mm: fix vma_is_anonymous() false-positives
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
3b3b1a29 28#include <linux/overflow.h>
1da177e4
LT
29
30struct mempolicy;
31struct anon_vma;
bf181b9f 32struct anon_vma_chain;
4e950f6f 33struct file_ra_state;
e8edc6e0 34struct user_struct;
4e950f6f 35struct writeback_control;
682aa8e1 36struct bdi_writeback;
1da177e4 37
597b7305
MH
38void init_mm_internals(void);
39
fccc9987 40#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 41extern unsigned long max_mapnr;
fccc9987
JL
42
43static inline void set_max_mapnr(unsigned long limit)
44{
45 max_mapnr = limit;
46}
47#else
48static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
49#endif
50
4481374c 51extern unsigned long totalram_pages;
1da177e4 52extern void * high_memory;
1da177e4
LT
53extern int page_cluster;
54
55#ifdef CONFIG_SYSCTL
56extern int sysctl_legacy_va_layout;
57#else
58#define sysctl_legacy_va_layout 0
59#endif
60
d07e2259
DC
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62extern const int mmap_rnd_bits_min;
63extern const int mmap_rnd_bits_max;
64extern int mmap_rnd_bits __read_mostly;
65#endif
66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67extern const int mmap_rnd_compat_bits_min;
68extern const int mmap_rnd_compat_bits_max;
69extern int mmap_rnd_compat_bits __read_mostly;
70#endif
71
1da177e4
LT
72#include <asm/page.h>
73#include <asm/pgtable.h>
74#include <asm/processor.h>
1da177e4 75
79442ed1
TC
76#ifndef __pa_symbol
77#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
78#endif
79
1dff8083
AB
80#ifndef page_to_virt
81#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
82#endif
83
568c5fe5
LA
84#ifndef lm_alias
85#define lm_alias(x) __va(__pa_symbol(x))
86#endif
87
593befa6
DD
88/*
89 * To prevent common memory management code establishing
90 * a zero page mapping on a read fault.
91 * This macro should be defined within <asm/pgtable.h>.
92 * s390 does this to prevent multiplexing of hardware bits
93 * related to the physical page in case of virtualization.
94 */
95#ifndef mm_forbids_zeropage
96#define mm_forbids_zeropage(X) (0)
97#endif
98
a4a3ede2
PT
99/*
100 * On some architectures it is expensive to call memset() for small sizes.
101 * Those architectures should provide their own implementation of "struct page"
102 * zeroing by defining this macro in <asm/pgtable.h>.
103 */
104#ifndef mm_zero_struct_page
105#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
106#endif
107
ea606cf5
AR
108/*
109 * Default maximum number of active map areas, this limits the number of vmas
110 * per mm struct. Users can overwrite this number by sysctl but there is a
111 * problem.
112 *
113 * When a program's coredump is generated as ELF format, a section is created
114 * per a vma. In ELF, the number of sections is represented in unsigned short.
115 * This means the number of sections should be smaller than 65535 at coredump.
116 * Because the kernel adds some informative sections to a image of program at
117 * generating coredump, we need some margin. The number of extra sections is
118 * 1-3 now and depends on arch. We use "5" as safe margin, here.
119 *
120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
121 * not a hard limit any more. Although some userspace tools can be surprised by
122 * that.
123 */
124#define MAPCOUNT_ELF_CORE_MARGIN (5)
125#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
126
127extern int sysctl_max_map_count;
128
c9b1d098 129extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 130extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 131
49f0ce5f
JM
132extern int sysctl_overcommit_memory;
133extern int sysctl_overcommit_ratio;
134extern unsigned long sysctl_overcommit_kbytes;
135
136extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
137 size_t *, loff_t *);
138extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
139 size_t *, loff_t *);
140
1da177e4
LT
141#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
142
27ac792c
AR
143/* to align the pointer to the (next) page boundary */
144#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
145
0fa73b86 146/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 147#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 148
1da177e4
LT
149/*
150 * Linux kernel virtual memory manager primitives.
151 * The idea being to have a "virtual" mm in the same way
152 * we have a virtual fs - giving a cleaner interface to the
153 * mm details, and allowing different kinds of memory mappings
154 * (from shared memory to executable loading to arbitrary
155 * mmap() functions).
156 */
157
490fc053 158struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
159struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
160void vm_area_free(struct vm_area_struct *);
c43692e8 161
1da177e4 162#ifndef CONFIG_MMU
8feae131
DH
163extern struct rb_root nommu_region_tree;
164extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
165
166extern unsigned int kobjsize(const void *objp);
167#endif
168
169/*
605d9288 170 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 171 * When changing, update also include/trace/events/mmflags.h
1da177e4 172 */
cc2383ec
KK
173#define VM_NONE 0x00000000
174
1da177e4
LT
175#define VM_READ 0x00000001 /* currently active flags */
176#define VM_WRITE 0x00000002
177#define VM_EXEC 0x00000004
178#define VM_SHARED 0x00000008
179
7e2cff42 180/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
181#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
182#define VM_MAYWRITE 0x00000020
183#define VM_MAYEXEC 0x00000040
184#define VM_MAYSHARE 0x00000080
185
186#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 187#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 188#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 189#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 190#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 191
1da177e4
LT
192#define VM_LOCKED 0x00002000
193#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
194
195 /* Used by sys_madvise() */
196#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
197#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
198
199#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
200#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 201#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 202#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 203#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 204#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 205#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 206#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 207#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 208#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 209
d9104d1c
CG
210#ifdef CONFIG_MEM_SOFT_DIRTY
211# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
212#else
213# define VM_SOFTDIRTY 0
214#endif
215
b379d790 216#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
217#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
218#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 219#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 220
63c17fb8
DH
221#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
222#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
223#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
224#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
225#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 226#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
227#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
228#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
229#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
230#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 231#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
232#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
233
5212213a 234#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
235# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
236# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 237# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
238# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
239# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
240#ifdef CONFIG_PPC
241# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
242#else
243# define VM_PKEY_BIT4 0
8f62c883 244#endif
5212213a
RP
245#endif /* CONFIG_ARCH_HAS_PKEYS */
246
247#if defined(CONFIG_X86)
248# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
249#elif defined(CONFIG_PPC)
250# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
251#elif defined(CONFIG_PARISC)
252# define VM_GROWSUP VM_ARCH_1
253#elif defined(CONFIG_IA64)
254# define VM_GROWSUP VM_ARCH_1
74a04967
KA
255#elif defined(CONFIG_SPARC64)
256# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
257# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
258#elif !defined(CONFIG_MMU)
259# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
260#endif
261
df3735c5 262#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 263/* MPX specific bounds table or bounds directory */
fa87b91c 264# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
265#else
266# define VM_MPX VM_NONE
4aae7e43
QR
267#endif
268
cc2383ec
KK
269#ifndef VM_GROWSUP
270# define VM_GROWSUP VM_NONE
271#endif
272
a8bef8ff
MG
273/* Bits set in the VMA until the stack is in its final location */
274#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
275
1da177e4
LT
276#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
277#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
278#endif
279
280#ifdef CONFIG_STACK_GROWSUP
30bdbb78 281#define VM_STACK VM_GROWSUP
1da177e4 282#else
30bdbb78 283#define VM_STACK VM_GROWSDOWN
1da177e4
LT
284#endif
285
30bdbb78
KK
286#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
287
b291f000 288/*
78f11a25
AA
289 * Special vmas that are non-mergable, non-mlock()able.
