MAINTAINERS: name change for Luis
[linux-block.git] / mm / gup.c
CommitLineData
4bbd4c77
KS
1#include <linux/kernel.h>
2#include <linux/errno.h>
3#include <linux/err.h>
4#include <linux/spinlock.h>
5
4bbd4c77 6#include <linux/mm.h>
3565fce3 7#include <linux/memremap.h>
4bbd4c77
KS
8#include <linux/pagemap.h>
9#include <linux/rmap.h>
10#include <linux/swap.h>
11#include <linux/swapops.h>
12
174cd4b1 13#include <linux/sched/signal.h>
2667f50e 14#include <linux/rwsem.h>
f30c59e9 15#include <linux/hugetlb.h>
1027e443 16
33a709b2 17#include <asm/mmu_context.h>
2667f50e 18#include <asm/pgtable.h>
1027e443 19#include <asm/tlbflush.h>
2667f50e 20
4bbd4c77
KS
21#include "internal.h"
22
df06b37f
KB
23struct follow_page_context {
24 struct dev_pagemap *pgmap;
25 unsigned int page_mask;
26};
27
69e68b4f
KS
28static struct page *no_page_table(struct vm_area_struct *vma,
29 unsigned int flags)
4bbd4c77 30{
69e68b4f
KS
31 /*
32 * When core dumping an enormous anonymous area that nobody
33 * has touched so far, we don't want to allocate unnecessary pages or
34 * page tables. Return error instead of NULL to skip handle_mm_fault,
35 * then get_dump_page() will return NULL to leave a hole in the dump.
36 * But we can only make this optimization where a hole would surely
37 * be zero-filled if handle_mm_fault() actually did handle it.
38 */
39 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
40 return ERR_PTR(-EFAULT);
41 return NULL;
42}
4bbd4c77 43
1027e443
KS
44static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
45 pte_t *pte, unsigned int flags)
46{
47 /* No page to get reference */
48 if (flags & FOLL_GET)
49 return -EFAULT;
50
51 if (flags & FOLL_TOUCH) {
52 pte_t entry = *pte;
53
54 if (flags & FOLL_WRITE)
55 entry = pte_mkdirty(entry);
56 entry = pte_mkyoung(entry);
57
58 if (!pte_same(*pte, entry)) {
59 set_pte_at(vma->vm_mm, address, pte, entry);
60 update_mmu_cache(vma, address, pte);
61 }
62 }
63
64 /* Proper page table entry exists, but no corresponding struct page */
65 return -EEXIST;
66}
67
19be0eaf
LT
68/*
69 * FOLL_FORCE can write to even unwritable pte's, but only
70 * after we've gone through a COW cycle and they are dirty.
71 */
72static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
73{
f6f37321 74 return pte_write(pte) ||
19be0eaf
LT
75 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
76}
77
69e68b4f 78static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
79 unsigned long address, pmd_t *pmd, unsigned int flags,
80 struct dev_pagemap **pgmap)
69e68b4f
KS
81{
82 struct mm_struct *mm = vma->vm_mm;
83 struct page *page;
84 spinlock_t *ptl;
85 pte_t *ptep, pte;
4bbd4c77 86
69e68b4f 87retry:
4bbd4c77 88 if (unlikely(pmd_bad(*pmd)))
69e68b4f 89 return no_page_table(vma, flags);
4bbd4c77
KS
90
91 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
92 pte = *ptep;
93 if (!pte_present(pte)) {
94 swp_entry_t entry;
95 /*
96 * KSM's break_ksm() relies upon recognizing a ksm page
97 * even while it is being migrated, so for that case we
98 * need migration_entry_wait().
99 */
100 if (likely(!(flags & FOLL_MIGRATION)))
101 goto no_page;
0661a336 102 if (pte_none(pte))
4bbd4c77
KS
103 goto no_page;
104 entry = pte_to_swp_entry(pte);
105 if (!is_migration_entry(entry))
106 goto no_page;
107 pte_unmap_unlock(ptep, ptl);
108 migration_entry_wait(mm, pmd, address);
69e68b4f 109 goto retry;
4bbd4c77 110 }
8a0516ed 111 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 112 goto no_page;
19be0eaf 113 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
114 pte_unmap_unlock(ptep, ptl);
115 return NULL;
116 }
4bbd4c77
KS
117
118 page = vm_normal_page(vma, address, pte);
3565fce3
DW
119 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
120 /*
121 * Only return device mapping pages in the FOLL_GET case since
122 * they are only valid while holding the pgmap reference.
123 */
df06b37f
KB
124 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
125 if (*pgmap)
3565fce3
DW
126 page = pte_page(pte);
127 else
128 goto no_page;
129 } else if (unlikely(!page)) {
1027e443
KS
130 if (flags & FOLL_DUMP) {
131 /* Avoid special (like zero) pages in core dumps */
132 page = ERR_PTR(-EFAULT);
133 goto out;
134 }
135
136 if (is_zero_pfn(pte_pfn(pte))) {
137 page = pte_page(pte);
138 } else {
139 int ret;
140
141 ret = follow_pfn_pte(vma, address, ptep, flags);
142 page = ERR_PTR(ret);
143 goto out;
144 }
4bbd4c77
KS
145 }
146
6742d293
KS
147 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
148 int ret;
149 get_page(page);
150 pte_unmap_unlock(ptep, ptl);
151 lock_page(page);
152 ret = split_huge_page(page);
153 unlock_page(page);
154 put_page(page);
155 if (ret)
156 return ERR_PTR(ret);
157 goto retry;
158 }
159
df06b37f 160 if (flags & FOLL_GET)
ddc58f27 161 get_page(page);
4bbd4c77
KS
162 if (flags & FOLL_TOUCH) {
163 if ((flags & FOLL_WRITE) &&
164 !pte_dirty(pte) && !PageDirty(page))
165 set_page_dirty(page);
166 /*
167 * pte_mkyoung() would be more correct here, but atomic care
168 * is needed to avoid losing the dirty bit: it is easier to use
169 * mark_page_accessed().
170 */
171 mark_page_accessed(page);
172 }
de60f5f1 173 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
174 /* Do not mlock pte-mapped THP */
175 if (PageTransCompound(page))
176 goto out;
177
4bbd4c77
KS
178 /*
179 * The preliminary mapping check is mainly to avoid the
180 * pointless overhead of lock_page on the ZERO_PAGE
181 * which might bounce very badly if there is contention.
182 *
183 * If the page is already locked, we don't need to
184 * handle it now - vmscan will handle it later if and
185 * when it attempts to reclaim the page.
186 */
187 if (page->mapping && trylock_page(page)) {
188 lru_add_drain(); /* push cached pages to LRU */
189 /*
190 * Because we lock page here, and migration is
191 * blocked by the pte's page reference, and we
192 * know the page is still mapped, we don't even
193 * need to check for file-cache page truncation.
194 */
195 mlock_vma_page(page);
196 unlock_page(page);
197 }
198 }
1027e443 199out:
4bbd4c77 200 pte_unmap_unlock(ptep, ptl);
4bbd4c77 201 return page;
4bbd4c77
KS
202no_page:
203 pte_unmap_unlock(ptep, ptl);
204 if (!pte_none(pte))
69e68b4f
KS
205 return NULL;
206 return no_page_table(vma, flags);
207}
208
080dbb61
AK
209static struct page *follow_pmd_mask(struct vm_area_struct *vma,
210 unsigned long address, pud_t *pudp,
df06b37f
KB
211 unsigned int flags,
212 struct follow_page_context *ctx)
69e68b4f 213{
68827280 214 pmd_t *pmd, pmdval;
69e68b4f
KS
215 spinlock_t *ptl;
216 struct page *page;
217 struct mm_struct *mm = vma->vm_mm;
218
080dbb61 219 pmd = pmd_offset(pudp, address);
68827280
HY
220 /*
221 * The READ_ONCE() will stabilize the pmdval in a register or
222 * on the stack so that it will stop changing under the code.
