mm/gup: Convert gup_huge_pud() to use a folio
[linux-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
1027e443 21
33a709b2 22#include <asm/mmu_context.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
cd1adf1b 32/*
ece1ed7b 33 * Return the folio with ref appropriately incremented,
cd1adf1b 34 * or NULL if that failed.
a707cdd5 35 */
ece1ed7b 36static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 37{
ece1ed7b 38 struct folio *folio;
59409373
MWO
39
40retry:
ece1ed7b
MWO
41 folio = page_folio(page);
42 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 43 return NULL;
ece1ed7b 44 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
a707cdd5 45 return NULL;
c24d3732
JH
46
47 /*
ece1ed7b
MWO
48 * At this point we have a stable reference to the folio; but it
49 * could be that between calling page_folio() and the refcount
50 * increment, the folio was split, in which case we'd end up
51 * holding a reference on a folio that has nothing to do with the page
c24d3732 52 * we were given anymore.
ece1ed7b
MWO
53 * So now that the folio is stable, recheck that the page still
54 * belongs to this folio.
c24d3732 55 */
ece1ed7b
MWO
56 if (unlikely(page_folio(page) != folio)) {
57 folio_put_refs(folio, refs);
59409373 58 goto retry;
c24d3732
JH
59 }
60
ece1ed7b 61 return folio;
a707cdd5
JH
62}
63
3967db22 64/**
ece1ed7b 65 * try_grab_folio() - Attempt to get or pin a folio.
3967db22 66 * @page: pointer to page to be grabbed
ece1ed7b 67 * @refs: the value to (effectively) add to the folio's refcount
3967db22
JH
68 * @flags: gup flags: these are the FOLL_* flag values.
69 *
3faa52c0 70 * "grab" names in this file mean, "look at flags to decide whether to use
ece1ed7b 71 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0
JH
72 *
73 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
74 * same time. (That's true throughout the get_user_pages*() and
75 * pin_user_pages*() APIs.) Cases:
76 *
ece1ed7b 77 * FOLL_GET: folio's refcount will be incremented by @refs.
3967db22 78 *
ece1ed7b
MWO
79 * FOLL_PIN on large folios: folio's refcount will be incremented by
80 * @refs, and its compound_pincount will be incremented by @refs.
3967db22 81 *
ece1ed7b 82 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
5232c63f 83 * @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0 84 *
ece1ed7b
MWO
85 * Return: The folio containing @page (with refcount appropriately
86 * incremented) for success, or NULL upon failure. If neither FOLL_GET
87 * nor FOLL_PIN was set, that's considered failure, and furthermore,
88 * a likely bug in the caller, so a warning is also emitted.
3faa52c0 89 */
ece1ed7b 90struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
3faa52c0
JH
91{
92 if (flags & FOLL_GET)
ece1ed7b 93 return try_get_folio(page, refs);
3faa52c0 94 else if (flags & FOLL_PIN) {
ece1ed7b
MWO
95 struct folio *folio;
96
df3a0a21 97 /*
d1e153fe
PT
98 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
99 * right zone, so fail and let the caller fall back to the slow
100 * path.
df3a0a21 101 */
d1e153fe
PT
102 if (unlikely((flags & FOLL_LONGTERM) &&
103 !is_pinnable_page(page)))
df3a0a21
PL
104 return NULL;
105
c24d3732
JH
106 /*
107 * CAUTION: Don't use compound_head() on the page before this
108 * point, the result won't be stable.
109 */
ece1ed7b
MWO
110 folio = try_get_folio(page, refs);
111 if (!folio)
c24d3732
JH
112 return NULL;
113
47e29d32 114 /*
ece1ed7b 115 * When pinning a large folio, use an exact count to track it.
47e29d32 116 *
ece1ed7b
MWO
117 * However, be sure to *also* increment the normal folio
118 * refcount field at least once, so that the folio really
78d9d6ce 119 * is pinned. That's why the refcount from the earlier
ece1ed7b 120 * try_get_folio() is left intact.
47e29d32 121 */
ece1ed7b
MWO
122 if (folio_test_large(folio))
123 atomic_add(refs, folio_pincount_ptr(folio));
c24d3732 124 else
ece1ed7b
MWO
125 folio_ref_add(folio,
126 refs * (GUP_PIN_COUNTING_BIAS - 1));
127 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
47e29d32 128
ece1ed7b 129 return folio;
3faa52c0
JH
130 }
131
132 WARN_ON_ONCE(1);
133 return NULL;
134}
135
822951d8 136static inline struct page *try_grab_compound_head(struct page *page,
ece1ed7b
MWO
137 int refs, unsigned int flags)
138{
139 return &try_grab_folio(page, refs, flags)->page;
140}
141
d8ddc099 142static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
143{
144 if (flags & FOLL_PIN) {
d8ddc099
MWO
145 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
146 if (folio_test_large(folio))
147 atomic_sub(refs, folio_pincount_ptr(folio));
4509b42c
JG
148 else
149 refs *= GUP_PIN_COUNTING_BIAS;
150 }
151
d8ddc099
MWO
152 folio_put_refs(folio, refs);
153}
154
155static void put_compound_head(struct page *page, int refs, unsigned int flags)
156{
157 VM_BUG_ON_PAGE(PageTail(page), page);
158 gup_put_folio((struct folio *)page, refs, flags);
4509b42c
JG
159}
160
3faa52c0
JH
161/**
162 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
5fec0719
MWO
163 * @page: pointer to page to be grabbed
164 * @flags: gup flags: these are the FOLL_* flag values.
3faa52c0
JH
165 *
166 * This might not do anything at all, depending on the flags argument.
167 *
168 * "grab" names in this file mean, "look at flags to decide whether to use
169 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
170 *
3faa52c0 171 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
ece1ed7b 172 * time. Cases: please see the try_grab_folio() documentation, with
3967db22 173 * "refs=1".
3faa52c0
JH
174 *
175 * Return: true for success, or if no action was required (if neither FOLL_PIN
176 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
177 * FOLL_PIN was set, but the page could not be grabbed.
178 */
179bool __must_check try_grab_page(struct page *page, unsigned int flags)
180{
5fec0719
MWO
181 struct folio *folio = page_folio(page);
182
c36c04c2 183 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
5fec0719
MWO
184 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
185 return false;
3faa52c0 186
c36c04c2 187 if (flags & FOLL_GET)
5fec0719 188 folio_ref_inc(folio);
c36c04c2 189 else if (flags & FOLL_PIN) {
c36c04c2 190 /*
5fec0719 191 * Similar to try_grab_folio(): be sure to *also*
78d9d6ce
MWO
192 * increment the normal page refcount field at least once,
193 * so that the page really is pinned.
c36c04c2 194 */
5fec0719
MWO
195 if (folio_test_large(folio)) {
196 folio_ref_add(folio, 1);
197 atomic_add(1, folio_pincount_ptr(folio));
8ea2979c 198 } else {
5fec0719 199 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
8ea2979c 200 }
c36c04c2 201
5fec0719 202 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
c36c04c2
JH
203 }
204
205 return true;
3faa52c0
JH
206}
207
3faa52c0
JH
208/**
209 * unpin_user_page() - release a dma-pinned page
210 * @page: pointer to page to be released
211 *
212 * Pages that were pinned via pin_user_pages*() must be released via either
213 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
214 * that such pages can be separately tracked and uniquely handled. In
215 * particular, interactions with RDMA and filesystems need special handling.
216 */
217void unpin_user_page(struct page *page)
218{
d8ddc099 219 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
220}
221EXPORT_SYMBOL(unpin_user_page);
222
8f39f5fc
MWO
223static inline struct page *compound_range_next(struct page *start,
224 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78
JM
225{
226 struct page *next, *page;
227 unsigned int nr = 1;
228
c228afb1 229 next = nth_page(start, i);
458a4f78 230 page = compound_head(next);
0b046e12 231 if (PageHead(page))
4c654229
MWO
232 nr = min_t(unsigned int, npages - i,
233 compound_nr(page) - page_nth(page, next));
458a4f78 234
458a4f78 235 *ntails = nr;
8f39f5fc 236 return page;
458a4f78
JM
237}
238
28297dbc
MWO
239static inline struct page *compound_next(struct page **list,
240 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6
JM
241{
242 struct page *page;
243 unsigned int nr;
244
8745d7f6
JM
245 page = compound_head(list[i]);
246 for (nr = i + 1; nr < npages; nr++) {
247 if (compound_head(list[nr]) != page)
248 break;
249 }
250
8745d7f6 251 *ntails = nr - i;
28297dbc 252 return page;
8745d7f6
JM
253}
254
fc1d8e7c 255/**
f1f6a7dd 256 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 257 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 258 * @npages: number of pages in the @pages array.
2d15eb31 259 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
260 *
261 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
262 * variants called on that page.
263 *
264 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 265 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
266 * listed as clean. In any case, releases all pages using unpin_user_page(),
267 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 268 *
f1f6a7dd 269 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 270 *
2d15eb31 271 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
272 * required, then the caller should a) verify that this is really correct,
273 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 274 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
275 *
276 */
f1f6a7dd
JH
277void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
278 bool make_dirty)
fc1d8e7c 279{
2d15eb31 280 unsigned long index;
31b912de
JM
281 struct page *head;
282 unsigned int ntails;
2d15eb31 283
284 if (!make_dirty) {
f1f6a7dd 285 unpin_user_pages(pages, npages);
2d15eb31 286 return;
287 }
288
e7602748 289 for (index = 0; index < npages; index += ntails) {
28297dbc 290 head = compound_next(pages, npages, index, &ntails);
2d15eb31 291 /*
292 * Checking PageDirty at this point may race with
293 * clear_page_dirty_for_io(), but that's OK. Two key
294 * cases:
295 *
296 * 1) This code sees the page as already dirty, so it
297 * skips the call to set_page_dirty(). That could happen
298 * because clear_page_dirty_for_io() called
299 * page_mkclean(), followed by set_page_dirty().
300 * However, now the page is going to get written back,
301 * which meets the original intention of setting it
302 * dirty, so all is well: clear_page_dirty_for_io() goes
303 * on to call TestClearPageDirty(), and write the page
304 * back.
305 *
306 * 2) This code sees the page as clean, so it calls
307 * set_page_dirty(). The page stays dirty, despite being
308 * written back, so it gets written back again in the
309 * next writeback cycle. This is harmless.
310 */
31b912de
JM
311 if (!PageDirty(head))
312 set_page_dirty_lock(head);
313 put_compound_head(head, ntails, FOLL_PIN);
2d15eb31 314 }
fc1d8e7c 315}
f1f6a7dd 316EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 317
458a4f78
JM
318/**
319 * unpin_user_page_range_dirty_lock() - release and optionally dirty
320 * gup-pinned page range
321 *
322 * @page: the starting page of a range maybe marked dirty, and definitely released.
323 * @npages: number of consecutive pages to release.
324 * @make_dirty: whether to mark the pages dirty
325 *
326 * "gup-pinned page range" refers to a range of pages that has had one of the
327 * pin_user_pages() variants called on that page.
328 *
329 * For the page ranges defined by [page .. page+npages], make that range (or
330 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
331 * page range was previously listed as clean.
332 *
333 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
334 * required, then the caller should a) verify that this is really correct,
335 * because _lock() is usually required, and b) hand code it:
336 * set_page_dirty_lock(), unpin_user_page().
337 *
338 */
339void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
340 bool make_dirty)
341{
342 unsigned long index;
343 struct page *head;
344 unsigned int ntails;
345
a5f100db 346 for (index = 0; index < npages; index += ntails) {
8f39f5fc 347 head = compound_range_next(page, npages, index, &ntails);
458a4f78
JM
348 if (make_dirty && !PageDirty(head))
349 set_page_dirty_lock(head);
350 put_compound_head(head, ntails, FOLL_PIN);
351 }
352}
353EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
354
fc1d8e7c 355/**
f1f6a7dd 356 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
357 * @pages: array of pages to be marked dirty and released.
358 * @npages: number of pages in the @pages array.
359 *
f1f6a7dd 360 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 361 *
f1f6a7dd 362 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 363 */
f1f6a7dd 364void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c
JH
365{
366 unsigned long index;
31b912de
JM
367 struct page *head;
368 unsigned int ntails;
fc1d8e7c 369
146608bb
JH
370 /*
371 * If this WARN_ON() fires, then the system *might* be leaking pages (by
372 * leaving them pinned), but probably not. More likely, gup/pup returned
373 * a hard -ERRNO error to the caller, who erroneously passed it here.
374 */
375 if (WARN_ON(IS_ERR_VALUE(npages)))
376 return;
31b912de 377
e7602748 378 for (index = 0; index < npages; index += ntails) {
28297dbc 379 head = compound_next(pages, npages, index, &ntails);
31b912de 380 put_compound_head(head, ntails, FOLL_PIN);
e7602748 381 }
fc1d8e7c 382}
f1f6a7dd 383EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 384
a458b76a
AA
385/*
386 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
387 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
388 * cache bouncing on large SMP machines for concurrent pinned gups.
