mm: Rename pmd_read_atomic()
[linux-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
1027e443 21
33a709b2 22#include <asm/mmu_context.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
b6a2619c
DH
32static inline void sanity_check_pinned_pages(struct page **pages,
33 unsigned long npages)
34{
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 return;
37
38 /*
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
42 *
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
49 */
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
53
54 if (!folio_test_anon(folio))
55 continue;
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 else
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
62 }
63}
64
cd1adf1b 65/*
ece1ed7b 66 * Return the folio with ref appropriately incremented,
cd1adf1b 67 * or NULL if that failed.
a707cdd5 68 */
ece1ed7b 69static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 70{
ece1ed7b 71 struct folio *folio;
a707cdd5 72
59409373 73retry:
ece1ed7b
MWO
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 76 return NULL;
ece1ed7b 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
a707cdd5 78 return NULL;
c24d3732
JH
79
80 /*
ece1ed7b
MWO
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
c24d3732 85 * we were given anymore.
ece1ed7b
MWO
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
c24d3732 88 */
ece1ed7b 89 if (unlikely(page_folio(page) != folio)) {
f4f451a1
MS
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
59409373 92 goto retry;
c24d3732
JH
93 }
94
ece1ed7b 95 return folio;
a707cdd5
JH
96}
97
3967db22 98/**
ece1ed7b 99 * try_grab_folio() - Attempt to get or pin a folio.
3967db22 100 * @page: pointer to page to be grabbed
ece1ed7b 101 * @refs: the value to (effectively) add to the folio's refcount
3967db22
JH
102 * @flags: gup flags: these are the FOLL_* flag values.
103 *
3faa52c0 104 * "grab" names in this file mean, "look at flags to decide whether to use
ece1ed7b 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0
JH
106 *
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
110 *
ece1ed7b 111 * FOLL_GET: folio's refcount will be incremented by @refs.
3967db22 112 *
ece1ed7b
MWO
113 * FOLL_PIN on large folios: folio's refcount will be incremented by
114 * @refs, and its compound_pincount will be incremented by @refs.
3967db22 115 *
ece1ed7b 116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
5232c63f 117 * @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0 118 *
ece1ed7b
MWO
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
3faa52c0 123 */
ece1ed7b 124struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
3faa52c0
JH
125{
126 if (flags & FOLL_GET)
ece1ed7b 127 return try_get_folio(page, refs);
3faa52c0 128 else if (flags & FOLL_PIN) {
ece1ed7b
MWO
129 struct folio *folio;
130
df3a0a21 131 /*
d1e153fe
PT
132 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 * right zone, so fail and let the caller fall back to the slow
134 * path.
df3a0a21 135 */
d1e153fe 136 if (unlikely((flags & FOLL_LONGTERM) &&
6077c943 137 !is_longterm_pinnable_page(page)))
df3a0a21
PL
138 return NULL;
139
c24d3732
JH
140 /*
141 * CAUTION: Don't use compound_head() on the page before this
142 * point, the result won't be stable.
143 */
ece1ed7b
MWO
144 folio = try_get_folio(page, refs);
145 if (!folio)
c24d3732
JH
146 return NULL;
147
47e29d32 148 /*
ece1ed7b 149 * When pinning a large folio, use an exact count to track it.
47e29d32 150 *
ece1ed7b
MWO
151 * However, be sure to *also* increment the normal folio
152 * refcount field at least once, so that the folio really
78d9d6ce 153 * is pinned. That's why the refcount from the earlier
ece1ed7b 154 * try_get_folio() is left intact.
47e29d32 155 */
ece1ed7b
MWO
156 if (folio_test_large(folio))
157 atomic_add(refs, folio_pincount_ptr(folio));
c24d3732 158 else
ece1ed7b
MWO
159 folio_ref_add(folio,
160 refs * (GUP_PIN_COUNTING_BIAS - 1));
088b8aa5
DH
161 /*
162 * Adjust the pincount before re-checking the PTE for changes.
163 * This is essentially a smp_mb() and is paired with a memory
164 * barrier in page_try_share_anon_rmap().
165 */
166 smp_mb__after_atomic();
167
ece1ed7b 168 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
47e29d32 169
ece1ed7b 170 return folio;
3faa52c0
JH
171 }
172
173 WARN_ON_ONCE(1);
174 return NULL;
175}
176
d8ddc099 177static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
178{
179 if (flags & FOLL_PIN) {
d8ddc099
MWO
180 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
181 if (folio_test_large(folio))
182 atomic_sub(refs, folio_pincount_ptr(folio));
4509b42c
JG
183 else
184 refs *= GUP_PIN_COUNTING_BIAS;
185 }
186
f4f451a1
MS
187 if (!put_devmap_managed_page_refs(&folio->page, refs))
188 folio_put_refs(folio, refs);
4509b42c
JG
189}
190
3faa52c0
JH
191/**
192 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
5fec0719
MWO
193 * @page: pointer to page to be grabbed
194 * @flags: gup flags: these are the FOLL_* flag values.
3faa52c0
JH
195 *
196 * This might not do anything at all, depending on the flags argument.
197 *
198 * "grab" names in this file mean, "look at flags to decide whether to use
199 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
200 *
3faa52c0 201 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
ece1ed7b 202 * time. Cases: please see the try_grab_folio() documentation, with
3967db22 203 * "refs=1".
3faa52c0
JH
204 *
205 * Return: true for success, or if no action was required (if neither FOLL_PIN
206 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207 * FOLL_PIN was set, but the page could not be grabbed.
208 */
209bool __must_check try_grab_page(struct page *page, unsigned int flags)
210{
5fec0719
MWO
211 struct folio *folio = page_folio(page);
212
c36c04c2 213 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
5fec0719
MWO
214 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
215 return false;
3faa52c0 216
c36c04c2 217 if (flags & FOLL_GET)
5fec0719 218 folio_ref_inc(folio);
c36c04c2 219 else if (flags & FOLL_PIN) {
c36c04c2 220 /*
5fec0719 221 * Similar to try_grab_folio(): be sure to *also*
78d9d6ce
MWO
222 * increment the normal page refcount field at least once,
223 * so that the page really is pinned.
c36c04c2 224 */
5fec0719
MWO
225 if (folio_test_large(folio)) {
226 folio_ref_add(folio, 1);
227 atomic_add(1, folio_pincount_ptr(folio));
8ea2979c 228 } else {
5fec0719 229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
8ea2979c 230 }
c36c04c2 231
5fec0719 232 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
c36c04c2
JH
233 }
234
235 return true;
3faa52c0
JH
236}
237
3faa52c0
JH
238/**
239 * unpin_user_page() - release a dma-pinned page
240 * @page: pointer to page to be released
241 *
242 * Pages that were pinned via pin_user_pages*() must be released via either
243 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
244 * that such pages can be separately tracked and uniquely handled. In
245 * particular, interactions with RDMA and filesystems need special handling.
246 */
247void unpin_user_page(struct page *page)
248{
b6a2619c 249 sanity_check_pinned_pages(&page, 1);
d8ddc099 250 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
251}
252EXPORT_SYMBOL(unpin_user_page);
253
659508f9 254static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 255 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 256{
659508f9
MWO
257 struct page *next = nth_page(start, i);
258 struct folio *folio = page_folio(next);
458a4f78
JM
259 unsigned int nr = 1;
260
659508f9 261 if (folio_test_large(folio))
4c654229 262 nr = min_t(unsigned int, npages - i,
659508f9 263 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 264
458a4f78 265 *ntails = nr;
659508f9 266 return folio;
458a4f78
JM
267}
268
12521c76 269static inline struct folio *gup_folio_next(struct page **list,
28297dbc 270 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 271{
12521c76 272 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
273 unsigned int nr;
274
8745d7f6 275 for (nr = i + 1; nr < npages; nr++) {
12521c76 276 if (page_folio(list[nr]) != folio)
8745d7f6
JM
277 break;
278 }
279
8745d7f6 280 *ntails = nr - i;
12521c76 281 return folio;
8745d7f6
JM
282}
283
fc1d8e7c 284/**
f1f6a7dd 285 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 286 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 287 * @npages: number of pages in the @pages array.
2d15eb31 288 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
289 *
290 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
291 * variants called on that page.
292 *
293 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 294 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
295 * listed as clean. In any case, releases all pages using unpin_user_page(),
296 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 297 *
f1f6a7dd 298 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 299 *
2d15eb31 300 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
301 * required, then the caller should a) verify that this is really correct,
302 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 303 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
304 *
305 */
f1f6a7dd
JH
306void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
307 bool make_dirty)
fc1d8e7c 308{
12521c76
MWO
309 unsigned long i;
310 struct folio *folio;
311 unsigned int nr;
2d15eb31 312
313 if (!make_dirty) {
f1f6a7dd 314 unpin_user_pages(pages, npages);
2d15eb31 315 return;
316 }
317
b6a2619c 318 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
319 for (i = 0; i < npages; i += nr) {
320 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31 321 /*
322 * Checking PageDirty at this point may race with
323 * clear_page_dirty_for_io(), but that's OK. Two key
324 * cases:
325 *
326 * 1) This code sees the page as already dirty, so it
327 * skips the call to set_page_dirty(). That could happen
328 * because clear_page_dirty_for_io() called
329 * page_mkclean(), followed by set_page_dirty().
330 * However, now the page is going to get written back,
331 * which meets the original intention of setting it
332 * dirty, so all is well: clear_page_dirty_for_io() goes
333 * on to call TestClearPageDirty(), and write the page
334 * back.
335 *
336 * 2) This code sees the page as clean, so it calls
337 * set_page_dirty(). The page stays dirty, despite being
338 * written back, so it gets written back again in the
339 * next writeback cycle. This is harmless.
340 */
12521c76
MWO
341 if (!folio_test_dirty(folio)) {
342 folio_lock(folio);
343 folio_mark_dirty(folio);
344 folio_unlock(folio);
345 }
346 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 347 }
fc1d8e7c 348}
f1f6a7dd 349EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 350
458a4f78
JM
351/**
352 * unpin_user_page_range_dirty_lock() - release and optionally dirty
353 * gup-pinned page range
354 *
355 * @page: the starting page of a range maybe marked dirty, and definitely released.
356 * @npages: number of consecutive pages to release.
357 * @make_dirty: whether to mark the pages dirty
358 *
359 * "gup-pinned page range" refers to a range of pages that has had one of the
360 * pin_user_pages() variants called on that page.
361 *
362 * For the page ranges defined by [page .. page+npages], make that range (or
363 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
364 * page range was previously listed as clean.
365 *
366 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
367 * required, then the caller should a) verify that this is really correct,
368 * because _lock() is usually required, and b) hand code it:
369 * set_page_dirty_lock(), unpin_user_page().
370 *
371 */
372void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
373 bool make_dirty)
374{
659508f9
MWO
375 unsigned long i;
376 struct folio *folio;
377 unsigned int nr;
378
379 for (i = 0; i < npages; i += nr) {
380 folio = gup_folio_range_next(page, npages, i, &nr);
381 if (make_dirty && !folio_test_dirty(folio)) {
382 folio_lock(folio);
383 folio_mark_dirty(folio);
384 folio_unlock(folio);
385 }
386 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
387 }
388}
389EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
390
b6a2619c
DH
391static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
392{
393 unsigned long i;
394 struct folio *folio;
395 unsigned int nr;
396
397 /*
398 * Don't perform any sanity checks because we might have raced with
399 * fork() and some anonymous pages might now actually be shared --
400 * which is why we're unpinning after all.
401 */
402 for (i = 0; i < npages; i += nr) {
403 folio = gup_folio_next(pages, npages, i, &nr);
404 gup_put_folio(folio, nr, FOLL_PIN);
405 }
406}
407
fc1d8e7c 408/**
f1f6a7dd 409 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
410 * @pages: array of pages to be marked dirty and released.
411 * @npages: number of pages in the @pages array.
412 *
f1f6a7dd 413 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 414 *
f1f6a7dd 415 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 416 */
f1f6a7dd 417void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 418{
12521c76
MWO
419 unsigned long i;
420 struct folio *folio;
421 unsigned int nr;
fc1d8e7c 422
146608bb
JH
423 /*
424 * If this WARN_ON() fires, then the system *might* be leaking pages (by
425 * leaving them pinned), but probably not. More likely, gup/pup returned
426 * a hard -ERRNO error to the caller, who erroneously passed it here.
427 */
428 if (WARN_ON(IS_ERR_VALUE(npages)))
429 return;
31b912de 430
b6a2619c 431 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
432 for (i = 0; i < npages; i += nr) {
433 folio = gup_folio_next(pages, npages, i, &nr);
434 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 435 }
fc1d8e7c 436}
f1f6a7dd 437EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 438
a458b76a
AA
439/*
440 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
441 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
442 * cache bouncing on large SMP machines for concurrent pinned gups.
443 */
444static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
445{
446 if (!test_bit(MMF_HAS_PINNED, mm_flags))
447 set_bit(MMF_HAS_PINNED, mm_flags);
448}
449
050a9adc 450#ifdef CONFIG_MMU
69e68b4f
KS
451static struct page *no_page_table(struct vm_area_struct *vma,
452 unsigned int flags)
4bbd4c77 453{
69e68b4f
KS
454 /*
455 * When core dumping an enormous anonymous area that nobody
456 * has touched so far, we don't want to allocate unnecessary pages or
457 * page tables. Return error instead of NULL to skip handle_mm_fault,
458 * then get_dump_page() will return NULL to leave a hole in the dump.
459 * But we can only make this optimization where a hole would surely
460 * be zero-filled if handle_mm_fault() actually did handle it.