290 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 291 */
9050d7eb 292#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 293
a0715cc2
AT
294/* This mask defines which mm->def_flags a process can inherit its parent */
295#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
296
de60f5f1
EM
297/* This mask is used to clear all the VMA flags used by mlock */
298#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
299
2c2d57b5
KA
300/* Arch-specific flags to clear when updating VM flags on protection change */
301#ifndef VM_ARCH_CLEAR
302# define VM_ARCH_CLEAR VM_NONE
303#endif
304#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
305
1da177e4
LT
306/*
307 * mapping from the currently active vm_flags protection bits (the
308 * low four bits) to a page protection mask..
309 */
310extern pgprot_t protection_map[16];
311
d0217ac0 312#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
313#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
314#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
315#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
316#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
317#define FAULT_FLAG_TRIED 0x20 /* Second try */
318#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 319#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 320#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 321
282a8e03
RZ
322#define FAULT_FLAG_TRACE \
323 { FAULT_FLAG_WRITE, "WRITE" }, \
324 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
325 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
326 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
327 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
328 { FAULT_FLAG_TRIED, "TRIED" }, \
329 { FAULT_FLAG_USER, "USER" }, \
330 { FAULT_FLAG_REMOTE, "REMOTE" }, \
331 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
332
54cb8821 333/*
d0217ac0 334 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
335 * ->fault function. The vma's ->fault is responsible for returning a bitmask
336 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 337 *
c20cd45e
MH
338 * MM layer fills up gfp_mask for page allocations but fault handler might
339 * alter it if its implementation requires a different allocation context.
340 *
9b4bdd2f 341 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 342 */
d0217ac0 343struct vm_fault {
82b0f8c3 344 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 345 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 346 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 347 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 348 unsigned long address; /* Faulting virtual address */
82b0f8c3 349 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 350 * the 'address' */
a2d58167
DJ
351 pud_t *pud; /* Pointer to pud entry matching
352 * the 'address'
353 */
2994302b 354 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 355
3917048d
JK
356 struct page *cow_page; /* Page handler may use for COW fault */
357 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 358 struct page *page; /* ->fault handlers should return a
83c54070 359 * page here, unless VM_FAULT_NOPAGE
d0217ac0 360 * is set (which is also implied by
83c54070 361 * VM_FAULT_ERROR).
d0217ac0 362 */
82b0f8c3 363 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
364 pte_t *pte; /* Pointer to pte entry matching
365 * the 'address'. NULL if the page
366 * table hasn't been allocated.
367 */
368 spinlock_t *ptl; /* Page table lock.
369 * Protects pte page table if 'pte'
370 * is not NULL, otherwise pmd.
371 */
7267ec00
KS
372 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
373 * vm_ops->map_pages() calls
374 * alloc_set_pte() from atomic context.
375 * do_fault_around() pre-allocates
376 * page table to avoid allocation from
377 * atomic context.
378 */
54cb8821 379};
1da177e4 380
c791ace1
DJ
381/* page entry size for vm->huge_fault() */
382enum page_entry_size {
383 PE_SIZE_PTE = 0,
384 PE_SIZE_PMD,
385 PE_SIZE_PUD,
386};
387
1da177e4
LT
388/*
389 * These are the virtual MM functions - opening of an area, closing and
390 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 391 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
392 */
393struct vm_operations_struct {
394 void (*open)(struct vm_area_struct * area);
395 void (*close)(struct vm_area_struct * area);
31383c68 396 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 397 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
398 vm_fault_t (*fault)(struct vm_fault *vmf);
399 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
400 enum page_entry_size pe_size);
82b0f8c3 401 void (*map_pages)(struct vm_fault *vmf,
bae473a4 402 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 403 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
404
405 /* notification that a previously read-only page is about to become
406 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 407 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 408
dd906184 409 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 410 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 411
28b2ee20
RR
412 /* called by access_process_vm when get_user_pages() fails, typically
413 * for use by special VMAs that can switch between memory and hardware
414 */
415 int (*access)(struct vm_area_struct *vma, unsigned long addr,
416 void *buf, int len, int write);
78d683e8
AL
417
418 /* Called by the /proc/PID/maps code to ask the vma whether it
419 * has a special name. Returning non-NULL will also cause this
420 * vma to be dumped unconditionally. */
421 const char *(*name)(struct vm_area_struct *vma);
422
1da177e4 423#ifdef CONFIG_NUMA
a6020ed7
LS
424 /*
425 * set_policy() op must add a reference to any non-NULL @new mempolicy
426 * to hold the policy upon return. Caller should pass NULL @new to
427 * remove a policy and fall back to surrounding context--i.e. do not
428 * install a MPOL_DEFAULT policy, nor the task or system default
429 * mempolicy.
430 */
1da177e4 431 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
432
433 /*
434 * get_policy() op must add reference [mpol_get()] to any policy at
435 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
436 * in mm/mempolicy.c will do this automatically.
437 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
438 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
439 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
440 * must return NULL--i.e., do not "fallback" to task or system default
441 * policy.
442 */
1da177e4
LT
443 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
444 unsigned long addr);
445#endif
667a0a06
DV
446 /*
447 * Called by vm_normal_page() for special PTEs to find the
448 * page for @addr. This is useful if the default behavior
449 * (using pte_page()) would not find the correct page.
