objtool: add UACCESS exceptions for __tsan_volatile_read/write
[linux-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
1027e443 21
33a709b2 22#include <asm/mmu_context.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
b6a2619c
DH
32static inline void sanity_check_pinned_pages(struct page **pages,
33 unsigned long npages)
34{
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 return;
37
38 /*
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
42 *
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
49 */
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
53
54 if (!folio_test_anon(folio))
55 continue;
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 else
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
62 }
63}
64
cd1adf1b 65/*
ece1ed7b 66 * Return the folio with ref appropriately incremented,
cd1adf1b 67 * or NULL if that failed.
a707cdd5 68 */
ece1ed7b 69static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 70{
ece1ed7b 71 struct folio *folio;
a707cdd5 72
59409373 73retry:
ece1ed7b
MWO
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 76 return NULL;
ece1ed7b 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
a707cdd5 78 return NULL;
c24d3732
JH
79
80 /*
ece1ed7b
MWO
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
c24d3732 85 * we were given anymore.
ece1ed7b
MWO
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
c24d3732 88 */
ece1ed7b 89 if (unlikely(page_folio(page) != folio)) {
f4f451a1
MS
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
59409373 92 goto retry;
c24d3732
JH
93 }
94
ece1ed7b 95 return folio;
a707cdd5
JH
96}
97
3967db22 98/**
ece1ed7b 99 * try_grab_folio() - Attempt to get or pin a folio.
3967db22 100 * @page: pointer to page to be grabbed
ece1ed7b 101 * @refs: the value to (effectively) add to the folio's refcount
3967db22
JH
102 * @flags: gup flags: these are the FOLL_* flag values.
103 *
3faa52c0 104 * "grab" names in this file mean, "look at flags to decide whether to use
ece1ed7b 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0
JH
106 *
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
110 *
ece1ed7b 111 * FOLL_GET: folio's refcount will be incremented by @refs.
3967db22 112 *
ece1ed7b 113 * FOLL_PIN on large folios: folio's refcount will be incremented by
94688e8e 114 * @refs, and its pincount will be incremented by @refs.
3967db22 115 *
ece1ed7b 116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
5232c63f 117 * @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0 118 *
ece1ed7b
MWO
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
3faa52c0 123 */
ece1ed7b 124struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
3faa52c0 125{
4003f107
LG
126 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
127 return NULL;
128
3faa52c0 129 if (flags & FOLL_GET)
ece1ed7b 130 return try_get_folio(page, refs);
3faa52c0 131 else if (flags & FOLL_PIN) {
ece1ed7b
MWO
132 struct folio *folio;
133
df3a0a21 134 /*
d1e153fe
PT
135 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
136 * right zone, so fail and let the caller fall back to the slow
137 * path.
df3a0a21 138 */
d1e153fe 139 if (unlikely((flags & FOLL_LONGTERM) &&
6077c943 140 !is_longterm_pinnable_page(page)))
df3a0a21
PL
141 return NULL;
142
c24d3732
JH
143 /*
144 * CAUTION: Don't use compound_head() on the page before this
145 * point, the result won't be stable.
146 */
ece1ed7b
MWO
147 folio = try_get_folio(page, refs);
148 if (!folio)
c24d3732
JH
149 return NULL;
150
47e29d32 151 /*
ece1ed7b 152 * When pinning a large folio, use an exact count to track it.
47e29d32 153 *
ece1ed7b
MWO
154 * However, be sure to *also* increment the normal folio
155 * refcount field at least once, so that the folio really
78d9d6ce 156 * is pinned. That's why the refcount from the earlier
ece1ed7b 157 * try_get_folio() is left intact.
47e29d32 158 */
ece1ed7b 159 if (folio_test_large(folio))
94688e8e 160 atomic_add(refs, &folio->_pincount);
c24d3732 161 else
ece1ed7b
MWO
162 folio_ref_add(folio,
163 refs * (GUP_PIN_COUNTING_BIAS - 1));
088b8aa5
DH
164 /*
165 * Adjust the pincount before re-checking the PTE for changes.
166 * This is essentially a smp_mb() and is paired with a memory
167 * barrier in page_try_share_anon_rmap().
168 */
169 smp_mb__after_atomic();
170
ece1ed7b 171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
47e29d32 172
ece1ed7b 173 return folio;
3faa52c0
JH
174 }
175
176 WARN_ON_ONCE(1);
177 return NULL;
178}
179
d8ddc099 180static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
181{
182 if (flags & FOLL_PIN) {
d8ddc099
MWO
183 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
184 if (folio_test_large(folio))
94688e8e 185 atomic_sub(refs, &folio->_pincount);
4509b42c
JG
186 else
187 refs *= GUP_PIN_COUNTING_BIAS;
188 }
189
f4f451a1
MS
190 if (!put_devmap_managed_page_refs(&folio->page, refs))
191 folio_put_refs(folio, refs);
4509b42c
JG
192}
193
3faa52c0
JH
194/**
195 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
5fec0719
MWO
196 * @page: pointer to page to be grabbed
197 * @flags: gup flags: these are the FOLL_* flag values.
3faa52c0
JH
198 *
199 * This might not do anything at all, depending on the flags argument.
200 *
201 * "grab" names in this file mean, "look at flags to decide whether to use
202 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
203 *
3faa52c0 204 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
ece1ed7b 205 * time. Cases: please see the try_grab_folio() documentation, with
3967db22 206 * "refs=1".
3faa52c0 207 *
0f089235
LG
208 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
209 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
210 *
211 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
212 * be grabbed.
3faa52c0 213 */
0f089235 214int __must_check try_grab_page(struct page *page, unsigned int flags)
3faa52c0 215{
5fec0719
MWO
216 struct folio *folio = page_folio(page);
217
5fec0719 218 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
0f089235 219 return -ENOMEM;
3faa52c0 220
4003f107
LG
221 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
222 return -EREMOTEIO;
3faa52c0 223
c36c04c2 224 if (flags & FOLL_GET)
5fec0719 225 folio_ref_inc(folio);
c36c04c2 226 else if (flags & FOLL_PIN) {
c36c04c2 227 /*
5fec0719 228 * Similar to try_grab_folio(): be sure to *also*
78d9d6ce
MWO
229 * increment the normal page refcount field at least once,
230 * so that the page really is pinned.
c36c04c2 231 */
5fec0719
MWO
232 if (folio_test_large(folio)) {
233 folio_ref_add(folio, 1);
94688e8e 234 atomic_add(1, &folio->_pincount);
8ea2979c 235 } else {
5fec0719 236 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
8ea2979c 237 }
c36c04c2 238
5fec0719 239 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
c36c04c2
JH
240 }
241
0f089235 242 return 0;
3faa52c0
JH
243}
244
3faa52c0
JH
245/**
246 * unpin_user_page() - release a dma-pinned page
247 * @page: pointer to page to be released
248 *
249 * Pages that were pinned via pin_user_pages*() must be released via either
250 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
251 * that such pages can be separately tracked and uniquely handled. In
252 * particular, interactions with RDMA and filesystems need special handling.
253 */
254void unpin_user_page(struct page *page)
255{
b6a2619c 256 sanity_check_pinned_pages(&page, 1);
d8ddc099 257 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
258}
259EXPORT_SYMBOL(unpin_user_page);
260
659508f9 261static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 262 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 263{
659508f9
MWO
264 struct page *next = nth_page(start, i);
265 struct folio *folio = page_folio(next);
458a4f78
JM
266 unsigned int nr = 1;
267
659508f9 268 if (folio_test_large(folio))
4c654229 269 nr = min_t(unsigned int, npages - i,
659508f9 270 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 271
458a4f78 272 *ntails = nr;
659508f9 273 return folio;
458a4f78
JM
274}
275
12521c76 276static inline struct folio *gup_folio_next(struct page **list,
28297dbc 277 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 278{
12521c76 279 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
280 unsigned int nr;
281
8745d7f6 282 for (nr = i + 1; nr < npages; nr++) {
12521c76 283 if (page_folio(list[nr]) != folio)
8745d7f6
JM
284 break;
285 }
286
8745d7f6 287 *ntails = nr - i;
12521c76 288 return folio;
8745d7f6
JM
289}
290
fc1d8e7c 291/**
f1f6a7dd 292 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 293 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 294 * @npages: number of pages in the @pages array.
2d15eb31 295 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
296 *
297 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
298 * variants called on that page.
299 *
300 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 301 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
302 * listed as clean. In any case, releases all pages using unpin_user_page(),
303 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 304 *
f1f6a7dd 305 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 306 *
2d15eb31 307 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
308 * required, then the caller should a) verify that this is really correct,
309 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 310 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
311 *
312 */
f1f6a7dd
JH
313void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
314 bool make_dirty)
fc1d8e7c 315{
12521c76
MWO
316 unsigned long i;
317 struct folio *folio;
318 unsigned int nr;
2d15eb31 319
320 if (!make_dirty) {
f1f6a7dd 321 unpin_user_pages(pages, npages);
2d15eb31 322 return;
323 }
324
b6a2619c 325 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
326 for (i = 0; i < npages; i += nr) {
327 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31 328 /*
329 * Checking PageDirty at this point may race with
330 * clear_page_dirty_for_io(), but that's OK. Two key
331 * cases:
332 *
333 * 1) This code sees the page as already dirty, so it
334 * skips the call to set_page_dirty(). That could happen
335 * because clear_page_dirty_for_io() called
336 * page_mkclean(), followed by set_page_dirty().
337 * However, now the page is going to get written back,
338 * which meets the original intention of setting it
339 * dirty, so all is well: clear_page_dirty_for_io() goes
340 * on to call TestClearPageDirty(), and write the page
341 * back.
342 *
343 * 2) This code sees the page as clean, so it calls
344 * set_page_dirty(). The page stays dirty, despite being
345 * written back, so it gets written back again in the
346 * next writeback cycle. This is harmless.
347 */
12521c76
MWO
348 if (!folio_test_dirty(folio)) {
349 folio_lock(folio);
350 folio_mark_dirty(folio);
351 folio_unlock(folio);
352 }
353 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 354 }
fc1d8e7c 355}
f1f6a7dd 356EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 357
458a4f78
JM
358/**
359 * unpin_user_page_range_dirty_lock() - release and optionally dirty
360 * gup-pinned page range
361 *
362 * @page: the starting page of a range maybe marked dirty, and definitely released.
363 * @npages: number of consecutive pages to release.
364 * @make_dirty: whether to mark the pages dirty
365 *
366 * "gup-pinned page range" refers to a range of pages that has had one of the
367 * pin_user_pages() variants called on that page.
368 *
369 * For the page ranges defined by [page .. page+npages], make that range (or
370 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
371 * page range was previously listed as clean.
372 *
373 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
374 * required, then the caller should a) verify that this is really correct,
375 * because _lock() is usually required, and b) hand code it:
376 * set_page_dirty_lock(), unpin_user_page().
377 *
378 */
379void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
380 bool make_dirty)
381{
659508f9
MWO
382 unsigned long i;
383 struct folio *folio;
384 unsigned int nr;
385
386 for (i = 0; i < npages; i += nr) {
387 folio = gup_folio_range_next(page, npages, i, &nr);
388 if (make_dirty && !folio_test_dirty(folio)) {
389 folio_lock(folio);
390 folio_mark_dirty(folio);
391 folio_unlock(folio);
392 }
393 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
394 }
395}
396EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
397
b6a2619c
DH
398static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
399{
400 unsigned long i;
401 struct folio *folio;
402 unsigned int nr;
403
404 /*
405 * Don't perform any sanity checks because we might have raced with
406 * fork() and some anonymous pages might now actually be shared --
407 * which is why we're unpinning after all.
408 */
409 for (i = 0; i < npages; i += nr) {
410 folio = gup_folio_next(pages, npages, i, &nr);
411 gup_put_folio(folio, nr, FOLL_PIN);
412 }
413}
414
fc1d8e7c 415/**
f1f6a7dd 416 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
417 * @pages: array of pages to be marked dirty and released.
418 * @npages: number of pages in the @pages array.
419 *
f1f6a7dd 420 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 421 *
f1f6a7dd 422 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 423 */
f1f6a7dd 424void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 425{
12521c76
MWO
426 unsigned long i;
427 struct folio *folio;
428 unsigned int nr;
fc1d8e7c 429
146608bb
JH
430 /*
431 * If this WARN_ON() fires, then the system *might* be leaking pages (by
432 * leaving them pinned), but probably not. More likely, gup/pup returned
433 * a hard -ERRNO error to the caller, who erroneously passed it here.
434 */
435 if (WARN_ON(IS_ERR_VALUE(npages)))
436 return;
31b912de 437
b6a2619c 438 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
439 for (i = 0; i < npages; i += nr) {
440 folio = gup_folio_next(pages, npages, i, &nr);
441 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 442 }
fc1d8e7c 443}
f1f6a7dd 444EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 445
a458b76a
AA
446/*
447 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
448 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
449 * cache bouncing on large SMP machines for concurrent pinned gups.