223 */
224 pmdval = READ_ONCE(*pmd);
225 if (pmd_none(pmdval))
69e68b4f 226 return no_page_table(vma, flags);
68827280 227 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
228 page = follow_huge_pmd(mm, address, pmd, flags);
229 if (page)
230 return page;
231 return no_page_table(vma, flags);
69e68b4f 232 }
68827280 233 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 234 page = follow_huge_pd(vma, address,
68827280 235 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
236 PMD_SHIFT);
237 if (page)
238 return page;
239 return no_page_table(vma, flags);
240 }
84c3fc4e 241retry:
68827280 242 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
243 if (likely(!(flags & FOLL_MIGRATION)))
244 return no_page_table(vma, flags);
245 VM_BUG_ON(thp_migration_supported() &&
68827280
HY
246 !is_pmd_migration_entry(pmdval));
247 if (is_pmd_migration_entry(pmdval))
84c3fc4e 248 pmd_migration_entry_wait(mm, pmd);
68827280
HY
249 pmdval = READ_ONCE(*pmd);
250 /*
251 * MADV_DONTNEED may convert the pmd to null because
252 * mmap_sem is held in read mode
253 */
254 if (pmd_none(pmdval))
255 return no_page_table(vma, flags);
84c3fc4e
ZY
256 goto retry;
257 }
68827280 258 if (pmd_devmap(pmdval)) {
3565fce3 259 ptl = pmd_lock(mm, pmd);
df06b37f 260 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
261 spin_unlock(ptl);
262 if (page)
263 return page;
264 }
68827280 265 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 266 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 267
68827280 268 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
269 return no_page_table(vma, flags);
270
84c3fc4e 271retry_locked:
6742d293 272 ptl = pmd_lock(mm, pmd);
68827280
HY
273 if (unlikely(pmd_none(*pmd))) {
274 spin_unlock(ptl);
275 return no_page_table(vma, flags);
276 }
84c3fc4e
ZY
277 if (unlikely(!pmd_present(*pmd))) {
278 spin_unlock(ptl);
279 if (likely(!(flags & FOLL_MIGRATION)))
280 return no_page_table(vma, flags);
281 pmd_migration_entry_wait(mm, pmd);
282 goto retry_locked;
283 }
6742d293
KS
284 if (unlikely(!pmd_trans_huge(*pmd))) {
285 spin_unlock(ptl);
df06b37f 286 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 287 }
6742d293
KS
288 if (flags & FOLL_SPLIT) {
289 int ret;
290 page = pmd_page(*pmd);
291 if (is_huge_zero_page(page)) {
292 spin_unlock(ptl);
293 ret = 0;
78ddc534 294 split_huge_pmd(vma, pmd, address);
337d9abf
NH
295 if (pmd_trans_unstable(pmd))
296 ret = -EBUSY;
6742d293
KS
297 } else {
298 get_page(page);
69e68b4f 299 spin_unlock(ptl);
6742d293
KS
300 lock_page(page);
301 ret = split_huge_page(page);
302 unlock_page(page);
303 put_page(page);
baa355fd
KS
304 if (pmd_none(*pmd))
305 return no_page_table(vma, flags);
6742d293
KS
306 }
307
308 return ret ? ERR_PTR(ret) :
df06b37f 309 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 310 }
6742d293
KS
311 page = follow_trans_huge_pmd(vma, address, pmd, flags);
312 spin_unlock(ptl);
df06b37f 313 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 314 return page;
4bbd4c77
KS
315}
316
080dbb61
AK
317static struct page *follow_pud_mask(struct vm_area_struct *vma,
318 unsigned long address, p4d_t *p4dp,
df06b37f
KB
319 unsigned int flags,
320 struct follow_page_context *ctx)
080dbb61
AK
321{
322 pud_t *pud;
323 spinlock_t *ptl;
324 struct page *page;
325 struct mm_struct *mm = vma->vm_mm;
326
327 pud = pud_offset(p4dp, address);
328 if (pud_none(*pud))
329 return no_page_table(vma, flags);
330 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
331 page = follow_huge_pud(mm, address, pud, flags);
332 if (page)
333 return page;
334 return no_page_table(vma, flags);
335 }
4dc71451
AK
336 if (is_hugepd(__hugepd(pud_val(*pud)))) {
337 page = follow_huge_pd(vma, address,
338 __hugepd(pud_val(*pud)), flags,
339 PUD_SHIFT);
340 if (page)
341 return page;
342 return no_page_table(vma, flags);
343 }
080dbb61
AK
344 if (pud_devmap(*pud)) {
345 ptl = pud_lock(mm, pud);
df06b37f 346 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
347 spin_unlock(ptl);
348 if (page)
349 return page;
350 }
351 if (unlikely(pud_bad(*pud)))
352 return no_page_table(vma, flags);
353
df06b37f 354 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
355}
356
080dbb61
AK
357static struct page *follow_p4d_mask(struct vm_area_struct *vma,
358 unsigned long address, pgd_t *pgdp,
df06b37f
KB
359 unsigned int flags,
360 struct follow_page_context *ctx)
080dbb61
AK
361{
362 p4d_t *p4d;
4dc71451 363 struct page *page;
080dbb61
AK
364
365 p4d = p4d_offset(pgdp, address);
366 if (p4d_none(*p4d))
367 return no_page_table(vma, flags);
368 BUILD_BUG_ON(p4d_huge(*p4d));
369 if (unlikely(p4d_bad(*p4d)))
370 return no_page_table(vma, flags);
371
4dc71451
AK
372 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
373 page = follow_huge_pd(vma, address,
374 __hugepd(p4d_val(*p4d)), flags,
375 P4D_SHIFT);
376 if (page)
377 return page;
378 return no_page_table(vma, flags);
379 }
df06b37f 380 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
381}
382
383/**
384 * follow_page_mask - look up a page descriptor from a user-virtual address
385 * @vma: vm_area_struct mapping @address
386 * @address: virtual address to look up
387 * @flags: flags modifying lookup behaviour
78179556
MR
388 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
389 * pointer to output page_mask
080dbb61
AK
390 *
391 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
392 *
78179556
MR
393 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
394 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
395 *
396 * On output, the @ctx->page_mask is set according to the size of the page.
397 *
398 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
399 * an error pointer if there is a mapping to something not represented
400 * by a page descriptor (see also vm_normal_page()).
401 */
402struct page *follow_page_mask(struct vm_area_struct *vma,
403 unsigned long address, unsigned int flags,
df06b37f 404 struct follow_page_context *ctx)
080dbb61
AK
405{
406 pgd_t *pgd;
407 struct page *page;
408 struct mm_struct *mm = vma->vm_mm;
409
df06b37f 410 ctx->page_mask = 0;
080dbb61
AK
411
412 /* make this handle hugepd */
413 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
414 if (!IS_ERR(page)) {
415 BUG_ON(flags & FOLL_GET);
416 return page;
417 }
418
419 pgd = pgd_offset(mm, address);
420
421 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
422 return no_page_table(vma, flags);
423
faaa5b62
AK
424 if (pgd_huge(*pgd)) {
425 page = follow_huge_pgd(mm, address, pgd, flags);
426 if (page)
427 return page;
428 return no_page_table(vma, flags);
429 }
4dc71451
AK
430 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
431 page = follow_huge_pd(vma, address,
432 __hugepd(pgd_val(*pgd)), flags,
433 PGDIR_SHIFT);
434 if (page)
435 return page;
436 return no_page_table(vma, flags);
437 }
faaa5b62 438
df06b37f
KB
439 return follow_p4d_mask(vma, address, pgd, flags, ctx);
440}
441
442struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
443 unsigned int foll_flags)
444{
445 struct follow_page_context ctx = { NULL };
446 struct page *page;
447
448 page = follow_page_mask(vma, address, foll_flags, &ctx);
449 if (ctx.pgmap)
450 put_dev_pagemap(ctx.pgmap);
451 return page;
080dbb61
AK
452}
453
f2b495ca
KS
454static int get_gate_page(struct mm_struct *mm, unsigned long address,
455 unsigned int gup_flags, struct vm_area_struct **vma,
456 struct page **page)
457{
458 pgd_t *pgd;
c2febafc 459 p4d_t *p4d;
f2b495ca
KS
460 pud_t *pud;
461 pmd_t *pmd;
462 pte_t *pte;
463 int ret = -EFAULT;
464
465 /* user gate pages are read-only */
466 if (gup_flags & FOLL_WRITE)
467 return -EFAULT;
468 if (address > TASK_SIZE)
469 pgd = pgd_offset_k(address);
470 else
471 pgd = pgd_offset_gate(mm, address);
472 BUG_ON(pgd_none(*pgd));
c2febafc
KS
473 p4d = p4d_offset(pgd, address);
474 BUG_ON(p4d_none(*p4d));
475 pud = pud_offset(p4d, address);
f2b495ca
KS
476 BUG_ON(pud_none(*pud));
477 pmd = pmd_offset(pud, address);
84c3fc4e 478 if (!pmd_present(*pmd))
f2b495ca
KS
479 return -EFAULT;
480 VM_BUG_ON(pmd_trans_huge(*pmd));
481 pte = pte_offset_map(pmd, address);
482 if (pte_none(*pte))
483 goto unmap;
484 *vma = get_gate_vma(mm);
485 if (!page)
486 goto out;
487 *page = vm_normal_page(*vma, address, *pte);
488 if (!*page) {
489 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
490 goto unmap;
491 *page = pte_page(*pte);
df6ad698
JG
492
493 /*
494 * This should never happen (a device public page in the gate
495 * area).