450 */
451 struct page *(*find_special_page)(struct vm_area_struct *vma,
452 unsigned long addr);
1da177e4
LT
453};
454
027232da
KS
455static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
456{
bfd40eaf
KS
457 static const struct vm_operations_struct dummy_vm_ops = {};
458
027232da 459 vma->vm_mm = mm;
bfd40eaf 460 vma->vm_ops = &dummy_vm_ops;
027232da
KS
461 INIT_LIST_HEAD(&vma->anon_vma_chain);
462}
463
bfd40eaf
KS
464static inline void vma_set_anonymous(struct vm_area_struct *vma)
465{
466 vma->vm_ops = NULL;
467}
468
1da177e4
LT
469struct mmu_gather;
470struct inode;
471
349aef0b
AM
472#define page_private(page) ((page)->private)
473#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 474
5c7fb56e
DW
475#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
476static inline int pmd_devmap(pmd_t pmd)
477{
478 return 0;
479}
a00cc7d9
MW
480static inline int pud_devmap(pud_t pud)
481{
482 return 0;
483}
b59f65fa
KS
484static inline int pgd_devmap(pgd_t pgd)
485{
486 return 0;
487}
5c7fb56e
DW
488#endif
489
1da177e4
LT
490/*
491 * FIXME: take this include out, include page-flags.h in
492 * files which need it (119 of them)
493 */
494#include <linux/page-flags.h>
71e3aac0 495#include <linux/huge_mm.h>
1da177e4
LT
496
497/*
498 * Methods to modify the page usage count.
499 *
500 * What counts for a page usage:
501 * - cache mapping (page->mapping)
502 * - private data (page->private)
503 * - page mapped in a task's page tables, each mapping
504 * is counted separately
505 *
506 * Also, many kernel routines increase the page count before a critical
507 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
508 */
509
510/*
da6052f7 511 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 512 */
7c8ee9a8
NP
513static inline int put_page_testzero(struct page *page)
514{
fe896d18
JK
515 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
516 return page_ref_dec_and_test(page);
7c8ee9a8 517}
1da177e4
LT
518
519/*
7c8ee9a8
NP
520 * Try to grab a ref unless the page has a refcount of zero, return false if
521 * that is the case.
8e0861fa
AK
522 * This can be called when MMU is off so it must not access
523 * any of the virtual mappings.
1da177e4 524 */
7c8ee9a8
NP
525static inline int get_page_unless_zero(struct page *page)
526{
fe896d18 527 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 528}
1da177e4 529
53df8fdc 530extern int page_is_ram(unsigned long pfn);
124fe20d
DW
531
532enum {
533 REGION_INTERSECTS,
534 REGION_DISJOINT,
535 REGION_MIXED,
536};
537
1c29f25b
TK
538int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
539 unsigned long desc);
53df8fdc 540
48667e7a 541/* Support for virtually mapped pages */
b3bdda02
CL
542struct page *vmalloc_to_page(const void *addr);
543unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 544
0738c4bb
PM
545/*
546 * Determine if an address is within the vmalloc range
547 *
548 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
549 * is no special casing required.
550 */
bb00a789 551static inline bool is_vmalloc_addr(const void *x)
9e2779fa 552{
0738c4bb 553#ifdef CONFIG_MMU
9e2779fa
CL
554 unsigned long addr = (unsigned long)x;
555
556 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 557#else
bb00a789 558 return false;
8ca3ed87 559#endif
0738c4bb 560}
81ac3ad9
KH
561#ifdef CONFIG_MMU
562extern int is_vmalloc_or_module_addr(const void *x);
563#else
934831d0 564static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
565{
566 return 0;
567}
568#endif
9e2779fa 569
a7c3e901
MH
570extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
571static inline void *kvmalloc(size_t size, gfp_t flags)
572{
573 return kvmalloc_node(size, flags, NUMA_NO_NODE);
574}
575static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
576{
577 return kvmalloc_node(size, flags | __GFP_ZERO, node);
578}
579static inline void *kvzalloc(size_t size, gfp_t flags)
580{
581 return kvmalloc(size, flags | __GFP_ZERO);
582}
583
752ade68
MH
584static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
585{
3b3b1a29
KC
586 size_t bytes;
587
588 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
589 return NULL;
590
3b3b1a29 591 return kvmalloc(bytes, flags);
752ade68
MH
592}
593
1c542f38
KC
594static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
595{
596 return kvmalloc_array(n, size, flags | __GFP_ZERO);
597}
598
39f1f78d
AV
599extern void kvfree(const void *addr);
600
53f9263b
KS
601static inline atomic_t *compound_mapcount_ptr(struct page *page)
602{
603 return &page[1].compound_mapcount;
604}
605
606static inline int compound_mapcount(struct page *page)
607{
5f527c2b 608 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
609 page = compound_head(page);
610 return atomic_read(compound_mapcount_ptr(page)) + 1;
611}
612
70b50f94
AA
613/*
614 * The atomic page->_mapcount, starts from -1: so that transitions
615 * both from it and to it can be tracked, using atomic_inc_and_test
616 * and atomic_add_negative(-1).
617 */
22b751c3 618static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
619{
620 atomic_set(&(page)->_mapcount, -1);
621}
622
b20ce5e0
KS
623int __page_mapcount(struct page *page);
624
70b50f94
AA
625static inline int page_mapcount(struct page *page)
626{
1d148e21 627 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 628
b20ce5e0
KS
629 if (unlikely(PageCompound(page)))
630 return __page_mapcount(page);
631 return atomic_read(&page->_mapcount) + 1;
632}
633
634#ifdef CONFIG_TRANSPARENT_HUGEPAGE
635int total_mapcount(struct page *page);
6d0a07ed 636int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
637#else
638static inline int total_mapcount(struct page *page)
639{
640 return page_mapcount(page);
70b50f94 641}
6d0a07ed
AA
642static inline int page_trans_huge_mapcount(struct page *page,
643 int *total_mapcount)
644{
645 int mapcount = page_mapcount(page);
646 if (total_mapcount)
647 *total_mapcount = mapcount;
648 return mapcount;
649}
b20ce5e0 650#endif
70b50f94 651
b49af68f
CL
652static inline struct page *virt_to_head_page(const void *x)
653{
654 struct page *page = virt_to_page(x);
ccaafd7f 655
1d798ca3 656 return compound_head(page);
b49af68f
CL
657}
658
ddc58f27
KS
659void __put_page(struct page *page);
660
1d7ea732 661void put_pages_list(struct list_head *pages);
1da177e4 662
8dfcc9ba 663void split_page(struct page *page, unsigned int order);
8dfcc9ba 664
33f2ef89
AW
665/*
666 * Compound pages have a destructor function. Provide a
667 * prototype for that function and accessor functions.
f1e61557 668 * These are _only_ valid on the head of a compound page.
