mm/gup: split get_user_pages_remote() into two routines
[linux-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13
174cd4b1 14#include <linux/sched/signal.h>
2667f50e 15#include <linux/rwsem.h>
f30c59e9 16#include <linux/hugetlb.h>
9a4e9f3b
AK
17#include <linux/migrate.h>
18#include <linux/mm_inline.h>
19#include <linux/sched/mm.h>
1027e443 20
33a709b2 21#include <asm/mmu_context.h>
2667f50e 22#include <asm/pgtable.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
a707cdd5
JH
32/*
33 * Return the compound head page with ref appropriately incremented,
34 * or NULL if that failed.
35 */
36static inline struct page *try_get_compound_head(struct page *page, int refs)
37{
38 struct page *head = compound_head(page);
39
40 if (WARN_ON_ONCE(page_ref_count(head) < 0))
41 return NULL;
42 if (unlikely(!page_cache_add_speculative(head, refs)))
43 return NULL;
44 return head;
45}
46
fc1d8e7c 47/**
f1f6a7dd 48 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 49 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 50 * @npages: number of pages in the @pages array.
2d15eb31 51 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
52 *
53 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
54 * variants called on that page.
55 *
56 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 57 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
58 * listed as clean. In any case, releases all pages using unpin_user_page(),
59 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 60 *
f1f6a7dd 61 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 62 *
2d15eb31 63 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
64 * required, then the caller should a) verify that this is really correct,
65 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 66 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
67 *
68 */
f1f6a7dd
JH
69void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
70 bool make_dirty)
fc1d8e7c 71{
2d15eb31 72 unsigned long index;
fc1d8e7c 73
2d15eb31 74 /*
75 * TODO: this can be optimized for huge pages: if a series of pages is
76 * physically contiguous and part of the same compound page, then a
77 * single operation to the head page should suffice.
78 */
79
80 if (!make_dirty) {
f1f6a7dd 81 unpin_user_pages(pages, npages);
2d15eb31 82 return;
83 }
84
85 for (index = 0; index < npages; index++) {
86 struct page *page = compound_head(pages[index]);
87 /*
88 * Checking PageDirty at this point may race with
89 * clear_page_dirty_for_io(), but that's OK. Two key
90 * cases:
91 *
92 * 1) This code sees the page as already dirty, so it
93 * skips the call to set_page_dirty(). That could happen
94 * because clear_page_dirty_for_io() called
95 * page_mkclean(), followed by set_page_dirty().
96 * However, now the page is going to get written back,
97 * which meets the original intention of setting it
98 * dirty, so all is well: clear_page_dirty_for_io() goes
99 * on to call TestClearPageDirty(), and write the page
100 * back.
101 *
102 * 2) This code sees the page as clean, so it calls
103 * set_page_dirty(). The page stays dirty, despite being
104 * written back, so it gets written back again in the
105 * next writeback cycle. This is harmless.
106 */
107 if (!PageDirty(page))
108 set_page_dirty_lock(page);
f1f6a7dd 109 unpin_user_page(page);
2d15eb31 110 }
fc1d8e7c 111}
f1f6a7dd 112EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c
JH
113
114/**
f1f6a7dd 115 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
116 * @pages: array of pages to be marked dirty and released.
117 * @npages: number of pages in the @pages array.
118 *
f1f6a7dd 119 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 120 *
f1f6a7dd 121 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 122 */
f1f6a7dd 123void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c
JH
124{
125 unsigned long index;
126
127 /*
128 * TODO: this can be optimized for huge pages: if a series of pages is
129 * physically contiguous and part of the same compound page, then a
130 * single operation to the head page should suffice.
131 */
132 for (index = 0; index < npages; index++)
f1f6a7dd 133 unpin_user_page(pages[index]);
fc1d8e7c 134}
f1f6a7dd 135EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 136
050a9adc 137#ifdef CONFIG_MMU
69e68b4f
KS
138static struct page *no_page_table(struct vm_area_struct *vma,
139 unsigned int flags)
4bbd4c77 140{
69e68b4f
KS
141 /*
142 * When core dumping an enormous anonymous area that nobody
143 * has touched so far, we don't want to allocate unnecessary pages or
144 * page tables. Return error instead of NULL to skip handle_mm_fault,
145 * then get_dump_page() will return NULL to leave a hole in the dump.
146 * But we can only make this optimization where a hole would surely
147 * be zero-filled if handle_mm_fault() actually did handle it.
148 */
149 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
150 return ERR_PTR(-EFAULT);
151 return NULL;
152}
4bbd4c77 153
1027e443
KS
154static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
155 pte_t *pte, unsigned int flags)
156{
157 /* No page to get reference */
158 if (flags & FOLL_GET)
159 return -EFAULT;
160
161 if (flags & FOLL_TOUCH) {
162 pte_t entry = *pte;
163
164 if (flags & FOLL_WRITE)
165 entry = pte_mkdirty(entry);
166 entry = pte_mkyoung(entry);
167
168 if (!pte_same(*pte, entry)) {
169 set_pte_at(vma->vm_mm, address, pte, entry);
170 update_mmu_cache(vma, address, pte);
171 }
172 }
173
174 /* Proper page table entry exists, but no corresponding struct page */
175 return -EEXIST;
176}
177
19be0eaf
LT
178/*
179 * FOLL_FORCE can write to even unwritable pte's, but only
180 * after we've gone through a COW cycle and they are dirty.
181 */
182static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
183{
f6f37321 184 return pte_write(pte) ||
19be0eaf
LT
185 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
186}
187
69e68b4f 188static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
189 unsigned long address, pmd_t *pmd, unsigned int flags,
190 struct dev_pagemap **pgmap)
69e68b4f
KS
191{
192 struct mm_struct *mm = vma->vm_mm;
193 struct page *page;
194 spinlock_t *ptl;
195 pte_t *ptep, pte;
4bbd4c77 196
eddb1c22
JH
197 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
198 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
199 (FOLL_PIN | FOLL_GET)))
200 return ERR_PTR(-EINVAL);
69e68b4f 201retry:
4bbd4c77 202 if (unlikely(pmd_bad(*pmd)))
69e68b4f 203 return no_page_table(vma, flags);
4bbd4c77
KS
204
205 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
206 pte = *ptep;
207 if (!pte_present(pte)) {
208 swp_entry_t entry;
209 /*
210 * KSM's break_ksm() relies upon recognizing a ksm page
211 * even while it is being migrated, so for that case we
212 * need migration_entry_wait().
213 */
214 if (likely(!(flags & FOLL_MIGRATION)))
215 goto no_page;
0661a336 216 if (pte_none(pte))
4bbd4c77
KS
217 goto no_page;
218 entry = pte_to_swp_entry(pte);
219 if (!is_migration_entry(entry))
220 goto no_page;
221 pte_unmap_unlock(ptep, ptl);
222 migration_entry_wait(mm, pmd, address);
69e68b4f 223 goto retry;
4bbd4c77 224 }
8a0516ed 225 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 226 goto no_page;
19be0eaf 227 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
228 pte_unmap_unlock(ptep, ptl);
229 return NULL;
230 }
4bbd4c77
KS
231
232 page = vm_normal_page(vma, address, pte);
3565fce3
DW
233 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
234 /*
235 * Only return device mapping pages in the FOLL_GET case since
236 * they are only valid while holding the pgmap reference.
237 */
df06b37f
KB
238 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
239 if (*pgmap)
3565fce3
DW
240 page = pte_page(pte);
241 else
242 goto no_page;
243 } else if (unlikely(!page)) {
1027e443
KS
244 if (flags & FOLL_DUMP) {
245 /* Avoid special (like zero) pages in core dumps */
246 page = ERR_PTR(-EFAULT);
247 goto out;
248 }
249
250 if (is_zero_pfn(pte_pfn(pte))) {
251 page = pte_page(pte);
252 } else {
253 int ret;
254
255 ret = follow_pfn_pte(vma, address, ptep, flags);
256 page = ERR_PTR(ret);
257 goto out;
258 }
4bbd4c77
KS
259 }
260
6742d293
KS
261 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
262 int ret;
263 get_page(page);
264 pte_unmap_unlock(ptep, ptl);
265 lock_page(page);
266 ret = split_huge_page(page);
267 unlock_page(page);
268 put_page(page);
269 if (ret)
270 return ERR_PTR(ret);
271 goto retry;
272 }
273
8fde12ca
LT
274 if (flags & FOLL_GET) {
275 if (unlikely(!try_get_page(page))) {
276 page = ERR_PTR(-ENOMEM);
277 goto out;
278 }
279 }
4bbd4c77
KS
280 if (flags & FOLL_TOUCH) {
281 if ((flags & FOLL_WRITE) &&
282 !pte_dirty(pte) && !PageDirty(page))
283 set_page_dirty(page);
284 /*
285 * pte_mkyoung() would be more correct here, but atomic care
286 * is needed to avoid losing the dirty bit: it is easier to use
287 * mark_page_accessed().
288 */
289 mark_page_accessed(page);
290 }
de60f5f1 291 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
292 /* Do not mlock pte-mapped THP */
293 if (PageTransCompound(page))
294 goto out;
295
4bbd4c77
KS
296 /*
297 * The preliminary mapping check is mainly to avoid the
298 * pointless overhead of lock_page on the ZERO_PAGE
299 * which might bounce very badly if there is contention.
300 *
301 * If the page is already locked, we don't need to
302 * handle it now - vmscan will handle it later if and
303 * when it attempts to reclaim the page.
304 */
305 if (page->mapping && trylock_page(page)) {
306 lru_add_drain(); /* push cached pages to LRU */
307 /*
308 * Because we lock page here, and migration is
309 * blocked by the pte's page reference, and we
310 * know the page is still mapped, we don't even
311 * need to check for file-cache page truncation.
312 */
313 mlock_vma_page(page);
314 unlock_page(page);
315 }
316 }
1027e443 317out:
4bbd4c77 318 pte_unmap_unlock(ptep, ptl);
4bbd4c77 319 return page;
4bbd4c77
KS
320no_page:
321 pte_unmap_unlock(ptep, ptl);
322 if (!pte_none(pte))
69e68b4f
KS
323 return NULL;
324 return no_page_table(vma, flags);
325}
326
080dbb61
AK
327static struct page *follow_pmd_mask(struct vm_area_struct *vma,
328 unsigned long address, pud_t *pudp,
df06b37f
KB
329 unsigned int flags,
330 struct follow_page_context *ctx)
69e68b4f 331{
68827280 332 pmd_t *pmd, pmdval;
69e68b4f
KS
333 spinlock_t *ptl;
334 struct page *page;
335 struct mm_struct *mm = vma->vm_mm;
336
080dbb61 337 pmd = pmd_offset(pudp, address);
68827280
HY
338 /*
339 * The READ_ONCE() will stabilize the pmdval in a register or
340 * on the stack so that it will stop changing under the code.
