mm: Don't pin ZERO_PAGE in pin_user_pages()
[linux-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
1027e443 21
33a709b2 22#include <asm/mmu_context.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
b6a2619c
DH
32static inline void sanity_check_pinned_pages(struct page **pages,
33 unsigned long npages)
34{
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 return;
37
38 /*
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
42 *
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
49 */
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
53
c8070b78
DH
54 if (is_zero_page(page) ||
55 !folio_test_anon(folio))
b6a2619c
DH
56 continue;
57 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
58 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
59 else
60 /* Either a PTE-mapped or a PMD-mapped THP. */
61 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
62 !PageAnonExclusive(page), page);
63 }
64}
65
cd1adf1b 66/*
ece1ed7b 67 * Return the folio with ref appropriately incremented,
cd1adf1b 68 * or NULL if that failed.
a707cdd5 69 */
ece1ed7b 70static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 71{
ece1ed7b 72 struct folio *folio;
a707cdd5 73
59409373 74retry:
ece1ed7b
MWO
75 folio = page_folio(page);
76 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 77 return NULL;
ece1ed7b 78 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
a707cdd5 79 return NULL;
c24d3732
JH
80
81 /*
ece1ed7b
MWO
82 * At this point we have a stable reference to the folio; but it
83 * could be that between calling page_folio() and the refcount
84 * increment, the folio was split, in which case we'd end up
85 * holding a reference on a folio that has nothing to do with the page
c24d3732 86 * we were given anymore.
ece1ed7b
MWO
87 * So now that the folio is stable, recheck that the page still
88 * belongs to this folio.
c24d3732 89 */
ece1ed7b 90 if (unlikely(page_folio(page) != folio)) {
f4f451a1
MS
91 if (!put_devmap_managed_page_refs(&folio->page, refs))
92 folio_put_refs(folio, refs);
59409373 93 goto retry;
c24d3732
JH
94 }
95
ece1ed7b 96 return folio;
a707cdd5
JH
97}
98
3967db22 99/**
ece1ed7b 100 * try_grab_folio() - Attempt to get or pin a folio.
3967db22 101 * @page: pointer to page to be grabbed
ece1ed7b 102 * @refs: the value to (effectively) add to the folio's refcount
3967db22
JH
103 * @flags: gup flags: these are the FOLL_* flag values.
104 *
3faa52c0 105 * "grab" names in this file mean, "look at flags to decide whether to use
ece1ed7b 106 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0
JH
107 *
108 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
109 * same time. (That's true throughout the get_user_pages*() and
110 * pin_user_pages*() APIs.) Cases:
111 *
ece1ed7b 112 * FOLL_GET: folio's refcount will be incremented by @refs.
3967db22 113 *
ece1ed7b 114 * FOLL_PIN on large folios: folio's refcount will be incremented by
94688e8e 115 * @refs, and its pincount will be incremented by @refs.
3967db22 116 *
ece1ed7b 117 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
5232c63f 118 * @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0 119 *
ece1ed7b
MWO
120 * Return: The folio containing @page (with refcount appropriately
121 * incremented) for success, or NULL upon failure. If neither FOLL_GET
122 * nor FOLL_PIN was set, that's considered failure, and furthermore,
123 * a likely bug in the caller, so a warning is also emitted.
3faa52c0 124 */
ece1ed7b 125struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
3faa52c0 126{
4003f107
LG
127 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
128 return NULL;
129
3faa52c0 130 if (flags & FOLL_GET)
ece1ed7b 131 return try_get_folio(page, refs);
3faa52c0 132 else if (flags & FOLL_PIN) {
ece1ed7b
MWO
133 struct folio *folio;
134
c8070b78
DH
135 /*
136 * Don't take a pin on the zero page - it's not going anywhere
137 * and it is used in a *lot* of places.
138 */
139 if (is_zero_page(page))
140 return page_folio(page);
141
df3a0a21 142 /*
d1e153fe
PT
143 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
144 * right zone, so fail and let the caller fall back to the slow
145 * path.
df3a0a21 146 */
d1e153fe 147 if (unlikely((flags & FOLL_LONGTERM) &&
6077c943 148 !is_longterm_pinnable_page(page)))
df3a0a21
PL
149 return NULL;
150
c24d3732
JH
151 /*
152 * CAUTION: Don't use compound_head() on the page before this
153 * point, the result won't be stable.
154 */
ece1ed7b
MWO
155 folio = try_get_folio(page, refs);
156 if (!folio)
c24d3732
JH
157 return NULL;
158
47e29d32 159 /*
ece1ed7b 160 * When pinning a large folio, use an exact count to track it.
47e29d32 161 *
ece1ed7b
MWO
162 * However, be sure to *also* increment the normal folio
163 * refcount field at least once, so that the folio really
78d9d6ce 164 * is pinned. That's why the refcount from the earlier
ece1ed7b 165 * try_get_folio() is left intact.
47e29d32 166 */
ece1ed7b 167 if (folio_test_large(folio))
94688e8e 168 atomic_add(refs, &folio->_pincount);
c24d3732 169 else
ece1ed7b
MWO
170 folio_ref_add(folio,
171 refs * (GUP_PIN_COUNTING_BIAS - 1));
088b8aa5
DH
172 /*
173 * Adjust the pincount before re-checking the PTE for changes.
174 * This is essentially a smp_mb() and is paired with a memory
175 * barrier in page_try_share_anon_rmap().
176 */
177 smp_mb__after_atomic();
178
ece1ed7b 179 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
47e29d32 180
ece1ed7b 181 return folio;
3faa52c0
JH
182 }
183
184 WARN_ON_ONCE(1);
185 return NULL;
186}
187
d8ddc099 188static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
189{
190 if (flags & FOLL_PIN) {
c8070b78
DH
191 if (is_zero_folio(folio))
192 return;
d8ddc099
MWO
193 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
194 if (folio_test_large(folio))
94688e8e 195 atomic_sub(refs, &folio->_pincount);
4509b42c
JG
196 else
197 refs *= GUP_PIN_COUNTING_BIAS;
198 }
199
f4f451a1
MS
200 if (!put_devmap_managed_page_refs(&folio->page, refs))
201 folio_put_refs(folio, refs);
4509b42c
JG
202}
203
3faa52c0
JH
204/**
205 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
5fec0719
MWO
206 * @page: pointer to page to be grabbed
207 * @flags: gup flags: these are the FOLL_* flag values.
3faa52c0
JH
208 *
209 * This might not do anything at all, depending on the flags argument.
210 *
211 * "grab" names in this file mean, "look at flags to decide whether to use
212 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
213 *
3faa52c0 214 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
ece1ed7b 215 * time. Cases: please see the try_grab_folio() documentation, with
3967db22 216 * "refs=1".
3faa52c0 217 *
0f089235
LG
218 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
219 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
220 *
221 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
222 * be grabbed.
3faa52c0 223 */
0f089235 224int __must_check try_grab_page(struct page *page, unsigned int flags)
3faa52c0 225{
5fec0719
MWO
226 struct folio *folio = page_folio(page);
227
5fec0719 228 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
0f089235 229 return -ENOMEM;
3faa52c0 230
4003f107
LG
231 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
232 return -EREMOTEIO;
3faa52c0 233
c36c04c2 234 if (flags & FOLL_GET)
5fec0719 235 folio_ref_inc(folio);
c36c04c2 236 else if (flags & FOLL_PIN) {
c8070b78
DH
237 /*
238 * Don't take a pin on the zero page - it's not going anywhere
239 * and it is used in a *lot* of places.
240 */
241 if (is_zero_page(page))
242 return 0;
243
c36c04c2 244 /*
5fec0719 245 * Similar to try_grab_folio(): be sure to *also*
78d9d6ce
MWO
246 * increment the normal page refcount field at least once,
247 * so that the page really is pinned.
c36c04c2 248 */
5fec0719
MWO
249 if (folio_test_large(folio)) {
250 folio_ref_add(folio, 1);
94688e8e 251 atomic_add(1, &folio->_pincount);
8ea2979c 252 } else {
5fec0719 253 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
8ea2979c 254 }
c36c04c2 255
5fec0719 256 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
c36c04c2
JH
257 }
258
0f089235 259 return 0;
3faa52c0
JH
260}
261
3faa52c0
JH
262/**
263 * unpin_user_page() - release a dma-pinned page
264 * @page: pointer to page to be released
265 *
266 * Pages that were pinned via pin_user_pages*() must be released via either
267 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
268 * that such pages can be separately tracked and uniquely handled. In
269 * particular, interactions with RDMA and filesystems need special handling.
270 */
271void unpin_user_page(struct page *page)
272{
b6a2619c 273 sanity_check_pinned_pages(&page, 1);
d8ddc099 274 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
275}
276EXPORT_SYMBOL(unpin_user_page);
277
659508f9 278static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 279 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 280{
659508f9
MWO
281 struct page *next = nth_page(start, i);
282 struct folio *folio = page_folio(next);
458a4f78
JM
283 unsigned int nr = 1;
284
659508f9 285 if (folio_test_large(folio))
4c654229 286 nr = min_t(unsigned int, npages - i,
659508f9 287 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 288
458a4f78 289 *ntails = nr;
659508f9 290 return folio;
458a4f78
JM
291}
292
12521c76 293static inline struct folio *gup_folio_next(struct page **list,
28297dbc 294 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 295{
12521c76 296 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
297 unsigned int nr;
298
8745d7f6 299 for (nr = i + 1; nr < npages; nr++) {
12521c76 300 if (page_folio(list[nr]) != folio)
8745d7f6
JM
301 break;
302 }
303
8745d7f6 304 *ntails = nr - i;
12521c76 305 return folio;
8745d7f6
JM
306}
307
fc1d8e7c 308/**
f1f6a7dd 309 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 310 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 311 * @npages: number of pages in the @pages array.
2d15eb31 312 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
313 *
314 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
315 * variants called on that page.
316 *
317 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 318 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
319 * listed as clean. In any case, releases all pages using unpin_user_page(),
320 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 321 *
f1f6a7dd 322 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 323 *
2d15eb31 324 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
325 * required, then the caller should a) verify that this is really correct,
326 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 327 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
328 *
329 */
f1f6a7dd
JH
330void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
331 bool make_dirty)
fc1d8e7c 332{
12521c76
MWO
333 unsigned long i;
334 struct folio *folio;
335 unsigned int nr;
2d15eb31 336
337 if (!make_dirty) {
f1f6a7dd 338 unpin_user_pages(pages, npages);
2d15eb31 339 return;
340 }
341
b6a2619c 342 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
343 for (i = 0; i < npages; i += nr) {
344 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31 345 /*
346 * Checking PageDirty at this point may race with
347 * clear_page_dirty_for_io(), but that's OK. Two key
348 * cases:
349 *
350 * 1) This code sees the page as already dirty, so it
351 * skips the call to set_page_dirty(). That could happen
352 * because clear_page_dirty_for_io() called
353 * page_mkclean(), followed by set_page_dirty().
354 * However, now the page is going to get written back,
355 * which meets the original intention of setting it
356 * dirty, so all is well: clear_page_dirty_for_io() goes
357 * on to call TestClearPageDirty(), and write the page
358 * back.
359 *
360 * 2) This code sees the page as clean, so it calls
361 * set_page_dirty(). The page stays dirty, despite being
362 * written back, so it gets written back again in the
363 * next writeback cycle. This is harmless.
364 */
12521c76
MWO
365 if (!folio_test_dirty(folio)) {
366 folio_lock(folio);
367 folio_mark_dirty(folio);
368 folio_unlock(folio);
369 }
370 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 371 }
fc1d8e7c 372}
f1f6a7dd 373EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 374
458a4f78
JM
375/**
376 * unpin_user_page_range_dirty_lock() - release and optionally dirty
377 * gup-pinned page range
378 *
379 * @page: the starting page of a range maybe marked dirty, and definitely released.
380 * @npages: number of consecutive pages to release.
381 * @make_dirty: whether to mark the pages dirty
382 *
383 * "gup-pinned page range" refers to a range of pages that has had one of the
384 * pin_user_pages() variants called on that page.
385 *
386 * For the page ranges defined by [page .. page+npages], make that range (or
387 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
388 * page range was previously listed as clean.
389 *
390 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
391 * required, then the caller should a) verify that this is really correct,
392 * because _lock() is usually required, and b) hand code it:
393 * set_page_dirty_lock(), unpin_user_page().
394 *
395 */
396void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
397 bool make_dirty)
398{
659508f9
MWO
399 unsigned long i;
400 struct folio *folio;
401 unsigned int nr;
402
403 for (i = 0; i < npages; i += nr) {
404 folio = gup_folio_range_next(page, npages, i, &nr);
405 if (make_dirty && !folio_test_dirty(folio)) {
406 folio_lock(folio);
407 folio_mark_dirty(folio);
408 folio_unlock(folio);
409 }
410 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
411 }
412}
413EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
414
b6a2619c
DH
415static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
416{
417 unsigned long i;
418 struct folio *folio;
419 unsigned int nr;
420
421 /*
422 * Don't perform any sanity checks because we might have raced with
423 * fork() and some anonymous pages might now actually be shared --
424 * which is why we're unpinning after all.
425 */
426 for (i = 0; i < npages; i += nr) {
427 folio = gup_folio_next(pages, npages, i, &nr);
428 gup_put_folio(folio, nr, FOLL_PIN);
429 }
430}
431
fc1d8e7c 432/**
f1f6a7dd 433 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
434 * @pages: array of pages to be marked dirty and released.
435 * @npages: number of pages in the @pages array.