389 */
390static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
391{
392 if (!test_bit(MMF_HAS_PINNED, mm_flags))
393 set_bit(MMF_HAS_PINNED, mm_flags);
394}
395
050a9adc 396#ifdef CONFIG_MMU
69e68b4f
KS
397static struct page *no_page_table(struct vm_area_struct *vma,
398 unsigned int flags)
4bbd4c77 399{
69e68b4f
KS
400 /*
401 * When core dumping an enormous anonymous area that nobody
402 * has touched so far, we don't want to allocate unnecessary pages or
403 * page tables. Return error instead of NULL to skip handle_mm_fault,
404 * then get_dump_page() will return NULL to leave a hole in the dump.
405 * But we can only make this optimization where a hole would surely
406 * be zero-filled if handle_mm_fault() actually did handle it.
407 */
a0137f16
AK
408 if ((flags & FOLL_DUMP) &&
409 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
410 return ERR_PTR(-EFAULT);
411 return NULL;
412}
4bbd4c77 413
1027e443
KS
414static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
415 pte_t *pte, unsigned int flags)
416{
417 /* No page to get reference */
418 if (flags & FOLL_GET)
419 return -EFAULT;
420
421 if (flags & FOLL_TOUCH) {
422 pte_t entry = *pte;
423
424 if (flags & FOLL_WRITE)
425 entry = pte_mkdirty(entry);
426 entry = pte_mkyoung(entry);
427
428 if (!pte_same(*pte, entry)) {
429 set_pte_at(vma->vm_mm, address, pte, entry);
430 update_mmu_cache(vma, address, pte);
431 }
432 }
433
434 /* Proper page table entry exists, but no corresponding struct page */
435 return -EEXIST;
436}
437
19be0eaf 438/*
a308c71b
PX
439 * FOLL_FORCE can write to even unwritable pte's, but only
440 * after we've gone through a COW cycle and they are dirty.
19be0eaf
LT
441 */
442static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
443{
a308c71b
PX
444 return pte_write(pte) ||
445 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
19be0eaf
LT
446}
447
69e68b4f 448static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
449 unsigned long address, pmd_t *pmd, unsigned int flags,
450 struct dev_pagemap **pgmap)
69e68b4f
KS
451{
452 struct mm_struct *mm = vma->vm_mm;
453 struct page *page;
454 spinlock_t *ptl;
455 pte_t *ptep, pte;
f28d4363 456 int ret;
4bbd4c77 457
eddb1c22
JH
458 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
459 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
460 (FOLL_PIN | FOLL_GET)))
461 return ERR_PTR(-EINVAL);
69e68b4f 462retry:
4bbd4c77 463 if (unlikely(pmd_bad(*pmd)))
69e68b4f 464 return no_page_table(vma, flags);
4bbd4c77
KS
465
466 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
467 pte = *ptep;
468 if (!pte_present(pte)) {
469 swp_entry_t entry;
470 /*
471 * KSM's break_ksm() relies upon recognizing a ksm page
472 * even while it is being migrated, so for that case we
473 * need migration_entry_wait().
474 */
475 if (likely(!(flags & FOLL_MIGRATION)))
476 goto no_page;
0661a336 477 if (pte_none(pte))
4bbd4c77
KS
478 goto no_page;
479 entry = pte_to_swp_entry(pte);
480 if (!is_migration_entry(entry))
481 goto no_page;
482 pte_unmap_unlock(ptep, ptl);
483 migration_entry_wait(mm, pmd, address);
69e68b4f 484 goto retry;
4bbd4c77 485 }
8a0516ed 486 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 487 goto no_page;
19be0eaf 488 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
489 pte_unmap_unlock(ptep, ptl);
490 return NULL;
491 }
4bbd4c77
KS
492
493 page = vm_normal_page(vma, address, pte);
3faa52c0 494 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 495 /*
3faa52c0
JH
496 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
497 * case since they are only valid while holding the pgmap
498 * reference.
3565fce3 499 */
df06b37f
KB
500 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
501 if (*pgmap)
3565fce3
DW
502 page = pte_page(pte);
503 else
504 goto no_page;
505 } else if (unlikely(!page)) {
1027e443
KS
506 if (flags & FOLL_DUMP) {
507 /* Avoid special (like zero) pages in core dumps */
508 page = ERR_PTR(-EFAULT);
509 goto out;
510 }
511
512 if (is_zero_pfn(pte_pfn(pte))) {
513 page = pte_page(pte);
514 } else {
1027e443
KS
515 ret = follow_pfn_pte(vma, address, ptep, flags);
516 page = ERR_PTR(ret);
517 goto out;
518 }
4bbd4c77
KS
519 }
520
3faa52c0
JH
521 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
522 if (unlikely(!try_grab_page(page, flags))) {
523 page = ERR_PTR(-ENOMEM);
524 goto out;
8fde12ca 525 }
f28d4363
CI
526 /*
527 * We need to make the page accessible if and only if we are going
528 * to access its content (the FOLL_PIN case). Please see
529 * Documentation/core-api/pin_user_pages.rst for details.
530 */
531 if (flags & FOLL_PIN) {
532 ret = arch_make_page_accessible(page);
533 if (ret) {
534 unpin_user_page(page);
535 page = ERR_PTR(ret);
536 goto out;
537 }
538 }
4bbd4c77
KS
539 if (flags & FOLL_TOUCH) {
540 if ((flags & FOLL_WRITE) &&
541 !pte_dirty(pte) && !PageDirty(page))
542 set_page_dirty(page);
543 /*
544 * pte_mkyoung() would be more correct here, but atomic care
545 * is needed to avoid losing the dirty bit: it is easier to use
546 * mark_page_accessed().
547 */
548 mark_page_accessed(page);
549 }
1027e443 550out:
4bbd4c77 551 pte_unmap_unlock(ptep, ptl);
4bbd4c77 552 return page;
4bbd4c77
KS
553no_page:
554 pte_unmap_unlock(ptep, ptl);
555 if (!pte_none(pte))
69e68b4f
KS
556 return NULL;
557 return no_page_table(vma, flags);
558}
559
080dbb61
AK
560static struct page *follow_pmd_mask(struct vm_area_struct *vma,
561 unsigned long address, pud_t *pudp,
df06b37f
KB
562 unsigned int flags,
563 struct follow_page_context *ctx)
69e68b4f 564{
68827280 565 pmd_t *pmd, pmdval;
69e68b4f
KS
566 spinlock_t *ptl;
567 struct page *page;
568 struct mm_struct *mm = vma->vm_mm;
569
080dbb61 570 pmd = pmd_offset(pudp, address);
68827280
HY
571 /*
572 * The READ_ONCE() will stabilize the pmdval in a register or
573 * on the stack so that it will stop changing under the code.
574 */
575 pmdval = READ_ONCE(*pmd);
576 if (pmd_none(pmdval))
69e68b4f 577 return no_page_table(vma, flags);
be9d3045 578 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
579 page = follow_huge_pmd(mm, address, pmd, flags);
580 if (page)
581 return page;
582 return no_page_table(vma, flags);
69e68b4f 583 }
68827280 584 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 585 page = follow_huge_pd(vma, address,
68827280 586 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
587 PMD_SHIFT);
588 if (page)
589 return page;
590 return no_page_table(vma, flags);
591 }
84c3fc4e 592retry:
68827280 593 if (!pmd_present(pmdval)) {
28b0ee3f
LX
594 /*
595 * Should never reach here, if thp migration is not supported;
596 * Otherwise, it must be a thp migration entry.
597 */
598 VM_BUG_ON(!thp_migration_supported() ||
599 !is_pmd_migration_entry(pmdval));
600
84c3fc4e
ZY
601 if (likely(!(flags & FOLL_MIGRATION)))
602 return no_page_table(vma, flags);
28b0ee3f
LX
603
604 pmd_migration_entry_wait(mm, pmd);
68827280
HY
605 pmdval = READ_ONCE(*pmd);
606 /*
607 * MADV_DONTNEED may convert the pmd to null because
c1e8d7c6 608 * mmap_lock is held in read mode
68827280
HY
609 */
610 if (pmd_none(pmdval))
611 return no_page_table(vma, flags);
84c3fc4e
ZY
612 goto retry;
613 }
68827280 614 if (pmd_devmap(pmdval)) {
3565fce3 615 ptl = pmd_lock(mm, pmd);
df06b37f 616 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
617 spin_unlock(ptl);
618 if (page)
619 return page;
620 }
68827280 621 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 622 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 623
68827280 624 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
625 return no_page_table(vma, flags);
626
84c3fc4e 627retry_locked:
6742d293 628 ptl = pmd_lock(mm, pmd);
68827280
HY
629 if (unlikely(pmd_none(*pmd))) {
630 spin_unlock(ptl);
631 return no_page_table(vma, flags);
632 }
84c3fc4e
ZY
633 if (unlikely(!pmd_present(*pmd))) {
634 spin_unlock(ptl);
635 if (likely(!(flags & FOLL_MIGRATION)))
636 return no_page_table(vma, flags);
637 pmd_migration_entry_wait(mm, pmd);
638 goto retry_locked;
639 }
6742d293
KS
640 if (unlikely(!pmd_trans_huge(*pmd))) {
641 spin_unlock(ptl);
df06b37f 642 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 643 }
4066c119 644 if (flags & FOLL_SPLIT_PMD) {
6742d293
KS
645 int ret;
646 page = pmd_page(*pmd);
647 if (is_huge_zero_page(page)) {
648 spin_unlock(ptl);
649 ret = 0;
78ddc534 650 split_huge_pmd(vma, pmd, address);
337d9abf
NH
651 if (pmd_trans_unstable(pmd))
652 ret = -EBUSY;
4066c119 653 } else {
bfe7b00d
SL
654 spin_unlock(ptl);
655 split_huge_pmd(vma, pmd, address);
656 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
657 }
658
659 return ret ? ERR_PTR(ret) :
df06b37f 660 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 661 }
6742d293
KS
662 page = follow_trans_huge_pmd(vma, address, pmd, flags);
663 spin_unlock(ptl);
df06b37f 664 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 665 return page;
4bbd4c77
KS
666}
667
080dbb61
AK
668static struct page *follow_pud_mask(struct vm_area_struct *vma,
669 unsigned long address, p4d_t *p4dp,
df06b37f
KB
670 unsigned int flags,
671 struct follow_page_context *ctx)
080dbb61
AK
672{
673 pud_t *pud;
674 spinlock_t *ptl;
675 struct page *page;
676 struct mm_struct *mm = vma->vm_mm;
677
678 pud = pud_offset(p4dp, address);
679 if (pud_none(*pud))
680 return no_page_table(vma, flags);
be9d3045 681 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
682 page = follow_huge_pud(mm, address, pud, flags);
683 if (page)
684 return page;
685 return no_page_table(vma, flags);
686 }
4dc71451
AK
687 if (is_hugepd(__hugepd(pud_val(*pud)))) {
688 page = follow_huge_pd(vma, address,
689 __hugepd(pud_val(*pud)), flags,
690 PUD_SHIFT);
691 if (page)
692 return page;
693 return no_page_table(vma, flags);
694 }
080dbb61
AK
695 if (pud_devmap(*pud)) {
696 ptl = pud_lock(mm, pud);
df06b37f 697 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
698 spin_unlock(ptl);
699 if (page)
700 return page;
701 }
702 if (unlikely(pud_bad(*pud)))
703 return no_page_table(vma, flags);
704
df06b37f 705 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
706}
707
080dbb61
AK
708static struct page *follow_p4d_mask(struct vm_area_struct *vma,
709 unsigned long address, pgd_t *pgdp,
df06b37f
KB
710 unsigned int flags,
711 struct follow_page_context *ctx)
080dbb61
AK
712{
713 p4d_t *p4d;
4dc71451 714 struct page *page;
080dbb61
AK
715
716 p4d = p4d_offset(pgdp, address);
717 if (p4d_none(*p4d))
718 return no_page_table(vma, flags);
719 BUILD_BUG_ON(p4d_huge(*p4d));
720 if (unlikely(p4d_bad(*p4d)))
721 return no_page_table(vma, flags);
722
4dc71451
AK
723 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
724 page = follow_huge_pd(vma, address,
725 __hugepd(p4d_val(*p4d)), flags,
726 P4D_SHIFT);
727 if (page)
728 return page;
729 return no_page_table(vma, flags);
730 }
df06b37f 731 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
732}
733
734/**
735 * follow_page_mask - look up a page descriptor from a user-virtual address
736 * @vma: vm_area_struct mapping @address
737 * @address: virtual address to look up
738 * @flags: flags modifying lookup behaviour
78179556
MR
739 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
740 * pointer to output page_mask
080dbb61
AK
741 *
742 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
743 *
78179556
MR
744 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
745 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
746 *
747 * On output, the @ctx->page_mask is set according to the size of the page.
748 *
749 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
750 * an error pointer if there is a mapping to something not represented
751 * by a page descriptor (see also vm_normal_page()).