33f2ef89 669 */
f1e61557
KS
670typedef void compound_page_dtor(struct page *);
671
672/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
673enum compound_dtor_id {
674 NULL_COMPOUND_DTOR,
675 COMPOUND_PAGE_DTOR,
676#ifdef CONFIG_HUGETLB_PAGE
677 HUGETLB_PAGE_DTOR,
9a982250
KS
678#endif
679#ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
681#endif
682 NR_COMPOUND_DTORS,
683};
684extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
685
686static inline void set_compound_page_dtor(struct page *page,
f1e61557 687 enum compound_dtor_id compound_dtor)
33f2ef89 688{
f1e61557
KS
689 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
690 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
691}
692
693static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
694{
f1e61557
KS
695 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
696 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
697}
698
d00181b9 699static inline unsigned int compound_order(struct page *page)
d85f3385 700{
6d777953 701 if (!PageHead(page))
d85f3385 702 return 0;
e4b294c2 703 return page[1].compound_order;
d85f3385
CL
704}
705
f1e61557 706static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 707{
e4b294c2 708 page[1].compound_order = order;
d85f3385
CL
709}
710
9a982250
KS
711void free_compound_page(struct page *page);
712
3dece370 713#ifdef CONFIG_MMU
14fd403f
AA
714/*
715 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
716 * servicing faults for write access. In the normal case, do always want
717 * pte_mkwrite. But get_user_pages can cause write faults for mappings
718 * that do not have writing enabled, when used by access_process_vm.
719 */
720static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
721{
722 if (likely(vma->vm_flags & VM_WRITE))
723 pte = pte_mkwrite(pte);
724 return pte;
725}
8c6e50b0 726
82b0f8c3 727int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 728 struct page *page);
9118c0cb 729int finish_fault(struct vm_fault *vmf);
66a6197c 730int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 731#endif
14fd403f 732
1da177e4
LT
733/*
734 * Multiple processes may "see" the same page. E.g. for untouched
735 * mappings of /dev/null, all processes see the same page full of
736 * zeroes, and text pages of executables and shared libraries have
737 * only one copy in memory, at most, normally.
738 *
739 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
740 * page_count() == 0 means the page is free. page->lru is then used for
741 * freelist management in the buddy allocator.
da6052f7 742 * page_count() > 0 means the page has been allocated.
1da177e4 743 *
da6052f7
NP
744 * Pages are allocated by the slab allocator in order to provide memory
745 * to kmalloc and kmem_cache_alloc. In this case, the management of the
746 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
747 * unless a particular usage is carefully commented. (the responsibility of
748 * freeing the kmalloc memory is the caller's, of course).
1da177e4 749 *
da6052f7
NP
750 * A page may be used by anyone else who does a __get_free_page().
751 * In this case, page_count still tracks the references, and should only
752 * be used through the normal accessor functions. The top bits of page->flags
753 * and page->virtual store page management information, but all other fields
754 * are unused and could be used privately, carefully. The management of this
755 * page is the responsibility of the one who allocated it, and those who have
756 * subsequently been given references to it.
757 *
758 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
759 * managed by the Linux memory manager: I/O, buffers, swapping etc.
760 * The following discussion applies only to them.
761 *
da6052f7
NP
762 * A pagecache page contains an opaque `private' member, which belongs to the
763 * page's address_space. Usually, this is the address of a circular list of
764 * the page's disk buffers. PG_private must be set to tell the VM to call
765 * into the filesystem to release these pages.
1da177e4 766 *
da6052f7
NP
767 * A page may belong to an inode's memory mapping. In this case, page->mapping
768 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 769 * in units of PAGE_SIZE.
1da177e4 770 *
da6052f7
NP
771 * If pagecache pages are not associated with an inode, they are said to be
772 * anonymous pages. These may become associated with the swapcache, and in that
773 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 774 *
da6052f7
NP
775 * In either case (swapcache or inode backed), the pagecache itself holds one
776 * reference to the page. Setting PG_private should also increment the
777 * refcount. The each user mapping also has a reference to the page.
1da177e4 778 *
da6052f7 779 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 780 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
781 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
782 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 783 *
da6052f7 784 * All pagecache pages may be subject to I/O:
1da177e4
LT
785 * - inode pages may need to be read from disk,
786 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
787 * to be written back to the inode on disk,
788 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
789 * modified may need to be swapped out to swap space and (later) to be read
790 * back into memory.
1da177e4
LT
791 */
792
793/*
794 * The zone field is never updated after free_area_init_core()
795 * sets it, so none of the operations on it need to be atomic.
1da177e4 796 */
348f8b6c 797
90572890 798/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 799#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
800#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
801#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 802#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 803
348f8b6c 804/*
25985edc 805 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
806 * sections we define the shift as 0; that plus a 0 mask ensures
807 * the compiler will optimise away reference to them.
808 */
d41dee36
AW
809#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
810#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
811#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 812#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 813
bce54bbf
WD
814/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
815#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 816#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
817#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
818 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 819#else
89689ae7 820#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
821#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
822 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
823#endif
824
bd8029b6 825#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 826
9223b419
CL
827#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
828#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
829#endif
830
d41dee36
AW
831#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
832#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
833#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 834#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 835#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 836
33dd4e0e 837static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 838{
348f8b6c 839 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 840}
1da177e4 841
260ae3f7
DW
842#ifdef CONFIG_ZONE_DEVICE
843static inline bool is_zone_device_page(const struct page *page)
844{
845 return page_zonenum(page) == ZONE_DEVICE;
846}
847#else
848static inline bool is_zone_device_page(const struct page *page)
849{
850 return false;
851}
7b2d55d2 852#endif
5042db43 853
e7638488
DW
854#ifdef CONFIG_DEV_PAGEMAP_OPS
855void dev_pagemap_get_ops(void);
856void dev_pagemap_put_ops(void);
857void __put_devmap_managed_page(struct page *page);
858DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
859static inline bool put_devmap_managed_page(struct page *page)
860{
861 if (!static_branch_unlikely(&devmap_managed_key))
862 return false;
863 if (!is_zone_device_page(page))
864 return false;
865 switch (page->pgmap->type) {
866 case MEMORY_DEVICE_PRIVATE:
867 case MEMORY_DEVICE_PUBLIC:
868 case MEMORY_DEVICE_FS_DAX:
869 __put_devmap_managed_page(page);
870 return true;
871 default:
872 break;
873 }
874 return false;
875}
876
877static inline bool is_device_private_page(const struct page *page)
878{
879 return is_zone_device_page(page) &&
880 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
881}
882
883static inline bool is_device_public_page(const struct page *page)
884{
885 return is_zone_device_page(page) &&
886 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
887}
888
889#else /* CONFIG_DEV_PAGEMAP_OPS */
890static inline void dev_pagemap_get_ops(void)
5042db43 891{
5042db43 892}
e7638488
DW
893
894static inline void dev_pagemap_put_ops(void)
895{
896}
897
898static inline bool put_devmap_managed_page(struct page *page)
899{
900 return false;
901}
902
6b368cd4
JG
903static inline bool is_device_private_page(const struct page *page)
904{
905 return false;
906}
e7638488 907
6b368cd4
JG
908static inline bool is_device_public_page(const struct page *page)
909{
910 return false;
911}
e7638488 912#endif /* CONFIG_DEV_PAGEMAP_OPS */
7b2d55d2 913
3565fce3
DW
914static inline void get_page(struct page *page)
915{
916 page = compound_head(page);
917 /*
918 * Getting a normal page or the head of a compound page
0139aa7b 919 * requires to already have an elevated page->_refcount.