436 *
f1f6a7dd 437 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 438 *
f1f6a7dd 439 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 440 */
f1f6a7dd 441void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 442{
12521c76
MWO
443 unsigned long i;
444 struct folio *folio;
445 unsigned int nr;
fc1d8e7c 446
146608bb
JH
447 /*
448 * If this WARN_ON() fires, then the system *might* be leaking pages (by
449 * leaving them pinned), but probably not. More likely, gup/pup returned
450 * a hard -ERRNO error to the caller, who erroneously passed it here.
451 */
452 if (WARN_ON(IS_ERR_VALUE(npages)))
453 return;
31b912de 454
b6a2619c 455 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
456 for (i = 0; i < npages; i += nr) {
457 folio = gup_folio_next(pages, npages, i, &nr);
458 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 459 }
fc1d8e7c 460}
f1f6a7dd 461EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 462
a458b76a
AA
463/*
464 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
465 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
466 * cache bouncing on large SMP machines for concurrent pinned gups.
467 */
468static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
469{
470 if (!test_bit(MMF_HAS_PINNED, mm_flags))
471 set_bit(MMF_HAS_PINNED, mm_flags);
472}
473
050a9adc 474#ifdef CONFIG_MMU
69e68b4f
KS
475static struct page *no_page_table(struct vm_area_struct *vma,
476 unsigned int flags)
4bbd4c77 477{
69e68b4f
KS
478 /*
479 * When core dumping an enormous anonymous area that nobody
480 * has touched so far, we don't want to allocate unnecessary pages or
481 * page tables. Return error instead of NULL to skip handle_mm_fault,
482 * then get_dump_page() will return NULL to leave a hole in the dump.
483 * But we can only make this optimization where a hole would surely
484 * be zero-filled if handle_mm_fault() actually did handle it.
485 */
a0137f16
AK
486 if ((flags & FOLL_DUMP) &&
487 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
488 return ERR_PTR(-EFAULT);
489 return NULL;
490}
4bbd4c77 491
1027e443
KS
492static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
493 pte_t *pte, unsigned int flags)
494{
1027e443
KS
495 if (flags & FOLL_TOUCH) {
496 pte_t entry = *pte;
497
498 if (flags & FOLL_WRITE)
499 entry = pte_mkdirty(entry);
500 entry = pte_mkyoung(entry);
501
502 if (!pte_same(*pte, entry)) {
503 set_pte_at(vma->vm_mm, address, pte, entry);
504 update_mmu_cache(vma, address, pte);
505 }
506 }
507
508 /* Proper page table entry exists, but no corresponding struct page */
509 return -EEXIST;
510}
511
5535be30
DH
512/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
513static inline bool can_follow_write_pte(pte_t pte, struct page *page,
514 struct vm_area_struct *vma,
515 unsigned int flags)
19be0eaf 516{
5535be30
DH
517 /* If the pte is writable, we can write to the page. */
518 if (pte_write(pte))
519 return true;
520
521 /* Maybe FOLL_FORCE is set to override it? */
522 if (!(flags & FOLL_FORCE))
523 return false;
524
525 /* But FOLL_FORCE has no effect on shared mappings */
526 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
527 return false;
528
529 /* ... or read-only private ones */
530 if (!(vma->vm_flags & VM_MAYWRITE))
531 return false;
532
533 /* ... or already writable ones that just need to take a write fault */
534 if (vma->vm_flags & VM_WRITE)
535 return false;
536
537 /*
538 * See can_change_pte_writable(): we broke COW and could map the page
539 * writable if we have an exclusive anonymous page ...
540 */
541 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
542 return false;
543
544 /* ... and a write-fault isn't required for other reasons. */
545 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
546 return false;
547 return !userfaultfd_pte_wp(vma, pte);
19be0eaf
LT
548}
549
69e68b4f 550static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
551 unsigned long address, pmd_t *pmd, unsigned int flags,
552 struct dev_pagemap **pgmap)
69e68b4f
KS
553{
554 struct mm_struct *mm = vma->vm_mm;
555 struct page *page;
556 spinlock_t *ptl;
557 pte_t *ptep, pte;
f28d4363 558 int ret;
4bbd4c77 559
eddb1c22
JH
560 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
561 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
562 (FOLL_PIN | FOLL_GET)))
563 return ERR_PTR(-EINVAL);
4bbd4c77 564 if (unlikely(pmd_bad(*pmd)))
69e68b4f 565 return no_page_table(vma, flags);
4bbd4c77
KS
566
567 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77 568 pte = *ptep;
f7355e99
DH
569 if (!pte_present(pte))
570 goto no_page;
474098ed 571 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
4bbd4c77 572 goto no_page;
4bbd4c77
KS
573
574 page = vm_normal_page(vma, address, pte);
5535be30
DH
575
576 /*
577 * We only care about anon pages in can_follow_write_pte() and don't
578 * have to worry about pte_devmap() because they are never anon.
579 */
580 if ((flags & FOLL_WRITE) &&
581 !can_follow_write_pte(pte, page, vma, flags)) {
582 page = NULL;
583 goto out;
584 }
585
3faa52c0 586 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 587 /*
3faa52c0
JH
588 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
589 * case since they are only valid while holding the pgmap
590 * reference.
3565fce3 591 */
df06b37f
KB
592 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
593 if (*pgmap)
3565fce3
DW
594 page = pte_page(pte);
595 else
596 goto no_page;
597 } else if (unlikely(!page)) {
1027e443
KS
598 if (flags & FOLL_DUMP) {
599 /* Avoid special (like zero) pages in core dumps */
600 page = ERR_PTR(-EFAULT);
601 goto out;
602 }
603
604 if (is_zero_pfn(pte_pfn(pte))) {
605 page = pte_page(pte);
606 } else {
1027e443
KS
607 ret = follow_pfn_pte(vma, address, ptep, flags);
608 page = ERR_PTR(ret);
609 goto out;
610 }
4bbd4c77
KS
611 }
612
84209e87 613 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
a7f22660
DH
614 page = ERR_PTR(-EMLINK);
615 goto out;
616 }
b6a2619c
DH
617
618 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
619 !PageAnonExclusive(page), page);
620
3faa52c0 621 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
0f089235
LG
622 ret = try_grab_page(page, flags);
623 if (unlikely(ret)) {
624 page = ERR_PTR(ret);
3faa52c0 625 goto out;
8fde12ca 626 }
4003f107 627
f28d4363
CI
628 /*
629 * We need to make the page accessible if and only if we are going
630 * to access its content (the FOLL_PIN case). Please see
631 * Documentation/core-api/pin_user_pages.rst for details.
632 */
633 if (flags & FOLL_PIN) {
634 ret = arch_make_page_accessible(page);
635 if (ret) {
636 unpin_user_page(page);
637 page = ERR_PTR(ret);
638 goto out;
639 }
640 }
4bbd4c77
KS
641 if (flags & FOLL_TOUCH) {
642 if ((flags & FOLL_WRITE) &&
643 !pte_dirty(pte) && !PageDirty(page))
644 set_page_dirty(page);
645 /*
646 * pte_mkyoung() would be more correct here, but atomic care
647 * is needed to avoid losing the dirty bit: it is easier to use
648 * mark_page_accessed().
649 */
650 mark_page_accessed(page);
651 }
1027e443 652out:
4bbd4c77 653 pte_unmap_unlock(ptep, ptl);
4bbd4c77 654 return page;
4bbd4c77
KS
655no_page:
656 pte_unmap_unlock(ptep, ptl);
657 if (!pte_none(pte))
69e68b4f
KS
658 return NULL;
659 return no_page_table(vma, flags);
660}
661
080dbb61
AK
662static struct page *follow_pmd_mask(struct vm_area_struct *vma,
663 unsigned long address, pud_t *pudp,
df06b37f
KB
664 unsigned int flags,
665 struct follow_page_context *ctx)
69e68b4f 666{
68827280 667 pmd_t *pmd, pmdval;
69e68b4f
KS
668 spinlock_t *ptl;
669 struct page *page;
670 struct mm_struct *mm = vma->vm_mm;
671
080dbb61 672 pmd = pmd_offset(pudp, address);
68827280
HY
673 /*
674 * The READ_ONCE() will stabilize the pmdval in a register or
675 * on the stack so that it will stop changing under the code.
676 */
677 pmdval = READ_ONCE(*pmd);
678 if (pmd_none(pmdval))
69e68b4f 679 return no_page_table(vma, flags);
f7355e99 680 if (!pmd_present(pmdval))
e66f17ff 681 return no_page_table(vma, flags);
68827280 682 if (pmd_devmap(pmdval)) {
3565fce3 683 ptl = pmd_lock(mm, pmd);
df06b37f 684 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
685 spin_unlock(ptl);
686 if (page)
687 return page;
688 }
68827280 689 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 690 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 691
474098ed 692 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
db08f203
AK
693 return no_page_table(vma, flags);
694
6742d293 695 ptl = pmd_lock(mm, pmd);
84c3fc4e
ZY
696 if (unlikely(!pmd_present(*pmd))) {
697 spin_unlock(ptl);
f7355e99 698 return no_page_table(vma, flags);
84c3fc4e 699 }
6742d293
KS
700 if (unlikely(!pmd_trans_huge(*pmd))) {
701 spin_unlock(ptl);
df06b37f 702 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 703 }
4066c119 704 if (flags & FOLL_SPLIT_PMD) {
6742d293
KS
705 int ret;
706 page = pmd_page(*pmd);
707 if (is_huge_zero_page(page)) {
708 spin_unlock(ptl);
709 ret = 0;
78ddc534 710 split_huge_pmd(vma, pmd, address);
337d9abf
NH
711 if (pmd_trans_unstable(pmd))
712 ret = -EBUSY;
4066c119 713 } else {
bfe7b00d
SL
714 spin_unlock(ptl);
715 split_huge_pmd(vma, pmd, address);
716 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
717 }
718
719 return ret ? ERR_PTR(ret) :
df06b37f 720 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 721 }
6742d293
KS
722 page = follow_trans_huge_pmd(vma, address, pmd, flags);
723 spin_unlock(ptl);
df06b37f 724 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 725 return page;
4bbd4c77
KS
726}
727
080dbb61
AK
728static struct page *follow_pud_mask(struct vm_area_struct *vma,
729 unsigned long address, p4d_t *p4dp,
df06b37f
KB
730 unsigned int flags,
731 struct follow_page_context *ctx)
080dbb61
AK
732{
733 pud_t *pud;
734 spinlock_t *ptl;
735 struct page *page;
736 struct mm_struct *mm = vma->vm_mm;
737
738 pud = pud_offset(p4dp, address);
739 if (pud_none(*pud))
740 return no_page_table(vma, flags);
080dbb61
AK
741 if (pud_devmap(*pud)) {
742 ptl = pud_lock(mm, pud);
df06b37f 743 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
744 spin_unlock(ptl);
745 if (page)
746 return page;
747 }
748 if (unlikely(pud_bad(*pud)))
749 return no_page_table(vma, flags);
750
df06b37f 751 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
752}
753
080dbb61
AK
754static struct page *follow_p4d_mask(struct vm_area_struct *vma,
755 unsigned long address, pgd_t *pgdp,
df06b37f
KB
756 unsigned int flags,
757 struct follow_page_context *ctx)
080dbb61
AK
758{
759 p4d_t *p4d;
760
761 p4d = p4d_offset(pgdp, address);
762 if (p4d_none(*p4d))
763 return no_page_table(vma, flags);
764 BUILD_BUG_ON(p4d_huge(*p4d));
765 if (unlikely(p4d_bad(*p4d)))
766 return no_page_table(vma, flags);
767
df06b37f 768 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
769}
770
771/**
772 * follow_page_mask - look up a page descriptor from a user-virtual address
773 * @vma: vm_area_struct mapping @address
774 * @address: virtual address to look up
775 * @flags: flags modifying lookup behaviour
78179556
MR
776 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
777 * pointer to output page_mask
080dbb61
AK
778 *
779 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
780 *
78179556
MR
781 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
782 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
783 *
a7f22660
DH
784 * When getting an anonymous page and the caller has to trigger unsharing
785 * of a shared anonymous page first, -EMLINK is returned. The caller should
786 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
787 * relevant with FOLL_PIN and !FOLL_WRITE.
788 *
78179556
MR
789 * On output, the @ctx->page_mask is set according to the size of the page.
790 *
791 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
792 * an error pointer if there is a mapping to something not represented
793 * by a page descriptor (see also vm_normal_page()).
794 */
a7030aea 795static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 796 unsigned long address, unsigned int flags,
df06b37f 797 struct follow_page_context *ctx)
080dbb61
AK
798{
799 pgd_t *pgd;
800 struct page *page;
801 struct mm_struct *mm = vma->vm_mm;
802
df06b37f 803 ctx->page_mask = 0;
080dbb61 804
57a196a5
MK
805 /*
806 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
807 * special hugetlb page table walking code. This eliminates the
808 * need to check for hugetlb entries in the general walking code.
809 *
810 * hugetlb_follow_page_mask is only for follow_page() handling here.