752 */
a7030aea 753static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 754 unsigned long address, unsigned int flags,
df06b37f 755 struct follow_page_context *ctx)
080dbb61
AK
756{
757 pgd_t *pgd;
758 struct page *page;
759 struct mm_struct *mm = vma->vm_mm;
760
df06b37f 761 ctx->page_mask = 0;
080dbb61
AK
762
763 /* make this handle hugepd */
764 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
765 if (!IS_ERR(page)) {
3faa52c0 766 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
767 return page;
768 }
769
770 pgd = pgd_offset(mm, address);
771
772 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
773 return no_page_table(vma, flags);
774
faaa5b62
AK
775 if (pgd_huge(*pgd)) {
776 page = follow_huge_pgd(mm, address, pgd, flags);
777 if (page)
778 return page;
779 return no_page_table(vma, flags);
780 }
4dc71451
AK
781 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
782 page = follow_huge_pd(vma, address,
783 __hugepd(pgd_val(*pgd)), flags,
784 PGDIR_SHIFT);
785 if (page)
786 return page;
787 return no_page_table(vma, flags);
788 }
faaa5b62 789
df06b37f
KB
790 return follow_p4d_mask(vma, address, pgd, flags, ctx);
791}
792
793struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
794 unsigned int foll_flags)
795{
796 struct follow_page_context ctx = { NULL };
797 struct page *page;
798
1507f512
MR
799 if (vma_is_secretmem(vma))
800 return NULL;
801
df06b37f
KB
802 page = follow_page_mask(vma, address, foll_flags, &ctx);
803 if (ctx.pgmap)
804 put_dev_pagemap(ctx.pgmap);
805 return page;
080dbb61
AK
806}
807
f2b495ca
KS
808static int get_gate_page(struct mm_struct *mm, unsigned long address,
809 unsigned int gup_flags, struct vm_area_struct **vma,
810 struct page **page)
811{
812 pgd_t *pgd;
c2febafc 813 p4d_t *p4d;
f2b495ca
KS
814 pud_t *pud;
815 pmd_t *pmd;
816 pte_t *pte;
817 int ret = -EFAULT;
818
819 /* user gate pages are read-only */
820 if (gup_flags & FOLL_WRITE)
821 return -EFAULT;
822 if (address > TASK_SIZE)
823 pgd = pgd_offset_k(address);
824 else
825 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
826 if (pgd_none(*pgd))
827 return -EFAULT;
c2febafc 828 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
829 if (p4d_none(*p4d))
830 return -EFAULT;
c2febafc 831 pud = pud_offset(p4d, address);
b5d1c39f
AL
832 if (pud_none(*pud))
833 return -EFAULT;
f2b495ca 834 pmd = pmd_offset(pud, address);
84c3fc4e 835 if (!pmd_present(*pmd))
f2b495ca
KS
836 return -EFAULT;
837 VM_BUG_ON(pmd_trans_huge(*pmd));
838 pte = pte_offset_map(pmd, address);
839 if (pte_none(*pte))
840 goto unmap;
841 *vma = get_gate_vma(mm);
842 if (!page)
843 goto out;
844 *page = vm_normal_page(*vma, address, *pte);
845 if (!*page) {
846 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
847 goto unmap;
848 *page = pte_page(*pte);
849 }
9fa2dd94 850 if (unlikely(!try_grab_page(*page, gup_flags))) {
8fde12ca
LT
851 ret = -ENOMEM;
852 goto unmap;
853 }
f2b495ca
KS
854out:
855 ret = 0;
856unmap:
857 pte_unmap(pte);
858 return ret;
859}
860
9a95f3cf 861/*
c1e8d7c6
ML
862 * mmap_lock must be held on entry. If @locked != NULL and *@flags
863 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 864 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 865 */
64019a2e 866static int faultin_page(struct vm_area_struct *vma,
4f6da934 867 unsigned long address, unsigned int *flags, int *locked)
16744483 868{
16744483 869 unsigned int fault_flags = 0;
2b740303 870 vm_fault_t ret;
16744483 871
55b8fe70
AG
872 if (*flags & FOLL_NOFAULT)
873 return -EFAULT;
16744483
KS
874 if (*flags & FOLL_WRITE)
875 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
876 if (*flags & FOLL_REMOTE)
877 fault_flags |= FAULT_FLAG_REMOTE;
4f6da934 878 if (locked)
71335f37 879 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
16744483
KS
880 if (*flags & FOLL_NOWAIT)
881 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 882 if (*flags & FOLL_TRIED) {
4426e945
PX
883 /*
884 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
885 * can co-exist
886 */
234b239b
ALC
887 fault_flags |= FAULT_FLAG_TRIED;
888 }
16744483 889
bce617ed 890 ret = handle_mm_fault(vma, address, fault_flags, NULL);
16744483 891 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
892 int err = vm_fault_to_errno(ret, *flags);
893
894 if (err)
895 return err;
16744483
KS
896 BUG();
897 }
898
16744483 899 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
900 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
901 *locked = 0;
16744483
KS
902 return -EBUSY;
903 }
904
905 /*
906 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
907 * necessary, even if maybe_mkwrite decided not to set pte_write. We
908 * can thus safely do subsequent page lookups as if they were reads.
909 * But only do so when looping for pte_write is futile: in some cases
910 * userspace may also be wanting to write to the gotten user page,
911 * which a read fault here might prevent (a readonly page might get
912 * reCOWed by userspace write).
913 */
914 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 915 *flags |= FOLL_COW;
16744483
KS
916 return 0;
917}
918
fa5bb209
KS
919static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
920{
921 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
922 int write = (gup_flags & FOLL_WRITE);
923 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
924
925 if (vm_flags & (VM_IO | VM_PFNMAP))
926 return -EFAULT;
927
7f7ccc2c
WT
928 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
929 return -EFAULT;
930
52650c8b
JG
931 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
932 return -EOPNOTSUPP;
933
1507f512
MR
934 if (vma_is_secretmem(vma))
935 return -EFAULT;
936
1b2ee126 937 if (write) {
fa5bb209
KS
938 if (!(vm_flags & VM_WRITE)) {
939 if (!(gup_flags & FOLL_FORCE))
940 return -EFAULT;
941 /*
942 * We used to let the write,force case do COW in a
943 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
944 * set a breakpoint in a read-only mapping of an
945 * executable, without corrupting the file (yet only
946 * when that file had been opened for writing!).
947 * Anon pages in shared mappings are surprising: now
948 * just reject it.
949 */
46435364 950 if (!is_cow_mapping(vm_flags))
fa5bb209 951 return -EFAULT;
fa5bb209
KS
952 }
953 } else if (!(vm_flags & VM_READ)) {
954 if (!(gup_flags & FOLL_FORCE))
955 return -EFAULT;
956 /*
957 * Is there actually any vma we can reach here which does not
958 * have VM_MAYREAD set?
959 */
960 if (!(vm_flags & VM_MAYREAD))
961 return -EFAULT;
962 }
d61172b4
DH
963 /*
964 * gups are always data accesses, not instruction
965 * fetches, so execute=false here
966 */
967 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 968 return -EFAULT;
fa5bb209
KS
969 return 0;
970}
971
4bbd4c77
KS
972/**
973 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
974 * @mm: mm_struct of target mm
975 * @start: starting user address
976 * @nr_pages: number of pages from start to pin
977 * @gup_flags: flags modifying pin behaviour
978 * @pages: array that receives pointers to the pages pinned.
979 * Should be at least nr_pages long. Or NULL, if caller
980 * only intends to ensure the pages are faulted in.
981 * @vmas: array of pointers to vmas corresponding to each page.
982 * Or NULL if the caller does not require them.
c1e8d7c6 983 * @locked: whether we're still with the mmap_lock held
4bbd4c77 984 *
d2dfbe47
LX
985 * Returns either number of pages pinned (which may be less than the
986 * number requested), or an error. Details about the return value:
987 *
988 * -- If nr_pages is 0, returns 0.
989 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
990 * -- If nr_pages is >0, and some pages were pinned, returns the number of
991 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 992 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
993 *
994 * The caller is responsible for releasing returned @pages, via put_page().
995 *
c1e8d7c6 996 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 997 *
c1e8d7c6 998 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
999 *
1000 * __get_user_pages walks a process's page tables and takes a reference to
1001 * each struct page that each user address corresponds to at a given
1002 * instant. That is, it takes the page that would be accessed if a user
1003 * thread accesses the given user virtual address at that instant.
1004 *
1005 * This does not guarantee that the page exists in the user mappings when
1006 * __get_user_pages returns, and there may even be a completely different
1007 * page there in some cases (eg. if mmapped pagecache has been invalidated
1008 * and subsequently re faulted). However it does guarantee that the page
1009 * won't be freed completely. And mostly callers simply care that the page
1010 * contains data that was valid *at some point in time*. Typically, an IO
1011 * or similar operation cannot guarantee anything stronger anyway because
1012 * locks can't be held over the syscall boundary.
1013 *
1014 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1015 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1016 * appropriate) must be called after the page is finished with, and
1017 * before put_page is called.
1018 *
c1e8d7c6 1019 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
1020 * released by an up_read(). That can happen if @gup_flags does not
1021 * have FOLL_NOWAIT.
9a95f3cf 1022 *
4f6da934 1023 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 1024 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
1025 * when it's been released. Otherwise, it must be held for either
1026 * reading or writing and will not be released.
4bbd4c77
KS
1027 *
1028 * In most cases, get_user_pages or get_user_pages_fast should be used
1029 * instead of __get_user_pages. __get_user_pages should be used only if
1030 * you need some special @gup_flags.
1031 */
64019a2e 1032static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1033 unsigned long start, unsigned long nr_pages,
1034 unsigned int gup_flags, struct page **pages,
4f6da934 1035 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1036{
df06b37f 1037 long ret = 0, i = 0;
fa5bb209 1038 struct vm_area_struct *vma = NULL;
df06b37f 1039 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1040
1041 if (!nr_pages)
1042 return 0;
1043
f9652594
AK
1044 start = untagged_addr(start);
1045
eddb1c22 1046 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1047
1048 /*
1049 * If FOLL_FORCE is set then do not force a full fault as the hinting
1050 * fault information is unrelated to the reference behaviour of a task
1051 * using the address space
1052 */
1053 if (!(gup_flags & FOLL_FORCE))
1054 gup_flags |= FOLL_NUMA;
1055
4bbd4c77 1056 do {
fa5bb209
KS
1057 struct page *page;
1058 unsigned int foll_flags = gup_flags;
1059 unsigned int page_increm;
1060
1061 /* first iteration or cross vma bound */
1062 if (!vma || start >= vma->vm_end) {
1063 vma = find_extend_vma(mm, start);
1064 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1065 ret = get_gate_page(mm, start & PAGE_MASK,
1066 gup_flags, &vma,
1067 pages ? &pages[i] : NULL);
1068 if (ret)
08be37b7 1069 goto out;
df06b37f 1070 ctx.page_mask = 0;
fa5bb209
KS
1071 goto next_page;
1072 }
4bbd4c77 1073
52650c8b 1074 if (!vma) {
df06b37f
KB
1075 ret = -EFAULT;
1076 goto out;
1077 }
52650c8b
JG
1078 ret = check_vma_flags(vma, gup_flags);
1079 if (ret)
1080 goto out;
1081
fa5bb209
KS
1082 if (is_vm_hugetlb_page(vma)) {
1083 i = follow_hugetlb_page(mm, vma, pages, vmas,
1084 &start, &nr_pages, i,
a308c71b 1085 gup_flags, locked);
ad415db8
PX
1086 if (locked && *locked == 0) {
1087 /*
1088 * We've got a VM_FAULT_RETRY
c1e8d7c6 1089 * and we've lost mmap_lock.
ad415db8
PX
1090 * We must stop here.
1091 */
1092 BUG_ON(gup_flags & FOLL_NOWAIT);
ad415db8
PX
1093 goto out;
1094 }
fa5bb209 1095 continue;
4bbd4c77 1096 }
fa5bb209
KS
1097 }
1098retry:
1099 /*
1100 * If we have a pending SIGKILL, don't keep faulting pages and
1101 * potentially allocating memory.
1102 */
fa45f116 1103 if (fatal_signal_pending(current)) {
d180870d 1104 ret = -EINTR;
df06b37f
KB
1105 goto out;
1106 }
fa5bb209 1107 cond_resched();
df06b37f
KB
1108
1109 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 1110 if (!page) {
64019a2e 1111 ret = faultin_page(vma, start, &foll_flags, locked);
fa5bb209
KS
1112 switch (ret) {
1113 case 0:
1114 goto retry;
df06b37f
KB
1115 case -EBUSY:
1116 ret = 0;
e4a9bc58 1117 fallthrough;
fa5bb209
KS
1118 case -EFAULT:
1119 case -ENOMEM:
1120 case -EHWPOISON:
df06b37f 1121 goto out;
4bbd4c77 1122 }
fa5bb209 1123 BUG();
1027e443
KS
1124 } else if (PTR_ERR(page) == -EEXIST) {
1125 /*
1126 * Proper page table entry exists, but no corresponding
1127 * struct page.