3565fce3 920 */
fe896d18
JK
921 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
922 page_ref_inc(page);
3565fce3
DW
923}
924
925static inline void put_page(struct page *page)
926{
927 page = compound_head(page);
928
7b2d55d2 929 /*
e7638488
DW
930 * For devmap managed pages we need to catch refcount transition from
931 * 2 to 1, when refcount reach one it means the page is free and we
932 * need to inform the device driver through callback. See
7b2d55d2
JG
933 * include/linux/memremap.h and HMM for details.
934 */
e7638488 935 if (put_devmap_managed_page(page))
7b2d55d2 936 return;
7b2d55d2 937
3565fce3
DW
938 if (put_page_testzero(page))
939 __put_page(page);
3565fce3
DW
940}
941
9127ab4f
CS
942#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
943#define SECTION_IN_PAGE_FLAGS
944#endif
945
89689ae7 946/*
7a8010cd
VB
947 * The identification function is mainly used by the buddy allocator for
948 * determining if two pages could be buddies. We are not really identifying
949 * the zone since we could be using the section number id if we do not have
950 * node id available in page flags.
951 * We only guarantee that it will return the same value for two combinable
952 * pages in a zone.
89689ae7 953 */
cb2b95e1
AW
954static inline int page_zone_id(struct page *page)
955{
89689ae7 956 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
957}
958
25ba77c1 959static inline int zone_to_nid(struct zone *zone)
89fa3024 960{
d5f541ed
CL
961#ifdef CONFIG_NUMA
962 return zone->node;
963#else
964 return 0;
965#endif
89fa3024
CL
966}
967
89689ae7 968#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 969extern int page_to_nid(const struct page *page);
89689ae7 970#else
33dd4e0e 971static inline int page_to_nid(const struct page *page)
d41dee36 972{
f165b378
PT
973 struct page *p = (struct page *)page;
974
975 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 976}
89689ae7
CL
977#endif
978
57e0a030 979#ifdef CONFIG_NUMA_BALANCING
90572890 980static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 981{
90572890 982 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
983}
984
90572890 985static inline int cpupid_to_pid(int cpupid)
57e0a030 986{
90572890 987 return cpupid & LAST__PID_MASK;
57e0a030 988}
b795854b 989
90572890 990static inline int cpupid_to_cpu(int cpupid)
b795854b 991{
90572890 992 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
993}
994
90572890 995static inline int cpupid_to_nid(int cpupid)
b795854b 996{
90572890 997 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
998}
999
90572890 1000static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1001{
90572890 1002 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1003}
1004
90572890 1005static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1006{
90572890 1007 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1008}
1009
8c8a743c
PZ
1010static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1011{
1012 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1013}
1014
1015#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1016#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1017static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1018{
1ae71d03 1019 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1020}
90572890
PZ
1021
1022static inline int page_cpupid_last(struct page *page)
1023{
1024 return page->_last_cpupid;
1025}
1026static inline void page_cpupid_reset_last(struct page *page)
b795854b 1027{
1ae71d03 1028 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1029}
1030#else
90572890 1031static inline int page_cpupid_last(struct page *page)
75980e97 1032{
90572890 1033 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1034}
1035
90572890 1036extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1037
90572890 1038static inline void page_cpupid_reset_last(struct page *page)
75980e97 1039{
09940a4f 1040 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1041}
90572890
PZ
1042#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1043#else /* !CONFIG_NUMA_BALANCING */
1044static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1045{
90572890 1046 return page_to_nid(page); /* XXX */
57e0a030
MG
1047}
1048
90572890 1049static inline int page_cpupid_last(struct page *page)
57e0a030 1050{
90572890 1051 return page_to_nid(page); /* XXX */
57e0a030
MG
1052}
1053
90572890 1054static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1055{
1056 return -1;
1057}
1058
90572890 1059static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1060{
1061 return -1;
1062}
1063
90572890 1064static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1065{
1066 return -1;
1067}
1068
90572890
PZ
1069static inline int cpu_pid_to_cpupid(int nid, int pid)
1070{
1071 return -1;
1072}
1073
1074static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1075{
1076 return 1;
1077}
1078
90572890 1079static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1080{
1081}
8c8a743c
PZ
1082
1083static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1084{
1085 return false;
1086}
90572890 1087#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1088
33dd4e0e 1089static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1090{
1091 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1092}
1093
75ef7184
MG
1094static inline pg_data_t *page_pgdat(const struct page *page)
1095{
1096 return NODE_DATA(page_to_nid(page));
1097}
1098
9127ab4f 1099#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1100static inline void set_page_section(struct page *page, unsigned long section)
1101{
1102 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1103 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1104}
1105
aa462abe 1106static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1107{
1108 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1109}
308c05e3 1110#endif
d41dee36 1111
2f1b6248 1112static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1113{
1114 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1115 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1116}
2f1b6248 1117
348f8b6c
DH
1118static inline void set_page_node(struct page *page, unsigned long node)
1119{
1120 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1121 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1122}
89689ae7 1123
2f1b6248 1124static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1125 unsigned long node, unsigned long pfn)
1da177e4 1126{
348f8b6c
DH
1127 set_page_zone(page, zone);
1128 set_page_node(page, node);
9127ab4f 1129#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1130 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1131#endif
1da177e4
LT
1132}
1133
0610c25d
GT
1134#ifdef CONFIG_MEMCG
1135static inline struct mem_cgroup *page_memcg(struct page *page)
1136{
1137 return page->mem_cgroup;
1138}
55779ec7
JW
1139static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1140{
1141 WARN_ON_ONCE(!rcu_read_lock_held());
1142 return READ_ONCE(page->mem_cgroup);
1143}
0610c25d
GT
1144#else
1145static inline struct mem_cgroup *page_memcg(struct page *page)
1146{
1147 return NULL;