811 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
812 */
813 if (is_vm_hugetlb_page(vma)) {
814 page = hugetlb_follow_page_mask(vma, address, flags);
815 if (!page)
816 page = no_page_table(vma, flags);
080dbb61
AK
817 return page;
818 }
819
820 pgd = pgd_offset(mm, address);
821
822 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
823 return no_page_table(vma, flags);
824
df06b37f
KB
825 return follow_p4d_mask(vma, address, pgd, flags, ctx);
826}
827
828struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
829 unsigned int foll_flags)
830{
831 struct follow_page_context ctx = { NULL };
832 struct page *page;
833
1507f512
MR
834 if (vma_is_secretmem(vma))
835 return NULL;
836
d64e2dbc 837 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
8909691b
DH
838 return NULL;
839
df06b37f
KB
840 page = follow_page_mask(vma, address, foll_flags, &ctx);
841 if (ctx.pgmap)
842 put_dev_pagemap(ctx.pgmap);
843 return page;
080dbb61
AK
844}
845
f2b495ca
KS
846static int get_gate_page(struct mm_struct *mm, unsigned long address,
847 unsigned int gup_flags, struct vm_area_struct **vma,
848 struct page **page)
849{
850 pgd_t *pgd;
c2febafc 851 p4d_t *p4d;
f2b495ca
KS
852 pud_t *pud;
853 pmd_t *pmd;
854 pte_t *pte;
855 int ret = -EFAULT;
856
857 /* user gate pages are read-only */
858 if (gup_flags & FOLL_WRITE)
859 return -EFAULT;
860 if (address > TASK_SIZE)
861 pgd = pgd_offset_k(address);
862 else
863 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
864 if (pgd_none(*pgd))
865 return -EFAULT;
c2febafc 866 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
867 if (p4d_none(*p4d))
868 return -EFAULT;
c2febafc 869 pud = pud_offset(p4d, address);
b5d1c39f
AL
870 if (pud_none(*pud))
871 return -EFAULT;
f2b495ca 872 pmd = pmd_offset(pud, address);
84c3fc4e 873 if (!pmd_present(*pmd))
f2b495ca
KS
874 return -EFAULT;
875 VM_BUG_ON(pmd_trans_huge(*pmd));
876 pte = pte_offset_map(pmd, address);
877 if (pte_none(*pte))
878 goto unmap;
879 *vma = get_gate_vma(mm);
880 if (!page)
881 goto out;
882 *page = vm_normal_page(*vma, address, *pte);
883 if (!*page) {
884 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
885 goto unmap;
886 *page = pte_page(*pte);
887 }
0f089235
LG
888 ret = try_grab_page(*page, gup_flags);
889 if (unlikely(ret))
8fde12ca 890 goto unmap;
f2b495ca
KS
891out:
892 ret = 0;
893unmap:
894 pte_unmap(pte);
895 return ret;
896}
897
9a95f3cf 898/*
9a863a6a
JG
899 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
900 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
901 * to 0 and -EBUSY returned.
9a95f3cf 902 */
64019a2e 903static int faultin_page(struct vm_area_struct *vma,
a7f22660
DH
904 unsigned long address, unsigned int *flags, bool unshare,
905 int *locked)
16744483 906{
16744483 907 unsigned int fault_flags = 0;
2b740303 908 vm_fault_t ret;
16744483 909
55b8fe70
AG
910 if (*flags & FOLL_NOFAULT)
911 return -EFAULT;
16744483
KS
912 if (*flags & FOLL_WRITE)
913 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
914 if (*flags & FOLL_REMOTE)
915 fault_flags |= FAULT_FLAG_REMOTE;
f04740f5 916 if (*flags & FOLL_UNLOCKABLE) {
71335f37 917 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
93c5c61d
PX
918 /*
919 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
920 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
921 * That's because some callers may not be prepared to
922 * handle early exits caused by non-fatal signals.
923 */
924 if (*flags & FOLL_INTERRUPTIBLE)
925 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
926 }
16744483
KS
927 if (*flags & FOLL_NOWAIT)
928 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 929 if (*flags & FOLL_TRIED) {
4426e945
PX
930 /*
931 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
932 * can co-exist
933 */
234b239b
ALC
934 fault_flags |= FAULT_FLAG_TRIED;
935 }
a7f22660
DH
936 if (unshare) {
937 fault_flags |= FAULT_FLAG_UNSHARE;
938 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
939 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
940 }
16744483 941
bce617ed 942 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
943
944 if (ret & VM_FAULT_COMPLETED) {
945 /*
946 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
947 * mmap lock in the page fault handler. Sanity check this.
948 */
949 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
9a863a6a
JG
950 *locked = 0;
951
d9272525
PX
952 /*
953 * We should do the same as VM_FAULT_RETRY, but let's not
954 * return -EBUSY since that's not reflecting the reality of
955 * what has happened - we've just fully completed a page
956 * fault, with the mmap lock released. Use -EAGAIN to show
957 * that we want to take the mmap lock _again_.
958 */
959 return -EAGAIN;
960 }
961
16744483 962 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
963 int err = vm_fault_to_errno(ret, *flags);
964
965 if (err)
966 return err;
16744483
KS
967 BUG();
968 }
969
16744483 970 if (ret & VM_FAULT_RETRY) {
9a863a6a 971 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 972 *locked = 0;
16744483
KS
973 return -EBUSY;
974 }
975
16744483
KS
976 return 0;
977}
978
fa5bb209
KS
979static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
980{
981 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
982 int write = (gup_flags & FOLL_WRITE);
983 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
984
985 if (vm_flags & (VM_IO | VM_PFNMAP))
986 return -EFAULT;
987
7f7ccc2c
WT
988 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
989 return -EFAULT;
990
52650c8b
JG
991 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
992 return -EOPNOTSUPP;
993
1507f512
MR
994 if (vma_is_secretmem(vma))
995 return -EFAULT;
996
1b2ee126 997 if (write) {
fa5bb209
KS
998 if (!(vm_flags & VM_WRITE)) {
999 if (!(gup_flags & FOLL_FORCE))
1000 return -EFAULT;
f347454d
DH
1001 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1002 if (is_vm_hugetlb_page(vma))
1003 return -EFAULT;
fa5bb209
KS
1004 /*
1005 * We used to let the write,force case do COW in a
1006 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1007 * set a breakpoint in a read-only mapping of an
1008 * executable, without corrupting the file (yet only
1009 * when that file had been opened for writing!).
1010 * Anon pages in shared mappings are surprising: now
1011 * just reject it.
1012 */
46435364 1013 if (!is_cow_mapping(vm_flags))
fa5bb209 1014 return -EFAULT;
fa5bb209
KS
1015 }
1016 } else if (!(vm_flags & VM_READ)) {
1017 if (!(gup_flags & FOLL_FORCE))
1018 return -EFAULT;
1019 /*
1020 * Is there actually any vma we can reach here which does not
1021 * have VM_MAYREAD set?
1022 */
1023 if (!(vm_flags & VM_MAYREAD))
1024 return -EFAULT;
1025 }
d61172b4
DH
1026 /*
1027 * gups are always data accesses, not instruction
1028 * fetches, so execute=false here
1029 */
1030 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1031 return -EFAULT;
fa5bb209
KS
1032 return 0;
1033}
1034
4bbd4c77
KS
1035/**
1036 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1037 * @mm: mm_struct of target mm
1038 * @start: starting user address
1039 * @nr_pages: number of pages from start to pin
1040 * @gup_flags: flags modifying pin behaviour
1041 * @pages: array that receives pointers to the pages pinned.
1042 * Should be at least nr_pages long. Or NULL, if caller
1043 * only intends to ensure the pages are faulted in.
1044 * @vmas: array of pointers to vmas corresponding to each page.
1045 * Or NULL if the caller does not require them.
c1e8d7c6 1046 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1047 *
d2dfbe47
LX
1048 * Returns either number of pages pinned (which may be less than the
1049 * number requested), or an error. Details about the return value:
1050 *
1051 * -- If nr_pages is 0, returns 0.
1052 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1053 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1054 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1055 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1056 *
1057 * The caller is responsible for releasing returned @pages, via put_page().
1058 *
c1e8d7c6 1059 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 1060 *
c1e8d7c6 1061 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1062 *
1063 * __get_user_pages walks a process's page tables and takes a reference to
1064 * each struct page that each user address corresponds to at a given
1065 * instant. That is, it takes the page that would be accessed if a user
1066 * thread accesses the given user virtual address at that instant.
1067 *
1068 * This does not guarantee that the page exists in the user mappings when
1069 * __get_user_pages returns, and there may even be a completely different
1070 * page there in some cases (eg. if mmapped pagecache has been invalidated
c5acf1f6 1071 * and subsequently re-faulted). However it does guarantee that the page
4bbd4c77
KS
1072 * won't be freed completely. And mostly callers simply care that the page
1073 * contains data that was valid *at some point in time*. Typically, an IO
1074 * or similar operation cannot guarantee anything stronger anyway because
1075 * locks can't be held over the syscall boundary.
1076 *
1077 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1078 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1079 * appropriate) must be called after the page is finished with, and
1080 * before put_page is called.
1081 *
9a863a6a
JG
1082 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1083 * be released. If this happens *@locked will be set to 0 on return.
9a95f3cf 1084 *
9a863a6a
JG
1085 * A caller using such a combination of @gup_flags must therefore hold the
1086 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1087 * it must be held for either reading or writing and will not be released.
4bbd4c77
KS
1088 *
1089 * In most cases, get_user_pages or get_user_pages_fast should be used
1090 * instead of __get_user_pages. __get_user_pages should be used only if
1091 * you need some special @gup_flags.
1092 */
64019a2e 1093static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1094 unsigned long start, unsigned long nr_pages,
1095 unsigned int gup_flags, struct page **pages,
4f6da934 1096 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1097{
df06b37f 1098 long ret = 0, i = 0;
fa5bb209 1099 struct vm_area_struct *vma = NULL;
df06b37f 1100 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1101
1102 if (!nr_pages)
1103 return 0;
1104
428e106a 1105 start = untagged_addr_remote(mm, start);
f9652594 1106
eddb1c22 1107 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77 1108
4bbd4c77 1109 do {
fa5bb209
KS
1110 struct page *page;
1111 unsigned int foll_flags = gup_flags;
1112 unsigned int page_increm;
1113
1114 /* first iteration or cross vma bound */
1115 if (!vma || start >= vma->vm_end) {
1116 vma = find_extend_vma(mm, start);
1117 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1118 ret = get_gate_page(mm, start & PAGE_MASK,
1119 gup_flags, &vma,
1120 pages ? &pages[i] : NULL);
1121 if (ret)
08be37b7 1122 goto out;
df06b37f 1123 ctx.page_mask = 0;
fa5bb209
KS
1124 goto next_page;
1125 }
4bbd4c77 1126
52650c8b 1127 if (!vma) {
df06b37f
KB
1128 ret = -EFAULT;
1129 goto out;
1130 }
52650c8b
JG
1131 ret = check_vma_flags(vma, gup_flags);
1132 if (ret)
1133 goto out;
1134
fa5bb209
KS
1135 if (is_vm_hugetlb_page(vma)) {
1136 i = follow_hugetlb_page(mm, vma, pages, vmas,
1137 &start, &nr_pages, i,
a308c71b 1138 gup_flags, locked);
9a863a6a 1139 if (!*locked) {
ad415db8
PX
1140 /*
1141 * We've got a VM_FAULT_RETRY
c1e8d7c6 1142 * and we've lost mmap_lock.
ad415db8
PX
1143 * We must stop here.
1144 */
1145 BUG_ON(gup_flags & FOLL_NOWAIT);
ad415db8
PX
1146 goto out;
1147 }
fa5bb209 1148 continue;
4bbd4c77 1149 }
fa5bb209
KS
1150 }
1151retry:
1152 /*
1153 * If we have a pending SIGKILL, don't keep faulting pages and
1154 * potentially allocating memory.
1155 */
fa45f116 1156 if (fatal_signal_pending(current)) {
d180870d 1157 ret = -EINTR;
df06b37f
KB
1158 goto out;
1159 }
fa5bb209 1160 cond_resched();
df06b37f
KB
1161
1162 page = follow_page_mask(vma, start, foll_flags, &ctx);
a7f22660
DH
1163 if (!page || PTR_ERR(page) == -EMLINK) {
1164 ret = faultin_page(vma, start, &foll_flags,
1165 PTR_ERR(page) == -EMLINK, locked);
fa5bb209
KS
1166 switch (ret) {
1167 case 0:
1168 goto retry;
df06b37f 1169 case -EBUSY:
d9272525 1170 case -EAGAIN:
df06b37f 1171 ret = 0;
e4a9bc58 1172 fallthrough;
fa5bb209
KS
1173 case -EFAULT:
1174 case -ENOMEM:
1175 case -EHWPOISON:
df06b37f 1176 goto out;
4bbd4c77 1177 }
fa5bb209 1178 BUG();
1027e443
KS
1179 } else if (PTR_ERR(page) == -EEXIST) {
1180 /*
1181 * Proper page table entry exists, but no corresponding
65462462
JH
1182 * struct page. If the caller expects **pages to be
1183 * filled in, bail out now, because that can't be done
1184 * for this page.