1128 */
1129 goto next_page;
1130 } else if (IS_ERR(page)) {
df06b37f
KB
1131 ret = PTR_ERR(page);
1132 goto out;
1027e443 1133 }
fa5bb209
KS
1134 if (pages) {
1135 pages[i] = page;
1136 flush_anon_page(vma, page, start);
1137 flush_dcache_page(page);
df06b37f 1138 ctx.page_mask = 0;
4bbd4c77 1139 }
4bbd4c77 1140next_page:
fa5bb209
KS
1141 if (vmas) {
1142 vmas[i] = vma;
df06b37f 1143 ctx.page_mask = 0;
fa5bb209 1144 }
df06b37f 1145 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1146 if (page_increm > nr_pages)
1147 page_increm = nr_pages;
1148 i += page_increm;
1149 start += page_increm * PAGE_SIZE;
1150 nr_pages -= page_increm;
4bbd4c77 1151 } while (nr_pages);
df06b37f
KB
1152out:
1153 if (ctx.pgmap)
1154 put_dev_pagemap(ctx.pgmap);
1155 return i ? i : ret;
4bbd4c77 1156}
4bbd4c77 1157
771ab430
TK
1158static bool vma_permits_fault(struct vm_area_struct *vma,
1159 unsigned int fault_flags)
d4925e00 1160{
1b2ee126
DH
1161 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1162 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1163 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1164
1165 if (!(vm_flags & vma->vm_flags))
1166 return false;
1167
33a709b2
DH
1168 /*
1169 * The architecture might have a hardware protection
1b2ee126 1170 * mechanism other than read/write that can deny access.
d61172b4
DH
1171 *
1172 * gup always represents data access, not instruction
1173 * fetches, so execute=false here:
33a709b2 1174 */
d61172b4 1175 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1176 return false;
1177
d4925e00
DH
1178 return true;
1179}
1180
adc8cb40 1181/**
4bbd4c77 1182 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1183 * @mm: mm_struct of target mm
1184 * @address: user address
1185 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1186 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1187 * does not allow retry. If NULL, the caller must guarantee
1188 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1189 *
1190 * This is meant to be called in the specific scenario where for locking reasons
1191 * we try to access user memory in atomic context (within a pagefault_disable()
1192 * section), this returns -EFAULT, and we want to resolve the user fault before
1193 * trying again.
1194 *
1195 * Typically this is meant to be used by the futex code.
1196 *
1197 * The main difference with get_user_pages() is that this function will
1198 * unconditionally call handle_mm_fault() which will in turn perform all the
1199 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1200 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1201 *
1202 * This is important for some architectures where those bits also gate the
1203 * access permission to the page because they are maintained in software. On
1204 * such architectures, gup() will not be enough to make a subsequent access
1205 * succeed.
1206 *
c1e8d7c6
ML
1207 * This function will not return with an unlocked mmap_lock. So it has not the
1208 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1209 */
64019a2e 1210int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1211 unsigned long address, unsigned int fault_flags,
1212 bool *unlocked)
4bbd4c77
KS
1213{
1214 struct vm_area_struct *vma;
8fed2f3c 1215 vm_fault_t ret;
4a9e1cda 1216
f9652594
AK
1217 address = untagged_addr(address);
1218
4a9e1cda 1219 if (unlocked)
71335f37 1220 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1221
4a9e1cda 1222retry:
4bbd4c77
KS
1223 vma = find_extend_vma(mm, address);
1224 if (!vma || address < vma->vm_start)
1225 return -EFAULT;
1226
d4925e00 1227 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1228 return -EFAULT;
1229
475f4dfc
PX
1230 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1231 fatal_signal_pending(current))
1232 return -EINTR;
1233
bce617ed 1234 ret = handle_mm_fault(vma, address, fault_flags, NULL);
4bbd4c77 1235 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1236 int err = vm_fault_to_errno(ret, 0);
1237
1238 if (err)
1239 return err;
4bbd4c77
KS
1240 BUG();
1241 }
4a9e1cda
DD
1242
1243 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1244 mmap_read_lock(mm);
475f4dfc
PX
1245 *unlocked = true;
1246 fault_flags |= FAULT_FLAG_TRIED;
1247 goto retry;
4a9e1cda
DD
1248 }
1249
4bbd4c77
KS
1250 return 0;
1251}
add6a0cd 1252EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1253
2d3a36a4
MH
1254/*
1255 * Please note that this function, unlike __get_user_pages will not
1256 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1257 */
64019a2e 1258static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1259 unsigned long start,
1260 unsigned long nr_pages,
f0818f47
AA
1261 struct page **pages,
1262 struct vm_area_struct **vmas,
e716712f 1263 int *locked,
0fd71a56 1264 unsigned int flags)
f0818f47 1265{
f0818f47
AA
1266 long ret, pages_done;
1267 bool lock_dropped;
1268
1269 if (locked) {
1270 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1271 BUG_ON(vmas);
1272 /* check caller initialized locked */
1273 BUG_ON(*locked != 1);
1274 }
1275
a458b76a
AA
1276 if (flags & FOLL_PIN)
1277 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1278
eddb1c22
JH
1279 /*
1280 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1281 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1282 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1283 * for FOLL_GET, not for the newer FOLL_PIN.
1284 *
1285 * FOLL_PIN always expects pages to be non-null, but no need to assert
1286 * that here, as any failures will be obvious enough.
1287 */
1288 if (pages && !(flags & FOLL_PIN))
f0818f47 1289 flags |= FOLL_GET;
f0818f47
AA
1290
1291 pages_done = 0;
1292 lock_dropped = false;
1293 for (;;) {
64019a2e 1294 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47
AA
1295 vmas, locked);
1296 if (!locked)
1297 /* VM_FAULT_RETRY couldn't trigger, bypass */
1298 return ret;
1299
1300 /* VM_FAULT_RETRY cannot return errors */
1301 if (!*locked) {
1302 BUG_ON(ret < 0);
1303 BUG_ON(ret >= nr_pages);
1304 }
1305
f0818f47
AA
1306 if (ret > 0) {
1307 nr_pages -= ret;
1308 pages_done += ret;
1309 if (!nr_pages)
1310 break;
1311 }
1312 if (*locked) {
96312e61
AA
1313 /*
1314 * VM_FAULT_RETRY didn't trigger or it was a
1315 * FOLL_NOWAIT.
1316 */
f0818f47
AA
1317 if (!pages_done)
1318 pages_done = ret;
1319 break;
1320 }
df17277b
MR
1321 /*
1322 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1323 * For the prefault case (!pages) we only update counts.
1324 */
1325 if (likely(pages))
1326 pages += ret;
f0818f47 1327 start += ret << PAGE_SHIFT;
4426e945 1328 lock_dropped = true;
f0818f47 1329
4426e945 1330retry:
f0818f47
AA
1331 /*
1332 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1333 * with both FAULT_FLAG_ALLOW_RETRY and
1334 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1335 * by fatal signals, so we need to check it before we
1336 * start trying again otherwise it can loop forever.
f0818f47 1337 */
4426e945 1338
ae46d2aa
HD
1339 if (fatal_signal_pending(current)) {
1340 if (!pages_done)
1341 pages_done = -EINTR;
4426e945 1342 break;
ae46d2aa 1343 }
4426e945 1344
d8ed45c5 1345 ret = mmap_read_lock_killable(mm);
71335f37
PX
1346 if (ret) {
1347 BUG_ON(ret > 0);
1348 if (!pages_done)
1349 pages_done = ret;
1350 break;
1351 }
4426e945 1352
c7b6a566 1353 *locked = 1;
64019a2e 1354 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1355 pages, NULL, locked);
1356 if (!*locked) {
1357 /* Continue to retry until we succeeded */
1358 BUG_ON(ret != 0);
1359 goto retry;
1360 }
f0818f47
AA
1361 if (ret != 1) {
1362 BUG_ON(ret > 1);
1363 if (!pages_done)
1364 pages_done = ret;
1365 break;
1366 }
1367 nr_pages--;
1368 pages_done++;
1369 if (!nr_pages)
1370 break;
df17277b
MR
1371 if (likely(pages))
1372 pages++;
f0818f47
AA
1373 start += PAGE_SIZE;
1374 }
e716712f 1375 if (lock_dropped && *locked) {
f0818f47
AA
1376 /*
1377 * We must let the caller know we temporarily dropped the lock
1378 * and so the critical section protected by it was lost.
1379 */
d8ed45c5 1380 mmap_read_unlock(mm);
f0818f47
AA
1381 *locked = 0;
1382 }
1383 return pages_done;
1384}
1385
d3649f68
CH
1386/**
1387 * populate_vma_page_range() - populate a range of pages in the vma.
1388 * @vma: target vma
1389 * @start: start address
1390 * @end: end address
c1e8d7c6 1391 * @locked: whether the mmap_lock is still held
d3649f68
CH
1392 *
1393 * This takes care of mlocking the pages too if VM_LOCKED is set.
1394 *
0a36f7f8
TY
1395 * Return either number of pages pinned in the vma, or a negative error
1396 * code on error.
d3649f68 1397 *
c1e8d7c6 1398 * vma->vm_mm->mmap_lock must be held.
d3649f68 1399 *
4f6da934 1400 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1401 * be unperturbed.
1402 *
4f6da934
PX
1403 * If @locked is non-NULL, it must held for read only and may be
1404 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1405 */
1406long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1407 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1408{
1409 struct mm_struct *mm = vma->vm_mm;
1410 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1411 int gup_flags;
1412
be51eb18
ML
1413 VM_BUG_ON(!PAGE_ALIGNED(start));
1414 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1415 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1416 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1417 mmap_assert_locked(mm);
d3649f68 1418
b67bf49c
HD
1419 /*
1420 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1421 * faultin_page() to break COW, so it has no work to do here.
1422 */
d3649f68 1423 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1424 return nr_pages;
1425
1426 gup_flags = FOLL_TOUCH;
d3649f68
CH
1427 /*
1428 * We want to touch writable mappings with a write fault in order
1429 * to break COW, except for shared mappings because these don't COW
1430 * and we would not want to dirty them for nothing.
1431 */
1432 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1433 gup_flags |= FOLL_WRITE;
1434
1435 /*
1436 * We want mlock to succeed for regions that have any permissions
1437 * other than PROT_NONE.
1438 */
3122e80e 1439 if (vma_is_accessible(vma))
d3649f68
CH
1440 gup_flags |= FOLL_FORCE;
1441
1442 /*
1443 * We made sure addr is within a VMA, so the following will
1444 * not result in a stack expansion that recurses back here.
1445 */
64019a2e 1446 return __get_user_pages(mm, start, nr_pages, gup_flags,
4f6da934 1447 NULL, NULL, locked);
d3649f68
CH
1448}
1449
4ca9b385
DH
1450/*
1451 * faultin_vma_page_range() - populate (prefault) page tables inside the
1452 * given VMA range readable/writable
1453 *
1454 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1455 *
1456 * @vma: target vma
1457 * @start: start address
1458 * @end: end address
1459 * @write: whether to prefault readable or writable
1460 * @locked: whether the mmap_lock is still held
1461 *
1462 * Returns either number of processed pages in the vma, or a negative error
1463 * code on error (see __get_user_pages()).
1464 *
1465 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1466 * covered by the VMA.
1467 *
1468 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1469 *
1470 * If @locked is non-NULL, it must held for read only and may be released. If
1471 * it's released, *@locked will be set to 0.
1472 */
1473long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1474 unsigned long end, bool write, int *locked)
1475{
1476 struct mm_struct *mm = vma->vm_mm;
1477 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1478 int gup_flags;
1479
1480 VM_BUG_ON(!PAGE_ALIGNED(start));
1481 VM_BUG_ON(!PAGE_ALIGNED(end));
1482 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1483 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1484 mmap_assert_locked(mm);
1485
1486 /*
1487 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1488 * the page dirty with FOLL_WRITE -- which doesn't make a
1489 * difference with !FOLL_FORCE, because the page is writable
1490 * in the page table.
1491 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1492 * a poisoned page.
4ca9b385
DH
1493 * !FOLL_FORCE: Require proper access permissions.
1494 */
b67bf49c 1495 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
4ca9b385
DH
1496 if (write)
1497 gup_flags |= FOLL_WRITE;
1498
1499 /*
eb2faa51
DH
1500 * We want to report -EINVAL instead of -EFAULT for any permission
1501 * problems or incompatible mappings.
4ca9b385 1502 */
eb2faa51
DH
1503 if (check_vma_flags(vma, gup_flags))
1504 return -EINVAL;
1505
4ca9b385
DH
1506 return __get_user_pages(mm, start, nr_pages, gup_flags,
1507 NULL, NULL, locked);
1508}
1509
d3649f68
CH
1510/*
1511 * __mm_populate - populate and/or mlock pages within a range of address space.
1512 *
1513 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1514 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1515 * mmap_lock must not be held.
d3649f68
CH
1516 */
1517int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1518{
1519 struct mm_struct *mm = current->mm;
1520 unsigned long end, nstart, nend;
1521 struct vm_area_struct *vma = NULL;
1522 int locked = 0;
1523 long ret = 0;
1524
1525 end = start + len;
1526
1527 for (nstart = start; nstart < end; nstart = nend) {
1528 /*
1529 * We want to fault in pages for [nstart; end) address range.