450 */
451static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
452{
453 if (!test_bit(MMF_HAS_PINNED, mm_flags))
454 set_bit(MMF_HAS_PINNED, mm_flags);
455}
456
050a9adc 457#ifdef CONFIG_MMU
69e68b4f
KS
458static struct page *no_page_table(struct vm_area_struct *vma,
459 unsigned int flags)
4bbd4c77 460{
69e68b4f
KS
461 /*
462 * When core dumping an enormous anonymous area that nobody
463 * has touched so far, we don't want to allocate unnecessary pages or
464 * page tables. Return error instead of NULL to skip handle_mm_fault,
465 * then get_dump_page() will return NULL to leave a hole in the dump.
466 * But we can only make this optimization where a hole would surely
467 * be zero-filled if handle_mm_fault() actually did handle it.
468 */
a0137f16
AK
469 if ((flags & FOLL_DUMP) &&
470 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
471 return ERR_PTR(-EFAULT);
472 return NULL;
473}
4bbd4c77 474
1027e443
KS
475static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
476 pte_t *pte, unsigned int flags)
477{
1027e443
KS
478 if (flags & FOLL_TOUCH) {
479 pte_t entry = *pte;
480
481 if (flags & FOLL_WRITE)
482 entry = pte_mkdirty(entry);
483 entry = pte_mkyoung(entry);
484
485 if (!pte_same(*pte, entry)) {
486 set_pte_at(vma->vm_mm, address, pte, entry);
487 update_mmu_cache(vma, address, pte);
488 }
489 }
490
491 /* Proper page table entry exists, but no corresponding struct page */
492 return -EEXIST;
493}
494
5535be30
DH
495/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
496static inline bool can_follow_write_pte(pte_t pte, struct page *page,
497 struct vm_area_struct *vma,
498 unsigned int flags)
19be0eaf 499{
5535be30
DH
500 /* If the pte is writable, we can write to the page. */
501 if (pte_write(pte))
502 return true;
503
504 /* Maybe FOLL_FORCE is set to override it? */
505 if (!(flags & FOLL_FORCE))
506 return false;
507
508 /* But FOLL_FORCE has no effect on shared mappings */
509 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
510 return false;
511
512 /* ... or read-only private ones */
513 if (!(vma->vm_flags & VM_MAYWRITE))
514 return false;
515
516 /* ... or already writable ones that just need to take a write fault */
517 if (vma->vm_flags & VM_WRITE)
518 return false;
519
520 /*
521 * See can_change_pte_writable(): we broke COW and could map the page
522 * writable if we have an exclusive anonymous page ...
523 */
524 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
525 return false;
526
527 /* ... and a write-fault isn't required for other reasons. */
528 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
529 return false;
530 return !userfaultfd_pte_wp(vma, pte);
19be0eaf
LT
531}
532
69e68b4f 533static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
534 unsigned long address, pmd_t *pmd, unsigned int flags,
535 struct dev_pagemap **pgmap)
69e68b4f
KS
536{
537 struct mm_struct *mm = vma->vm_mm;
538 struct page *page;
539 spinlock_t *ptl;
540 pte_t *ptep, pte;
f28d4363 541 int ret;
4bbd4c77 542
eddb1c22
JH
543 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
544 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
545 (FOLL_PIN | FOLL_GET)))
546 return ERR_PTR(-EINVAL);
4bbd4c77 547 if (unlikely(pmd_bad(*pmd)))
69e68b4f 548 return no_page_table(vma, flags);
4bbd4c77
KS
549
550 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77 551 pte = *ptep;
f7355e99
DH
552 if (!pte_present(pte))
553 goto no_page;
474098ed 554 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
4bbd4c77 555 goto no_page;
4bbd4c77
KS
556
557 page = vm_normal_page(vma, address, pte);
5535be30
DH
558
559 /*
560 * We only care about anon pages in can_follow_write_pte() and don't
561 * have to worry about pte_devmap() because they are never anon.
562 */
563 if ((flags & FOLL_WRITE) &&
564 !can_follow_write_pte(pte, page, vma, flags)) {
565 page = NULL;
566 goto out;
567 }
568
3faa52c0 569 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 570 /*
3faa52c0
JH
571 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
572 * case since they are only valid while holding the pgmap
573 * reference.
3565fce3 574 */
df06b37f
KB
575 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
576 if (*pgmap)
3565fce3
DW
577 page = pte_page(pte);
578 else
579 goto no_page;
580 } else if (unlikely(!page)) {
1027e443
KS
581 if (flags & FOLL_DUMP) {
582 /* Avoid special (like zero) pages in core dumps */
583 page = ERR_PTR(-EFAULT);
584 goto out;
585 }
586
587 if (is_zero_pfn(pte_pfn(pte))) {
588 page = pte_page(pte);
589 } else {
1027e443
KS
590 ret = follow_pfn_pte(vma, address, ptep, flags);
591 page = ERR_PTR(ret);
592 goto out;
593 }
4bbd4c77
KS
594 }
595
84209e87 596 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
a7f22660
DH
597 page = ERR_PTR(-EMLINK);
598 goto out;
599 }
b6a2619c
DH
600
601 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
602 !PageAnonExclusive(page), page);
603
3faa52c0 604 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
0f089235
LG
605 ret = try_grab_page(page, flags);
606 if (unlikely(ret)) {
607 page = ERR_PTR(ret);
3faa52c0 608 goto out;
8fde12ca 609 }
4003f107 610
f28d4363
CI
611 /*
612 * We need to make the page accessible if and only if we are going
613 * to access its content (the FOLL_PIN case). Please see
614 * Documentation/core-api/pin_user_pages.rst for details.
615 */
616 if (flags & FOLL_PIN) {
617 ret = arch_make_page_accessible(page);
618 if (ret) {
619 unpin_user_page(page);
620 page = ERR_PTR(ret);
621 goto out;
622 }
623 }
4bbd4c77
KS
624 if (flags & FOLL_TOUCH) {
625 if ((flags & FOLL_WRITE) &&
626 !pte_dirty(pte) && !PageDirty(page))
627 set_page_dirty(page);
628 /*
629 * pte_mkyoung() would be more correct here, but atomic care
630 * is needed to avoid losing the dirty bit: it is easier to use
631 * mark_page_accessed().
632 */
633 mark_page_accessed(page);
634 }
1027e443 635out:
4bbd4c77 636 pte_unmap_unlock(ptep, ptl);
4bbd4c77 637 return page;
4bbd4c77
KS
638no_page:
639 pte_unmap_unlock(ptep, ptl);
640 if (!pte_none(pte))
69e68b4f
KS
641 return NULL;
642 return no_page_table(vma, flags);
643}
644
080dbb61
AK
645static struct page *follow_pmd_mask(struct vm_area_struct *vma,
646 unsigned long address, pud_t *pudp,
df06b37f
KB
647 unsigned int flags,
648 struct follow_page_context *ctx)
69e68b4f 649{
68827280 650 pmd_t *pmd, pmdval;
69e68b4f
KS
651 spinlock_t *ptl;
652 struct page *page;
653 struct mm_struct *mm = vma->vm_mm;
654
080dbb61 655 pmd = pmd_offset(pudp, address);
68827280
HY
656 /*
657 * The READ_ONCE() will stabilize the pmdval in a register or
658 * on the stack so that it will stop changing under the code.
659 */
660 pmdval = READ_ONCE(*pmd);
661 if (pmd_none(pmdval))
69e68b4f 662 return no_page_table(vma, flags);
f7355e99 663 if (!pmd_present(pmdval))
e66f17ff 664 return no_page_table(vma, flags);
68827280 665 if (pmd_devmap(pmdval)) {
3565fce3 666 ptl = pmd_lock(mm, pmd);
df06b37f 667 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
668 spin_unlock(ptl);
669 if (page)
670 return page;
671 }
68827280 672 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 673 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 674
474098ed 675 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
db08f203
AK
676 return no_page_table(vma, flags);
677
6742d293 678 ptl = pmd_lock(mm, pmd);
84c3fc4e
ZY
679 if (unlikely(!pmd_present(*pmd))) {
680 spin_unlock(ptl);
f7355e99 681 return no_page_table(vma, flags);
84c3fc4e 682 }
6742d293
KS
683 if (unlikely(!pmd_trans_huge(*pmd))) {
684 spin_unlock(ptl);
df06b37f 685 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 686 }
4066c119 687 if (flags & FOLL_SPLIT_PMD) {
6742d293
KS
688 int ret;
689 page = pmd_page(*pmd);
690 if (is_huge_zero_page(page)) {
691 spin_unlock(ptl);
692 ret = 0;
78ddc534 693 split_huge_pmd(vma, pmd, address);
337d9abf
NH
694 if (pmd_trans_unstable(pmd))
695 ret = -EBUSY;
4066c119 696 } else {
bfe7b00d
SL
697 spin_unlock(ptl);
698 split_huge_pmd(vma, pmd, address);
699 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
700 }
701
702 return ret ? ERR_PTR(ret) :
df06b37f 703 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 704 }
6742d293
KS
705 page = follow_trans_huge_pmd(vma, address, pmd, flags);
706 spin_unlock(ptl);
df06b37f 707 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 708 return page;
4bbd4c77
KS
709}
710
080dbb61
AK
711static struct page *follow_pud_mask(struct vm_area_struct *vma,
712 unsigned long address, p4d_t *p4dp,
df06b37f
KB
713 unsigned int flags,
714 struct follow_page_context *ctx)
080dbb61
AK
715{
716 pud_t *pud;
717 spinlock_t *ptl;
718 struct page *page;
719 struct mm_struct *mm = vma->vm_mm;
720
721 pud = pud_offset(p4dp, address);
722 if (pud_none(*pud))
723 return no_page_table(vma, flags);
080dbb61
AK
724 if (pud_devmap(*pud)) {
725 ptl = pud_lock(mm, pud);
df06b37f 726 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
727 spin_unlock(ptl);
728 if (page)
729 return page;
730 }
731 if (unlikely(pud_bad(*pud)))
732 return no_page_table(vma, flags);
733
df06b37f 734 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
735}
736
080dbb61
AK
737static struct page *follow_p4d_mask(struct vm_area_struct *vma,
738 unsigned long address, pgd_t *pgdp,
df06b37f
KB
739 unsigned int flags,
740 struct follow_page_context *ctx)
080dbb61
AK
741{
742 p4d_t *p4d;
743
744 p4d = p4d_offset(pgdp, address);
745 if (p4d_none(*p4d))
746 return no_page_table(vma, flags);
747 BUILD_BUG_ON(p4d_huge(*p4d));
748 if (unlikely(p4d_bad(*p4d)))
749 return no_page_table(vma, flags);
750
df06b37f 751 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
752}
753
754/**
755 * follow_page_mask - look up a page descriptor from a user-virtual address
756 * @vma: vm_area_struct mapping @address
757 * @address: virtual address to look up
758 * @flags: flags modifying lookup behaviour
78179556
MR
759 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
760 * pointer to output page_mask
080dbb61
AK
761 *
762 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
763 *
78179556
MR
764 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
765 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
766 *
a7f22660
DH
767 * When getting an anonymous page and the caller has to trigger unsharing
768 * of a shared anonymous page first, -EMLINK is returned. The caller should
769 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
770 * relevant with FOLL_PIN and !FOLL_WRITE.
771 *
78179556
MR
772 * On output, the @ctx->page_mask is set according to the size of the page.
773 *
774 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
775 * an error pointer if there is a mapping to something not represented
776 * by a page descriptor (see also vm_normal_page()).
777 */
a7030aea 778static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 779 unsigned long address, unsigned int flags,
df06b37f 780 struct follow_page_context *ctx)
080dbb61
AK
781{
782 pgd_t *pgd;
783 struct page *page;
784 struct mm_struct *mm = vma->vm_mm;
785
df06b37f 786 ctx->page_mask = 0;
080dbb61 787
57a196a5
MK
788 /*
789 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
790 * special hugetlb page table walking code. This eliminates the
791 * need to check for hugetlb entries in the general walking code.
792 *
793 * hugetlb_follow_page_mask is only for follow_page() handling here.
794 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
795 */
796 if (is_vm_hugetlb_page(vma)) {
797 page = hugetlb_follow_page_mask(vma, address, flags);
798 if (!page)
799 page = no_page_table(vma, flags);
080dbb61
AK
800 return page;
801 }
802
803 pgd = pgd_offset(mm, address);
804
805 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
806 return no_page_table(vma, flags);
807
df06b37f
KB
808 return follow_p4d_mask(vma, address, pgd, flags, ctx);
809}
810
811struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
812 unsigned int foll_flags)
813{
814 struct follow_page_context ctx = { NULL };
815 struct page *page;
816
1507f512
MR
817 if (vma_is_secretmem(vma))
818 return NULL;
819
d64e2dbc 820 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
8909691b
DH
821 return NULL;
822
df06b37f
KB
823 page = follow_page_mask(vma, address, foll_flags, &ctx);
824 if (ctx.pgmap)
825 put_dev_pagemap(ctx.pgmap);
826 return page;
080dbb61
AK
827}
828
f2b495ca
KS
829static int get_gate_page(struct mm_struct *mm, unsigned long address,
830 unsigned int gup_flags, struct vm_area_struct **vma,
831 struct page **page)
832{
833 pgd_t *pgd;
c2febafc 834 p4d_t *p4d;
f2b495ca
KS
835 pud_t *pud;
836 pmd_t *pmd;
837 pte_t *pte;
838 int ret = -EFAULT;
839
840 /* user gate pages are read-only */
841 if (gup_flags & FOLL_WRITE)
842 return -EFAULT;
843 if (address > TASK_SIZE)
844 pgd = pgd_offset_k(address);
845 else
846 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
847 if (pgd_none(*pgd))
848 return -EFAULT;
c2febafc 849 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
850 if (p4d_none(*p4d))
851 return -EFAULT;
c2febafc 852 pud = pud_offset(p4d, address);
b5d1c39f
AL
853 if (pud_none(*pud))
854 return -EFAULT;
f2b495ca 855 pmd = pmd_offset(pud, address);
84c3fc4e 856 if (!pmd_present(*pmd))
f2b495ca
KS
857 return -EFAULT;
858 VM_BUG_ON(pmd_trans_huge(*pmd));
859 pte = pte_offset_map(pmd, address);
860 if (pte_none(*pte))
861 goto unmap;
862 *vma = get_gate_vma(mm);
863 if (!page)
864 goto out;
865 *page = vm_normal_page(*vma, address, *pte);
866 if (!*page) {
867 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
868 goto unmap;
869 *page = pte_page(*pte);
870 }
0f089235
LG
871 ret = try_grab_page(*page, gup_flags);
872 if (unlikely(ret))
8fde12ca 873 goto unmap;
f2b495ca
KS
874out:
875 ret = 0;
876unmap:
877 pte_unmap(pte);
878 return ret;
879}
880
9a95f3cf 881/*
9a863a6a
JG
882 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
883 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
884 * to 0 and -EBUSY returned.