1027e443 1185 */
65462462
JH
1186 if (pages) {
1187 ret = PTR_ERR(page);
1188 goto out;
1189 }
1190
1027e443
KS
1191 goto next_page;
1192 } else if (IS_ERR(page)) {
df06b37f
KB
1193 ret = PTR_ERR(page);
1194 goto out;
1027e443 1195 }
fa5bb209
KS
1196 if (pages) {
1197 pages[i] = page;
1198 flush_anon_page(vma, page, start);
1199 flush_dcache_page(page);
df06b37f 1200 ctx.page_mask = 0;
4bbd4c77 1201 }
4bbd4c77 1202next_page:
fa5bb209
KS
1203 if (vmas) {
1204 vmas[i] = vma;
df06b37f 1205 ctx.page_mask = 0;
fa5bb209 1206 }
df06b37f 1207 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1208 if (page_increm > nr_pages)
1209 page_increm = nr_pages;
1210 i += page_increm;
1211 start += page_increm * PAGE_SIZE;
1212 nr_pages -= page_increm;
4bbd4c77 1213 } while (nr_pages);
df06b37f
KB
1214out:
1215 if (ctx.pgmap)
1216 put_dev_pagemap(ctx.pgmap);
1217 return i ? i : ret;
4bbd4c77 1218}
4bbd4c77 1219
771ab430
TK
1220static bool vma_permits_fault(struct vm_area_struct *vma,
1221 unsigned int fault_flags)
d4925e00 1222{
1b2ee126
DH
1223 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1224 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1225 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1226
1227 if (!(vm_flags & vma->vm_flags))
1228 return false;
1229
33a709b2
DH
1230 /*
1231 * The architecture might have a hardware protection
1b2ee126 1232 * mechanism other than read/write that can deny access.
d61172b4
DH
1233 *
1234 * gup always represents data access, not instruction
1235 * fetches, so execute=false here:
33a709b2 1236 */
d61172b4 1237 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1238 return false;
1239
d4925e00
DH
1240 return true;
1241}
1242
adc8cb40 1243/**
4bbd4c77 1244 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1245 * @mm: mm_struct of target mm
1246 * @address: user address
1247 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1248 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1249 * does not allow retry. If NULL, the caller must guarantee
1250 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1251 *
1252 * This is meant to be called in the specific scenario where for locking reasons
1253 * we try to access user memory in atomic context (within a pagefault_disable()
1254 * section), this returns -EFAULT, and we want to resolve the user fault before
1255 * trying again.
1256 *
1257 * Typically this is meant to be used by the futex code.
1258 *
1259 * The main difference with get_user_pages() is that this function will
1260 * unconditionally call handle_mm_fault() which will in turn perform all the
1261 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1262 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1263 *
1264 * This is important for some architectures where those bits also gate the
1265 * access permission to the page because they are maintained in software. On
1266 * such architectures, gup() will not be enough to make a subsequent access
1267 * succeed.
1268 *
c1e8d7c6
ML
1269 * This function will not return with an unlocked mmap_lock. So it has not the
1270 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1271 */
64019a2e 1272int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1273 unsigned long address, unsigned int fault_flags,
1274 bool *unlocked)
4bbd4c77
KS
1275{
1276 struct vm_area_struct *vma;
8fed2f3c 1277 vm_fault_t ret;
4a9e1cda 1278
428e106a 1279 address = untagged_addr_remote(mm, address);
f9652594 1280
4a9e1cda 1281 if (unlocked)
71335f37 1282 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1283
4a9e1cda 1284retry:
4bbd4c77
KS
1285 vma = find_extend_vma(mm, address);
1286 if (!vma || address < vma->vm_start)
1287 return -EFAULT;
1288
d4925e00 1289 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1290 return -EFAULT;
1291
475f4dfc
PX
1292 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1293 fatal_signal_pending(current))
1294 return -EINTR;
1295
bce617ed 1296 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1297
1298 if (ret & VM_FAULT_COMPLETED) {
1299 /*
1300 * NOTE: it's a pity that we need to retake the lock here
1301 * to pair with the unlock() in the callers. Ideally we
1302 * could tell the callers so they do not need to unlock.
1303 */
1304 mmap_read_lock(mm);
1305 *unlocked = true;
1306 return 0;
1307 }
1308
4bbd4c77 1309 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1310 int err = vm_fault_to_errno(ret, 0);
1311
1312 if (err)
1313 return err;
4bbd4c77
KS
1314 BUG();
1315 }
4a9e1cda
DD
1316
1317 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1318 mmap_read_lock(mm);
475f4dfc
PX
1319 *unlocked = true;
1320 fault_flags |= FAULT_FLAG_TRIED;
1321 goto retry;
4a9e1cda
DD
1322 }
1323
4bbd4c77
KS
1324 return 0;
1325}
add6a0cd 1326EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1327
93c5c61d
PX
1328/*
1329 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1330 * specified, it'll also respond to generic signals. The caller of GUP
1331 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1332 */
1333static bool gup_signal_pending(unsigned int flags)
1334{
1335 if (fatal_signal_pending(current))
1336 return true;
1337
1338 if (!(flags & FOLL_INTERRUPTIBLE))
1339 return false;
1340
1341 return signal_pending(current);
1342}
1343
2d3a36a4 1344/*
b2a72dff
JG
1345 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1346 * the caller. This function may drop the mmap_lock. If it does so, then it will
1347 * set (*locked = 0).
1348 *
1349 * (*locked == 0) means that the caller expects this function to acquire and
1350 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1351 * the function returns, even though it may have changed temporarily during
1352 * function execution.
1353 *
1354 * Please note that this function, unlike __get_user_pages(), will not return 0
1355 * for nr_pages > 0, unless FOLL_NOWAIT is used.
2d3a36a4 1356 */
64019a2e 1357static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1358 unsigned long start,
1359 unsigned long nr_pages,
f0818f47
AA
1360 struct page **pages,
1361 struct vm_area_struct **vmas,
e716712f 1362 int *locked,
0fd71a56 1363 unsigned int flags)
f0818f47 1364{
f0818f47 1365 long ret, pages_done;
b2a72dff 1366 bool must_unlock = false;
f0818f47 1367
b2a72dff
JG
1368 /*
1369 * The internal caller expects GUP to manage the lock internally and the
1370 * lock must be released when this returns.
1371 */
9a863a6a 1372 if (!*locked) {
b2a72dff
JG
1373 if (mmap_read_lock_killable(mm))
1374 return -EAGAIN;
1375 must_unlock = true;
1376 *locked = 1;
f0818f47 1377 }
961ba472
JG
1378 else
1379 mmap_assert_locked(mm);
f0818f47 1380
a458b76a
AA
1381 if (flags & FOLL_PIN)
1382 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1383
eddb1c22
JH
1384 /*
1385 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1386 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1387 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1388 * for FOLL_GET, not for the newer FOLL_PIN.
1389 *
1390 * FOLL_PIN always expects pages to be non-null, but no need to assert
1391 * that here, as any failures will be obvious enough.
1392 */
1393 if (pages && !(flags & FOLL_PIN))
f0818f47 1394 flags |= FOLL_GET;
f0818f47
AA
1395
1396 pages_done = 0;
f0818f47 1397 for (;;) {
64019a2e 1398 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47 1399 vmas, locked);
f04740f5 1400 if (!(flags & FOLL_UNLOCKABLE)) {
f0818f47 1401 /* VM_FAULT_RETRY couldn't trigger, bypass */
f04740f5
JG
1402 pages_done = ret;
1403 break;
1404 }
f0818f47 1405
d9272525 1406 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
f0818f47
AA
1407 if (!*locked) {
1408 BUG_ON(ret < 0);
1409 BUG_ON(ret >= nr_pages);
1410 }
1411
f0818f47
AA
1412 if (ret > 0) {
1413 nr_pages -= ret;
1414 pages_done += ret;
1415 if (!nr_pages)
1416 break;
1417 }
1418 if (*locked) {
96312e61
AA
1419 /*
1420 * VM_FAULT_RETRY didn't trigger or it was a
1421 * FOLL_NOWAIT.
1422 */
f0818f47
AA
1423 if (!pages_done)
1424 pages_done = ret;
1425 break;
1426 }
df17277b
MR
1427 /*
1428 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1429 * For the prefault case (!pages) we only update counts.
1430 */
1431 if (likely(pages))
1432 pages += ret;
f0818f47 1433 start += ret << PAGE_SHIFT;
b2a72dff
JG
1434
1435 /* The lock was temporarily dropped, so we must unlock later */
1436 must_unlock = true;
f0818f47 1437
4426e945 1438retry:
f0818f47
AA
1439 /*
1440 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1441 * with both FAULT_FLAG_ALLOW_RETRY and
1442 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
93c5c61d
PX
1443 * by fatal signals of even common signals, depending on
1444 * the caller's request. So we need to check it before we
4426e945 1445 * start trying again otherwise it can loop forever.
f0818f47 1446 */
93c5c61d 1447 if (gup_signal_pending(flags)) {
ae46d2aa
HD
1448 if (!pages_done)
1449 pages_done = -EINTR;
4426e945 1450 break;
ae46d2aa 1451 }
4426e945 1452
d8ed45c5 1453 ret = mmap_read_lock_killable(mm);
71335f37
PX
1454 if (ret) {
1455 BUG_ON(ret > 0);
1456 if (!pages_done)
1457 pages_done = ret;
1458 break;
1459 }
4426e945 1460
c7b6a566 1461 *locked = 1;
64019a2e 1462 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1463 pages, NULL, locked);
1464 if (!*locked) {
1465 /* Continue to retry until we succeeded */
1466 BUG_ON(ret != 0);
1467 goto retry;
1468 }
f0818f47
AA
1469 if (ret != 1) {
1470 BUG_ON(ret > 1);
1471 if (!pages_done)
1472 pages_done = ret;
1473 break;
1474 }
1475 nr_pages--;
1476 pages_done++;
1477 if (!nr_pages)
1478 break;
df17277b
MR
1479 if (likely(pages))
1480 pages++;
f0818f47
AA
1481 start += PAGE_SIZE;
1482 }
b2a72dff 1483 if (must_unlock && *locked) {
f0818f47 1484 /*
b2a72dff
JG
1485 * We either temporarily dropped the lock, or the caller
1486 * requested that we both acquire and drop the lock. Either way,
1487 * we must now unlock, and notify the caller of that state.
f0818f47 1488 */
d8ed45c5 1489 mmap_read_unlock(mm);
f0818f47
AA
1490 *locked = 0;
1491 }
1492 return pages_done;
1493}
1494
d3649f68
CH
1495/**
1496 * populate_vma_page_range() - populate a range of pages in the vma.
1497 * @vma: target vma
1498 * @start: start address
1499 * @end: end address
c1e8d7c6 1500 * @locked: whether the mmap_lock is still held
d3649f68
CH
1501 *
1502 * This takes care of mlocking the pages too if VM_LOCKED is set.
1503 *
0a36f7f8
TY
1504 * Return either number of pages pinned in the vma, or a negative error
1505 * code on error.
d3649f68 1506 *
c1e8d7c6 1507 * vma->vm_mm->mmap_lock must be held.
d3649f68 1508 *
4f6da934 1509 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1510 * be unperturbed.
1511 *
4f6da934
PX
1512 * If @locked is non-NULL, it must held for read only and may be
1513 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1514 */
1515long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1516 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1517{
1518 struct mm_struct *mm = vma->vm_mm;
1519 unsigned long nr_pages = (end - start) / PAGE_SIZE;
9a863a6a 1520 int local_locked = 1;
d3649f68 1521 int gup_flags;
ece369c7 1522 long ret;
d3649f68 1523
be51eb18
ML
1524 VM_BUG_ON(!PAGE_ALIGNED(start));
1525 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1526 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1527 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1528 mmap_assert_locked(mm);
d3649f68 1529
b67bf49c
HD
1530 /*
1531 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1532 * faultin_page() to break COW, so it has no work to do here.
1533 */
d3649f68 1534 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1535 return nr_pages;
1536
1537 gup_flags = FOLL_TOUCH;
d3649f68
CH
1538 /*
1539 * We want to touch writable mappings with a write fault in order
1540 * to break COW, except for shared mappings because these don't COW
1541 * and we would not want to dirty them for nothing.
1542 */
1543 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1544 gup_flags |= FOLL_WRITE;
1545
1546 /*
1547 * We want mlock to succeed for regions that have any permissions
1548 * other than PROT_NONE.
1549 */
3122e80e 1550 if (vma_is_accessible(vma))
d3649f68
CH
1551 gup_flags |= FOLL_FORCE;
1552
f04740f5
JG
1553 if (locked)
1554 gup_flags |= FOLL_UNLOCKABLE;
1555
d3649f68
CH
1556 /*
1557 * We made sure addr is within a VMA, so the following will
1558 * not result in a stack expansion that recurses back here.
1559 */
ece369c7 1560 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
9a863a6a 1561 NULL, NULL, locked ? locked : &local_locked);
ece369c7
HD
1562 lru_add_drain();
1563 return ret;
d3649f68
CH
1564}
1565
4ca9b385
DH
1566/*
1567 * faultin_vma_page_range() - populate (prefault) page tables inside the
1568 * given VMA range readable/writable
1569 *
1570 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1571 *
1572 * @vma: target vma
1573 * @start: start address
1574 * @end: end address
1575 * @write: whether to prefault readable or writable
1576 * @locked: whether the mmap_lock is still held
1577 *
1578 * Returns either number of processed pages in the vma, or a negative error
1579 * code on error (see __get_user_pages()).
1580 *
1581 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
6e4382c7 1582 * covered by the VMA. If it's released, *@locked will be set to 0.
4ca9b385
DH
1583 */
1584long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1585 unsigned long end, bool write, int *locked)
1586{
1587 struct mm_struct *mm = vma->vm_mm;
1588 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1589 int gup_flags;
ece369c7 1590 long ret;
4ca9b385
DH
1591
1592 VM_BUG_ON(!PAGE_ALIGNED(start));
1593 VM_BUG_ON(!PAGE_ALIGNED(end));
1594 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1595 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1596 mmap_assert_locked(mm);
1597
1598 /*
1599 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1600 * the page dirty with FOLL_WRITE -- which doesn't make a
1601 * difference with !FOLL_FORCE, because the page is writable
1602 * in the page table.
1603 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1604 * a poisoned page.
4ca9b385
DH
1605 * !FOLL_FORCE: Require proper access permissions.
