mm: kfence: pass a pointer to virt_to_page()
[linux-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
1027e443 21
33a709b2 22#include <asm/mmu_context.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
b6a2619c
DH
32static inline void sanity_check_pinned_pages(struct page **pages,
33 unsigned long npages)
34{
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 return;
37
38 /*
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
42 *
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
49 */
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
53
54 if (!folio_test_anon(folio))
55 continue;
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 else
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
62 }
63}
64
cd1adf1b 65/*
ece1ed7b 66 * Return the folio with ref appropriately incremented,
cd1adf1b 67 * or NULL if that failed.
a707cdd5 68 */
ece1ed7b 69static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 70{
ece1ed7b 71 struct folio *folio;
a707cdd5 72
59409373 73retry:
ece1ed7b
MWO
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 76 return NULL;
ece1ed7b 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
a707cdd5 78 return NULL;
c24d3732
JH
79
80 /*
ece1ed7b
MWO
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
c24d3732 85 * we were given anymore.
ece1ed7b
MWO
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
c24d3732 88 */
ece1ed7b
MWO
89 if (unlikely(page_folio(page) != folio)) {
90 folio_put_refs(folio, refs);
59409373 91 goto retry;
c24d3732
JH
92 }
93
ece1ed7b 94 return folio;
a707cdd5
JH
95}
96
3967db22 97/**
ece1ed7b 98 * try_grab_folio() - Attempt to get or pin a folio.
3967db22 99 * @page: pointer to page to be grabbed
ece1ed7b 100 * @refs: the value to (effectively) add to the folio's refcount
3967db22
JH
101 * @flags: gup flags: these are the FOLL_* flag values.
102 *
3faa52c0 103 * "grab" names in this file mean, "look at flags to decide whether to use
ece1ed7b 104 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0
JH
105 *
106 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
107 * same time. (That's true throughout the get_user_pages*() and
108 * pin_user_pages*() APIs.) Cases:
109 *
ece1ed7b 110 * FOLL_GET: folio's refcount will be incremented by @refs.
3967db22 111 *
ece1ed7b
MWO
112 * FOLL_PIN on large folios: folio's refcount will be incremented by
113 * @refs, and its compound_pincount will be incremented by @refs.
3967db22 114 *
ece1ed7b 115 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
5232c63f 116 * @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0 117 *
ece1ed7b
MWO
118 * Return: The folio containing @page (with refcount appropriately
119 * incremented) for success, or NULL upon failure. If neither FOLL_GET
120 * nor FOLL_PIN was set, that's considered failure, and furthermore,
121 * a likely bug in the caller, so a warning is also emitted.
3faa52c0 122 */
ece1ed7b 123struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
3faa52c0
JH
124{
125 if (flags & FOLL_GET)
ece1ed7b 126 return try_get_folio(page, refs);
3faa52c0 127 else if (flags & FOLL_PIN) {
ece1ed7b
MWO
128 struct folio *folio;
129
df3a0a21 130 /*
d1e153fe
PT
131 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
132 * right zone, so fail and let the caller fall back to the slow
133 * path.
df3a0a21 134 */
d1e153fe 135 if (unlikely((flags & FOLL_LONGTERM) &&
6077c943 136 !is_longterm_pinnable_page(page)))
df3a0a21
PL
137 return NULL;
138
c24d3732
JH
139 /*
140 * CAUTION: Don't use compound_head() on the page before this
141 * point, the result won't be stable.
142 */
ece1ed7b
MWO
143 folio = try_get_folio(page, refs);
144 if (!folio)
c24d3732
JH
145 return NULL;
146
47e29d32 147 /*
ece1ed7b 148 * When pinning a large folio, use an exact count to track it.
47e29d32 149 *
ece1ed7b
MWO
150 * However, be sure to *also* increment the normal folio
151 * refcount field at least once, so that the folio really
78d9d6ce 152 * is pinned. That's why the refcount from the earlier
ece1ed7b 153 * try_get_folio() is left intact.
47e29d32 154 */
ece1ed7b
MWO
155 if (folio_test_large(folio))
156 atomic_add(refs, folio_pincount_ptr(folio));
c24d3732 157 else
ece1ed7b
MWO
158 folio_ref_add(folio,
159 refs * (GUP_PIN_COUNTING_BIAS - 1));
160 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
47e29d32 161
ece1ed7b 162 return folio;
3faa52c0
JH
163 }
164
165 WARN_ON_ONCE(1);
166 return NULL;
167}
168
d8ddc099 169static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
170{
171 if (flags & FOLL_PIN) {
d8ddc099
MWO
172 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
173 if (folio_test_large(folio))
174 atomic_sub(refs, folio_pincount_ptr(folio));
4509b42c
JG
175 else
176 refs *= GUP_PIN_COUNTING_BIAS;
177 }
178
d8ddc099 179 folio_put_refs(folio, refs);
4509b42c
JG
180}
181
3faa52c0
JH
182/**
183 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
5fec0719
MWO
184 * @page: pointer to page to be grabbed
185 * @flags: gup flags: these are the FOLL_* flag values.
3faa52c0
JH
186 *
187 * This might not do anything at all, depending on the flags argument.
188 *
189 * "grab" names in this file mean, "look at flags to decide whether to use
190 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
191 *
3faa52c0 192 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
ece1ed7b 193 * time. Cases: please see the try_grab_folio() documentation, with
3967db22 194 * "refs=1".
3faa52c0
JH
195 *
196 * Return: true for success, or if no action was required (if neither FOLL_PIN
197 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
198 * FOLL_PIN was set, but the page could not be grabbed.
199 */
200bool __must_check try_grab_page(struct page *page, unsigned int flags)
201{
5fec0719
MWO
202 struct folio *folio = page_folio(page);
203
c36c04c2 204 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
5fec0719
MWO
205 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
206 return false;
3faa52c0 207
c36c04c2 208 if (flags & FOLL_GET)
5fec0719 209 folio_ref_inc(folio);
c36c04c2 210 else if (flags & FOLL_PIN) {
c36c04c2 211 /*
5fec0719 212 * Similar to try_grab_folio(): be sure to *also*
78d9d6ce
MWO
213 * increment the normal page refcount field at least once,
214 * so that the page really is pinned.
c36c04c2 215 */
5fec0719
MWO
216 if (folio_test_large(folio)) {
217 folio_ref_add(folio, 1);
218 atomic_add(1, folio_pincount_ptr(folio));
8ea2979c 219 } else {
5fec0719 220 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
8ea2979c 221 }
c36c04c2 222
5fec0719 223 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
c36c04c2
JH
224 }
225
226 return true;
3faa52c0
JH
227}
228
3faa52c0
JH
229/**
230 * unpin_user_page() - release a dma-pinned page
231 * @page: pointer to page to be released
232 *
233 * Pages that were pinned via pin_user_pages*() must be released via either
234 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
235 * that such pages can be separately tracked and uniquely handled. In
236 * particular, interactions with RDMA and filesystems need special handling.
237 */
238void unpin_user_page(struct page *page)
239{
b6a2619c 240 sanity_check_pinned_pages(&page, 1);
d8ddc099 241 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
242}
243EXPORT_SYMBOL(unpin_user_page);
244
659508f9 245static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 246 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 247{
659508f9
MWO
248 struct page *next = nth_page(start, i);
249 struct folio *folio = page_folio(next);
458a4f78
JM
250 unsigned int nr = 1;
251
659508f9 252 if (folio_test_large(folio))
4c654229 253 nr = min_t(unsigned int, npages - i,
659508f9 254 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 255
458a4f78 256 *ntails = nr;
659508f9 257 return folio;
458a4f78
JM
258}
259
12521c76 260static inline struct folio *gup_folio_next(struct page **list,
28297dbc 261 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 262{
12521c76 263 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
264 unsigned int nr;
265
8745d7f6 266 for (nr = i + 1; nr < npages; nr++) {
12521c76 267 if (page_folio(list[nr]) != folio)
8745d7f6
JM
268 break;
269 }
270
8745d7f6 271 *ntails = nr - i;
12521c76 272 return folio;
8745d7f6
JM
273}
274
fc1d8e7c 275/**
f1f6a7dd 276 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 277 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 278 * @npages: number of pages in the @pages array.
2d15eb31 279 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
280 *
281 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
282 * variants called on that page.
283 *
284 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 285 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
286 * listed as clean. In any case, releases all pages using unpin_user_page(),
287 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 288 *
f1f6a7dd 289 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 290 *
2d15eb31 291 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
292 * required, then the caller should a) verify that this is really correct,
293 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 294 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
295 *
296 */
f1f6a7dd
JH
297void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
298 bool make_dirty)
fc1d8e7c 299{
12521c76
MWO
300 unsigned long i;
301 struct folio *folio;
302 unsigned int nr;
2d15eb31 303
304 if (!make_dirty) {
f1f6a7dd 305 unpin_user_pages(pages, npages);
2d15eb31 306 return;
307 }
308
b6a2619c 309 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
310 for (i = 0; i < npages; i += nr) {
311 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31 312 /*
313 * Checking PageDirty at this point may race with
314 * clear_page_dirty_for_io(), but that's OK. Two key
315 * cases:
316 *
317 * 1) This code sees the page as already dirty, so it
318 * skips the call to set_page_dirty(). That could happen
319 * because clear_page_dirty_for_io() called
320 * page_mkclean(), followed by set_page_dirty().
321 * However, now the page is going to get written back,
322 * which meets the original intention of setting it
323 * dirty, so all is well: clear_page_dirty_for_io() goes
324 * on to call TestClearPageDirty(), and write the page
325 * back.
326 *
327 * 2) This code sees the page as clean, so it calls
328 * set_page_dirty(). The page stays dirty, despite being
329 * written back, so it gets written back again in the
330 * next writeback cycle. This is harmless.
331 */
12521c76
MWO
332 if (!folio_test_dirty(folio)) {
333 folio_lock(folio);
334 folio_mark_dirty(folio);
335 folio_unlock(folio);
336 }
337 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 338 }
fc1d8e7c 339}
f1f6a7dd 340EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 341
458a4f78
JM
342/**
343 * unpin_user_page_range_dirty_lock() - release and optionally dirty
344 * gup-pinned page range
345 *
346 * @page: the starting page of a range maybe marked dirty, and definitely released.
347 * @npages: number of consecutive pages to release.
348 * @make_dirty: whether to mark the pages dirty
349 *
350 * "gup-pinned page range" refers to a range of pages that has had one of the
351 * pin_user_pages() variants called on that page.
352 *
353 * For the page ranges defined by [page .. page+npages], make that range (or
354 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
355 * page range was previously listed as clean.
356 *
357 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
358 * required, then the caller should a) verify that this is really correct,
359 * because _lock() is usually required, and b) hand code it:
360 * set_page_dirty_lock(), unpin_user_page().
361 *
362 */
363void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
364 bool make_dirty)
365{
659508f9
MWO
366 unsigned long i;
367 struct folio *folio;
368 unsigned int nr;
369
370 for (i = 0; i < npages; i += nr) {
371 folio = gup_folio_range_next(page, npages, i, &nr);
372 if (make_dirty && !folio_test_dirty(folio)) {
373 folio_lock(folio);
374 folio_mark_dirty(folio);
375 folio_unlock(folio);
376 }
377 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
378 }
379}
380EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
381
b6a2619c
DH
382static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
383{
384 unsigned long i;
385 struct folio *folio;
386 unsigned int nr;
387
388 /*
389 * Don't perform any sanity checks because we might have raced with
390 * fork() and some anonymous pages might now actually be shared --
391 * which is why we're unpinning after all.
392 */
393 for (i = 0; i < npages; i += nr) {
394 folio = gup_folio_next(pages, npages, i, &nr);
395 gup_put_folio(folio, nr, FOLL_PIN);
396 }
397}
398
fc1d8e7c 399/**
f1f6a7dd 400 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
401 * @pages: array of pages to be marked dirty and released.
402 * @npages: number of pages in the @pages array.
403 *
f1f6a7dd 404 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 405 *
f1f6a7dd 406 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 407 */
f1f6a7dd 408void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 409{
12521c76
MWO
410 unsigned long i;
411 struct folio *folio;
412 unsigned int nr;
fc1d8e7c 413
146608bb
JH
414 /*
415 * If this WARN_ON() fires, then the system *might* be leaking pages (by
416 * leaving them pinned), but probably not. More likely, gup/pup returned
417 * a hard -ERRNO error to the caller, who erroneously passed it here.
418 */
419 if (WARN_ON(IS_ERR_VALUE(npages)))
420 return;
31b912de 421
b6a2619c 422 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
423 for (i = 0; i < npages; i += nr) {
424 folio = gup_folio_next(pages, npages, i, &nr);
425 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 426 }
fc1d8e7c 427}
f1f6a7dd 428EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 429
a458b76a
AA
430/*
431 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
432 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
433 * cache bouncing on large SMP machines for concurrent pinned gups.
434 */
435static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
436{
437 if (!test_bit(MMF_HAS_PINNED, mm_flags))
438 set_bit(MMF_HAS_PINNED, mm_flags);
439}
440
050a9adc 441#ifdef CONFIG_MMU
69e68b4f
KS
442static struct page *no_page_table(struct vm_area_struct *vma,
443 unsigned int flags)
4bbd4c77 444{
69e68b4f
KS
445 /*
446 * When core dumping an enormous anonymous area that nobody
447 * has touched so far, we don't want to allocate unnecessary pages or
448 * page tables. Return error instead of NULL to skip handle_mm_fault,
449 * then get_dump_page() will return NULL to leave a hole in the dump.