9a95f3cf 885 */
64019a2e 886static int faultin_page(struct vm_area_struct *vma,
a7f22660
DH
887 unsigned long address, unsigned int *flags, bool unshare,
888 int *locked)
16744483 889{
16744483 890 unsigned int fault_flags = 0;
2b740303 891 vm_fault_t ret;
16744483 892
55b8fe70
AG
893 if (*flags & FOLL_NOFAULT)
894 return -EFAULT;
16744483
KS
895 if (*flags & FOLL_WRITE)
896 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
897 if (*flags & FOLL_REMOTE)
898 fault_flags |= FAULT_FLAG_REMOTE;
f04740f5 899 if (*flags & FOLL_UNLOCKABLE) {
71335f37 900 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
93c5c61d
PX
901 /*
902 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
903 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
904 * That's because some callers may not be prepared to
905 * handle early exits caused by non-fatal signals.
906 */
907 if (*flags & FOLL_INTERRUPTIBLE)
908 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
909 }
16744483
KS
910 if (*flags & FOLL_NOWAIT)
911 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 912 if (*flags & FOLL_TRIED) {
4426e945
PX
913 /*
914 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
915 * can co-exist
916 */
234b239b
ALC
917 fault_flags |= FAULT_FLAG_TRIED;
918 }
a7f22660
DH
919 if (unshare) {
920 fault_flags |= FAULT_FLAG_UNSHARE;
921 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
922 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
923 }
16744483 924
bce617ed 925 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
926
927 if (ret & VM_FAULT_COMPLETED) {
928 /*
929 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
930 * mmap lock in the page fault handler. Sanity check this.
931 */
932 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
9a863a6a
JG
933 *locked = 0;
934
d9272525
PX
935 /*
936 * We should do the same as VM_FAULT_RETRY, but let's not
937 * return -EBUSY since that's not reflecting the reality of
938 * what has happened - we've just fully completed a page
939 * fault, with the mmap lock released. Use -EAGAIN to show
940 * that we want to take the mmap lock _again_.
941 */
942 return -EAGAIN;
943 }
944
16744483 945 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
946 int err = vm_fault_to_errno(ret, *flags);
947
948 if (err)
949 return err;
16744483
KS
950 BUG();
951 }
952
16744483 953 if (ret & VM_FAULT_RETRY) {
9a863a6a 954 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 955 *locked = 0;
16744483
KS
956 return -EBUSY;
957 }
958
16744483
KS
959 return 0;
960}
961
fa5bb209
KS
962static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
963{
964 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
965 int write = (gup_flags & FOLL_WRITE);
966 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
967
968 if (vm_flags & (VM_IO | VM_PFNMAP))
969 return -EFAULT;
970
7f7ccc2c
WT
971 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
972 return -EFAULT;
973
52650c8b
JG
974 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
975 return -EOPNOTSUPP;
976
1507f512
MR
977 if (vma_is_secretmem(vma))
978 return -EFAULT;
979
1b2ee126 980 if (write) {
fa5bb209
KS
981 if (!(vm_flags & VM_WRITE)) {
982 if (!(gup_flags & FOLL_FORCE))
983 return -EFAULT;
f347454d
DH
984 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
985 if (is_vm_hugetlb_page(vma))
986 return -EFAULT;
fa5bb209
KS
987 /*
988 * We used to let the write,force case do COW in a
989 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
990 * set a breakpoint in a read-only mapping of an
991 * executable, without corrupting the file (yet only
992 * when that file had been opened for writing!).
993 * Anon pages in shared mappings are surprising: now
994 * just reject it.
995 */
46435364 996 if (!is_cow_mapping(vm_flags))
fa5bb209 997 return -EFAULT;
fa5bb209
KS
998 }
999 } else if (!(vm_flags & VM_READ)) {
1000 if (!(gup_flags & FOLL_FORCE))
1001 return -EFAULT;
1002 /*
1003 * Is there actually any vma we can reach here which does not
1004 * have VM_MAYREAD set?
1005 */
1006 if (!(vm_flags & VM_MAYREAD))
1007 return -EFAULT;
1008 }
d61172b4
DH
1009 /*
1010 * gups are always data accesses, not instruction
1011 * fetches, so execute=false here
1012 */
1013 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1014 return -EFAULT;
fa5bb209
KS
1015 return 0;
1016}
1017
4bbd4c77
KS
1018/**
1019 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1020 * @mm: mm_struct of target mm
1021 * @start: starting user address
1022 * @nr_pages: number of pages from start to pin
1023 * @gup_flags: flags modifying pin behaviour
1024 * @pages: array that receives pointers to the pages pinned.
1025 * Should be at least nr_pages long. Or NULL, if caller
1026 * only intends to ensure the pages are faulted in.
1027 * @vmas: array of pointers to vmas corresponding to each page.
1028 * Or NULL if the caller does not require them.
c1e8d7c6 1029 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1030 *
d2dfbe47
LX
1031 * Returns either number of pages pinned (which may be less than the
1032 * number requested), or an error. Details about the return value:
1033 *
1034 * -- If nr_pages is 0, returns 0.
1035 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1036 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1037 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1038 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1039 *
1040 * The caller is responsible for releasing returned @pages, via put_page().
1041 *
c1e8d7c6 1042 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 1043 *
c1e8d7c6 1044 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1045 *
1046 * __get_user_pages walks a process's page tables and takes a reference to
1047 * each struct page that each user address corresponds to at a given
1048 * instant. That is, it takes the page that would be accessed if a user
1049 * thread accesses the given user virtual address at that instant.
1050 *
1051 * This does not guarantee that the page exists in the user mappings when
1052 * __get_user_pages returns, and there may even be a completely different
1053 * page there in some cases (eg. if mmapped pagecache has been invalidated
c5acf1f6 1054 * and subsequently re-faulted). However it does guarantee that the page
4bbd4c77
KS
1055 * won't be freed completely. And mostly callers simply care that the page
1056 * contains data that was valid *at some point in time*. Typically, an IO
1057 * or similar operation cannot guarantee anything stronger anyway because
1058 * locks can't be held over the syscall boundary.
1059 *
1060 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1061 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1062 * appropriate) must be called after the page is finished with, and
1063 * before put_page is called.
1064 *
9a863a6a
JG
1065 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1066 * be released. If this happens *@locked will be set to 0 on return.
9a95f3cf 1067 *
9a863a6a
JG
1068 * A caller using such a combination of @gup_flags must therefore hold the
1069 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1070 * it must be held for either reading or writing and will not be released.
4bbd4c77
KS
1071 *
1072 * In most cases, get_user_pages or get_user_pages_fast should be used
1073 * instead of __get_user_pages. __get_user_pages should be used only if
1074 * you need some special @gup_flags.
1075 */
64019a2e 1076static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1077 unsigned long start, unsigned long nr_pages,
1078 unsigned int gup_flags, struct page **pages,
4f6da934 1079 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1080{
df06b37f 1081 long ret = 0, i = 0;
fa5bb209 1082 struct vm_area_struct *vma = NULL;
df06b37f 1083 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1084
1085 if (!nr_pages)
1086 return 0;
1087
f9652594
AK
1088 start = untagged_addr(start);
1089
eddb1c22 1090 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77 1091
4bbd4c77 1092 do {
fa5bb209
KS
1093 struct page *page;
1094 unsigned int foll_flags = gup_flags;
1095 unsigned int page_increm;
1096
1097 /* first iteration or cross vma bound */
1098 if (!vma || start >= vma->vm_end) {
1099 vma = find_extend_vma(mm, start);
1100 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1101 ret = get_gate_page(mm, start & PAGE_MASK,
1102 gup_flags, &vma,
1103 pages ? &pages[i] : NULL);
1104 if (ret)
08be37b7 1105 goto out;
df06b37f 1106 ctx.page_mask = 0;
fa5bb209
KS
1107 goto next_page;
1108 }
4bbd4c77 1109
52650c8b 1110 if (!vma) {
df06b37f
KB
1111 ret = -EFAULT;
1112 goto out;
1113 }
52650c8b
JG
1114 ret = check_vma_flags(vma, gup_flags);
1115 if (ret)
1116 goto out;
1117
fa5bb209
KS
1118 if (is_vm_hugetlb_page(vma)) {
1119 i = follow_hugetlb_page(mm, vma, pages, vmas,
1120 &start, &nr_pages, i,
a308c71b 1121 gup_flags, locked);
9a863a6a 1122 if (!*locked) {
ad415db8
PX
1123 /*
1124 * We've got a VM_FAULT_RETRY
c1e8d7c6 1125 * and we've lost mmap_lock.
ad415db8
PX
1126 * We must stop here.
1127 */
1128 BUG_ON(gup_flags & FOLL_NOWAIT);
ad415db8
PX
1129 goto out;
1130 }
fa5bb209 1131 continue;
4bbd4c77 1132 }
fa5bb209
KS
1133 }
1134retry:
1135 /*
1136 * If we have a pending SIGKILL, don't keep faulting pages and
1137 * potentially allocating memory.
1138 */
fa45f116 1139 if (fatal_signal_pending(current)) {
d180870d 1140 ret = -EINTR;
df06b37f
KB
1141 goto out;
1142 }
fa5bb209 1143 cond_resched();
df06b37f
KB
1144
1145 page = follow_page_mask(vma, start, foll_flags, &ctx);
a7f22660
DH
1146 if (!page || PTR_ERR(page) == -EMLINK) {
1147 ret = faultin_page(vma, start, &foll_flags,
1148 PTR_ERR(page) == -EMLINK, locked);
fa5bb209
KS
1149 switch (ret) {
1150 case 0:
1151 goto retry;
df06b37f 1152 case -EBUSY:
d9272525 1153 case -EAGAIN:
df06b37f 1154 ret = 0;
e4a9bc58 1155 fallthrough;
fa5bb209
KS
1156 case -EFAULT:
1157 case -ENOMEM:
1158 case -EHWPOISON:
df06b37f 1159 goto out;
4bbd4c77 1160 }
fa5bb209 1161 BUG();
1027e443
KS
1162 } else if (PTR_ERR(page) == -EEXIST) {
1163 /*
1164 * Proper page table entry exists, but no corresponding
65462462
JH
1165 * struct page. If the caller expects **pages to be
1166 * filled in, bail out now, because that can't be done
1167 * for this page.
1027e443 1168 */
65462462
JH
1169 if (pages) {
1170 ret = PTR_ERR(page);
1171 goto out;
1172 }
1173
1027e443
KS
1174 goto next_page;
1175 } else if (IS_ERR(page)) {
df06b37f
KB
1176 ret = PTR_ERR(page);
1177 goto out;
1027e443 1178 }
fa5bb209
KS
1179 if (pages) {
1180 pages[i] = page;
1181 flush_anon_page(vma, page, start);
1182 flush_dcache_page(page);
df06b37f 1183 ctx.page_mask = 0;
4bbd4c77 1184 }
4bbd4c77 1185next_page:
fa5bb209
KS
1186 if (vmas) {
1187 vmas[i] = vma;
df06b37f 1188 ctx.page_mask = 0;
fa5bb209 1189 }
df06b37f 1190 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1191 if (page_increm > nr_pages)
1192 page_increm = nr_pages;
1193 i += page_increm;
1194 start += page_increm * PAGE_SIZE;
1195 nr_pages -= page_increm;
4bbd4c77 1196 } while (nr_pages);
df06b37f
KB
1197out:
1198 if (ctx.pgmap)
1199 put_dev_pagemap(ctx.pgmap);
1200 return i ? i : ret;
4bbd4c77 1201}
4bbd4c77 1202
771ab430
TK
1203static bool vma_permits_fault(struct vm_area_struct *vma,
1204 unsigned int fault_flags)
d4925e00 1205{
1b2ee126
DH
1206 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1207 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1208 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1209
1210 if (!(vm_flags & vma->vm_flags))
1211 return false;
1212
33a709b2
DH
1213 /*
1214 * The architecture might have a hardware protection
1b2ee126 1215 * mechanism other than read/write that can deny access.
d61172b4
DH
1216 *
1217 * gup always represents data access, not instruction
1218 * fetches, so execute=false here:
33a709b2 1219 */
d61172b4 1220 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1221 return false;
1222
d4925e00
DH
1223 return true;
1224}
1225
adc8cb40 1226/**
4bbd4c77 1227 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1228 * @mm: mm_struct of target mm
1229 * @address: user address
1230 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1231 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1232 * does not allow retry. If NULL, the caller must guarantee
1233 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1234 *
1235 * This is meant to be called in the specific scenario where for locking reasons
1236 * we try to access user memory in atomic context (within a pagefault_disable()
1237 * section), this returns -EFAULT, and we want to resolve the user fault before
1238 * trying again.