1606 */
f04740f5 1607 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
4ca9b385
DH
1608 if (write)
1609 gup_flags |= FOLL_WRITE;
1610
1611 /*
eb2faa51
DH
1612 * We want to report -EINVAL instead of -EFAULT for any permission
1613 * problems or incompatible mappings.
4ca9b385 1614 */
eb2faa51
DH
1615 if (check_vma_flags(vma, gup_flags))
1616 return -EINVAL;
1617
ece369c7 1618 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
4ca9b385 1619 NULL, NULL, locked);
ece369c7
HD
1620 lru_add_drain();
1621 return ret;
4ca9b385
DH
1622}
1623
d3649f68
CH
1624/*
1625 * __mm_populate - populate and/or mlock pages within a range of address space.
1626 *
1627 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1628 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1629 * mmap_lock must not be held.
d3649f68
CH
1630 */
1631int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1632{
1633 struct mm_struct *mm = current->mm;
1634 unsigned long end, nstart, nend;
1635 struct vm_area_struct *vma = NULL;
1636 int locked = 0;
1637 long ret = 0;
1638
1639 end = start + len;
1640
1641 for (nstart = start; nstart < end; nstart = nend) {
1642 /*
1643 * We want to fault in pages for [nstart; end) address range.
1644 * Find first corresponding VMA.
1645 */
1646 if (!locked) {
1647 locked = 1;
d8ed45c5 1648 mmap_read_lock(mm);
c4d1a92d 1649 vma = find_vma_intersection(mm, nstart, end);
d3649f68 1650 } else if (nstart >= vma->vm_end)
c4d1a92d
LH
1651 vma = find_vma_intersection(mm, vma->vm_end, end);
1652
1653 if (!vma)
d3649f68
CH
1654 break;
1655 /*
1656 * Set [nstart; nend) to intersection of desired address
1657 * range with the first VMA. Also, skip undesirable VMA types.
1658 */
1659 nend = min(end, vma->vm_end);
1660 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1661 continue;
1662 if (nstart < vma->vm_start)
1663 nstart = vma->vm_start;
1664 /*
1665 * Now fault in a range of pages. populate_vma_page_range()
1666 * double checks the vma flags, so that it won't mlock pages
1667 * if the vma was already munlocked.
1668 */
1669 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1670 if (ret < 0) {
1671 if (ignore_errors) {
1672 ret = 0;
1673 continue; /* continue at next VMA */
1674 }
1675 break;
1676 }
1677 nend = nstart + ret * PAGE_SIZE;
1678 ret = 0;
1679 }
1680 if (locked)
d8ed45c5 1681 mmap_read_unlock(mm);
d3649f68
CH
1682 return ret; /* 0 or negative error code */
1683}
050a9adc 1684#else /* CONFIG_MMU */
64019a2e 1685static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1686 unsigned long nr_pages, struct page **pages,
1687 struct vm_area_struct **vmas, int *locked,
1688 unsigned int foll_flags)
1689{
1690 struct vm_area_struct *vma;
b2a72dff 1691 bool must_unlock = false;
050a9adc 1692 unsigned long vm_flags;
24dc20c7 1693 long i;
050a9adc 1694
b2a72dff
JG
1695 if (!nr_pages)
1696 return 0;
1697
1698 /*
1699 * The internal caller expects GUP to manage the lock internally and the
1700 * lock must be released when this returns.
1701 */
9a863a6a 1702 if (!*locked) {
b2a72dff
JG
1703 if (mmap_read_lock_killable(mm))
1704 return -EAGAIN;
1705 must_unlock = true;
1706 *locked = 1;
1707 }
1708
050a9adc
CH
1709 /* calculate required read or write permissions.
1710 * If FOLL_FORCE is set, we only require the "MAY" flags.
1711 */
1712 vm_flags = (foll_flags & FOLL_WRITE) ?
1713 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1714 vm_flags &= (foll_flags & FOLL_FORCE) ?
1715 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1716
1717 for (i = 0; i < nr_pages; i++) {
1718 vma = find_vma(mm, start);
1719 if (!vma)
b2a72dff 1720 break;
050a9adc
CH
1721
1722 /* protect what we can, including chardevs */
1723 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1724 !(vm_flags & vma->vm_flags))
b2a72dff 1725 break;
050a9adc
CH
1726
1727 if (pages) {
396a400b 1728 pages[i] = virt_to_page((void *)start);
050a9adc
CH
1729 if (pages[i])
1730 get_page(pages[i]);
1731 }
1732 if (vmas)
1733 vmas[i] = vma;
1734 start = (start + PAGE_SIZE) & PAGE_MASK;
1735 }
1736
b2a72dff
JG
1737 if (must_unlock && *locked) {
1738 mmap_read_unlock(mm);
1739 *locked = 0;
1740 }
050a9adc 1741
050a9adc
CH
1742 return i ? : -EFAULT;
1743}
1744#endif /* !CONFIG_MMU */
d3649f68 1745
bb523b40
AG
1746/**
1747 * fault_in_writeable - fault in userspace address range for writing
1748 * @uaddr: start of address range
1749 * @size: size of address range
1750 *
1751 * Returns the number of bytes not faulted in (like copy_to_user() and
1752 * copy_from_user()).
1753 */
1754size_t fault_in_writeable(char __user *uaddr, size_t size)
1755{
1756 char __user *start = uaddr, *end;
1757
1758 if (unlikely(size == 0))
1759 return 0;
677b2a8c
CL
1760 if (!user_write_access_begin(uaddr, size))
1761 return size;
bb523b40 1762 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1763 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1764 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1765 }
1766 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1767 if (unlikely(end < start))
1768 end = NULL;
1769 while (uaddr != end) {
677b2a8c 1770 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1771 uaddr += PAGE_SIZE;
1772 }
1773
1774out:
677b2a8c 1775 user_write_access_end();
bb523b40
AG
1776 if (size > uaddr - start)
1777 return size - (uaddr - start);
1778 return 0;
1779}
1780EXPORT_SYMBOL(fault_in_writeable);
1781
da32b581
CM
1782/**
1783 * fault_in_subpage_writeable - fault in an address range for writing
1784 * @uaddr: start of address range
1785 * @size: size of address range
1786 *
1787 * Fault in a user address range for writing while checking for permissions at
1788 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1789 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1790 *
1791 * Returns the number of bytes not faulted in (like copy_to_user() and
1792 * copy_from_user()).
1793 */
1794size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1795{
1796 size_t faulted_in;
1797
1798 /*
1799 * Attempt faulting in at page granularity first for page table
1800 * permission checking. The arch-specific probe_subpage_writeable()
1801 * functions may not check for this.
1802 */
1803 faulted_in = size - fault_in_writeable(uaddr, size);
1804 if (faulted_in)
1805 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1806
1807 return size - faulted_in;
1808}
1809EXPORT_SYMBOL(fault_in_subpage_writeable);
1810
cdd591fc
AG
1811/*
1812 * fault_in_safe_writeable - fault in an address range for writing
1813 * @uaddr: start of address range
1814 * @size: length of address range
1815 *
fe673d3f
LT
1816 * Faults in an address range for writing. This is primarily useful when we
1817 * already know that some or all of the pages in the address range aren't in
1818 * memory.
cdd591fc 1819 *
fe673d3f 1820 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
1821 *
1822 * Note that we don't pin or otherwise hold the pages referenced that we fault
1823 * in. There's no guarantee that they'll stay in memory for any duration of
1824 * time.
1825 *
1826 * Returns the number of bytes not faulted in, like copy_to_user() and
1827 * copy_from_user().
1828 */
1829size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1830{
fe673d3f 1831 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 1832 struct mm_struct *mm = current->mm;
fe673d3f 1833 bool unlocked = false;
cdd591fc 1834
fe673d3f
LT
1835 if (unlikely(size == 0))
1836 return 0;
cdd591fc 1837 end = PAGE_ALIGN(start + size);
fe673d3f 1838 if (end < start)
cdd591fc 1839 end = 0;
cdd591fc 1840
fe673d3f
LT
1841 mmap_read_lock(mm);
1842 do {
1843 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 1844 break;
fe673d3f
LT
1845 start = (start + PAGE_SIZE) & PAGE_MASK;
1846 } while (start != end);
1847 mmap_read_unlock(mm);
1848
1849 if (size > (unsigned long)uaddr - start)
1850 return size - ((unsigned long)uaddr - start);
1851 return 0;
cdd591fc
AG
1852}
1853EXPORT_SYMBOL(fault_in_safe_writeable);
1854
bb523b40
AG
1855/**
1856 * fault_in_readable - fault in userspace address range for reading
1857 * @uaddr: start of user address range
1858 * @size: size of user address range
1859 *
1860 * Returns the number of bytes not faulted in (like copy_to_user() and
1861 * copy_from_user()).
1862 */
1863size_t fault_in_readable(const char __user *uaddr, size_t size)
1864{
1865 const char __user *start = uaddr, *end;
1866 volatile char c;
1867
1868 if (unlikely(size == 0))
1869 return 0;
677b2a8c
CL
1870 if (!user_read_access_begin(uaddr, size))
1871 return size;
bb523b40 1872 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1873 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1874 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1875 }
1876 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1877 if (unlikely(end < start))
1878 end = NULL;
1879 while (uaddr != end) {
677b2a8c 1880 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1881 uaddr += PAGE_SIZE;
1882 }
1883
1884out:
677b2a8c 1885 user_read_access_end();
bb523b40
AG
1886 (void)c;
1887 if (size > uaddr - start)
1888 return size - (uaddr - start);
1889 return 0;
1890}
1891EXPORT_SYMBOL(fault_in_readable);
1892
8f942eea
JH
1893/**
1894 * get_dump_page() - pin user page in memory while writing it to core dump
1895 * @addr: user address
1896 *
1897 * Returns struct page pointer of user page pinned for dump,
1898 * to be freed afterwards by put_page().
1899 *
1900 * Returns NULL on any kind of failure - a hole must then be inserted into
1901 * the corefile, to preserve alignment with its headers; and also returns
1902 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1903 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1904 *
7f3bfab5 1905 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1906 */
1907#ifdef CONFIG_ELF_CORE
1908struct page *get_dump_page(unsigned long addr)
1909{
8f942eea 1910 struct page *page;
b2a72dff 1911 int locked = 0;
7f3bfab5 1912 int ret;
8f942eea 1913
b2a72dff
JG
1914 ret = __get_user_pages_locked(current->mm, addr, 1, &page, NULL,
1915 &locked,
7f3bfab5 1916 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
7f3bfab5 1917 return (ret == 1) ? page : NULL;
8f942eea
JH
1918}
1919#endif /* CONFIG_ELF_CORE */
1920
d1e153fe 1921#ifdef CONFIG_MIGRATION
f68749ec 1922/*
67e139b0 1923 * Returns the number of collected pages. Return value is always >= 0.
f68749ec 1924 */
67e139b0
AP
1925static unsigned long collect_longterm_unpinnable_pages(
1926 struct list_head *movable_page_list,
1927 unsigned long nr_pages,
1928 struct page **pages)
9a4e9f3b 1929{
67e139b0 1930 unsigned long i, collected = 0;
1b7f7e58 1931 struct folio *prev_folio = NULL;
67e139b0 1932 bool drain_allow = true;
9a4e9f3b 1933
83c02c23 1934 for (i = 0; i < nr_pages; i++) {
1b7f7e58 1935 struct folio *folio = page_folio(pages[i]);
f9f38f78 1936
1b7f7e58 1937 if (folio == prev_folio)
83c02c23 1938 continue;
1b7f7e58 1939 prev_folio = folio;
f9f38f78 1940
67e139b0
AP
1941 if (folio_is_longterm_pinnable(folio))
1942 continue;
b05a79d4 1943
67e139b0 1944 collected++;
b05a79d4 1945
67e139b0 1946 if (folio_is_device_coherent(folio))
f9f38f78
CH
1947 continue;
1948
1b7f7e58 1949 if (folio_test_hugetlb(folio)) {
6aa3a920 1950 isolate_hugetlb(folio, movable_page_list);
f9f38f78
CH
1951 continue;
1952 }
9a4e9f3b 1953
1b7f7e58 1954 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
1955 lru_add_drain_all();
1956 drain_allow = false;
1957 }
1958
be2d5756 1959 if (!folio_isolate_lru(folio))
f9f38f78 1960 continue;
67e139b0
AP
1961
1962 list_add_tail(&folio->lru, movable_page_list);
1b7f7e58
MWO
1963 node_stat_mod_folio(folio,
1964 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1965 folio_nr_pages(folio));
9a4e9f3b
AK
1966 }
1967
67e139b0
AP
1968 return collected;
1969}
1970
1971/*
1972 * Unpins all pages and migrates device coherent pages and movable_page_list.
1973 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1974 * (or partial success).
1975 */
1976static int migrate_longterm_unpinnable_pages(
1977 struct list_head *movable_page_list,
1978 unsigned long nr_pages,
1979 struct page **pages)
1980{
1981 int ret;
1982 unsigned long i;
6e7f34eb 1983
b05a79d4 1984 for (i = 0; i < nr_pages; i++) {
67e139b0
AP
1985 struct folio *folio = page_folio(pages[i]);
1986
1987 if (folio_is_device_coherent(folio)) {
1988 /*
1989 * Migration will fail if the page is pinned, so convert
1990 * the pin on the source page to a normal reference.