450 * But we can only make this optimization where a hole would surely
451 * be zero-filled if handle_mm_fault() actually did handle it.
452 */
a0137f16
AK
453 if ((flags & FOLL_DUMP) &&
454 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
455 return ERR_PTR(-EFAULT);
456 return NULL;
457}
4bbd4c77 458
1027e443
KS
459static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
460 pte_t *pte, unsigned int flags)
461{
1027e443
KS
462 if (flags & FOLL_TOUCH) {
463 pte_t entry = *pte;
464
465 if (flags & FOLL_WRITE)
466 entry = pte_mkdirty(entry);
467 entry = pte_mkyoung(entry);
468
469 if (!pte_same(*pte, entry)) {
470 set_pte_at(vma->vm_mm, address, pte, entry);
471 update_mmu_cache(vma, address, pte);
472 }
473 }
474
475 /* Proper page table entry exists, but no corresponding struct page */
476 return -EEXIST;
477}
478
19be0eaf 479/*
a308c71b
PX
480 * FOLL_FORCE can write to even unwritable pte's, but only
481 * after we've gone through a COW cycle and they are dirty.
19be0eaf
LT
482 */
483static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
484{
a308c71b
PX
485 return pte_write(pte) ||
486 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
19be0eaf
LT
487}
488
69e68b4f 489static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
490 unsigned long address, pmd_t *pmd, unsigned int flags,
491 struct dev_pagemap **pgmap)
69e68b4f
KS
492{
493 struct mm_struct *mm = vma->vm_mm;
494 struct page *page;
495 spinlock_t *ptl;
496 pte_t *ptep, pte;
f28d4363 497 int ret;
4bbd4c77 498
eddb1c22
JH
499 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
500 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
501 (FOLL_PIN | FOLL_GET)))
502 return ERR_PTR(-EINVAL);
69e68b4f 503retry:
4bbd4c77 504 if (unlikely(pmd_bad(*pmd)))
69e68b4f 505 return no_page_table(vma, flags);
4bbd4c77
KS
506
507 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
508 pte = *ptep;
509 if (!pte_present(pte)) {
510 swp_entry_t entry;
511 /*
512 * KSM's break_ksm() relies upon recognizing a ksm page
513 * even while it is being migrated, so for that case we
514 * need migration_entry_wait().
515 */
516 if (likely(!(flags & FOLL_MIGRATION)))
517 goto no_page;
0661a336 518 if (pte_none(pte))
4bbd4c77
KS
519 goto no_page;
520 entry = pte_to_swp_entry(pte);
521 if (!is_migration_entry(entry))
522 goto no_page;
523 pte_unmap_unlock(ptep, ptl);
524 migration_entry_wait(mm, pmd, address);
69e68b4f 525 goto retry;
4bbd4c77 526 }
8a0516ed 527 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 528 goto no_page;
19be0eaf 529 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
530 pte_unmap_unlock(ptep, ptl);
531 return NULL;
532 }
4bbd4c77
KS
533
534 page = vm_normal_page(vma, address, pte);
3faa52c0 535 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 536 /*
3faa52c0
JH
537 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
538 * case since they are only valid while holding the pgmap
539 * reference.
3565fce3 540 */
df06b37f
KB
541 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
542 if (*pgmap)
3565fce3
DW
543 page = pte_page(pte);
544 else
545 goto no_page;
546 } else if (unlikely(!page)) {
1027e443
KS
547 if (flags & FOLL_DUMP) {
548 /* Avoid special (like zero) pages in core dumps */
549 page = ERR_PTR(-EFAULT);
550 goto out;
551 }
552
553 if (is_zero_pfn(pte_pfn(pte))) {
554 page = pte_page(pte);
555 } else {
1027e443
KS
556 ret = follow_pfn_pte(vma, address, ptep, flags);
557 page = ERR_PTR(ret);
558 goto out;
559 }
4bbd4c77
KS
560 }
561
a7f22660
DH
562 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
563 page = ERR_PTR(-EMLINK);
564 goto out;
565 }
b6a2619c
DH
566
567 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
568 !PageAnonExclusive(page), page);
569
3faa52c0
JH
570 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
571 if (unlikely(!try_grab_page(page, flags))) {
572 page = ERR_PTR(-ENOMEM);
573 goto out;
8fde12ca 574 }
f28d4363
CI
575 /*
576 * We need to make the page accessible if and only if we are going
577 * to access its content (the FOLL_PIN case). Please see
578 * Documentation/core-api/pin_user_pages.rst for details.
579 */
580 if (flags & FOLL_PIN) {
581 ret = arch_make_page_accessible(page);
582 if (ret) {
583 unpin_user_page(page);
584 page = ERR_PTR(ret);
585 goto out;
586 }
587 }
4bbd4c77
KS
588 if (flags & FOLL_TOUCH) {
589 if ((flags & FOLL_WRITE) &&
590 !pte_dirty(pte) && !PageDirty(page))
591 set_page_dirty(page);
592 /*
593 * pte_mkyoung() would be more correct here, but atomic care
594 * is needed to avoid losing the dirty bit: it is easier to use
595 * mark_page_accessed().
596 */
597 mark_page_accessed(page);
598 }
1027e443 599out:
4bbd4c77 600 pte_unmap_unlock(ptep, ptl);
4bbd4c77 601 return page;
4bbd4c77
KS
602no_page:
603 pte_unmap_unlock(ptep, ptl);
604 if (!pte_none(pte))
69e68b4f
KS
605 return NULL;
606 return no_page_table(vma, flags);
607}
608
080dbb61
AK
609static struct page *follow_pmd_mask(struct vm_area_struct *vma,
610 unsigned long address, pud_t *pudp,
df06b37f
KB
611 unsigned int flags,
612 struct follow_page_context *ctx)
69e68b4f 613{
68827280 614 pmd_t *pmd, pmdval;
69e68b4f
KS
615 spinlock_t *ptl;
616 struct page *page;
617 struct mm_struct *mm = vma->vm_mm;
618
080dbb61 619 pmd = pmd_offset(pudp, address);
68827280
HY
620 /*
621 * The READ_ONCE() will stabilize the pmdval in a register or
622 * on the stack so that it will stop changing under the code.
623 */
624 pmdval = READ_ONCE(*pmd);
625 if (pmd_none(pmdval))
69e68b4f 626 return no_page_table(vma, flags);
be9d3045 627 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
628 page = follow_huge_pmd(mm, address, pmd, flags);
629 if (page)
630 return page;
631 return no_page_table(vma, flags);
69e68b4f 632 }
68827280 633 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 634 page = follow_huge_pd(vma, address,
68827280 635 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
636 PMD_SHIFT);
637 if (page)
638 return page;
639 return no_page_table(vma, flags);
640 }
84c3fc4e 641retry:
68827280 642 if (!pmd_present(pmdval)) {
28b0ee3f
LX
643 /*
644 * Should never reach here, if thp migration is not supported;
645 * Otherwise, it must be a thp migration entry.
646 */
647 VM_BUG_ON(!thp_migration_supported() ||
648 !is_pmd_migration_entry(pmdval));
649
84c3fc4e
ZY
650 if (likely(!(flags & FOLL_MIGRATION)))
651 return no_page_table(vma, flags);
28b0ee3f
LX
652
653 pmd_migration_entry_wait(mm, pmd);
68827280
HY
654 pmdval = READ_ONCE(*pmd);
655 /*
656 * MADV_DONTNEED may convert the pmd to null because
c1e8d7c6 657 * mmap_lock is held in read mode
68827280
HY
658 */
659 if (pmd_none(pmdval))
660 return no_page_table(vma, flags);
84c3fc4e
ZY
661 goto retry;
662 }
68827280 663 if (pmd_devmap(pmdval)) {
3565fce3 664 ptl = pmd_lock(mm, pmd);
df06b37f 665 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
666 spin_unlock(ptl);
667 if (page)
668 return page;
669 }
68827280 670 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 671 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 672
68827280 673 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
674 return no_page_table(vma, flags);
675
84c3fc4e 676retry_locked:
6742d293 677 ptl = pmd_lock(mm, pmd);
68827280
HY
678 if (unlikely(pmd_none(*pmd))) {
679 spin_unlock(ptl);
680 return no_page_table(vma, flags);
681 }
84c3fc4e
ZY
682 if (unlikely(!pmd_present(*pmd))) {
683 spin_unlock(ptl);
684 if (likely(!(flags & FOLL_MIGRATION)))
685 return no_page_table(vma, flags);
686 pmd_migration_entry_wait(mm, pmd);
687 goto retry_locked;
688 }
6742d293
KS
689 if (unlikely(!pmd_trans_huge(*pmd))) {
690 spin_unlock(ptl);
df06b37f 691 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 692 }
4066c119 693 if (flags & FOLL_SPLIT_PMD) {
6742d293
KS
694 int ret;
695 page = pmd_page(*pmd);
696 if (is_huge_zero_page(page)) {
697 spin_unlock(ptl);
698 ret = 0;
78ddc534 699 split_huge_pmd(vma, pmd, address);
337d9abf
NH
700 if (pmd_trans_unstable(pmd))
701 ret = -EBUSY;
4066c119 702 } else {
bfe7b00d
SL
703 spin_unlock(ptl);
704 split_huge_pmd(vma, pmd, address);
705 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
706 }
707
708 return ret ? ERR_PTR(ret) :
df06b37f 709 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 710 }
6742d293
KS
711 page = follow_trans_huge_pmd(vma, address, pmd, flags);
712 spin_unlock(ptl);
df06b37f 713 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 714 return page;
4bbd4c77
KS
715}
716
080dbb61
AK
717static struct page *follow_pud_mask(struct vm_area_struct *vma,
718 unsigned long address, p4d_t *p4dp,
df06b37f
KB
719 unsigned int flags,
720 struct follow_page_context *ctx)
080dbb61
AK
721{
722 pud_t *pud;
723 spinlock_t *ptl;
724 struct page *page;
725 struct mm_struct *mm = vma->vm_mm;
726
727 pud = pud_offset(p4dp, address);
728 if (pud_none(*pud))
729 return no_page_table(vma, flags);
be9d3045 730 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
731 page = follow_huge_pud(mm, address, pud, flags);
732 if (page)
733 return page;
734 return no_page_table(vma, flags);
735 }
4dc71451
AK
736 if (is_hugepd(__hugepd(pud_val(*pud)))) {
737 page = follow_huge_pd(vma, address,
738 __hugepd(pud_val(*pud)), flags,
739 PUD_SHIFT);
740 if (page)
741 return page;
742 return no_page_table(vma, flags);
743 }
080dbb61
AK
744 if (pud_devmap(*pud)) {
745 ptl = pud_lock(mm, pud);
df06b37f 746 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
747 spin_unlock(ptl);
748 if (page)
749 return page;
750 }
751 if (unlikely(pud_bad(*pud)))
752 return no_page_table(vma, flags);
753
df06b37f 754 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
755}
756
080dbb61
AK
757static struct page *follow_p4d_mask(struct vm_area_struct *vma,
758 unsigned long address, pgd_t *pgdp,
df06b37f
KB
759 unsigned int flags,
760 struct follow_page_context *ctx)
080dbb61
AK
761{
762 p4d_t *p4d;
4dc71451 763 struct page *page;
080dbb61
AK
764
765 p4d = p4d_offset(pgdp, address);
766 if (p4d_none(*p4d))
767 return no_page_table(vma, flags);
768 BUILD_BUG_ON(p4d_huge(*p4d));
769 if (unlikely(p4d_bad(*p4d)))
770 return no_page_table(vma, flags);
771
4dc71451
AK
772 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
773 page = follow_huge_pd(vma, address,
774 __hugepd(p4d_val(*p4d)), flags,
775 P4D_SHIFT);
776 if (page)
777 return page;
778 return no_page_table(vma, flags);
779 }
df06b37f 780 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
781}
782
783/**
784 * follow_page_mask - look up a page descriptor from a user-virtual address
785 * @vma: vm_area_struct mapping @address
786 * @address: virtual address to look up
787 * @flags: flags modifying lookup behaviour
78179556
MR
788 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
789 * pointer to output page_mask
080dbb61
AK
790 *
791 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
792 *
78179556
MR
793 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
794 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
795 *
a7f22660
DH
796 * When getting an anonymous page and the caller has to trigger unsharing
797 * of a shared anonymous page first, -EMLINK is returned. The caller should
798 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
799 * relevant with FOLL_PIN and !FOLL_WRITE.
800 *
78179556
MR
801 * On output, the @ctx->page_mask is set according to the size of the page.
802 *
803 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
804 * an error pointer if there is a mapping to something not represented
805 * by a page descriptor (see also vm_normal_page()).