1239 *
1240 * Typically this is meant to be used by the futex code.
1241 *
1242 * The main difference with get_user_pages() is that this function will
1243 * unconditionally call handle_mm_fault() which will in turn perform all the
1244 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1245 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1246 *
1247 * This is important for some architectures where those bits also gate the
1248 * access permission to the page because they are maintained in software. On
1249 * such architectures, gup() will not be enough to make a subsequent access
1250 * succeed.
1251 *
c1e8d7c6
ML
1252 * This function will not return with an unlocked mmap_lock. So it has not the
1253 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1254 */
64019a2e 1255int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1256 unsigned long address, unsigned int fault_flags,
1257 bool *unlocked)
4bbd4c77
KS
1258{
1259 struct vm_area_struct *vma;
8fed2f3c 1260 vm_fault_t ret;
4a9e1cda 1261
f9652594
AK
1262 address = untagged_addr(address);
1263
4a9e1cda 1264 if (unlocked)
71335f37 1265 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1266
4a9e1cda 1267retry:
4bbd4c77
KS
1268 vma = find_extend_vma(mm, address);
1269 if (!vma || address < vma->vm_start)
1270 return -EFAULT;
1271
d4925e00 1272 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1273 return -EFAULT;
1274
475f4dfc
PX
1275 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1276 fatal_signal_pending(current))
1277 return -EINTR;
1278
bce617ed 1279 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1280
1281 if (ret & VM_FAULT_COMPLETED) {
1282 /*
1283 * NOTE: it's a pity that we need to retake the lock here
1284 * to pair with the unlock() in the callers. Ideally we
1285 * could tell the callers so they do not need to unlock.
1286 */
1287 mmap_read_lock(mm);
1288 *unlocked = true;
1289 return 0;
1290 }
1291
4bbd4c77 1292 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1293 int err = vm_fault_to_errno(ret, 0);
1294
1295 if (err)
1296 return err;
4bbd4c77
KS
1297 BUG();
1298 }
4a9e1cda
DD
1299
1300 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1301 mmap_read_lock(mm);
475f4dfc
PX
1302 *unlocked = true;
1303 fault_flags |= FAULT_FLAG_TRIED;
1304 goto retry;
4a9e1cda
DD
1305 }
1306
4bbd4c77
KS
1307 return 0;
1308}
add6a0cd 1309EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1310
93c5c61d
PX
1311/*
1312 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1313 * specified, it'll also respond to generic signals. The caller of GUP
1314 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1315 */
1316static bool gup_signal_pending(unsigned int flags)
1317{
1318 if (fatal_signal_pending(current))
1319 return true;
1320
1321 if (!(flags & FOLL_INTERRUPTIBLE))
1322 return false;
1323
1324 return signal_pending(current);
1325}
1326
2d3a36a4 1327/*
b2a72dff
JG
1328 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1329 * the caller. This function may drop the mmap_lock. If it does so, then it will
1330 * set (*locked = 0).
1331 *
1332 * (*locked == 0) means that the caller expects this function to acquire and
1333 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1334 * the function returns, even though it may have changed temporarily during
1335 * function execution.
1336 *
1337 * Please note that this function, unlike __get_user_pages(), will not return 0
1338 * for nr_pages > 0, unless FOLL_NOWAIT is used.
2d3a36a4 1339 */
64019a2e 1340static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1341 unsigned long start,
1342 unsigned long nr_pages,
f0818f47
AA
1343 struct page **pages,
1344 struct vm_area_struct **vmas,
e716712f 1345 int *locked,
0fd71a56 1346 unsigned int flags)
f0818f47 1347{
f0818f47 1348 long ret, pages_done;
b2a72dff 1349 bool must_unlock = false;
f0818f47 1350
b2a72dff
JG
1351 /*
1352 * The internal caller expects GUP to manage the lock internally and the
1353 * lock must be released when this returns.
1354 */
9a863a6a 1355 if (!*locked) {
b2a72dff
JG
1356 if (mmap_read_lock_killable(mm))
1357 return -EAGAIN;
1358 must_unlock = true;
1359 *locked = 1;
f0818f47 1360 }
961ba472
JG
1361 else
1362 mmap_assert_locked(mm);
f0818f47 1363
a458b76a
AA
1364 if (flags & FOLL_PIN)
1365 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1366
eddb1c22
JH
1367 /*
1368 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1369 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1370 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1371 * for FOLL_GET, not for the newer FOLL_PIN.
1372 *
1373 * FOLL_PIN always expects pages to be non-null, but no need to assert
1374 * that here, as any failures will be obvious enough.
1375 */
1376 if (pages && !(flags & FOLL_PIN))
f0818f47 1377 flags |= FOLL_GET;
f0818f47
AA
1378
1379 pages_done = 0;
f0818f47 1380 for (;;) {
64019a2e 1381 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47 1382 vmas, locked);
f04740f5 1383 if (!(flags & FOLL_UNLOCKABLE)) {
f0818f47 1384 /* VM_FAULT_RETRY couldn't trigger, bypass */
f04740f5
JG
1385 pages_done = ret;
1386 break;
1387 }
f0818f47 1388
d9272525 1389 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
f0818f47
AA
1390 if (!*locked) {
1391 BUG_ON(ret < 0);
1392 BUG_ON(ret >= nr_pages);
1393 }
1394
f0818f47
AA
1395 if (ret > 0) {
1396 nr_pages -= ret;
1397 pages_done += ret;
1398 if (!nr_pages)
1399 break;
1400 }
1401 if (*locked) {
96312e61
AA
1402 /*
1403 * VM_FAULT_RETRY didn't trigger or it was a
1404 * FOLL_NOWAIT.
1405 */
f0818f47
AA
1406 if (!pages_done)
1407 pages_done = ret;
1408 break;
1409 }
df17277b
MR
1410 /*
1411 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1412 * For the prefault case (!pages) we only update counts.
1413 */
1414 if (likely(pages))
1415 pages += ret;
f0818f47 1416 start += ret << PAGE_SHIFT;
b2a72dff
JG
1417
1418 /* The lock was temporarily dropped, so we must unlock later */
1419 must_unlock = true;
f0818f47 1420
4426e945 1421retry:
f0818f47
AA
1422 /*
1423 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1424 * with both FAULT_FLAG_ALLOW_RETRY and
1425 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
93c5c61d
PX
1426 * by fatal signals of even common signals, depending on
1427 * the caller's request. So we need to check it before we
4426e945 1428 * start trying again otherwise it can loop forever.
f0818f47 1429 */
93c5c61d 1430 if (gup_signal_pending(flags)) {
ae46d2aa
HD
1431 if (!pages_done)
1432 pages_done = -EINTR;
4426e945 1433 break;
ae46d2aa 1434 }
4426e945 1435
d8ed45c5 1436 ret = mmap_read_lock_killable(mm);
71335f37
PX
1437 if (ret) {
1438 BUG_ON(ret > 0);
1439 if (!pages_done)
1440 pages_done = ret;
1441 break;
1442 }
4426e945 1443
c7b6a566 1444 *locked = 1;
64019a2e 1445 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1446 pages, NULL, locked);
1447 if (!*locked) {
1448 /* Continue to retry until we succeeded */
1449 BUG_ON(ret != 0);
1450 goto retry;
1451 }
f0818f47
AA
1452 if (ret != 1) {
1453 BUG_ON(ret > 1);
1454 if (!pages_done)
1455 pages_done = ret;
1456 break;
1457 }
1458 nr_pages--;
1459 pages_done++;
1460 if (!nr_pages)
1461 break;
df17277b
MR
1462 if (likely(pages))
1463 pages++;
f0818f47
AA
1464 start += PAGE_SIZE;
1465 }
b2a72dff 1466 if (must_unlock && *locked) {
f0818f47 1467 /*
b2a72dff
JG
1468 * We either temporarily dropped the lock, or the caller
1469 * requested that we both acquire and drop the lock. Either way,
1470 * we must now unlock, and notify the caller of that state.
f0818f47 1471 */
d8ed45c5 1472 mmap_read_unlock(mm);
f0818f47
AA
1473 *locked = 0;
1474 }
1475 return pages_done;
1476}
1477
d3649f68
CH
1478/**
1479 * populate_vma_page_range() - populate a range of pages in the vma.
1480 * @vma: target vma
1481 * @start: start address
1482 * @end: end address
c1e8d7c6 1483 * @locked: whether the mmap_lock is still held
d3649f68
CH
1484 *
1485 * This takes care of mlocking the pages too if VM_LOCKED is set.
1486 *
0a36f7f8
TY
1487 * Return either number of pages pinned in the vma, or a negative error
1488 * code on error.
d3649f68 1489 *
c1e8d7c6 1490 * vma->vm_mm->mmap_lock must be held.
d3649f68 1491 *
4f6da934 1492 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1493 * be unperturbed.
1494 *
4f6da934
PX
1495 * If @locked is non-NULL, it must held for read only and may be
1496 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1497 */
1498long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1499 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1500{
1501 struct mm_struct *mm = vma->vm_mm;
1502 unsigned long nr_pages = (end - start) / PAGE_SIZE;
9a863a6a 1503 int local_locked = 1;
d3649f68 1504 int gup_flags;
ece369c7 1505 long ret;
d3649f68 1506
be51eb18
ML
1507 VM_BUG_ON(!PAGE_ALIGNED(start));
1508 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1509 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1510 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1511 mmap_assert_locked(mm);
d3649f68 1512
b67bf49c
HD
1513 /*
1514 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1515 * faultin_page() to break COW, so it has no work to do here.
1516 */
d3649f68 1517 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1518 return nr_pages;
1519
1520 gup_flags = FOLL_TOUCH;
d3649f68
CH
1521 /*
1522 * We want to touch writable mappings with a write fault in order
1523 * to break COW, except for shared mappings because these don't COW
1524 * and we would not want to dirty them for nothing.
1525 */
1526 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1527 gup_flags |= FOLL_WRITE;
1528
1529 /*
1530 * We want mlock to succeed for regions that have any permissions
1531 * other than PROT_NONE.
1532 */
3122e80e 1533 if (vma_is_accessible(vma))
d3649f68
CH
1534 gup_flags |= FOLL_FORCE;
1535
f04740f5
JG
1536 if (locked)
1537 gup_flags |= FOLL_UNLOCKABLE;
1538
d3649f68
CH
1539 /*
1540 * We made sure addr is within a VMA, so the following will
1541 * not result in a stack expansion that recurses back here.
1542 */
ece369c7 1543 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
9a863a6a 1544 NULL, NULL, locked ? locked : &local_locked);
ece369c7
HD
1545 lru_add_drain();
1546 return ret;
d3649f68
CH
1547}
1548
4ca9b385
DH
1549/*
1550 * faultin_vma_page_range() - populate (prefault) page tables inside the
1551 * given VMA range readable/writable
1552 *
1553 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1554 *
1555 * @vma: target vma
1556 * @start: start address
1557 * @end: end address
1558 * @write: whether to prefault readable or writable
1559 * @locked: whether the mmap_lock is still held
1560 *
1561 * Returns either number of processed pages in the vma, or a negative error
1562 * code on error (see __get_user_pages()).
1563 *
1564 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
6e4382c7 1565 * covered by the VMA. If it's released, *@locked will be set to 0.
4ca9b385
DH
1566 */
1567long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1568 unsigned long end, bool write, int *locked)
1569{
1570 struct mm_struct *mm = vma->vm_mm;
1571 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1572 int gup_flags;
ece369c7 1573 long ret;
4ca9b385
DH
1574
1575 VM_BUG_ON(!PAGE_ALIGNED(start));
1576 VM_BUG_ON(!PAGE_ALIGNED(end));
1577 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1578 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1579 mmap_assert_locked(mm);
1580
1581 /*
1582 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1583 * the page dirty with FOLL_WRITE -- which doesn't make a
1584 * difference with !FOLL_FORCE, because the page is writable
1585 * in the page table.
1586 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1587 * a poisoned page.
4ca9b385
DH
1588 * !FOLL_FORCE: Require proper access permissions.
1589 */
f04740f5 1590 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
4ca9b385
DH
1591 if (write)
1592 gup_flags |= FOLL_WRITE;
1593
1594 /*
eb2faa51
DH
1595 * We want to report -EINVAL instead of -EFAULT for any permission
1596 * problems or incompatible mappings.