1991 */
1992 pages[i] = NULL;
1993 folio_get(folio);
1994 gup_put_folio(folio, 1, FOLL_PIN);
1995
1996 if (migrate_device_coherent_page(&folio->page)) {
1997 ret = -EBUSY;
1998 goto err;
1999 }
2000
b05a79d4 2001 continue;
67e139b0 2002 }
b05a79d4 2003
67e139b0
AP
2004 /*
2005 * We can't migrate pages with unexpected references, so drop
2006 * the reference obtained by __get_user_pages_locked().
2007 * Migrating pages have been added to movable_page_list after
2008 * calling folio_isolate_lru() which takes a reference so the
2009 * page won't be freed if it's migrating.
2010 */
f6d299ec 2011 unpin_user_page(pages[i]);
67e139b0 2012 pages[i] = NULL;
f68749ec 2013 }
f9f38f78 2014
67e139b0 2015 if (!list_empty(movable_page_list)) {
f9f38f78
CH
2016 struct migration_target_control mtc = {
2017 .nid = NUMA_NO_NODE,
2018 .gfp_mask = GFP_USER | __GFP_NOWARN,
2019 };
2020
67e139b0
AP
2021 if (migrate_pages(movable_page_list, alloc_migration_target,
2022 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2023 MR_LONGTERM_PIN, NULL)) {
f9f38f78 2024 ret = -ENOMEM;
67e139b0
AP
2025 goto err;
2026 }
9a4e9f3b
AK
2027 }
2028
67e139b0
AP
2029 putback_movable_pages(movable_page_list);
2030
2031 return -EAGAIN;
2032
2033err:
2034 for (i = 0; i < nr_pages; i++)
2035 if (pages[i])
2036 unpin_user_page(pages[i]);
2037 putback_movable_pages(movable_page_list);
24a95998 2038
67e139b0
AP
2039 return ret;
2040}
2041
2042/*
2043 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2044 * pages in the range are required to be pinned via FOLL_PIN, before calling
2045 * this routine.
2046 *
2047 * If any pages in the range are not allowed to be pinned, then this routine
2048 * will migrate those pages away, unpin all the pages in the range and return
2049 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2050 * call this routine again.
2051 *
2052 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2053 * The caller should give up, and propagate the error back up the call stack.
2054 *
2055 * If everything is OK and all pages in the range are allowed to be pinned, then
2056 * this routine leaves all pages pinned and returns zero for success.
2057 */
2058static long check_and_migrate_movable_pages(unsigned long nr_pages,
2059 struct page **pages)
2060{
2061 unsigned long collected;
2062 LIST_HEAD(movable_page_list);
2063
2064 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2065 nr_pages, pages);
2066 if (!collected)
2067 return 0;
2068
2069 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2070 pages);
9a4e9f3b
AK
2071}
2072#else
f68749ec 2073static long check_and_migrate_movable_pages(unsigned long nr_pages,
f6d299ec 2074 struct page **pages)
9a4e9f3b 2075{
24a95998 2076 return 0;
9a4e9f3b 2077}
d1e153fe 2078#endif /* CONFIG_MIGRATION */
9a4e9f3b 2079
2bb6d283 2080/*
932f4a63
IW
2081 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2082 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 2083 */
64019a2e 2084static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
2085 unsigned long start,
2086 unsigned long nr_pages,
2087 struct page **pages,
2088 struct vm_area_struct **vmas,
53b2d09b 2089 int *locked,
932f4a63 2090 unsigned int gup_flags)
2bb6d283 2091{
f68749ec 2092 unsigned int flags;
24a95998 2093 long rc, nr_pinned_pages;
2bb6d283 2094
f68749ec
PT
2095 if (!(gup_flags & FOLL_LONGTERM))
2096 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
53b2d09b 2097 locked, gup_flags);
67e139b0 2098
f68749ec
PT
2099 flags = memalloc_pin_save();
2100 do {
24a95998 2101 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
53b2d09b 2102 pages, vmas, locked,
24a95998
AP
2103 gup_flags);
2104 if (nr_pinned_pages <= 0) {
2105 rc = nr_pinned_pages;
f68749ec 2106 break;
24a95998 2107 }
d64e2dbc
JG
2108
2109 /* FOLL_LONGTERM implies FOLL_PIN */
f6d299ec 2110 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
24a95998 2111 } while (rc == -EAGAIN);
f68749ec 2112 memalloc_pin_restore(flags);
24a95998 2113 return rc ? rc : nr_pinned_pages;
2bb6d283 2114}
932f4a63 2115
d64e2dbc
JG
2116/*
2117 * Check that the given flags are valid for the exported gup/pup interface, and
2118 * update them with the required flags that the caller must have set.
2119 */
2120static bool is_valid_gup_args(struct page **pages, struct vm_area_struct **vmas,
2121 int *locked, unsigned int *gup_flags_p,
2122 unsigned int to_set)
447f3e45 2123{
d64e2dbc
JG
2124 unsigned int gup_flags = *gup_flags_p;
2125
447f3e45 2126 /*
d64e2dbc
JG
2127 * These flags not allowed to be specified externally to the gup
2128 * interfaces:
2129 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2130 * - FOLL_REMOTE is internal only and used on follow_page()
f04740f5 2131 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
447f3e45 2132 */
f04740f5 2133 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
d64e2dbc
JG
2134 FOLL_REMOTE | FOLL_FAST_ONLY)))
2135 return false;
2136
2137 gup_flags |= to_set;
f04740f5
JG
2138 if (locked) {
2139 /* At the external interface locked must be set */
2140 if (WARN_ON_ONCE(*locked != 1))
2141 return false;
2142
2143 gup_flags |= FOLL_UNLOCKABLE;
2144 }
d64e2dbc
JG
2145
2146 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2147 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2148 (FOLL_PIN | FOLL_GET)))
2149 return false;
2150
2151 /* LONGTERM can only be specified when pinning */
2152 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2153 return false;
2154
2155 /* Pages input must be given if using GET/PIN */
2156 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
447f3e45 2157 return false;
d64e2dbc 2158
d64e2dbc
JG
2159 /* We want to allow the pgmap to be hot-unplugged at all times */
2160 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2161 (gup_flags & FOLL_PCI_P2PDMA)))
2162 return false;
2163
447f3e45 2164 /*
d64e2dbc
JG
2165 * Can't use VMAs with locked, as locked allows GUP to unlock
2166 * which invalidates the vmas array
447f3e45 2167 */
f04740f5 2168 if (WARN_ON_ONCE(vmas && (gup_flags & FOLL_UNLOCKABLE)))
447f3e45
BS
2169 return false;
2170
d64e2dbc 2171 *gup_flags_p = gup_flags;
447f3e45
BS
2172 return true;
2173}
2174
22bf29b6 2175#ifdef CONFIG_MMU
adc8cb40 2176/**
c4237f8b 2177 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2178 * @mm: mm_struct of target mm
2179 * @start: starting user address
2180 * @nr_pages: number of pages from start to pin
2181 * @gup_flags: flags modifying lookup behaviour
2182 * @pages: array that receives pointers to the pages pinned.
2183 * Should be at least nr_pages long. Or NULL, if caller
2184 * only intends to ensure the pages are faulted in.
2185 * @vmas: array of pointers to vmas corresponding to each page.
2186 * Or NULL if the caller does not require them.
2187 * @locked: pointer to lock flag indicating whether lock is held and
2188 * subsequently whether VM_FAULT_RETRY functionality can be
2189 * utilised. Lock must initially be held.
2190 *
2191 * Returns either number of pages pinned (which may be less than the
2192 * number requested), or an error. Details about the return value:
2193 *
2194 * -- If nr_pages is 0, returns 0.
2195 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2196 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2197 * pages pinned. Again, this may be less than nr_pages.
2198 *
2199 * The caller is responsible for releasing returned @pages, via put_page().
2200 *
c1e8d7c6 2201 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 2202 *
c1e8d7c6 2203 * Must be called with mmap_lock held for read or write.
c4237f8b 2204 *
adc8cb40
SJ
2205 * get_user_pages_remote walks a process's page tables and takes a reference
2206 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2207 * instant. That is, it takes the page that would be accessed if a user
2208 * thread accesses the given user virtual address at that instant.
2209 *
2210 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2211 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b 2212 * page there in some cases (eg. if mmapped pagecache has been invalidated
5da1a868 2213 * and subsequently re-faulted). However it does guarantee that the page
c4237f8b
JH
2214 * won't be freed completely. And mostly callers simply care that the page
2215 * contains data that was valid *at some point in time*. Typically, an IO
2216 * or similar operation cannot guarantee anything stronger anyway because
2217 * locks can't be held over the syscall boundary.
2218 *
2219 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2220 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2221 * be called after the page is finished with, and before put_page is called.
2222 *
adc8cb40
SJ
2223 * get_user_pages_remote is typically used for fewer-copy IO operations,
2224 * to get a handle on the memory by some means other than accesses
2225 * via the user virtual addresses. The pages may be submitted for
2226 * DMA to devices or accessed via their kernel linear mapping (via the
2227 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2228 *
2229 * See also get_user_pages_fast, for performance critical applications.
2230 *
adc8cb40 2231 * get_user_pages_remote should be phased out in favor of
c4237f8b 2232 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2233 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2234 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2235 */
64019a2e 2236long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2237 unsigned long start, unsigned long nr_pages,
2238 unsigned int gup_flags, struct page **pages,
2239 struct vm_area_struct **vmas, int *locked)
2240{
9a863a6a
JG
2241 int local_locked = 1;
2242
d64e2dbc
JG
2243 if (!is_valid_gup_args(pages, vmas, locked, &gup_flags,
2244 FOLL_TOUCH | FOLL_REMOTE))
eddb1c22
JH
2245 return -EINVAL;
2246
9a863a6a
JG
2247 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2248 locked ? locked : &local_locked,
d64e2dbc 2249 gup_flags);
c4237f8b
JH
2250}
2251EXPORT_SYMBOL(get_user_pages_remote);
2252
eddb1c22 2253#else /* CONFIG_MMU */
64019a2e 2254long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2255 unsigned long start, unsigned long nr_pages,
2256 unsigned int gup_flags, struct page **pages,
2257 struct vm_area_struct **vmas, int *locked)
2258{
2259 return 0;
2260}
2261#endif /* !CONFIG_MMU */
2262
adc8cb40
SJ
2263/**
2264 * get_user_pages() - pin user pages in memory
2265 * @start: starting user address
2266 * @nr_pages: number of pages from start to pin
2267 * @gup_flags: flags modifying lookup behaviour
2268 * @pages: array that receives pointers to the pages pinned.
2269 * Should be at least nr_pages long. Or NULL, if caller
2270 * only intends to ensure the pages are faulted in.
2271 * @vmas: array of pointers to vmas corresponding to each page.
2272 * Or NULL if the caller does not require them.
2273 *
64019a2e
PX
2274 * This is the same as get_user_pages_remote(), just with a less-flexible
2275 * calling convention where we assume that the mm being operated on belongs to
2276 * the current task, and doesn't allow passing of a locked parameter. We also
2277 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2278 */
2279long get_user_pages(unsigned long start, unsigned long nr_pages,
2280 unsigned int gup_flags, struct page **pages,
2281 struct vm_area_struct **vmas)
2282{
9a863a6a
JG
2283 int locked = 1;
2284
d64e2dbc 2285 if (!is_valid_gup_args(pages, vmas, NULL, &gup_flags, FOLL_TOUCH))
eddb1c22
JH
2286 return -EINVAL;
2287
afa3c33e 2288 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
9a863a6a 2289 vmas, &locked, gup_flags);
932f4a63
IW
2290}
2291EXPORT_SYMBOL(get_user_pages);
2bb6d283 2292
acc3c8d1 2293/*
d3649f68 2294 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2295 *
3e4e28c5 2296 * mmap_read_lock(mm);
64019a2e 2297 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2298 * mmap_read_unlock(mm);
d3649f68
CH
2299 *
2300 * with:
2301 *
64019a2e 2302 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2303 *
2304 * It is functionally equivalent to get_user_pages_fast so
2305 * get_user_pages_fast should be used instead if specific gup_flags
2306 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2307 */
d3649f68
CH
2308long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2309 struct page **pages, unsigned int gup_flags)
acc3c8d1 2310{
b2a72dff 2311 int locked = 0;
acc3c8d1 2312
f04740f5
JG
2313 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
2314 FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc
JG
2315 return -EINVAL;
2316
afa3c33e 2317 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
d64e2dbc 2318 NULL, &locked, gup_flags);
4bbd4c77 2319}
d3649f68 2320EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2321
2322/*
67a929e0 2323 * Fast GUP
2667f50e
SC
2324 *
2325 * get_user_pages_fast attempts to pin user pages by walking the page
2326 * tables directly and avoids taking locks. Thus the walker needs to be
2327 * protected from page table pages being freed from under it, and should
2328 * block any THP splits.
2329 *
2330 * One way to achieve this is to have the walker disable interrupts, and
2331 * rely on IPIs from the TLB flushing code blocking before the page table
2332 * pages are freed. This is unsuitable for architectures that do not need
2333 * to broadcast an IPI when invalidating TLBs.
2334 *
2335 * Another way to achieve this is to batch up page table containing pages
2336 * belonging to more than one mm_user, then rcu_sched a callback to free those
2337 * pages. Disabling interrupts will allow the fast_gup walker to both block
2338 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2339 * (which is a relatively rare event). The code below adopts this strategy.
2340 *
2341 * Before activating this code, please be aware that the following assumptions
2342 * are currently made:
2343 *
ff2e6d72 2344 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2345 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2346 *
2667f50e
SC
2347 * *) ptes can be read atomically by the architecture.
2348 *
2349 * *) access_ok is sufficient to validate userspace address ranges.
2350 *
2351 * The last two assumptions can be relaxed by the addition of helper functions.