1148}
55779ec7
JW
1149static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1150{
1151 WARN_ON_ONCE(!rcu_read_lock_held());
1152 return NULL;
1153}
0610c25d
GT
1154#endif
1155
f6ac2354
CL
1156/*
1157 * Some inline functions in vmstat.h depend on page_zone()
1158 */
1159#include <linux/vmstat.h>
1160
33dd4e0e 1161static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1162{
1dff8083 1163 return page_to_virt(page);
1da177e4
LT
1164}
1165
1166#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1167#define HASHED_PAGE_VIRTUAL
1168#endif
1169
1170#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1171static inline void *page_address(const struct page *page)
1172{
1173 return page->virtual;
1174}
1175static inline void set_page_address(struct page *page, void *address)
1176{
1177 page->virtual = address;
1178}
1da177e4
LT
1179#define page_address_init() do { } while(0)
1180#endif
1181
1182#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1183void *page_address(const struct page *page);
1da177e4
LT
1184void set_page_address(struct page *page, void *virtual);
1185void page_address_init(void);
1186#endif
1187
1188#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1189#define page_address(page) lowmem_page_address(page)
1190#define set_page_address(page, address) do { } while(0)
1191#define page_address_init() do { } while(0)
1192#endif
1193
e39155ea
KS
1194extern void *page_rmapping(struct page *page);
1195extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1196extern struct address_space *page_mapping(struct page *page);
1da177e4 1197
f981c595
MG
1198extern struct address_space *__page_file_mapping(struct page *);
1199
1200static inline
1201struct address_space *page_file_mapping(struct page *page)
1202{
1203 if (unlikely(PageSwapCache(page)))
1204 return __page_file_mapping(page);
1205
1206 return page->mapping;
1207}
1208
f6ab1f7f
HY
1209extern pgoff_t __page_file_index(struct page *page);
1210
1da177e4
LT
1211/*
1212 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1213 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1214 */
1215static inline pgoff_t page_index(struct page *page)
1216{
1217 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1218 return __page_file_index(page);
1da177e4
LT
1219 return page->index;
1220}
1221
1aa8aea5 1222bool page_mapped(struct page *page);
bda807d4 1223struct address_space *page_mapping(struct page *page);
cb9f753a 1224struct address_space *page_mapping_file(struct page *page);
1da177e4 1225
2f064f34
MH
1226/*
1227 * Return true only if the page has been allocated with
1228 * ALLOC_NO_WATERMARKS and the low watermark was not
1229 * met implying that the system is under some pressure.
1230 */
1231static inline bool page_is_pfmemalloc(struct page *page)
1232{
1233 /*
1234 * Page index cannot be this large so this must be
1235 * a pfmemalloc page.
1236 */
1237 return page->index == -1UL;
1238}
1239
1240/*
1241 * Only to be called by the page allocator on a freshly allocated
1242 * page.
1243 */
1244static inline void set_page_pfmemalloc(struct page *page)
1245{
1246 page->index = -1UL;
1247}
1248
1249static inline void clear_page_pfmemalloc(struct page *page)
1250{
1251 page->index = 0;
1252}
1253
1da177e4
LT
1254/*
1255 * Different kinds of faults, as returned by handle_mm_fault().
1256 * Used to decide whether a process gets delivered SIGBUS or
1257 * just gets major/minor fault counters bumped up.
1258 */
d0217ac0 1259
83c54070
NP
1260#define VM_FAULT_OOM 0x0001
1261#define VM_FAULT_SIGBUS 0x0002
1262#define VM_FAULT_MAJOR 0x0004
1263#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1264#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1265#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1266#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1267
83c54070
NP
1268#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1269#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1270#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1271#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1272#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
caa51d26
JK
1273#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1274 * and needs fsync() to complete (for
1275 * synchronous page faults in DAX) */
aa50d3a7 1276
33692f27
LT
1277#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1278 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1279 VM_FAULT_FALLBACK)
aa50d3a7 1280
282a8e03
RZ
1281#define VM_FAULT_RESULT_TRACE \
1282 { VM_FAULT_OOM, "OOM" }, \
1283 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1284 { VM_FAULT_MAJOR, "MAJOR" }, \
1285 { VM_FAULT_WRITE, "WRITE" }, \
1286 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1287 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1288 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1289 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1290 { VM_FAULT_LOCKED, "LOCKED" }, \
1291 { VM_FAULT_RETRY, "RETRY" }, \
1292 { VM_FAULT_FALLBACK, "FALLBACK" }, \
caa51d26
JK
1293 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1294 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
282a8e03 1295
aa50d3a7
AK
1296/* Encode hstate index for a hwpoisoned large page */
1297#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1298#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1299
1c0fe6e3
NP
1300/*
1301 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1302 */
1303extern void pagefault_out_of_memory(void);
1304
1da177e4
LT
1305#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1306
ddd588b5 1307/*
7bf02ea2 1308 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1309 * various contexts.
1310 */
4b59e6c4 1311#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1312
9af744d7 1313extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1314
7f43add4 1315extern bool can_do_mlock(void);
1da177e4
LT
1316extern int user_shm_lock(size_t, struct user_struct *);
1317extern void user_shm_unlock(size_t, struct user_struct *);
1318
1319/*
1320 * Parameter block passed down to zap_pte_range in exceptional cases.
1321 */
1322struct zap_details {
1da177e4
LT
1323 struct address_space *check_mapping; /* Check page->mapping if set */
1324 pgoff_t first_index; /* Lowest page->index to unmap */
1325 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1326};
1327
df6ad698
JG
1328struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1329 pte_t pte, bool with_public_device);
1330#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1331
28093f9f
GS
1332struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1333 pmd_t pmd);
7e675137 1334
27d036e3
LR
1335void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1336 unsigned long size);
14f5ff5d 1337void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1338 unsigned long size);
4f74d2c8
LT
1339void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1340 unsigned long start, unsigned long end);
e6473092
MM
1341
1342/**
1343 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1344 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1345 * this handler should only handle pud_trans_huge() puds.