341 */
342 pmdval = READ_ONCE(*pmd);
343 if (pmd_none(pmdval))
69e68b4f 344 return no_page_table(vma, flags);
be9d3045 345 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
346 page = follow_huge_pmd(mm, address, pmd, flags);
347 if (page)
348 return page;
349 return no_page_table(vma, flags);
69e68b4f 350 }
68827280 351 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 352 page = follow_huge_pd(vma, address,
68827280 353 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
354 PMD_SHIFT);
355 if (page)
356 return page;
357 return no_page_table(vma, flags);
358 }
84c3fc4e 359retry:
68827280 360 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
361 if (likely(!(flags & FOLL_MIGRATION)))
362 return no_page_table(vma, flags);
363 VM_BUG_ON(thp_migration_supported() &&
68827280
HY
364 !is_pmd_migration_entry(pmdval));
365 if (is_pmd_migration_entry(pmdval))
84c3fc4e 366 pmd_migration_entry_wait(mm, pmd);
68827280
HY
367 pmdval = READ_ONCE(*pmd);
368 /*
369 * MADV_DONTNEED may convert the pmd to null because
370 * mmap_sem is held in read mode
371 */
372 if (pmd_none(pmdval))
373 return no_page_table(vma, flags);
84c3fc4e
ZY
374 goto retry;
375 }
68827280 376 if (pmd_devmap(pmdval)) {
3565fce3 377 ptl = pmd_lock(mm, pmd);
df06b37f 378 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
379 spin_unlock(ptl);
380 if (page)
381 return page;
382 }
68827280 383 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 384 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 385
68827280 386 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
387 return no_page_table(vma, flags);
388
84c3fc4e 389retry_locked:
6742d293 390 ptl = pmd_lock(mm, pmd);
68827280
HY
391 if (unlikely(pmd_none(*pmd))) {
392 spin_unlock(ptl);
393 return no_page_table(vma, flags);
394 }
84c3fc4e
ZY
395 if (unlikely(!pmd_present(*pmd))) {
396 spin_unlock(ptl);
397 if (likely(!(flags & FOLL_MIGRATION)))
398 return no_page_table(vma, flags);
399 pmd_migration_entry_wait(mm, pmd);
400 goto retry_locked;
401 }
6742d293
KS
402 if (unlikely(!pmd_trans_huge(*pmd))) {
403 spin_unlock(ptl);
df06b37f 404 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 405 }
bfe7b00d 406 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
6742d293
KS
407 int ret;
408 page = pmd_page(*pmd);
409 if (is_huge_zero_page(page)) {
410 spin_unlock(ptl);
411 ret = 0;
78ddc534 412 split_huge_pmd(vma, pmd, address);
337d9abf
NH
413 if (pmd_trans_unstable(pmd))
414 ret = -EBUSY;
bfe7b00d 415 } else if (flags & FOLL_SPLIT) {
8fde12ca
LT
416 if (unlikely(!try_get_page(page))) {
417 spin_unlock(ptl);
418 return ERR_PTR(-ENOMEM);
419 }
69e68b4f 420 spin_unlock(ptl);
6742d293
KS
421 lock_page(page);
422 ret = split_huge_page(page);
423 unlock_page(page);
424 put_page(page);
baa355fd
KS
425 if (pmd_none(*pmd))
426 return no_page_table(vma, flags);
bfe7b00d
SL
427 } else { /* flags & FOLL_SPLIT_PMD */
428 spin_unlock(ptl);
429 split_huge_pmd(vma, pmd, address);
430 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
431 }
432
433 return ret ? ERR_PTR(ret) :
df06b37f 434 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 435 }
6742d293
KS
436 page = follow_trans_huge_pmd(vma, address, pmd, flags);
437 spin_unlock(ptl);
df06b37f 438 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 439 return page;
4bbd4c77
KS
440}
441
080dbb61
AK
442static struct page *follow_pud_mask(struct vm_area_struct *vma,
443 unsigned long address, p4d_t *p4dp,
df06b37f
KB
444 unsigned int flags,
445 struct follow_page_context *ctx)
080dbb61
AK
446{
447 pud_t *pud;
448 spinlock_t *ptl;
449 struct page *page;
450 struct mm_struct *mm = vma->vm_mm;
451
452 pud = pud_offset(p4dp, address);
453 if (pud_none(*pud))
454 return no_page_table(vma, flags);
be9d3045 455 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
456 page = follow_huge_pud(mm, address, pud, flags);
457 if (page)
458 return page;
459 return no_page_table(vma, flags);
460 }
4dc71451
AK
461 if (is_hugepd(__hugepd(pud_val(*pud)))) {
462 page = follow_huge_pd(vma, address,
463 __hugepd(pud_val(*pud)), flags,
464 PUD_SHIFT);
465 if (page)
466 return page;
467 return no_page_table(vma, flags);
468 }
080dbb61
AK
469 if (pud_devmap(*pud)) {
470 ptl = pud_lock(mm, pud);
df06b37f 471 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
472 spin_unlock(ptl);
473 if (page)
474 return page;
475 }
476 if (unlikely(pud_bad(*pud)))
477 return no_page_table(vma, flags);
478
df06b37f 479 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
480}
481
080dbb61
AK
482static struct page *follow_p4d_mask(struct vm_area_struct *vma,
483 unsigned long address, pgd_t *pgdp,
df06b37f
KB
484 unsigned int flags,
485 struct follow_page_context *ctx)
080dbb61
AK
486{
487 p4d_t *p4d;
4dc71451 488 struct page *page;
080dbb61
AK
489
490 p4d = p4d_offset(pgdp, address);
491 if (p4d_none(*p4d))
492 return no_page_table(vma, flags);
493 BUILD_BUG_ON(p4d_huge(*p4d));
494 if (unlikely(p4d_bad(*p4d)))
495 return no_page_table(vma, flags);
496
4dc71451
AK
497 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
498 page = follow_huge_pd(vma, address,
499 __hugepd(p4d_val(*p4d)), flags,
500 P4D_SHIFT);
501 if (page)
502 return page;
503 return no_page_table(vma, flags);
504 }
df06b37f 505 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
506}
507
508/**
509 * follow_page_mask - look up a page descriptor from a user-virtual address
510 * @vma: vm_area_struct mapping @address
511 * @address: virtual address to look up
512 * @flags: flags modifying lookup behaviour
78179556
MR
513 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
514 * pointer to output page_mask
080dbb61
AK
515 *
516 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
517 *
78179556
MR
518 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
519 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
520 *
521 * On output, the @ctx->page_mask is set according to the size of the page.
522 *
523 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
524 * an error pointer if there is a mapping to something not represented
525 * by a page descriptor (see also vm_normal_page()).
526 */
a7030aea 527static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 528 unsigned long address, unsigned int flags,
df06b37f 529 struct follow_page_context *ctx)
080dbb61
AK
530{
531 pgd_t *pgd;
532 struct page *page;
533 struct mm_struct *mm = vma->vm_mm;
534
df06b37f 535 ctx->page_mask = 0;
080dbb61
AK
536
537 /* make this handle hugepd */
538 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
539 if (!IS_ERR(page)) {
540 BUG_ON(flags & FOLL_GET);
541 return page;
542 }
543
544 pgd = pgd_offset(mm, address);
545
546 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
547 return no_page_table(vma, flags);
548
faaa5b62
AK
549 if (pgd_huge(*pgd)) {
550 page = follow_huge_pgd(mm, address, pgd, flags);
551 if (page)
552 return page;
553 return no_page_table(vma, flags);
554 }
4dc71451
AK
555 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
556 page = follow_huge_pd(vma, address,
557 __hugepd(pgd_val(*pgd)), flags,
558 PGDIR_SHIFT);
559 if (page)
560 return page;
561 return no_page_table(vma, flags);
562 }
faaa5b62 563
df06b37f
KB
564 return follow_p4d_mask(vma, address, pgd, flags, ctx);
565}
566
567struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
568 unsigned int foll_flags)
569{
570 struct follow_page_context ctx = { NULL };
571 struct page *page;
572
573 page = follow_page_mask(vma, address, foll_flags, &ctx);
574 if (ctx.pgmap)
575 put_dev_pagemap(ctx.pgmap);
576 return page;
080dbb61
AK
577}
578
f2b495ca
KS
579static int get_gate_page(struct mm_struct *mm, unsigned long address,
580 unsigned int gup_flags, struct vm_area_struct **vma,
581 struct page **page)
582{
583 pgd_t *pgd;
c2febafc 584 p4d_t *p4d;
f2b495ca
KS
585 pud_t *pud;
586 pmd_t *pmd;
587 pte_t *pte;
588 int ret = -EFAULT;
589
590 /* user gate pages are read-only */
591 if (gup_flags & FOLL_WRITE)
592 return -EFAULT;
593 if (address > TASK_SIZE)
594 pgd = pgd_offset_k(address);
595 else
596 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
597 if (pgd_none(*pgd))
598 return -EFAULT;
c2febafc 599 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
600 if (p4d_none(*p4d))
601 return -EFAULT;
c2febafc 602 pud = pud_offset(p4d, address);
b5d1c39f
AL
603 if (pud_none(*pud))
604 return -EFAULT;
f2b495ca 605 pmd = pmd_offset(pud, address);
84c3fc4e 606 if (!pmd_present(*pmd))
f2b495ca
KS
607 return -EFAULT;
608 VM_BUG_ON(pmd_trans_huge(*pmd));
609 pte = pte_offset_map(pmd, address);
610 if (pte_none(*pte))
611 goto unmap;
612 *vma = get_gate_vma(mm);
613 if (!page)
614 goto out;
615 *page = vm_normal_page(*vma, address, *pte);
616 if (!*page) {
617 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
618 goto unmap;
619 *page = pte_page(*pte);
620 }
8fde12ca
LT
621 if (unlikely(!try_get_page(*page))) {
622 ret = -ENOMEM;
623 goto unmap;
624 }
f2b495ca
KS
625out:
626 ret = 0;
627unmap:
628 pte_unmap(pte);
629 return ret;
630}
631
9a95f3cf
PC
632/*
633 * mmap_sem must be held on entry. If @nonblocking != NULL and
634 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
635 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
636 */
16744483
KS
637static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
638 unsigned long address, unsigned int *flags, int *nonblocking)
639{
16744483 640 unsigned int fault_flags = 0;
2b740303 641 vm_fault_t ret;
16744483 642
de60f5f1
EM
643 /* mlock all present pages, but do not fault in new pages */
644 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
645 return -ENOENT;
16744483
KS
646 if (*flags & FOLL_WRITE)
647 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
648 if (*flags & FOLL_REMOTE)
649 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
650 if (nonblocking)
651 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
652 if (*flags & FOLL_NOWAIT)
653 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
654 if (*flags & FOLL_TRIED) {
655 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
656 fault_flags |= FAULT_FLAG_TRIED;
657 }
16744483 658
dcddffd4 659 ret = handle_mm_fault(vma, address, fault_flags);
16744483 660 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
661 int err = vm_fault_to_errno(ret, *flags);
662
663 if (err)
664 return err;
16744483
KS
665 BUG();
666 }
667
668 if (tsk) {
669 if (ret & VM_FAULT_MAJOR)
670 tsk->maj_flt++;
671 else
672 tsk->min_flt++;
673 }
674
675 if (ret & VM_FAULT_RETRY) {
96312e61 676 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
16744483
KS
677 *nonblocking = 0;
678 return -EBUSY;
679 }
680
681 /*
682 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
683 * necessary, even if maybe_mkwrite decided not to set pte_write. We
684 * can thus safely do subsequent page lookups as if they were reads.