461 */
a0137f16
AK
462 if ((flags & FOLL_DUMP) &&
463 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
464 return ERR_PTR(-EFAULT);
465 return NULL;
466}
4bbd4c77 467
1027e443
KS
468static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
469 pte_t *pte, unsigned int flags)
470{
1027e443
KS
471 if (flags & FOLL_TOUCH) {
472 pte_t entry = *pte;
473
474 if (flags & FOLL_WRITE)
475 entry = pte_mkdirty(entry);
476 entry = pte_mkyoung(entry);
477
478 if (!pte_same(*pte, entry)) {
479 set_pte_at(vma->vm_mm, address, pte, entry);
480 update_mmu_cache(vma, address, pte);
481 }
482 }
483
484 /* Proper page table entry exists, but no corresponding struct page */
485 return -EEXIST;
486}
487
5535be30
DH
488/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
489static inline bool can_follow_write_pte(pte_t pte, struct page *page,
490 struct vm_area_struct *vma,
491 unsigned int flags)
19be0eaf 492{
5535be30
DH
493 /* If the pte is writable, we can write to the page. */
494 if (pte_write(pte))
495 return true;
496
497 /* Maybe FOLL_FORCE is set to override it? */
498 if (!(flags & FOLL_FORCE))
499 return false;
500
501 /* But FOLL_FORCE has no effect on shared mappings */
502 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
503 return false;
504
505 /* ... or read-only private ones */
506 if (!(vma->vm_flags & VM_MAYWRITE))
507 return false;
508
509 /* ... or already writable ones that just need to take a write fault */
510 if (vma->vm_flags & VM_WRITE)
511 return false;
512
513 /*
514 * See can_change_pte_writable(): we broke COW and could map the page
515 * writable if we have an exclusive anonymous page ...
516 */
517 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
518 return false;
519
520 /* ... and a write-fault isn't required for other reasons. */
521 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
522 return false;
523 return !userfaultfd_pte_wp(vma, pte);
19be0eaf
LT
524}
525
69e68b4f 526static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
527 unsigned long address, pmd_t *pmd, unsigned int flags,
528 struct dev_pagemap **pgmap)
69e68b4f
KS
529{
530 struct mm_struct *mm = vma->vm_mm;
531 struct page *page;
532 spinlock_t *ptl;
533 pte_t *ptep, pte;
f28d4363 534 int ret;
4bbd4c77 535
eddb1c22
JH
536 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
537 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
538 (FOLL_PIN | FOLL_GET)))
539 return ERR_PTR(-EINVAL);
fac35ba7
BW
540
541 /*
542 * Considering PTE level hugetlb, like continuous-PTE hugetlb on
543 * ARM64 architecture.
544 */
545 if (is_vm_hugetlb_page(vma)) {
546 page = follow_huge_pmd_pte(vma, address, flags);
547 if (page)
548 return page;
549 return no_page_table(vma, flags);
550 }
551
69e68b4f 552retry:
4bbd4c77 553 if (unlikely(pmd_bad(*pmd)))
69e68b4f 554 return no_page_table(vma, flags);
4bbd4c77
KS
555
556 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
557 pte = *ptep;
558 if (!pte_present(pte)) {
559 swp_entry_t entry;
560 /*
561 * KSM's break_ksm() relies upon recognizing a ksm page
562 * even while it is being migrated, so for that case we
563 * need migration_entry_wait().
564 */
565 if (likely(!(flags & FOLL_MIGRATION)))
566 goto no_page;
0661a336 567 if (pte_none(pte))
4bbd4c77
KS
568 goto no_page;
569 entry = pte_to_swp_entry(pte);
570 if (!is_migration_entry(entry))
571 goto no_page;
572 pte_unmap_unlock(ptep, ptl);
573 migration_entry_wait(mm, pmd, address);
69e68b4f 574 goto retry;
4bbd4c77 575 }
474098ed 576 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
4bbd4c77 577 goto no_page;
4bbd4c77
KS
578
579 page = vm_normal_page(vma, address, pte);
5535be30
DH
580
581 /*
582 * We only care about anon pages in can_follow_write_pte() and don't
583 * have to worry about pte_devmap() because they are never anon.
584 */
585 if ((flags & FOLL_WRITE) &&
586 !can_follow_write_pte(pte, page, vma, flags)) {
587 page = NULL;
588 goto out;
589 }
590
3faa52c0 591 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 592 /*
3faa52c0
JH
593 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
594 * case since they are only valid while holding the pgmap
595 * reference.
3565fce3 596 */
df06b37f
KB
597 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
598 if (*pgmap)
3565fce3
DW
599 page = pte_page(pte);
600 else
601 goto no_page;
602 } else if (unlikely(!page)) {
1027e443
KS
603 if (flags & FOLL_DUMP) {
604 /* Avoid special (like zero) pages in core dumps */
605 page = ERR_PTR(-EFAULT);
606 goto out;
607 }
608
609 if (is_zero_pfn(pte_pfn(pte))) {
610 page = pte_page(pte);
611 } else {
1027e443
KS
612 ret = follow_pfn_pte(vma, address, ptep, flags);
613 page = ERR_PTR(ret);
614 goto out;
615 }
4bbd4c77
KS
616 }
617
a7f22660
DH
618 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
619 page = ERR_PTR(-EMLINK);
620 goto out;
621 }
b6a2619c
DH
622
623 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
624 !PageAnonExclusive(page), page);
625
3faa52c0
JH
626 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
627 if (unlikely(!try_grab_page(page, flags))) {
628 page = ERR_PTR(-ENOMEM);
629 goto out;
8fde12ca 630 }
f28d4363
CI
631 /*
632 * We need to make the page accessible if and only if we are going
633 * to access its content (the FOLL_PIN case). Please see
634 * Documentation/core-api/pin_user_pages.rst for details.
635 */
636 if (flags & FOLL_PIN) {
637 ret = arch_make_page_accessible(page);
638 if (ret) {
639 unpin_user_page(page);
640 page = ERR_PTR(ret);
641 goto out;
642 }
643 }
4bbd4c77
KS
644 if (flags & FOLL_TOUCH) {
645 if ((flags & FOLL_WRITE) &&
646 !pte_dirty(pte) && !PageDirty(page))
647 set_page_dirty(page);
648 /*
649 * pte_mkyoung() would be more correct here, but atomic care
650 * is needed to avoid losing the dirty bit: it is easier to use
651 * mark_page_accessed().
652 */
653 mark_page_accessed(page);
654 }
1027e443 655out:
4bbd4c77 656 pte_unmap_unlock(ptep, ptl);
4bbd4c77 657 return page;
4bbd4c77
KS
658no_page:
659 pte_unmap_unlock(ptep, ptl);
660 if (!pte_none(pte))
69e68b4f
KS
661 return NULL;
662 return no_page_table(vma, flags);
663}
664
080dbb61
AK
665static struct page *follow_pmd_mask(struct vm_area_struct *vma,
666 unsigned long address, pud_t *pudp,
df06b37f
KB
667 unsigned int flags,
668 struct follow_page_context *ctx)
69e68b4f 669{
68827280 670 pmd_t *pmd, pmdval;
69e68b4f
KS
671 spinlock_t *ptl;
672 struct page *page;
673 struct mm_struct *mm = vma->vm_mm;
674
080dbb61 675 pmd = pmd_offset(pudp, address);
68827280
HY
676 /*
677 * The READ_ONCE() will stabilize the pmdval in a register or
678 * on the stack so that it will stop changing under the code.
679 */
680 pmdval = READ_ONCE(*pmd);
681 if (pmd_none(pmdval))
69e68b4f 682 return no_page_table(vma, flags);
be9d3045 683 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
fac35ba7 684 page = follow_huge_pmd_pte(vma, address, flags);
e66f17ff
NH
685 if (page)
686 return page;
687 return no_page_table(vma, flags);
69e68b4f 688 }
68827280 689 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 690 page = follow_huge_pd(vma, address,
68827280 691 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
692 PMD_SHIFT);
693 if (page)
694 return page;
695 return no_page_table(vma, flags);
696 }
84c3fc4e 697retry:
68827280 698 if (!pmd_present(pmdval)) {
28b0ee3f
LX
699 /*
700 * Should never reach here, if thp migration is not supported;
701 * Otherwise, it must be a thp migration entry.
702 */
703 VM_BUG_ON(!thp_migration_supported() ||
704 !is_pmd_migration_entry(pmdval));
705
84c3fc4e
ZY
706 if (likely(!(flags & FOLL_MIGRATION)))
707 return no_page_table(vma, flags);
28b0ee3f
LX
708
709 pmd_migration_entry_wait(mm, pmd);
68827280
HY
710 pmdval = READ_ONCE(*pmd);
711 /*
712 * MADV_DONTNEED may convert the pmd to null because
c1e8d7c6 713 * mmap_lock is held in read mode
68827280
HY
714 */
715 if (pmd_none(pmdval))
716 return no_page_table(vma, flags);
84c3fc4e
ZY
717 goto retry;
718 }
68827280 719 if (pmd_devmap(pmdval)) {
3565fce3 720 ptl = pmd_lock(mm, pmd);
df06b37f 721 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
722 spin_unlock(ptl);
723 if (page)
724 return page;
725 }
68827280 726 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 728
474098ed 729 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
db08f203
AK
730 return no_page_table(vma, flags);
731
84c3fc4e 732retry_locked:
6742d293 733 ptl = pmd_lock(mm, pmd);
68827280
HY
734 if (unlikely(pmd_none(*pmd))) {
735 spin_unlock(ptl);
736 return no_page_table(vma, flags);
737 }
84c3fc4e
ZY
738 if (unlikely(!pmd_present(*pmd))) {
739 spin_unlock(ptl);
740 if (likely(!(flags & FOLL_MIGRATION)))
741 return no_page_table(vma, flags);
742 pmd_migration_entry_wait(mm, pmd);
743 goto retry_locked;
744 }
6742d293
KS
745 if (unlikely(!pmd_trans_huge(*pmd))) {
746 spin_unlock(ptl);
df06b37f 747 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 748 }
4066c119 749 if (flags & FOLL_SPLIT_PMD) {
6742d293
KS
750 int ret;
751 page = pmd_page(*pmd);
752 if (is_huge_zero_page(page)) {
753 spin_unlock(ptl);
754 ret = 0;
78ddc534 755 split_huge_pmd(vma, pmd, address);
337d9abf
NH
756 if (pmd_trans_unstable(pmd))
757 ret = -EBUSY;
4066c119 758 } else {
bfe7b00d
SL
759 spin_unlock(ptl);
760 split_huge_pmd(vma, pmd, address);
761 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
762 }
763
764 return ret ? ERR_PTR(ret) :
df06b37f 765 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 766 }
6742d293
KS
767 page = follow_trans_huge_pmd(vma, address, pmd, flags);
768 spin_unlock(ptl);
df06b37f 769 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 770 return page;
4bbd4c77
KS
771}
772
080dbb61
AK
773static struct page *follow_pud_mask(struct vm_area_struct *vma,
774 unsigned long address, p4d_t *p4dp,
df06b37f
KB
775 unsigned int flags,
776 struct follow_page_context *ctx)
080dbb61
AK
777{
778 pud_t *pud;
779 spinlock_t *ptl;
780 struct page *page;
781 struct mm_struct *mm = vma->vm_mm;
782
783 pud = pud_offset(p4dp, address);
784 if (pud_none(*pud))
785 return no_page_table(vma, flags);
be9d3045 786 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
787 page = follow_huge_pud(mm, address, pud, flags);
788 if (page)
789 return page;
790 return no_page_table(vma, flags);
791 }
4dc71451
AK
792 if (is_hugepd(__hugepd(pud_val(*pud)))) {
793 page = follow_huge_pd(vma, address,
794 __hugepd(pud_val(*pud)), flags,
795 PUD_SHIFT);
796 if (page)
797 return page;
798 return no_page_table(vma, flags);
799 }
080dbb61
AK
800 if (pud_devmap(*pud)) {
801 ptl = pud_lock(mm, pud);
df06b37f 802 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
803 spin_unlock(ptl);
804 if (page)
805 return page;
806 }
807 if (unlikely(pud_bad(*pud)))
808 return no_page_table(vma, flags);
809
df06b37f 810 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
811}
812
080dbb61
AK
813static struct page *follow_p4d_mask(struct vm_area_struct *vma,
814 unsigned long address, pgd_t *pgdp,
df06b37f
KB
815 unsigned int flags,
816 struct follow_page_context *ctx)
080dbb61
AK
817{
818 p4d_t *p4d;
4dc71451 819 struct page *page;
080dbb61
AK
820
821 p4d = p4d_offset(pgdp, address);
822 if (p4d_none(*p4d))
823 return no_page_table(vma, flags);
824 BUILD_BUG_ON(p4d_huge(*p4d));
825 if (unlikely(p4d_bad(*p4d)))
826 return no_page_table(vma, flags);
827
4dc71451
AK
828 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
829 page = follow_huge_pd(vma, address,
830 __hugepd(p4d_val(*p4d)), flags,
831 P4D_SHIFT);
832 if (page)
833 return page;
834 return no_page_table(vma, flags);
835 }
df06b37f 836 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
837}
838
839/**
840 * follow_page_mask - look up a page descriptor from a user-virtual address
841 * @vma: vm_area_struct mapping @address
842 * @address: virtual address to look up
843 * @flags: flags modifying lookup behaviour
78179556
MR
844 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
845 * pointer to output page_mask
080dbb61
AK
846 *
847 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
848 *
78179556
MR
849 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
850 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
851 *
a7f22660
DH
852 * When getting an anonymous page and the caller has to trigger unsharing
853 * of a shared anonymous page first, -EMLINK is returned. The caller should
854 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
855 * relevant with FOLL_PIN and !FOLL_WRITE.