1530 * Find first corresponding VMA.
1531 */
1532 if (!locked) {
1533 locked = 1;
d8ed45c5 1534 mmap_read_lock(mm);
d3649f68
CH
1535 vma = find_vma(mm, nstart);
1536 } else if (nstart >= vma->vm_end)
1537 vma = vma->vm_next;
1538 if (!vma || vma->vm_start >= end)
1539 break;
1540 /*
1541 * Set [nstart; nend) to intersection of desired address
1542 * range with the first VMA. Also, skip undesirable VMA types.
1543 */
1544 nend = min(end, vma->vm_end);
1545 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1546 continue;
1547 if (nstart < vma->vm_start)
1548 nstart = vma->vm_start;
1549 /*
1550 * Now fault in a range of pages. populate_vma_page_range()
1551 * double checks the vma flags, so that it won't mlock pages
1552 * if the vma was already munlocked.
1553 */
1554 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1555 if (ret < 0) {
1556 if (ignore_errors) {
1557 ret = 0;
1558 continue; /* continue at next VMA */
1559 }
1560 break;
1561 }
1562 nend = nstart + ret * PAGE_SIZE;
1563 ret = 0;
1564 }
1565 if (locked)
d8ed45c5 1566 mmap_read_unlock(mm);
d3649f68
CH
1567 return ret; /* 0 or negative error code */
1568}
050a9adc 1569#else /* CONFIG_MMU */
64019a2e 1570static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1571 unsigned long nr_pages, struct page **pages,
1572 struct vm_area_struct **vmas, int *locked,
1573 unsigned int foll_flags)
1574{
1575 struct vm_area_struct *vma;
1576 unsigned long vm_flags;
24dc20c7 1577 long i;
050a9adc
CH
1578
1579 /* calculate required read or write permissions.
1580 * If FOLL_FORCE is set, we only require the "MAY" flags.
1581 */
1582 vm_flags = (foll_flags & FOLL_WRITE) ?
1583 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1584 vm_flags &= (foll_flags & FOLL_FORCE) ?
1585 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1586
1587 for (i = 0; i < nr_pages; i++) {
1588 vma = find_vma(mm, start);
1589 if (!vma)
1590 goto finish_or_fault;
1591
1592 /* protect what we can, including chardevs */
1593 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1594 !(vm_flags & vma->vm_flags))
1595 goto finish_or_fault;
1596
1597 if (pages) {
1598 pages[i] = virt_to_page(start);
1599 if (pages[i])
1600 get_page(pages[i]);
1601 }
1602 if (vmas)
1603 vmas[i] = vma;
1604 start = (start + PAGE_SIZE) & PAGE_MASK;
1605 }
1606
1607 return i;
1608
1609finish_or_fault:
1610 return i ? : -EFAULT;
1611}
1612#endif /* !CONFIG_MMU */
d3649f68 1613
bb523b40
AG
1614/**
1615 * fault_in_writeable - fault in userspace address range for writing
1616 * @uaddr: start of address range
1617 * @size: size of address range
1618 *
1619 * Returns the number of bytes not faulted in (like copy_to_user() and
1620 * copy_from_user()).
1621 */
1622size_t fault_in_writeable(char __user *uaddr, size_t size)
1623{
1624 char __user *start = uaddr, *end;
1625
1626 if (unlikely(size == 0))
1627 return 0;
677b2a8c
CL
1628 if (!user_write_access_begin(uaddr, size))
1629 return size;
bb523b40 1630 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1631 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1632 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1633 }
1634 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1635 if (unlikely(end < start))
1636 end = NULL;
1637 while (uaddr != end) {
677b2a8c 1638 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1639 uaddr += PAGE_SIZE;
1640 }
1641
1642out:
677b2a8c 1643 user_write_access_end();
bb523b40
AG
1644 if (size > uaddr - start)
1645 return size - (uaddr - start);
1646 return 0;
1647}
1648EXPORT_SYMBOL(fault_in_writeable);
1649
cdd591fc
AG
1650/*
1651 * fault_in_safe_writeable - fault in an address range for writing
1652 * @uaddr: start of address range
1653 * @size: length of address range
1654 *
1655 * Faults in an address range using get_user_pages, i.e., without triggering
1656 * hardware page faults. This is primarily useful when we already know that
1657 * some or all of the pages in the address range aren't in memory.
1658 *
1659 * Other than fault_in_writeable(), this function is non-destructive.
1660 *
1661 * Note that we don't pin or otherwise hold the pages referenced that we fault
1662 * in. There's no guarantee that they'll stay in memory for any duration of
1663 * time.
1664 *
1665 * Returns the number of bytes not faulted in, like copy_to_user() and
1666 * copy_from_user().
1667 */
1668size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1669{
1670 unsigned long start = (unsigned long)untagged_addr(uaddr);
1671 unsigned long end, nstart, nend;
1672 struct mm_struct *mm = current->mm;
1673 struct vm_area_struct *vma = NULL;
1674 int locked = 0;
1675
1676 nstart = start & PAGE_MASK;
1677 end = PAGE_ALIGN(start + size);
1678 if (end < nstart)
1679 end = 0;
1680 for (; nstart != end; nstart = nend) {
1681 unsigned long nr_pages;
1682 long ret;
1683
1684 if (!locked) {
1685 locked = 1;
1686 mmap_read_lock(mm);
1687 vma = find_vma(mm, nstart);
1688 } else if (nstart >= vma->vm_end)
1689 vma = vma->vm_next;
1690 if (!vma || vma->vm_start >= end)
1691 break;
1692 nend = end ? min(end, vma->vm_end) : vma->vm_end;
1693 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1694 continue;
1695 if (nstart < vma->vm_start)
1696 nstart = vma->vm_start;
1697 nr_pages = (nend - nstart) / PAGE_SIZE;
1698 ret = __get_user_pages_locked(mm, nstart, nr_pages,
1699 NULL, NULL, &locked,
1700 FOLL_TOUCH | FOLL_WRITE);
1701 if (ret <= 0)
1702 break;
1703 nend = nstart + ret * PAGE_SIZE;
1704 }
1705 if (locked)
1706 mmap_read_unlock(mm);
1707 if (nstart == end)
1708 return 0;
1709 return size - min_t(size_t, nstart - start, size);
1710}
1711EXPORT_SYMBOL(fault_in_safe_writeable);
1712
bb523b40
AG
1713/**
1714 * fault_in_readable - fault in userspace address range for reading
1715 * @uaddr: start of user address range
1716 * @size: size of user address range
1717 *
1718 * Returns the number of bytes not faulted in (like copy_to_user() and
1719 * copy_from_user()).
1720 */
1721size_t fault_in_readable(const char __user *uaddr, size_t size)
1722{
1723 const char __user *start = uaddr, *end;
1724 volatile char c;
1725
1726 if (unlikely(size == 0))
1727 return 0;
677b2a8c
CL
1728 if (!user_read_access_begin(uaddr, size))
1729 return size;
bb523b40 1730 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1731 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1732 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1733 }
1734 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1735 if (unlikely(end < start))
1736 end = NULL;
1737 while (uaddr != end) {
677b2a8c 1738 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1739 uaddr += PAGE_SIZE;
1740 }
1741
1742out:
677b2a8c 1743 user_read_access_end();
bb523b40
AG
1744 (void)c;
1745 if (size > uaddr - start)
1746 return size - (uaddr - start);
1747 return 0;
1748}
1749EXPORT_SYMBOL(fault_in_readable);
1750
8f942eea
JH
1751/**
1752 * get_dump_page() - pin user page in memory while writing it to core dump
1753 * @addr: user address
1754 *
1755 * Returns struct page pointer of user page pinned for dump,
1756 * to be freed afterwards by put_page().
1757 *
1758 * Returns NULL on any kind of failure - a hole must then be inserted into
1759 * the corefile, to preserve alignment with its headers; and also returns
1760 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1761 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1762 *
7f3bfab5 1763 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1764 */
1765#ifdef CONFIG_ELF_CORE
1766struct page *get_dump_page(unsigned long addr)
1767{
7f3bfab5 1768 struct mm_struct *mm = current->mm;
8f942eea 1769 struct page *page;
7f3bfab5
JH
1770 int locked = 1;
1771 int ret;
8f942eea 1772
7f3bfab5 1773 if (mmap_read_lock_killable(mm))
8f942eea 1774 return NULL;
7f3bfab5
JH
1775 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1776 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1777 if (locked)
1778 mmap_read_unlock(mm);
1779 return (ret == 1) ? page : NULL;
8f942eea
JH
1780}
1781#endif /* CONFIG_ELF_CORE */
1782
d1e153fe 1783#ifdef CONFIG_MIGRATION
f68749ec
PT
1784/*
1785 * Check whether all pages are pinnable, if so return number of pages. If some
1786 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1787 * pages were migrated, or if some pages were not successfully isolated.
1788 * Return negative error if migration fails.
1789 */
1790static long check_and_migrate_movable_pages(unsigned long nr_pages,
d1e153fe 1791 struct page **pages,
d1e153fe 1792 unsigned int gup_flags)
9a4e9f3b 1793{
f9f38f78 1794 unsigned long isolation_error_count = 0, i;
f68749ec 1795 struct page *prev_head = NULL;
f9f38f78
CH
1796 LIST_HEAD(movable_page_list);
1797 bool drain_allow = true;
1798 int ret = 0;
9a4e9f3b 1799
83c02c23 1800 for (i = 0; i < nr_pages; i++) {
f9f38f78
CH
1801 struct page *head = compound_head(pages[i]);
1802
83c02c23
PT
1803 if (head == prev_head)
1804 continue;
1805 prev_head = head;
f9f38f78
CH
1806
1807 if (is_pinnable_page(head))
1808 continue;
1809
9a4e9f3b 1810 /*
f9f38f78 1811 * Try to move out any movable page before pinning the range.
9a4e9f3b 1812 */
f9f38f78
CH
1813 if (PageHuge(head)) {
1814 if (!isolate_huge_page(head, &movable_page_list))
1815 isolation_error_count++;
1816 continue;
1817 }
9a4e9f3b 1818
f9f38f78
CH
1819 if (!PageLRU(head) && drain_allow) {
1820 lru_add_drain_all();
1821 drain_allow = false;
1822 }
1823
1824 if (isolate_lru_page(head)) {
1825 isolation_error_count++;
1826 continue;
9a4e9f3b 1827 }
f9f38f78
CH
1828 list_add_tail(&head->lru, &movable_page_list);
1829 mod_node_page_state(page_pgdat(head),
1830 NR_ISOLATED_ANON + page_is_file_lru(head),
1831 thp_nr_pages(head));
9a4e9f3b
AK
1832 }
1833
f9f38f78
CH
1834 if (!list_empty(&movable_page_list) || isolation_error_count)
1835 goto unpin_pages;
1836
6e7f34eb
PT
1837 /*
1838 * If list is empty, and no isolation errors, means that all pages are
1839 * in the correct zone.
1840 */
f9f38f78 1841 return nr_pages;
6e7f34eb 1842
f9f38f78 1843unpin_pages:
f68749ec
PT
1844 if (gup_flags & FOLL_PIN) {
1845 unpin_user_pages(pages, nr_pages);
1846 } else {
1847 for (i = 0; i < nr_pages; i++)
1848 put_page(pages[i]);
1849 }
f9f38f78 1850
d1e153fe 1851 if (!list_empty(&movable_page_list)) {
f9f38f78
CH
1852 struct migration_target_control mtc = {
1853 .nid = NUMA_NO_NODE,
1854 .gfp_mask = GFP_USER | __GFP_NOWARN,
1855 };
1856
d1e153fe 1857 ret = migrate_pages(&movable_page_list, alloc_migration_target,
f0f44638 1858 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
5ac95884 1859 MR_LONGTERM_PIN, NULL);
f9f38f78
CH
1860 if (ret > 0) /* number of pages not migrated */
1861 ret = -ENOMEM;
9a4e9f3b
AK
1862 }
1863
f9f38f78
CH
1864 if (ret && !list_empty(&movable_page_list))
1865 putback_movable_pages(&movable_page_list);
1866 return ret;
9a4e9f3b
AK
1867}
1868#else
f68749ec 1869static long check_and_migrate_movable_pages(unsigned long nr_pages,
d1e153fe 1870 struct page **pages,
d1e153fe 1871 unsigned int gup_flags)
9a4e9f3b
AK
1872{
1873 return nr_pages;
1874}
d1e153fe 1875#endif /* CONFIG_MIGRATION */
9a4e9f3b 1876
2bb6d283 1877/*
932f4a63
IW
1878 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1879 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1880 */
64019a2e 1881static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
1882 unsigned long start,
1883 unsigned long nr_pages,
1884 struct page **pages,
1885 struct vm_area_struct **vmas,
1886 unsigned int gup_flags)
2bb6d283 1887{
f68749ec 1888 unsigned int flags;
52650c8b 1889 long rc;
2bb6d283 1890
f68749ec
PT
1891 if (!(gup_flags & FOLL_LONGTERM))
1892 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1893 NULL, gup_flags);
1894 flags = memalloc_pin_save();
1895 do {
1896 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1897 NULL, gup_flags);
1898 if (rc <= 0)
1899 break;
1900 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1901 } while (!rc);
1902 memalloc_pin_restore(flags);
2bb6d283 1903
2bb6d283
DW
1904 return rc;
1905}
932f4a63 1906
447f3e45
BS
1907static bool is_valid_gup_flags(unsigned int gup_flags)
1908{
1909 /*
1910 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1911 * never directly by the caller, so enforce that with an assertion:
1912 */
1913 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1914 return false;
1915 /*
1916 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1917 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1918 * FOLL_PIN.