806 */
a7030aea 807static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 808 unsigned long address, unsigned int flags,
df06b37f 809 struct follow_page_context *ctx)
080dbb61
AK
810{
811 pgd_t *pgd;
812 struct page *page;
813 struct mm_struct *mm = vma->vm_mm;
814
df06b37f 815 ctx->page_mask = 0;
080dbb61
AK
816
817 /* make this handle hugepd */
818 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
819 if (!IS_ERR(page)) {
3faa52c0 820 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
821 return page;
822 }
823
824 pgd = pgd_offset(mm, address);
825
826 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
827 return no_page_table(vma, flags);
828
faaa5b62
AK
829 if (pgd_huge(*pgd)) {
830 page = follow_huge_pgd(mm, address, pgd, flags);
831 if (page)
832 return page;
833 return no_page_table(vma, flags);
834 }
4dc71451
AK
835 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
836 page = follow_huge_pd(vma, address,
837 __hugepd(pgd_val(*pgd)), flags,
838 PGDIR_SHIFT);
839 if (page)
840 return page;
841 return no_page_table(vma, flags);
842 }
faaa5b62 843
df06b37f
KB
844 return follow_p4d_mask(vma, address, pgd, flags, ctx);
845}
846
847struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
848 unsigned int foll_flags)
849{
850 struct follow_page_context ctx = { NULL };
851 struct page *page;
852
1507f512
MR
853 if (vma_is_secretmem(vma))
854 return NULL;
855
8909691b
DH
856 if (foll_flags & FOLL_PIN)
857 return NULL;
858
df06b37f
KB
859 page = follow_page_mask(vma, address, foll_flags, &ctx);
860 if (ctx.pgmap)
861 put_dev_pagemap(ctx.pgmap);
862 return page;
080dbb61
AK
863}
864
f2b495ca
KS
865static int get_gate_page(struct mm_struct *mm, unsigned long address,
866 unsigned int gup_flags, struct vm_area_struct **vma,
867 struct page **page)
868{
869 pgd_t *pgd;
c2febafc 870 p4d_t *p4d;
f2b495ca
KS
871 pud_t *pud;
872 pmd_t *pmd;
873 pte_t *pte;
874 int ret = -EFAULT;
875
876 /* user gate pages are read-only */
877 if (gup_flags & FOLL_WRITE)
878 return -EFAULT;
879 if (address > TASK_SIZE)
880 pgd = pgd_offset_k(address);
881 else
882 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
883 if (pgd_none(*pgd))
884 return -EFAULT;
c2febafc 885 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
886 if (p4d_none(*p4d))
887 return -EFAULT;
c2febafc 888 pud = pud_offset(p4d, address);
b5d1c39f
AL
889 if (pud_none(*pud))
890 return -EFAULT;
f2b495ca 891 pmd = pmd_offset(pud, address);
84c3fc4e 892 if (!pmd_present(*pmd))
f2b495ca
KS
893 return -EFAULT;
894 VM_BUG_ON(pmd_trans_huge(*pmd));
895 pte = pte_offset_map(pmd, address);
896 if (pte_none(*pte))
897 goto unmap;
898 *vma = get_gate_vma(mm);
899 if (!page)
900 goto out;
901 *page = vm_normal_page(*vma, address, *pte);
902 if (!*page) {
903 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
904 goto unmap;
905 *page = pte_page(*pte);
906 }
9fa2dd94 907 if (unlikely(!try_grab_page(*page, gup_flags))) {
8fde12ca
LT
908 ret = -ENOMEM;
909 goto unmap;
910 }
f2b495ca
KS
911out:
912 ret = 0;
913unmap:
914 pte_unmap(pte);
915 return ret;
916}
917
9a95f3cf 918/*
c1e8d7c6
ML
919 * mmap_lock must be held on entry. If @locked != NULL and *@flags
920 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 921 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 922 */
64019a2e 923static int faultin_page(struct vm_area_struct *vma,
a7f22660
DH
924 unsigned long address, unsigned int *flags, bool unshare,
925 int *locked)
16744483 926{
16744483 927 unsigned int fault_flags = 0;
2b740303 928 vm_fault_t ret;
16744483 929
55b8fe70
AG
930 if (*flags & FOLL_NOFAULT)
931 return -EFAULT;
16744483
KS
932 if (*flags & FOLL_WRITE)
933 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
934 if (*flags & FOLL_REMOTE)
935 fault_flags |= FAULT_FLAG_REMOTE;
4f6da934 936 if (locked)
71335f37 937 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
16744483
KS
938 if (*flags & FOLL_NOWAIT)
939 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 940 if (*flags & FOLL_TRIED) {
4426e945
PX
941 /*
942 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
943 * can co-exist
944 */
234b239b
ALC
945 fault_flags |= FAULT_FLAG_TRIED;
946 }
a7f22660
DH
947 if (unshare) {
948 fault_flags |= FAULT_FLAG_UNSHARE;
949 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
950 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
951 }
16744483 952
bce617ed 953 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
954
955 if (ret & VM_FAULT_COMPLETED) {
956 /*
957 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
958 * mmap lock in the page fault handler. Sanity check this.
959 */
960 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
961 if (locked)
962 *locked = 0;
963 /*
964 * We should do the same as VM_FAULT_RETRY, but let's not
965 * return -EBUSY since that's not reflecting the reality of
966 * what has happened - we've just fully completed a page
967 * fault, with the mmap lock released. Use -EAGAIN to show
968 * that we want to take the mmap lock _again_.
969 */
970 return -EAGAIN;
971 }
972
16744483 973 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
974 int err = vm_fault_to_errno(ret, *flags);
975
976 if (err)
977 return err;
16744483
KS
978 BUG();
979 }
980
16744483 981 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
982 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
983 *locked = 0;
16744483
KS
984 return -EBUSY;
985 }
986
987 /*
988 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
989 * necessary, even if maybe_mkwrite decided not to set pte_write. We
990 * can thus safely do subsequent page lookups as if they were reads.
991 * But only do so when looping for pte_write is futile: in some cases
992 * userspace may also be wanting to write to the gotten user page,
993 * which a read fault here might prevent (a readonly page might get
994 * reCOWed by userspace write).
995 */
996 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 997 *flags |= FOLL_COW;
16744483
KS
998 return 0;
999}
1000
fa5bb209
KS
1001static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1002{
1003 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
1004 int write = (gup_flags & FOLL_WRITE);
1005 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
1006
1007 if (vm_flags & (VM_IO | VM_PFNMAP))
1008 return -EFAULT;
1009
7f7ccc2c
WT
1010 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1011 return -EFAULT;
1012
52650c8b
JG
1013 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1014 return -EOPNOTSUPP;
1015
1507f512
MR
1016 if (vma_is_secretmem(vma))
1017 return -EFAULT;
1018
1b2ee126 1019 if (write) {
fa5bb209
KS
1020 if (!(vm_flags & VM_WRITE)) {
1021 if (!(gup_flags & FOLL_FORCE))
1022 return -EFAULT;
1023 /*
1024 * We used to let the write,force case do COW in a
1025 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1026 * set a breakpoint in a read-only mapping of an
1027 * executable, without corrupting the file (yet only
1028 * when that file had been opened for writing!).
1029 * Anon pages in shared mappings are surprising: now
1030 * just reject it.
1031 */
46435364 1032 if (!is_cow_mapping(vm_flags))
fa5bb209 1033 return -EFAULT;
fa5bb209
KS
1034 }
1035 } else if (!(vm_flags & VM_READ)) {
1036 if (!(gup_flags & FOLL_FORCE))
1037 return -EFAULT;
1038 /*
1039 * Is there actually any vma we can reach here which does not
1040 * have VM_MAYREAD set?
1041 */
1042 if (!(vm_flags & VM_MAYREAD))
1043 return -EFAULT;
1044 }
d61172b4
DH
1045 /*
1046 * gups are always data accesses, not instruction
1047 * fetches, so execute=false here
1048 */
1049 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1050 return -EFAULT;
fa5bb209
KS
1051 return 0;
1052}
1053
4bbd4c77
KS
1054/**
1055 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1056 * @mm: mm_struct of target mm
1057 * @start: starting user address
1058 * @nr_pages: number of pages from start to pin
1059 * @gup_flags: flags modifying pin behaviour
1060 * @pages: array that receives pointers to the pages pinned.
1061 * Should be at least nr_pages long. Or NULL, if caller
1062 * only intends to ensure the pages are faulted in.
1063 * @vmas: array of pointers to vmas corresponding to each page.
1064 * Or NULL if the caller does not require them.
c1e8d7c6 1065 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1066 *
d2dfbe47
LX
1067 * Returns either number of pages pinned (which may be less than the
1068 * number requested), or an error. Details about the return value:
1069 *
1070 * -- If nr_pages is 0, returns 0.
1071 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1072 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1073 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1074 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1075 *
1076 * The caller is responsible for releasing returned @pages, via put_page().
1077 *
c1e8d7c6 1078 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 1079 *
c1e8d7c6 1080 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1081 *
1082 * __get_user_pages walks a process's page tables and takes a reference to
1083 * each struct page that each user address corresponds to at a given
1084 * instant. That is, it takes the page that would be accessed if a user
1085 * thread accesses the given user virtual address at that instant.
1086 *
1087 * This does not guarantee that the page exists in the user mappings when
1088 * __get_user_pages returns, and there may even be a completely different
1089 * page there in some cases (eg. if mmapped pagecache has been invalidated
1090 * and subsequently re faulted). However it does guarantee that the page
1091 * won't be freed completely. And mostly callers simply care that the page
1092 * contains data that was valid *at some point in time*. Typically, an IO
1093 * or similar operation cannot guarantee anything stronger anyway because
1094 * locks can't be held over the syscall boundary.
1095 *
1096 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1097 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1098 * appropriate) must be called after the page is finished with, and
1099 * before put_page is called.
1100 *
c1e8d7c6 1101 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
1102 * released by an up_read(). That can happen if @gup_flags does not
1103 * have FOLL_NOWAIT.
9a95f3cf 1104 *
4f6da934 1105 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 1106 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
1107 * when it's been released. Otherwise, it must be held for either
1108 * reading or writing and will not be released.
4bbd4c77
KS
1109 *
1110 * In most cases, get_user_pages or get_user_pages_fast should be used
1111 * instead of __get_user_pages. __get_user_pages should be used only if
1112 * you need some special @gup_flags.
1113 */
64019a2e 1114static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1115 unsigned long start, unsigned long nr_pages,
1116 unsigned int gup_flags, struct page **pages,
4f6da934 1117 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1118{
df06b37f 1119 long ret = 0, i = 0;
fa5bb209 1120 struct vm_area_struct *vma = NULL;
df06b37f 1121 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1122
1123 if (!nr_pages)
1124 return 0;
1125
f9652594
AK
1126 start = untagged_addr(start);
1127
eddb1c22 1128 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1129
1130 /*
1131 * If FOLL_FORCE is set then do not force a full fault as the hinting
1132 * fault information is unrelated to the reference behaviour of a task
1133 * using the address space
1134 */
1135 if (!(gup_flags & FOLL_FORCE))
1136 gup_flags |= FOLL_NUMA;
1137
4bbd4c77 1138 do {
fa5bb209
KS
1139 struct page *page;
1140 unsigned int foll_flags = gup_flags;
1141 unsigned int page_increm;
1142
1143 /* first iteration or cross vma bound */
1144 if (!vma || start >= vma->vm_end) {
1145 vma = find_extend_vma(mm, start);
1146 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1147 ret = get_gate_page(mm, start & PAGE_MASK,
1148 gup_flags, &vma,
1149 pages ? &pages[i] : NULL);
1150 if (ret)
08be37b7 1151 goto out;
df06b37f 1152 ctx.page_mask = 0;
fa5bb209
KS
1153 goto next_page;
1154 }
4bbd4c77 1155
52650c8b 1156 if (!vma) {
df06b37f
KB
1157 ret = -EFAULT;
1158 goto out;
1159 }
52650c8b
JG
1160 ret = check_vma_flags(vma, gup_flags);
1161 if (ret)
1162 goto out;
1163
fa5bb209
KS
1164 if (is_vm_hugetlb_page(vma)) {
1165 i = follow_hugetlb_page(mm, vma, pages, vmas,
1166 &start, &nr_pages, i,
a308c71b 1167 gup_flags, locked);
ad415db8
PX
1168 if (locked && *locked == 0) {
1169 /*
1170 * We've got a VM_FAULT_RETRY
c1e8d7c6 1171 * and we've lost mmap_lock.
ad415db8
PX
1172 * We must stop here.
1173 */
1174 BUG_ON(gup_flags & FOLL_NOWAIT);
ad415db8
PX
1175 goto out;
1176 }
fa5bb209 1177 continue;
4bbd4c77 1178 }
fa5bb209
KS
1179 }
1180retry:
1181 /*
1182 * If we have a pending SIGKILL, don't keep faulting pages and
1183 * potentially allocating memory.