856 *
78179556
MR
857 * On output, the @ctx->page_mask is set according to the size of the page.
858 *
859 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
860 * an error pointer if there is a mapping to something not represented
861 * by a page descriptor (see also vm_normal_page()).
862 */
a7030aea 863static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 864 unsigned long address, unsigned int flags,
df06b37f 865 struct follow_page_context *ctx)
080dbb61
AK
866{
867 pgd_t *pgd;
868 struct page *page;
869 struct mm_struct *mm = vma->vm_mm;
870
df06b37f 871 ctx->page_mask = 0;
080dbb61
AK
872
873 /* make this handle hugepd */
874 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
875 if (!IS_ERR(page)) {
3faa52c0 876 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
877 return page;
878 }
879
880 pgd = pgd_offset(mm, address);
881
882 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
883 return no_page_table(vma, flags);
884
faaa5b62
AK
885 if (pgd_huge(*pgd)) {
886 page = follow_huge_pgd(mm, address, pgd, flags);
887 if (page)
888 return page;
889 return no_page_table(vma, flags);
890 }
4dc71451
AK
891 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
892 page = follow_huge_pd(vma, address,
893 __hugepd(pgd_val(*pgd)), flags,
894 PGDIR_SHIFT);
895 if (page)
896 return page;
897 return no_page_table(vma, flags);
898 }
faaa5b62 899
df06b37f
KB
900 return follow_p4d_mask(vma, address, pgd, flags, ctx);
901}
902
903struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
904 unsigned int foll_flags)
905{
906 struct follow_page_context ctx = { NULL };
907 struct page *page;
908
1507f512
MR
909 if (vma_is_secretmem(vma))
910 return NULL;
911
8909691b
DH
912 if (foll_flags & FOLL_PIN)
913 return NULL;
914
df06b37f
KB
915 page = follow_page_mask(vma, address, foll_flags, &ctx);
916 if (ctx.pgmap)
917 put_dev_pagemap(ctx.pgmap);
918 return page;
080dbb61
AK
919}
920
f2b495ca
KS
921static int get_gate_page(struct mm_struct *mm, unsigned long address,
922 unsigned int gup_flags, struct vm_area_struct **vma,
923 struct page **page)
924{
925 pgd_t *pgd;
c2febafc 926 p4d_t *p4d;
f2b495ca
KS
927 pud_t *pud;
928 pmd_t *pmd;
929 pte_t *pte;
930 int ret = -EFAULT;
931
932 /* user gate pages are read-only */
933 if (gup_flags & FOLL_WRITE)
934 return -EFAULT;
935 if (address > TASK_SIZE)
936 pgd = pgd_offset_k(address);
937 else
938 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
939 if (pgd_none(*pgd))
940 return -EFAULT;
c2febafc 941 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
942 if (p4d_none(*p4d))
943 return -EFAULT;
c2febafc 944 pud = pud_offset(p4d, address);
b5d1c39f
AL
945 if (pud_none(*pud))
946 return -EFAULT;
f2b495ca 947 pmd = pmd_offset(pud, address);
84c3fc4e 948 if (!pmd_present(*pmd))
f2b495ca
KS
949 return -EFAULT;
950 VM_BUG_ON(pmd_trans_huge(*pmd));
951 pte = pte_offset_map(pmd, address);
952 if (pte_none(*pte))
953 goto unmap;
954 *vma = get_gate_vma(mm);
955 if (!page)
956 goto out;
957 *page = vm_normal_page(*vma, address, *pte);
958 if (!*page) {
959 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
960 goto unmap;
961 *page = pte_page(*pte);
962 }
9fa2dd94 963 if (unlikely(!try_grab_page(*page, gup_flags))) {
8fde12ca
LT
964 ret = -ENOMEM;
965 goto unmap;
966 }
f2b495ca
KS
967out:
968 ret = 0;
969unmap:
970 pte_unmap(pte);
971 return ret;
972}
973
9a95f3cf 974/*
c1e8d7c6
ML
975 * mmap_lock must be held on entry. If @locked != NULL and *@flags
976 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 977 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 978 */
64019a2e 979static int faultin_page(struct vm_area_struct *vma,
a7f22660
DH
980 unsigned long address, unsigned int *flags, bool unshare,
981 int *locked)
16744483 982{
16744483 983 unsigned int fault_flags = 0;
2b740303 984 vm_fault_t ret;
16744483 985
55b8fe70
AG
986 if (*flags & FOLL_NOFAULT)
987 return -EFAULT;
16744483
KS
988 if (*flags & FOLL_WRITE)
989 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
990 if (*flags & FOLL_REMOTE)
991 fault_flags |= FAULT_FLAG_REMOTE;
4f6da934 992 if (locked)
71335f37 993 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
16744483
KS
994 if (*flags & FOLL_NOWAIT)
995 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 996 if (*flags & FOLL_TRIED) {
4426e945
PX
997 /*
998 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
999 * can co-exist
1000 */
234b239b
ALC
1001 fault_flags |= FAULT_FLAG_TRIED;
1002 }
a7f22660
DH
1003 if (unshare) {
1004 fault_flags |= FAULT_FLAG_UNSHARE;
1005 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1006 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1007 }
16744483 1008
bce617ed 1009 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1010
1011 if (ret & VM_FAULT_COMPLETED) {
1012 /*
1013 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1014 * mmap lock in the page fault handler. Sanity check this.
1015 */
1016 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1017 if (locked)
1018 *locked = 0;
1019 /*
1020 * We should do the same as VM_FAULT_RETRY, but let's not
1021 * return -EBUSY since that's not reflecting the reality of
1022 * what has happened - we've just fully completed a page
1023 * fault, with the mmap lock released. Use -EAGAIN to show
1024 * that we want to take the mmap lock _again_.
1025 */
1026 return -EAGAIN;
1027 }
1028
16744483 1029 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1030 int err = vm_fault_to_errno(ret, *flags);
1031
1032 if (err)
1033 return err;
16744483
KS
1034 BUG();
1035 }
1036
16744483 1037 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
1038 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1039 *locked = 0;
16744483
KS
1040 return -EBUSY;
1041 }
1042
16744483
KS
1043 return 0;
1044}
1045
fa5bb209
KS
1046static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1047{
1048 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
1049 int write = (gup_flags & FOLL_WRITE);
1050 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
1051
1052 if (vm_flags & (VM_IO | VM_PFNMAP))
1053 return -EFAULT;
1054
7f7ccc2c
WT
1055 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1056 return -EFAULT;
1057
52650c8b
JG
1058 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1059 return -EOPNOTSUPP;
1060
1507f512
MR
1061 if (vma_is_secretmem(vma))
1062 return -EFAULT;
1063
1b2ee126 1064 if (write) {
fa5bb209
KS
1065 if (!(vm_flags & VM_WRITE)) {
1066 if (!(gup_flags & FOLL_FORCE))
1067 return -EFAULT;
1068 /*
1069 * We used to let the write,force case do COW in a
1070 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1071 * set a breakpoint in a read-only mapping of an
1072 * executable, without corrupting the file (yet only
1073 * when that file had been opened for writing!).
1074 * Anon pages in shared mappings are surprising: now
1075 * just reject it.
1076 */
46435364 1077 if (!is_cow_mapping(vm_flags))
fa5bb209 1078 return -EFAULT;
fa5bb209
KS
1079 }
1080 } else if (!(vm_flags & VM_READ)) {
1081 if (!(gup_flags & FOLL_FORCE))
1082 return -EFAULT;
1083 /*
1084 * Is there actually any vma we can reach here which does not
1085 * have VM_MAYREAD set?
1086 */
1087 if (!(vm_flags & VM_MAYREAD))
1088 return -EFAULT;
1089 }
d61172b4
DH
1090 /*
1091 * gups are always data accesses, not instruction
1092 * fetches, so execute=false here
1093 */
1094 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1095 return -EFAULT;
fa5bb209
KS
1096 return 0;
1097}
1098
4bbd4c77
KS
1099/**
1100 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1101 * @mm: mm_struct of target mm
1102 * @start: starting user address
1103 * @nr_pages: number of pages from start to pin
1104 * @gup_flags: flags modifying pin behaviour
1105 * @pages: array that receives pointers to the pages pinned.
1106 * Should be at least nr_pages long. Or NULL, if caller
1107 * only intends to ensure the pages are faulted in.
1108 * @vmas: array of pointers to vmas corresponding to each page.
1109 * Or NULL if the caller does not require them.
c1e8d7c6 1110 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1111 *
d2dfbe47
LX
1112 * Returns either number of pages pinned (which may be less than the
1113 * number requested), or an error. Details about the return value:
1114 *
1115 * -- If nr_pages is 0, returns 0.
1116 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1117 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1118 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1119 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1120 *
1121 * The caller is responsible for releasing returned @pages, via put_page().
1122 *
c1e8d7c6 1123 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 1124 *
c1e8d7c6 1125 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1126 *
1127 * __get_user_pages walks a process's page tables and takes a reference to
1128 * each struct page that each user address corresponds to at a given
1129 * instant. That is, it takes the page that would be accessed if a user
1130 * thread accesses the given user virtual address at that instant.
1131 *
1132 * This does not guarantee that the page exists in the user mappings when
1133 * __get_user_pages returns, and there may even be a completely different
1134 * page there in some cases (eg. if mmapped pagecache has been invalidated
1135 * and subsequently re faulted). However it does guarantee that the page
1136 * won't be freed completely. And mostly callers simply care that the page
1137 * contains data that was valid *at some point in time*. Typically, an IO
1138 * or similar operation cannot guarantee anything stronger anyway because
1139 * locks can't be held over the syscall boundary.
1140 *
1141 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1142 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1143 * appropriate) must be called after the page is finished with, and
1144 * before put_page is called.
1145 *
c1e8d7c6 1146 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
1147 * released by an up_read(). That can happen if @gup_flags does not
1148 * have FOLL_NOWAIT.
9a95f3cf 1149 *
4f6da934 1150 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 1151 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
1152 * when it's been released. Otherwise, it must be held for either
1153 * reading or writing and will not be released.
4bbd4c77
KS
1154 *
1155 * In most cases, get_user_pages or get_user_pages_fast should be used
1156 * instead of __get_user_pages. __get_user_pages should be used only if
1157 * you need some special @gup_flags.
1158 */
64019a2e 1159static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1160 unsigned long start, unsigned long nr_pages,
1161 unsigned int gup_flags, struct page **pages,
4f6da934 1162 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1163{
df06b37f 1164 long ret = 0, i = 0;
fa5bb209 1165 struct vm_area_struct *vma = NULL;
df06b37f 1166 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1167
1168 if (!nr_pages)
1169 return 0;
1170
f9652594
AK
1171 start = untagged_addr(start);
1172
eddb1c22 1173 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77 1174
4bbd4c77 1175 do {
fa5bb209
KS
1176 struct page *page;
1177 unsigned int foll_flags = gup_flags;
1178 unsigned int page_increm;
1179
1180 /* first iteration or cross vma bound */
1181 if (!vma || start >= vma->vm_end) {
1182 vma = find_extend_vma(mm, start);
1183 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1184 ret = get_gate_page(mm, start & PAGE_MASK,
1185 gup_flags, &vma,
1186 pages ? &pages[i] : NULL);
1187 if (ret)
08be37b7 1188 goto out;
df06b37f 1189 ctx.page_mask = 0;
fa5bb209
KS
1190 goto next_page;
1191 }
4bbd4c77 1192
52650c8b 1193 if (!vma) {
df06b37f
KB
1194 ret = -EFAULT;
1195 goto out;
1196 }
52650c8b
JG
1197 ret = check_vma_flags(vma, gup_flags);
1198 if (ret)
1199 goto out;
1200
fa5bb209
KS
1201 if (is_vm_hugetlb_page(vma)) {
1202 i = follow_hugetlb_page(mm, vma, pages, vmas,
1203 &start, &nr_pages, i,
a308c71b 1204 gup_flags, locked);
ad415db8
PX
1205 if (locked && *locked == 0) {
1206 /*
1207 * We've got a VM_FAULT_RETRY
c1e8d7c6 1208 * and we've lost mmap_lock.
ad415db8
PX
1209 * We must stop here.
1210 */
1211 BUG_ON(gup_flags & FOLL_NOWAIT);
ad415db8
PX
1212 goto out;
1213 }
fa5bb209 1214 continue;
4bbd4c77 1215 }
fa5bb209
KS
1216 }
1217retry:
1218 /*
1219 * If we have a pending SIGKILL, don't keep faulting pages and
1220 * potentially allocating memory.
1221 */
fa45f116 1222 if (fatal_signal_pending(current)) {
d180870d 1223 ret = -EINTR;
df06b37f
KB
1224 goto out;
1225 }
fa5bb209 1226 cond_resched();
df06b37f
KB
1227
1228 page = follow_page_mask(vma, start, foll_flags, &ctx);
a7f22660
DH
1229 if (!page || PTR_ERR(page) == -EMLINK) {
1230 ret = faultin_page(vma, start, &foll_flags,
1231 PTR_ERR(page) == -EMLINK, locked);
fa5bb209
KS
1232 switch (ret) {
1233 case 0:
1234 goto retry;
df06b37f 1235 case -EBUSY:
d9272525 1236 case -EAGAIN:
df06b37f 1237 ret = 0;
e4a9bc58 1238 fallthrough;
fa5bb209
KS
1239 case -EFAULT:
1240 case -ENOMEM:
1241 case -EHWPOISON:
df06b37f 1242 goto out;
4bbd4c77 1243 }
fa5bb209 1244 BUG();
1027e443
KS
1245 } else if (PTR_ERR(page) == -EEXIST) {
1246 /*
1247 * Proper page table entry exists, but no corresponding
65462462
JH
1248 * struct page. If the caller expects **pages to be
1249 * filled in, bail out now, because that can't be done
1250 * for this page.