4ca9b385 1597 */
eb2faa51
DH
1598 if (check_vma_flags(vma, gup_flags))
1599 return -EINVAL;
1600
ece369c7 1601 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
4ca9b385 1602 NULL, NULL, locked);
ece369c7
HD
1603 lru_add_drain();
1604 return ret;
4ca9b385
DH
1605}
1606
d3649f68
CH
1607/*
1608 * __mm_populate - populate and/or mlock pages within a range of address space.
1609 *
1610 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1611 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1612 * mmap_lock must not be held.
d3649f68
CH
1613 */
1614int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1615{
1616 struct mm_struct *mm = current->mm;
1617 unsigned long end, nstart, nend;
1618 struct vm_area_struct *vma = NULL;
1619 int locked = 0;
1620 long ret = 0;
1621
1622 end = start + len;
1623
1624 for (nstart = start; nstart < end; nstart = nend) {
1625 /*
1626 * We want to fault in pages for [nstart; end) address range.
1627 * Find first corresponding VMA.
1628 */
1629 if (!locked) {
1630 locked = 1;
d8ed45c5 1631 mmap_read_lock(mm);
c4d1a92d 1632 vma = find_vma_intersection(mm, nstart, end);
d3649f68 1633 } else if (nstart >= vma->vm_end)
c4d1a92d
LH
1634 vma = find_vma_intersection(mm, vma->vm_end, end);
1635
1636 if (!vma)
d3649f68
CH
1637 break;
1638 /*
1639 * Set [nstart; nend) to intersection of desired address
1640 * range with the first VMA. Also, skip undesirable VMA types.
1641 */
1642 nend = min(end, vma->vm_end);
1643 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1644 continue;
1645 if (nstart < vma->vm_start)
1646 nstart = vma->vm_start;
1647 /*
1648 * Now fault in a range of pages. populate_vma_page_range()
1649 * double checks the vma flags, so that it won't mlock pages
1650 * if the vma was already munlocked.
1651 */
1652 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1653 if (ret < 0) {
1654 if (ignore_errors) {
1655 ret = 0;
1656 continue; /* continue at next VMA */
1657 }
1658 break;
1659 }
1660 nend = nstart + ret * PAGE_SIZE;
1661 ret = 0;
1662 }
1663 if (locked)
d8ed45c5 1664 mmap_read_unlock(mm);
d3649f68
CH
1665 return ret; /* 0 or negative error code */
1666}
050a9adc 1667#else /* CONFIG_MMU */
64019a2e 1668static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1669 unsigned long nr_pages, struct page **pages,
1670 struct vm_area_struct **vmas, int *locked,
1671 unsigned int foll_flags)
1672{
1673 struct vm_area_struct *vma;
b2a72dff 1674 bool must_unlock = false;
050a9adc 1675 unsigned long vm_flags;
24dc20c7 1676 long i;
050a9adc 1677
b2a72dff
JG
1678 if (!nr_pages)
1679 return 0;
1680
1681 /*
1682 * The internal caller expects GUP to manage the lock internally and the
1683 * lock must be released when this returns.
1684 */
9a863a6a 1685 if (!*locked) {
b2a72dff
JG
1686 if (mmap_read_lock_killable(mm))
1687 return -EAGAIN;
1688 must_unlock = true;
1689 *locked = 1;
1690 }
1691
050a9adc
CH
1692 /* calculate required read or write permissions.
1693 * If FOLL_FORCE is set, we only require the "MAY" flags.
1694 */
1695 vm_flags = (foll_flags & FOLL_WRITE) ?
1696 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1697 vm_flags &= (foll_flags & FOLL_FORCE) ?
1698 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1699
1700 for (i = 0; i < nr_pages; i++) {
1701 vma = find_vma(mm, start);
1702 if (!vma)
b2a72dff 1703 break;
050a9adc
CH
1704
1705 /* protect what we can, including chardevs */
1706 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1707 !(vm_flags & vma->vm_flags))
b2a72dff 1708 break;
050a9adc
CH
1709
1710 if (pages) {
396a400b 1711 pages[i] = virt_to_page((void *)start);
050a9adc
CH
1712 if (pages[i])
1713 get_page(pages[i]);
1714 }
1715 if (vmas)
1716 vmas[i] = vma;
1717 start = (start + PAGE_SIZE) & PAGE_MASK;
1718 }
1719
b2a72dff
JG
1720 if (must_unlock && *locked) {
1721 mmap_read_unlock(mm);
1722 *locked = 0;
1723 }
050a9adc 1724
050a9adc
CH
1725 return i ? : -EFAULT;
1726}
1727#endif /* !CONFIG_MMU */
d3649f68 1728
bb523b40
AG
1729/**
1730 * fault_in_writeable - fault in userspace address range for writing
1731 * @uaddr: start of address range
1732 * @size: size of address range
1733 *
1734 * Returns the number of bytes not faulted in (like copy_to_user() and
1735 * copy_from_user()).
1736 */
1737size_t fault_in_writeable(char __user *uaddr, size_t size)
1738{
1739 char __user *start = uaddr, *end;
1740
1741 if (unlikely(size == 0))
1742 return 0;
677b2a8c
CL
1743 if (!user_write_access_begin(uaddr, size))
1744 return size;
bb523b40 1745 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1746 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1747 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1748 }
1749 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1750 if (unlikely(end < start))
1751 end = NULL;
1752 while (uaddr != end) {
677b2a8c 1753 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1754 uaddr += PAGE_SIZE;
1755 }
1756
1757out:
677b2a8c 1758 user_write_access_end();
bb523b40
AG
1759 if (size > uaddr - start)
1760 return size - (uaddr - start);
1761 return 0;
1762}
1763EXPORT_SYMBOL(fault_in_writeable);
1764
da32b581
CM
1765/**
1766 * fault_in_subpage_writeable - fault in an address range for writing
1767 * @uaddr: start of address range
1768 * @size: size of address range
1769 *
1770 * Fault in a user address range for writing while checking for permissions at
1771 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1772 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1773 *
1774 * Returns the number of bytes not faulted in (like copy_to_user() and
1775 * copy_from_user()).
1776 */
1777size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1778{
1779 size_t faulted_in;
1780
1781 /*
1782 * Attempt faulting in at page granularity first for page table
1783 * permission checking. The arch-specific probe_subpage_writeable()
1784 * functions may not check for this.
1785 */
1786 faulted_in = size - fault_in_writeable(uaddr, size);
1787 if (faulted_in)
1788 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1789
1790 return size - faulted_in;
1791}
1792EXPORT_SYMBOL(fault_in_subpage_writeable);
1793
cdd591fc
AG
1794/*
1795 * fault_in_safe_writeable - fault in an address range for writing
1796 * @uaddr: start of address range
1797 * @size: length of address range
1798 *
fe673d3f
LT
1799 * Faults in an address range for writing. This is primarily useful when we
1800 * already know that some or all of the pages in the address range aren't in
1801 * memory.
cdd591fc 1802 *
fe673d3f 1803 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
1804 *
1805 * Note that we don't pin or otherwise hold the pages referenced that we fault
1806 * in. There's no guarantee that they'll stay in memory for any duration of
1807 * time.
1808 *
1809 * Returns the number of bytes not faulted in, like copy_to_user() and
1810 * copy_from_user().
1811 */
1812size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1813{
fe673d3f 1814 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 1815 struct mm_struct *mm = current->mm;
fe673d3f 1816 bool unlocked = false;
cdd591fc 1817
fe673d3f
LT
1818 if (unlikely(size == 0))
1819 return 0;
cdd591fc 1820 end = PAGE_ALIGN(start + size);
fe673d3f 1821 if (end < start)
cdd591fc 1822 end = 0;
cdd591fc 1823
fe673d3f
LT
1824 mmap_read_lock(mm);
1825 do {
1826 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 1827 break;
fe673d3f
LT
1828 start = (start + PAGE_SIZE) & PAGE_MASK;
1829 } while (start != end);
1830 mmap_read_unlock(mm);
1831
1832 if (size > (unsigned long)uaddr - start)
1833 return size - ((unsigned long)uaddr - start);
1834 return 0;
cdd591fc
AG
1835}
1836EXPORT_SYMBOL(fault_in_safe_writeable);
1837
bb523b40
AG
1838/**
1839 * fault_in_readable - fault in userspace address range for reading
1840 * @uaddr: start of user address range
1841 * @size: size of user address range
1842 *
1843 * Returns the number of bytes not faulted in (like copy_to_user() and
1844 * copy_from_user()).
1845 */
1846size_t fault_in_readable(const char __user *uaddr, size_t size)
1847{
1848 const char __user *start = uaddr, *end;
1849 volatile char c;
1850
1851 if (unlikely(size == 0))
1852 return 0;
677b2a8c
CL
1853 if (!user_read_access_begin(uaddr, size))
1854 return size;
bb523b40 1855 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1856 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1857 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1858 }
1859 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1860 if (unlikely(end < start))
1861 end = NULL;
1862 while (uaddr != end) {
677b2a8c 1863 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1864 uaddr += PAGE_SIZE;
1865 }
1866
1867out:
677b2a8c 1868 user_read_access_end();
bb523b40
AG
1869 (void)c;
1870 if (size > uaddr - start)
1871 return size - (uaddr - start);
1872 return 0;
1873}
1874EXPORT_SYMBOL(fault_in_readable);
1875
8f942eea
JH
1876/**
1877 * get_dump_page() - pin user page in memory while writing it to core dump
1878 * @addr: user address
1879 *
1880 * Returns struct page pointer of user page pinned for dump,
1881 * to be freed afterwards by put_page().
1882 *
1883 * Returns NULL on any kind of failure - a hole must then be inserted into
1884 * the corefile, to preserve alignment with its headers; and also returns
1885 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1886 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1887 *
7f3bfab5 1888 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1889 */
1890#ifdef CONFIG_ELF_CORE
1891struct page *get_dump_page(unsigned long addr)
1892{
8f942eea 1893 struct page *page;
b2a72dff 1894 int locked = 0;
7f3bfab5 1895 int ret;
8f942eea 1896
b2a72dff
JG
1897 ret = __get_user_pages_locked(current->mm, addr, 1, &page, NULL,
1898 &locked,
7f3bfab5 1899 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
7f3bfab5 1900 return (ret == 1) ? page : NULL;
8f942eea
JH
1901}
1902#endif /* CONFIG_ELF_CORE */
1903
d1e153fe 1904#ifdef CONFIG_MIGRATION
f68749ec 1905/*
67e139b0 1906 * Returns the number of collected pages. Return value is always >= 0.
f68749ec 1907 */
67e139b0
AP
1908static unsigned long collect_longterm_unpinnable_pages(
1909 struct list_head *movable_page_list,
1910 unsigned long nr_pages,
1911 struct page **pages)
9a4e9f3b 1912{
67e139b0 1913 unsigned long i, collected = 0;
1b7f7e58 1914 struct folio *prev_folio = NULL;
67e139b0 1915 bool drain_allow = true;
9a4e9f3b 1916
83c02c23 1917 for (i = 0; i < nr_pages; i++) {
1b7f7e58 1918 struct folio *folio = page_folio(pages[i]);
f9f38f78 1919
1b7f7e58 1920 if (folio == prev_folio)
83c02c23 1921 continue;
1b7f7e58 1922 prev_folio = folio;
f9f38f78 1923
67e139b0
AP
1924 if (folio_is_longterm_pinnable(folio))
1925 continue;
b05a79d4 1926
67e139b0 1927 collected++;
b05a79d4 1928
67e139b0 1929 if (folio_is_device_coherent(folio))
f9f38f78
CH
1930 continue;
1931
1b7f7e58 1932 if (folio_test_hugetlb(folio)) {
6aa3a920 1933 isolate_hugetlb(folio, movable_page_list);
f9f38f78
CH
1934 continue;
1935 }
9a4e9f3b 1936
1b7f7e58 1937 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
1938 lru_add_drain_all();
1939 drain_allow = false;
1940 }
1941
aa1e6a93 1942 if (folio_isolate_lru(folio))
f9f38f78 1943 continue;
67e139b0
AP
1944
1945 list_add_tail(&folio->lru, movable_page_list);
1b7f7e58
MWO
1946 node_stat_mod_folio(folio,
1947 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1948 folio_nr_pages(folio));
9a4e9f3b
AK
1949 }
1950
67e139b0
AP
1951 return collected;
1952}
1953
1954/*
1955 * Unpins all pages and migrates device coherent pages and movable_page_list.
1956 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1957 * (or partial success).
1958 */
1959static int migrate_longterm_unpinnable_pages(
1960 struct list_head *movable_page_list,
1961 unsigned long nr_pages,
1962 struct page **pages)
1963{
1964 int ret;
1965 unsigned long i;
6e7f34eb 1966
b05a79d4 1967 for (i = 0; i < nr_pages; i++) {
67e139b0
AP
1968 struct folio *folio = page_folio(pages[i]);
1969
1970 if (folio_is_device_coherent(folio)) {
1971 /*
1972 * Migration will fail if the page is pinned, so convert
1973 * the pin on the source page to a normal reference.
1974 */
1975 pages[i] = NULL;
1976 folio_get(folio);
1977 gup_put_folio(folio, 1, FOLL_PIN);
1978
1979 if (migrate_device_coherent_page(&folio->page)) {
1980 ret = -EBUSY;
1981 goto err;
1982 }
1983
b05a79d4 1984 continue;
67e139b0 1985 }
b05a79d4 1986
67e139b0
AP
1987 /*
1988 * We can't migrate pages with unexpected references, so drop
1989 * the reference obtained by __get_user_pages_locked().