2352 *
2353 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2354 */
67a929e0 2355#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2356
790c7369 2357static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2358 unsigned int flags,
790c7369 2359 struct page **pages)
b59f65fa
KS
2360{
2361 while ((*nr) - nr_start) {
2362 struct page *page = pages[--(*nr)];
2363
2364 ClearPageReferenced(page);
3faa52c0
JH
2365 if (flags & FOLL_PIN)
2366 unpin_user_page(page);
2367 else
2368 put_page(page);
b59f65fa
KS
2369 }
2370}
2371
3010a5ea 2372#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
70cbc3cc
YS
2373/*
2374 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2375 * operations.
2376 *
2377 * To pin the page, fast-gup needs to do below in order:
2378 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2379 *
2380 * For the rest of pgtable operations where pgtable updates can be racy
2381 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2382 * is pinned.
2383 *
2384 * Above will work for all pte-level operations, including THP split.
2385 *
2386 * For THP collapse, it's a bit more complicated because fast-gup may be
2387 * walking a pgtable page that is being freed (pte is still valid but pmd
2388 * can be cleared already). To avoid race in such condition, we need to
2389 * also check pmd here to make sure pmd doesn't change (corresponds to
2390 * pmdp_collapse_flush() in the THP collapse code path).
2391 */
2392static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2393 unsigned long end, unsigned int flags,
2394 struct page **pages, int *nr)
2667f50e 2395{
b59f65fa
KS
2396 struct dev_pagemap *pgmap = NULL;
2397 int nr_start = *nr, ret = 0;
2667f50e 2398 pte_t *ptep, *ptem;
2667f50e
SC
2399
2400 ptem = ptep = pte_offset_map(&pmd, addr);
2401 do {
2a4a06da 2402 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2403 struct page *page;
2404 struct folio *folio;
2667f50e 2405
0cf45986 2406 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
e7884f8e
KS
2407 goto pte_unmap;
2408
b798bec4 2409 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2410 goto pte_unmap;
2411
b59f65fa 2412 if (pte_devmap(pte)) {
7af75561
IW
2413 if (unlikely(flags & FOLL_LONGTERM))
2414 goto pte_unmap;
2415
b59f65fa
KS
2416 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2417 if (unlikely(!pgmap)) {
3b78d834 2418 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2419 goto pte_unmap;
2420 }
2421 } else if (pte_special(pte))
2667f50e
SC
2422 goto pte_unmap;
2423
2424 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2425 page = pte_page(pte);
2426
b0496fe4
MWO
2427 folio = try_grab_folio(page, 1, flags);
2428 if (!folio)
2667f50e
SC
2429 goto pte_unmap;
2430
1507f512 2431 if (unlikely(page_is_secretmem(page))) {
b0496fe4 2432 gup_put_folio(folio, 1, flags);
1507f512
MR
2433 goto pte_unmap;
2434 }
2435
70cbc3cc
YS
2436 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2437 unlikely(pte_val(pte) != pte_val(*ptep))) {
b0496fe4 2438 gup_put_folio(folio, 1, flags);
2667f50e
SC
2439 goto pte_unmap;
2440 }
2441
84209e87 2442 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
a7f22660
DH
2443 gup_put_folio(folio, 1, flags);
2444 goto pte_unmap;
2445 }
2446
f28d4363
CI
2447 /*
2448 * We need to make the page accessible if and only if we are
2449 * going to access its content (the FOLL_PIN case). Please
2450 * see Documentation/core-api/pin_user_pages.rst for
2451 * details.
2452 */
2453 if (flags & FOLL_PIN) {
2454 ret = arch_make_page_accessible(page);
2455 if (ret) {
b0496fe4 2456 gup_put_folio(folio, 1, flags);
f28d4363
CI
2457 goto pte_unmap;
2458 }
2459 }
b0496fe4 2460 folio_set_referenced(folio);
2667f50e
SC
2461 pages[*nr] = page;
2462 (*nr)++;
2667f50e
SC
2463 } while (ptep++, addr += PAGE_SIZE, addr != end);
2464
2465 ret = 1;
2466
2467pte_unmap:
832d7aa0
CH
2468 if (pgmap)
2469 put_dev_pagemap(pgmap);
2667f50e
SC
2470 pte_unmap(ptem);
2471 return ret;
2472}
2473#else
2474
2475/*
2476 * If we can't determine whether or not a pte is special, then fail immediately
2477 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2478 * to be special.
2479 *
2480 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2481 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2482 * useful to have gup_huge_pmd even if we can't operate on ptes.
2483 */
70cbc3cc
YS
2484static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2485 unsigned long end, unsigned int flags,
2486 struct page **pages, int *nr)
2667f50e
SC
2487{
2488 return 0;
2489}
3010a5ea 2490#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2491
17596731 2492#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2493static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2494 unsigned long end, unsigned int flags,
2495 struct page **pages, int *nr)
b59f65fa
KS
2496{
2497 int nr_start = *nr;
2498 struct dev_pagemap *pgmap = NULL;
2499
2500 do {
2501 struct page *page = pfn_to_page(pfn);
2502
2503 pgmap = get_dev_pagemap(pfn, pgmap);
2504 if (unlikely(!pgmap)) {
3b78d834 2505 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2506 break;
b59f65fa 2507 }
4003f107
LG
2508
2509 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2510 undo_dev_pagemap(nr, nr_start, flags, pages);
2511 break;
2512 }
2513
b59f65fa
KS
2514 SetPageReferenced(page);
2515 pages[*nr] = page;
0f089235 2516 if (unlikely(try_grab_page(page, flags))) {
3faa52c0 2517 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2518 break;
3faa52c0 2519 }
b59f65fa
KS
2520 (*nr)++;
2521 pfn++;
2522 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2523
6401c4eb 2524 put_dev_pagemap(pgmap);
20b7fee7 2525 return addr == end;
b59f65fa
KS
2526}
2527
a9b6de77 2528static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2529 unsigned long end, unsigned int flags,
2530 struct page **pages, int *nr)
b59f65fa
KS
2531{
2532 unsigned long fault_pfn;
a9b6de77
DW
2533 int nr_start = *nr;
2534
2535 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2536 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2537 return 0;
b59f65fa 2538
a9b6de77 2539 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2540 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2541 return 0;
2542 }
2543 return 1;
b59f65fa
KS
2544}
2545
a9b6de77 2546static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2547 unsigned long end, unsigned int flags,
2548 struct page **pages, int *nr)
b59f65fa
KS
2549{
2550 unsigned long fault_pfn;
a9b6de77
DW
2551 int nr_start = *nr;
2552
2553 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2554 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2555 return 0;
b59f65fa 2556
a9b6de77 2557 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2558 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2559 return 0;
2560 }
2561 return 1;
b59f65fa
KS
2562}
2563#else
a9b6de77 2564static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2565 unsigned long end, unsigned int flags,
2566 struct page **pages, int *nr)
b59f65fa
KS
2567{
2568 BUILD_BUG();
2569 return 0;
2570}
2571
a9b6de77 2572static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2573 unsigned long end, unsigned int flags,
2574 struct page **pages, int *nr)
b59f65fa
KS
2575{
2576 BUILD_BUG();
2577 return 0;
2578}
2579#endif
2580
a43e9820
JH
2581static int record_subpages(struct page *page, unsigned long addr,
2582 unsigned long end, struct page **pages)
2583{
2584 int nr;
2585
c228afb1
MWO
2586 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2587 pages[nr] = nth_page(page, nr);
a43e9820
JH
2588
2589 return nr;
2590}
2591
cbd34da7
CH
2592#ifdef CONFIG_ARCH_HAS_HUGEPD
2593static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2594 unsigned long sz)
2595{
2596 unsigned long __boundary = (addr + sz) & ~(sz-1);
2597 return (__boundary - 1 < end - 1) ? __boundary : end;
2598}
2599
2600static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2601 unsigned long end, unsigned int flags,
2602 struct page **pages, int *nr)
cbd34da7
CH
2603{
2604 unsigned long pte_end;
09a1626e
MWO
2605 struct page *page;
2606 struct folio *folio;
cbd34da7
CH
2607 pte_t pte;
2608 int refs;
2609
2610 pte_end = (addr + sz) & ~(sz-1);
2611 if (pte_end < end)
2612 end = pte_end;
2613
55ca2263 2614 pte = huge_ptep_get(ptep);
cbd34da7 2615
0cd22afd 2616 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2617 return 0;
2618
2619 /* hugepages are never "special" */
2620 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2621
09a1626e 2622 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
a43e9820 2623 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2624
09a1626e
MWO
2625 folio = try_grab_folio(page, refs, flags);
2626 if (!folio)
cbd34da7 2627 return 0;
cbd34da7
CH
2628
2629 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
09a1626e 2630 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2631 return 0;
2632 }
2633
84209e87 2634 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2635 gup_put_folio(folio, refs, flags);
2636 return 0;
2637 }
2638
a43e9820 2639 *nr += refs;
09a1626e 2640 folio_set_referenced(folio);
cbd34da7
CH
2641 return 1;
2642}
2643
2644static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2645 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2646 struct page **pages, int *nr)
2647{
2648 pte_t *ptep;
2649 unsigned long sz = 1UL << hugepd_shift(hugepd);
2650 unsigned long next;
2651
2652 ptep = hugepte_offset(hugepd, addr, pdshift);
2653 do {
2654 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2655 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2656 return 0;
2657 } while (ptep++, addr = next, addr != end);
2658
2659 return 1;
2660}
2661#else
2662static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2663 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2664 struct page **pages, int *nr)
2665{
2666 return 0;
2667}
2668#endif /* CONFIG_ARCH_HAS_HUGEPD */
2669
2667f50e 2670static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2671 unsigned long end, unsigned int flags,
2672 struct page **pages, int *nr)
2667f50e 2673{
667ed1f7
MWO
2674 struct page *page;
2675 struct folio *folio;
2667f50e
SC
2676 int refs;
2677
b798bec4 2678 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2679 return 0;
2680
7af75561
IW
2681 if (pmd_devmap(orig)) {
2682 if (unlikely(flags & FOLL_LONGTERM))
2683 return 0;
86dfbed4
JH
2684 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2685 pages, nr);
7af75561 2686 }
b59f65fa 2687
c228afb1 2688 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2689 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2690
667ed1f7
MWO
2691 folio = try_grab_folio(page, refs, flags);
2692 if (!folio)
2667f50e 2693 return 0;
2667f50e
SC
2694
2695 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 2696 gup_put_folio(folio, refs, flags);
2667f50e
SC
2697 return 0;
2698 }
2699
84209e87 2700 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2701 gup_put_folio(folio, refs, flags);
2702 return 0;
2703 }
2704
a43e9820 2705 *nr += refs;
667ed1f7 2706 folio_set_referenced(folio);
2667f50e
SC
2707 return 1;
2708}
2709
2710static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2711 unsigned long end, unsigned int flags,
2712 struct page **pages, int *nr)
2667f50e 2713{
83afb52e
MWO
2714 struct page *page;
2715 struct folio *folio;
2667f50e
SC
2716 int refs;
2717
b798bec4 2718 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2719 return 0;
2720
7af75561
IW
2721 if (pud_devmap(orig)) {
2722 if (unlikely(flags & FOLL_LONGTERM))
2723 return 0;
86dfbed4
JH
2724 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2725 pages, nr);
7af75561 2726 }
b59f65fa 2727
c228afb1 2728 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2729 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2730
83afb52e
MWO
2731 folio = try_grab_folio(page, refs, flags);
2732 if (!folio)
2667f50e 2733 return 0;
2667f50e
SC
2734
2735 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 2736 gup_put_folio(folio, refs, flags);
2667f50e
SC
2737 return 0;
2738 }
2739
84209e87 2740 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2741 gup_put_folio(folio, refs, flags);
2742 return 0;
2743 }
2744
a43e9820 2745 *nr += refs;
83afb52e 2746 folio_set_referenced(folio);
2667f50e
SC
2747 return 1;
2748}
2749
f30c59e9 2750static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2751 unsigned long end, unsigned int flags,
f30c59e9
AK
2752 struct page **pages, int *nr)
2753{
2754 int refs;
2d7919a2
MWO
2755 struct page *page;
2756 struct folio *folio;
f30c59e9 2757
b798bec4 2758 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2759 return 0;
2760
b59f65fa 2761 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2762
c228afb1 2763 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2764 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2765
2d7919a2
MWO
2766 folio = try_grab_folio(page, refs, flags);
2767 if (!folio)
f30c59e9 2768 return 0;
f30c59e9
AK
2769
2770 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 2771 gup_put_folio(folio, refs, flags);
f30c59e9
AK
2772 return 0;
2773 }
2774
a43e9820 2775 *nr += refs;
2d7919a2 2776 folio_set_referenced(folio);
f30c59e9
AK
2777 return 1;
2778}
2779
d3f7b1bb 2780static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2781 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2782{
2783 unsigned long next;
2784 pmd_t *pmdp;
2785
d3f7b1bb 2786 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2787 do {
1180e732 2788 pmd_t pmd = pmdp_get_lockless(pmdp);
2667f50e
SC
2789
2790 next = pmd_addr_end(addr, end);
84c3fc4e 2791 if (!pmd_present(pmd))
2667f50e
SC
2792 return 0;
2793
414fd080
YZ
2794 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2795 pmd_devmap(pmd))) {
0cf45986
DH
2796 if (pmd_protnone(pmd) &&
2797 !gup_can_follow_protnone(flags))
2667f50e
SC
2798 return 0;
2799
b798bec4 2800 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2801 pages, nr))
2802 return 0;
2803
f30c59e9
AK
2804 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2805 /*
2806 * architecture have different format for hugetlbfs
2807 * pmd format and THP pmd format
2808 */
2809 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2810 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2811 return 0;
70cbc3cc 2812 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2923117b 2813 return 0;
2667f50e
SC
2814 } while (pmdp++, addr = next, addr != end);
2815
2816 return 1;
2817}
2818
d3f7b1bb 2819static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2820 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2821{
2822 unsigned long next;
2823 pud_t *pudp;
2824
d3f7b1bb 2825 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2826 do {
e37c6982 2827 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2828
2829 next = pud_addr_end(addr, end);
15494520 2830 if (unlikely(!pud_present(pud)))
2667f50e 2831 return 0;
fcd0ccd8 2832 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
b798bec4 2833 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2834 pages, nr))
2835 return 0;
2836 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2837 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2838 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2839 return 0;
d3f7b1bb 2840 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2841 return 0;
2842 } while (pudp++, addr = next, addr != end);
2843
2844 return 1;
2845}
2846
d3f7b1bb 2847static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2848 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2849{
2850 unsigned long next;
2851 p4d_t *p4dp;
2852
d3f7b1bb 2853 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2854 do {
2855 p4d_t p4d = READ_ONCE(*p4dp);
2856
2857 next = p4d_addr_end(addr, end);
2858 if (p4d_none(p4d))
2859 return 0;
2860 BUILD_BUG_ON(p4d_huge(p4d));
2861 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2862 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2863 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2864 return 0;
d3f7b1bb 2865 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2866 return 0;
2867 } while (p4dp++, addr = next, addr != end);
2868
2869 return 1;
2870}
2871
5b65c467 2872static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2873 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2874{
2875 unsigned long next;
2876 pgd_t *pgdp;
2877
2878 pgdp = pgd_offset(current->mm, addr);
2879 do {
2880 pgd_t pgd = READ_ONCE(*pgdp);
2881
2882 next = pgd_addr_end(addr, end);
2883 if (pgd_none(pgd))
2884 return;
2885 if (unlikely(pgd_huge(pgd))) {
b798bec4 2886 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2887 pages, nr))
2888 return;
2889 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2890 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2891 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2892 return;
d3f7b1bb 2893 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2894 return;
2895 } while (pgdp++, addr = next, addr != end);
2896}
050a9adc
CH
2897#else
2898static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2899 unsigned int flags, struct page **pages, int *nr)
2900{
2901}
2902#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2903
2904#ifndef gup_fast_permitted
2905/*
dadbb612 2906 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2907 * we need to fall back to the slow version:
2908 */
26f4c328 2909static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2910{
26f4c328 2911 return true;
5b65c467
KS
2912}
2913#endif
2914
c28b1fc7
JG
2915static unsigned long lockless_pages_from_mm(unsigned long start,
2916 unsigned long end,
2917 unsigned int gup_flags,
2918 struct page **pages)
2919{
2920 unsigned long flags;
2921 int nr_pinned = 0;
57efa1fe 2922 unsigned seq;
c28b1fc7
JG
2923
2924 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2925 !gup_fast_permitted(start, end))
2926 return 0;
2927
57efa1fe
JG
2928 if (gup_flags & FOLL_PIN) {
2929 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2930 if (seq & 1)
2931 return 0;
2932 }
2933
c28b1fc7
JG
2934 /*
2935 * Disable interrupts. The nested form is used, in order to allow full,
2936 * general purpose use of this routine.