1027e443 1251 */
65462462
JH
1252 if (pages) {
1253 ret = PTR_ERR(page);
1254 goto out;
1255 }
1256
1027e443
KS
1257 goto next_page;
1258 } else if (IS_ERR(page)) {
df06b37f
KB
1259 ret = PTR_ERR(page);
1260 goto out;
1027e443 1261 }
fa5bb209
KS
1262 if (pages) {
1263 pages[i] = page;
1264 flush_anon_page(vma, page, start);
1265 flush_dcache_page(page);
df06b37f 1266 ctx.page_mask = 0;
4bbd4c77 1267 }
4bbd4c77 1268next_page:
fa5bb209
KS
1269 if (vmas) {
1270 vmas[i] = vma;
df06b37f 1271 ctx.page_mask = 0;
fa5bb209 1272 }
df06b37f 1273 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1274 if (page_increm > nr_pages)
1275 page_increm = nr_pages;
1276 i += page_increm;
1277 start += page_increm * PAGE_SIZE;
1278 nr_pages -= page_increm;
4bbd4c77 1279 } while (nr_pages);
df06b37f
KB
1280out:
1281 if (ctx.pgmap)
1282 put_dev_pagemap(ctx.pgmap);
1283 return i ? i : ret;
4bbd4c77 1284}
4bbd4c77 1285
771ab430
TK
1286static bool vma_permits_fault(struct vm_area_struct *vma,
1287 unsigned int fault_flags)
d4925e00 1288{
1b2ee126
DH
1289 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1290 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1291 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1292
1293 if (!(vm_flags & vma->vm_flags))
1294 return false;
1295
33a709b2
DH
1296 /*
1297 * The architecture might have a hardware protection
1b2ee126 1298 * mechanism other than read/write that can deny access.
d61172b4
DH
1299 *
1300 * gup always represents data access, not instruction
1301 * fetches, so execute=false here:
33a709b2 1302 */
d61172b4 1303 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1304 return false;
1305
d4925e00
DH
1306 return true;
1307}
1308
adc8cb40 1309/**
4bbd4c77 1310 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1311 * @mm: mm_struct of target mm
1312 * @address: user address
1313 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1314 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1315 * does not allow retry. If NULL, the caller must guarantee
1316 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1317 *
1318 * This is meant to be called in the specific scenario where for locking reasons
1319 * we try to access user memory in atomic context (within a pagefault_disable()
1320 * section), this returns -EFAULT, and we want to resolve the user fault before
1321 * trying again.
1322 *
1323 * Typically this is meant to be used by the futex code.
1324 *
1325 * The main difference with get_user_pages() is that this function will
1326 * unconditionally call handle_mm_fault() which will in turn perform all the
1327 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1328 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1329 *
1330 * This is important for some architectures where those bits also gate the
1331 * access permission to the page because they are maintained in software. On
1332 * such architectures, gup() will not be enough to make a subsequent access
1333 * succeed.
1334 *
c1e8d7c6
ML
1335 * This function will not return with an unlocked mmap_lock. So it has not the
1336 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1337 */
64019a2e 1338int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1339 unsigned long address, unsigned int fault_flags,
1340 bool *unlocked)
4bbd4c77
KS
1341{
1342 struct vm_area_struct *vma;
8fed2f3c 1343 vm_fault_t ret;
4a9e1cda 1344
f9652594
AK
1345 address = untagged_addr(address);
1346
4a9e1cda 1347 if (unlocked)
71335f37 1348 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1349
4a9e1cda 1350retry:
4bbd4c77
KS
1351 vma = find_extend_vma(mm, address);
1352 if (!vma || address < vma->vm_start)
1353 return -EFAULT;
1354
d4925e00 1355 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1356 return -EFAULT;
1357
475f4dfc
PX
1358 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1359 fatal_signal_pending(current))
1360 return -EINTR;
1361
bce617ed 1362 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1363
1364 if (ret & VM_FAULT_COMPLETED) {
1365 /*
1366 * NOTE: it's a pity that we need to retake the lock here
1367 * to pair with the unlock() in the callers. Ideally we
1368 * could tell the callers so they do not need to unlock.
1369 */
1370 mmap_read_lock(mm);
1371 *unlocked = true;
1372 return 0;
1373 }
1374
4bbd4c77 1375 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1376 int err = vm_fault_to_errno(ret, 0);
1377
1378 if (err)
1379 return err;
4bbd4c77
KS
1380 BUG();
1381 }
4a9e1cda
DD
1382
1383 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1384 mmap_read_lock(mm);
475f4dfc
PX
1385 *unlocked = true;
1386 fault_flags |= FAULT_FLAG_TRIED;
1387 goto retry;
4a9e1cda
DD
1388 }
1389
4bbd4c77
KS
1390 return 0;
1391}
add6a0cd 1392EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1393
2d3a36a4
MH
1394/*
1395 * Please note that this function, unlike __get_user_pages will not
1396 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1397 */
64019a2e 1398static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1399 unsigned long start,
1400 unsigned long nr_pages,
f0818f47
AA
1401 struct page **pages,
1402 struct vm_area_struct **vmas,
e716712f 1403 int *locked,
0fd71a56 1404 unsigned int flags)
f0818f47 1405{
f0818f47
AA
1406 long ret, pages_done;
1407 bool lock_dropped;
1408
1409 if (locked) {
1410 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1411 BUG_ON(vmas);
1412 /* check caller initialized locked */
1413 BUG_ON(*locked != 1);
1414 }
1415
a458b76a
AA
1416 if (flags & FOLL_PIN)
1417 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1418
eddb1c22
JH
1419 /*
1420 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1421 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1422 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1423 * for FOLL_GET, not for the newer FOLL_PIN.
1424 *
1425 * FOLL_PIN always expects pages to be non-null, but no need to assert
1426 * that here, as any failures will be obvious enough.
1427 */
1428 if (pages && !(flags & FOLL_PIN))
f0818f47 1429 flags |= FOLL_GET;
f0818f47
AA
1430
1431 pages_done = 0;
1432 lock_dropped = false;
1433 for (;;) {
64019a2e 1434 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47
AA
1435 vmas, locked);
1436 if (!locked)
1437 /* VM_FAULT_RETRY couldn't trigger, bypass */
1438 return ret;
1439
d9272525 1440 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
f0818f47
AA
1441 if (!*locked) {
1442 BUG_ON(ret < 0);
1443 BUG_ON(ret >= nr_pages);
1444 }
1445
f0818f47
AA
1446 if (ret > 0) {
1447 nr_pages -= ret;
1448 pages_done += ret;
1449 if (!nr_pages)
1450 break;
1451 }
1452 if (*locked) {
96312e61
AA
1453 /*
1454 * VM_FAULT_RETRY didn't trigger or it was a
1455 * FOLL_NOWAIT.
1456 */
f0818f47
AA
1457 if (!pages_done)
1458 pages_done = ret;
1459 break;
1460 }
df17277b
MR
1461 /*
1462 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1463 * For the prefault case (!pages) we only update counts.
1464 */
1465 if (likely(pages))
1466 pages += ret;
f0818f47 1467 start += ret << PAGE_SHIFT;
4426e945 1468 lock_dropped = true;
f0818f47 1469
4426e945 1470retry:
f0818f47
AA
1471 /*
1472 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1473 * with both FAULT_FLAG_ALLOW_RETRY and
1474 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1475 * by fatal signals, so we need to check it before we
1476 * start trying again otherwise it can loop forever.
f0818f47 1477 */
4426e945 1478
ae46d2aa
HD
1479 if (fatal_signal_pending(current)) {
1480 if (!pages_done)
1481 pages_done = -EINTR;
4426e945 1482 break;
ae46d2aa 1483 }
4426e945 1484
d8ed45c5 1485 ret = mmap_read_lock_killable(mm);
71335f37
PX
1486 if (ret) {
1487 BUG_ON(ret > 0);
1488 if (!pages_done)
1489 pages_done = ret;
1490 break;
1491 }
4426e945 1492
c7b6a566 1493 *locked = 1;
64019a2e 1494 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1495 pages, NULL, locked);
1496 if (!*locked) {
1497 /* Continue to retry until we succeeded */
1498 BUG_ON(ret != 0);
1499 goto retry;
1500 }
f0818f47
AA
1501 if (ret != 1) {
1502 BUG_ON(ret > 1);
1503 if (!pages_done)
1504 pages_done = ret;
1505 break;
1506 }
1507 nr_pages--;
1508 pages_done++;
1509 if (!nr_pages)
1510 break;
df17277b
MR
1511 if (likely(pages))
1512 pages++;
f0818f47
AA
1513 start += PAGE_SIZE;
1514 }
e716712f 1515 if (lock_dropped && *locked) {
f0818f47
AA
1516 /*
1517 * We must let the caller know we temporarily dropped the lock
1518 * and so the critical section protected by it was lost.
1519 */
d8ed45c5 1520 mmap_read_unlock(mm);
f0818f47
AA
1521 *locked = 0;
1522 }
1523 return pages_done;
1524}
1525
d3649f68
CH
1526/**
1527 * populate_vma_page_range() - populate a range of pages in the vma.
1528 * @vma: target vma
1529 * @start: start address
1530 * @end: end address
c1e8d7c6 1531 * @locked: whether the mmap_lock is still held
d3649f68
CH
1532 *
1533 * This takes care of mlocking the pages too if VM_LOCKED is set.
1534 *
0a36f7f8
TY
1535 * Return either number of pages pinned in the vma, or a negative error
1536 * code on error.
d3649f68 1537 *
c1e8d7c6 1538 * vma->vm_mm->mmap_lock must be held.
d3649f68 1539 *
4f6da934 1540 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1541 * be unperturbed.
1542 *
4f6da934
PX
1543 * If @locked is non-NULL, it must held for read only and may be
1544 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1545 */
1546long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1547 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1548{
1549 struct mm_struct *mm = vma->vm_mm;
1550 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1551 int gup_flags;
ece369c7 1552 long ret;
d3649f68 1553
be51eb18
ML
1554 VM_BUG_ON(!PAGE_ALIGNED(start));
1555 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1556 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1557 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1558 mmap_assert_locked(mm);
d3649f68 1559
b67bf49c
HD
1560 /*
1561 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1562 * faultin_page() to break COW, so it has no work to do here.
1563 */
d3649f68 1564 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1565 return nr_pages;
1566
1567 gup_flags = FOLL_TOUCH;
d3649f68
CH
1568 /*
1569 * We want to touch writable mappings with a write fault in order
1570 * to break COW, except for shared mappings because these don't COW
1571 * and we would not want to dirty them for nothing.
1572 */
1573 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1574 gup_flags |= FOLL_WRITE;
1575
1576 /*
1577 * We want mlock to succeed for regions that have any permissions
1578 * other than PROT_NONE.
1579 */
3122e80e 1580 if (vma_is_accessible(vma))
d3649f68
CH
1581 gup_flags |= FOLL_FORCE;
1582
1583 /*
1584 * We made sure addr is within a VMA, so the following will
1585 * not result in a stack expansion that recurses back here.
1586 */
ece369c7 1587 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
4f6da934 1588 NULL, NULL, locked);
ece369c7
HD
1589 lru_add_drain();
1590 return ret;
d3649f68
CH
1591}
1592
4ca9b385
DH
1593/*
1594 * faultin_vma_page_range() - populate (prefault) page tables inside the
1595 * given VMA range readable/writable
1596 *
1597 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1598 *
1599 * @vma: target vma
1600 * @start: start address
1601 * @end: end address
1602 * @write: whether to prefault readable or writable
1603 * @locked: whether the mmap_lock is still held
1604 *
1605 * Returns either number of processed pages in the vma, or a negative error
1606 * code on error (see __get_user_pages()).
1607 *
1608 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1609 * covered by the VMA.
1610 *
1611 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1612 *
1613 * If @locked is non-NULL, it must held for read only and may be released. If
1614 * it's released, *@locked will be set to 0.
1615 */
1616long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1617 unsigned long end, bool write, int *locked)
1618{
1619 struct mm_struct *mm = vma->vm_mm;
1620 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1621 int gup_flags;
ece369c7 1622 long ret;
4ca9b385
DH
1623
1624 VM_BUG_ON(!PAGE_ALIGNED(start));
1625 VM_BUG_ON(!PAGE_ALIGNED(end));
1626 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1627 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1628 mmap_assert_locked(mm);
1629
1630 /*
1631 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1632 * the page dirty with FOLL_WRITE -- which doesn't make a
1633 * difference with !FOLL_FORCE, because the page is writable
1634 * in the page table.
1635 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1636 * a poisoned page.
4ca9b385
DH
1637 * !FOLL_FORCE: Require proper access permissions.
1638 */
b67bf49c 1639 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
4ca9b385
DH
1640 if (write)
1641 gup_flags |= FOLL_WRITE;
1642
1643 /*
eb2faa51
DH
1644 * We want to report -EINVAL instead of -EFAULT for any permission
1645 * problems or incompatible mappings.