1990 * Migrating pages have been added to movable_page_list after
1991 * calling folio_isolate_lru() which takes a reference so the
1992 * page won't be freed if it's migrating.
1993 */
f6d299ec 1994 unpin_user_page(pages[i]);
67e139b0 1995 pages[i] = NULL;
f68749ec 1996 }
f9f38f78 1997
67e139b0 1998 if (!list_empty(movable_page_list)) {
f9f38f78
CH
1999 struct migration_target_control mtc = {
2000 .nid = NUMA_NO_NODE,
2001 .gfp_mask = GFP_USER | __GFP_NOWARN,
2002 };
2003
67e139b0
AP
2004 if (migrate_pages(movable_page_list, alloc_migration_target,
2005 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2006 MR_LONGTERM_PIN, NULL)) {
f9f38f78 2007 ret = -ENOMEM;
67e139b0
AP
2008 goto err;
2009 }
9a4e9f3b
AK
2010 }
2011
67e139b0
AP
2012 putback_movable_pages(movable_page_list);
2013
2014 return -EAGAIN;
2015
2016err:
2017 for (i = 0; i < nr_pages; i++)
2018 if (pages[i])
2019 unpin_user_page(pages[i]);
2020 putback_movable_pages(movable_page_list);
24a95998 2021
67e139b0
AP
2022 return ret;
2023}
2024
2025/*
2026 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2027 * pages in the range are required to be pinned via FOLL_PIN, before calling
2028 * this routine.
2029 *
2030 * If any pages in the range are not allowed to be pinned, then this routine
2031 * will migrate those pages away, unpin all the pages in the range and return
2032 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2033 * call this routine again.
2034 *
2035 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2036 * The caller should give up, and propagate the error back up the call stack.
2037 *
2038 * If everything is OK and all pages in the range are allowed to be pinned, then
2039 * this routine leaves all pages pinned and returns zero for success.
2040 */
2041static long check_and_migrate_movable_pages(unsigned long nr_pages,
2042 struct page **pages)
2043{
2044 unsigned long collected;
2045 LIST_HEAD(movable_page_list);
2046
2047 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2048 nr_pages, pages);
2049 if (!collected)
2050 return 0;
2051
2052 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2053 pages);
9a4e9f3b
AK
2054}
2055#else
f68749ec 2056static long check_and_migrate_movable_pages(unsigned long nr_pages,
f6d299ec 2057 struct page **pages)
9a4e9f3b 2058{
24a95998 2059 return 0;
9a4e9f3b 2060}
d1e153fe 2061#endif /* CONFIG_MIGRATION */
9a4e9f3b 2062
2bb6d283 2063/*
932f4a63
IW
2064 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2065 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 2066 */
64019a2e 2067static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
2068 unsigned long start,
2069 unsigned long nr_pages,
2070 struct page **pages,
2071 struct vm_area_struct **vmas,
53b2d09b 2072 int *locked,
932f4a63 2073 unsigned int gup_flags)
2bb6d283 2074{
f68749ec 2075 unsigned int flags;
24a95998 2076 long rc, nr_pinned_pages;
2bb6d283 2077
f68749ec
PT
2078 if (!(gup_flags & FOLL_LONGTERM))
2079 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
53b2d09b 2080 locked, gup_flags);
67e139b0 2081
f68749ec
PT
2082 flags = memalloc_pin_save();
2083 do {
24a95998 2084 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
53b2d09b 2085 pages, vmas, locked,
24a95998
AP
2086 gup_flags);
2087 if (nr_pinned_pages <= 0) {
2088 rc = nr_pinned_pages;
f68749ec 2089 break;
24a95998 2090 }
d64e2dbc
JG
2091
2092 /* FOLL_LONGTERM implies FOLL_PIN */
f6d299ec 2093 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
24a95998 2094 } while (rc == -EAGAIN);
f68749ec 2095 memalloc_pin_restore(flags);
24a95998 2096 return rc ? rc : nr_pinned_pages;
2bb6d283 2097}
932f4a63 2098
d64e2dbc
JG
2099/*
2100 * Check that the given flags are valid for the exported gup/pup interface, and
2101 * update them with the required flags that the caller must have set.
2102 */
2103static bool is_valid_gup_args(struct page **pages, struct vm_area_struct **vmas,
2104 int *locked, unsigned int *gup_flags_p,
2105 unsigned int to_set)
447f3e45 2106{
d64e2dbc
JG
2107 unsigned int gup_flags = *gup_flags_p;
2108
447f3e45 2109 /*
d64e2dbc
JG
2110 * These flags not allowed to be specified externally to the gup
2111 * interfaces:
2112 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2113 * - FOLL_REMOTE is internal only and used on follow_page()
f04740f5 2114 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
447f3e45 2115 */
f04740f5 2116 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
d64e2dbc
JG
2117 FOLL_REMOTE | FOLL_FAST_ONLY)))
2118 return false;
2119
2120 gup_flags |= to_set;
f04740f5
JG
2121 if (locked) {
2122 /* At the external interface locked must be set */
2123 if (WARN_ON_ONCE(*locked != 1))
2124 return false;
2125
2126 gup_flags |= FOLL_UNLOCKABLE;
2127 }
d64e2dbc
JG
2128
2129 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2130 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2131 (FOLL_PIN | FOLL_GET)))
2132 return false;
2133
2134 /* LONGTERM can only be specified when pinning */
2135 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2136 return false;
2137
2138 /* Pages input must be given if using GET/PIN */
2139 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
447f3e45 2140 return false;
d64e2dbc 2141
d64e2dbc
JG
2142 /* We want to allow the pgmap to be hot-unplugged at all times */
2143 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2144 (gup_flags & FOLL_PCI_P2PDMA)))
2145 return false;
2146
447f3e45 2147 /*
d64e2dbc
JG
2148 * Can't use VMAs with locked, as locked allows GUP to unlock
2149 * which invalidates the vmas array
447f3e45 2150 */
f04740f5 2151 if (WARN_ON_ONCE(vmas && (gup_flags & FOLL_UNLOCKABLE)))
447f3e45
BS
2152 return false;
2153
d64e2dbc 2154 *gup_flags_p = gup_flags;
447f3e45
BS
2155 return true;
2156}
2157
22bf29b6 2158#ifdef CONFIG_MMU
adc8cb40 2159/**
c4237f8b 2160 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2161 * @mm: mm_struct of target mm
2162 * @start: starting user address
2163 * @nr_pages: number of pages from start to pin
2164 * @gup_flags: flags modifying lookup behaviour
2165 * @pages: array that receives pointers to the pages pinned.
2166 * Should be at least nr_pages long. Or NULL, if caller
2167 * only intends to ensure the pages are faulted in.
2168 * @vmas: array of pointers to vmas corresponding to each page.
2169 * Or NULL if the caller does not require them.
2170 * @locked: pointer to lock flag indicating whether lock is held and
2171 * subsequently whether VM_FAULT_RETRY functionality can be
2172 * utilised. Lock must initially be held.
2173 *
2174 * Returns either number of pages pinned (which may be less than the
2175 * number requested), or an error. Details about the return value:
2176 *
2177 * -- If nr_pages is 0, returns 0.
2178 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2179 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2180 * pages pinned. Again, this may be less than nr_pages.
2181 *
2182 * The caller is responsible for releasing returned @pages, via put_page().
2183 *
c1e8d7c6 2184 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 2185 *
c1e8d7c6 2186 * Must be called with mmap_lock held for read or write.
c4237f8b 2187 *
adc8cb40
SJ
2188 * get_user_pages_remote walks a process's page tables and takes a reference
2189 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2190 * instant. That is, it takes the page that would be accessed if a user
2191 * thread accesses the given user virtual address at that instant.
2192 *
2193 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2194 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
2195 * page there in some cases (eg. if mmapped pagecache has been invalidated
2196 * and subsequently re faulted). However it does guarantee that the page
2197 * won't be freed completely. And mostly callers simply care that the page
2198 * contains data that was valid *at some point in time*. Typically, an IO
2199 * or similar operation cannot guarantee anything stronger anyway because
2200 * locks can't be held over the syscall boundary.
2201 *
2202 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2203 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2204 * be called after the page is finished with, and before put_page is called.
2205 *
adc8cb40
SJ
2206 * get_user_pages_remote is typically used for fewer-copy IO operations,
2207 * to get a handle on the memory by some means other than accesses
2208 * via the user virtual addresses. The pages may be submitted for
2209 * DMA to devices or accessed via their kernel linear mapping (via the
2210 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2211 *
2212 * See also get_user_pages_fast, for performance critical applications.
2213 *
adc8cb40 2214 * get_user_pages_remote should be phased out in favor of
c4237f8b 2215 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2216 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2217 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2218 */
64019a2e 2219long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2220 unsigned long start, unsigned long nr_pages,
2221 unsigned int gup_flags, struct page **pages,
2222 struct vm_area_struct **vmas, int *locked)
2223{
9a863a6a
JG
2224 int local_locked = 1;
2225
d64e2dbc
JG
2226 if (!is_valid_gup_args(pages, vmas, locked, &gup_flags,
2227 FOLL_TOUCH | FOLL_REMOTE))
eddb1c22
JH
2228 return -EINVAL;
2229
9a863a6a
JG
2230 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2231 locked ? locked : &local_locked,
d64e2dbc 2232 gup_flags);
c4237f8b
JH
2233}
2234EXPORT_SYMBOL(get_user_pages_remote);
2235
eddb1c22 2236#else /* CONFIG_MMU */
64019a2e 2237long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2238 unsigned long start, unsigned long nr_pages,
2239 unsigned int gup_flags, struct page **pages,
2240 struct vm_area_struct **vmas, int *locked)
2241{
2242 return 0;
2243}
2244#endif /* !CONFIG_MMU */
2245
adc8cb40
SJ
2246/**
2247 * get_user_pages() - pin user pages in memory
2248 * @start: starting user address
2249 * @nr_pages: number of pages from start to pin
2250 * @gup_flags: flags modifying lookup behaviour
2251 * @pages: array that receives pointers to the pages pinned.
2252 * Should be at least nr_pages long. Or NULL, if caller
2253 * only intends to ensure the pages are faulted in.
2254 * @vmas: array of pointers to vmas corresponding to each page.
2255 * Or NULL if the caller does not require them.
2256 *
64019a2e
PX
2257 * This is the same as get_user_pages_remote(), just with a less-flexible
2258 * calling convention where we assume that the mm being operated on belongs to
2259 * the current task, and doesn't allow passing of a locked parameter. We also
2260 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2261 */
2262long get_user_pages(unsigned long start, unsigned long nr_pages,
2263 unsigned int gup_flags, struct page **pages,
2264 struct vm_area_struct **vmas)
2265{
9a863a6a
JG
2266 int locked = 1;
2267
d64e2dbc 2268 if (!is_valid_gup_args(pages, vmas, NULL, &gup_flags, FOLL_TOUCH))
eddb1c22
JH
2269 return -EINVAL;
2270
afa3c33e 2271 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
9a863a6a 2272 vmas, &locked, gup_flags);
932f4a63
IW
2273}
2274EXPORT_SYMBOL(get_user_pages);
2bb6d283 2275
acc3c8d1 2276/*
d3649f68 2277 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2278 *
3e4e28c5 2279 * mmap_read_lock(mm);
64019a2e 2280 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2281 * mmap_read_unlock(mm);
d3649f68
CH
2282 *
2283 * with:
2284 *
64019a2e 2285 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2286 *
2287 * It is functionally equivalent to get_user_pages_fast so
2288 * get_user_pages_fast should be used instead if specific gup_flags
2289 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2290 */
d3649f68
CH
2291long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2292 struct page **pages, unsigned int gup_flags)
acc3c8d1 2293{
b2a72dff 2294 int locked = 0;
acc3c8d1 2295
f04740f5
JG
2296 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
2297 FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc
JG
2298 return -EINVAL;
2299
afa3c33e 2300 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
d64e2dbc 2301 NULL, &locked, gup_flags);
4bbd4c77 2302}
d3649f68 2303EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2304
2305/*
67a929e0 2306 * Fast GUP
2667f50e
SC
2307 *
2308 * get_user_pages_fast attempts to pin user pages by walking the page
2309 * tables directly and avoids taking locks. Thus the walker needs to be
2310 * protected from page table pages being freed from under it, and should
2311 * block any THP splits.
2312 *
2313 * One way to achieve this is to have the walker disable interrupts, and
2314 * rely on IPIs from the TLB flushing code blocking before the page table
2315 * pages are freed. This is unsuitable for architectures that do not need
2316 * to broadcast an IPI when invalidating TLBs.
2317 *
2318 * Another way to achieve this is to batch up page table containing pages
2319 * belonging to more than one mm_user, then rcu_sched a callback to free those
2320 * pages. Disabling interrupts will allow the fast_gup walker to both block
2321 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2322 * (which is a relatively rare event). The code below adopts this strategy.
2323 *
2324 * Before activating this code, please be aware that the following assumptions
2325 * are currently made:
2326 *
ff2e6d72 2327 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2328 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2329 *
2667f50e
SC
2330 * *) ptes can be read atomically by the architecture.