2937 *
2938 * With interrupts disabled, we block page table pages from being freed
2939 * from under us. See struct mmu_table_batch comments in
2940 * include/asm-generic/tlb.h for more details.
2941 *
2942 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2943 * that come from THPs splitting.
2944 */
2945 local_irq_save(flags);
2946 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2947 local_irq_restore(flags);
57efa1fe
JG
2948
2949 /*
2950 * When pinning pages for DMA there could be a concurrent write protect
2951 * from fork() via copy_page_range(), in this case always fail fast GUP.
2952 */
2953 if (gup_flags & FOLL_PIN) {
2954 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
b6a2619c 2955 unpin_user_pages_lockless(pages, nr_pinned);
57efa1fe 2956 return 0;
b6a2619c
DH
2957 } else {
2958 sanity_check_pinned_pages(pages, nr_pinned);
57efa1fe
JG
2959 }
2960 }
c28b1fc7
JG
2961 return nr_pinned;
2962}
2963
2964static int internal_get_user_pages_fast(unsigned long start,
2965 unsigned long nr_pages,
eddb1c22
JH
2966 unsigned int gup_flags,
2967 struct page **pages)
2667f50e 2968{
c28b1fc7
JG
2969 unsigned long len, end;
2970 unsigned long nr_pinned;
b2a72dff 2971 int locked = 0;
c28b1fc7 2972 int ret;
2667f50e 2973
f4000fdf 2974 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 2975 FOLL_FORCE | FOLL_PIN | FOLL_GET |
4003f107
LG
2976 FOLL_FAST_ONLY | FOLL_NOFAULT |
2977 FOLL_PCI_P2PDMA)))
817be129
CH
2978 return -EINVAL;
2979
a458b76a
AA
2980 if (gup_flags & FOLL_PIN)
2981 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 2982
f81cd178 2983 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2984 might_lock_read(&current->mm->mmap_lock);
f81cd178 2985
f455c854 2986 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
2987 len = nr_pages << PAGE_SHIFT;
2988 if (check_add_overflow(start, len, &end))
c61611f7 2989 return 0;
6014bc27
LT
2990 if (end > TASK_SIZE_MAX)
2991 return -EFAULT;
96d4f267 2992 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2993 return -EFAULT;
73e10a61 2994
c28b1fc7
JG
2995 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2996 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2997 return nr_pinned;
2667f50e 2998
c28b1fc7
JG
2999 /* Slow path: try to get the remaining pages with get_user_pages */
3000 start += nr_pinned << PAGE_SHIFT;
3001 pages += nr_pinned;
b2a72dff
JG
3002 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3003 pages, NULL, &locked,
f04740f5 3004 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
c28b1fc7
JG
3005 if (ret < 0) {
3006 /*
3007 * The caller has to unpin the pages we already pinned so
3008 * returning -errno is not an option
3009 */
3010 if (nr_pinned)
3011 return nr_pinned;
3012 return ret;
2667f50e 3013 }
c28b1fc7 3014 return ret + nr_pinned;
2667f50e 3015}
c28b1fc7 3016
dadbb612
SJ
3017/**
3018 * get_user_pages_fast_only() - pin user pages in memory
3019 * @start: starting user address
3020 * @nr_pages: number of pages from start to pin
3021 * @gup_flags: flags modifying pin behaviour
3022 * @pages: array that receives pointers to the pages pinned.
3023 * Should be at least nr_pages long.
3024 *
9e1f0580
JH
3025 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3026 * the regular GUP.
9e1f0580
JH
3027 *
3028 * If the architecture does not support this function, simply return with no
3029 * pages pinned.
3030 *
3031 * Careful, careful! COW breaking can go either way, so a non-write
3032 * access can get ambiguous page results. If you call this function without
3033 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3034 */
dadbb612
SJ
3035int get_user_pages_fast_only(unsigned long start, int nr_pages,
3036 unsigned int gup_flags, struct page **pages)
9e1f0580 3037{
9e1f0580
JH
3038 /*
3039 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3040 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
3041 *
3042 * FOLL_FAST_ONLY is required in order to match the API description of
3043 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 3044 */
d64e2dbc
JG
3045 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
3046 FOLL_GET | FOLL_FAST_ONLY))
3047 return -EINVAL;
9e1f0580 3048
9198a919 3049 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
9e1f0580 3050}
dadbb612 3051EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 3052
eddb1c22
JH
3053/**
3054 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
3055 * @start: starting user address
3056 * @nr_pages: number of pages from start to pin
3057 * @gup_flags: flags modifying pin behaviour
3058 * @pages: array that receives pointers to the pages pinned.
3059 * Should be at least nr_pages long.
eddb1c22 3060 *
c1e8d7c6 3061 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
3062 * If not successful, it will fall back to taking the lock and
3063 * calling get_user_pages().
3064 *
3065 * Returns number of pages pinned. This may be fewer than the number requested.
3066 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3067 * -errno.
3068 */
3069int get_user_pages_fast(unsigned long start, int nr_pages,
3070 unsigned int gup_flags, struct page **pages)
3071{
94202f12
JH
3072 /*
3073 * The caller may or may not have explicitly set FOLL_GET; either way is
3074 * OK. However, internally (within mm/gup.c), gup fast variants must set
3075 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3076 * request.
3077 */
d64e2dbc
JG
3078 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_GET))
3079 return -EINVAL;
eddb1c22
JH
3080 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3081}
050a9adc 3082EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
3083
3084/**
3085 * pin_user_pages_fast() - pin user pages in memory without taking locks
3086 *
3faa52c0
JH
3087 * @start: starting user address
3088 * @nr_pages: number of pages from start to pin
3089 * @gup_flags: flags modifying pin behaviour
3090 * @pages: array that receives pointers to the pages pinned.
3091 * Should be at least nr_pages long.
3092 *
3093 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3094 * get_user_pages_fast() for documentation on the function arguments, because
3095 * the arguments here are identical.
3096 *
3097 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3098 * see Documentation/core-api/pin_user_pages.rst for further details.
c8070b78
DH
3099 *
3100 * Note that if a zero_page is amongst the returned pages, it will not have
3101 * pins in it and unpin_user_page() will not remove pins from it.
eddb1c22
JH
3102 */
3103int pin_user_pages_fast(unsigned long start, int nr_pages,
3104 unsigned int gup_flags, struct page **pages)
3105{
d64e2dbc 3106 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_PIN))
3faa52c0 3107 return -EINVAL;
3faa52c0 3108 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
3109}
3110EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3111
3112/**
64019a2e 3113 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3114 *
3faa52c0
JH
3115 * @mm: mm_struct of target mm
3116 * @start: starting user address
3117 * @nr_pages: number of pages from start to pin
3118 * @gup_flags: flags modifying lookup behaviour
3119 * @pages: array that receives pointers to the pages pinned.
0768c8de 3120 * Should be at least nr_pages long.
3faa52c0
JH
3121 * @vmas: array of pointers to vmas corresponding to each page.
3122 * Or NULL if the caller does not require them.
3123 * @locked: pointer to lock flag indicating whether lock is held and
3124 * subsequently whether VM_FAULT_RETRY functionality can be
3125 * utilised. Lock must initially be held.
3126 *
3127 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3128 * get_user_pages_remote() for documentation on the function arguments, because
3129 * the arguments here are identical.
3130 *
3131 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3132 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3133 *
3134 * Note that if a zero_page is amongst the returned pages, it will not have
3135 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22 3136 */
64019a2e 3137long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3138 unsigned long start, unsigned long nr_pages,
3139 unsigned int gup_flags, struct page **pages,
3140 struct vm_area_struct **vmas, int *locked)
3141{
9a863a6a
JG
3142 int local_locked = 1;
3143
d64e2dbc
JG
3144 if (!is_valid_gup_args(pages, vmas, locked, &gup_flags,
3145 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3146 return 0;
9a863a6a
JG
3147 return __gup_longterm_locked(mm, start, nr_pages, pages, vmas,
3148 locked ? locked : &local_locked,
d64e2dbc 3149 gup_flags);
eddb1c22
JH
3150}
3151EXPORT_SYMBOL(pin_user_pages_remote);
3152
3153/**
3154 * pin_user_pages() - pin user pages in memory for use by other devices
3155 *
3faa52c0
JH
3156 * @start: starting user address
3157 * @nr_pages: number of pages from start to pin
3158 * @gup_flags: flags modifying lookup behaviour
3159 * @pages: array that receives pointers to the pages pinned.
0768c8de 3160 * Should be at least nr_pages long.
3faa52c0
JH
3161 * @vmas: array of pointers to vmas corresponding to each page.
3162 * Or NULL if the caller does not require them.
3163 *
3164 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3165 * FOLL_PIN is set.
3166 *
3167 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3168 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3169 *
3170 * Note that if a zero_page is amongst the returned pages, it will not have
3171 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22
JH
3172 */
3173long pin_user_pages(unsigned long start, unsigned long nr_pages,
3174 unsigned int gup_flags, struct page **pages,
3175 struct vm_area_struct **vmas)
3176{
9a863a6a
JG
3177 int locked = 1;
3178
d64e2dbc
JG
3179 if (!is_valid_gup_args(pages, vmas, NULL, &gup_flags, FOLL_PIN))
3180 return 0;
64019a2e 3181 return __gup_longterm_locked(current->mm, start, nr_pages,
9a863a6a 3182 pages, vmas, &locked, gup_flags);
eddb1c22
JH
3183}
3184EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3185
3186/*
3187 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3188 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3189 * FOLL_PIN and rejects FOLL_GET.
c8070b78
DH
3190 *
3191 * Note that if a zero_page is amongst the returned pages, it will not have
3192 * pins in it and unpin_user_page*() will not remove pins from it.
91429023
JH
3193 */
3194long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3195 struct page **pages, unsigned int gup_flags)
3196{
b2a72dff 3197 int locked = 0;
91429023 3198
d64e2dbc 3199 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
f04740f5 3200 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc 3201 return 0;
0768c8de 3202
b2a72dff
JG
3203 return __gup_longterm_locked(current->mm, start, nr_pages, pages, NULL,
3204 &locked, gup_flags);
91429023
JH
3205}
3206EXPORT_SYMBOL(pin_user_pages_unlocked);