1184 */
fa45f116 1185 if (fatal_signal_pending(current)) {
d180870d 1186 ret = -EINTR;
df06b37f
KB
1187 goto out;
1188 }
fa5bb209 1189 cond_resched();
df06b37f
KB
1190
1191 page = follow_page_mask(vma, start, foll_flags, &ctx);
a7f22660
DH
1192 if (!page || PTR_ERR(page) == -EMLINK) {
1193 ret = faultin_page(vma, start, &foll_flags,
1194 PTR_ERR(page) == -EMLINK, locked);
fa5bb209
KS
1195 switch (ret) {
1196 case 0:
1197 goto retry;
df06b37f 1198 case -EBUSY:
d9272525 1199 case -EAGAIN:
df06b37f 1200 ret = 0;
e4a9bc58 1201 fallthrough;
fa5bb209
KS
1202 case -EFAULT:
1203 case -ENOMEM:
1204 case -EHWPOISON:
df06b37f 1205 goto out;
4bbd4c77 1206 }
fa5bb209 1207 BUG();
1027e443
KS
1208 } else if (PTR_ERR(page) == -EEXIST) {
1209 /*
1210 * Proper page table entry exists, but no corresponding
65462462
JH
1211 * struct page. If the caller expects **pages to be
1212 * filled in, bail out now, because that can't be done
1213 * for this page.
1027e443 1214 */
65462462
JH
1215 if (pages) {
1216 ret = PTR_ERR(page);
1217 goto out;
1218 }
1219
1027e443
KS
1220 goto next_page;
1221 } else if (IS_ERR(page)) {
df06b37f
KB
1222 ret = PTR_ERR(page);
1223 goto out;
1027e443 1224 }
fa5bb209
KS
1225 if (pages) {
1226 pages[i] = page;
1227 flush_anon_page(vma, page, start);
1228 flush_dcache_page(page);
df06b37f 1229 ctx.page_mask = 0;
4bbd4c77 1230 }
4bbd4c77 1231next_page:
fa5bb209
KS
1232 if (vmas) {
1233 vmas[i] = vma;
df06b37f 1234 ctx.page_mask = 0;
fa5bb209 1235 }
df06b37f 1236 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1237 if (page_increm > nr_pages)
1238 page_increm = nr_pages;
1239 i += page_increm;
1240 start += page_increm * PAGE_SIZE;
1241 nr_pages -= page_increm;
4bbd4c77 1242 } while (nr_pages);
df06b37f
KB
1243out:
1244 if (ctx.pgmap)
1245 put_dev_pagemap(ctx.pgmap);
1246 return i ? i : ret;
4bbd4c77 1247}
4bbd4c77 1248
771ab430
TK
1249static bool vma_permits_fault(struct vm_area_struct *vma,
1250 unsigned int fault_flags)
d4925e00 1251{
1b2ee126
DH
1252 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1253 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1254 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1255
1256 if (!(vm_flags & vma->vm_flags))
1257 return false;
1258
33a709b2
DH
1259 /*
1260 * The architecture might have a hardware protection
1b2ee126 1261 * mechanism other than read/write that can deny access.
d61172b4
DH
1262 *
1263 * gup always represents data access, not instruction
1264 * fetches, so execute=false here:
33a709b2 1265 */
d61172b4 1266 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1267 return false;
1268
d4925e00
DH
1269 return true;
1270}
1271
adc8cb40 1272/**
4bbd4c77 1273 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1274 * @mm: mm_struct of target mm
1275 * @address: user address
1276 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1277 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1278 * does not allow retry. If NULL, the caller must guarantee
1279 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1280 *
1281 * This is meant to be called in the specific scenario where for locking reasons
1282 * we try to access user memory in atomic context (within a pagefault_disable()
1283 * section), this returns -EFAULT, and we want to resolve the user fault before
1284 * trying again.
1285 *
1286 * Typically this is meant to be used by the futex code.
1287 *
1288 * The main difference with get_user_pages() is that this function will
1289 * unconditionally call handle_mm_fault() which will in turn perform all the
1290 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1291 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1292 *
1293 * This is important for some architectures where those bits also gate the
1294 * access permission to the page because they are maintained in software. On
1295 * such architectures, gup() will not be enough to make a subsequent access
1296 * succeed.
1297 *
c1e8d7c6
ML
1298 * This function will not return with an unlocked mmap_lock. So it has not the
1299 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1300 */
64019a2e 1301int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1302 unsigned long address, unsigned int fault_flags,
1303 bool *unlocked)
4bbd4c77
KS
1304{
1305 struct vm_area_struct *vma;
8fed2f3c 1306 vm_fault_t ret;
4a9e1cda 1307
f9652594
AK
1308 address = untagged_addr(address);
1309
4a9e1cda 1310 if (unlocked)
71335f37 1311 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1312
4a9e1cda 1313retry:
4bbd4c77
KS
1314 vma = find_extend_vma(mm, address);
1315 if (!vma || address < vma->vm_start)
1316 return -EFAULT;
1317
d4925e00 1318 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1319 return -EFAULT;
1320
475f4dfc
PX
1321 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1322 fatal_signal_pending(current))
1323 return -EINTR;
1324
bce617ed 1325 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1326
1327 if (ret & VM_FAULT_COMPLETED) {
1328 /*
1329 * NOTE: it's a pity that we need to retake the lock here
1330 * to pair with the unlock() in the callers. Ideally we
1331 * could tell the callers so they do not need to unlock.
1332 */
1333 mmap_read_lock(mm);
1334 *unlocked = true;
1335 return 0;
1336 }
1337
4bbd4c77 1338 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1339 int err = vm_fault_to_errno(ret, 0);
1340
1341 if (err)
1342 return err;
4bbd4c77
KS
1343 BUG();
1344 }
4a9e1cda
DD
1345
1346 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1347 mmap_read_lock(mm);
475f4dfc
PX
1348 *unlocked = true;
1349 fault_flags |= FAULT_FLAG_TRIED;
1350 goto retry;
4a9e1cda
DD
1351 }
1352
4bbd4c77
KS
1353 return 0;
1354}
add6a0cd 1355EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1356
2d3a36a4
MH
1357/*
1358 * Please note that this function, unlike __get_user_pages will not
1359 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1360 */
64019a2e 1361static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1362 unsigned long start,
1363 unsigned long nr_pages,
f0818f47
AA
1364 struct page **pages,
1365 struct vm_area_struct **vmas,
e716712f 1366 int *locked,
0fd71a56 1367 unsigned int flags)
f0818f47 1368{
f0818f47
AA
1369 long ret, pages_done;
1370 bool lock_dropped;
1371
1372 if (locked) {
1373 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1374 BUG_ON(vmas);
1375 /* check caller initialized locked */
1376 BUG_ON(*locked != 1);
1377 }
1378
a458b76a
AA
1379 if (flags & FOLL_PIN)
1380 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1381
eddb1c22
JH
1382 /*
1383 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1384 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1385 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1386 * for FOLL_GET, not for the newer FOLL_PIN.
1387 *
1388 * FOLL_PIN always expects pages to be non-null, but no need to assert
1389 * that here, as any failures will be obvious enough.
1390 */
1391 if (pages && !(flags & FOLL_PIN))
f0818f47 1392 flags |= FOLL_GET;
f0818f47
AA
1393
1394 pages_done = 0;
1395 lock_dropped = false;
1396 for (;;) {
64019a2e 1397 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47
AA
1398 vmas, locked);
1399 if (!locked)
1400 /* VM_FAULT_RETRY couldn't trigger, bypass */
1401 return ret;
1402
d9272525 1403 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
f0818f47
AA
1404 if (!*locked) {
1405 BUG_ON(ret < 0);
1406 BUG_ON(ret >= nr_pages);
1407 }
1408
f0818f47
AA
1409 if (ret > 0) {
1410 nr_pages -= ret;
1411 pages_done += ret;
1412 if (!nr_pages)
1413 break;
1414 }
1415 if (*locked) {
96312e61
AA
1416 /*
1417 * VM_FAULT_RETRY didn't trigger or it was a
1418 * FOLL_NOWAIT.
1419 */
f0818f47
AA
1420 if (!pages_done)
1421 pages_done = ret;
1422 break;
1423 }
df17277b
MR
1424 /*
1425 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1426 * For the prefault case (!pages) we only update counts.
1427 */
1428 if (likely(pages))
1429 pages += ret;
f0818f47 1430 start += ret << PAGE_SHIFT;
4426e945 1431 lock_dropped = true;
f0818f47 1432
4426e945 1433retry:
f0818f47
AA
1434 /*
1435 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1436 * with both FAULT_FLAG_ALLOW_RETRY and
1437 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1438 * by fatal signals, so we need to check it before we
1439 * start trying again otherwise it can loop forever.
f0818f47 1440 */
4426e945 1441
ae46d2aa
HD
1442 if (fatal_signal_pending(current)) {
1443 if (!pages_done)
1444 pages_done = -EINTR;
4426e945 1445 break;
ae46d2aa 1446 }
4426e945 1447
d8ed45c5 1448 ret = mmap_read_lock_killable(mm);
71335f37
PX
1449 if (ret) {
1450 BUG_ON(ret > 0);
1451 if (!pages_done)
1452 pages_done = ret;
1453 break;
1454 }
4426e945 1455
c7b6a566 1456 *locked = 1;
64019a2e 1457 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1458 pages, NULL, locked);
1459 if (!*locked) {
1460 /* Continue to retry until we succeeded */
1461 BUG_ON(ret != 0);
1462 goto retry;
1463 }
f0818f47
AA
1464 if (ret != 1) {
1465 BUG_ON(ret > 1);
1466 if (!pages_done)
1467 pages_done = ret;
1468 break;
1469 }
1470 nr_pages--;
1471 pages_done++;
1472 if (!nr_pages)
1473 break;
df17277b
MR
1474 if (likely(pages))
1475 pages++;
f0818f47
AA
1476 start += PAGE_SIZE;
1477 }
e716712f 1478 if (lock_dropped && *locked) {
f0818f47
AA
1479 /*
1480 * We must let the caller know we temporarily dropped the lock
1481 * and so the critical section protected by it was lost.
1482 */
d8ed45c5 1483 mmap_read_unlock(mm);
f0818f47
AA
1484 *locked = 0;
1485 }
1486 return pages_done;
1487}
1488
d3649f68
CH
1489/**
1490 * populate_vma_page_range() - populate a range of pages in the vma.
1491 * @vma: target vma
1492 * @start: start address
1493 * @end: end address
c1e8d7c6 1494 * @locked: whether the mmap_lock is still held
d3649f68
CH
1495 *
1496 * This takes care of mlocking the pages too if VM_LOCKED is set.
1497 *
0a36f7f8
TY
1498 * Return either number of pages pinned in the vma, or a negative error
1499 * code on error.
d3649f68 1500 *
c1e8d7c6 1501 * vma->vm_mm->mmap_lock must be held.
d3649f68 1502 *
4f6da934 1503 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1504 * be unperturbed.
1505 *
4f6da934
PX
1506 * If @locked is non-NULL, it must held for read only and may be
1507 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1508 */
1509long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1510 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1511{
1512 struct mm_struct *mm = vma->vm_mm;
1513 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1514 int gup_flags;
ece369c7 1515 long ret;
d3649f68 1516
be51eb18
ML
1517 VM_BUG_ON(!PAGE_ALIGNED(start));
1518 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1519 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1520 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1521 mmap_assert_locked(mm);
d3649f68 1522
b67bf49c
HD
1523 /*
1524 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1525 * faultin_page() to break COW, so it has no work to do here.
1526 */
d3649f68 1527 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1528 return nr_pages;
1529
1530 gup_flags = FOLL_TOUCH;
d3649f68
CH
1531 /*
1532 * We want to touch writable mappings with a write fault in order
1533 * to break COW, except for shared mappings because these don't COW
1534 * and we would not want to dirty them for nothing.
1535 */
1536 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1537 gup_flags |= FOLL_WRITE;
1538
1539 /*
1540 * We want mlock to succeed for regions that have any permissions
1541 * other than PROT_NONE.
1542 */
3122e80e 1543 if (vma_is_accessible(vma))
d3649f68
CH
1544 gup_flags |= FOLL_FORCE;
1545
1546 /*
1547 * We made sure addr is within a VMA, so the following will
1548 * not result in a stack expansion that recurses back here.
1549 */
ece369c7 1550 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
4f6da934 1551 NULL, NULL, locked);
ece369c7
HD
1552 lru_add_drain();
1553 return ret;
d3649f68
CH
1554}
1555
4ca9b385
DH
1556/*
1557 * faultin_vma_page_range() - populate (prefault) page tables inside the
1558 * given VMA range readable/writable
1559 *
1560 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1561 *
1562 * @vma: target vma
1563 * @start: start address
1564 * @end: end address
1565 * @write: whether to prefault readable or writable
1566 * @locked: whether the mmap_lock is still held
1567 *
1568 * Returns either number of processed pages in the vma, or a negative error
1569 * code on error (see __get_user_pages()).
1570 *
1571 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1572 * covered by the VMA.
1573 *
1574 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1575 *
1576 * If @locked is non-NULL, it must held for read only and may be released. If
1577 * it's released, *@locked will be set to 0.
1578 */
1579long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1580 unsigned long end, bool write, int *locked)
1581{
1582 struct mm_struct *mm = vma->vm_mm;
1583 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1584 int gup_flags;
ece369c7 1585 long ret;
4ca9b385
DH
1586
1587 VM_BUG_ON(!PAGE_ALIGNED(start));
1588 VM_BUG_ON(!PAGE_ALIGNED(end));
1589 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1590 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1591 mmap_assert_locked(mm);
1592
1593 /*
1594 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1595 * the page dirty with FOLL_WRITE -- which doesn't make a
1596 * difference with !FOLL_FORCE, because the page is writable
1597 * in the page table.