4ca9b385 1646 */
eb2faa51
DH
1647 if (check_vma_flags(vma, gup_flags))
1648 return -EINVAL;
1649
ece369c7 1650 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
4ca9b385 1651 NULL, NULL, locked);
ece369c7
HD
1652 lru_add_drain();
1653 return ret;
4ca9b385
DH
1654}
1655
d3649f68
CH
1656/*
1657 * __mm_populate - populate and/or mlock pages within a range of address space.
1658 *
1659 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1660 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1661 * mmap_lock must not be held.
d3649f68
CH
1662 */
1663int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1664{
1665 struct mm_struct *mm = current->mm;
1666 unsigned long end, nstart, nend;
1667 struct vm_area_struct *vma = NULL;
1668 int locked = 0;
1669 long ret = 0;
1670
1671 end = start + len;
1672
1673 for (nstart = start; nstart < end; nstart = nend) {
1674 /*
1675 * We want to fault in pages for [nstart; end) address range.
1676 * Find first corresponding VMA.
1677 */
1678 if (!locked) {
1679 locked = 1;
d8ed45c5 1680 mmap_read_lock(mm);
c4d1a92d 1681 vma = find_vma_intersection(mm, nstart, end);
d3649f68 1682 } else if (nstart >= vma->vm_end)
c4d1a92d
LH
1683 vma = find_vma_intersection(mm, vma->vm_end, end);
1684
1685 if (!vma)
d3649f68
CH
1686 break;
1687 /*
1688 * Set [nstart; nend) to intersection of desired address
1689 * range with the first VMA. Also, skip undesirable VMA types.
1690 */
1691 nend = min(end, vma->vm_end);
1692 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1693 continue;
1694 if (nstart < vma->vm_start)
1695 nstart = vma->vm_start;
1696 /*
1697 * Now fault in a range of pages. populate_vma_page_range()
1698 * double checks the vma flags, so that it won't mlock pages
1699 * if the vma was already munlocked.
1700 */
1701 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1702 if (ret < 0) {
1703 if (ignore_errors) {
1704 ret = 0;
1705 continue; /* continue at next VMA */
1706 }
1707 break;
1708 }
1709 nend = nstart + ret * PAGE_SIZE;
1710 ret = 0;
1711 }
1712 if (locked)
d8ed45c5 1713 mmap_read_unlock(mm);
d3649f68
CH
1714 return ret; /* 0 or negative error code */
1715}
050a9adc 1716#else /* CONFIG_MMU */
64019a2e 1717static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1718 unsigned long nr_pages, struct page **pages,
1719 struct vm_area_struct **vmas, int *locked,
1720 unsigned int foll_flags)
1721{
1722 struct vm_area_struct *vma;
1723 unsigned long vm_flags;
24dc20c7 1724 long i;
050a9adc
CH
1725
1726 /* calculate required read or write permissions.
1727 * If FOLL_FORCE is set, we only require the "MAY" flags.
1728 */
1729 vm_flags = (foll_flags & FOLL_WRITE) ?
1730 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1731 vm_flags &= (foll_flags & FOLL_FORCE) ?
1732 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1733
1734 for (i = 0; i < nr_pages; i++) {
1735 vma = find_vma(mm, start);
1736 if (!vma)
1737 goto finish_or_fault;
1738
1739 /* protect what we can, including chardevs */
1740 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1741 !(vm_flags & vma->vm_flags))
1742 goto finish_or_fault;
1743
1744 if (pages) {
396a400b 1745 pages[i] = virt_to_page((void *)start);
050a9adc
CH
1746 if (pages[i])
1747 get_page(pages[i]);
1748 }
1749 if (vmas)
1750 vmas[i] = vma;
1751 start = (start + PAGE_SIZE) & PAGE_MASK;
1752 }
1753
1754 return i;
1755
1756finish_or_fault:
1757 return i ? : -EFAULT;
1758}
1759#endif /* !CONFIG_MMU */
d3649f68 1760
bb523b40
AG
1761/**
1762 * fault_in_writeable - fault in userspace address range for writing
1763 * @uaddr: start of address range
1764 * @size: size of address range
1765 *
1766 * Returns the number of bytes not faulted in (like copy_to_user() and
1767 * copy_from_user()).
1768 */
1769size_t fault_in_writeable(char __user *uaddr, size_t size)
1770{
1771 char __user *start = uaddr, *end;
1772
1773 if (unlikely(size == 0))
1774 return 0;
677b2a8c
CL
1775 if (!user_write_access_begin(uaddr, size))
1776 return size;
bb523b40 1777 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1778 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1779 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1780 }
1781 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1782 if (unlikely(end < start))
1783 end = NULL;
1784 while (uaddr != end) {
677b2a8c 1785 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1786 uaddr += PAGE_SIZE;
1787 }
1788
1789out:
677b2a8c 1790 user_write_access_end();
bb523b40
AG
1791 if (size > uaddr - start)
1792 return size - (uaddr - start);
1793 return 0;
1794}
1795EXPORT_SYMBOL(fault_in_writeable);
1796
da32b581
CM
1797/**
1798 * fault_in_subpage_writeable - fault in an address range for writing
1799 * @uaddr: start of address range
1800 * @size: size of address range
1801 *
1802 * Fault in a user address range for writing while checking for permissions at
1803 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1804 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1805 *
1806 * Returns the number of bytes not faulted in (like copy_to_user() and
1807 * copy_from_user()).
1808 */
1809size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1810{
1811 size_t faulted_in;
1812
1813 /*
1814 * Attempt faulting in at page granularity first for page table
1815 * permission checking. The arch-specific probe_subpage_writeable()
1816 * functions may not check for this.
1817 */
1818 faulted_in = size - fault_in_writeable(uaddr, size);
1819 if (faulted_in)
1820 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1821
1822 return size - faulted_in;
1823}
1824EXPORT_SYMBOL(fault_in_subpage_writeable);
1825
cdd591fc
AG
1826/*
1827 * fault_in_safe_writeable - fault in an address range for writing
1828 * @uaddr: start of address range
1829 * @size: length of address range
1830 *
fe673d3f
LT
1831 * Faults in an address range for writing. This is primarily useful when we
1832 * already know that some or all of the pages in the address range aren't in
1833 * memory.
cdd591fc 1834 *
fe673d3f 1835 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
1836 *
1837 * Note that we don't pin or otherwise hold the pages referenced that we fault
1838 * in. There's no guarantee that they'll stay in memory for any duration of
1839 * time.
1840 *
1841 * Returns the number of bytes not faulted in, like copy_to_user() and
1842 * copy_from_user().
1843 */
1844size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1845{
fe673d3f 1846 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 1847 struct mm_struct *mm = current->mm;
fe673d3f 1848 bool unlocked = false;
cdd591fc 1849
fe673d3f
LT
1850 if (unlikely(size == 0))
1851 return 0;
cdd591fc 1852 end = PAGE_ALIGN(start + size);
fe673d3f 1853 if (end < start)
cdd591fc 1854 end = 0;
cdd591fc 1855
fe673d3f
LT
1856 mmap_read_lock(mm);
1857 do {
1858 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 1859 break;
fe673d3f
LT
1860 start = (start + PAGE_SIZE) & PAGE_MASK;
1861 } while (start != end);
1862 mmap_read_unlock(mm);
1863
1864 if (size > (unsigned long)uaddr - start)
1865 return size - ((unsigned long)uaddr - start);
1866 return 0;
cdd591fc
AG
1867}
1868EXPORT_SYMBOL(fault_in_safe_writeable);
1869
bb523b40
AG
1870/**
1871 * fault_in_readable - fault in userspace address range for reading
1872 * @uaddr: start of user address range
1873 * @size: size of user address range
1874 *
1875 * Returns the number of bytes not faulted in (like copy_to_user() and
1876 * copy_from_user()).
1877 */
1878size_t fault_in_readable(const char __user *uaddr, size_t size)
1879{
1880 const char __user *start = uaddr, *end;
1881 volatile char c;
1882
1883 if (unlikely(size == 0))
1884 return 0;
677b2a8c
CL
1885 if (!user_read_access_begin(uaddr, size))
1886 return size;
bb523b40 1887 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1888 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1889 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1890 }
1891 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1892 if (unlikely(end < start))
1893 end = NULL;
1894 while (uaddr != end) {
677b2a8c 1895 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1896 uaddr += PAGE_SIZE;
1897 }
1898
1899out:
677b2a8c 1900 user_read_access_end();
bb523b40
AG
1901 (void)c;
1902 if (size > uaddr - start)
1903 return size - (uaddr - start);
1904 return 0;
1905}
1906EXPORT_SYMBOL(fault_in_readable);
1907
8f942eea
JH
1908/**
1909 * get_dump_page() - pin user page in memory while writing it to core dump
1910 * @addr: user address
1911 *
1912 * Returns struct page pointer of user page pinned for dump,
1913 * to be freed afterwards by put_page().
1914 *
1915 * Returns NULL on any kind of failure - a hole must then be inserted into
1916 * the corefile, to preserve alignment with its headers; and also returns
1917 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1918 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1919 *
7f3bfab5 1920 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1921 */
1922#ifdef CONFIG_ELF_CORE
1923struct page *get_dump_page(unsigned long addr)
1924{
7f3bfab5 1925 struct mm_struct *mm = current->mm;
8f942eea 1926 struct page *page;
7f3bfab5
JH
1927 int locked = 1;
1928 int ret;
8f942eea 1929
7f3bfab5 1930 if (mmap_read_lock_killable(mm))
8f942eea 1931 return NULL;
7f3bfab5
JH
1932 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1933 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1934 if (locked)
1935 mmap_read_unlock(mm);
1936 return (ret == 1) ? page : NULL;
8f942eea
JH
1937}
1938#endif /* CONFIG_ELF_CORE */
1939
d1e153fe 1940#ifdef CONFIG_MIGRATION
f68749ec 1941/*
67e139b0 1942 * Returns the number of collected pages. Return value is always >= 0.
f68749ec 1943 */
67e139b0
AP
1944static unsigned long collect_longterm_unpinnable_pages(
1945 struct list_head *movable_page_list,
1946 unsigned long nr_pages,
1947 struct page **pages)
9a4e9f3b 1948{
67e139b0 1949 unsigned long i, collected = 0;
1b7f7e58 1950 struct folio *prev_folio = NULL;
67e139b0 1951 bool drain_allow = true;
9a4e9f3b 1952
83c02c23 1953 for (i = 0; i < nr_pages; i++) {
1b7f7e58 1954 struct folio *folio = page_folio(pages[i]);
f9f38f78 1955
1b7f7e58 1956 if (folio == prev_folio)
83c02c23 1957 continue;
1b7f7e58 1958 prev_folio = folio;
f9f38f78 1959
67e139b0
AP
1960 if (folio_is_longterm_pinnable(folio))
1961 continue;
b05a79d4 1962
67e139b0 1963 collected++;
b05a79d4 1964
67e139b0 1965 if (folio_is_device_coherent(folio))
f9f38f78
CH
1966 continue;
1967
1b7f7e58 1968 if (folio_test_hugetlb(folio)) {
67e139b0 1969 isolate_hugetlb(&folio->page, movable_page_list);
f9f38f78
CH
1970 continue;
1971 }
9a4e9f3b 1972
1b7f7e58 1973 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
1974 lru_add_drain_all();
1975 drain_allow = false;
1976 }
1977
67e139b0 1978 if (!folio_isolate_lru(folio))
f9f38f78 1979 continue;
67e139b0
AP
1980
1981 list_add_tail(&folio->lru, movable_page_list);
1b7f7e58
MWO
1982 node_stat_mod_folio(folio,
1983 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1984 folio_nr_pages(folio));
9a4e9f3b
AK
1985 }
1986
67e139b0
AP
1987 return collected;
1988}
1989
1990/*
1991 * Unpins all pages and migrates device coherent pages and movable_page_list.
1992 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1993 * (or partial success).
1994 */
1995static int migrate_longterm_unpinnable_pages(
1996 struct list_head *movable_page_list,
1997 unsigned long nr_pages,
1998 struct page **pages)
1999{
2000 int ret;
2001 unsigned long i;
6e7f34eb 2002
b05a79d4 2003 for (i = 0; i < nr_pages; i++) {
67e139b0
AP
2004 struct folio *folio = page_folio(pages[i]);
2005
2006 if (folio_is_device_coherent(folio)) {
2007 /*
2008 * Migration will fail if the page is pinned, so convert
2009 * the pin on the source page to a normal reference.
2010 */
2011 pages[i] = NULL;
2012 folio_get(folio);
2013 gup_put_folio(folio, 1, FOLL_PIN);
2014
2015 if (migrate_device_coherent_page(&folio->page)) {
2016 ret = -EBUSY;
2017 goto err;
2018 }
2019
b05a79d4 2020 continue;
67e139b0 2021 }
b05a79d4 2022
67e139b0
AP
2023 /*
2024 * We can't migrate pages with unexpected references, so drop
2025 * the reference obtained by __get_user_pages_locked().
2026 * Migrating pages have been added to movable_page_list after
2027 * calling folio_isolate_lru() which takes a reference so the
2028 * page won't be freed if it's migrating.