1919 */
1920 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1921 return false;
1922
1923 return true;
1924}
1925
22bf29b6 1926#ifdef CONFIG_MMU
64019a2e 1927static long __get_user_pages_remote(struct mm_struct *mm,
22bf29b6
JH
1928 unsigned long start, unsigned long nr_pages,
1929 unsigned int gup_flags, struct page **pages,
1930 struct vm_area_struct **vmas, int *locked)
1931{
1932 /*
1933 * Parts of FOLL_LONGTERM behavior are incompatible with
1934 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1935 * vmas. However, this only comes up if locked is set, and there are
1936 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1937 * allow what we can.
1938 */
1939 if (gup_flags & FOLL_LONGTERM) {
1940 if (WARN_ON_ONCE(locked))
1941 return -EINVAL;
1942 /*
1943 * This will check the vmas (even if our vmas arg is NULL)
1944 * and return -ENOTSUPP if DAX isn't allowed in this case:
1945 */
64019a2e 1946 return __gup_longterm_locked(mm, start, nr_pages, pages,
22bf29b6
JH
1947 vmas, gup_flags | FOLL_TOUCH |
1948 FOLL_REMOTE);
1949 }
1950
64019a2e 1951 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
22bf29b6
JH
1952 locked,
1953 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1954}
1955
adc8cb40 1956/**
c4237f8b 1957 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
1958 * @mm: mm_struct of target mm
1959 * @start: starting user address
1960 * @nr_pages: number of pages from start to pin
1961 * @gup_flags: flags modifying lookup behaviour
1962 * @pages: array that receives pointers to the pages pinned.
1963 * Should be at least nr_pages long. Or NULL, if caller
1964 * only intends to ensure the pages are faulted in.
1965 * @vmas: array of pointers to vmas corresponding to each page.
1966 * Or NULL if the caller does not require them.
1967 * @locked: pointer to lock flag indicating whether lock is held and
1968 * subsequently whether VM_FAULT_RETRY functionality can be
1969 * utilised. Lock must initially be held.
1970 *
1971 * Returns either number of pages pinned (which may be less than the
1972 * number requested), or an error. Details about the return value:
1973 *
1974 * -- If nr_pages is 0, returns 0.
1975 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1976 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1977 * pages pinned. Again, this may be less than nr_pages.
1978 *
1979 * The caller is responsible for releasing returned @pages, via put_page().
1980 *
c1e8d7c6 1981 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 1982 *
c1e8d7c6 1983 * Must be called with mmap_lock held for read or write.
c4237f8b 1984 *
adc8cb40
SJ
1985 * get_user_pages_remote walks a process's page tables and takes a reference
1986 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
1987 * instant. That is, it takes the page that would be accessed if a user
1988 * thread accesses the given user virtual address at that instant.
1989 *
1990 * This does not guarantee that the page exists in the user mappings when
adc8cb40 1991 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
1992 * page there in some cases (eg. if mmapped pagecache has been invalidated
1993 * and subsequently re faulted). However it does guarantee that the page
1994 * won't be freed completely. And mostly callers simply care that the page
1995 * contains data that was valid *at some point in time*. Typically, an IO
1996 * or similar operation cannot guarantee anything stronger anyway because
1997 * locks can't be held over the syscall boundary.
1998 *
1999 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2000 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2001 * be called after the page is finished with, and before put_page is called.
2002 *
adc8cb40
SJ
2003 * get_user_pages_remote is typically used for fewer-copy IO operations,
2004 * to get a handle on the memory by some means other than accesses
2005 * via the user virtual addresses. The pages may be submitted for
2006 * DMA to devices or accessed via their kernel linear mapping (via the
2007 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2008 *
2009 * See also get_user_pages_fast, for performance critical applications.
2010 *
adc8cb40 2011 * get_user_pages_remote should be phased out in favor of
c4237f8b 2012 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2013 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2014 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2015 */
64019a2e 2016long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2017 unsigned long start, unsigned long nr_pages,
2018 unsigned int gup_flags, struct page **pages,
2019 struct vm_area_struct **vmas, int *locked)
2020{
447f3e45 2021 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2022 return -EINVAL;
2023
64019a2e 2024 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
22bf29b6 2025 pages, vmas, locked);
c4237f8b
JH
2026}
2027EXPORT_SYMBOL(get_user_pages_remote);
2028
eddb1c22 2029#else /* CONFIG_MMU */
64019a2e 2030long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2031 unsigned long start, unsigned long nr_pages,
2032 unsigned int gup_flags, struct page **pages,
2033 struct vm_area_struct **vmas, int *locked)
2034{
2035 return 0;
2036}
3faa52c0 2037
64019a2e 2038static long __get_user_pages_remote(struct mm_struct *mm,
3faa52c0
JH
2039 unsigned long start, unsigned long nr_pages,
2040 unsigned int gup_flags, struct page **pages,
2041 struct vm_area_struct **vmas, int *locked)
2042{
2043 return 0;
2044}
eddb1c22
JH
2045#endif /* !CONFIG_MMU */
2046
adc8cb40
SJ
2047/**
2048 * get_user_pages() - pin user pages in memory
2049 * @start: starting user address
2050 * @nr_pages: number of pages from start to pin
2051 * @gup_flags: flags modifying lookup behaviour
2052 * @pages: array that receives pointers to the pages pinned.
2053 * Should be at least nr_pages long. Or NULL, if caller
2054 * only intends to ensure the pages are faulted in.
2055 * @vmas: array of pointers to vmas corresponding to each page.
2056 * Or NULL if the caller does not require them.
2057 *
64019a2e
PX
2058 * This is the same as get_user_pages_remote(), just with a less-flexible
2059 * calling convention where we assume that the mm being operated on belongs to
2060 * the current task, and doesn't allow passing of a locked parameter. We also
2061 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2062 */
2063long get_user_pages(unsigned long start, unsigned long nr_pages,
2064 unsigned int gup_flags, struct page **pages,
2065 struct vm_area_struct **vmas)
2066{
447f3e45 2067 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2068 return -EINVAL;
2069
64019a2e 2070 return __gup_longterm_locked(current->mm, start, nr_pages,
932f4a63
IW
2071 pages, vmas, gup_flags | FOLL_TOUCH);
2072}
2073EXPORT_SYMBOL(get_user_pages);
2bb6d283 2074
adc8cb40 2075/**
a00cda3f
MCC
2076 * get_user_pages_locked() - variant of get_user_pages()
2077 *
2078 * @start: starting user address
2079 * @nr_pages: number of pages from start to pin
2080 * @gup_flags: flags modifying lookup behaviour
2081 * @pages: array that receives pointers to the pages pinned.
2082 * Should be at least nr_pages long. Or NULL, if caller
2083 * only intends to ensure the pages are faulted in.
2084 * @locked: pointer to lock flag indicating whether lock is held and
2085 * subsequently whether VM_FAULT_RETRY functionality can be
2086 * utilised. Lock must initially be held.
2087 *
2088 * It is suitable to replace the form:
acc3c8d1 2089 *
3e4e28c5 2090 * mmap_read_lock(mm);
d3649f68 2091 * do_something()
64019a2e 2092 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2093 * mmap_read_unlock(mm);
acc3c8d1 2094 *
d3649f68 2095 * to:
acc3c8d1 2096 *
d3649f68 2097 * int locked = 1;
3e4e28c5 2098 * mmap_read_lock(mm);
d3649f68 2099 * do_something()
64019a2e 2100 * get_user_pages_locked(mm, ..., pages, &locked);
d3649f68 2101 * if (locked)
3e4e28c5 2102 * mmap_read_unlock(mm);
adc8cb40 2103 *
adc8cb40
SJ
2104 * We can leverage the VM_FAULT_RETRY functionality in the page fault
2105 * paths better by using either get_user_pages_locked() or
2106 * get_user_pages_unlocked().
2107 *
acc3c8d1 2108 */
d3649f68
CH
2109long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2110 unsigned int gup_flags, struct page **pages,
2111 int *locked)
acc3c8d1 2112{
acc3c8d1 2113 /*
d3649f68
CH
2114 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2115 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2116 * vmas. As there are no users of this flag in this call we simply
2117 * disallow this option for now.
acc3c8d1 2118 */
d3649f68
CH
2119 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2120 return -EINVAL;
420c2091
JH
2121 /*
2122 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2123 * never directly by the caller, so enforce that:
2124 */
2125 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2126 return -EINVAL;
acc3c8d1 2127
64019a2e 2128 return __get_user_pages_locked(current->mm, start, nr_pages,
d3649f68
CH
2129 pages, NULL, locked,
2130 gup_flags | FOLL_TOUCH);
acc3c8d1 2131}
d3649f68 2132EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
2133
2134/*
d3649f68 2135 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2136 *
3e4e28c5 2137 * mmap_read_lock(mm);
64019a2e 2138 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2139 * mmap_read_unlock(mm);
d3649f68
CH
2140 *
2141 * with:
2142 *
64019a2e 2143 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2144 *
2145 * It is functionally equivalent to get_user_pages_fast so
2146 * get_user_pages_fast should be used instead if specific gup_flags
2147 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2148 */
d3649f68
CH
2149long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2150 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
2151{
2152 struct mm_struct *mm = current->mm;
d3649f68
CH
2153 int locked = 1;
2154 long ret;
acc3c8d1 2155
d3649f68
CH
2156 /*
2157 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2158 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2159 * vmas. As there are no users of this flag in this call we simply
2160 * disallow this option for now.
2161 */
2162 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2163 return -EINVAL;
acc3c8d1 2164
d8ed45c5 2165 mmap_read_lock(mm);
64019a2e 2166 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
d3649f68 2167 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1 2168 if (locked)
d8ed45c5 2169 mmap_read_unlock(mm);
d3649f68 2170 return ret;
4bbd4c77 2171}
d3649f68 2172EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2173
2174/*
67a929e0 2175 * Fast GUP
2667f50e
SC
2176 *
2177 * get_user_pages_fast attempts to pin user pages by walking the page
2178 * tables directly and avoids taking locks. Thus the walker needs to be
2179 * protected from page table pages being freed from under it, and should
2180 * block any THP splits.
2181 *
2182 * One way to achieve this is to have the walker disable interrupts, and
2183 * rely on IPIs from the TLB flushing code blocking before the page table
2184 * pages are freed. This is unsuitable for architectures that do not need
2185 * to broadcast an IPI when invalidating TLBs.
2186 *
2187 * Another way to achieve this is to batch up page table containing pages
2188 * belonging to more than one mm_user, then rcu_sched a callback to free those
2189 * pages. Disabling interrupts will allow the fast_gup walker to both block
2190 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2191 * (which is a relatively rare event). The code below adopts this strategy.
2192 *
2193 * Before activating this code, please be aware that the following assumptions
2194 * are currently made:
2195 *
ff2e6d72 2196 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2197 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2198 *
2667f50e
SC
2199 * *) ptes can be read atomically by the architecture.
2200 *
2201 * *) access_ok is sufficient to validate userspace address ranges.
2202 *
2203 * The last two assumptions can be relaxed by the addition of helper functions.
2204 *
2205 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2206 */
67a929e0 2207#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2208
790c7369 2209static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2210 unsigned int flags,
790c7369 2211 struct page **pages)
b59f65fa
KS
2212{
2213 while ((*nr) - nr_start) {
2214 struct page *page = pages[--(*nr)];
2215
2216 ClearPageReferenced(page);
3faa52c0
JH
2217 if (flags & FOLL_PIN)
2218 unpin_user_page(page);
2219 else
2220 put_page(page);
b59f65fa
KS
2221 }
2222}
2223
3010a5ea 2224#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 2225static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2226 unsigned int flags, struct page **pages, int *nr)
2667f50e 2227{
b59f65fa
KS
2228 struct dev_pagemap *pgmap = NULL;
2229 int nr_start = *nr, ret = 0;
2667f50e 2230 pte_t *ptep, *ptem;
2667f50e
SC
2231
2232 ptem = ptep = pte_offset_map(&pmd, addr);
2233 do {
2a4a06da 2234 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2235 struct page *page;
2236 struct folio *folio;
2667f50e
SC
2237
2238 /*
2239 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2240 * path using the pte_protnone check.