496 */
497 if (is_device_public_page(*page))
498 goto unmap;
f2b495ca
KS
499 }
500 get_page(*page);
501out:
502 ret = 0;
503unmap:
504 pte_unmap(pte);
505 return ret;
506}
507
9a95f3cf
PC
508/*
509 * mmap_sem must be held on entry. If @nonblocking != NULL and
510 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
511 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
512 */
16744483
KS
513static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
514 unsigned long address, unsigned int *flags, int *nonblocking)
515{
16744483 516 unsigned int fault_flags = 0;
2b740303 517 vm_fault_t ret;
16744483 518
de60f5f1
EM
519 /* mlock all present pages, but do not fault in new pages */
520 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
521 return -ENOENT;
16744483
KS
522 if (*flags & FOLL_WRITE)
523 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
524 if (*flags & FOLL_REMOTE)
525 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
526 if (nonblocking)
527 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
528 if (*flags & FOLL_NOWAIT)
529 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
530 if (*flags & FOLL_TRIED) {
531 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
532 fault_flags |= FAULT_FLAG_TRIED;
533 }
16744483 534
dcddffd4 535 ret = handle_mm_fault(vma, address, fault_flags);
16744483 536 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
537 int err = vm_fault_to_errno(ret, *flags);
538
539 if (err)
540 return err;
16744483
KS
541 BUG();
542 }
543
544 if (tsk) {
545 if (ret & VM_FAULT_MAJOR)
546 tsk->maj_flt++;
547 else
548 tsk->min_flt++;
549 }
550
551 if (ret & VM_FAULT_RETRY) {
96312e61 552 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
16744483
KS
553 *nonblocking = 0;
554 return -EBUSY;
555 }
556
557 /*
558 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
559 * necessary, even if maybe_mkwrite decided not to set pte_write. We
560 * can thus safely do subsequent page lookups as if they were reads.
561 * But only do so when looping for pte_write is futile: in some cases
562 * userspace may also be wanting to write to the gotten user page,
563 * which a read fault here might prevent (a readonly page might get
564 * reCOWed by userspace write).
565 */
566 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 567 *flags |= FOLL_COW;
16744483
KS
568 return 0;
569}
570
fa5bb209
KS
571static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
572{
573 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
574 int write = (gup_flags & FOLL_WRITE);
575 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
576
577 if (vm_flags & (VM_IO | VM_PFNMAP))
578 return -EFAULT;
579
7f7ccc2c
WT
580 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
581 return -EFAULT;
582
1b2ee126 583 if (write) {
fa5bb209
KS
584 if (!(vm_flags & VM_WRITE)) {
585 if (!(gup_flags & FOLL_FORCE))
586 return -EFAULT;
587 /*
588 * We used to let the write,force case do COW in a
589 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
590 * set a breakpoint in a read-only mapping of an
591 * executable, without corrupting the file (yet only
592 * when that file had been opened for writing!).
593 * Anon pages in shared mappings are surprising: now
594 * just reject it.
595 */
46435364 596 if (!is_cow_mapping(vm_flags))
fa5bb209 597 return -EFAULT;
fa5bb209
KS
598 }
599 } else if (!(vm_flags & VM_READ)) {
600 if (!(gup_flags & FOLL_FORCE))
601 return -EFAULT;
602 /*
603 * Is there actually any vma we can reach here which does not
604 * have VM_MAYREAD set?
605 */
606 if (!(vm_flags & VM_MAYREAD))
607 return -EFAULT;
608 }
d61172b4
DH
609 /*
610 * gups are always data accesses, not instruction
611 * fetches, so execute=false here
612 */
613 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 614 return -EFAULT;
fa5bb209
KS
615 return 0;
616}
617
4bbd4c77
KS
618/**
619 * __get_user_pages() - pin user pages in memory
620 * @tsk: task_struct of target task
621 * @mm: mm_struct of target mm
622 * @start: starting user address
623 * @nr_pages: number of pages from start to pin
624 * @gup_flags: flags modifying pin behaviour
625 * @pages: array that receives pointers to the pages pinned.
626 * Should be at least nr_pages long. Or NULL, if caller
627 * only intends to ensure the pages are faulted in.
628 * @vmas: array of pointers to vmas corresponding to each page.
629 * Or NULL if the caller does not require them.
630 * @nonblocking: whether waiting for disk IO or mmap_sem contention
631 *
632 * Returns number of pages pinned. This may be fewer than the number
633 * requested. If nr_pages is 0 or negative, returns 0. If no pages
634 * were pinned, returns -errno. Each page returned must be released
635 * with a put_page() call when it is finished with. vmas will only
636 * remain valid while mmap_sem is held.
637 *
9a95f3cf 638 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
639 *
640 * __get_user_pages walks a process's page tables and takes a reference to
641 * each struct page that each user address corresponds to at a given
642 * instant. That is, it takes the page that would be accessed if a user
643 * thread accesses the given user virtual address at that instant.
644 *
645 * This does not guarantee that the page exists in the user mappings when
646 * __get_user_pages returns, and there may even be a completely different
647 * page there in some cases (eg. if mmapped pagecache has been invalidated
648 * and subsequently re faulted). However it does guarantee that the page
649 * won't be freed completely. And mostly callers simply care that the page
650 * contains data that was valid *at some point in time*. Typically, an IO
651 * or similar operation cannot guarantee anything stronger anyway because
652 * locks can't be held over the syscall boundary.
653 *
654 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
655 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
656 * appropriate) must be called after the page is finished with, and
657 * before put_page is called.
658 *
659 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
660 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
661 * *@nonblocking will be set to 0. Further, if @gup_flags does not
662 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
663 * this case.
664 *
665 * A caller using such a combination of @nonblocking and @gup_flags
666 * must therefore hold the mmap_sem for reading only, and recognize
667 * when it's been released. Otherwise, it must be held for either
668 * reading or writing and will not be released.
4bbd4c77
KS
669 *
670 * In most cases, get_user_pages or get_user_pages_fast should be used
671 * instead of __get_user_pages. __get_user_pages should be used only if
672 * you need some special @gup_flags.