685 * But only do so when looping for pte_write is futile: in some cases
686 * userspace may also be wanting to write to the gotten user page,
687 * which a read fault here might prevent (a readonly page might get
688 * reCOWed by userspace write).
689 */
690 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 691 *flags |= FOLL_COW;
16744483
KS
692 return 0;
693}
694
fa5bb209
KS
695static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
696{
697 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
698 int write = (gup_flags & FOLL_WRITE);
699 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
700
701 if (vm_flags & (VM_IO | VM_PFNMAP))
702 return -EFAULT;
703
7f7ccc2c
WT
704 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
705 return -EFAULT;
706
1b2ee126 707 if (write) {
fa5bb209
KS
708 if (!(vm_flags & VM_WRITE)) {
709 if (!(gup_flags & FOLL_FORCE))
710 return -EFAULT;
711 /*
712 * We used to let the write,force case do COW in a
713 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
714 * set a breakpoint in a read-only mapping of an
715 * executable, without corrupting the file (yet only
716 * when that file had been opened for writing!).
717 * Anon pages in shared mappings are surprising: now
718 * just reject it.
719 */
46435364 720 if (!is_cow_mapping(vm_flags))
fa5bb209 721 return -EFAULT;
fa5bb209
KS
722 }
723 } else if (!(vm_flags & VM_READ)) {
724 if (!(gup_flags & FOLL_FORCE))
725 return -EFAULT;
726 /*
727 * Is there actually any vma we can reach here which does not
728 * have VM_MAYREAD set?
729 */
730 if (!(vm_flags & VM_MAYREAD))
731 return -EFAULT;
732 }
d61172b4
DH
733 /*
734 * gups are always data accesses, not instruction
735 * fetches, so execute=false here
736 */
737 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 738 return -EFAULT;
fa5bb209
KS
739 return 0;
740}
741
4bbd4c77
KS
742/**
743 * __get_user_pages() - pin user pages in memory
744 * @tsk: task_struct of target task
745 * @mm: mm_struct of target mm
746 * @start: starting user address
747 * @nr_pages: number of pages from start to pin
748 * @gup_flags: flags modifying pin behaviour
749 * @pages: array that receives pointers to the pages pinned.
750 * Should be at least nr_pages long. Or NULL, if caller
751 * only intends to ensure the pages are faulted in.
752 * @vmas: array of pointers to vmas corresponding to each page.
753 * Or NULL if the caller does not require them.
754 * @nonblocking: whether waiting for disk IO or mmap_sem contention
755 *
d2dfbe47
LX
756 * Returns either number of pages pinned (which may be less than the
757 * number requested), or an error. Details about the return value:
758 *
759 * -- If nr_pages is 0, returns 0.
760 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
761 * -- If nr_pages is >0, and some pages were pinned, returns the number of
762 * pages pinned. Again, this may be less than nr_pages.
763 *
764 * The caller is responsible for releasing returned @pages, via put_page().
765 *
766 * @vmas are valid only as long as mmap_sem is held.
4bbd4c77 767 *
9a95f3cf 768 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
769 *
770 * __get_user_pages walks a process's page tables and takes a reference to
771 * each struct page that each user address corresponds to at a given
772 * instant. That is, it takes the page that would be accessed if a user
773 * thread accesses the given user virtual address at that instant.
774 *
775 * This does not guarantee that the page exists in the user mappings when
776 * __get_user_pages returns, and there may even be a completely different
777 * page there in some cases (eg. if mmapped pagecache has been invalidated
778 * and subsequently re faulted). However it does guarantee that the page
779 * won't be freed completely. And mostly callers simply care that the page
780 * contains data that was valid *at some point in time*. Typically, an IO
781 * or similar operation cannot guarantee anything stronger anyway because
782 * locks can't be held over the syscall boundary.
783 *
784 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
785 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
786 * appropriate) must be called after the page is finished with, and
787 * before put_page is called.
788 *
789 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
790 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
791 * *@nonblocking will be set to 0. Further, if @gup_flags does not
792 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
793 * this case.
794 *
795 * A caller using such a combination of @nonblocking and @gup_flags
796 * must therefore hold the mmap_sem for reading only, and recognize
797 * when it's been released. Otherwise, it must be held for either
798 * reading or writing and will not be released.
4bbd4c77
KS
799 *
800 * In most cases, get_user_pages or get_user_pages_fast should be used
801 * instead of __get_user_pages. __get_user_pages should be used only if
802 * you need some special @gup_flags.
803 */
0d731759 804static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
4bbd4c77
KS
805 unsigned long start, unsigned long nr_pages,
806 unsigned int gup_flags, struct page **pages,
807 struct vm_area_struct **vmas, int *nonblocking)
808{
df06b37f 809 long ret = 0, i = 0;
fa5bb209 810 struct vm_area_struct *vma = NULL;
df06b37f 811 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
812
813 if (!nr_pages)
814 return 0;
815
f9652594
AK
816 start = untagged_addr(start);
817
eddb1c22 818 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
819
820 /*
821 * If FOLL_FORCE is set then do not force a full fault as the hinting
822 * fault information is unrelated to the reference behaviour of a task
823 * using the address space
824 */
825 if (!(gup_flags & FOLL_FORCE))
826 gup_flags |= FOLL_NUMA;
827
4bbd4c77 828 do {
fa5bb209
KS
829 struct page *page;
830 unsigned int foll_flags = gup_flags;
831 unsigned int page_increm;
832
833 /* first iteration or cross vma bound */
834 if (!vma || start >= vma->vm_end) {
835 vma = find_extend_vma(mm, start);
836 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
837 ret = get_gate_page(mm, start & PAGE_MASK,
838 gup_flags, &vma,
839 pages ? &pages[i] : NULL);
840 if (ret)
08be37b7 841 goto out;
df06b37f 842 ctx.page_mask = 0;
fa5bb209
KS
843 goto next_page;
844 }
4bbd4c77 845
df06b37f
KB
846 if (!vma || check_vma_flags(vma, gup_flags)) {
847 ret = -EFAULT;
848 goto out;
849 }
fa5bb209
KS
850 if (is_vm_hugetlb_page(vma)) {
851 i = follow_hugetlb_page(mm, vma, pages, vmas,
852 &start, &nr_pages, i,
87ffc118 853 gup_flags, nonblocking);
fa5bb209 854 continue;
4bbd4c77 855 }
fa5bb209
KS
856 }
857retry:
858 /*
859 * If we have a pending SIGKILL, don't keep faulting pages and
860 * potentially allocating memory.
861 */
fa45f116 862 if (fatal_signal_pending(current)) {
df06b37f
KB
863 ret = -ERESTARTSYS;
864 goto out;
865 }
fa5bb209 866 cond_resched();
df06b37f
KB
867
868 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 869 if (!page) {
fa5bb209
KS
870 ret = faultin_page(tsk, vma, start, &foll_flags,
871 nonblocking);
872 switch (ret) {
873 case 0:
874 goto retry;
df06b37f
KB
875 case -EBUSY:
876 ret = 0;
877 /* FALLTHRU */
fa5bb209
KS
878 case -EFAULT:
879 case -ENOMEM:
880 case -EHWPOISON:
df06b37f 881 goto out;
fa5bb209
KS
882 case -ENOENT:
883 goto next_page;
4bbd4c77 884 }
fa5bb209 885 BUG();
1027e443
KS
886 } else if (PTR_ERR(page) == -EEXIST) {
887 /*
888 * Proper page table entry exists, but no corresponding
889 * struct page.
890 */
891 goto next_page;
892 } else if (IS_ERR(page)) {
df06b37f
KB
893 ret = PTR_ERR(page);
894 goto out;
1027e443 895 }
fa5bb209
KS
896 if (pages) {
897 pages[i] = page;
898 flush_anon_page(vma, page, start);
899 flush_dcache_page(page);
df06b37f 900 ctx.page_mask = 0;
4bbd4c77 901 }
4bbd4c77 902next_page:
fa5bb209
KS
903 if (vmas) {
904 vmas[i] = vma;
df06b37f 905 ctx.page_mask = 0;
fa5bb209 906 }
df06b37f 907 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
908 if (page_increm > nr_pages)
909 page_increm = nr_pages;
910 i += page_increm;
911 start += page_increm * PAGE_SIZE;
912 nr_pages -= page_increm;
4bbd4c77 913 } while (nr_pages);
df06b37f
KB
914out:
915 if (ctx.pgmap)
916 put_dev_pagemap(ctx.pgmap);
917 return i ? i : ret;
4bbd4c77 918}
4bbd4c77 919
771ab430
TK
920static bool vma_permits_fault(struct vm_area_struct *vma,
921 unsigned int fault_flags)
d4925e00 922{
1b2ee126
DH
923 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
924 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 925 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
926
927 if (!(vm_flags & vma->vm_flags))
928 return false;
929
33a709b2
DH
930 /*
931 * The architecture might have a hardware protection
1b2ee126 932 * mechanism other than read/write that can deny access.
d61172b4
DH
933 *
934 * gup always represents data access, not instruction
935 * fetches, so execute=false here:
33a709b2 936 */
d61172b4 937 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
938 return false;
939
d4925e00
DH
940 return true;
941}
942
4bbd4c77
KS
943/*
944 * fixup_user_fault() - manually resolve a user page fault
945 * @tsk: the task_struct to use for page fault accounting, or
946 * NULL if faults are not to be recorded.