2667f50e 2241 */
e7884f8e
KS
2242 if (pte_protnone(pte))
2243 goto pte_unmap;
2244
b798bec4 2245 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2246 goto pte_unmap;
2247
b59f65fa 2248 if (pte_devmap(pte)) {
7af75561
IW
2249 if (unlikely(flags & FOLL_LONGTERM))
2250 goto pte_unmap;
2251
b59f65fa
KS
2252 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2253 if (unlikely(!pgmap)) {
3b78d834 2254 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2255 goto pte_unmap;
2256 }
2257 } else if (pte_special(pte))
2667f50e
SC
2258 goto pte_unmap;
2259
2260 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2261 page = pte_page(pte);
2262
b0496fe4
MWO
2263 folio = try_grab_folio(page, 1, flags);
2264 if (!folio)
2667f50e
SC
2265 goto pte_unmap;
2266
1507f512 2267 if (unlikely(page_is_secretmem(page))) {
b0496fe4 2268 gup_put_folio(folio, 1, flags);
1507f512
MR
2269 goto pte_unmap;
2270 }
2271
2667f50e 2272 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
b0496fe4 2273 gup_put_folio(folio, 1, flags);
2667f50e
SC
2274 goto pte_unmap;
2275 }
2276
f28d4363
CI
2277 /*
2278 * We need to make the page accessible if and only if we are
2279 * going to access its content (the FOLL_PIN case). Please
2280 * see Documentation/core-api/pin_user_pages.rst for
2281 * details.
2282 */
2283 if (flags & FOLL_PIN) {
2284 ret = arch_make_page_accessible(page);
2285 if (ret) {
b0496fe4 2286 gup_put_folio(folio, 1, flags);
f28d4363
CI
2287 goto pte_unmap;
2288 }
2289 }
b0496fe4 2290 folio_set_referenced(folio);
2667f50e
SC
2291 pages[*nr] = page;
2292 (*nr)++;
2667f50e
SC
2293 } while (ptep++, addr += PAGE_SIZE, addr != end);
2294
2295 ret = 1;
2296
2297pte_unmap:
832d7aa0
CH
2298 if (pgmap)
2299 put_dev_pagemap(pgmap);
2667f50e
SC
2300 pte_unmap(ptem);
2301 return ret;
2302}
2303#else
2304
2305/*
2306 * If we can't determine whether or not a pte is special, then fail immediately
2307 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2308 * to be special.
2309 *
2310 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2311 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2312 * useful to have gup_huge_pmd even if we can't operate on ptes.
2313 */
2314static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2315 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2316{
2317 return 0;
2318}
3010a5ea 2319#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2320
17596731 2321#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2322static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2323 unsigned long end, unsigned int flags,
2324 struct page **pages, int *nr)
b59f65fa
KS
2325{
2326 int nr_start = *nr;
2327 struct dev_pagemap *pgmap = NULL;
2328
2329 do {
2330 struct page *page = pfn_to_page(pfn);
2331
2332 pgmap = get_dev_pagemap(pfn, pgmap);
2333 if (unlikely(!pgmap)) {
3b78d834 2334 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2335 break;
b59f65fa
KS
2336 }
2337 SetPageReferenced(page);
2338 pages[*nr] = page;
3faa52c0
JH
2339 if (unlikely(!try_grab_page(page, flags))) {
2340 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2341 break;
3faa52c0 2342 }
b59f65fa
KS
2343 (*nr)++;
2344 pfn++;
2345 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2346
6401c4eb 2347 put_dev_pagemap(pgmap);
20b7fee7 2348 return addr == end;
b59f65fa
KS
2349}
2350
a9b6de77 2351static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2352 unsigned long end, unsigned int flags,
2353 struct page **pages, int *nr)
b59f65fa
KS
2354{
2355 unsigned long fault_pfn;
a9b6de77
DW
2356 int nr_start = *nr;
2357
2358 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2359 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2360 return 0;
b59f65fa 2361
a9b6de77 2362 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2363 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2364 return 0;
2365 }
2366 return 1;
b59f65fa
KS
2367}
2368
a9b6de77 2369static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2370 unsigned long end, unsigned int flags,
2371 struct page **pages, int *nr)
b59f65fa
KS
2372{
2373 unsigned long fault_pfn;
a9b6de77
DW
2374 int nr_start = *nr;
2375
2376 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2377 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2378 return 0;
b59f65fa 2379
a9b6de77 2380 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2381 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2382 return 0;
2383 }
2384 return 1;
b59f65fa
KS
2385}
2386#else
a9b6de77 2387static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2388 unsigned long end, unsigned int flags,
2389 struct page **pages, int *nr)
b59f65fa
KS
2390{
2391 BUILD_BUG();
2392 return 0;
2393}
2394
a9b6de77 2395static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2396 unsigned long end, unsigned int flags,
2397 struct page **pages, int *nr)
b59f65fa
KS
2398{
2399 BUILD_BUG();
2400 return 0;
2401}
2402#endif
2403
a43e9820
JH
2404static int record_subpages(struct page *page, unsigned long addr,
2405 unsigned long end, struct page **pages)
2406{
2407 int nr;
2408
c228afb1
MWO
2409 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2410 pages[nr] = nth_page(page, nr);
a43e9820
JH
2411
2412 return nr;
2413}
2414
cbd34da7
CH
2415#ifdef CONFIG_ARCH_HAS_HUGEPD
2416static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2417 unsigned long sz)
2418{
2419 unsigned long __boundary = (addr + sz) & ~(sz-1);
2420 return (__boundary - 1 < end - 1) ? __boundary : end;
2421}
2422
2423static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2424 unsigned long end, unsigned int flags,
2425 struct page **pages, int *nr)
cbd34da7
CH
2426{
2427 unsigned long pte_end;
09a1626e
MWO
2428 struct page *page;
2429 struct folio *folio;
cbd34da7
CH
2430 pte_t pte;
2431 int refs;
2432
2433 pte_end = (addr + sz) & ~(sz-1);
2434 if (pte_end < end)
2435 end = pte_end;
2436
55ca2263 2437 pte = huge_ptep_get(ptep);
cbd34da7 2438
0cd22afd 2439 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2440 return 0;
2441
2442 /* hugepages are never "special" */
2443 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2444
09a1626e 2445 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
a43e9820 2446 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2447
09a1626e
MWO
2448 folio = try_grab_folio(page, refs, flags);
2449 if (!folio)
cbd34da7 2450 return 0;
cbd34da7
CH
2451
2452 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
09a1626e 2453 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2454 return 0;
2455 }
2456
a43e9820 2457 *nr += refs;
09a1626e 2458 folio_set_referenced(folio);
cbd34da7
CH
2459 return 1;
2460}
2461
2462static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2463 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2464 struct page **pages, int *nr)
2465{
2466 pte_t *ptep;
2467 unsigned long sz = 1UL << hugepd_shift(hugepd);
2468 unsigned long next;
2469
2470 ptep = hugepte_offset(hugepd, addr, pdshift);
2471 do {
2472 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2473 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2474 return 0;
2475 } while (ptep++, addr = next, addr != end);
2476
2477 return 1;
2478}
2479#else
2480static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2481 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2482 struct page **pages, int *nr)
2483{
2484 return 0;
2485}
2486#endif /* CONFIG_ARCH_HAS_HUGEPD */
2487
2667f50e 2488static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2489 unsigned long end, unsigned int flags,
2490 struct page **pages, int *nr)
2667f50e 2491{
667ed1f7
MWO
2492 struct page *page;
2493 struct folio *folio;
2667f50e
SC
2494 int refs;
2495
b798bec4 2496 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2497 return 0;
2498
7af75561
IW
2499 if (pmd_devmap(orig)) {
2500 if (unlikely(flags & FOLL_LONGTERM))
2501 return 0;
86dfbed4
JH
2502 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2503 pages, nr);
7af75561 2504 }
b59f65fa 2505
c228afb1 2506 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2507 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2508
667ed1f7
MWO
2509 folio = try_grab_folio(page, refs, flags);
2510 if (!folio)
2667f50e 2511 return 0;
2667f50e
SC
2512
2513 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 2514 gup_put_folio(folio, refs, flags);
2667f50e
SC
2515 return 0;
2516 }
2517
a43e9820 2518 *nr += refs;
667ed1f7 2519 folio_set_referenced(folio);
2667f50e
SC
2520 return 1;
2521}
2522
2523static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2524 unsigned long end, unsigned int flags,
2525 struct page **pages, int *nr)
2667f50e 2526{
83afb52e
MWO
2527 struct page *page;
2528 struct folio *folio;
2667f50e
SC
2529 int refs;
2530
b798bec4 2531 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2532 return 0;
2533
7af75561
IW
2534 if (pud_devmap(orig)) {
2535 if (unlikely(flags & FOLL_LONGTERM))
2536 return 0;
86dfbed4
JH
2537 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2538 pages, nr);
7af75561 2539 }
b59f65fa 2540
c228afb1 2541 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2542 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2543
83afb52e
MWO
2544 folio = try_grab_folio(page, refs, flags);
2545 if (!folio)
2667f50e 2546 return 0;
2667f50e
SC
2547
2548 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 2549 gup_put_folio(folio, refs, flags);
2667f50e
SC
2550 return 0;
2551 }
2552
a43e9820 2553 *nr += refs;
83afb52e 2554 folio_set_referenced(folio);
2667f50e
SC
2555 return 1;
2556}
2557
f30c59e9 2558static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2559 unsigned long end, unsigned int flags,
f30c59e9
AK
2560 struct page **pages, int *nr)
2561{
2562 int refs;
ddc58f27 2563 struct page *head, *page;
f30c59e9 2564
b798bec4 2565 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2566 return 0;
2567
b59f65fa 2568 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2569
c228afb1 2570 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2571 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2572
3faa52c0 2573 head = try_grab_compound_head(pgd_page(orig), refs, flags);
a43e9820 2574 if (!head)
f30c59e9 2575 return 0;
f30c59e9
AK
2576
2577 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3b78d834 2578 put_compound_head(head, refs, flags);
f30c59e9
AK
2579 return 0;
2580 }
2581
a43e9820 2582 *nr += refs;
e9348053 2583 SetPageReferenced(head);
f30c59e9
AK
2584 return 1;
2585}
2586
d3f7b1bb 2587static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2588 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2589{
2590 unsigned long next;
2591 pmd_t *pmdp;
2592
d3f7b1bb 2593 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2594 do {
38c5ce93 2595 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2596
2597 next = pmd_addr_end(addr, end);
84c3fc4e 2598 if (!pmd_present(pmd))
2667f50e
SC
2599 return 0;
2600
414fd080
YZ
2601 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2602 pmd_devmap(pmd))) {
2667f50e
SC
2603 /*
2604 * NUMA hinting faults need to be handled in the GUP
2605 * slowpath for accounting purposes and so that they
2606 * can be serialised against THP migration.
2607 */
8a0516ed 2608 if (pmd_protnone(pmd))
2667f50e
SC
2609 return 0;
2610
b798bec4 2611 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2612 pages, nr))
2613 return 0;
2614
f30c59e9
AK
2615 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2616 /*
2617 * architecture have different format for hugetlbfs
2618 * pmd format and THP pmd format
2619 */
2620 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2621 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2622 return 0;
b798bec4 2623 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2624 return 0;
2667f50e
SC
2625 } while (pmdp++, addr = next, addr != end);
2626
2627 return 1;
2628}
2629
d3f7b1bb 2630static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2631 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2632{
2633 unsigned long next;
2634 pud_t *pudp;
2635
d3f7b1bb 2636 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2637 do {
e37c6982 2638 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2639
2640 next = pud_addr_end(addr, end);
15494520 2641 if (unlikely(!pud_present(pud)))
2667f50e 2642 return 0;
f30c59e9 2643 if (unlikely(pud_huge(pud))) {
b798bec4 2644 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2645 pages, nr))
2646 return 0;
2647 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2648 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2649 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2650 return 0;
d3f7b1bb 2651 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2652 return 0;
2653 } while (pudp++, addr = next, addr != end);
2654
2655 return 1;
2656}
2657
d3f7b1bb 2658static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2659 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2660{
2661 unsigned long next;
2662 p4d_t *p4dp;
2663
d3f7b1bb 2664 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2665 do {
2666 p4d_t p4d = READ_ONCE(*p4dp);
2667
2668 next = p4d_addr_end(addr, end);
2669 if (p4d_none(p4d))
2670 return 0;
2671 BUILD_BUG_ON(p4d_huge(p4d));
2672 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2673 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2674 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2675 return 0;
d3f7b1bb 2676 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2677 return 0;
2678 } while (p4dp++, addr = next, addr != end);
2679
2680 return 1;
2681}
2682
5b65c467 2683static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2684 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2685{
2686 unsigned long next;
2687 pgd_t *pgdp;
2688
2689 pgdp = pgd_offset(current->mm, addr);
2690 do {
2691 pgd_t pgd = READ_ONCE(*pgdp);
2692
2693 next = pgd_addr_end(addr, end);
2694 if (pgd_none(pgd))
2695 return;
2696 if (unlikely(pgd_huge(pgd))) {
b798bec4 2697 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2698 pages, nr))
2699 return;
2700 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2701 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2702 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2703 return;
d3f7b1bb 2704 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2705 return;
2706 } while (pgdp++, addr = next, addr != end);
2707}
050a9adc
CH
2708#else
2709static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2710 unsigned int flags, struct page **pages, int *nr)
2711{
2712}
2713#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2714
2715#ifndef gup_fast_permitted
2716/*
dadbb612 2717 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2718 * we need to fall back to the slow version:
2719 */
26f4c328 2720static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2721{
26f4c328 2722 return true;
5b65c467
KS
2723}
2724#endif
2725
7af75561
IW
2726static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2727 unsigned int gup_flags, struct page **pages)
2728{
2729 int ret;
2730
2731 /*
2732 * FIXME: FOLL_LONGTERM does not work with
2733 * get_user_pages_unlocked() (see comments in that function)
2734 */
2735 if (gup_flags & FOLL_LONGTERM) {
d8ed45c5 2736 mmap_read_lock(current->mm);
64019a2e 2737 ret = __gup_longterm_locked(current->mm,
7af75561
IW
2738 start, nr_pages,
2739 pages, NULL, gup_flags);
d8ed45c5 2740 mmap_read_unlock(current->mm);
7af75561
IW
2741 } else {
2742 ret = get_user_pages_unlocked(start, nr_pages,
2743 pages, gup_flags);
2744 }
2745
2746 return ret;
2747}
2748
c28b1fc7
JG
2749static unsigned long lockless_pages_from_mm(unsigned long start,
2750 unsigned long end,
2751 unsigned int gup_flags,
2752 struct page **pages)
2753{
2754 unsigned long flags;
2755 int nr_pinned = 0;
57efa1fe 2756 unsigned seq;
c28b1fc7
JG
2757
2758 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2759 !gup_fast_permitted(start, end))
2760 return 0;
2761
57efa1fe
JG
2762 if (gup_flags & FOLL_PIN) {
2763 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2764 if (seq & 1)
2765 return 0;
2766 }
2767
c28b1fc7
JG
2768 /*
2769 * Disable interrupts. The nested form is used, in order to allow full,
2770 * general purpose use of this routine.