673 */
0d731759 674static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
4bbd4c77
KS
675 unsigned long start, unsigned long nr_pages,
676 unsigned int gup_flags, struct page **pages,
677 struct vm_area_struct **vmas, int *nonblocking)
678{
df06b37f 679 long ret = 0, i = 0;
fa5bb209 680 struct vm_area_struct *vma = NULL;
df06b37f 681 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
682
683 if (!nr_pages)
684 return 0;
685
686 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
687
688 /*
689 * If FOLL_FORCE is set then do not force a full fault as the hinting
690 * fault information is unrelated to the reference behaviour of a task
691 * using the address space
692 */
693 if (!(gup_flags & FOLL_FORCE))
694 gup_flags |= FOLL_NUMA;
695
4bbd4c77 696 do {
fa5bb209
KS
697 struct page *page;
698 unsigned int foll_flags = gup_flags;
699 unsigned int page_increm;
700
701 /* first iteration or cross vma bound */
702 if (!vma || start >= vma->vm_end) {
703 vma = find_extend_vma(mm, start);
704 if (!vma && in_gate_area(mm, start)) {
705 int ret;
706 ret = get_gate_page(mm, start & PAGE_MASK,
707 gup_flags, &vma,
708 pages ? &pages[i] : NULL);
709 if (ret)
710 return i ? : ret;
df06b37f 711 ctx.page_mask = 0;
fa5bb209
KS
712 goto next_page;
713 }
4bbd4c77 714
df06b37f
KB
715 if (!vma || check_vma_flags(vma, gup_flags)) {
716 ret = -EFAULT;
717 goto out;
718 }
fa5bb209
KS
719 if (is_vm_hugetlb_page(vma)) {
720 i = follow_hugetlb_page(mm, vma, pages, vmas,
721 &start, &nr_pages, i,
87ffc118 722 gup_flags, nonblocking);
fa5bb209 723 continue;
4bbd4c77 724 }
fa5bb209
KS
725 }
726retry:
727 /*
728 * If we have a pending SIGKILL, don't keep faulting pages and
729 * potentially allocating memory.
730 */
df06b37f
KB
731 if (unlikely(fatal_signal_pending(current))) {
732 ret = -ERESTARTSYS;
733 goto out;
734 }
fa5bb209 735 cond_resched();
df06b37f
KB
736
737 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 738 if (!page) {
fa5bb209
KS
739 ret = faultin_page(tsk, vma, start, &foll_flags,
740 nonblocking);
741 switch (ret) {
742 case 0:
743 goto retry;
df06b37f
KB
744 case -EBUSY:
745 ret = 0;
746 /* FALLTHRU */
fa5bb209
KS
747 case -EFAULT:
748 case -ENOMEM:
749 case -EHWPOISON:
df06b37f 750 goto out;
fa5bb209
KS
751 case -ENOENT:
752 goto next_page;
4bbd4c77 753 }
fa5bb209 754 BUG();
1027e443
KS
755 } else if (PTR_ERR(page) == -EEXIST) {
756 /*
757 * Proper page table entry exists, but no corresponding
758 * struct page.
759 */
760 goto next_page;
761 } else if (IS_ERR(page)) {
df06b37f
KB
762 ret = PTR_ERR(page);
763 goto out;
1027e443 764 }
fa5bb209
KS
765 if (pages) {
766 pages[i] = page;
767 flush_anon_page(vma, page, start);
768 flush_dcache_page(page);
df06b37f 769 ctx.page_mask = 0;
4bbd4c77 770 }
4bbd4c77 771next_page:
fa5bb209
KS
772 if (vmas) {
773 vmas[i] = vma;
df06b37f 774 ctx.page_mask = 0;
fa5bb209 775 }
df06b37f 776 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
777 if (page_increm > nr_pages)
778 page_increm = nr_pages;
779 i += page_increm;
780 start += page_increm * PAGE_SIZE;
781 nr_pages -= page_increm;
4bbd4c77 782 } while (nr_pages);
df06b37f
KB
783out:
784 if (ctx.pgmap)
785 put_dev_pagemap(ctx.pgmap);
786 return i ? i : ret;
4bbd4c77 787}
4bbd4c77 788
771ab430
TK
789static bool vma_permits_fault(struct vm_area_struct *vma,
790 unsigned int fault_flags)
d4925e00 791{
1b2ee126
DH
792 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
793 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 794 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
795
796 if (!(vm_flags & vma->vm_flags))
797 return false;
798
33a709b2
DH
799 /*
800 * The architecture might have a hardware protection
1b2ee126 801 * mechanism other than read/write that can deny access.
d61172b4
DH
802 *
803 * gup always represents data access, not instruction
804 * fetches, so execute=false here:
33a709b2 805 */
d61172b4 806 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
807 return false;
808
d4925e00
DH
809 return true;
810}
811
4bbd4c77
KS
812/*
813 * fixup_user_fault() - manually resolve a user page fault
814 * @tsk: the task_struct to use for page fault accounting, or
815 * NULL if faults are not to be recorded.
816 * @mm: mm_struct of target mm
817 * @address: user address
818 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
819 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
820 * does not allow retry
4bbd4c77
KS
821 *
822 * This is meant to be called in the specific scenario where for locking reasons
823 * we try to access user memory in atomic context (within a pagefault_disable()
824 * section), this returns -EFAULT, and we want to resolve the user fault before
825 * trying again.
826 *
827 * Typically this is meant to be used by the futex code.
828 *
829 * The main difference with get_user_pages() is that this function will
830 * unconditionally call handle_mm_fault() which will in turn perform all the
831 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 832 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
833 *
834 * This is important for some architectures where those bits also gate the
835 * access permission to the page because they are maintained in software. On
836 * such architectures, gup() will not be enough to make a subsequent access
837 * succeed.
838 *
4a9e1cda
DD
839 * This function will not return with an unlocked mmap_sem. So it has not the
840 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
841 */
842int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
843 unsigned long address, unsigned int fault_flags,
844 bool *unlocked)
4bbd4c77
KS
845{
846 struct vm_area_struct *vma;
2b740303 847 vm_fault_t ret, major = 0;
4a9e1cda
DD
848
849 if (unlocked)
850 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 851
4a9e1cda 852retry:
4bbd4c77
KS
853 vma = find_extend_vma(mm, address);
854 if (!vma || address < vma->vm_start)
855 return -EFAULT;
856
d4925e00 857 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
858 return -EFAULT;
859
dcddffd4 860 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 861 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 862 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
863 int err = vm_fault_to_errno(ret, 0);
864
865 if (err)
866 return err;
4bbd4c77
KS
867 BUG();
868 }
4a9e1cda
DD
869
870 if (ret & VM_FAULT_RETRY) {
871 down_read(&mm->mmap_sem);
872 if (!(fault_flags & FAULT_FLAG_TRIED)) {
873 *unlocked = true;
874 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
875 fault_flags |= FAULT_FLAG_TRIED;
876 goto retry;
877 }
878 }
879
4bbd4c77 880 if (tsk) {
4a9e1cda 881 if (major)
4bbd4c77
KS
882 tsk->maj_flt++;
883 else
884 tsk->min_flt++;
885 }
886 return 0;
887}
add6a0cd 888EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 889
f0818f47
AA
890static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
891 struct mm_struct *mm,
892 unsigned long start,
893 unsigned long nr_pages,
f0818f47
AA
894 struct page **pages,
895 struct vm_area_struct **vmas,
e716712f 896 int *locked,
0fd71a56 897 unsigned int flags)
f0818f47 898{
f0818f47
AA
899 long ret, pages_done;
900 bool lock_dropped;
901
902 if (locked) {
903 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
904 BUG_ON(vmas);
905 /* check caller initialized locked */
906 BUG_ON(*locked != 1);
907 }
908
909 if (pages)
910 flags |= FOLL_GET;
f0818f47
AA
911
912 pages_done = 0;
913 lock_dropped = false;
914 for (;;) {
915 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
916 vmas, locked);
917 if (!locked)
918 /* VM_FAULT_RETRY couldn't trigger, bypass */
919 return ret;
920
921 /* VM_FAULT_RETRY cannot return errors */
922 if (!*locked) {
923 BUG_ON(ret < 0);
924 BUG_ON(ret >= nr_pages);
925 }
926
927 if (!pages)
928 /* If it's a prefault don't insist harder */
929 return ret;
930
931 if (ret > 0) {
932 nr_pages -= ret;
933 pages_done += ret;
934 if (!nr_pages)
935 break;
936 }
937 if (*locked) {
96312e61
AA
938 /*
939 * VM_FAULT_RETRY didn't trigger or it was a
940 * FOLL_NOWAIT.