1346 * the pmd_entry or pte_entry callbacks will be used for
1347 * regular PUDs.
e6473092 1348 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1349 * this handler is required to be able to handle
1350 * pmd_trans_huge() pmds. They may simply choose to
1351 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1352 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1353 * @pte_hole: if set, called for each hole at all levels
5dc37642 1354 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1355 * @test_walk: caller specific callback function to determine whether
f7e2355f 1356 * we walk over the current vma or not. Returning 0
fafaa426
NH
1357 * value means "do page table walk over the current vma,"
1358 * and a negative one means "abort current page table walk
f7e2355f 1359 * right now." 1 means "skip the current vma."
fafaa426
NH
1360 * @mm: mm_struct representing the target process of page table walk
1361 * @vma: vma currently walked (NULL if walking outside vmas)
1362 * @private: private data for callbacks' usage
e6473092 1363 *
fafaa426 1364 * (see the comment on walk_page_range() for more details)
e6473092
MM
1365 */
1366struct mm_walk {
a00cc7d9
MW
1367 int (*pud_entry)(pud_t *pud, unsigned long addr,
1368 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1369 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1370 unsigned long next, struct mm_walk *walk);
1371 int (*pte_entry)(pte_t *pte, unsigned long addr,
1372 unsigned long next, struct mm_walk *walk);
1373 int (*pte_hole)(unsigned long addr, unsigned long next,
1374 struct mm_walk *walk);
1375 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1376 unsigned long addr, unsigned long next,
1377 struct mm_walk *walk);
fafaa426
NH
1378 int (*test_walk)(unsigned long addr, unsigned long next,
1379 struct mm_walk *walk);
2165009b 1380 struct mm_struct *mm;
fafaa426 1381 struct vm_area_struct *vma;
2165009b 1382 void *private;
e6473092
MM
1383};
1384
2165009b
DH
1385int walk_page_range(unsigned long addr, unsigned long end,
1386 struct mm_walk *walk);
900fc5f1 1387int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1388void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1389 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1390int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1391 struct vm_area_struct *vma);
09796395 1392int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 1393 unsigned long *start, unsigned long *end,
09796395 1394 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1395int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1396 unsigned long *pfn);
d87fe660 1397int follow_phys(struct vm_area_struct *vma, unsigned long address,
1398 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1399int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1400 void *buf, int len, int write);
1da177e4 1401
7caef267 1402extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1403extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1404void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1405void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1406int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1407int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1408int invalidate_inode_page(struct page *page);
1409
7ee1dd3f 1410#ifdef CONFIG_MMU
dcddffd4
KS
1411extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1412 unsigned int flags);
5c723ba5 1413extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1414 unsigned long address, unsigned int fault_flags,
1415 bool *unlocked);
977fbdcd
MW
1416void unmap_mapping_pages(struct address_space *mapping,
1417 pgoff_t start, pgoff_t nr, bool even_cows);
1418void unmap_mapping_range(struct address_space *mapping,
1419 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1420#else
dcddffd4
KS
1421static inline int handle_mm_fault(struct vm_area_struct *vma,
1422 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1423{
1424 /* should never happen if there's no MMU */
1425 BUG();
1426 return VM_FAULT_SIGBUS;
1427}
5c723ba5
PZ
1428static inline int fixup_user_fault(struct task_struct *tsk,
1429 struct mm_struct *mm, unsigned long address,
4a9e1cda 1430 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1431{
1432 /* should never happen if there's no MMU */
1433 BUG();
1434 return -EFAULT;
1435}
977fbdcd
MW
1436static inline void unmap_mapping_pages(struct address_space *mapping,
1437 pgoff_t start, pgoff_t nr, bool even_cows) { }
1438static inline void unmap_mapping_range(struct address_space *mapping,
1439 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1440#endif
f33ea7f4 1441
977fbdcd
MW
1442static inline void unmap_shared_mapping_range(struct address_space *mapping,
1443 loff_t const holebegin, loff_t const holelen)
1444{
1445 unmap_mapping_range(mapping, holebegin, holelen, 0);
1446}
1447
1448extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1449 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1450extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1451 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1452extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1453 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1454
1e987790
DH
1455long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1456 unsigned long start, unsigned long nr_pages,
9beae1ea 1457 unsigned int gup_flags, struct page **pages,
5b56d49f 1458 struct vm_area_struct **vmas, int *locked);
c12d2da5 1459long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1460 unsigned int gup_flags, struct page **pages,
cde70140 1461 struct vm_area_struct **vmas);
c12d2da5 1462long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1463 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1464long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1465 struct page **pages, unsigned int gup_flags);
2bb6d283
DW
1466#ifdef CONFIG_FS_DAX
1467long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1468 unsigned int gup_flags, struct page **pages,
1469 struct vm_area_struct **vmas);
1470#else
1471static inline long get_user_pages_longterm(unsigned long start,
1472 unsigned long nr_pages, unsigned int gup_flags,
1473 struct page **pages, struct vm_area_struct **vmas)
1474{
1475 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1476}
1477#endif /* CONFIG_FS_DAX */
1478
d2bf6be8
NP
1479int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1480 struct page **pages);
8025e5dd
JK
1481
1482/* Container for pinned pfns / pages */
1483struct frame_vector {
1484 unsigned int nr_allocated; /* Number of frames we have space for */
1485 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1486 bool got_ref; /* Did we pin pages by getting page ref? */
1487 bool is_pfns; /* Does array contain pages or pfns? */
1488 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1489 * pfns_vector_pages() or pfns_vector_pfns()
1490 * for access */
1491};
1492
1493struct frame_vector *frame_vector_create(unsigned int nr_frames);
1494void frame_vector_destroy(struct frame_vector *vec);
1495int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1496 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1497void put_vaddr_frames(struct frame_vector *vec);
1498int frame_vector_to_pages(struct frame_vector *vec);
1499void frame_vector_to_pfns(struct frame_vector *vec);
1500
1501static inline unsigned int frame_vector_count(struct frame_vector *vec)
1502{
1503 return vec->nr_frames;
1504}
1505
1506static inline struct page **frame_vector_pages(struct frame_vector *vec)
1507{
1508 if (vec->is_pfns) {
1509 int err = frame_vector_to_pages(vec);
1510
1511 if (err)
1512 return ERR_PTR(err);
1513 }
1514 return (struct page **)(vec->ptrs);
1515}
1516
1517static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1518{
1519 if (!vec->is_pfns)
1520 frame_vector_to_pfns(vec);
1521 return (unsigned long *)(vec->ptrs);
1522}
1523
18022c5d
MG
1524struct kvec;
1525int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1526 struct page **pages);
1527int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1528struct page *get_dump_page(unsigned long addr);
1da177e4 1529
cf9a2ae8 1530extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1531extern void do_invalidatepage(struct page *page, unsigned int offset,
1532 unsigned int length);
cf9a2ae8 1533
f82b3764 1534void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1535int __set_page_dirty_nobuffers(struct page *page);
76719325 1536int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1537int redirty_page_for_writepage(struct writeback_control *wbc,
1538 struct page *page);
62cccb8c 1539void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1540void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1541 struct bdi_writeback *wb);
b3c97528 1542int set_page_dirty(struct page *page);
1da177e4 1543int set_page_dirty_lock(struct page *page);
736304f3
JK
1544void __cancel_dirty_page(struct page *page);
1545static inline void cancel_dirty_page(struct page *page)
1546{
1547 /* Avoid atomic ops, locking, etc. when not actually needed. */
1548 if (PageDirty(page))
1549 __cancel_dirty_page(page);
1550}
1da177e4 1551int clear_page_dirty_for_io(struct page *page);
b9ea2515 1552
a9090253 1553int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1554
b5330628
ON
1555static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1556{
1557 return !vma->vm_ops;
1558}
1559
b0506e48
MR
1560#ifdef CONFIG_SHMEM
1561/*
1562 * The vma_is_shmem is not inline because it is used only by slow
1563 * paths in userfault.