2771 *
2772 * With interrupts disabled, we block page table pages from being freed
2773 * from under us. See struct mmu_table_batch comments in
2774 * include/asm-generic/tlb.h for more details.
2775 *
2776 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2777 * that come from THPs splitting.
2778 */
2779 local_irq_save(flags);
2780 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2781 local_irq_restore(flags);
57efa1fe
JG
2782
2783 /*
2784 * When pinning pages for DMA there could be a concurrent write protect
2785 * from fork() via copy_page_range(), in this case always fail fast GUP.
2786 */
2787 if (gup_flags & FOLL_PIN) {
2788 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2789 unpin_user_pages(pages, nr_pinned);
2790 return 0;
2791 }
2792 }
c28b1fc7
JG
2793 return nr_pinned;
2794}
2795
2796static int internal_get_user_pages_fast(unsigned long start,
2797 unsigned long nr_pages,
eddb1c22
JH
2798 unsigned int gup_flags,
2799 struct page **pages)
2667f50e 2800{
c28b1fc7
JG
2801 unsigned long len, end;
2802 unsigned long nr_pinned;
2803 int ret;
2667f50e 2804
f4000fdf 2805 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 2806 FOLL_FORCE | FOLL_PIN | FOLL_GET |
55b8fe70 2807 FOLL_FAST_ONLY | FOLL_NOFAULT)))
817be129
CH
2808 return -EINVAL;
2809
a458b76a
AA
2810 if (gup_flags & FOLL_PIN)
2811 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 2812
f81cd178 2813 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2814 might_lock_read(&current->mm->mmap_lock);
f81cd178 2815
f455c854 2816 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
2817 len = nr_pages << PAGE_SHIFT;
2818 if (check_add_overflow(start, len, &end))
c61611f7 2819 return 0;
96d4f267 2820 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2821 return -EFAULT;
73e10a61 2822
c28b1fc7
JG
2823 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2824 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2825 return nr_pinned;
2667f50e 2826
c28b1fc7
JG
2827 /* Slow path: try to get the remaining pages with get_user_pages */
2828 start += nr_pinned << PAGE_SHIFT;
2829 pages += nr_pinned;
2830 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2831 pages);
2832 if (ret < 0) {
2833 /*
2834 * The caller has to unpin the pages we already pinned so
2835 * returning -errno is not an option
2836 */
2837 if (nr_pinned)
2838 return nr_pinned;
2839 return ret;
2667f50e 2840 }
c28b1fc7 2841 return ret + nr_pinned;
2667f50e 2842}
c28b1fc7 2843
dadbb612
SJ
2844/**
2845 * get_user_pages_fast_only() - pin user pages in memory
2846 * @start: starting user address
2847 * @nr_pages: number of pages from start to pin
2848 * @gup_flags: flags modifying pin behaviour
2849 * @pages: array that receives pointers to the pages pinned.
2850 * Should be at least nr_pages long.
2851 *
9e1f0580
JH
2852 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2853 * the regular GUP.
2854 * Note a difference with get_user_pages_fast: this always returns the
2855 * number of pages pinned, 0 if no pages were pinned.
2856 *
2857 * If the architecture does not support this function, simply return with no
2858 * pages pinned.
2859 *
2860 * Careful, careful! COW breaking can go either way, so a non-write
2861 * access can get ambiguous page results. If you call this function without
2862 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2863 */
dadbb612
SJ
2864int get_user_pages_fast_only(unsigned long start, int nr_pages,
2865 unsigned int gup_flags, struct page **pages)
9e1f0580 2866{
376a34ef 2867 int nr_pinned;
9e1f0580
JH
2868 /*
2869 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2870 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
2871 *
2872 * FOLL_FAST_ONLY is required in order to match the API description of
2873 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 2874 */
dadbb612 2875 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
9e1f0580 2876
376a34ef
JH
2877 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2878 pages);
9e1f0580
JH
2879
2880 /*
376a34ef
JH
2881 * As specified in the API description above, this routine is not
2882 * allowed to return negative values. However, the common core
2883 * routine internal_get_user_pages_fast() *can* return -errno.
2884 * Therefore, correct for that here:
9e1f0580 2885 */
376a34ef
JH
2886 if (nr_pinned < 0)
2887 nr_pinned = 0;
9e1f0580
JH
2888
2889 return nr_pinned;
2890}
dadbb612 2891EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 2892
eddb1c22
JH
2893/**
2894 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
2895 * @start: starting user address
2896 * @nr_pages: number of pages from start to pin
2897 * @gup_flags: flags modifying pin behaviour
2898 * @pages: array that receives pointers to the pages pinned.
2899 * Should be at least nr_pages long.
eddb1c22 2900 *
c1e8d7c6 2901 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
2902 * If not successful, it will fall back to taking the lock and
2903 * calling get_user_pages().
2904 *
2905 * Returns number of pages pinned. This may be fewer than the number requested.
2906 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2907 * -errno.
2908 */
2909int get_user_pages_fast(unsigned long start, int nr_pages,
2910 unsigned int gup_flags, struct page **pages)
2911{
447f3e45 2912 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2913 return -EINVAL;
2914
94202f12
JH
2915 /*
2916 * The caller may or may not have explicitly set FOLL_GET; either way is
2917 * OK. However, internally (within mm/gup.c), gup fast variants must set
2918 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2919 * request.
2920 */
2921 gup_flags |= FOLL_GET;
eddb1c22
JH
2922 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2923}
050a9adc 2924EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
2925
2926/**
2927 * pin_user_pages_fast() - pin user pages in memory without taking locks
2928 *
3faa52c0
JH
2929 * @start: starting user address
2930 * @nr_pages: number of pages from start to pin
2931 * @gup_flags: flags modifying pin behaviour
2932 * @pages: array that receives pointers to the pages pinned.
2933 * Should be at least nr_pages long.
2934 *
2935 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2936 * get_user_pages_fast() for documentation on the function arguments, because
2937 * the arguments here are identical.
2938 *
2939 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2940 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
2941 */
2942int pin_user_pages_fast(unsigned long start, int nr_pages,
2943 unsigned int gup_flags, struct page **pages)
2944{
3faa52c0
JH
2945 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2946 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2947 return -EINVAL;
2948
2949 gup_flags |= FOLL_PIN;
2950 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
2951}
2952EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2953
104acc32 2954/*
dadbb612
SJ
2955 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2956 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
2957 *
2958 * The API rules are the same, too: no negative values may be returned.
2959 */
2960int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2961 unsigned int gup_flags, struct page **pages)
2962{
2963 int nr_pinned;
2964
2965 /*
2966 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2967 * rules require returning 0, rather than -errno:
2968 */
2969 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2970 return 0;
2971 /*
2972 * FOLL_FAST_ONLY is required in order to match the API description of
2973 * this routine: no fall back to regular ("slow") GUP.
2974 */
2975 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2976 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2977 pages);
2978 /*
2979 * This routine is not allowed to return negative values. However,
2980 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2981 * correct for that here:
2982 */
2983 if (nr_pinned < 0)
2984 nr_pinned = 0;
2985
2986 return nr_pinned;
2987}
2988EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2989
eddb1c22 2990/**
64019a2e 2991 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 2992 *
3faa52c0
JH
2993 * @mm: mm_struct of target mm
2994 * @start: starting user address
2995 * @nr_pages: number of pages from start to pin
2996 * @gup_flags: flags modifying lookup behaviour
2997 * @pages: array that receives pointers to the pages pinned.
2998 * Should be at least nr_pages long. Or NULL, if caller
2999 * only intends to ensure the pages are faulted in.
3000 * @vmas: array of pointers to vmas corresponding to each page.
3001 * Or NULL if the caller does not require them.
3002 * @locked: pointer to lock flag indicating whether lock is held and
3003 * subsequently whether VM_FAULT_RETRY functionality can be
3004 * utilised. Lock must initially be held.
3005 *
3006 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3007 * get_user_pages_remote() for documentation on the function arguments, because
3008 * the arguments here are identical.
3009 *
3010 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3011 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 3012 */
64019a2e 3013long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3014 unsigned long start, unsigned long nr_pages,
3015 unsigned int gup_flags, struct page **pages,
3016 struct vm_area_struct **vmas, int *locked)
3017{
3faa52c0
JH
3018 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3019 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3020 return -EINVAL;
3021
3022 gup_flags |= FOLL_PIN;
64019a2e 3023 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3faa52c0 3024 pages, vmas, locked);
eddb1c22
JH
3025}
3026EXPORT_SYMBOL(pin_user_pages_remote);
3027
3028/**
3029 * pin_user_pages() - pin user pages in memory for use by other devices
3030 *
3faa52c0
JH
3031 * @start: starting user address
3032 * @nr_pages: number of pages from start to pin
3033 * @gup_flags: flags modifying lookup behaviour
3034 * @pages: array that receives pointers to the pages pinned.
3035 * Should be at least nr_pages long. Or NULL, if caller
3036 * only intends to ensure the pages are faulted in.
3037 * @vmas: array of pointers to vmas corresponding to each page.
3038 * Or NULL if the caller does not require them.
3039 *
3040 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3041 * FOLL_PIN is set.
3042 *
3043 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3044 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
3045 */
3046long pin_user_pages(unsigned long start, unsigned long nr_pages,
3047 unsigned int gup_flags, struct page **pages,
3048 struct vm_area_struct **vmas)
3049{
3faa52c0
JH
3050 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3051 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3052 return -EINVAL;
3053
3054 gup_flags |= FOLL_PIN;
64019a2e 3055 return __gup_longterm_locked(current->mm, start, nr_pages,
3faa52c0 3056 pages, vmas, gup_flags);
eddb1c22
JH
3057}
3058EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3059
3060/*
3061 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3062 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3063 * FOLL_PIN and rejects FOLL_GET.
3064 */
3065long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3066 struct page **pages, unsigned int gup_flags)
3067{
3068 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3069 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3070 return -EINVAL;
3071
3072 gup_flags |= FOLL_PIN;
3073 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3074}
3075EXPORT_SYMBOL(pin_user_pages_unlocked);
420c2091
JH
3076
3077/*
3078 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3079 * Behavior is the same, except that this one sets FOLL_PIN and rejects
3080 * FOLL_GET.
3081 */
3082long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3083 unsigned int gup_flags, struct page **pages,
3084 int *locked)
3085{
3086 /*
3087 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3088 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3089 * vmas. As there are no users of this flag in this call we simply
3090 * disallow this option for now.
3091 */
3092 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3093 return -EINVAL;
3094
3095 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3096 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3097 return -EINVAL;
3098
3099 gup_flags |= FOLL_PIN;
64019a2e 3100 return __get_user_pages_locked(current->mm, start, nr_pages,
420c2091
JH
3101 pages, NULL, locked,
3102 gup_flags | FOLL_TOUCH);
3103}
3104EXPORT_SYMBOL(pin_user_pages_locked);