941 */
f0818f47
AA
942 if (!pages_done)
943 pages_done = ret;
944 break;
945 }
946 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
947 pages += ret;
948 start += ret << PAGE_SHIFT;
949
950 /*
951 * Repeat on the address that fired VM_FAULT_RETRY
952 * without FAULT_FLAG_ALLOW_RETRY but with
953 * FAULT_FLAG_TRIED.
954 */
955 *locked = 1;
956 lock_dropped = true;
957 down_read(&mm->mmap_sem);
958 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
959 pages, NULL, NULL);
960 if (ret != 1) {
961 BUG_ON(ret > 1);
962 if (!pages_done)
963 pages_done = ret;
964 break;
965 }
966 nr_pages--;
967 pages_done++;
968 if (!nr_pages)
969 break;
970 pages++;
971 start += PAGE_SIZE;
972 }
e716712f 973 if (lock_dropped && *locked) {
f0818f47
AA
974 /*
975 * We must let the caller know we temporarily dropped the lock
976 * and so the critical section protected by it was lost.
977 */
978 up_read(&mm->mmap_sem);
979 *locked = 0;
980 }
981 return pages_done;
982}
983
984/*
985 * We can leverage the VM_FAULT_RETRY functionality in the page fault
986 * paths better by using either get_user_pages_locked() or
987 * get_user_pages_unlocked().
988 *
989 * get_user_pages_locked() is suitable to replace the form:
990 *
991 * down_read(&mm->mmap_sem);
992 * do_something()
993 * get_user_pages(tsk, mm, ..., pages, NULL);
994 * up_read(&mm->mmap_sem);
995 *
996 * to:
997 *
998 * int locked = 1;
999 * down_read(&mm->mmap_sem);
1000 * do_something()
1001 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1002 * if (locked)
1003 * up_read(&mm->mmap_sem);
1004 */
c12d2da5 1005long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1006 unsigned int gup_flags, struct page **pages,
f0818f47
AA
1007 int *locked)
1008{
cde70140 1009 return __get_user_pages_locked(current, current->mm, start, nr_pages,
e716712f 1010 pages, NULL, locked,
3b913179 1011 gup_flags | FOLL_TOUCH);
f0818f47 1012}
c12d2da5 1013EXPORT_SYMBOL(get_user_pages_locked);
f0818f47
AA
1014
1015/*
1016 * get_user_pages_unlocked() is suitable to replace the form:
1017 *
1018 * down_read(&mm->mmap_sem);
1019 * get_user_pages(tsk, mm, ..., pages, NULL);
1020 * up_read(&mm->mmap_sem);
1021 *
1022 * with:
1023 *
1024 * get_user_pages_unlocked(tsk, mm, ..., pages);
1025 *
1026 * It is functionally equivalent to get_user_pages_fast so
80a79516
LS
1027 * get_user_pages_fast should be used instead if specific gup_flags
1028 * (e.g. FOLL_FORCE) are not required.
f0818f47 1029 */
c12d2da5 1030long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1031 struct page **pages, unsigned int gup_flags)
f0818f47 1032{
c803c9c6
AV
1033 struct mm_struct *mm = current->mm;
1034 int locked = 1;
1035 long ret;
1036
1037 down_read(&mm->mmap_sem);
1038 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
e716712f 1039 &locked, gup_flags | FOLL_TOUCH);
c803c9c6
AV
1040 if (locked)
1041 up_read(&mm->mmap_sem);
1042 return ret;
f0818f47 1043}
c12d2da5 1044EXPORT_SYMBOL(get_user_pages_unlocked);
f0818f47 1045
4bbd4c77 1046/*
1e987790 1047 * get_user_pages_remote() - pin user pages in memory
4bbd4c77
KS
1048 * @tsk: the task_struct to use for page fault accounting, or
1049 * NULL if faults are not to be recorded.
1050 * @mm: mm_struct of target mm
1051 * @start: starting user address
1052 * @nr_pages: number of pages from start to pin
9beae1ea 1053 * @gup_flags: flags modifying lookup behaviour
4bbd4c77
KS
1054 * @pages: array that receives pointers to the pages pinned.
1055 * Should be at least nr_pages long. Or NULL, if caller
1056 * only intends to ensure the pages are faulted in.
1057 * @vmas: array of pointers to vmas corresponding to each page.
1058 * Or NULL if the caller does not require them.
5b56d49f
LS
1059 * @locked: pointer to lock flag indicating whether lock is held and
1060 * subsequently whether VM_FAULT_RETRY functionality can be
1061 * utilised. Lock must initially be held.
4bbd4c77
KS
1062 *
1063 * Returns number of pages pinned. This may be fewer than the number
1064 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1065 * were pinned, returns -errno. Each page returned must be released
1066 * with a put_page() call when it is finished with. vmas will only
1067 * remain valid while mmap_sem is held.
1068 *
1069 * Must be called with mmap_sem held for read or write.
1070 *
1071 * get_user_pages walks a process's page tables and takes a reference to
1072 * each struct page that each user address corresponds to at a given
1073 * instant. That is, it takes the page that would be accessed if a user
1074 * thread accesses the given user virtual address at that instant.
1075 *
1076 * This does not guarantee that the page exists in the user mappings when
1077 * get_user_pages returns, and there may even be a completely different
1078 * page there in some cases (eg. if mmapped pagecache has been invalidated
1079 * and subsequently re faulted). However it does guarantee that the page
1080 * won't be freed completely. And mostly callers simply care that the page
1081 * contains data that was valid *at some point in time*. Typically, an IO
1082 * or similar operation cannot guarantee anything stronger anyway because
1083 * locks can't be held over the syscall boundary.
1084 *
9beae1ea
LS
1085 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1086 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1087 * be called after the page is finished with, and before put_page is called.
4bbd4c77
KS
1088 *
1089 * get_user_pages is typically used for fewer-copy IO operations, to get a
1090 * handle on the memory by some means other than accesses via the user virtual
1091 * addresses. The pages may be submitted for DMA to devices or accessed via
1092 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1093 * use the correct cache flushing APIs.
1094 *
1095 * See also get_user_pages_fast, for performance critical applications.
f0818f47
AA
1096 *
1097 * get_user_pages should be phased out in favor of
1098 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1099 * should use get_user_pages because it cannot pass
1100 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
4bbd4c77 1101 */
1e987790
DH
1102long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1103 unsigned long start, unsigned long nr_pages,
9beae1ea 1104 unsigned int gup_flags, struct page **pages,
5b56d49f 1105 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1106{
859110d7 1107 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
e716712f 1108 locked,
9beae1ea 1109 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1e987790
DH
1110}
1111EXPORT_SYMBOL(get_user_pages_remote);
1112
1113/*
d4edcf0d
DH
1114 * This is the same as get_user_pages_remote(), just with a
1115 * less-flexible calling convention where we assume that the task
5b56d49f
LS
1116 * and mm being operated on are the current task's and don't allow
1117 * passing of a locked parameter. We also obviously don't pass
1118 * FOLL_REMOTE in here.
1e987790 1119 */
c12d2da5 1120long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1121 unsigned int gup_flags, struct page **pages,
1e987790
DH
1122 struct vm_area_struct **vmas)
1123{
cde70140 1124 return __get_user_pages_locked(current, current->mm, start, nr_pages,
e716712f 1125 pages, vmas, NULL,
768ae309 1126 gup_flags | FOLL_TOUCH);
4bbd4c77 1127}
c12d2da5 1128EXPORT_SYMBOL(get_user_pages);
4bbd4c77 1129
2bb6d283
DW
1130#ifdef CONFIG_FS_DAX
1131/*
1132 * This is the same as get_user_pages() in that it assumes we are
1133 * operating on the current task's mm, but it goes further to validate
1134 * that the vmas associated with the address range are suitable for
1135 * longterm elevated page reference counts. For example, filesystem-dax
1136 * mappings are subject to the lifetime enforced by the filesystem and
1137 * we need guarantees that longterm users like RDMA and V4L2 only
1138 * establish mappings that have a kernel enforced revocation mechanism.
1139 *
1140 * "longterm" == userspace controlled elevated page count lifetime.
1141 * Contrast this to iov_iter_get_pages() usages which are transient.