2029 */
f6d299ec 2030 unpin_user_page(pages[i]);
67e139b0 2031 pages[i] = NULL;
f68749ec 2032 }
f9f38f78 2033
67e139b0 2034 if (!list_empty(movable_page_list)) {
f9f38f78
CH
2035 struct migration_target_control mtc = {
2036 .nid = NUMA_NO_NODE,
2037 .gfp_mask = GFP_USER | __GFP_NOWARN,
2038 };
2039
67e139b0
AP
2040 if (migrate_pages(movable_page_list, alloc_migration_target,
2041 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2042 MR_LONGTERM_PIN, NULL)) {
f9f38f78 2043 ret = -ENOMEM;
67e139b0
AP
2044 goto err;
2045 }
9a4e9f3b
AK
2046 }
2047
67e139b0
AP
2048 putback_movable_pages(movable_page_list);
2049
2050 return -EAGAIN;
2051
2052err:
2053 for (i = 0; i < nr_pages; i++)
2054 if (pages[i])
2055 unpin_user_page(pages[i]);
2056 putback_movable_pages(movable_page_list);
24a95998 2057
67e139b0
AP
2058 return ret;
2059}
2060
2061/*
2062 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2063 * pages in the range are required to be pinned via FOLL_PIN, before calling
2064 * this routine.
2065 *
2066 * If any pages in the range are not allowed to be pinned, then this routine
2067 * will migrate those pages away, unpin all the pages in the range and return
2068 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2069 * call this routine again.
2070 *
2071 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2072 * The caller should give up, and propagate the error back up the call stack.
2073 *
2074 * If everything is OK and all pages in the range are allowed to be pinned, then
2075 * this routine leaves all pages pinned and returns zero for success.
2076 */
2077static long check_and_migrate_movable_pages(unsigned long nr_pages,
2078 struct page **pages)
2079{
2080 unsigned long collected;
2081 LIST_HEAD(movable_page_list);
2082
2083 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2084 nr_pages, pages);
2085 if (!collected)
2086 return 0;
2087
2088 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2089 pages);
9a4e9f3b
AK
2090}
2091#else
f68749ec 2092static long check_and_migrate_movable_pages(unsigned long nr_pages,
f6d299ec 2093 struct page **pages)
9a4e9f3b 2094{
24a95998 2095 return 0;
9a4e9f3b 2096}
d1e153fe 2097#endif /* CONFIG_MIGRATION */
9a4e9f3b 2098
2bb6d283 2099/*
932f4a63
IW
2100 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2101 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 2102 */
64019a2e 2103static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
2104 unsigned long start,
2105 unsigned long nr_pages,
2106 struct page **pages,
2107 struct vm_area_struct **vmas,
2108 unsigned int gup_flags)
2bb6d283 2109{
f68749ec 2110 unsigned int flags;
24a95998 2111 long rc, nr_pinned_pages;
2bb6d283 2112
f68749ec
PT
2113 if (!(gup_flags & FOLL_LONGTERM))
2114 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2115 NULL, gup_flags);
67e139b0
AP
2116
2117 /*
2118 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2119 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2120 * correct to unconditionally call check_and_migrate_movable_pages()
2121 * which assumes pages have been pinned via FOLL_PIN.
2122 *
2123 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2124 */
f6d299ec
AP
2125 if (WARN_ON(!(gup_flags & FOLL_PIN)))
2126 return -EINVAL;
f68749ec
PT
2127 flags = memalloc_pin_save();
2128 do {
24a95998
AP
2129 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2130 pages, vmas, NULL,
2131 gup_flags);
2132 if (nr_pinned_pages <= 0) {
2133 rc = nr_pinned_pages;
f68749ec 2134 break;
24a95998 2135 }
f6d299ec 2136 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
24a95998 2137 } while (rc == -EAGAIN);
f68749ec 2138 memalloc_pin_restore(flags);
2bb6d283 2139
24a95998 2140 return rc ? rc : nr_pinned_pages;
2bb6d283 2141}
932f4a63 2142
447f3e45
BS
2143static bool is_valid_gup_flags(unsigned int gup_flags)
2144{
2145 /*
2146 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2147 * never directly by the caller, so enforce that with an assertion:
2148 */
2149 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2150 return false;
2151 /*
2152 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2153 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2154 * FOLL_PIN.
2155 */
2156 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2157 return false;
2158
2159 return true;
2160}
2161
22bf29b6 2162#ifdef CONFIG_MMU
64019a2e 2163static long __get_user_pages_remote(struct mm_struct *mm,
22bf29b6
JH
2164 unsigned long start, unsigned long nr_pages,
2165 unsigned int gup_flags, struct page **pages,
2166 struct vm_area_struct **vmas, int *locked)
2167{
2168 /*
2169 * Parts of FOLL_LONGTERM behavior are incompatible with
2170 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2171 * vmas. However, this only comes up if locked is set, and there are
2172 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2173 * allow what we can.
2174 */
2175 if (gup_flags & FOLL_LONGTERM) {
2176 if (WARN_ON_ONCE(locked))
2177 return -EINVAL;
2178 /*
2179 * This will check the vmas (even if our vmas arg is NULL)
2180 * and return -ENOTSUPP if DAX isn't allowed in this case:
2181 */
64019a2e 2182 return __gup_longterm_locked(mm, start, nr_pages, pages,
22bf29b6
JH
2183 vmas, gup_flags | FOLL_TOUCH |
2184 FOLL_REMOTE);
2185 }
2186
64019a2e 2187 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
22bf29b6
JH
2188 locked,
2189 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2190}
2191
adc8cb40 2192/**
c4237f8b 2193 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2194 * @mm: mm_struct of target mm
2195 * @start: starting user address
2196 * @nr_pages: number of pages from start to pin
2197 * @gup_flags: flags modifying lookup behaviour
2198 * @pages: array that receives pointers to the pages pinned.
2199 * Should be at least nr_pages long. Or NULL, if caller
2200 * only intends to ensure the pages are faulted in.
2201 * @vmas: array of pointers to vmas corresponding to each page.
2202 * Or NULL if the caller does not require them.
2203 * @locked: pointer to lock flag indicating whether lock is held and
2204 * subsequently whether VM_FAULT_RETRY functionality can be
2205 * utilised. Lock must initially be held.
2206 *
2207 * Returns either number of pages pinned (which may be less than the
2208 * number requested), or an error. Details about the return value:
2209 *
2210 * -- If nr_pages is 0, returns 0.
2211 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2212 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2213 * pages pinned. Again, this may be less than nr_pages.
2214 *
2215 * The caller is responsible for releasing returned @pages, via put_page().
2216 *
c1e8d7c6 2217 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 2218 *
c1e8d7c6 2219 * Must be called with mmap_lock held for read or write.
c4237f8b 2220 *
adc8cb40
SJ
2221 * get_user_pages_remote walks a process's page tables and takes a reference
2222 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2223 * instant. That is, it takes the page that would be accessed if a user
2224 * thread accesses the given user virtual address at that instant.
2225 *
2226 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2227 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
2228 * page there in some cases (eg. if mmapped pagecache has been invalidated
2229 * and subsequently re faulted). However it does guarantee that the page
2230 * won't be freed completely. And mostly callers simply care that the page
2231 * contains data that was valid *at some point in time*. Typically, an IO
2232 * or similar operation cannot guarantee anything stronger anyway because
2233 * locks can't be held over the syscall boundary.
2234 *
2235 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2236 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2237 * be called after the page is finished with, and before put_page is called.
2238 *
adc8cb40
SJ
2239 * get_user_pages_remote is typically used for fewer-copy IO operations,
2240 * to get a handle on the memory by some means other than accesses
2241 * via the user virtual addresses. The pages may be submitted for
2242 * DMA to devices or accessed via their kernel linear mapping (via the
2243 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2244 *
2245 * See also get_user_pages_fast, for performance critical applications.
2246 *
adc8cb40 2247 * get_user_pages_remote should be phased out in favor of
c4237f8b 2248 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2249 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2250 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2251 */
64019a2e 2252long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2253 unsigned long start, unsigned long nr_pages,
2254 unsigned int gup_flags, struct page **pages,
2255 struct vm_area_struct **vmas, int *locked)
2256{
447f3e45 2257 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2258 return -EINVAL;
2259
64019a2e 2260 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
22bf29b6 2261 pages, vmas, locked);
c4237f8b
JH
2262}
2263EXPORT_SYMBOL(get_user_pages_remote);
2264
eddb1c22 2265#else /* CONFIG_MMU */
64019a2e 2266long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2267 unsigned long start, unsigned long nr_pages,
2268 unsigned int gup_flags, struct page **pages,
2269 struct vm_area_struct **vmas, int *locked)
2270{
2271 return 0;
2272}
3faa52c0 2273
64019a2e 2274static long __get_user_pages_remote(struct mm_struct *mm,
3faa52c0
JH
2275 unsigned long start, unsigned long nr_pages,
2276 unsigned int gup_flags, struct page **pages,
2277 struct vm_area_struct **vmas, int *locked)
2278{
2279 return 0;
2280}
eddb1c22
JH
2281#endif /* !CONFIG_MMU */
2282
adc8cb40
SJ
2283/**
2284 * get_user_pages() - pin user pages in memory
2285 * @start: starting user address
2286 * @nr_pages: number of pages from start to pin
2287 * @gup_flags: flags modifying lookup behaviour
2288 * @pages: array that receives pointers to the pages pinned.
2289 * Should be at least nr_pages long. Or NULL, if caller
2290 * only intends to ensure the pages are faulted in.
2291 * @vmas: array of pointers to vmas corresponding to each page.
2292 * Or NULL if the caller does not require them.
2293 *
64019a2e
PX
2294 * This is the same as get_user_pages_remote(), just with a less-flexible
2295 * calling convention where we assume that the mm being operated on belongs to
2296 * the current task, and doesn't allow passing of a locked parameter. We also
2297 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2298 */
2299long get_user_pages(unsigned long start, unsigned long nr_pages,
2300 unsigned int gup_flags, struct page **pages,
2301 struct vm_area_struct **vmas)
2302{
447f3e45 2303 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2304 return -EINVAL;
2305
64019a2e 2306 return __gup_longterm_locked(current->mm, start, nr_pages,
932f4a63
IW
2307 pages, vmas, gup_flags | FOLL_TOUCH);
2308}
2309EXPORT_SYMBOL(get_user_pages);
2bb6d283 2310
acc3c8d1 2311/*
d3649f68 2312 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2313 *
3e4e28c5 2314 * mmap_read_lock(mm);
64019a2e 2315 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2316 * mmap_read_unlock(mm);
d3649f68
CH
2317 *
2318 * with:
2319 *
64019a2e 2320 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2321 *
2322 * It is functionally equivalent to get_user_pages_fast so
2323 * get_user_pages_fast should be used instead if specific gup_flags
2324 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2325 */
d3649f68
CH
2326long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2327 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
2328{
2329 struct mm_struct *mm = current->mm;
d3649f68
CH
2330 int locked = 1;
2331 long ret;
acc3c8d1 2332
d3649f68
CH
2333 /*
2334 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2335 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2336 * vmas. As there are no users of this flag in this call we simply
2337 * disallow this option for now.
2338 */
2339 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2340 return -EINVAL;
acc3c8d1 2341
d8ed45c5 2342 mmap_read_lock(mm);
64019a2e 2343 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
d3649f68 2344 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1 2345 if (locked)
d8ed45c5 2346 mmap_read_unlock(mm);
d3649f68 2347 return ret;
4bbd4c77 2348}
d3649f68 2349EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2350
2351/*
67a929e0 2352 * Fast GUP
2667f50e
SC
2353 *
2354 * get_user_pages_fast attempts to pin user pages by walking the page
2355 * tables directly and avoids taking locks. Thus the walker needs to be
2356 * protected from page table pages being freed from under it, and should
2357 * block any THP splits.
2358 *
2359 * One way to achieve this is to have the walker disable interrupts, and
2360 * rely on IPIs from the TLB flushing code blocking before the page table
2361 * pages are freed. This is unsuitable for architectures that do not need
2362 * to broadcast an IPI when invalidating TLBs.
2363 *
2364 * Another way to achieve this is to batch up page table containing pages
2365 * belonging to more than one mm_user, then rcu_sched a callback to free those
2366 * pages. Disabling interrupts will allow the fast_gup walker to both block
2367 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2368 * (which is a relatively rare event). The code below adopts this strategy.
2369 *
2370 * Before activating this code, please be aware that the following assumptions
2371 * are currently made:
2372 *
ff2e6d72 2373 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2374 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2375 *
2667f50e
SC
2376 * *) ptes can be read atomically by the architecture.
2377 *
2378 * *) access_ok is sufficient to validate userspace address ranges.
2379 *
2380 * The last two assumptions can be relaxed by the addition of helper functions.
2381 *
2382 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2383 */
67a929e0 2384#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2385
790c7369 2386static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2387 unsigned int flags,
790c7369 2388 struct page **pages)
b59f65fa
KS
2389{
2390 while ((*nr) - nr_start) {
2391 struct page *page = pages[--(*nr)];
2392
2393 ClearPageReferenced(page);
3faa52c0
JH
2394 if (flags & FOLL_PIN)
2395 unpin_user_page(page);
2396 else
2397 put_page(page);
b59f65fa
KS
2398 }
2399}
2400
3010a5ea 2401#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
70cbc3cc
YS
2402/*
2403 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2404 * operations.
2405 *
2406 * To pin the page, fast-gup needs to do below in order:
2407 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2408 *
2409 * For the rest of pgtable operations where pgtable updates can be racy
2410 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2411 * is pinned.
2412 *
2413 * Above will work for all pte-level operations, including THP split.
2414 *
2415 * For THP collapse, it's a bit more complicated because fast-gup may be
2416 * walking a pgtable page that is being freed (pte is still valid but pmd
2417 * can be cleared already). To avoid race in such condition, we need to
2418 * also check pmd here to make sure pmd doesn't change (corresponds to
2419 * pmdp_collapse_flush() in the THP collapse code path).