2331 *
2332 * *) access_ok is sufficient to validate userspace address ranges.
2333 *
2334 * The last two assumptions can be relaxed by the addition of helper functions.
2335 *
2336 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2337 */
67a929e0 2338#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2339
790c7369 2340static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2341 unsigned int flags,
790c7369 2342 struct page **pages)
b59f65fa
KS
2343{
2344 while ((*nr) - nr_start) {
2345 struct page *page = pages[--(*nr)];
2346
2347 ClearPageReferenced(page);
3faa52c0
JH
2348 if (flags & FOLL_PIN)
2349 unpin_user_page(page);
2350 else
2351 put_page(page);
b59f65fa
KS
2352 }
2353}
2354
3010a5ea 2355#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
70cbc3cc
YS
2356/*
2357 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2358 * operations.
2359 *
2360 * To pin the page, fast-gup needs to do below in order:
2361 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2362 *
2363 * For the rest of pgtable operations where pgtable updates can be racy
2364 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2365 * is pinned.
2366 *
2367 * Above will work for all pte-level operations, including THP split.
2368 *
2369 * For THP collapse, it's a bit more complicated because fast-gup may be
2370 * walking a pgtable page that is being freed (pte is still valid but pmd
2371 * can be cleared already). To avoid race in such condition, we need to
2372 * also check pmd here to make sure pmd doesn't change (corresponds to
2373 * pmdp_collapse_flush() in the THP collapse code path).
2374 */
2375static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2376 unsigned long end, unsigned int flags,
2377 struct page **pages, int *nr)
2667f50e 2378{
b59f65fa
KS
2379 struct dev_pagemap *pgmap = NULL;
2380 int nr_start = *nr, ret = 0;
2667f50e 2381 pte_t *ptep, *ptem;
2667f50e
SC
2382
2383 ptem = ptep = pte_offset_map(&pmd, addr);
2384 do {
2a4a06da 2385 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2386 struct page *page;
2387 struct folio *folio;
2667f50e 2388
0cf45986 2389 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
e7884f8e
KS
2390 goto pte_unmap;
2391
b798bec4 2392 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2393 goto pte_unmap;
2394
b59f65fa 2395 if (pte_devmap(pte)) {
7af75561
IW
2396 if (unlikely(flags & FOLL_LONGTERM))
2397 goto pte_unmap;
2398
b59f65fa
KS
2399 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2400 if (unlikely(!pgmap)) {
3b78d834 2401 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2402 goto pte_unmap;
2403 }
2404 } else if (pte_special(pte))
2667f50e
SC
2405 goto pte_unmap;
2406
2407 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2408 page = pte_page(pte);
2409
b0496fe4
MWO
2410 folio = try_grab_folio(page, 1, flags);
2411 if (!folio)
2667f50e
SC
2412 goto pte_unmap;
2413
1507f512 2414 if (unlikely(page_is_secretmem(page))) {
b0496fe4 2415 gup_put_folio(folio, 1, flags);
1507f512
MR
2416 goto pte_unmap;
2417 }
2418
70cbc3cc
YS
2419 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2420 unlikely(pte_val(pte) != pte_val(*ptep))) {
b0496fe4 2421 gup_put_folio(folio, 1, flags);
2667f50e
SC
2422 goto pte_unmap;
2423 }
2424
84209e87 2425 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
a7f22660
DH
2426 gup_put_folio(folio, 1, flags);
2427 goto pte_unmap;
2428 }
2429
f28d4363
CI
2430 /*
2431 * We need to make the page accessible if and only if we are
2432 * going to access its content (the FOLL_PIN case). Please
2433 * see Documentation/core-api/pin_user_pages.rst for
2434 * details.
2435 */
2436 if (flags & FOLL_PIN) {
2437 ret = arch_make_page_accessible(page);
2438 if (ret) {
b0496fe4 2439 gup_put_folio(folio, 1, flags);
f28d4363
CI
2440 goto pte_unmap;
2441 }
2442 }
b0496fe4 2443 folio_set_referenced(folio);
2667f50e
SC
2444 pages[*nr] = page;
2445 (*nr)++;
2667f50e
SC
2446 } while (ptep++, addr += PAGE_SIZE, addr != end);
2447
2448 ret = 1;
2449
2450pte_unmap:
832d7aa0
CH
2451 if (pgmap)
2452 put_dev_pagemap(pgmap);
2667f50e
SC
2453 pte_unmap(ptem);
2454 return ret;
2455}
2456#else
2457
2458/*
2459 * If we can't determine whether or not a pte is special, then fail immediately
2460 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2461 * to be special.
2462 *
2463 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2464 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2465 * useful to have gup_huge_pmd even if we can't operate on ptes.
2466 */
70cbc3cc
YS
2467static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2468 unsigned long end, unsigned int flags,
2469 struct page **pages, int *nr)
2667f50e
SC
2470{
2471 return 0;
2472}
3010a5ea 2473#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2474
17596731 2475#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2476static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2477 unsigned long end, unsigned int flags,
2478 struct page **pages, int *nr)
b59f65fa
KS
2479{
2480 int nr_start = *nr;
2481 struct dev_pagemap *pgmap = NULL;
2482
2483 do {
2484 struct page *page = pfn_to_page(pfn);
2485
2486 pgmap = get_dev_pagemap(pfn, pgmap);
2487 if (unlikely(!pgmap)) {
3b78d834 2488 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2489 break;
b59f65fa 2490 }
4003f107
LG
2491
2492 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2493 undo_dev_pagemap(nr, nr_start, flags, pages);
2494 break;
2495 }
2496
b59f65fa
KS
2497 SetPageReferenced(page);
2498 pages[*nr] = page;
0f089235 2499 if (unlikely(try_grab_page(page, flags))) {
3faa52c0 2500 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2501 break;
3faa52c0 2502 }
b59f65fa
KS
2503 (*nr)++;
2504 pfn++;
2505 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2506
6401c4eb 2507 put_dev_pagemap(pgmap);
20b7fee7 2508 return addr == end;
b59f65fa
KS
2509}
2510
a9b6de77 2511static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2512 unsigned long end, unsigned int flags,
2513 struct page **pages, int *nr)
b59f65fa
KS
2514{
2515 unsigned long fault_pfn;
a9b6de77
DW
2516 int nr_start = *nr;
2517
2518 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2519 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2520 return 0;
b59f65fa 2521
a9b6de77 2522 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2523 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2524 return 0;
2525 }
2526 return 1;
b59f65fa
KS
2527}
2528
a9b6de77 2529static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2530 unsigned long end, unsigned int flags,
2531 struct page **pages, int *nr)
b59f65fa
KS
2532{
2533 unsigned long fault_pfn;
a9b6de77
DW
2534 int nr_start = *nr;
2535
2536 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2537 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2538 return 0;
b59f65fa 2539
a9b6de77 2540 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2541 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2542 return 0;
2543 }
2544 return 1;
b59f65fa
KS
2545}
2546#else
a9b6de77 2547static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2548 unsigned long end, unsigned int flags,
2549 struct page **pages, int *nr)
b59f65fa
KS
2550{
2551 BUILD_BUG();
2552 return 0;
2553}
2554
a9b6de77 2555static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2556 unsigned long end, unsigned int flags,
2557 struct page **pages, int *nr)
b59f65fa
KS
2558{
2559 BUILD_BUG();
2560 return 0;
2561}
2562#endif
2563
a43e9820
JH
2564static int record_subpages(struct page *page, unsigned long addr,
2565 unsigned long end, struct page **pages)
2566{
2567 int nr;
2568
c228afb1
MWO
2569 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2570 pages[nr] = nth_page(page, nr);
a43e9820
JH
2571
2572 return nr;
2573}
2574
cbd34da7
CH
2575#ifdef CONFIG_ARCH_HAS_HUGEPD
2576static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2577 unsigned long sz)
2578{
2579 unsigned long __boundary = (addr + sz) & ~(sz-1);
2580 return (__boundary - 1 < end - 1) ? __boundary : end;
2581}
2582
2583static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2584 unsigned long end, unsigned int flags,
2585 struct page **pages, int *nr)
cbd34da7
CH
2586{
2587 unsigned long pte_end;
09a1626e
MWO
2588 struct page *page;
2589 struct folio *folio;
cbd34da7
CH
2590 pte_t pte;
2591 int refs;
2592
2593 pte_end = (addr + sz) & ~(sz-1);
2594 if (pte_end < end)
2595 end = pte_end;
2596
55ca2263 2597 pte = huge_ptep_get(ptep);
cbd34da7 2598
0cd22afd 2599 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2600 return 0;
2601
2602 /* hugepages are never "special" */
2603 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2604
09a1626e 2605 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
a43e9820 2606 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2607
09a1626e
MWO
2608 folio = try_grab_folio(page, refs, flags);
2609 if (!folio)
cbd34da7 2610 return 0;
cbd34da7
CH
2611
2612 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
09a1626e 2613 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2614 return 0;
2615 }
2616
84209e87 2617 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2618 gup_put_folio(folio, refs, flags);
2619 return 0;
2620 }
2621
a43e9820 2622 *nr += refs;
09a1626e 2623 folio_set_referenced(folio);
cbd34da7
CH
2624 return 1;
2625}
2626
2627static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2628 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2629 struct page **pages, int *nr)
2630{
2631 pte_t *ptep;
2632 unsigned long sz = 1UL << hugepd_shift(hugepd);
2633 unsigned long next;
2634
2635 ptep = hugepte_offset(hugepd, addr, pdshift);
2636 do {
2637 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2638 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2639 return 0;
2640 } while (ptep++, addr = next, addr != end);
2641
2642 return 1;
2643}
2644#else
2645static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2646 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2647 struct page **pages, int *nr)
2648{
2649 return 0;
2650}
2651#endif /* CONFIG_ARCH_HAS_HUGEPD */
2652
2667f50e 2653static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2654 unsigned long end, unsigned int flags,
2655 struct page **pages, int *nr)
2667f50e 2656{
667ed1f7
MWO
2657 struct page *page;
2658 struct folio *folio;
2667f50e
SC
2659 int refs;
2660
b798bec4 2661 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2662 return 0;
2663
7af75561
IW
2664 if (pmd_devmap(orig)) {
2665 if (unlikely(flags & FOLL_LONGTERM))
2666 return 0;
86dfbed4
JH
2667 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2668 pages, nr);
7af75561 2669 }
b59f65fa 2670
c228afb1 2671 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2672 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2673
667ed1f7
MWO
2674 folio = try_grab_folio(page, refs, flags);
2675 if (!folio)
2667f50e 2676 return 0;
2667f50e
SC
2677
2678 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 2679 gup_put_folio(folio, refs, flags);
2667f50e
SC
2680 return 0;
2681 }
2682
84209e87 2683 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2684 gup_put_folio(folio, refs, flags);
2685 return 0;
2686 }
2687
a43e9820 2688 *nr += refs;
667ed1f7 2689 folio_set_referenced(folio);
2667f50e
SC
2690 return 1;
2691}
2692
2693static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2694 unsigned long end, unsigned int flags,
2695 struct page **pages, int *nr)
2667f50e 2696{
83afb52e
MWO
2697 struct page *page;
2698 struct folio *folio;
2667f50e
SC
2699 int refs;
2700
b798bec4 2701 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2702 return 0;
2703
7af75561
IW
2704 if (pud_devmap(orig)) {
2705 if (unlikely(flags & FOLL_LONGTERM))
2706 return 0;
86dfbed4
JH
2707 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2708 pages, nr);
7af75561 2709 }
b59f65fa 2710
c228afb1 2711 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2712 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2713
83afb52e
MWO
2714 folio = try_grab_folio(page, refs, flags);
2715 if (!folio)
2667f50e 2716 return 0;
2667f50e
SC
2717
2718 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 2719 gup_put_folio(folio, refs, flags);
2667f50e
SC
2720 return 0;
2721 }
2722
84209e87 2723 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2724 gup_put_folio(folio, refs, flags);
2725 return 0;
2726 }
2727
a43e9820 2728 *nr += refs;
83afb52e 2729 folio_set_referenced(folio);
2667f50e
SC
2730 return 1;
2731}
2732
f30c59e9 2733static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2734 unsigned long end, unsigned int flags,
f30c59e9
AK
2735 struct page **pages, int *nr)
2736{
2737 int refs;
2d7919a2
MWO
2738 struct page *page;
2739 struct folio *folio;
f30c59e9 2740
b798bec4 2741 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2742 return 0;
2743
b59f65fa 2744 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2745
c228afb1 2746 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2747 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2748
2d7919a2
MWO
2749 folio = try_grab_folio(page, refs, flags);
2750 if (!folio)
f30c59e9 2751 return 0;
f30c59e9
AK
2752
2753 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 2754 gup_put_folio(folio, refs, flags);
f30c59e9
AK
2755 return 0;
2756 }
2757
a43e9820 2758 *nr += refs;
2d7919a2 2759 folio_set_referenced(folio);
f30c59e9
AK
2760 return 1;
2761}
2762
d3f7b1bb 2763static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2764 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2765{
2766 unsigned long next;
2767 pmd_t *pmdp;
2768
d3f7b1bb 2769 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2770 do {
1180e732 2771 pmd_t pmd = pmdp_get_lockless(pmdp);
2667f50e
SC
2772
2773 next = pmd_addr_end(addr, end);
84c3fc4e 2774 if (!pmd_present(pmd))
2667f50e
SC
2775 return 0;
2776
414fd080
YZ
2777 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2778 pmd_devmap(pmd))) {
0cf45986
DH
2779 if (pmd_protnone(pmd) &&
2780 !gup_can_follow_protnone(flags))
2667f50e
SC
2781 return 0;
2782
b798bec4 2783 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2784 pages, nr))
2785 return 0;
2786
f30c59e9
AK
2787 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2788 /*
2789 * architecture have different format for hugetlbfs
2790 * pmd format and THP pmd format
2791 */
2792 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2793 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2794 return 0;
70cbc3cc 2795 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2923117b 2796 return 0;
2667f50e
SC
2797 } while (pmdp++, addr = next, addr != end);
2798
2799 return 1;
2800}
2801
d3f7b1bb 2802static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2803 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2804{
2805 unsigned long next;
2806 pud_t *pudp;
2807
d3f7b1bb 2808 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2809 do {
e37c6982 2810 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2811
2812 next = pud_addr_end(addr, end);
15494520 2813 if (unlikely(!pud_present(pud)))
2667f50e 2814 return 0;
fcd0ccd8 2815 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
b798bec4 2816 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2817 pages, nr))
2818 return 0;
2819 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2820 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2821 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2822 return 0;
d3f7b1bb 2823 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2824 return 0;
2825 } while (pudp++, addr = next, addr != end);
2826
2827 return 1;
2828}
2829
d3f7b1bb 2830static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2831 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2832{
2833 unsigned long next;
2834 p4d_t *p4dp;
2835
d3f7b1bb 2836 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2837 do {
2838 p4d_t p4d = READ_ONCE(*p4dp);
2839
2840 next = p4d_addr_end(addr, end);
2841 if (p4d_none(p4d))
2842 return 0;
2843 BUILD_BUG_ON(p4d_huge(p4d));
2844 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2845 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2846 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2847 return 0;
d3f7b1bb 2848 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2849 return 0;
2850 } while (p4dp++, addr = next, addr != end);
2851
2852 return 1;
2853}
2854
5b65c467 2855static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2856 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2857{
2858 unsigned long next;
2859 pgd_t *pgdp;
2860
2861 pgdp = pgd_offset(current->mm, addr);
2862 do {
2863 pgd_t pgd = READ_ONCE(*pgdp);
2864
2865 next = pgd_addr_end(addr, end);
2866 if (pgd_none(pgd))
2867 return;
2868 if (unlikely(pgd_huge(pgd))) {
b798bec4 2869 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2870 pages, nr))
2871 return;
2872 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2873 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2874 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2875 return;
d3f7b1bb 2876 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2877 return;
2878 } while (pgdp++, addr = next, addr != end);
2879}
050a9adc
CH
2880#else
2881static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2882 unsigned int flags, struct page **pages, int *nr)
2883{
2884}
2885#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2886
2887#ifndef gup_fast_permitted
2888/*
dadbb612 2889 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2890 * we need to fall back to the slow version:
2891 */
26f4c328 2892static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2893{
26f4c328 2894 return true;
5b65c467
KS
2895}
2896#endif
2897
c28b1fc7
JG
2898static unsigned long lockless_pages_from_mm(unsigned long start,
2899 unsigned long end,
2900 unsigned int gup_flags,
2901 struct page **pages)
2902{
2903 unsigned long flags;
2904 int nr_pinned = 0;
57efa1fe 2905 unsigned seq;
c28b1fc7
JG
2906
2907 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2908 !gup_fast_permitted(start, end))
2909 return 0;
2910
57efa1fe
JG
2911 if (gup_flags & FOLL_PIN) {
2912 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2913 if (seq & 1)
2914 return 0;
2915 }
2916
c28b1fc7
JG
2917 /*
2918 * Disable interrupts. The nested form is used, in order to allow full,
2919 * general purpose use of this routine.