1142 */
1143long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1144 unsigned int gup_flags, struct page **pages,
1145 struct vm_area_struct **vmas_arg)
1146{
1147 struct vm_area_struct **vmas = vmas_arg;
1148 struct vm_area_struct *vma_prev = NULL;
1149 long rc, i;
1150
1151 if (!pages)
1152 return -EINVAL;
1153
1154 if (!vmas) {
1155 vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
1156 GFP_KERNEL);
1157 if (!vmas)
1158 return -ENOMEM;
1159 }
1160
1161 rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1162
1163 for (i = 0; i < rc; i++) {
1164 struct vm_area_struct *vma = vmas[i];
1165
1166 if (vma == vma_prev)
1167 continue;
1168
1169 vma_prev = vma;
1170
1171 if (vma_is_fsdax(vma))
1172 break;
1173 }
1174
1175 /*
1176 * Either get_user_pages() failed, or the vma validation
1177 * succeeded, in either case we don't need to put_page() before
1178 * returning.
1179 */
1180 if (i >= rc)
1181 goto out;
1182
1183 for (i = 0; i < rc; i++)
1184 put_page(pages[i]);
1185 rc = -EOPNOTSUPP;
1186out:
1187 if (vmas != vmas_arg)
1188 kfree(vmas);
1189 return rc;
1190}
1191EXPORT_SYMBOL(get_user_pages_longterm);
1192#endif /* CONFIG_FS_DAX */
1193
acc3c8d1
KS
1194/**
1195 * populate_vma_page_range() - populate a range of pages in the vma.
1196 * @vma: target vma
1197 * @start: start address
1198 * @end: end address
1199 * @nonblocking:
1200 *
1201 * This takes care of mlocking the pages too if VM_LOCKED is set.
1202 *
1203 * return 0 on success, negative error code on error.
1204 *
1205 * vma->vm_mm->mmap_sem must be held.
1206 *
1207 * If @nonblocking is NULL, it may be held for read or write and will
1208 * be unperturbed.
1209 *
1210 * If @nonblocking is non-NULL, it must held for read only and may be
1211 * released. If it's released, *@nonblocking will be set to 0.
1212 */
1213long populate_vma_page_range(struct vm_area_struct *vma,
1214 unsigned long start, unsigned long end, int *nonblocking)
1215{
1216 struct mm_struct *mm = vma->vm_mm;
1217 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1218 int gup_flags;
1219
1220 VM_BUG_ON(start & ~PAGE_MASK);
1221 VM_BUG_ON(end & ~PAGE_MASK);
1222 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1223 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1224 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1225
de60f5f1
EM
1226 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1227 if (vma->vm_flags & VM_LOCKONFAULT)
1228 gup_flags &= ~FOLL_POPULATE;
acc3c8d1
KS
1229 /*
1230 * We want to touch writable mappings with a write fault in order
1231 * to break COW, except for shared mappings because these don't COW
1232 * and we would not want to dirty them for nothing.
1233 */
1234 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1235 gup_flags |= FOLL_WRITE;
1236
1237 /*
1238 * We want mlock to succeed for regions that have any permissions
1239 * other than PROT_NONE.
1240 */
1241 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1242 gup_flags |= FOLL_FORCE;
1243
1244 /*
1245 * We made sure addr is within a VMA, so the following will
1246 * not result in a stack expansion that recurses back here.
1247 */
1248 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1249 NULL, NULL, nonblocking);
1250}
1251
1252/*
1253 * __mm_populate - populate and/or mlock pages within a range of address space.
1254 *
1255 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1256 * flags. VMAs must be already marked with the desired vm_flags, and
1257 * mmap_sem must not be held.
1258 */
1259int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1260{
1261 struct mm_struct *mm = current->mm;
1262 unsigned long end, nstart, nend;
1263 struct vm_area_struct *vma = NULL;
1264 int locked = 0;
1265 long ret = 0;
1266
acc3c8d1
KS
1267 end = start + len;
1268
1269 for (nstart = start; nstart < end; nstart = nend) {
1270 /*
1271 * We want to fault in pages for [nstart; end) address range.
1272 * Find first corresponding VMA.
1273 */
1274 if (!locked) {
1275 locked = 1;
1276 down_read(&mm->mmap_sem);
1277 vma = find_vma(mm, nstart);
1278 } else if (nstart >= vma->vm_end)
1279 vma = vma->vm_next;
1280 if (!vma || vma->vm_start >= end)
1281 break;
1282 /*
1283 * Set [nstart; nend) to intersection of desired address
1284 * range with the first VMA. Also, skip undesirable VMA types.
1285 */
1286 nend = min(end, vma->vm_end);
1287 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1288 continue;
1289 if (nstart < vma->vm_start)
1290 nstart = vma->vm_start;
1291 /*
1292 * Now fault in a range of pages. populate_vma_page_range()
1293 * double checks the vma flags, so that it won't mlock pages
1294 * if the vma was already munlocked.
1295 */
1296 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1297 if (ret < 0) {
1298 if (ignore_errors) {
1299 ret = 0;
1300 continue; /* continue at next VMA */
1301 }
1302 break;
1303 }
1304 nend = nstart + ret * PAGE_SIZE;
1305 ret = 0;
1306 }
1307 if (locked)
1308 up_read(&mm->mmap_sem);
1309 return ret; /* 0 or negative error code */
1310}
1311
4bbd4c77
KS
1312/**
1313 * get_dump_page() - pin user page in memory while writing it to core dump
1314 * @addr: user address
1315 *
1316 * Returns struct page pointer of user page pinned for dump,
ea1754a0 1317 * to be freed afterwards by put_page().
4bbd4c77
KS
1318 *
1319 * Returns NULL on any kind of failure - a hole must then be inserted into
1320 * the corefile, to preserve alignment with its headers; and also returns
1321 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1322 * allowing a hole to be left in the corefile to save diskspace.
1323 *
1324 * Called without mmap_sem, but after all other threads have been killed.
1325 */
1326#ifdef CONFIG_ELF_CORE
1327struct page *get_dump_page(unsigned long addr)
1328{
1329 struct vm_area_struct *vma;
1330 struct page *page;
1331
1332 if (__get_user_pages(current, current->mm, addr, 1,
1333 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1334 NULL) < 1)
1335 return NULL;
1336 flush_cache_page(vma, addr, page_to_pfn(page));
1337 return page;
1338}
1339#endif /* CONFIG_ELF_CORE */
2667f50e
SC
1340
1341/*
e585513b 1342 * Generic Fast GUP
2667f50e
SC
1343 *
1344 * get_user_pages_fast attempts to pin user pages by walking the page
1345 * tables directly and avoids taking locks. Thus the walker needs to be
1346 * protected from page table pages being freed from under it, and should
1347 * block any THP splits.
1348 *
1349 * One way to achieve this is to have the walker disable interrupts, and
1350 * rely on IPIs from the TLB flushing code blocking before the page table
1351 * pages are freed. This is unsuitable for architectures that do not need
1352 * to broadcast an IPI when invalidating TLBs.
1353 *
1354 * Another way to achieve this is to batch up page table containing pages
1355 * belonging to more than one mm_user, then rcu_sched a callback to free those
1356 * pages. Disabling interrupts will allow the fast_gup walker to both block
1357 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1358 * (which is a relatively rare event). The code below adopts this strategy.
1359 *
1360 * Before activating this code, please be aware that the following assumptions
1361 * are currently made:
1362 *
e585513b
KS
1363 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1364 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 1365 *
2667f50e
SC
1366 * *) ptes can be read atomically by the architecture.
1367 *
1368 * *) access_ok is sufficient to validate userspace address ranges.
1369 *
1370 * The last two assumptions can be relaxed by the addition of helper functions.
1371 *
1372 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1373 */
e585513b 1374#ifdef CONFIG_HAVE_GENERIC_GUP
2667f50e 1375
0005d20b
KS
1376#ifndef gup_get_pte
1377/*
1378 * We assume that the PTE can be read atomically. If this is not the case for
1379 * your architecture, please provide the helper.