1598 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1599 * a poisoned page.
4ca9b385
DH
1600 * !FOLL_FORCE: Require proper access permissions.
1601 */
b67bf49c 1602 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
4ca9b385
DH
1603 if (write)
1604 gup_flags |= FOLL_WRITE;
1605
1606 /*
eb2faa51
DH
1607 * We want to report -EINVAL instead of -EFAULT for any permission
1608 * problems or incompatible mappings.
4ca9b385 1609 */
eb2faa51
DH
1610 if (check_vma_flags(vma, gup_flags))
1611 return -EINVAL;
1612
ece369c7 1613 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
4ca9b385 1614 NULL, NULL, locked);
ece369c7
HD
1615 lru_add_drain();
1616 return ret;
4ca9b385
DH
1617}
1618
d3649f68
CH
1619/*
1620 * __mm_populate - populate and/or mlock pages within a range of address space.
1621 *
1622 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1623 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1624 * mmap_lock must not be held.
d3649f68
CH
1625 */
1626int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1627{
1628 struct mm_struct *mm = current->mm;
1629 unsigned long end, nstart, nend;
1630 struct vm_area_struct *vma = NULL;
1631 int locked = 0;
1632 long ret = 0;
1633
1634 end = start + len;
1635
1636 for (nstart = start; nstart < end; nstart = nend) {
1637 /*
1638 * We want to fault in pages for [nstart; end) address range.
1639 * Find first corresponding VMA.
1640 */
1641 if (!locked) {
1642 locked = 1;
d8ed45c5 1643 mmap_read_lock(mm);
d3649f68
CH
1644 vma = find_vma(mm, nstart);
1645 } else if (nstart >= vma->vm_end)
1646 vma = vma->vm_next;
1647 if (!vma || vma->vm_start >= end)
1648 break;
1649 /*
1650 * Set [nstart; nend) to intersection of desired address
1651 * range with the first VMA. Also, skip undesirable VMA types.
1652 */
1653 nend = min(end, vma->vm_end);
1654 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1655 continue;
1656 if (nstart < vma->vm_start)
1657 nstart = vma->vm_start;
1658 /*
1659 * Now fault in a range of pages. populate_vma_page_range()
1660 * double checks the vma flags, so that it won't mlock pages
1661 * if the vma was already munlocked.
1662 */
1663 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1664 if (ret < 0) {
1665 if (ignore_errors) {
1666 ret = 0;
1667 continue; /* continue at next VMA */
1668 }
1669 break;
1670 }
1671 nend = nstart + ret * PAGE_SIZE;
1672 ret = 0;
1673 }
1674 if (locked)
d8ed45c5 1675 mmap_read_unlock(mm);
d3649f68
CH
1676 return ret; /* 0 or negative error code */
1677}
050a9adc 1678#else /* CONFIG_MMU */
64019a2e 1679static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1680 unsigned long nr_pages, struct page **pages,
1681 struct vm_area_struct **vmas, int *locked,
1682 unsigned int foll_flags)
1683{
1684 struct vm_area_struct *vma;
1685 unsigned long vm_flags;
24dc20c7 1686 long i;
050a9adc
CH
1687
1688 /* calculate required read or write permissions.
1689 * If FOLL_FORCE is set, we only require the "MAY" flags.
1690 */
1691 vm_flags = (foll_flags & FOLL_WRITE) ?
1692 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1693 vm_flags &= (foll_flags & FOLL_FORCE) ?
1694 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1695
1696 for (i = 0; i < nr_pages; i++) {
1697 vma = find_vma(mm, start);
1698 if (!vma)
1699 goto finish_or_fault;
1700
1701 /* protect what we can, including chardevs */
1702 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1703 !(vm_flags & vma->vm_flags))
1704 goto finish_or_fault;
1705
1706 if (pages) {
1707 pages[i] = virt_to_page(start);
1708 if (pages[i])
1709 get_page(pages[i]);
1710 }
1711 if (vmas)
1712 vmas[i] = vma;
1713 start = (start + PAGE_SIZE) & PAGE_MASK;
1714 }
1715
1716 return i;
1717
1718finish_or_fault:
1719 return i ? : -EFAULT;
1720}
1721#endif /* !CONFIG_MMU */
d3649f68 1722
bb523b40
AG
1723/**
1724 * fault_in_writeable - fault in userspace address range for writing
1725 * @uaddr: start of address range
1726 * @size: size of address range
1727 *
1728 * Returns the number of bytes not faulted in (like copy_to_user() and
1729 * copy_from_user()).
1730 */
1731size_t fault_in_writeable(char __user *uaddr, size_t size)
1732{
1733 char __user *start = uaddr, *end;
1734
1735 if (unlikely(size == 0))
1736 return 0;
677b2a8c
CL
1737 if (!user_write_access_begin(uaddr, size))
1738 return size;
bb523b40 1739 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1740 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1741 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1742 }
1743 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1744 if (unlikely(end < start))
1745 end = NULL;
1746 while (uaddr != end) {
677b2a8c 1747 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1748 uaddr += PAGE_SIZE;
1749 }
1750
1751out:
677b2a8c 1752 user_write_access_end();
bb523b40
AG
1753 if (size > uaddr - start)
1754 return size - (uaddr - start);
1755 return 0;
1756}
1757EXPORT_SYMBOL(fault_in_writeable);
1758
da32b581
CM
1759/**
1760 * fault_in_subpage_writeable - fault in an address range for writing
1761 * @uaddr: start of address range
1762 * @size: size of address range
1763 *
1764 * Fault in a user address range for writing while checking for permissions at
1765 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1766 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1767 *
1768 * Returns the number of bytes not faulted in (like copy_to_user() and
1769 * copy_from_user()).
1770 */
1771size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1772{
1773 size_t faulted_in;
1774
1775 /*
1776 * Attempt faulting in at page granularity first for page table
1777 * permission checking. The arch-specific probe_subpage_writeable()
1778 * functions may not check for this.
1779 */
1780 faulted_in = size - fault_in_writeable(uaddr, size);
1781 if (faulted_in)
1782 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1783
1784 return size - faulted_in;
1785}
1786EXPORT_SYMBOL(fault_in_subpage_writeable);
1787
cdd591fc
AG
1788/*
1789 * fault_in_safe_writeable - fault in an address range for writing
1790 * @uaddr: start of address range
1791 * @size: length of address range
1792 *
fe673d3f
LT
1793 * Faults in an address range for writing. This is primarily useful when we
1794 * already know that some or all of the pages in the address range aren't in
1795 * memory.
cdd591fc 1796 *
fe673d3f 1797 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
1798 *
1799 * Note that we don't pin or otherwise hold the pages referenced that we fault
1800 * in. There's no guarantee that they'll stay in memory for any duration of
1801 * time.
1802 *
1803 * Returns the number of bytes not faulted in, like copy_to_user() and
1804 * copy_from_user().
1805 */
1806size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1807{
fe673d3f 1808 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 1809 struct mm_struct *mm = current->mm;
fe673d3f 1810 bool unlocked = false;
cdd591fc 1811
fe673d3f
LT
1812 if (unlikely(size == 0))
1813 return 0;
cdd591fc 1814 end = PAGE_ALIGN(start + size);
fe673d3f 1815 if (end < start)
cdd591fc 1816 end = 0;
cdd591fc 1817
fe673d3f
LT
1818 mmap_read_lock(mm);
1819 do {
1820 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 1821 break;
fe673d3f
LT
1822 start = (start + PAGE_SIZE) & PAGE_MASK;
1823 } while (start != end);
1824 mmap_read_unlock(mm);
1825
1826 if (size > (unsigned long)uaddr - start)
1827 return size - ((unsigned long)uaddr - start);
1828 return 0;
cdd591fc
AG
1829}
1830EXPORT_SYMBOL(fault_in_safe_writeable);
1831
bb523b40
AG
1832/**
1833 * fault_in_readable - fault in userspace address range for reading
1834 * @uaddr: start of user address range
1835 * @size: size of user address range
1836 *
1837 * Returns the number of bytes not faulted in (like copy_to_user() and
1838 * copy_from_user()).
1839 */
1840size_t fault_in_readable(const char __user *uaddr, size_t size)
1841{
1842 const char __user *start = uaddr, *end;
1843 volatile char c;
1844
1845 if (unlikely(size == 0))
1846 return 0;
677b2a8c
CL
1847 if (!user_read_access_begin(uaddr, size))
1848 return size;
bb523b40 1849 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1850 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1851 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1852 }
1853 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1854 if (unlikely(end < start))
1855 end = NULL;
1856 while (uaddr != end) {
677b2a8c 1857 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1858 uaddr += PAGE_SIZE;
1859 }
1860
1861out:
677b2a8c 1862 user_read_access_end();
bb523b40
AG
1863 (void)c;
1864 if (size > uaddr - start)
1865 return size - (uaddr - start);
1866 return 0;
1867}
1868EXPORT_SYMBOL(fault_in_readable);
1869
8f942eea
JH
1870/**
1871 * get_dump_page() - pin user page in memory while writing it to core dump
1872 * @addr: user address
1873 *
1874 * Returns struct page pointer of user page pinned for dump,
1875 * to be freed afterwards by put_page().
1876 *
1877 * Returns NULL on any kind of failure - a hole must then be inserted into
1878 * the corefile, to preserve alignment with its headers; and also returns
1879 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1880 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1881 *
7f3bfab5 1882 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1883 */
1884#ifdef CONFIG_ELF_CORE
1885struct page *get_dump_page(unsigned long addr)
1886{
7f3bfab5 1887 struct mm_struct *mm = current->mm;
8f942eea 1888 struct page *page;
7f3bfab5
JH
1889 int locked = 1;
1890 int ret;
8f942eea 1891
7f3bfab5 1892 if (mmap_read_lock_killable(mm))
8f942eea 1893 return NULL;
7f3bfab5
JH
1894 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1895 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1896 if (locked)
1897 mmap_read_unlock(mm);
1898 return (ret == 1) ? page : NULL;
8f942eea
JH
1899}
1900#endif /* CONFIG_ELF_CORE */
1901
d1e153fe 1902#ifdef CONFIG_MIGRATION
f68749ec
PT
1903/*
1904 * Check whether all pages are pinnable, if so return number of pages. If some
1905 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1906 * pages were migrated, or if some pages were not successfully isolated.
1907 * Return negative error if migration fails.
1908 */
1909static long check_and_migrate_movable_pages(unsigned long nr_pages,
d1e153fe 1910 struct page **pages,
d1e153fe 1911 unsigned int gup_flags)
9a4e9f3b 1912{
f9f38f78 1913 unsigned long isolation_error_count = 0, i;
1b7f7e58 1914 struct folio *prev_folio = NULL;
d1e153fe 1915 LIST_HEAD(movable_page_list);
b05a79d4 1916 bool drain_allow = true, coherent_pages = false;
f9f38f78 1917 int ret = 0;
9a4e9f3b 1918
83c02c23 1919 for (i = 0; i < nr_pages; i++) {
1b7f7e58 1920 struct folio *folio = page_folio(pages[i]);
f9f38f78 1921
1b7f7e58 1922 if (folio == prev_folio)
83c02c23 1923 continue;
1b7f7e58 1924 prev_folio = folio;
f9f38f78 1925
b05a79d4
AP
1926 /*
1927 * Device coherent pages are managed by a driver and should not
1928 * be pinned indefinitely as it prevents the driver moving the
1929 * page. So when trying to pin with FOLL_LONGTERM instead try
1930 * to migrate the page out of device memory.
1931 */
1932 if (folio_is_device_coherent(folio)) {
1933 /*
1934 * We always want a new GUP lookup with device coherent
1935 * pages.
1936 */
1937 pages[i] = 0;
1938 coherent_pages = true;
1939
1940 /*
1941 * Migration will fail if the page is pinned, so convert
1942 * the pin on the source page to a normal reference.
1943 */
1944 if (gup_flags & FOLL_PIN) {
1945 get_page(&folio->page);
1946 unpin_user_page(&folio->page);
1947 }
1948
1949 ret = migrate_device_coherent_page(&folio->page);
1950 if (ret)
1951 goto unpin_pages;
1952
f9f38f78 1953 continue;
b05a79d4 1954 }
f9f38f78 1955
b05a79d4
AP
1956 if (folio_is_longterm_pinnable(folio))
1957 continue;
9a4e9f3b 1958 /*
f9f38f78 1959 * Try to move out any movable page before pinning the range.
9a4e9f3b 1960 */
1b7f7e58 1961 if (folio_test_hugetlb(folio)) {
7ce82f4c 1962 if (isolate_hugetlb(&folio->page,
1b7f7e58 1963 &movable_page_list))
f9f38f78
CH
1964 isolation_error_count++;
1965 continue;
1966 }
9a4e9f3b 1967
1b7f7e58 1968 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
1969 lru_add_drain_all();
1970 drain_allow = false;
1971 }
1972
1b7f7e58 1973 if (folio_isolate_lru(folio)) {
f9f38f78
CH
1974 isolation_error_count++;
1975 continue;
9a4e9f3b 1976 }
1b7f7e58
MWO
1977 list_add_tail(&folio->lru, &movable_page_list);
1978 node_stat_mod_folio(folio,
1979 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1980 folio_nr_pages(folio));
9a4e9f3b
AK
1981 }
1982
b05a79d4
AP
1983 if (!list_empty(&movable_page_list) || isolation_error_count
1984 || coherent_pages)
f9f38f78
CH
1985 goto unpin_pages;
1986
6e7f34eb
PT
1987 /*
1988 * If list is empty, and no isolation errors, means that all pages are
1989 * in the correct zone.