2420 */
2421static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2422 unsigned long end, unsigned int flags,
2423 struct page **pages, int *nr)
2667f50e 2424{
b59f65fa
KS
2425 struct dev_pagemap *pgmap = NULL;
2426 int nr_start = *nr, ret = 0;
2667f50e 2427 pte_t *ptep, *ptem;
2667f50e
SC
2428
2429 ptem = ptep = pte_offset_map(&pmd, addr);
2430 do {
2a4a06da 2431 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2432 struct page *page;
2433 struct folio *folio;
2667f50e 2434
0cf45986 2435 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
e7884f8e
KS
2436 goto pte_unmap;
2437
b798bec4 2438 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2439 goto pte_unmap;
2440
b59f65fa 2441 if (pte_devmap(pte)) {
7af75561
IW
2442 if (unlikely(flags & FOLL_LONGTERM))
2443 goto pte_unmap;
2444
b59f65fa
KS
2445 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2446 if (unlikely(!pgmap)) {
3b78d834 2447 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2448 goto pte_unmap;
2449 }
2450 } else if (pte_special(pte))
2667f50e
SC
2451 goto pte_unmap;
2452
2453 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2454 page = pte_page(pte);
2455
b0496fe4
MWO
2456 folio = try_grab_folio(page, 1, flags);
2457 if (!folio)
2667f50e
SC
2458 goto pte_unmap;
2459
1507f512 2460 if (unlikely(page_is_secretmem(page))) {
b0496fe4 2461 gup_put_folio(folio, 1, flags);
1507f512
MR
2462 goto pte_unmap;
2463 }
2464
70cbc3cc
YS
2465 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2466 unlikely(pte_val(pte) != pte_val(*ptep))) {
b0496fe4 2467 gup_put_folio(folio, 1, flags);
2667f50e
SC
2468 goto pte_unmap;
2469 }
2470
a7f22660
DH
2471 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2472 gup_put_folio(folio, 1, flags);
2473 goto pte_unmap;
2474 }
2475
f28d4363
CI
2476 /*
2477 * We need to make the page accessible if and only if we are
2478 * going to access its content (the FOLL_PIN case). Please
2479 * see Documentation/core-api/pin_user_pages.rst for
2480 * details.
2481 */
2482 if (flags & FOLL_PIN) {
2483 ret = arch_make_page_accessible(page);
2484 if (ret) {
b0496fe4 2485 gup_put_folio(folio, 1, flags);
f28d4363
CI
2486 goto pte_unmap;
2487 }
2488 }
b0496fe4 2489 folio_set_referenced(folio);
2667f50e
SC
2490 pages[*nr] = page;
2491 (*nr)++;
2667f50e
SC
2492 } while (ptep++, addr += PAGE_SIZE, addr != end);
2493
2494 ret = 1;
2495
2496pte_unmap:
832d7aa0
CH
2497 if (pgmap)
2498 put_dev_pagemap(pgmap);
2667f50e
SC
2499 pte_unmap(ptem);
2500 return ret;
2501}
2502#else
2503
2504/*
2505 * If we can't determine whether or not a pte is special, then fail immediately
2506 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2507 * to be special.
2508 *
2509 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2510 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2511 * useful to have gup_huge_pmd even if we can't operate on ptes.
2512 */
70cbc3cc
YS
2513static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2514 unsigned long end, unsigned int flags,
2515 struct page **pages, int *nr)
2667f50e
SC
2516{
2517 return 0;
2518}
3010a5ea 2519#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2520
17596731 2521#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2522static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2523 unsigned long end, unsigned int flags,
2524 struct page **pages, int *nr)
b59f65fa
KS
2525{
2526 int nr_start = *nr;
2527 struct dev_pagemap *pgmap = NULL;
2528
2529 do {
2530 struct page *page = pfn_to_page(pfn);
2531
2532 pgmap = get_dev_pagemap(pfn, pgmap);
2533 if (unlikely(!pgmap)) {
3b78d834 2534 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2535 break;
b59f65fa
KS
2536 }
2537 SetPageReferenced(page);
2538 pages[*nr] = page;
3faa52c0
JH
2539 if (unlikely(!try_grab_page(page, flags))) {
2540 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2541 break;
3faa52c0 2542 }
b59f65fa
KS
2543 (*nr)++;
2544 pfn++;
2545 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2546
6401c4eb 2547 put_dev_pagemap(pgmap);
20b7fee7 2548 return addr == end;
b59f65fa
KS
2549}
2550
a9b6de77 2551static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2552 unsigned long end, unsigned int flags,
2553 struct page **pages, int *nr)
b59f65fa
KS
2554{
2555 unsigned long fault_pfn;
a9b6de77
DW
2556 int nr_start = *nr;
2557
2558 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2559 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2560 return 0;
b59f65fa 2561
a9b6de77 2562 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2563 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2564 return 0;
2565 }
2566 return 1;
b59f65fa
KS
2567}
2568
a9b6de77 2569static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2570 unsigned long end, unsigned int flags,
2571 struct page **pages, int *nr)
b59f65fa
KS
2572{
2573 unsigned long fault_pfn;
a9b6de77
DW
2574 int nr_start = *nr;
2575
2576 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2577 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2578 return 0;
b59f65fa 2579
a9b6de77 2580 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2581 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2582 return 0;
2583 }
2584 return 1;
b59f65fa
KS
2585}
2586#else
a9b6de77 2587static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2588 unsigned long end, unsigned int flags,
2589 struct page **pages, int *nr)
b59f65fa
KS
2590{
2591 BUILD_BUG();
2592 return 0;
2593}
2594
a9b6de77 2595static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2596 unsigned long end, unsigned int flags,
2597 struct page **pages, int *nr)
b59f65fa
KS
2598{
2599 BUILD_BUG();
2600 return 0;
2601}
2602#endif
2603
a43e9820
JH
2604static int record_subpages(struct page *page, unsigned long addr,
2605 unsigned long end, struct page **pages)
2606{
2607 int nr;
2608
c228afb1
MWO
2609 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2610 pages[nr] = nth_page(page, nr);
a43e9820
JH
2611
2612 return nr;
2613}
2614
cbd34da7
CH
2615#ifdef CONFIG_ARCH_HAS_HUGEPD
2616static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2617 unsigned long sz)
2618{
2619 unsigned long __boundary = (addr + sz) & ~(sz-1);
2620 return (__boundary - 1 < end - 1) ? __boundary : end;
2621}
2622
2623static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2624 unsigned long end, unsigned int flags,
2625 struct page **pages, int *nr)
cbd34da7
CH
2626{
2627 unsigned long pte_end;
09a1626e
MWO
2628 struct page *page;
2629 struct folio *folio;
cbd34da7
CH
2630 pte_t pte;
2631 int refs;
2632
2633 pte_end = (addr + sz) & ~(sz-1);
2634 if (pte_end < end)
2635 end = pte_end;
2636
55ca2263 2637 pte = huge_ptep_get(ptep);
cbd34da7 2638
0cd22afd 2639 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2640 return 0;
2641
2642 /* hugepages are never "special" */
2643 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2644
09a1626e 2645 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
a43e9820 2646 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2647
09a1626e
MWO
2648 folio = try_grab_folio(page, refs, flags);
2649 if (!folio)
cbd34da7 2650 return 0;
cbd34da7
CH
2651
2652 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
09a1626e 2653 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2654 return 0;
2655 }
2656
a7f22660
DH
2657 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2658 gup_put_folio(folio, refs, flags);
2659 return 0;
2660 }
2661
a43e9820 2662 *nr += refs;
09a1626e 2663 folio_set_referenced(folio);
cbd34da7
CH
2664 return 1;
2665}
2666
2667static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2668 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2669 struct page **pages, int *nr)
2670{
2671 pte_t *ptep;
2672 unsigned long sz = 1UL << hugepd_shift(hugepd);
2673 unsigned long next;
2674
2675 ptep = hugepte_offset(hugepd, addr, pdshift);
2676 do {
2677 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2678 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2679 return 0;
2680 } while (ptep++, addr = next, addr != end);
2681
2682 return 1;
2683}
2684#else
2685static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2686 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2687 struct page **pages, int *nr)
2688{
2689 return 0;
2690}
2691#endif /* CONFIG_ARCH_HAS_HUGEPD */
2692
2667f50e 2693static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2694 unsigned long end, unsigned int flags,
2695 struct page **pages, int *nr)
2667f50e 2696{
667ed1f7
MWO
2697 struct page *page;
2698 struct folio *folio;
2667f50e
SC
2699 int refs;
2700
b798bec4 2701 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2702 return 0;
2703
7af75561
IW
2704 if (pmd_devmap(orig)) {
2705 if (unlikely(flags & FOLL_LONGTERM))
2706 return 0;
86dfbed4
JH
2707 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2708 pages, nr);
7af75561 2709 }
b59f65fa 2710
c228afb1 2711 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2712 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2713
667ed1f7
MWO
2714 folio = try_grab_folio(page, refs, flags);
2715 if (!folio)
2667f50e 2716 return 0;
2667f50e
SC
2717
2718 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 2719 gup_put_folio(folio, refs, flags);
2667f50e
SC
2720 return 0;
2721 }
2722
a7f22660
DH
2723 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2724 gup_put_folio(folio, refs, flags);
2725 return 0;
2726 }
2727
a43e9820 2728 *nr += refs;
667ed1f7 2729 folio_set_referenced(folio);
2667f50e
SC
2730 return 1;
2731}
2732
2733static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2734 unsigned long end, unsigned int flags,
2735 struct page **pages, int *nr)
2667f50e 2736{
83afb52e
MWO
2737 struct page *page;
2738 struct folio *folio;
2667f50e
SC
2739 int refs;
2740
b798bec4 2741 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2742 return 0;
2743
7af75561
IW
2744 if (pud_devmap(orig)) {
2745 if (unlikely(flags & FOLL_LONGTERM))
2746 return 0;
86dfbed4
JH
2747 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2748 pages, nr);
7af75561 2749 }
b59f65fa 2750
c228afb1 2751 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2752 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2753
83afb52e
MWO
2754 folio = try_grab_folio(page, refs, flags);
2755 if (!folio)
2667f50e 2756 return 0;
2667f50e
SC
2757
2758 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 2759 gup_put_folio(folio, refs, flags);
2667f50e
SC
2760 return 0;
2761 }
2762
a7f22660
DH
2763 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2764 gup_put_folio(folio, refs, flags);
2765 return 0;
2766 }
2767
a43e9820 2768 *nr += refs;
83afb52e 2769 folio_set_referenced(folio);
2667f50e
SC
2770 return 1;
2771}
2772
f30c59e9 2773static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2774 unsigned long end, unsigned int flags,
f30c59e9
AK
2775 struct page **pages, int *nr)
2776{
2777 int refs;
2d7919a2
MWO
2778 struct page *page;
2779 struct folio *folio;
f30c59e9 2780
b798bec4 2781 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2782 return 0;
2783
b59f65fa 2784 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2785
c228afb1 2786 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2787 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2788
2d7919a2
MWO
2789 folio = try_grab_folio(page, refs, flags);
2790 if (!folio)
f30c59e9 2791 return 0;
f30c59e9
AK
2792
2793 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 2794 gup_put_folio(folio, refs, flags);
f30c59e9
AK
2795 return 0;
2796 }
2797
a43e9820 2798 *nr += refs;
2d7919a2 2799 folio_set_referenced(folio);
f30c59e9
AK
2800 return 1;
2801}
2802
d3f7b1bb 2803static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2804 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2805{
2806 unsigned long next;
2807 pmd_t *pmdp;
2808
d3f7b1bb 2809 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2810 do {
38c5ce93 2811 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2812
2813 next = pmd_addr_end(addr, end);
84c3fc4e 2814 if (!pmd_present(pmd))
2667f50e
SC
2815 return 0;
2816
414fd080
YZ
2817 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2818 pmd_devmap(pmd))) {
0cf45986
DH
2819 if (pmd_protnone(pmd) &&
2820 !gup_can_follow_protnone(flags))
2667f50e
SC
2821 return 0;
2822
b798bec4 2823 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2824 pages, nr))
2825 return 0;
2826
f30c59e9
AK
2827 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2828 /*
2829 * architecture have different format for hugetlbfs
2830 * pmd format and THP pmd format
2831 */
2832 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2833 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2834 return 0;
70cbc3cc 2835 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2923117b 2836 return 0;
2667f50e
SC
2837 } while (pmdp++, addr = next, addr != end);
2838
2839 return 1;
2840}
2841
d3f7b1bb 2842static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2843 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2844{
2845 unsigned long next;
2846 pud_t *pudp;
2847
d3f7b1bb 2848 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2849 do {
e37c6982 2850 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2851
2852 next = pud_addr_end(addr, end);
15494520 2853 if (unlikely(!pud_present(pud)))
2667f50e 2854 return 0;
f30c59e9 2855 if (unlikely(pud_huge(pud))) {
b798bec4 2856 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2857 pages, nr))
2858 return 0;
2859 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2860 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2861 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2862 return 0;
d3f7b1bb 2863 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2864 return 0;
2865 } while (pudp++, addr = next, addr != end);
2866
2867 return 1;
2868}
2869
d3f7b1bb 2870static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2871 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2872{
2873 unsigned long next;
2874 p4d_t *p4dp;
2875
d3f7b1bb 2876 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2877 do {
2878 p4d_t p4d = READ_ONCE(*p4dp);
2879
2880 next = p4d_addr_end(addr, end);
2881 if (p4d_none(p4d))
2882 return 0;
2883 BUILD_BUG_ON(p4d_huge(p4d));
2884 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2885 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2886 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2887 return 0;
d3f7b1bb 2888 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2889 return 0;
2890 } while (p4dp++, addr = next, addr != end);
2891
2892 return 1;
2893}
2894
5b65c467 2895static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2896 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2897{
2898 unsigned long next;
2899 pgd_t *pgdp;
2900
2901 pgdp = pgd_offset(current->mm, addr);
2902 do {
2903 pgd_t pgd = READ_ONCE(*pgdp);
2904
2905 next = pgd_addr_end(addr, end);
2906 if (pgd_none(pgd))
2907 return;
2908 if (unlikely(pgd_huge(pgd))) {
b798bec4 2909 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2910 pages, nr))
2911 return;
2912 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2913 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2914 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2915 return;
d3f7b1bb 2916 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2917 return;
2918 } while (pgdp++, addr = next, addr != end);
2919}
050a9adc
CH
2920#else
2921static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2922 unsigned int flags, struct page **pages, int *nr)
2923{
2924}
2925#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2926
2927#ifndef gup_fast_permitted
2928/*
dadbb612 2929 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2930 * we need to fall back to the slow version:
2931 */
26f4c328 2932static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2933{
26f4c328 2934 return true;
5b65c467
KS
2935}
2936#endif
2937
7af75561
IW
2938static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2939 unsigned int gup_flags, struct page **pages)
2940{
2941 int ret;
2942
2943 /*
2944 * FIXME: FOLL_LONGTERM does not work with
2945 * get_user_pages_unlocked() (see comments in that function)
2946 */
2947 if (gup_flags & FOLL_LONGTERM) {
d8ed45c5 2948 mmap_read_lock(current->mm);
64019a2e 2949 ret = __gup_longterm_locked(current->mm,
7af75561
IW
2950 start, nr_pages,
2951 pages, NULL, gup_flags);
d8ed45c5 2952 mmap_read_unlock(current->mm);
7af75561
IW
2953 } else {
2954 ret = get_user_pages_unlocked(start, nr_pages,
2955 pages, gup_flags);
2956 }
2957
2958 return ret;
2959}
2960
c28b1fc7
JG
2961static unsigned long lockless_pages_from_mm(unsigned long start,
2962 unsigned long end,
2963 unsigned int gup_flags,
2964 struct page **pages)
2965{
2966 unsigned long flags;
2967 int nr_pinned = 0;
57efa1fe 2968 unsigned seq;
c28b1fc7
JG
2969
2970 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2971 !gup_fast_permitted(start, end))
2972 return 0;
2973
57efa1fe
JG
2974 if (gup_flags & FOLL_PIN) {
2975 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2976 if (seq & 1)
2977 return 0;
2978 }
2979
c28b1fc7
JG
2980 /*
2981 * Disable interrupts. The nested form is used, in order to allow full,
2982 * general purpose use of this routine.