1380 */
1381static inline pte_t gup_get_pte(pte_t *ptep)
1382{
1383 return READ_ONCE(*ptep);
1384}
1385#endif
1386
b59f65fa
KS
1387static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1388{
1389 while ((*nr) - nr_start) {
1390 struct page *page = pages[--(*nr)];
1391
1392 ClearPageReferenced(page);
1393 put_page(page);
1394 }
1395}
1396
3010a5ea 1397#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e
SC
1398static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1399 int write, struct page **pages, int *nr)
1400{
b59f65fa
KS
1401 struct dev_pagemap *pgmap = NULL;
1402 int nr_start = *nr, ret = 0;
2667f50e 1403 pte_t *ptep, *ptem;
2667f50e
SC
1404
1405 ptem = ptep = pte_offset_map(&pmd, addr);
1406 do {
0005d20b 1407 pte_t pte = gup_get_pte(ptep);
7aef4172 1408 struct page *head, *page;
2667f50e
SC
1409
1410 /*
1411 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 1412 * path using the pte_protnone check.
2667f50e 1413 */
e7884f8e
KS
1414 if (pte_protnone(pte))
1415 goto pte_unmap;
1416
1417 if (!pte_access_permitted(pte, write))
1418 goto pte_unmap;
1419
b59f65fa
KS
1420 if (pte_devmap(pte)) {
1421 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1422 if (unlikely(!pgmap)) {
1423 undo_dev_pagemap(nr, nr_start, pages);
1424 goto pte_unmap;
1425 }
1426 } else if (pte_special(pte))
2667f50e
SC
1427 goto pte_unmap;
1428
1429 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1430 page = pte_page(pte);
7aef4172 1431 head = compound_head(page);
2667f50e 1432
7aef4172 1433 if (!page_cache_get_speculative(head))
2667f50e
SC
1434 goto pte_unmap;
1435
1436 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
7aef4172 1437 put_page(head);
2667f50e
SC
1438 goto pte_unmap;
1439 }
1440
7aef4172 1441 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053
KS
1442
1443 SetPageReferenced(page);
2667f50e
SC
1444 pages[*nr] = page;
1445 (*nr)++;
1446
1447 } while (ptep++, addr += PAGE_SIZE, addr != end);
1448
1449 ret = 1;
1450
1451pte_unmap:
832d7aa0
CH
1452 if (pgmap)
1453 put_dev_pagemap(pgmap);
2667f50e
SC
1454 pte_unmap(ptem);
1455 return ret;
1456}
1457#else
1458
1459/*
1460 * If we can't determine whether or not a pte is special, then fail immediately
1461 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1462 * to be special.
1463 *
1464 * For a futex to be placed on a THP tail page, get_futex_key requires a
1465 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1466 * useful to have gup_huge_pmd even if we can't operate on ptes.
1467 */
1468static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1469 int write, struct page **pages, int *nr)
1470{
1471 return 0;
1472}
3010a5ea 1473#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 1474
09180ca4 1475#if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa
KS
1476static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1477 unsigned long end, struct page **pages, int *nr)
1478{
1479 int nr_start = *nr;
1480 struct dev_pagemap *pgmap = NULL;
1481
1482 do {
1483 struct page *page = pfn_to_page(pfn);
1484
1485 pgmap = get_dev_pagemap(pfn, pgmap);
1486 if (unlikely(!pgmap)) {
1487 undo_dev_pagemap(nr, nr_start, pages);
1488 return 0;
1489 }
1490 SetPageReferenced(page);
1491 pages[*nr] = page;
1492 get_page(page);
b59f65fa
KS
1493 (*nr)++;
1494 pfn++;
1495 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
1496
1497 if (pgmap)
1498 put_dev_pagemap(pgmap);
b59f65fa
KS
1499 return 1;
1500}
1501
a9b6de77 1502static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b59f65fa
KS
1503 unsigned long end, struct page **pages, int *nr)
1504{
1505 unsigned long fault_pfn;
a9b6de77
DW
1506 int nr_start = *nr;
1507
1508 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1509 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1510 return 0;
b59f65fa 1511
a9b6de77
DW
1512 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1513 undo_dev_pagemap(nr, nr_start, pages);
1514 return 0;
1515 }
1516 return 1;
b59f65fa
KS
1517}
1518
a9b6de77 1519static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
b59f65fa
KS
1520 unsigned long end, struct page **pages, int *nr)
1521{
1522 unsigned long fault_pfn;
a9b6de77
DW
1523 int nr_start = *nr;
1524
1525 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1526 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1527 return 0;
b59f65fa 1528
a9b6de77
DW
1529 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1530 undo_dev_pagemap(nr, nr_start, pages);
1531 return 0;
1532 }
1533 return 1;
b59f65fa
KS
1534}
1535#else
a9b6de77 1536static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b59f65fa
KS
1537 unsigned long end, struct page **pages, int *nr)
1538{
1539 BUILD_BUG();
1540 return 0;
1541}
1542
a9b6de77 1543static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
b59f65fa
KS
1544 unsigned long end, struct page **pages, int *nr)
1545{
1546 BUILD_BUG();
1547 return 0;
1548}
1549#endif
1550
2667f50e
SC
1551static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1552 unsigned long end, int write, struct page **pages, int *nr)
1553{
ddc58f27 1554 struct page *head, *page;
2667f50e
SC
1555 int refs;
1556
e7884f8e 1557 if (!pmd_access_permitted(orig, write))
2667f50e
SC
1558 return 0;
1559
b59f65fa 1560 if (pmd_devmap(orig))
a9b6de77 1561 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
b59f65fa 1562
2667f50e 1563 refs = 0;
d63206ee 1564 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2667f50e 1565 do {
2667f50e
SC
1566 pages[*nr] = page;
1567 (*nr)++;
1568 page++;
1569 refs++;
1570 } while (addr += PAGE_SIZE, addr != end);
1571
d63206ee 1572 head = compound_head(pmd_page(orig));
2667f50e
SC
1573 if (!page_cache_add_speculative(head, refs)) {
1574 *nr -= refs;
1575 return 0;
1576 }
1577
1578 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1579 *nr -= refs;
1580 while (refs--)
1581 put_page(head);
1582 return 0;
1583 }
1584
e9348053 1585 SetPageReferenced(head);
2667f50e
SC
1586 return 1;
1587}
1588
1589static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1590 unsigned long end, int write, struct page **pages, int *nr)
1591{
ddc58f27 1592 struct page *head, *page;
2667f50e
SC
1593 int refs;
1594
e7884f8e 1595 if (!pud_access_permitted(orig, write))
2667f50e
SC
1596 return 0;
1597
b59f65fa 1598 if (pud_devmap(orig))
a9b6de77 1599 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
b59f65fa 1600
2667f50e 1601 refs = 0;
d63206ee 1602 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2667f50e 1603 do {
2667f50e
SC
1604 pages[*nr] = page;
1605 (*nr)++;
1606 page++;
1607 refs++;
1608 } while (addr += PAGE_SIZE, addr != end);
1609
d63206ee 1610 head = compound_head(pud_page(orig));
2667f50e
SC
1611 if (!page_cache_add_speculative(head, refs)) {
1612 *nr -= refs;
1613 return 0;
1614 }
1615
1616 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1617 *nr -= refs;
1618 while (refs--)
1619 put_page(head);
1620 return 0;
1621 }
1622
e9348053 1623 SetPageReferenced(head);
2667f50e
SC
1624 return 1;
1625}
1626
f30c59e9
AK
1627static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1628 unsigned long end, int write,
1629 struct page **pages, int *nr)
1630{
1631 int refs;
ddc58f27 1632 struct page *head, *page;
f30c59e9 1633
e7884f8e 1634 if (!pgd_access_permitted(orig, write))
f30c59e9
AK
1635 return 0;
1636
b59f65fa 1637 BUILD_BUG_ON(pgd_devmap(orig));
f30c59e9 1638 refs = 0;
d63206ee 1639 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
f30c59e9 1640 do {
f30c59e9
AK
1641 pages[*nr] = page;
1642 (*nr)++;
1643 page++;
1644 refs++;
1645 } while (addr += PAGE_SIZE, addr != end);
1646
d63206ee 1647 head = compound_head(pgd_page(orig));
f30c59e9
AK
1648 if (!page_cache_add_speculative(head, refs)) {
1649 *nr -= refs;
1650 return 0;
1651 }
1652
1653 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1654 *nr -= refs;
1655 while (refs--)
1656 put_page(head);
1657 return 0;
1658 }
1659
e9348053 1660 SetPageReferenced(head);
f30c59e9
AK
1661 return 1;
1662}
1663
2667f50e
SC
1664static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1665 int write, struct page **pages, int *nr)
1666{
1667 unsigned long next;
1668 pmd_t *pmdp;
1669
1670 pmdp = pmd_offset(&pud, addr);
1671 do {
38c5ce93 1672 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
1673
1674 next = pmd_addr_end(addr, end);
84c3fc4e 1675 if (!pmd_present(pmd))
2667f50e
SC
1676 return 0;
1677
1678 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1679 /*
1680 * NUMA hinting faults need to be handled in the GUP
1681 * slowpath for accounting purposes and so that they
1682 * can be serialised against THP migration.