947 * @mm: mm_struct of target mm
948 * @address: user address
949 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
950 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
951 * does not allow retry
4bbd4c77
KS
952 *
953 * This is meant to be called in the specific scenario where for locking reasons
954 * we try to access user memory in atomic context (within a pagefault_disable()
955 * section), this returns -EFAULT, and we want to resolve the user fault before
956 * trying again.
957 *
958 * Typically this is meant to be used by the futex code.
959 *
960 * The main difference with get_user_pages() is that this function will
961 * unconditionally call handle_mm_fault() which will in turn perform all the
962 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 963 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
964 *
965 * This is important for some architectures where those bits also gate the
966 * access permission to the page because they are maintained in software. On
967 * such architectures, gup() will not be enough to make a subsequent access
968 * succeed.
969 *
4a9e1cda
DD
970 * This function will not return with an unlocked mmap_sem. So it has not the
971 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
972 */
973int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
974 unsigned long address, unsigned int fault_flags,
975 bool *unlocked)
4bbd4c77
KS
976{
977 struct vm_area_struct *vma;
2b740303 978 vm_fault_t ret, major = 0;
4a9e1cda 979
f9652594
AK
980 address = untagged_addr(address);
981
4a9e1cda
DD
982 if (unlocked)
983 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 984
4a9e1cda 985retry:
4bbd4c77
KS
986 vma = find_extend_vma(mm, address);
987 if (!vma || address < vma->vm_start)
988 return -EFAULT;
989
d4925e00 990 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
991 return -EFAULT;
992
dcddffd4 993 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 994 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 995 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
996 int err = vm_fault_to_errno(ret, 0);
997
998 if (err)
999 return err;
4bbd4c77
KS
1000 BUG();
1001 }
4a9e1cda
DD
1002
1003 if (ret & VM_FAULT_RETRY) {
1004 down_read(&mm->mmap_sem);
1005 if (!(fault_flags & FAULT_FLAG_TRIED)) {
1006 *unlocked = true;
1007 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
1008 fault_flags |= FAULT_FLAG_TRIED;
1009 goto retry;
1010 }
1011 }
1012
4bbd4c77 1013 if (tsk) {
4a9e1cda 1014 if (major)
4bbd4c77
KS
1015 tsk->maj_flt++;
1016 else
1017 tsk->min_flt++;
1018 }
1019 return 0;
1020}
add6a0cd 1021EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1022
f0818f47
AA
1023static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1024 struct mm_struct *mm,
1025 unsigned long start,
1026 unsigned long nr_pages,
f0818f47
AA
1027 struct page **pages,
1028 struct vm_area_struct **vmas,
e716712f 1029 int *locked,
0fd71a56 1030 unsigned int flags)
f0818f47 1031{
f0818f47
AA
1032 long ret, pages_done;
1033 bool lock_dropped;
1034
1035 if (locked) {
1036 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1037 BUG_ON(vmas);
1038 /* check caller initialized locked */
1039 BUG_ON(*locked != 1);
1040 }
1041
eddb1c22
JH
1042 /*
1043 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1044 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1045 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1046 * for FOLL_GET, not for the newer FOLL_PIN.
1047 *
1048 * FOLL_PIN always expects pages to be non-null, but no need to assert
1049 * that here, as any failures will be obvious enough.
1050 */
1051 if (pages && !(flags & FOLL_PIN))
f0818f47 1052 flags |= FOLL_GET;
f0818f47
AA
1053
1054 pages_done = 0;
1055 lock_dropped = false;
1056 for (;;) {
1057 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1058 vmas, locked);
1059 if (!locked)
1060 /* VM_FAULT_RETRY couldn't trigger, bypass */
1061 return ret;
1062
1063 /* VM_FAULT_RETRY cannot return errors */
1064 if (!*locked) {
1065 BUG_ON(ret < 0);
1066 BUG_ON(ret >= nr_pages);
1067 }
1068
f0818f47
AA
1069 if (ret > 0) {
1070 nr_pages -= ret;
1071 pages_done += ret;
1072 if (!nr_pages)
1073 break;
1074 }
1075 if (*locked) {
96312e61
AA
1076 /*
1077 * VM_FAULT_RETRY didn't trigger or it was a
1078 * FOLL_NOWAIT.
1079 */
f0818f47
AA
1080 if (!pages_done)
1081 pages_done = ret;
1082 break;
1083 }
df17277b
MR
1084 /*
1085 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1086 * For the prefault case (!pages) we only update counts.
1087 */
1088 if (likely(pages))
1089 pages += ret;
f0818f47
AA
1090 start += ret << PAGE_SHIFT;
1091
1092 /*
1093 * Repeat on the address that fired VM_FAULT_RETRY
1094 * without FAULT_FLAG_ALLOW_RETRY but with
1095 * FAULT_FLAG_TRIED.
1096 */
1097 *locked = 1;
1098 lock_dropped = true;
1099 down_read(&mm->mmap_sem);
1100 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1101 pages, NULL, NULL);
1102 if (ret != 1) {
1103 BUG_ON(ret > 1);
1104 if (!pages_done)
1105 pages_done = ret;
1106 break;
1107 }
1108 nr_pages--;
1109 pages_done++;
1110 if (!nr_pages)
1111 break;
df17277b
MR
1112 if (likely(pages))
1113 pages++;
f0818f47
AA
1114 start += PAGE_SIZE;
1115 }
e716712f 1116 if (lock_dropped && *locked) {
f0818f47
AA
1117 /*
1118 * We must let the caller know we temporarily dropped the lock
1119 * and so the critical section protected by it was lost.
1120 */
1121 up_read(&mm->mmap_sem);
1122 *locked = 0;
1123 }
1124 return pages_done;
1125}
1126
d3649f68
CH
1127/**
1128 * populate_vma_page_range() - populate a range of pages in the vma.
1129 * @vma: target vma
1130 * @start: start address
1131 * @end: end address
1132 * @nonblocking:
1133 *
1134 * This takes care of mlocking the pages too if VM_LOCKED is set.
1135 *
1136 * return 0 on success, negative error code on error.
1137 *
1138 * vma->vm_mm->mmap_sem must be held.
1139 *
1140 * If @nonblocking is NULL, it may be held for read or write and will
1141 * be unperturbed.
1142 *
1143 * If @nonblocking is non-NULL, it must held for read only and may be
1144 * released. If it's released, *@nonblocking will be set to 0.
1145 */
1146long populate_vma_page_range(struct vm_area_struct *vma,
1147 unsigned long start, unsigned long end, int *nonblocking)
1148{
1149 struct mm_struct *mm = vma->vm_mm;
1150 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1151 int gup_flags;
1152
1153 VM_BUG_ON(start & ~PAGE_MASK);
1154 VM_BUG_ON(end & ~PAGE_MASK);
1155 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1156 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1157 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1158
1159 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1160 if (vma->vm_flags & VM_LOCKONFAULT)
1161 gup_flags &= ~FOLL_POPULATE;
1162 /*
1163 * We want to touch writable mappings with a write fault in order
1164 * to break COW, except for shared mappings because these don't COW
1165 * and we would not want to dirty them for nothing.
1166 */
1167 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1168 gup_flags |= FOLL_WRITE;
1169
1170 /*
1171 * We want mlock to succeed for regions that have any permissions
1172 * other than PROT_NONE.
1173 */
1174 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1175 gup_flags |= FOLL_FORCE;
1176
1177 /*
1178 * We made sure addr is within a VMA, so the following will
1179 * not result in a stack expansion that recurses back here.
1180 */
1181 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1182 NULL, NULL, nonblocking);
1183}
1184
1185/*
1186 * __mm_populate - populate and/or mlock pages within a range of address space.
1187 *
1188 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1189 * flags. VMAs must be already marked with the desired vm_flags, and
1190 * mmap_sem must not be held.
1191 */
1192int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1193{
1194 struct mm_struct *mm = current->mm;
1195 unsigned long end, nstart, nend;
1196 struct vm_area_struct *vma = NULL;
1197 int locked = 0;
1198 long ret = 0;
1199
1200 end = start + len;
1201
1202 for (nstart = start; nstart < end; nstart = nend) {
1203 /*
1204 * We want to fault in pages for [nstart; end) address range.
1205 * Find first corresponding VMA.
1206 */
1207 if (!locked) {
1208 locked = 1;
1209 down_read(&mm->mmap_sem);
1210 vma = find_vma(mm, nstart);
1211 } else if (nstart >= vma->vm_end)
1212 vma = vma->vm_next;
1213 if (!vma || vma->vm_start >= end)
1214 break;
1215 /*
1216 * Set [nstart; nend) to intersection of desired address
1217 * range with the first VMA. Also, skip undesirable VMA types.
1218 */
1219 nend = min(end, vma->vm_end);
1220 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1221 continue;
1222 if (nstart < vma->vm_start)
1223 nstart = vma->vm_start;
1224 /*
1225 * Now fault in a range of pages. populate_vma_page_range()
1226 * double checks the vma flags, so that it won't mlock pages
1227 * if the vma was already munlocked.
1228 */
1229 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1230 if (ret < 0) {
1231 if (ignore_errors) {
1232 ret = 0;
1233 continue; /* continue at next VMA */
1234 }
1235 break;
1236 }
1237 nend = nstart + ret * PAGE_SIZE;
1238 ret = 0;
1239 }
1240 if (locked)
1241 up_read(&mm->mmap_sem);
1242 return ret; /* 0 or negative error code */
1243}
1244
1245/**
1246 * get_dump_page() - pin user page in memory while writing it to core dump
1247 * @addr: user address
1248 *
1249 * Returns struct page pointer of user page pinned for dump,
1250 * to be freed afterwards by put_page().
1251 *
1252 * Returns NULL on any kind of failure - a hole must then be inserted into
1253 * the corefile, to preserve alignment with its headers; and also returns
1254 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1255 * allowing a hole to be left in the corefile to save diskspace.
1256 *
1257 * Called without mmap_sem, but after all other threads have been killed.
1258 */
1259#ifdef CONFIG_ELF_CORE
1260struct page *get_dump_page(unsigned long addr)
1261{
1262 struct vm_area_struct *vma;
1263 struct page *page;
1264
1265 if (__get_user_pages(current, current->mm, addr, 1,
1266 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1267 NULL) < 1)
1268 return NULL;
1269 flush_cache_page(vma, addr, page_to_pfn(page));
1270 return page;
1271}
1272#endif /* CONFIG_ELF_CORE */
050a9adc
CH
1273#else /* CONFIG_MMU */
1274static long __get_user_pages_locked(struct task_struct *tsk,
1275 struct mm_struct *mm, unsigned long start,
1276 unsigned long nr_pages, struct page **pages,
1277 struct vm_area_struct **vmas, int *locked,
1278 unsigned int foll_flags)
1279{
1280 struct vm_area_struct *vma;
1281 unsigned long vm_flags;
1282 int i;
1283
1284 /* calculate required read or write permissions.