2983 *
2984 * With interrupts disabled, we block page table pages from being freed
2985 * from under us. See struct mmu_table_batch comments in
2986 * include/asm-generic/tlb.h for more details.
2987 *
2988 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2989 * that come from THPs splitting.
2990 */
2991 local_irq_save(flags);
2992 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2993 local_irq_restore(flags);
57efa1fe
JG
2994
2995 /*
2996 * When pinning pages for DMA there could be a concurrent write protect
2997 * from fork() via copy_page_range(), in this case always fail fast GUP.
2998 */
2999 if (gup_flags & FOLL_PIN) {
3000 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
b6a2619c 3001 unpin_user_pages_lockless(pages, nr_pinned);
57efa1fe 3002 return 0;
b6a2619c
DH
3003 } else {
3004 sanity_check_pinned_pages(pages, nr_pinned);
57efa1fe
JG
3005 }
3006 }
c28b1fc7
JG
3007 return nr_pinned;
3008}
3009
3010static int internal_get_user_pages_fast(unsigned long start,
3011 unsigned long nr_pages,
eddb1c22
JH
3012 unsigned int gup_flags,
3013 struct page **pages)
2667f50e 3014{
c28b1fc7
JG
3015 unsigned long len, end;
3016 unsigned long nr_pinned;
3017 int ret;
2667f50e 3018
f4000fdf 3019 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 3020 FOLL_FORCE | FOLL_PIN | FOLL_GET |
55b8fe70 3021 FOLL_FAST_ONLY | FOLL_NOFAULT)))
817be129
CH
3022 return -EINVAL;
3023
a458b76a
AA
3024 if (gup_flags & FOLL_PIN)
3025 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 3026
f81cd178 3027 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 3028 might_lock_read(&current->mm->mmap_lock);
f81cd178 3029
f455c854 3030 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
3031 len = nr_pages << PAGE_SHIFT;
3032 if (check_add_overflow(start, len, &end))
c61611f7 3033 return 0;
96d4f267 3034 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 3035 return -EFAULT;
73e10a61 3036
c28b1fc7
JG
3037 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3038 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3039 return nr_pinned;
2667f50e 3040
c28b1fc7
JG
3041 /* Slow path: try to get the remaining pages with get_user_pages */
3042 start += nr_pinned << PAGE_SHIFT;
3043 pages += nr_pinned;
3044 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
3045 pages);
3046 if (ret < 0) {
3047 /*
3048 * The caller has to unpin the pages we already pinned so
3049 * returning -errno is not an option
3050 */
3051 if (nr_pinned)
3052 return nr_pinned;
3053 return ret;
2667f50e 3054 }
c28b1fc7 3055 return ret + nr_pinned;
2667f50e 3056}
c28b1fc7 3057
dadbb612
SJ
3058/**
3059 * get_user_pages_fast_only() - pin user pages in memory
3060 * @start: starting user address
3061 * @nr_pages: number of pages from start to pin
3062 * @gup_flags: flags modifying pin behaviour
3063 * @pages: array that receives pointers to the pages pinned.
3064 * Should be at least nr_pages long.
3065 *
9e1f0580
JH
3066 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3067 * the regular GUP.
3068 * Note a difference with get_user_pages_fast: this always returns the
3069 * number of pages pinned, 0 if no pages were pinned.
3070 *
3071 * If the architecture does not support this function, simply return with no
3072 * pages pinned.
3073 *
3074 * Careful, careful! COW breaking can go either way, so a non-write
3075 * access can get ambiguous page results. If you call this function without
3076 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3077 */
dadbb612
SJ
3078int get_user_pages_fast_only(unsigned long start, int nr_pages,
3079 unsigned int gup_flags, struct page **pages)
9e1f0580 3080{
376a34ef 3081 int nr_pinned;
9e1f0580
JH
3082 /*
3083 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3084 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
3085 *
3086 * FOLL_FAST_ONLY is required in order to match the API description of
3087 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 3088 */
dadbb612 3089 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
9e1f0580 3090
376a34ef
JH
3091 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3092 pages);
9e1f0580
JH
3093
3094 /*
376a34ef
JH
3095 * As specified in the API description above, this routine is not
3096 * allowed to return negative values. However, the common core
3097 * routine internal_get_user_pages_fast() *can* return -errno.
3098 * Therefore, correct for that here:
9e1f0580 3099 */
376a34ef
JH
3100 if (nr_pinned < 0)
3101 nr_pinned = 0;
9e1f0580
JH
3102
3103 return nr_pinned;
3104}
dadbb612 3105EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 3106
eddb1c22
JH
3107/**
3108 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
3109 * @start: starting user address
3110 * @nr_pages: number of pages from start to pin
3111 * @gup_flags: flags modifying pin behaviour
3112 * @pages: array that receives pointers to the pages pinned.
3113 * Should be at least nr_pages long.
eddb1c22 3114 *
c1e8d7c6 3115 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
3116 * If not successful, it will fall back to taking the lock and
3117 * calling get_user_pages().
3118 *
3119 * Returns number of pages pinned. This may be fewer than the number requested.
3120 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3121 * -errno.
3122 */
3123int get_user_pages_fast(unsigned long start, int nr_pages,
3124 unsigned int gup_flags, struct page **pages)
3125{
447f3e45 3126 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
3127 return -EINVAL;
3128
94202f12
JH
3129 /*
3130 * The caller may or may not have explicitly set FOLL_GET; either way is
3131 * OK. However, internally (within mm/gup.c), gup fast variants must set
3132 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3133 * request.
3134 */
3135 gup_flags |= FOLL_GET;
eddb1c22
JH
3136 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3137}
050a9adc 3138EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
3139
3140/**
3141 * pin_user_pages_fast() - pin user pages in memory without taking locks
3142 *
3faa52c0
JH
3143 * @start: starting user address
3144 * @nr_pages: number of pages from start to pin
3145 * @gup_flags: flags modifying pin behaviour
3146 * @pages: array that receives pointers to the pages pinned.
3147 * Should be at least nr_pages long.
3148 *
3149 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3150 * get_user_pages_fast() for documentation on the function arguments, because
3151 * the arguments here are identical.
3152 *
3153 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3154 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
3155 */
3156int pin_user_pages_fast(unsigned long start, int nr_pages,
3157 unsigned int gup_flags, struct page **pages)
3158{
3faa52c0
JH
3159 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3160 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3161 return -EINVAL;
3162
0768c8de
YN
3163 if (WARN_ON_ONCE(!pages))
3164 return -EINVAL;
3165
3faa52c0
JH
3166 gup_flags |= FOLL_PIN;
3167 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
3168}
3169EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3170
104acc32 3171/*
dadbb612
SJ
3172 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3173 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
3174 *
3175 * The API rules are the same, too: no negative values may be returned.
3176 */
3177int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3178 unsigned int gup_flags, struct page **pages)
3179{
3180 int nr_pinned;
3181
3182 /*
3183 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3184 * rules require returning 0, rather than -errno:
3185 */
3186 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3187 return 0;
0768c8de
YN
3188
3189 if (WARN_ON_ONCE(!pages))
3190 return 0;
104acc32
JH
3191 /*
3192 * FOLL_FAST_ONLY is required in order to match the API description of
3193 * this routine: no fall back to regular ("slow") GUP.
3194 */
3195 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3196 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3197 pages);
3198 /*
3199 * This routine is not allowed to return negative values. However,
3200 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3201 * correct for that here:
3202 */
3203 if (nr_pinned < 0)
3204 nr_pinned = 0;
3205
3206 return nr_pinned;
3207}
3208EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3209
eddb1c22 3210/**
64019a2e 3211 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3212 *
3faa52c0
JH
3213 * @mm: mm_struct of target mm
3214 * @start: starting user address
3215 * @nr_pages: number of pages from start to pin
3216 * @gup_flags: flags modifying lookup behaviour
3217 * @pages: array that receives pointers to the pages pinned.
0768c8de 3218 * Should be at least nr_pages long.
3faa52c0
JH
3219 * @vmas: array of pointers to vmas corresponding to each page.
3220 * Or NULL if the caller does not require them.
3221 * @locked: pointer to lock flag indicating whether lock is held and
3222 * subsequently whether VM_FAULT_RETRY functionality can be
3223 * utilised. Lock must initially be held.
3224 *
3225 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3226 * get_user_pages_remote() for documentation on the function arguments, because
3227 * the arguments here are identical.
3228 *
3229 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3230 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 3231 */
64019a2e 3232long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3233 unsigned long start, unsigned long nr_pages,
3234 unsigned int gup_flags, struct page **pages,
3235 struct vm_area_struct **vmas, int *locked)
3236{
3faa52c0
JH
3237 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3238 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3239 return -EINVAL;
3240
0768c8de
YN
3241 if (WARN_ON_ONCE(!pages))
3242 return -EINVAL;
3243
3faa52c0 3244 gup_flags |= FOLL_PIN;
64019a2e 3245 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3faa52c0 3246 pages, vmas, locked);
eddb1c22
JH
3247}
3248EXPORT_SYMBOL(pin_user_pages_remote);
3249
3250/**
3251 * pin_user_pages() - pin user pages in memory for use by other devices
3252 *
3faa52c0
JH
3253 * @start: starting user address
3254 * @nr_pages: number of pages from start to pin
3255 * @gup_flags: flags modifying lookup behaviour
3256 * @pages: array that receives pointers to the pages pinned.
0768c8de 3257 * Should be at least nr_pages long.
3faa52c0
JH
3258 * @vmas: array of pointers to vmas corresponding to each page.
3259 * Or NULL if the caller does not require them.
3260 *
3261 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3262 * FOLL_PIN is set.
3263 *
3264 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3265 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
3266 */
3267long pin_user_pages(unsigned long start, unsigned long nr_pages,
3268 unsigned int gup_flags, struct page **pages,
3269 struct vm_area_struct **vmas)
3270{
3faa52c0
JH
3271 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3272 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3273 return -EINVAL;
3274
0768c8de
YN
3275 if (WARN_ON_ONCE(!pages))
3276 return -EINVAL;
3277
3faa52c0 3278 gup_flags |= FOLL_PIN;
64019a2e 3279 return __gup_longterm_locked(current->mm, start, nr_pages,
3faa52c0 3280 pages, vmas, gup_flags);
eddb1c22
JH
3281}
3282EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3283
3284/*
3285 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3286 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3287 * FOLL_PIN and rejects FOLL_GET.
3288 */
3289long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3290 struct page **pages, unsigned int gup_flags)
3291{
3292 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3293 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3294 return -EINVAL;
3295
0768c8de
YN
3296 if (WARN_ON_ONCE(!pages))
3297 return -EINVAL;
3298
91429023
JH
3299 gup_flags |= FOLL_PIN;
3300 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3301}
3302EXPORT_SYMBOL(pin_user_pages_unlocked);