1990 */
f9f38f78 1991 return nr_pages;
6e7f34eb 1992
f9f38f78 1993unpin_pages:
b05a79d4
AP
1994 /*
1995 * pages[i] might be NULL if any device coherent pages were found.
1996 */
1997 for (i = 0; i < nr_pages; i++) {
1998 if (!pages[i])
1999 continue;
2000
2001 if (gup_flags & FOLL_PIN)
2002 unpin_user_page(pages[i]);
2003 else
f68749ec
PT
2004 put_page(pages[i]);
2005 }
f9f38f78 2006
d1e153fe 2007 if (!list_empty(&movable_page_list)) {
f9f38f78
CH
2008 struct migration_target_control mtc = {
2009 .nid = NUMA_NO_NODE,
2010 .gfp_mask = GFP_USER | __GFP_NOWARN,
2011 };
2012
d1e153fe 2013 ret = migrate_pages(&movable_page_list, alloc_migration_target,
f0f44638 2014 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
5ac95884 2015 MR_LONGTERM_PIN, NULL);
f9f38f78
CH
2016 if (ret > 0) /* number of pages not migrated */
2017 ret = -ENOMEM;
9a4e9f3b
AK
2018 }
2019
f9f38f78
CH
2020 if (ret && !list_empty(&movable_page_list))
2021 putback_movable_pages(&movable_page_list);
2022 return ret;
9a4e9f3b
AK
2023}
2024#else
f68749ec 2025static long check_and_migrate_movable_pages(unsigned long nr_pages,
d1e153fe 2026 struct page **pages,
d1e153fe 2027 unsigned int gup_flags)
9a4e9f3b
AK
2028{
2029 return nr_pages;
2030}
d1e153fe 2031#endif /* CONFIG_MIGRATION */
9a4e9f3b 2032
2bb6d283 2033/*
932f4a63
IW
2034 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2035 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 2036 */
64019a2e 2037static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
2038 unsigned long start,
2039 unsigned long nr_pages,
2040 struct page **pages,
2041 struct vm_area_struct **vmas,
2042 unsigned int gup_flags)
2bb6d283 2043{
f68749ec 2044 unsigned int flags;
52650c8b 2045 long rc;
2bb6d283 2046
f68749ec
PT
2047 if (!(gup_flags & FOLL_LONGTERM))
2048 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2049 NULL, gup_flags);
2050 flags = memalloc_pin_save();
2051 do {
2052 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2053 NULL, gup_flags);
2054 if (rc <= 0)
2055 break;
2056 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
2057 } while (!rc);
2058 memalloc_pin_restore(flags);
2bb6d283 2059
2bb6d283
DW
2060 return rc;
2061}
932f4a63 2062
447f3e45
BS
2063static bool is_valid_gup_flags(unsigned int gup_flags)
2064{
2065 /*
2066 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2067 * never directly by the caller, so enforce that with an assertion:
2068 */
2069 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2070 return false;
2071 /*
2072 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2073 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2074 * FOLL_PIN.
2075 */
2076 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2077 return false;
2078
2079 return true;
2080}
2081
22bf29b6 2082#ifdef CONFIG_MMU
64019a2e 2083static long __get_user_pages_remote(struct mm_struct *mm,
22bf29b6
JH
2084 unsigned long start, unsigned long nr_pages,
2085 unsigned int gup_flags, struct page **pages,
2086 struct vm_area_struct **vmas, int *locked)
2087{
2088 /*
2089 * Parts of FOLL_LONGTERM behavior are incompatible with
2090 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2091 * vmas. However, this only comes up if locked is set, and there are
2092 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2093 * allow what we can.
2094 */
2095 if (gup_flags & FOLL_LONGTERM) {
2096 if (WARN_ON_ONCE(locked))
2097 return -EINVAL;
2098 /*
2099 * This will check the vmas (even if our vmas arg is NULL)
2100 * and return -ENOTSUPP if DAX isn't allowed in this case:
2101 */
64019a2e 2102 return __gup_longterm_locked(mm, start, nr_pages, pages,
22bf29b6
JH
2103 vmas, gup_flags | FOLL_TOUCH |
2104 FOLL_REMOTE);
2105 }
2106
64019a2e 2107 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
22bf29b6
JH
2108 locked,
2109 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2110}
2111
adc8cb40 2112/**
c4237f8b 2113 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2114 * @mm: mm_struct of target mm
2115 * @start: starting user address
2116 * @nr_pages: number of pages from start to pin
2117 * @gup_flags: flags modifying lookup behaviour
2118 * @pages: array that receives pointers to the pages pinned.
2119 * Should be at least nr_pages long. Or NULL, if caller
2120 * only intends to ensure the pages are faulted in.
2121 * @vmas: array of pointers to vmas corresponding to each page.
2122 * Or NULL if the caller does not require them.
2123 * @locked: pointer to lock flag indicating whether lock is held and
2124 * subsequently whether VM_FAULT_RETRY functionality can be
2125 * utilised. Lock must initially be held.
2126 *
2127 * Returns either number of pages pinned (which may be less than the
2128 * number requested), or an error. Details about the return value:
2129 *
2130 * -- If nr_pages is 0, returns 0.
2131 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2132 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2133 * pages pinned. Again, this may be less than nr_pages.
2134 *
2135 * The caller is responsible for releasing returned @pages, via put_page().
2136 *
c1e8d7c6 2137 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 2138 *
c1e8d7c6 2139 * Must be called with mmap_lock held for read or write.
c4237f8b 2140 *
adc8cb40
SJ
2141 * get_user_pages_remote walks a process's page tables and takes a reference
2142 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2143 * instant. That is, it takes the page that would be accessed if a user
2144 * thread accesses the given user virtual address at that instant.
2145 *
2146 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2147 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
2148 * page there in some cases (eg. if mmapped pagecache has been invalidated
2149 * and subsequently re faulted). However it does guarantee that the page
2150 * won't be freed completely. And mostly callers simply care that the page
2151 * contains data that was valid *at some point in time*. Typically, an IO
2152 * or similar operation cannot guarantee anything stronger anyway because
2153 * locks can't be held over the syscall boundary.
2154 *
2155 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2156 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2157 * be called after the page is finished with, and before put_page is called.
2158 *
adc8cb40
SJ
2159 * get_user_pages_remote is typically used for fewer-copy IO operations,
2160 * to get a handle on the memory by some means other than accesses
2161 * via the user virtual addresses. The pages may be submitted for
2162 * DMA to devices or accessed via their kernel linear mapping (via the
2163 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2164 *
2165 * See also get_user_pages_fast, for performance critical applications.
2166 *
adc8cb40 2167 * get_user_pages_remote should be phased out in favor of
c4237f8b 2168 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2169 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2170 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2171 */
64019a2e 2172long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2173 unsigned long start, unsigned long nr_pages,
2174 unsigned int gup_flags, struct page **pages,
2175 struct vm_area_struct **vmas, int *locked)
2176{
447f3e45 2177 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2178 return -EINVAL;
2179
64019a2e 2180 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
22bf29b6 2181 pages, vmas, locked);
c4237f8b
JH
2182}
2183EXPORT_SYMBOL(get_user_pages_remote);
2184
eddb1c22 2185#else /* CONFIG_MMU */
64019a2e 2186long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2187 unsigned long start, unsigned long nr_pages,
2188 unsigned int gup_flags, struct page **pages,
2189 struct vm_area_struct **vmas, int *locked)
2190{
2191 return 0;
2192}
3faa52c0 2193
64019a2e 2194static long __get_user_pages_remote(struct mm_struct *mm,
3faa52c0
JH
2195 unsigned long start, unsigned long nr_pages,
2196 unsigned int gup_flags, struct page **pages,
2197 struct vm_area_struct **vmas, int *locked)
2198{
2199 return 0;
2200}
eddb1c22
JH
2201#endif /* !CONFIG_MMU */
2202
adc8cb40
SJ
2203/**
2204 * get_user_pages() - pin user pages in memory
2205 * @start: starting user address
2206 * @nr_pages: number of pages from start to pin
2207 * @gup_flags: flags modifying lookup behaviour
2208 * @pages: array that receives pointers to the pages pinned.
2209 * Should be at least nr_pages long. Or NULL, if caller
2210 * only intends to ensure the pages are faulted in.
2211 * @vmas: array of pointers to vmas corresponding to each page.
2212 * Or NULL if the caller does not require them.
2213 *
64019a2e
PX
2214 * This is the same as get_user_pages_remote(), just with a less-flexible
2215 * calling convention where we assume that the mm being operated on belongs to
2216 * the current task, and doesn't allow passing of a locked parameter. We also
2217 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2218 */
2219long get_user_pages(unsigned long start, unsigned long nr_pages,
2220 unsigned int gup_flags, struct page **pages,
2221 struct vm_area_struct **vmas)
2222{
447f3e45 2223 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2224 return -EINVAL;
2225
64019a2e 2226 return __gup_longterm_locked(current->mm, start, nr_pages,
932f4a63
IW
2227 pages, vmas, gup_flags | FOLL_TOUCH);
2228}
2229EXPORT_SYMBOL(get_user_pages);
2bb6d283 2230
acc3c8d1 2231/*
d3649f68 2232 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2233 *
3e4e28c5 2234 * mmap_read_lock(mm);
64019a2e 2235 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2236 * mmap_read_unlock(mm);
d3649f68
CH
2237 *
2238 * with:
2239 *
64019a2e 2240 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2241 *
2242 * It is functionally equivalent to get_user_pages_fast so
2243 * get_user_pages_fast should be used instead if specific gup_flags
2244 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2245 */
d3649f68
CH
2246long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2247 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
2248{
2249 struct mm_struct *mm = current->mm;
d3649f68
CH
2250 int locked = 1;
2251 long ret;
acc3c8d1 2252
d3649f68
CH
2253 /*
2254 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2255 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2256 * vmas. As there are no users of this flag in this call we simply
2257 * disallow this option for now.
2258 */
2259 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2260 return -EINVAL;
acc3c8d1 2261
d8ed45c5 2262 mmap_read_lock(mm);
64019a2e 2263 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
d3649f68 2264 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1 2265 if (locked)
d8ed45c5 2266 mmap_read_unlock(mm);
d3649f68 2267 return ret;
4bbd4c77 2268}
d3649f68 2269EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2270
2271/*
67a929e0 2272 * Fast GUP
2667f50e
SC
2273 *
2274 * get_user_pages_fast attempts to pin user pages by walking the page
2275 * tables directly and avoids taking locks. Thus the walker needs to be
2276 * protected from page table pages being freed from under it, and should
2277 * block any THP splits.
2278 *
2279 * One way to achieve this is to have the walker disable interrupts, and
2280 * rely on IPIs from the TLB flushing code blocking before the page table
2281 * pages are freed. This is unsuitable for architectures that do not need
2282 * to broadcast an IPI when invalidating TLBs.
2283 *
2284 * Another way to achieve this is to batch up page table containing pages
2285 * belonging to more than one mm_user, then rcu_sched a callback to free those
2286 * pages. Disabling interrupts will allow the fast_gup walker to both block
2287 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2288 * (which is a relatively rare event). The code below adopts this strategy.
2289 *
2290 * Before activating this code, please be aware that the following assumptions
2291 * are currently made:
2292 *
ff2e6d72 2293 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2294 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2295 *
2667f50e
SC
2296 * *) ptes can be read atomically by the architecture.
2297 *
2298 * *) access_ok is sufficient to validate userspace address ranges.
2299 *
2300 * The last two assumptions can be relaxed by the addition of helper functions.
2301 *
2302 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2303 */
67a929e0 2304#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2305
790c7369 2306static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2307 unsigned int flags,
790c7369 2308 struct page **pages)
b59f65fa
KS
2309{
2310 while ((*nr) - nr_start) {
2311 struct page *page = pages[--(*nr)];
2312
2313 ClearPageReferenced(page);
3faa52c0
JH
2314 if (flags & FOLL_PIN)
2315 unpin_user_page(page);
2316 else
2317 put_page(page);
b59f65fa
KS
2318 }
2319}
2320
3010a5ea 2321#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 2322static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2323 unsigned int flags, struct page **pages, int *nr)
2667f50e 2324{
b59f65fa
KS
2325 struct dev_pagemap *pgmap = NULL;
2326 int nr_start = *nr, ret = 0;
2667f50e 2327 pte_t *ptep, *ptem;
2667f50e
SC
2328
2329 ptem = ptep = pte_offset_map(&pmd, addr);
2330 do {
2a4a06da 2331 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2332 struct page *page;
2333 struct folio *folio;
2667f50e
SC
2334
2335 /*
2336 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2337 * path using the pte_protnone check.