2920 *
2921 * With interrupts disabled, we block page table pages from being freed
2922 * from under us. See struct mmu_table_batch comments in
2923 * include/asm-generic/tlb.h for more details.
2924 *
2925 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2926 * that come from THPs splitting.
2927 */
2928 local_irq_save(flags);
2929 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2930 local_irq_restore(flags);
57efa1fe
JG
2931
2932 /*
2933 * When pinning pages for DMA there could be a concurrent write protect
2934 * from fork() via copy_page_range(), in this case always fail fast GUP.
2935 */
2936 if (gup_flags & FOLL_PIN) {
2937 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
b6a2619c 2938 unpin_user_pages_lockless(pages, nr_pinned);
57efa1fe 2939 return 0;
b6a2619c
DH
2940 } else {
2941 sanity_check_pinned_pages(pages, nr_pinned);
57efa1fe
JG
2942 }
2943 }
c28b1fc7
JG
2944 return nr_pinned;
2945}
2946
2947static int internal_get_user_pages_fast(unsigned long start,
2948 unsigned long nr_pages,
eddb1c22
JH
2949 unsigned int gup_flags,
2950 struct page **pages)
2667f50e 2951{
c28b1fc7
JG
2952 unsigned long len, end;
2953 unsigned long nr_pinned;
b2a72dff 2954 int locked = 0;
c28b1fc7 2955 int ret;
2667f50e 2956
f4000fdf 2957 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 2958 FOLL_FORCE | FOLL_PIN | FOLL_GET |
4003f107
LG
2959 FOLL_FAST_ONLY | FOLL_NOFAULT |
2960 FOLL_PCI_P2PDMA)))
817be129
CH
2961 return -EINVAL;
2962
a458b76a
AA
2963 if (gup_flags & FOLL_PIN)
2964 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 2965
f81cd178 2966 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2967 might_lock_read(&current->mm->mmap_lock);
f81cd178 2968
f455c854 2969 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
2970 len = nr_pages << PAGE_SHIFT;
2971 if (check_add_overflow(start, len, &end))
c61611f7 2972 return 0;
96d4f267 2973 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2974 return -EFAULT;
73e10a61 2975
c28b1fc7
JG
2976 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2977 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2978 return nr_pinned;
2667f50e 2979
c28b1fc7
JG
2980 /* Slow path: try to get the remaining pages with get_user_pages */
2981 start += nr_pinned << PAGE_SHIFT;
2982 pages += nr_pinned;
b2a72dff
JG
2983 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
2984 pages, NULL, &locked,
f04740f5 2985 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
c28b1fc7
JG
2986 if (ret < 0) {
2987 /*
2988 * The caller has to unpin the pages we already pinned so
2989 * returning -errno is not an option
2990 */
2991 if (nr_pinned)
2992 return nr_pinned;
2993 return ret;
2667f50e 2994 }
c28b1fc7 2995 return ret + nr_pinned;
2667f50e 2996}
c28b1fc7 2997
dadbb612
SJ
2998/**
2999 * get_user_pages_fast_only() - pin user pages in memory
3000 * @start: starting user address
3001 * @nr_pages: number of pages from start to pin
3002 * @gup_flags: flags modifying pin behaviour
3003 * @pages: array that receives pointers to the pages pinned.
3004 * Should be at least nr_pages long.
3005 *
9e1f0580
JH
3006 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3007 * the regular GUP.
9e1f0580
JH
3008 *
3009 * If the architecture does not support this function, simply return with no
3010 * pages pinned.
3011 *
3012 * Careful, careful! COW breaking can go either way, so a non-write
3013 * access can get ambiguous page results. If you call this function without
3014 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3015 */
dadbb612
SJ
3016int get_user_pages_fast_only(unsigned long start, int nr_pages,
3017 unsigned int gup_flags, struct page **pages)
9e1f0580 3018{
9e1f0580
JH
3019 /*
3020 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3021 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
3022 *
3023 * FOLL_FAST_ONLY is required in order to match the API description of
3024 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 3025 */
d64e2dbc
JG
3026 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
3027 FOLL_GET | FOLL_FAST_ONLY))
3028 return -EINVAL;
9e1f0580 3029
9198a919 3030 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
9e1f0580 3031}
dadbb612 3032EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 3033
eddb1c22
JH
3034/**
3035 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
3036 * @start: starting user address
3037 * @nr_pages: number of pages from start to pin
3038 * @gup_flags: flags modifying pin behaviour
3039 * @pages: array that receives pointers to the pages pinned.
3040 * Should be at least nr_pages long.
eddb1c22 3041 *
c1e8d7c6 3042 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
3043 * If not successful, it will fall back to taking the lock and
3044 * calling get_user_pages().
3045 *
3046 * Returns number of pages pinned. This may be fewer than the number requested.
3047 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3048 * -errno.
3049 */
3050int get_user_pages_fast(unsigned long start, int nr_pages,
3051 unsigned int gup_flags, struct page **pages)
3052{
94202f12
JH
3053 /*
3054 * The caller may or may not have explicitly set FOLL_GET; either way is
3055 * OK. However, internally (within mm/gup.c), gup fast variants must set
3056 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3057 * request.
3058 */
d64e2dbc
JG
3059 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_GET))
3060 return -EINVAL;
eddb1c22
JH
3061 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3062}
050a9adc 3063EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
3064
3065/**
3066 * pin_user_pages_fast() - pin user pages in memory without taking locks
3067 *
3faa52c0
JH
3068 * @start: starting user address
3069 * @nr_pages: number of pages from start to pin
3070 * @gup_flags: flags modifying pin behaviour
3071 * @pages: array that receives pointers to the pages pinned.
3072 * Should be at least nr_pages long.
3073 *
3074 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3075 * get_user_pages_fast() for documentation on the function arguments, because
3076 * the arguments here are identical.
3077 *
3078 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3079 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
3080 */
3081int pin_user_pages_fast(unsigned long start, int nr_pages,
3082 unsigned int gup_flags, struct page **pages)
3083{
d64e2dbc 3084 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_PIN))
3faa52c0 3085 return -EINVAL;
3faa52c0 3086 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
3087}
3088EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3089
3090/**
64019a2e 3091 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3092 *
3faa52c0
JH
3093 * @mm: mm_struct of target mm
3094 * @start: starting user address
3095 * @nr_pages: number of pages from start to pin
3096 * @gup_flags: flags modifying lookup behaviour
3097 * @pages: array that receives pointers to the pages pinned.
0768c8de 3098 * Should be at least nr_pages long.
3faa52c0
JH
3099 * @vmas: array of pointers to vmas corresponding to each page.
3100 * Or NULL if the caller does not require them.
3101 * @locked: pointer to lock flag indicating whether lock is held and
3102 * subsequently whether VM_FAULT_RETRY functionality can be
3103 * utilised. Lock must initially be held.
3104 *
3105 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3106 * get_user_pages_remote() for documentation on the function arguments, because
3107 * the arguments here are identical.
3108 *
3109 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3110 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 3111 */
64019a2e 3112long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3113 unsigned long start, unsigned long nr_pages,
3114 unsigned int gup_flags, struct page **pages,
3115 struct vm_area_struct **vmas, int *locked)
3116{
9a863a6a
JG
3117 int local_locked = 1;
3118
d64e2dbc
JG
3119 if (!is_valid_gup_args(pages, vmas, locked, &gup_flags,
3120 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3121 return 0;
9a863a6a
JG
3122 return __gup_longterm_locked(mm, start, nr_pages, pages, vmas,
3123 locked ? locked : &local_locked,
d64e2dbc 3124 gup_flags);
eddb1c22
JH
3125}
3126EXPORT_SYMBOL(pin_user_pages_remote);
3127
3128/**
3129 * pin_user_pages() - pin user pages in memory for use by other devices
3130 *
3faa52c0
JH
3131 * @start: starting user address
3132 * @nr_pages: number of pages from start to pin
3133 * @gup_flags: flags modifying lookup behaviour
3134 * @pages: array that receives pointers to the pages pinned.
0768c8de 3135 * Should be at least nr_pages long.
3faa52c0
JH
3136 * @vmas: array of pointers to vmas corresponding to each page.
3137 * Or NULL if the caller does not require them.
3138 *
3139 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3140 * FOLL_PIN is set.
3141 *
3142 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3143 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
3144 */
3145long pin_user_pages(unsigned long start, unsigned long nr_pages,
3146 unsigned int gup_flags, struct page **pages,
3147 struct vm_area_struct **vmas)
3148{
9a863a6a
JG
3149 int locked = 1;
3150
d64e2dbc
JG
3151 if (!is_valid_gup_args(pages, vmas, NULL, &gup_flags, FOLL_PIN))
3152 return 0;
64019a2e 3153 return __gup_longterm_locked(current->mm, start, nr_pages,
9a863a6a 3154 pages, vmas, &locked, gup_flags);
eddb1c22
JH
3155}
3156EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3157
3158/*
3159 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3160 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3161 * FOLL_PIN and rejects FOLL_GET.
3162 */
3163long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3164 struct page **pages, unsigned int gup_flags)
3165{
b2a72dff 3166 int locked = 0;
91429023 3167
d64e2dbc 3168 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
f04740f5 3169 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc 3170 return 0;
0768c8de 3171
b2a72dff
JG
3172 return __gup_longterm_locked(current->mm, start, nr_pages, pages, NULL,
3173 &locked, gup_flags);
91429023
JH
3174}
3175EXPORT_SYMBOL(pin_user_pages_unlocked);