1683 */
8a0516ed 1684 if (pmd_protnone(pmd))
2667f50e
SC
1685 return 0;
1686
1687 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1688 pages, nr))
1689 return 0;
1690
f30c59e9
AK
1691 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1692 /*
1693 * architecture have different format for hugetlbfs
1694 * pmd format and THP pmd format
1695 */
1696 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1697 PMD_SHIFT, next, write, pages, nr))
1698 return 0;
2667f50e 1699 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
2923117b 1700 return 0;
2667f50e
SC
1701 } while (pmdp++, addr = next, addr != end);
1702
1703 return 1;
1704}
1705
c2febafc 1706static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
f30c59e9 1707 int write, struct page **pages, int *nr)
2667f50e
SC
1708{
1709 unsigned long next;
1710 pud_t *pudp;
1711
c2febafc 1712 pudp = pud_offset(&p4d, addr);
2667f50e 1713 do {
e37c6982 1714 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
1715
1716 next = pud_addr_end(addr, end);
1717 if (pud_none(pud))
1718 return 0;
f30c59e9 1719 if (unlikely(pud_huge(pud))) {
2667f50e 1720 if (!gup_huge_pud(pud, pudp, addr, next, write,
f30c59e9
AK
1721 pages, nr))
1722 return 0;
1723 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1724 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1725 PUD_SHIFT, next, write, pages, nr))
2667f50e
SC
1726 return 0;
1727 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1728 return 0;
1729 } while (pudp++, addr = next, addr != end);
1730
1731 return 1;
1732}
1733
c2febafc
KS
1734static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1735 int write, struct page **pages, int *nr)
1736{
1737 unsigned long next;
1738 p4d_t *p4dp;
1739
1740 p4dp = p4d_offset(&pgd, addr);
1741 do {
1742 p4d_t p4d = READ_ONCE(*p4dp);
1743
1744 next = p4d_addr_end(addr, end);
1745 if (p4d_none(p4d))
1746 return 0;
1747 BUILD_BUG_ON(p4d_huge(p4d));
1748 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1749 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1750 P4D_SHIFT, next, write, pages, nr))
1751 return 0;
ce70df08 1752 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
c2febafc
KS
1753 return 0;
1754 } while (p4dp++, addr = next, addr != end);
1755
1756 return 1;
1757}
1758
5b65c467
KS
1759static void gup_pgd_range(unsigned long addr, unsigned long end,
1760 int write, struct page **pages, int *nr)
1761{
1762 unsigned long next;
1763 pgd_t *pgdp;
1764
1765 pgdp = pgd_offset(current->mm, addr);
1766 do {
1767 pgd_t pgd = READ_ONCE(*pgdp);
1768
1769 next = pgd_addr_end(addr, end);
1770 if (pgd_none(pgd))
1771 return;
1772 if (unlikely(pgd_huge(pgd))) {
1773 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1774 pages, nr))
1775 return;
1776 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1777 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1778 PGDIR_SHIFT, next, write, pages, nr))
1779 return;
1780 } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
1781 return;
1782 } while (pgdp++, addr = next, addr != end);
1783}
1784
1785#ifndef gup_fast_permitted
1786/*
1787 * Check if it's allowed to use __get_user_pages_fast() for the range, or
1788 * we need to fall back to the slow version:
1789 */
1790bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1791{
1792 unsigned long len, end;
1793
1794 len = (unsigned long) nr_pages << PAGE_SHIFT;
1795 end = start + len;
1796 return end >= start;
1797}
1798#endif
1799
2667f50e
SC
1800/*
1801 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
d0811078
MT
1802 * the regular GUP.
1803 * Note a difference with get_user_pages_fast: this always returns the
1804 * number of pages pinned, 0 if no pages were pinned.
2667f50e
SC
1805 */
1806int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1807 struct page **pages)
1808{
d4faa402 1809 unsigned long len, end;
5b65c467 1810 unsigned long flags;
2667f50e
SC
1811 int nr = 0;
1812
1813 start &= PAGE_MASK;
2667f50e
SC
1814 len = (unsigned long) nr_pages << PAGE_SHIFT;
1815 end = start + len;
1816
1817 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
aa2369f1 1818 (void __user *)start, len)))
2667f50e
SC
1819 return 0;
1820
1821 /*
1822 * Disable interrupts. We use the nested form as we can already have
1823 * interrupts disabled by get_futex_key.
1824 *
1825 * With interrupts disabled, we block page table pages from being
2ebe8228
FW
1826 * freed from under us. See struct mmu_table_batch comments in
1827 * include/asm-generic/tlb.h for more details.
2667f50e
SC
1828 *
1829 * We do not adopt an rcu_read_lock(.) here as we also want to
1830 * block IPIs that come from THPs splitting.
1831 */
1832
5b65c467
KS
1833 if (gup_fast_permitted(start, nr_pages, write)) {
1834 local_irq_save(flags);
d4faa402 1835 gup_pgd_range(start, end, write, pages, &nr);
5b65c467
KS
1836 local_irq_restore(flags);
1837 }
2667f50e
SC
1838
1839 return nr;
1840}
1841
1842/**
1843 * get_user_pages_fast() - pin user pages in memory
1844 * @start: starting user address
1845 * @nr_pages: number of pages from start to pin
1846 * @write: whether pages will be written to
1847 * @pages: array that receives pointers to the pages pinned.
1848 * Should be at least nr_pages long.
1849 *
1850 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1851 * If not successful, it will fall back to taking the lock and
1852 * calling get_user_pages().
1853 *
1854 * Returns number of pages pinned. This may be fewer than the number
1855 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1856 * were pinned, returns -errno.
1857 */
1858int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1859 struct page **pages)
1860{
5b65c467 1861 unsigned long addr, len, end;
73e10a61 1862 int nr = 0, ret = 0;
2667f50e
SC
1863
1864 start &= PAGE_MASK;
5b65c467
KS
1865 addr = start;
1866 len = (unsigned long) nr_pages << PAGE_SHIFT;
1867 end = start + len;
1868
c61611f7
MT
1869 if (nr_pages <= 0)
1870 return 0;
1871
5b65c467
KS
1872 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1873 (void __user *)start, len)))
c61611f7 1874 return -EFAULT;
73e10a61
KS
1875
1876 if (gup_fast_permitted(start, nr_pages, write)) {
5b65c467
KS
1877 local_irq_disable();
1878 gup_pgd_range(addr, end, write, pages, &nr);
1879 local_irq_enable();
73e10a61
KS
1880 ret = nr;
1881 }
2667f50e
SC
1882
1883 if (nr < nr_pages) {
1884 /* Try to get the remaining pages with get_user_pages */
1885 start += nr << PAGE_SHIFT;
1886 pages += nr;
1887
c164154f
LS
1888 ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1889 write ? FOLL_WRITE : 0);
2667f50e
SC
1890
1891 /* Have to be a bit careful with return values */
1892 if (nr > 0) {
1893 if (ret < 0)
1894 ret = nr;
1895 else
1896 ret += nr;
1897 }
1898 }
1899
1900 return ret;
1901}
1902
e585513b 1903#endif /* CONFIG_HAVE_GENERIC_GUP */