2667f50e 2338 */
e7884f8e
KS
2339 if (pte_protnone(pte))
2340 goto pte_unmap;
2341
b798bec4 2342 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2343 goto pte_unmap;
2344
b59f65fa 2345 if (pte_devmap(pte)) {
7af75561
IW
2346 if (unlikely(flags & FOLL_LONGTERM))
2347 goto pte_unmap;
2348
b59f65fa
KS
2349 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2350 if (unlikely(!pgmap)) {
3b78d834 2351 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2352 goto pte_unmap;
2353 }
2354 } else if (pte_special(pte))
2667f50e
SC
2355 goto pte_unmap;
2356
2357 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2358 page = pte_page(pte);
2359
b0496fe4
MWO
2360 folio = try_grab_folio(page, 1, flags);
2361 if (!folio)
2667f50e
SC
2362 goto pte_unmap;
2363
1507f512 2364 if (unlikely(page_is_secretmem(page))) {
b0496fe4 2365 gup_put_folio(folio, 1, flags);
1507f512
MR
2366 goto pte_unmap;
2367 }
2368
2667f50e 2369 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
b0496fe4 2370 gup_put_folio(folio, 1, flags);
2667f50e
SC
2371 goto pte_unmap;
2372 }
2373
a7f22660
DH
2374 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2375 gup_put_folio(folio, 1, flags);
2376 goto pte_unmap;
2377 }
2378
f28d4363
CI
2379 /*
2380 * We need to make the page accessible if and only if we are
2381 * going to access its content (the FOLL_PIN case). Please
2382 * see Documentation/core-api/pin_user_pages.rst for
2383 * details.
2384 */
2385 if (flags & FOLL_PIN) {
2386 ret = arch_make_page_accessible(page);
2387 if (ret) {
b0496fe4 2388 gup_put_folio(folio, 1, flags);
f28d4363
CI
2389 goto pte_unmap;
2390 }
2391 }
b0496fe4 2392 folio_set_referenced(folio);
2667f50e
SC
2393 pages[*nr] = page;
2394 (*nr)++;
2667f50e
SC
2395 } while (ptep++, addr += PAGE_SIZE, addr != end);
2396
2397 ret = 1;
2398
2399pte_unmap:
832d7aa0
CH
2400 if (pgmap)
2401 put_dev_pagemap(pgmap);
2667f50e
SC
2402 pte_unmap(ptem);
2403 return ret;
2404}
2405#else
2406
2407/*
2408 * If we can't determine whether or not a pte is special, then fail immediately
2409 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2410 * to be special.
2411 *
2412 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2413 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2414 * useful to have gup_huge_pmd even if we can't operate on ptes.
2415 */
2416static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2417 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2418{
2419 return 0;
2420}
3010a5ea 2421#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2422
17596731 2423#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2424static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2425 unsigned long end, unsigned int flags,
2426 struct page **pages, int *nr)
b59f65fa
KS
2427{
2428 int nr_start = *nr;
2429 struct dev_pagemap *pgmap = NULL;
2430
2431 do {
2432 struct page *page = pfn_to_page(pfn);
2433
2434 pgmap = get_dev_pagemap(pfn, pgmap);
2435 if (unlikely(!pgmap)) {
3b78d834 2436 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2437 break;
b59f65fa
KS
2438 }
2439 SetPageReferenced(page);
2440 pages[*nr] = page;
3faa52c0
JH
2441 if (unlikely(!try_grab_page(page, flags))) {
2442 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2443 break;
3faa52c0 2444 }
b59f65fa
KS
2445 (*nr)++;
2446 pfn++;
2447 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2448
6401c4eb 2449 put_dev_pagemap(pgmap);
20b7fee7 2450 return addr == end;
b59f65fa
KS
2451}
2452
a9b6de77 2453static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2454 unsigned long end, unsigned int flags,
2455 struct page **pages, int *nr)
b59f65fa
KS
2456{
2457 unsigned long fault_pfn;
a9b6de77
DW
2458 int nr_start = *nr;
2459
2460 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2461 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2462 return 0;
b59f65fa 2463
a9b6de77 2464 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2465 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2466 return 0;
2467 }
2468 return 1;
b59f65fa
KS
2469}
2470
a9b6de77 2471static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2472 unsigned long end, unsigned int flags,
2473 struct page **pages, int *nr)
b59f65fa
KS
2474{
2475 unsigned long fault_pfn;
a9b6de77
DW
2476 int nr_start = *nr;
2477
2478 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2479 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2480 return 0;
b59f65fa 2481
a9b6de77 2482 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2483 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2484 return 0;
2485 }
2486 return 1;
b59f65fa
KS
2487}
2488#else
a9b6de77 2489static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2490 unsigned long end, unsigned int flags,
2491 struct page **pages, int *nr)
b59f65fa
KS
2492{
2493 BUILD_BUG();
2494 return 0;
2495}
2496
a9b6de77 2497static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2498 unsigned long end, unsigned int flags,
2499 struct page **pages, int *nr)
b59f65fa
KS
2500{
2501 BUILD_BUG();
2502 return 0;
2503}
2504#endif
2505
a43e9820
JH
2506static int record_subpages(struct page *page, unsigned long addr,
2507 unsigned long end, struct page **pages)
2508{
2509 int nr;
2510
c228afb1
MWO
2511 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2512 pages[nr] = nth_page(page, nr);
a43e9820
JH
2513
2514 return nr;
2515}
2516
cbd34da7
CH
2517#ifdef CONFIG_ARCH_HAS_HUGEPD
2518static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2519 unsigned long sz)
2520{
2521 unsigned long __boundary = (addr + sz) & ~(sz-1);
2522 return (__boundary - 1 < end - 1) ? __boundary : end;
2523}
2524
2525static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2526 unsigned long end, unsigned int flags,
2527 struct page **pages, int *nr)
cbd34da7
CH
2528{
2529 unsigned long pte_end;
09a1626e
MWO
2530 struct page *page;
2531 struct folio *folio;
cbd34da7
CH
2532 pte_t pte;
2533 int refs;
2534
2535 pte_end = (addr + sz) & ~(sz-1);
2536 if (pte_end < end)
2537 end = pte_end;
2538
55ca2263 2539 pte = huge_ptep_get(ptep);
cbd34da7 2540
0cd22afd 2541 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2542 return 0;
2543
2544 /* hugepages are never "special" */
2545 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2546
09a1626e 2547 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
a43e9820 2548 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2549
09a1626e
MWO
2550 folio = try_grab_folio(page, refs, flags);
2551 if (!folio)
cbd34da7 2552 return 0;
cbd34da7
CH
2553
2554 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
09a1626e 2555 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2556 return 0;
2557 }
2558
a7f22660
DH
2559 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2560 gup_put_folio(folio, refs, flags);
2561 return 0;
2562 }
2563
a43e9820 2564 *nr += refs;
09a1626e 2565 folio_set_referenced(folio);
cbd34da7
CH
2566 return 1;
2567}
2568
2569static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2570 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2571 struct page **pages, int *nr)
2572{
2573 pte_t *ptep;
2574 unsigned long sz = 1UL << hugepd_shift(hugepd);
2575 unsigned long next;
2576
2577 ptep = hugepte_offset(hugepd, addr, pdshift);
2578 do {
2579 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2580 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2581 return 0;
2582 } while (ptep++, addr = next, addr != end);
2583
2584 return 1;
2585}
2586#else
2587static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2588 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2589 struct page **pages, int *nr)
2590{
2591 return 0;
2592}
2593#endif /* CONFIG_ARCH_HAS_HUGEPD */
2594
2667f50e 2595static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2596 unsigned long end, unsigned int flags,
2597 struct page **pages, int *nr)
2667f50e 2598{
667ed1f7
MWO
2599 struct page *page;
2600 struct folio *folio;
2667f50e
SC
2601 int refs;
2602
b798bec4 2603 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2604 return 0;
2605
7af75561
IW
2606 if (pmd_devmap(orig)) {
2607 if (unlikely(flags & FOLL_LONGTERM))
2608 return 0;
86dfbed4
JH
2609 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2610 pages, nr);
7af75561 2611 }
b59f65fa 2612
c228afb1 2613 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2614 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2615
667ed1f7
MWO
2616 folio = try_grab_folio(page, refs, flags);
2617 if (!folio)
2667f50e 2618 return 0;
2667f50e
SC
2619
2620 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 2621 gup_put_folio(folio, refs, flags);
2667f50e
SC
2622 return 0;
2623 }
2624
a7f22660
DH
2625 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2626 gup_put_folio(folio, refs, flags);
2627 return 0;
2628 }
2629
a43e9820 2630 *nr += refs;
667ed1f7 2631 folio_set_referenced(folio);
2667f50e
SC
2632 return 1;
2633}
2634
2635static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2636 unsigned long end, unsigned int flags,
2637 struct page **pages, int *nr)
2667f50e 2638{
83afb52e
MWO
2639 struct page *page;
2640 struct folio *folio;
2667f50e
SC
2641 int refs;
2642
b798bec4 2643 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2644 return 0;
2645
7af75561
IW
2646 if (pud_devmap(orig)) {
2647 if (unlikely(flags & FOLL_LONGTERM))
2648 return 0;
86dfbed4
JH
2649 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2650 pages, nr);
7af75561 2651 }
b59f65fa 2652
c228afb1 2653 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2654 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2655
83afb52e
MWO
2656 folio = try_grab_folio(page, refs, flags);
2657 if (!folio)
2667f50e 2658 return 0;
2667f50e
SC
2659
2660 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 2661 gup_put_folio(folio, refs, flags);
2667f50e
SC
2662 return 0;
2663 }
2664
a7f22660
DH
2665 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2666 gup_put_folio(folio, refs, flags);
2667 return 0;
2668 }
2669
a43e9820 2670 *nr += refs;
83afb52e 2671 folio_set_referenced(folio);
2667f50e
SC
2672 return 1;
2673}
2674
f30c59e9 2675static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2676 unsigned long end, unsigned int flags,
f30c59e9
AK
2677 struct page **pages, int *nr)
2678{
2679 int refs;
2d7919a2
MWO
2680 struct page *page;
2681 struct folio *folio;
f30c59e9 2682
b798bec4 2683 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2684 return 0;
2685
b59f65fa 2686 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2687
c228afb1 2688 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2689 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2690
2d7919a2
MWO
2691 folio = try_grab_folio(page, refs, flags);
2692 if (!folio)
f30c59e9 2693 return 0;
f30c59e9
AK
2694
2695 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 2696 gup_put_folio(folio, refs, flags);
f30c59e9
AK
2697 return 0;
2698 }
2699
a43e9820 2700 *nr += refs;
2d7919a2 2701 folio_set_referenced(folio);
f30c59e9
AK
2702 return 1;
2703}
2704
d3f7b1bb 2705static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2706 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2707{
2708 unsigned long next;
2709 pmd_t *pmdp;
2710
d3f7b1bb 2711 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2712 do {
38c5ce93 2713 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2714
2715 next = pmd_addr_end(addr, end);
84c3fc4e 2716 if (!pmd_present(pmd))
2667f50e
SC
2717 return 0;
2718
414fd080
YZ
2719 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2720 pmd_devmap(pmd))) {
2667f50e
SC
2721 /*
2722 * NUMA hinting faults need to be handled in the GUP
2723 * slowpath for accounting purposes and so that they
2724 * can be serialised against THP migration.