1285 * If FOLL_FORCE is set, we only require the "MAY" flags.
1286 */
1287 vm_flags = (foll_flags & FOLL_WRITE) ?
1288 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1289 vm_flags &= (foll_flags & FOLL_FORCE) ?
1290 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1291
1292 for (i = 0; i < nr_pages; i++) {
1293 vma = find_vma(mm, start);
1294 if (!vma)
1295 goto finish_or_fault;
1296
1297 /* protect what we can, including chardevs */
1298 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1299 !(vm_flags & vma->vm_flags))
1300 goto finish_or_fault;
1301
1302 if (pages) {
1303 pages[i] = virt_to_page(start);
1304 if (pages[i])
1305 get_page(pages[i]);
1306 }
1307 if (vmas)
1308 vmas[i] = vma;
1309 start = (start + PAGE_SIZE) & PAGE_MASK;
1310 }
1311
1312 return i;
1313
1314finish_or_fault:
1315 return i ? : -EFAULT;
1316}
1317#endif /* !CONFIG_MMU */
d3649f68 1318
9a4e9f3b 1319#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
9a4e9f3b
AK
1320static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1321{
1322 long i;
1323 struct vm_area_struct *vma_prev = NULL;
1324
1325 for (i = 0; i < nr_pages; i++) {
1326 struct vm_area_struct *vma = vmas[i];
1327
1328 if (vma == vma_prev)
1329 continue;
1330
1331 vma_prev = vma;
1332
1333 if (vma_is_fsdax(vma))
1334 return true;
1335 }
1336 return false;
1337}
9a4e9f3b
AK
1338
1339#ifdef CONFIG_CMA
1340static struct page *new_non_cma_page(struct page *page, unsigned long private)
1341{
1342 /*
1343 * We want to make sure we allocate the new page from the same node
1344 * as the source page.
1345 */
1346 int nid = page_to_nid(page);
1347 /*
1348 * Trying to allocate a page for migration. Ignore allocation
1349 * failure warnings. We don't force __GFP_THISNODE here because
1350 * this node here is the node where we have CMA reservation and
1351 * in some case these nodes will have really less non movable
1352 * allocation memory.
1353 */
1354 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1355
1356 if (PageHighMem(page))
1357 gfp_mask |= __GFP_HIGHMEM;
1358
1359#ifdef CONFIG_HUGETLB_PAGE
1360 if (PageHuge(page)) {
1361 struct hstate *h = page_hstate(page);
1362 /*
1363 * We don't want to dequeue from the pool because pool pages will
1364 * mostly be from the CMA region.
1365 */
1366 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1367 }
1368#endif
1369 if (PageTransHuge(page)) {
1370 struct page *thp;
1371 /*
1372 * ignore allocation failure warnings
1373 */
1374 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1375
1376 /*
1377 * Remove the movable mask so that we don't allocate from
1378 * CMA area again.
1379 */
1380 thp_gfpmask &= ~__GFP_MOVABLE;
1381 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1382 if (!thp)
1383 return NULL;
1384 prep_transhuge_page(thp);
1385 return thp;
1386 }
1387
1388 return __alloc_pages_node(nid, gfp_mask, 0);
1389}
1390
932f4a63
IW
1391static long check_and_migrate_cma_pages(struct task_struct *tsk,
1392 struct mm_struct *mm,
1393 unsigned long start,
1394 unsigned long nr_pages,
9a4e9f3b 1395 struct page **pages,
932f4a63
IW
1396 struct vm_area_struct **vmas,
1397 unsigned int gup_flags)
9a4e9f3b 1398{
aa712399
PL
1399 unsigned long i;
1400 unsigned long step;
9a4e9f3b
AK
1401 bool drain_allow = true;
1402 bool migrate_allow = true;
1403 LIST_HEAD(cma_page_list);
b96cc655 1404 long ret = nr_pages;
9a4e9f3b
AK
1405
1406check_again:
aa712399
PL
1407 for (i = 0; i < nr_pages;) {
1408
1409 struct page *head = compound_head(pages[i]);
1410
1411 /*
1412 * gup may start from a tail page. Advance step by the left
1413 * part.
1414 */
d8c6546b 1415 step = compound_nr(head) - (pages[i] - head);
9a4e9f3b
AK
1416 /*
1417 * If we get a page from the CMA zone, since we are going to
1418 * be pinning these entries, we might as well move them out
1419 * of the CMA zone if possible.
1420 */
aa712399
PL
1421 if (is_migrate_cma_page(head)) {
1422 if (PageHuge(head))
9a4e9f3b 1423 isolate_huge_page(head, &cma_page_list);
aa712399 1424 else {
9a4e9f3b
AK
1425 if (!PageLRU(head) && drain_allow) {
1426 lru_add_drain_all();
1427 drain_allow = false;
1428 }
1429
1430 if (!isolate_lru_page(head)) {
1431 list_add_tail(&head->lru, &cma_page_list);
1432 mod_node_page_state(page_pgdat(head),
1433 NR_ISOLATED_ANON +
1434 page_is_file_cache(head),
1435 hpage_nr_pages(head));
1436 }
1437 }
1438 }
aa712399
PL
1439
1440 i += step;
9a4e9f3b
AK
1441 }
1442
1443 if (!list_empty(&cma_page_list)) {
1444 /*
1445 * drop the above get_user_pages reference.
1446 */
1447 for (i = 0; i < nr_pages; i++)
1448 put_page(pages[i]);
1449
1450 if (migrate_pages(&cma_page_list, new_non_cma_page,
1451 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1452 /*
1453 * some of the pages failed migration. Do get_user_pages
1454 * without migration.
1455 */
1456 migrate_allow = false;
1457
1458 if (!list_empty(&cma_page_list))
1459 putback_movable_pages(&cma_page_list);
1460 }
1461 /*
932f4a63
IW
1462 * We did migrate all the pages, Try to get the page references
1463 * again migrating any new CMA pages which we failed to isolate
1464 * earlier.
9a4e9f3b 1465 */
b96cc655 1466 ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
932f4a63
IW
1467 pages, vmas, NULL,
1468 gup_flags);
1469
b96cc655 1470 if ((ret > 0) && migrate_allow) {
1471 nr_pages = ret;
9a4e9f3b
AK
1472 drain_allow = true;
1473 goto check_again;
1474 }
1475 }
1476
b96cc655 1477 return ret;
9a4e9f3b
AK
1478}
1479#else
932f4a63
IW
1480static long check_and_migrate_cma_pages(struct task_struct *tsk,
1481 struct mm_struct *mm,
1482 unsigned long start,
1483 unsigned long nr_pages,
1484 struct page **pages,
1485 struct vm_area_struct **vmas,
1486 unsigned int gup_flags)
9a4e9f3b
AK
1487{
1488 return nr_pages;
1489}
050a9adc 1490#endif /* CONFIG_CMA */
9a4e9f3b 1491
2bb6d283 1492/*
932f4a63
IW
1493 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1494 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1495 */
932f4a63
IW
1496static long __gup_longterm_locked(struct task_struct *tsk,
1497 struct mm_struct *mm,
1498 unsigned long start,
1499 unsigned long nr_pages,
1500 struct page **pages,
1501 struct vm_area_struct **vmas,
1502 unsigned int gup_flags)
2bb6d283 1503{
932f4a63
IW
1504 struct vm_area_struct **vmas_tmp = vmas;
1505 unsigned long flags = 0;
2bb6d283
DW
1506 long rc, i;
1507
932f4a63
IW
1508 if (gup_flags & FOLL_LONGTERM) {
1509 if (!pages)
1510 return -EINVAL;
1511
1512 if (!vmas_tmp) {
1513 vmas_tmp = kcalloc(nr_pages,
1514 sizeof(struct vm_area_struct *),
1515 GFP_KERNEL);
1516 if (!vmas_tmp)
1517 return -ENOMEM;
1518 }
1519 flags = memalloc_nocma_save();
2bb6d283
DW
1520 }
1521
932f4a63
IW
1522 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1523 vmas_tmp, NULL, gup_flags);
2bb6d283 1524
932f4a63
IW
1525 if (gup_flags & FOLL_LONGTERM) {
1526 memalloc_nocma_restore(flags);
1527 if (rc < 0)
1528 goto out;
1529
1530 if (check_dax_vmas(vmas_tmp, rc)) {
1531 for (i = 0; i < rc; i++)
1532 put_page(pages[i]);
1533 rc = -EOPNOTSUPP;
1534 goto out;
1535 }
1536
1537 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1538 vmas_tmp, gup_flags);
9a4e9f3b 1539 }
2bb6d283 1540
2bb6d283 1541out:
932f4a63
IW
1542 if (vmas_tmp != vmas)
1543 kfree(vmas_tmp);
2bb6d283
DW
1544 return rc;
1545}
932f4a63
IW
1546#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1547static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1548 struct mm_struct *mm,
1549 unsigned long start,
1550 unsigned long nr_pages,
1551 struct page **pages,
1552 struct vm_area_struct **vmas,
1553 unsigned int flags)
1554{
1555 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1556 NULL, flags);
1557}
1558#endif /* CONFIG_FS_DAX || CONFIG_CMA */
1559
22bf29b6
JH
1560#ifdef CONFIG_MMU
1561static long __get_user_pages_remote(struct task_struct *tsk,
1562 struct mm_struct *mm,
1563 unsigned long start, unsigned long nr_pages,
1564 unsigned int gup_flags, struct page **pages,
1565 struct vm_area_struct **vmas, int *locked)
1566{
1567 /*
1568 * Parts of FOLL_LONGTERM behavior are incompatible with
1569 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1570 * vmas. However, this only comes up if locked is set, and there are
1571 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1572 * allow what we can.
1573 */
1574 if (gup_flags & FOLL_LONGTERM) {
1575 if (WARN_ON_ONCE(locked))
1576 return -EINVAL;
1577 /*
1578 * This will check the vmas (even if our vmas arg is NULL)
1579 * and return -ENOTSUPP if DAX isn't allowed in this case:
1580 */
1581 return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1582 vmas, gup_flags | FOLL_TOUCH |
1583 FOLL_REMOTE);
1584 }
1585
1586 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1587 locked,
1588 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1589}
1590
c4237f8b
JH
1591/*
1592 * get_user_pages_remote() - pin user pages in memory
1593 * @tsk: the task_struct to use for page fault accounting, or
1594 * NULL if faults are not to be recorded.
