives pointers to the pages pinned.
0768c8de 3335 * Should be at least nr_pages long.
3faa52c0
JH
3336 *
3337 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3338 * FOLL_PIN is set.
3339 *
3340 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3341 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3342 *
3343 * Note that if a zero_page is amongst the returned pages, it will not have
3344 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22
JH
3345 */
3346long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 3347 unsigned int gup_flags, struct page **pages)
eddb1c22 3348{
9a863a6a
JG
3349 int locked = 1;
3350
b2cac248 3351 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
d64e2dbc 3352 return 0;
64019a2e 3353 return __gup_longterm_locked(current->mm, start, nr_pages,
b2cac248 3354 pages, &locked, gup_flags);
eddb1c22
JH
3355}
3356EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3357
3358/*
3359 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3360 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3361 * FOLL_PIN and rejects FOLL_GET.
c8070b78
DH
3362 *
3363 * Note that if a zero_page is amongst the returned pages, it will not have
3364 * pins in it and unpin_user_page*() will not remove pins from it.
91429023
JH
3365 */
3366long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3367 struct page **pages, unsigned int gup_flags)
3368{
b2a72dff 3369 int locked = 0;
91429023 3370
b2cac248 3371 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 3372 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc 3373 return 0;
0768c8de 3374
b2cac248 3375 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
b2a72dff 3376 &locked, gup_flags);
91429023
JH
3377}
3378EXPORT_SYMBOL(pin_user_pages_unlocked);