2725 */
8a0516ed 2726 if (pmd_protnone(pmd))
2667f50e
SC
2727 return 0;
2728
b798bec4 2729 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2730 pages, nr))
2731 return 0;
2732
f30c59e9
AK
2733 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2734 /*
2735 * architecture have different format for hugetlbfs
2736 * pmd format and THP pmd format
2737 */
2738 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2739 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2740 return 0;
b798bec4 2741 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2742 return 0;
2667f50e
SC
2743 } while (pmdp++, addr = next, addr != end);
2744
2745 return 1;
2746}
2747
d3f7b1bb 2748static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2749 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2750{
2751 unsigned long next;
2752 pud_t *pudp;
2753
d3f7b1bb 2754 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2755 do {
e37c6982 2756 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2757
2758 next = pud_addr_end(addr, end);
15494520 2759 if (unlikely(!pud_present(pud)))
2667f50e 2760 return 0;
f30c59e9 2761 if (unlikely(pud_huge(pud))) {
b798bec4 2762 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2763 pages, nr))
2764 return 0;
2765 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2766 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2767 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2768 return 0;
d3f7b1bb 2769 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2770 return 0;
2771 } while (pudp++, addr = next, addr != end);
2772
2773 return 1;
2774}
2775
d3f7b1bb 2776static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2777 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2778{
2779 unsigned long next;
2780 p4d_t *p4dp;
2781
d3f7b1bb 2782 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2783 do {
2784 p4d_t p4d = READ_ONCE(*p4dp);
2785
2786 next = p4d_addr_end(addr, end);
2787 if (p4d_none(p4d))
2788 return 0;
2789 BUILD_BUG_ON(p4d_huge(p4d));
2790 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2791 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2792 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2793 return 0;
d3f7b1bb 2794 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2795 return 0;
2796 } while (p4dp++, addr = next, addr != end);
2797
2798 return 1;
2799}
2800
5b65c467 2801static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2802 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2803{
2804 unsigned long next;
2805 pgd_t *pgdp;
2806
2807 pgdp = pgd_offset(current->mm, addr);
2808 do {
2809 pgd_t pgd = READ_ONCE(*pgdp);
2810
2811 next = pgd_addr_end(addr, end);
2812 if (pgd_none(pgd))
2813 return;
2814 if (unlikely(pgd_huge(pgd))) {
b798bec4 2815 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2816 pages, nr))
2817 return;
2818 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2819 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2820 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2821 return;
d3f7b1bb 2822 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2823 return;
2824 } while (pgdp++, addr = next, addr != end);
2825}
050a9adc
CH
2826#else
2827static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2828 unsigned int flags, struct page **pages, int *nr)
2829{
2830}
2831#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2832
2833#ifndef gup_fast_permitted
2834/*
dadbb612 2835 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2836 * we need to fall back to the slow version:
2837 */
26f4c328 2838static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2839{
26f4c328 2840 return true;
5b65c467
KS
2841}
2842#endif
2843
7af75561
IW
2844static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2845 unsigned int gup_flags, struct page **pages)
2846{
2847 int ret;
2848
2849 /*
2850 * FIXME: FOLL_LONGTERM does not work with
2851 * get_user_pages_unlocked() (see comments in that function)
2852 */
2853 if (gup_flags & FOLL_LONGTERM) {
d8ed45c5 2854 mmap_read_lock(current->mm);
64019a2e 2855 ret = __gup_longterm_locked(current->mm,
7af75561
IW
2856 start, nr_pages,
2857 pages, NULL, gup_flags);
d8ed45c5 2858 mmap_read_unlock(current->mm);
7af75561
IW
2859 } else {
2860 ret = get_user_pages_unlocked(start, nr_pages,
2861 pages, gup_flags);
2862 }
2863
2864 return ret;
2865}
2866
c28b1fc7
JG
2867static unsigned long lockless_pages_from_mm(unsigned long start,
2868 unsigned long end,
2869 unsigned int gup_flags,
2870 struct page **pages)
2871{
2872 unsigned long flags;
2873 int nr_pinned = 0;
57efa1fe 2874 unsigned seq;
c28b1fc7
JG
2875
2876 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2877 !gup_fast_permitted(start, end))
2878 return 0;
2879
57efa1fe
JG
2880 if (gup_flags & FOLL_PIN) {
2881 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2882 if (seq & 1)
2883 return 0;
2884 }
2885
c28b1fc7
JG
2886 /*
2887 * Disable interrupts. The nested form is used, in order to allow full,
2888 * general purpose use of this routine.
2889 *
2890 * With interrupts disabled, we block page table pages from being freed
2891 * from under us. See struct mmu_table_batch comments in
2892 * include/asm-generic/tlb.h for more details.
2893 *
2894 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2895 * that come from THPs splitting.
2896 */
2897 local_irq_save(flags);
2898 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2899 local_irq_restore(flags);
57efa1fe
JG
2900
2901 /*
2902 * When pinning pages for DMA there could be a concurrent write protect
2903 * from fork() via copy_page_range(), in this case always fail fast GUP.
2904 */
2905 if (gup_flags & FOLL_PIN) {
2906 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
b6a2619c 2907 unpin_user_pages_lockless(pages, nr_pinned);
57efa1fe 2908 return 0;
b6a2619c
DH
2909 } else {
2910 sanity_check_pinned_pages(pages, nr_pinned);
57efa1fe
JG
2911 }
2912 }
c28b1fc7
JG
2913 return nr_pinned;
2914}
2915
2916static int internal_get_user_pages_fast(unsigned long start,
2917 unsigned long nr_pages,
eddb1c22
JH
2918 unsigned int gup_flags,
2919 struct page **pages)
2667f50e 2920{
c28b1fc7
JG
2921 unsigned long len, end;
2922 unsigned long nr_pinned;
2923 int ret;
2667f50e 2924
f4000fdf 2925 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 2926 FOLL_FORCE | FOLL_PIN | FOLL_GET |
55b8fe70 2927 FOLL_FAST_ONLY | FOLL_NOFAULT)))
817be129
CH
2928 return -EINVAL;
2929
a458b76a
AA
2930 if (gup_flags & FOLL_PIN)
2931 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 2932
f81cd178 2933 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2934 might_lock_read(&current->mm->mmap_lock);
f81cd178 2935
f455c854 2936 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
2937 len = nr_pages << PAGE_SHIFT;
2938 if (check_add_overflow(start, len, &end))
c61611f7 2939 return 0;
96d4f267 2940 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2941 return -EFAULT;
73e10a61 2942
c28b1fc7
JG
2943 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2944 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2945 return nr_pinned;
2667f50e 2946
c28b1fc7
JG
2947 /* Slow path: try to get the remaining pages with get_user_pages */
2948 start += nr_pinned << PAGE_SHIFT;
2949 pages += nr_pinned;
2950 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2951 pages);
2952 if (ret < 0) {
2953 /*
2954 * The caller has to unpin the pages we already pinned so
2955 * returning -errno is not an option
2956 */
2957 if (nr_pinned)
2958 return nr_pinned;
2959 return ret;
2667f50e 2960 }
c28b1fc7 2961 return ret + nr_pinned;
2667f50e 2962}
c28b1fc7 2963
dadbb612
SJ
2964/**
2965 * get_user_pages_fast_only() - pin user pages in memory
2966 * @start: starting user address
2967 * @nr_pages: number of pages from start to pin
2968 * @gup_flags: flags modifying pin behaviour
2969 * @pages: array that receives pointers to the pages pinned.
2970 * Should be at least nr_pages long.
2971 *
9e1f0580
JH
2972 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2973 * the regular GUP.
2974 * Note a difference with get_user_pages_fast: this always returns the
2975 * number of pages pinned, 0 if no pages were pinned.
2976 *
2977 * If the architecture does not support this function, simply return with no
2978 * pages pinned.
2979 *
2980 * Careful, careful! COW breaking can go either way, so a non-write
2981 * access can get ambiguous page results. If you call this function without
2982 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2983 */
dadbb612
SJ
2984int get_user_pages_fast_only(unsigned long start, int nr_pages,
2985 unsigned int gup_flags, struct page **pages)
9e1f0580 2986{
376a34ef 2987 int nr_pinned;
9e1f0580
JH
2988 /*
2989 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2990 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
2991 *
2992 * FOLL_FAST_ONLY is required in order to match the API description of
2993 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 2994 */
dadbb612 2995 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
9e1f0580 2996
376a34ef
JH
2997 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2998 pages);
9e1f0580
JH
2999
3000 /*
376a34ef
JH
3001 * As specified in the API description above, this routine is not
3002 * allowed to return negative values. However, the common core
3003 * routine internal_get_user_pages_fast() *can* return -errno.
3004 * Therefore, correct for that here:
9e1f0580 3005 */
376a34ef
JH
3006 if (nr_pinned < 0)
3007 nr_pinned = 0;
9e1f0580
JH
3008
3009 return nr_pinned;
3010}
dadbb612 3011EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 3012
eddb1c22
JH
3013/**
3014 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
3015 * @start: starting user address
3016 * @nr_pages: number of pages from start to pin
3017 * @gup_flags: flags modifying pin behaviour
3018 * @pages: array that receives pointers to the pages pinned.
3019 * Should be at least nr_pages long.
eddb1c22 3020 *
c1e8d7c6 3021 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
3022 * If not successful, it will fall back to taking the lock and
3023 * calling get_user_pages().
3024 *
3025 * Returns number of pages pinned. This may be fewer than the number requested.
3026 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3027 * -errno.
3028 */
3029int get_user_pages_fast(unsigned long start, int nr_pages,
3030 unsigned int gup_flags, struct page **pages)
3031{
447f3e45 3032 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
3033 return -EINVAL;
3034
94202f12
JH
3035 /*
3036 * The caller may or may not have explicitly set FOLL_GET; either way is
3037 * OK. However, internally (within mm/gup.c), gup fast variants must set
3038 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3039 * request.
3040 */
3041 gup_flags |= FOLL_GET;
eddb1c22
JH
3042 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3043}
050a9adc 3044EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
3045
3046/**
3047 * pin_user_pages_fast() - pin user pages in memory without taking locks
3048 *
3faa52c0
JH
3049 * @start: starting user address
3050 * @nr_pages: number of pages from start to pin
3051 * @gup_flags: flags modifying pin behaviour
3052 * @pages: array that receives pointers to the pages pinned.
3053 * Should be at least nr_pages long.
3054 *
3055 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3056 * get_user_pages_fast() for documentation on the function arguments, because
3057 * the arguments here are identical.
3058 *
3059 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3060 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
3061 */
3062int pin_user_pages_fast(unsigned long start, int nr_pages,
3063 unsigned int gup_flags, struct page **pages)
3064{
3faa52c0
JH
3065 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3066 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3067 return -EINVAL;
3068
0768c8de
YN
3069 if (WARN_ON_ONCE(!pages))
3070 return -EINVAL;
3071
3faa52c0
JH
3072 gup_flags |= FOLL_PIN;
3073 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
3074}
3075EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3076
104acc32 3077/*
dadbb612
SJ
3078 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3079 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
3080 *
3081 * The API rules are the same, too: no negative values may be returned.
3082 */
3083int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3084 unsigned int gup_flags, struct page **pages)
3085{
3086 int nr_pinned;
3087
3088 /*
3089 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3090 * rules require returning 0, rather than -errno:
3091 */
3092 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3093 return 0;
0768c8de
YN
3094
3095 if (WARN_ON_ONCE(!pages))
3096 return 0;
104acc32
JH
3097 /*
3098 * FOLL_FAST_ONLY is required in order to match the API description of
3099 * this routine: no fall back to regular ("slow") GUP.
3100 */
3101 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3102 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3103 pages);
3104 /*
3105 * This routine is not allowed to return negative values. However,
3106 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3107 * correct for that here:
3108 */
3109 if (nr_pinned < 0)
3110 nr_pinned = 0;
3111
3112 return nr_pinned;
3113}
3114EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3115
eddb1c22 3116/**
64019a2e 3117 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3118 *
3faa52c0
JH
3119 * @mm: mm_struct of target mm
3120 * @start: starting user address
3121 * @nr_pages: number of pages from start to pin
3122 * @gup_flags: flags modifying lookup behaviour
3123 * @pages: array that receives pointers to the pages pinned.
0768c8de 3124 * Should be at least nr_pages long.
3faa52c0
JH
3125 * @vmas: array of pointers to vmas corresponding to each page.
3126 * Or NULL if the caller does not require them.
3127 * @locked: pointer to lock flag indicating whether lock is held and
3128 * subsequently whether VM_FAULT_RETRY functionality can be
3129 * utilised. Lock must initially be held.
3130 *
3131 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3132 * get_user_pages_remote() for documentation on the function arguments, because
3133 * the arguments here are identical.
3134 *
3135 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3136 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 3137 */
64019a2e 3138long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3139 unsigned long start, unsigned long nr_pages,
3140 unsigned int gup_flags, struct page **pages,
3141 struct vm_area_struct **vmas, int *locked)
3142{
3faa52c0
JH
3143 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3144 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3145 return -EINVAL;
3146
0768c8de
YN
3147 if (WARN_ON_ONCE(!pages))
3148 return -EINVAL;
3149
3faa52c0 3150 gup_flags |= FOLL_PIN;
64019a2e 3151 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3faa52c0 3152 pages, vmas, locked);
eddb1c22
JH
3153}
3154EXPORT_SYMBOL(pin_user_pages_remote);
3155
3156/**
3157 * pin_user_pages() - pin user pages in memory for use by other devices
3158 *
3faa52c0
JH
3159 * @start: starting user address
3160 * @nr_pages: number of pages from start to pin
3161 * @gup_flags: flags modifying lookup behaviour
3162 * @pages: array that receives pointers to the pages pinned.
0768c8de 3163 * Should be at least nr_pages long.
3faa52c0
JH
3164 * @vmas: array of pointers to vmas corresponding to each page.
3165 * Or NULL if the caller does not require them.
3166 *
3167 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3168 * FOLL_PIN is set.
3169 *
3170 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3171 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
3172 */
3173long pin_user_pages(unsigned long start, unsigned long nr_pages,
3174 unsigned int gup_flags, struct page **pages,
3175 struct vm_area_struct **vmas)
3176{
3faa52c0
JH
3177 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3178 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3179 return -EINVAL;
3180
0768c8de
YN
3181 if (WARN_ON_ONCE(!pages))
3182 return -EINVAL;
3183
3faa52c0 3184 gup_flags |= FOLL_PIN;
64019a2e 3185 return __gup_longterm_locked(current->mm, start, nr_pages,
3faa52c0 3186 pages, vmas, gup_flags);
eddb1c22
JH
3187}
3188EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3189
3190/*
3191 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3192 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3193 * FOLL_PIN and rejects FOLL_GET.
3194 */
3195long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3196 struct page **pages, unsigned int gup_flags)
3197{
3198 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3199 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3200 return -EINVAL;
3201
0768c8de
YN
3202 if (WARN_ON_ONCE(!pages))
3203 return -EINVAL;
3204
91429023
JH
3205 gup_flags |= FOLL_PIN;
3206 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3207}
3208EXPORT_SYMBOL(pin_user_pages_unlocked);