1595 * @mm: mm_struct of target mm
1596 * @start: starting user address
1597 * @nr_pages: number of pages from start to pin
1598 * @gup_flags: flags modifying lookup behaviour
1599 * @pages: array that receives pointers to the pages pinned.
1600 * Should be at least nr_pages long. Or NULL, if caller
1601 * only intends to ensure the pages are faulted in.
1602 * @vmas: array of pointers to vmas corresponding to each page.
1603 * Or NULL if the caller does not require them.
1604 * @locked: pointer to lock flag indicating whether lock is held and
1605 * subsequently whether VM_FAULT_RETRY functionality can be
1606 * utilised. Lock must initially be held.
1607 *
1608 * Returns either number of pages pinned (which may be less than the
1609 * number requested), or an error. Details about the return value:
1610 *
1611 * -- If nr_pages is 0, returns 0.
1612 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1613 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1614 * pages pinned. Again, this may be less than nr_pages.
1615 *
1616 * The caller is responsible for releasing returned @pages, via put_page().
1617 *
1618 * @vmas are valid only as long as mmap_sem is held.
1619 *
1620 * Must be called with mmap_sem held for read or write.
1621 *
1622 * get_user_pages walks a process's page tables and takes a reference to
1623 * each struct page that each user address corresponds to at a given
1624 * instant. That is, it takes the page that would be accessed if a user
1625 * thread accesses the given user virtual address at that instant.
1626 *
1627 * This does not guarantee that the page exists in the user mappings when
1628 * get_user_pages returns, and there may even be a completely different
1629 * page there in some cases (eg. if mmapped pagecache has been invalidated
1630 * and subsequently re faulted). However it does guarantee that the page
1631 * won't be freed completely. And mostly callers simply care that the page
1632 * contains data that was valid *at some point in time*. Typically, an IO
1633 * or similar operation cannot guarantee anything stronger anyway because
1634 * locks can't be held over the syscall boundary.
1635 *
1636 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1637 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1638 * be called after the page is finished with, and before put_page is called.
1639 *
1640 * get_user_pages is typically used for fewer-copy IO operations, to get a
1641 * handle on the memory by some means other than accesses via the user virtual
1642 * addresses. The pages may be submitted for DMA to devices or accessed via
1643 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1644 * use the correct cache flushing APIs.
1645 *
1646 * See also get_user_pages_fast, for performance critical applications.
1647 *
1648 * get_user_pages should be phased out in favor of
1649 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1650 * should use get_user_pages because it cannot pass
1651 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1652 */
1653long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1654 unsigned long start, unsigned long nr_pages,
1655 unsigned int gup_flags, struct page **pages,
1656 struct vm_area_struct **vmas, int *locked)
1657{
eddb1c22
JH
1658 /*
1659 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1660 * never directly by the caller, so enforce that with an assertion:
1661 */
1662 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1663 return -EINVAL;
1664
22bf29b6
JH
1665 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
1666 pages, vmas, locked);
c4237f8b
JH
1667}
1668EXPORT_SYMBOL(get_user_pages_remote);
1669
eddb1c22
JH
1670#else /* CONFIG_MMU */
1671long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1672 unsigned long start, unsigned long nr_pages,
1673 unsigned int gup_flags, struct page **pages,
1674 struct vm_area_struct **vmas, int *locked)
1675{
1676 return 0;
1677}
1678#endif /* !CONFIG_MMU */
1679
932f4a63
IW
1680/*
1681 * This is the same as get_user_pages_remote(), just with a
1682 * less-flexible calling convention where we assume that the task
1683 * and mm being operated on are the current task's and don't allow
1684 * passing of a locked parameter. We also obviously don't pass
1685 * FOLL_REMOTE in here.
1686 */
1687long get_user_pages(unsigned long start, unsigned long nr_pages,
1688 unsigned int gup_flags, struct page **pages,
1689 struct vm_area_struct **vmas)
1690{
eddb1c22
JH
1691 /*
1692 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1693 * never directly by the caller, so enforce that with an assertion:
1694 */
1695 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1696 return -EINVAL;
1697
932f4a63
IW
1698 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1699 pages, vmas, gup_flags | FOLL_TOUCH);
1700}
1701EXPORT_SYMBOL(get_user_pages);
2bb6d283 1702
d3649f68
CH
1703/*
1704 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1705 * paths better by using either get_user_pages_locked() or
1706 * get_user_pages_unlocked().
acc3c8d1 1707 *
d3649f68 1708 * get_user_pages_locked() is suitable to replace the form:
acc3c8d1 1709 *
d3649f68
CH
1710 * down_read(&mm->mmap_sem);
1711 * do_something()
1712 * get_user_pages(tsk, mm, ..., pages, NULL);
1713 * up_read(&mm->mmap_sem);
acc3c8d1 1714 *
d3649f68 1715 * to:
acc3c8d1 1716 *
d3649f68
CH
1717 * int locked = 1;
1718 * down_read(&mm->mmap_sem);
1719 * do_something()
1720 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1721 * if (locked)
1722 * up_read(&mm->mmap_sem);
acc3c8d1 1723 */
d3649f68
CH
1724long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1725 unsigned int gup_flags, struct page **pages,
1726 int *locked)
acc3c8d1 1727{
acc3c8d1 1728 /*
d3649f68
CH
1729 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1730 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1731 * vmas. As there are no users of this flag in this call we simply
1732 * disallow this option for now.
acc3c8d1 1733 */
d3649f68
CH
1734 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1735 return -EINVAL;
acc3c8d1 1736
d3649f68
CH
1737 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1738 pages, NULL, locked,
1739 gup_flags | FOLL_TOUCH);
acc3c8d1 1740}
d3649f68 1741EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
1742
1743/*
d3649f68 1744 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 1745 *
d3649f68
CH
1746 * down_read(&mm->mmap_sem);
1747 * get_user_pages(tsk, mm, ..., pages, NULL);
1748 * up_read(&mm->mmap_sem);
1749 *
1750 * with:
1751 *
1752 * get_user_pages_unlocked(tsk, mm, ..., pages);
1753 *
1754 * It is functionally equivalent to get_user_pages_fast so
1755 * get_user_pages_fast should be used instead if specific gup_flags
1756 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 1757 */
d3649f68
CH
1758long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1759 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
1760{
1761 struct mm_struct *mm = current->mm;
d3649f68
CH
1762 int locked = 1;
1763 long ret;
acc3c8d1 1764
d3649f68
CH
1765 /*
1766 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1767 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1768 * vmas. As there are no users of this flag in this call we simply
1769 * disallow this option for now.
1770 */
1771 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1772 return -EINVAL;
acc3c8d1 1773
d3649f68
CH
1774 down_read(&mm->mmap_sem);
1775 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1776 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1
KS
1777 if (locked)
1778 up_read(&mm->mmap_sem);
d3649f68 1779 return ret;
4bbd4c77 1780}
d3649f68 1781EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
1782
1783/*
67a929e0 1784 * Fast GUP
2667f50e
SC
1785 *
1786 * get_user_pages_fast attempts to pin user pages by walking the page
1787 * tables directly and avoids taking locks. Thus the walker needs to be
1788 * protected from page table pages being freed from under it, and should
1789 * block any THP splits.
1790 *
1791 * One way to achieve this is to have the walker disable interrupts, and
1792 * rely on IPIs from the TLB flushing code blocking before the page table
1793 * pages are freed. This is unsuitable for architectures that do not need
1794 * to broadcast an IPI when invalidating TLBs.
1795 *
1796 * Another way to achieve this is to batch up page table containing pages
1797 * belonging to more than one mm_user, then rcu_sched a callback to free those
1798 * pages. Disabling interrupts will allow the fast_gup walker to both block
1799 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1800 * (which is a relatively rare event). The code below adopts this strategy.
1801 *
1802 * Before activating this code, please be aware that the following assumptions
1803 * are currently made:
1804 *
ff2e6d72 1805 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 1806 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 1807 *
2667f50e
SC
1808 * *) ptes can be read atomically by the architecture.
1809 *
1810 * *) access_ok is sufficient to validate userspace address ranges.
1811 *
1812 * The last two assumptions can be relaxed by the addition of helper functions.
1813 *
1814 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1815 */
67a929e0 1816#ifdef CONFIG_HAVE_FAST_GUP
39656e83
CH
1817#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1818/*
1819 * WARNING: only to be used in the get_user_pages_fast() implementation.
1820 *
1821 * With get_user_pages_fast(), we walk down the pagetables without taking any
1822 * locks. For this we would like to load the pointers atomically, but sometimes
1823 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
1824 * we do have is the guarantee that a PTE will only either go from not present
1825 * to present, or present to not present or both -- it will not switch to a
1826 * completely different present page without a TLB flush in between; something
1827 * that we are blocking by holding interrupts off.
1828 *
1829 * Setting ptes from not present to present goes:
1830 *
1831 * ptep->pte_high = h;
1832 * smp_wmb();
1833 * ptep->pte_low = l;
1834 *
1835 * And present to not present goes:
1836 *
1837 * ptep->pte_low = 0;
1838 * smp_wmb();
1839 * ptep->pte_high = 0;
1840 *
1841 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1842 * We load pte_high *after* loading pte_low, which ensures we don't see an older
1843 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
1844 * picked up a changed pte high. We might have gotten rubbish values from
1845 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1846 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1847 * operates on present ptes we're safe.
1848 */
1849static inline pte_t gup_get_pte(pte_t *ptep)
1850{
1851 pte_t pte;
2667f50e 1852
39656e83
CH
1853 do {
1854 pte.pte_low = ptep->pte_low;
1855 smp_rmb();
1856 pte.pte_high = ptep->pte_high;
1857 smp_rmb();
1858 } while (unlikely(pte.pte_low != ptep->pte_low));
1859
1860 return pte;
1861}
1862#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 1863/*
39656e83 1864 * We require that the PTE can be read atomically.
0005d20b
KS
1865 */
1866static inline pte_t gup_get_pte(pte_t *ptep)
1867{
1868 return READ_ONCE(*ptep);
1869}
39656e83 1870#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 1871
790c7369
GR
1872static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1873 struct page **pages)
b59f65fa
KS
1874{
1875 while ((*nr) - nr_start) {
1876 struct page *page = pages[--(*nr)];
1877
1878 ClearPageReferenced(page);
1879 put_page(page);
1880 }
1881}
1882
3010a5ea 1883#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 1884static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 1885 unsigned int flags, struct page **pages, int *nr)
2667f50e 1886{
b59f65fa
KS
1887 struct dev_pagemap *pgmap = NULL;
1888 int nr_start = *nr, ret = 0;
2667f50e 1889 pte_t *ptep, *ptem;
2667f50e
SC
1890
1891 ptem = ptep = pte_offset_map(&pmd, addr);
1892 do {
0005d20b 1893 pte_t pte = gup_get_pte(ptep);
7aef4172 1894 struct page *head, *page;
2667f50e
SC
1895
1896 /*
1897 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 1898 * path using the pte_protnone check.
2667f50e 1899 */
e7884f8e
KS
1900 if (pte_protnone(pte))
1901 goto pte_unmap;
1902
b798bec4 1903 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
1904 goto pte_unmap;
1905
b59f65fa 1906 if (pte_devmap(pte)) {
7af75561
IW
1907 if (unlikely(flags & FOLL_LONGTERM))
1908 goto pte_unmap;
1909
b59f65fa
KS
1910 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1911 if (unlikely(!pgmap)) {
1912 undo_dev_pagemap(nr, nr_start, pages);
1913 goto pte_unmap;
1914 }
1915 } else if (pte_special(pte))
2667f50e
SC
1916 goto pte_unmap;
1917
1918 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1919 page = pte_page(pte);
1920
8fde12ca
LT
1921 head = try_get_compound_head(page, 1);
1922 if (!head)
2667f50e
SC
1923 goto pte_unmap;
1924
1925 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
7aef4172 1926 put_page(head);
2667f50e
SC
1927 goto pte_unmap;
1928 }
1929
7aef4172 1930 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053
KS
1931
1932 SetPageReferenced(page);
2667f50e
SC
1933 pages[*nr] = page;
1934 (*nr)++;
1935
1936 } while (ptep++, addr += PAGE_SIZE, addr != end);
1937
1938 ret = 1;
1939
1940pte_unmap:
832d7aa0
CH
1941 if (pgmap)
1942 put_dev_pagemap(pgmap);
2667f50e
SC
1943 pte_unmap(ptem);
1944 return ret;
1945}
1946#else
1947
1948/*
1949 * If we can't determine whether or not a pte is special, then fail immediately
1950 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1951 * to be special.
1952 *
1953 * For a futex to be placed on a THP tail page, get_futex_key requires a
1954 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1955 * useful to have gup_huge_pmd even if we can't operate on ptes.
1956 */
1957static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 1958 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
1959{
1960 return 0;
1961}
3010a5ea 1962#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 1963
17596731 1964#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa
KS
1965static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1966 unsigned long end, struct page **pages, int *nr)
1967{
1968 int nr_start = *nr;
1969 struct dev_pagemap *pgmap = NULL;
1970
1971 do {
1972 struct page *page = pfn_to_page(pfn);
1973
1974 pgmap = get_dev_pagemap(pfn, pgmap);
1975 if (unlikely(!pgmap)) {
1976 undo_dev_pagemap(nr, nr_start, pages);
1977 return 0;
1978 }
1979 SetPageReferenced(page);
1980 pages[*nr] = page;
1981 get_page(page);
b59f65fa
KS
1982 (*nr)++;
1983 pfn++;
1984 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
1985
1986 if (pgmap)
1987 put_dev_pagemap(pgmap);
b59f65fa
KS
1988 return 1;
1989}
1990
a9b6de77 1991static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b59f65fa
KS
1992 unsigned long end, struct page **pages, int *nr)
1993{
1994 unsigned long fault_pfn;
a9b6de77
DW
1995 int nr_start = *nr;
1996
1997 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1998 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1999 return 0;
b59f65fa 2000
a9b6de77
DW
2001 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2002 undo_dev_pagemap(nr, nr_start, pages);
2003 return 0;
2004 }
2005 return 1;
b59f65fa
KS
2006}
2007
a9b6de77 2008static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
b59f65fa
KS
2009 unsigned long end, struct page **pages, int *nr)
2010{
2011 unsigned long fault_pfn;
a9b6de77
DW
2012 int nr_start = *nr;
2013
2014 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2015 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
2016 return 0;
b59f65fa 2017
a9b6de77
DW
2018 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2019 undo_dev_pagemap(nr, nr_start, pages);
2020 return 0;
2021 }
2022 return 1;
b59f65fa
KS
2023}
2024#else
a9b6de77 2025static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b59f65fa
KS
2026 unsigned long end, struct page **pages, int *nr)
2027{
2028 BUILD_BUG();
2029 return 0;
2030}
2031
a9b6de77 2032static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
b59f65fa
KS
2033 unsigned long end, struct page **pages, int *nr)
2034{
2035 BUILD_BUG();
2036 return 0;
2037}
2038#endif
2039
a43e9820
JH
2040static int record_subpages(struct page *page, unsigned long addr,
2041 unsigned long end, struct page **pages)
2042{
2043 int nr;
2044
2045 for (nr = 0; addr != end; addr += PAGE_SIZE)
2046 pages[nr++] = page++;
2047
2048 return nr;
2049}
2050
2051static void put_compound_head(struct page *page, int refs)
2052{
2053 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2054 /*
2055 * Calling put_page() for each ref is unnecessarily slow. Only the last
2056 * ref needs a put_page().
2057 */
2058 if (refs > 1)
2059 page_ref_sub(page, refs - 1);
2060 put_page(page);
2061}
2062
cbd34da7
CH
2063#ifdef CONFIG_ARCH_HAS_HUGEPD
2064static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2065 unsigned long sz)
2066{
2067 unsigned long __boundary = (addr + sz) & ~(sz-1);
2068 return (__boundary - 1 < end - 1) ? __boundary : end;
2069}
2070
2071static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2072 unsigned long end, unsigned int flags,
2073 struct page **pages, int *nr)
cbd34da7
CH
2074{
2075 unsigned long pte_end;
2076 struct page *head, *page;
2077 pte_t pte;
2078 int refs;
2079
2080 pte_end = (addr + sz) & ~(sz-1);
2081 if (pte_end < end)
2082 end = pte_end;
2083
2084 pte = READ_ONCE(*ptep);
2085
0cd22afd 2086 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2087 return 0;
2088
2089 /* hugepages are never "special" */
2090 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2091
cbd34da7 2092 head = pte_page(pte);
cbd34da7 2093 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
a43e9820 2094 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2095
01a36916 2096 head = try_get_compound_head(head, refs);
a43e9820 2097 if (!head)
cbd34da7 2098 return 0;
cbd34da7
CH
2099
2100 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
a43e9820 2101 put_compound_head(head, refs);
cbd34da7
CH
2102 return 0;
2103 }
2104
a43e9820 2105 *nr += refs;
520b4a44 2106 SetPageReferenced(head);
cbd34da7
CH
2107 return 1;
2108}
2109
2110static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2111 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2112 struct page **pages, int *nr)
2113{
2114 pte_t *ptep;
2115 unsigned long sz = 1UL << hugepd_shift(hugepd);
2116 unsigned long next;
2117
2118 ptep = hugepte_offset(hugepd, addr, pdshift);
2119 do {
2120 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2121 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2122 return 0;
2123 } while (ptep++, addr = next, addr != end);
2124
2125 return 1;
2126}
2127#else
2128static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2129 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2130 struct page **pages, int *nr)
2131{
2132 return 0;
2133}
2134#endif /* CONFIG_ARCH_HAS_HUGEPD */
2135
2667f50e 2136static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2137 unsigned long end, unsigned int flags,
2138 struct page **pages, int *nr)
2667f50e 2139{
ddc58f27 2140 struct page *head, *page;
2667f50e
SC
2141 int refs;
2142
b798bec4 2143 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2144 return 0;
2145
7af75561
IW
2146 if (pmd_devmap(orig)) {
2147 if (unlikely(flags & FOLL_LONGTERM))
2148 return 0;
a9b6de77 2149 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
7af75561 2150 }
b59f65fa 2151
d63206ee 2152 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2153 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2154
8fde12ca 2155 head = try_get_compound_head(pmd_page(orig), refs);
a43e9820 2156 if (!head)
2667f50e 2157 return 0;
2667f50e
SC
2158
2159 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
a43e9820 2160 put_compound_head(head, refs);
2667f50e
SC
2161 return 0;
2162 }
2163
a43e9820 2164 *nr += refs;
e9348053 2165 SetPageReferenced(head);
2667f50e
SC
2166 return 1;
2167}
2168
2169static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
b798bec4 2170 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2667f50e 2171{
ddc58f27 2172 struct page *head, *page;
2667f50e
SC
2173 int refs;
2174
b798bec4 2175 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2176 return 0;
2177
7af75561
IW
2178 if (pud_devmap(orig)) {
2179 if (unlikely(flags & FOLL_LONGTERM))
2180 return 0;
a9b6de77 2181 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
7af75561 2182 }
b59f65fa 2183
d63206ee 2184 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2185 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2186
8fde12ca 2187 head = try_get_compound_head(pud_page(orig), refs);
a43e9820 2188 if (!head)
2667f50e 2189 return 0;
2667f50e
SC
2190
2191 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
a43e9820 2192 put_compound_head(head, refs);
2667f50e
SC
2193 return 0;
2194 }
2195
a43e9820 2196 *nr += refs;
e9348053 2197 SetPageReferenced(head);
2667f50e
SC
2198 return 1;
2199}
2200
f30c59e9 2201static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2202 unsigned long end, unsigned int flags,
f30c59e9
AK
2203 struct page **pages, int *nr)
2204{
2205 int refs;
ddc58f27 2206 struct page *head, *page;
f30c59e9 2207
b798bec4 2208 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2209 return 0;
2210
b59f65fa 2211 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2212
d63206ee 2213 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2214 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2215
8fde12ca 2216 head = try_get_compound_head(pgd_page(orig), refs);
a43e9820 2217 if (!head)
f30c59e9 2218 return 0;
f30c59e9
AK
2219
2220 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
a43e9820 2221 put_compound_head(head, refs);
f30c59e9
AK
2222 return 0;
2223 }
2224
a43e9820 2225 *nr += refs;
e9348053 2226 SetPageReferenced(head);
f30c59e9
AK
2227 return 1;
2228}
2229
2667f50e 2230static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2231 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2232{
2233 unsigned long next;
2234 pmd_t *pmdp;
2235
2236 pmdp = pmd_offset(&pud, addr);
2237 do {
38c5ce93 2238 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2239
2240 next = pmd_addr_end(addr, end);
84c3fc4e 2241 if (!pmd_present(pmd))
2667f50e
SC
2242 return 0;
2243
414fd080
YZ
2244 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2245 pmd_devmap(pmd))) {
2667f50e
SC
2246 /*
2247 * NUMA hinting faults need to be handled in the GUP
2248 * slowpath for accounting purposes and so that they
2249 * can be serialised against THP migration.
2250 */
8a0516ed 2251 if (pmd_protnone(pmd))
2667f50e
SC
2252 return 0;
2253
b798bec4 2254 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2255 pages, nr))
2256 return 0;
2257
f30c59e9
AK
2258 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2259 /*
2260 * architecture have different format for hugetlbfs
2261 * pmd format and THP pmd format
2262 */
2263 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2264 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2265 return 0;
b798bec4 2266 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2267 return 0;
2667f50e
SC
2268 } while (pmdp++, addr = next, addr != end);
2269
2270 return 1;
2271}
2272
c2febafc 2273static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2274 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2275{
2276 unsigned long next;
2277 pud_t *pudp;
2278
c2febafc 2279 pudp = pud_offset(&p4d, addr);
2667f50e 2280 do {
e37c6982 2281 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2282
2283 next = pud_addr_end(addr, end);
15494520 2284 if (unlikely(!pud_present(pud)))
2667f50e 2285 return 0;
f30c59e9 2286 if (unlikely(pud_huge(pud))) {
b798bec4 2287 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2288 pages, nr))
2289 return 0;
2290 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2291 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2292 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2293 return 0;
b798bec4 2294 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2667f50e
SC
2295 return 0;
2296 } while (pudp++, addr = next, addr != end);
2297
2298 return 1;
2299}
2300
c2febafc 2301static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2302 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2303{
2304 unsigned long next;
2305 p4d_t *p4dp;
2306
2307 p4dp = p4d_offset(&pgd, addr);
2308 do {
2309 p4d_t p4d = READ_ONCE(*p4dp);
2310
2311 next = p4d_addr_end(addr, end);
2312 if (p4d_none(p4d))
2313 return 0;
2314 BUILD_BUG_ON(p4d_huge(p4d));
2315 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2316 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2317 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2318 return 0;
b798bec4 2319 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
c2febafc
KS
2320 return 0;
2321 } while (p4dp++, addr = next, addr != end);
2322
2323 return 1;
2324}
2325
5b65c467 2326static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2327 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2328{
2329 unsigned long next;
2330 pgd_t *pgdp;
2331
2332 pgdp = pgd_offset(current->mm, addr);
2333 do {
2334 pgd_t pgd = READ_ONCE(*pgdp);
2335
2336 next = pgd_addr_end(addr, end);
2337 if (pgd_none(pgd))
2338 return;
2339 if (unlikely(pgd_huge(pgd))) {
b798bec4 2340 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2341 pages, nr))
2342 return;
2343 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2344 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2345 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2346 return;
b798bec4 2347 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
5b65c467
KS
2348 return;
2349 } while (pgdp++, addr = next, addr != end);
2350}
050a9adc
CH
2351#else
2352static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2353 unsigned int flags, struct page **pages, int *nr)
2354{
2355}
2356#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2357
2358#ifndef gup_fast_permitted
2359/*
2360 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2361 * we need to fall back to the slow version:
2362 */
26f4c328 2363static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2364{
26f4c328 2365 return true;
5b65c467
KS
2366}
2367#endif
2368
2667f50e
SC
2369/*
2370 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
d0811078
MT
2371 * the regular GUP.
2372 * Note a difference with get_user_pages_fast: this always returns the
2373 * number of pages pinned, 0 if no pages were pinned.
050a9adc
CH
2374 *
2375 * If the architecture does not support this function, simply return with no
2376 * pages pinned.
2667f50e
SC
2377 */
2378int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2379 struct page **pages)
2380{
d4faa402 2381 unsigned long len, end;
5b65c467 2382 unsigned long flags;
2667f50e
SC
2383 int nr = 0;
2384
f455c854 2385 start = untagged_addr(start) & PAGE_MASK;
2667f50e
SC
2386 len = (unsigned long) nr_pages << PAGE_SHIFT;
2387 end = start + len;
2388
26f4c328
CH
2389 if (end <= start)
2390 return 0;
96d4f267 2391 if (unlikely(!access_ok((void __user *)start, len)))
2667f50e
SC
2392 return 0;
2393
2394 /*
2395 * Disable interrupts. We use the nested form as we can already have
2396 * interrupts disabled by get_futex_key.
2397 *
2398 * With interrupts disabled, we block page table pages from being
2ebe8228
FW
2399 * freed from under us. See struct mmu_table_batch comments in
2400 * include/asm-generic/tlb.h for more details.
2667f50e
SC
2401 *
2402 * We do not adopt an rcu_read_lock(.) here as we also want to
2403 * block IPIs that come from THPs splitting.
2404 */
2405
050a9adc
CH
2406 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2407 gup_fast_permitted(start, end)) {
5b65c467 2408 local_irq_save(flags);
b798bec4 2409 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
5b65c467
KS
2410 local_irq_restore(flags);
2411 }
2667f50e
SC
2412
2413 return nr;
2414}
050a9adc 2415EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2667f50e 2416
7af75561
IW
2417static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2418 unsigned int gup_flags, struct page **pages)
2419{
2420 int ret;
2421
2422 /*
2423 * FIXME: FOLL_LONGTERM does not work with
2424 * get_user_pages_unlocked() (see comments in that function)
2425 */
2426 if (gup_flags & FOLL_LONGTERM) {
2427 down_read(&current->mm->mmap_sem);
2428 ret = __gup_longterm_locked(current, current->mm,
2429 start, nr_pages,
2430 pages, NULL, gup_flags);
2431 up_read(&current->mm->mmap_sem);
2432 } else {
2433 ret = get_user_pages_unlocked(start, nr_pages,
2434 pages, gup_flags);
2435 }
2436
2437 return ret;
2438}
2439
eddb1c22
JH
2440static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2441 unsigned int gup_flags,
2442 struct page **pages)
2667f50e 2443{
5b65c467 2444 unsigned long addr, len, end;
73e10a61 2445 int nr = 0, ret = 0;
2667f50e 2446
f4000fdf 2447 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
eddb1c22 2448 FOLL_FORCE | FOLL_PIN)))
817be129
CH
2449 return -EINVAL;
2450
f455c854 2451 start = untagged_addr(start) & PAGE_MASK;
5b65c467
KS
2452 addr = start;
2453 len = (unsigned long) nr_pages << PAGE_SHIFT;
2454 end = start + len;
2455
26f4c328 2456 if (end <= start)
c61611f7 2457 return 0;
96d4f267 2458 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2459 return -EFAULT;
73e10a61 2460
050a9adc
CH
2461 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2462 gup_fast_permitted(start, end)) {
5b65c467 2463 local_irq_disable();
73b0140b 2464 gup_pgd_range(addr, end, gup_flags, pages, &nr);
5b65c467 2465 local_irq_enable();
73e10a61
KS
2466 ret = nr;
2467 }
2667f50e
SC
2468
2469 if (nr < nr_pages) {
2470 /* Try to get the remaining pages with get_user_pages */
2471 start += nr << PAGE_SHIFT;
2472 pages += nr;
2473
7af75561
IW
2474 ret = __gup_longterm_unlocked(start, nr_pages - nr,
2475 gup_flags, pages);
2667f50e
SC
2476
2477 /* Have to be a bit careful with return values */
2478 if (nr > 0) {
2479 if (ret < 0)
2480 ret = nr;
2481 else
2482 ret += nr;
2483 }
2484 }
2485
2486 return ret;
2487}
eddb1c22
JH
2488
2489/**
2490 * get_user_pages_fast() - pin user pages in memory
2491 * @start: starting user address
2492 * @nr_pages: number of pages from start to pin
2493 * @gup_flags: flags modifying pin behaviour
2494 * @pages: array that receives pointers to the pages pinned.
2495 * Should be at least nr_pages long.
2496 *
2497 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2498 * If not successful, it will fall back to taking the lock and
2499 * calling get_user_pages().
2500 *
2501 * Returns number of pages pinned. This may be fewer than the number requested.
2502 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2503 * -errno.
2504 */
2505int get_user_pages_fast(unsigned long start, int nr_pages,
2506 unsigned int gup_flags, struct page **pages)
2507{
2508 /*
2509 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2510 * never directly by the caller, so enforce that:
2511 */
2512 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2513 return -EINVAL;
2514
2515 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2516}
050a9adc 2517EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
2518
2519/**
2520 * pin_user_pages_fast() - pin user pages in memory without taking locks
2521 *
2522 * For now, this is a placeholder function, until various call sites are
2523 * converted to use the correct get_user_pages*() or pin_user_pages*() API. So,
2524 * this is identical to get_user_pages_fast().
2525 *
2526 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2527 * is NOT intended for Case 2 (RDMA: long-term pins).
2528 */
2529int pin_user_pages_fast(unsigned long start, int nr_pages,
2530 unsigned int gup_flags, struct page **pages)
2531{
2532 /*
2533 * This is a placeholder, until the pin functionality is activated.
2534 * Until then, just behave like the corresponding get_user_pages*()
2535 * routine.
2536 */
2537 return get_user_pages_fast(start, nr_pages, gup_flags, pages);
2538}
2539EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2540
2541/**
2542 * pin_user_pages_remote() - pin pages of a remote process (task != current)
2543 *
2544 * For now, this is a placeholder function, until various call sites are
2545 * converted to use the correct get_user_pages*() or pin_user_pages*() API. So,
2546 * this is identical to get_user_pages_remote().
2547 *
2548 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2549 * is NOT intended for Case 2 (RDMA: long-term pins).
2550 */
2551long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2552 unsigned long start, unsigned long nr_pages,
2553 unsigned int gup_flags, struct page **pages,
2554 struct vm_area_struct **vmas, int *locked)
2555{
2556 /*
2557 * This is a placeholder, until the pin functionality is activated.
2558 * Until then, just behave like the corresponding get_user_pages*()
2559 * routine.
2560 */
2561 return get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, pages,
2562 vmas, locked);
2563}
2564EXPORT_SYMBOL(pin_user_pages_remote);
2565
2566/**
2567 * pin_user_pages() - pin user pages in memory for use by other devices
2568 *
2569 * For now, this is a placeholder function, until various call sites are
2570 * converted to use the correct get_user_pages*() or pin_user_pages*() API. So,
2571 * this is identical to get_user_pages().
2572 *
2573 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2574 * is NOT intended for Case 2 (RDMA: long-term pins).
2575 */
2576long pin_user_pages(unsigned long start, unsigned long nr_pages,
2577 unsigned int gup_flags, struct page **pages,
2578 struct vm_area_struct **vmas)
2579{
2580 /*
2581 * This is a placeholder, until the pin functionality is activated.
2582 * Until then, just behave like the corresponding get_user_pages*()
2583 * routine.
2584 */
2585 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
2586}
2587EXPORT_SYMBOL(pin_user_pages);