1564 */
1565bool vma_is_shmem(struct vm_area_struct *vma);
1566#else
1567static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1568#endif
1569
d17af505 1570int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1571
b6a2fea3
OW
1572extern unsigned long move_page_tables(struct vm_area_struct *vma,
1573 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1574 unsigned long new_addr, unsigned long len,
1575 bool need_rmap_locks);
7da4d641
PZ
1576extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1577 unsigned long end, pgprot_t newprot,
4b10e7d5 1578 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1579extern int mprotect_fixup(struct vm_area_struct *vma,
1580 struct vm_area_struct **pprev, unsigned long start,
1581 unsigned long end, unsigned long newflags);
1da177e4 1582
465a454f
PZ
1583/*
1584 * doesn't attempt to fault and will return short.
1585 */
1586int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1587 struct page **pages);
d559db08
KH
1588/*
1589 * per-process(per-mm_struct) statistics.
1590 */
d559db08
KH
1591static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1592{
69c97823
KK
1593 long val = atomic_long_read(&mm->rss_stat.count[member]);
1594
1595#ifdef SPLIT_RSS_COUNTING
1596 /*
1597 * counter is updated in asynchronous manner and may go to minus.
1598 * But it's never be expected number for users.
1599 */
1600 if (val < 0)
1601 val = 0;
172703b0 1602#endif
69c97823
KK
1603 return (unsigned long)val;
1604}
d559db08
KH
1605
1606static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1607{
172703b0 1608 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1609}
1610
1611static inline void inc_mm_counter(struct mm_struct *mm, int member)
1612{
172703b0 1613 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1614}
1615
1616static inline void dec_mm_counter(struct mm_struct *mm, int member)
1617{
172703b0 1618 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1619}
1620
eca56ff9
JM
1621/* Optimized variant when page is already known not to be PageAnon */
1622static inline int mm_counter_file(struct page *page)
1623{
1624 if (PageSwapBacked(page))
1625 return MM_SHMEMPAGES;
1626 return MM_FILEPAGES;
1627}
1628
1629static inline int mm_counter(struct page *page)
1630{
1631 if (PageAnon(page))
1632 return MM_ANONPAGES;
1633 return mm_counter_file(page);
1634}
1635
d559db08
KH
1636static inline unsigned long get_mm_rss(struct mm_struct *mm)
1637{
1638 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1639 get_mm_counter(mm, MM_ANONPAGES) +
1640 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1641}
1642
1643static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1644{
1645 return max(mm->hiwater_rss, get_mm_rss(mm));
1646}
1647
1648static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1649{
1650 return max(mm->hiwater_vm, mm->total_vm);
1651}
1652
1653static inline void update_hiwater_rss(struct mm_struct *mm)
1654{
1655 unsigned long _rss = get_mm_rss(mm);
1656
1657 if ((mm)->hiwater_rss < _rss)
1658 (mm)->hiwater_rss = _rss;
1659}
1660
1661static inline void update_hiwater_vm(struct mm_struct *mm)
1662{
1663 if (mm->hiwater_vm < mm->total_vm)
1664 mm->hiwater_vm = mm->total_vm;
1665}
1666
695f0559
PC
1667static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1668{
1669 mm->hiwater_rss = get_mm_rss(mm);
1670}
1671
d559db08
KH
1672static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1673 struct mm_struct *mm)
1674{
1675 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1676
1677 if (*maxrss < hiwater_rss)
1678 *maxrss = hiwater_rss;
1679}
1680
53bddb4e 1681#if defined(SPLIT_RSS_COUNTING)
05af2e10 1682void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1683#else
05af2e10 1684static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1685{
1686}
1687#endif
465a454f 1688
3565fce3
DW
1689#ifndef __HAVE_ARCH_PTE_DEVMAP
1690static inline int pte_devmap(pte_t pte)
1691{
1692 return 0;
1693}
1694#endif
1695
6d2329f8 1696int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1697
25ca1d6c
NK
1698extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1699 spinlock_t **ptl);
1700static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1701 spinlock_t **ptl)
1702{
1703 pte_t *ptep;
1704 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1705 return ptep;
1706}
c9cfcddf 1707
c2febafc
KS
1708#ifdef __PAGETABLE_P4D_FOLDED
1709static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1710 unsigned long address)
1711{
1712 return 0;
1713}
1714#else
1715int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1716#endif
1717
b4e98d9a 1718#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1719static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1720 unsigned long address)
1721{
1722 return 0;
1723}
b4e98d9a
KS
1724static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1725static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1726
5f22df00 1727#else
c2febafc 1728int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1729
b4e98d9a
KS
1730static inline void mm_inc_nr_puds(struct mm_struct *mm)
1731{
af5b0f6a 1732 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1733}
1734
1735static inline void mm_dec_nr_puds(struct mm_struct *mm)
1736{
af5b0f6a 1737 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1738}
5f22df00
NP
1739#endif
1740
2d2f5119 1741#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1742static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1743 unsigned long address)
1744{
1745 return 0;
1746}
dc6c9a35 1747
dc6c9a35
KS
1748static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1749static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1750
5f22df00 1751#else
1bb3630e 1752int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1753
dc6c9a35
KS
1754static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1755{
af5b0f6a 1756 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1757}
1758
1759static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1760{
af5b0f6a 1761 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1762}
5f22df00
NP
1763#endif
1764
c4812909 1765#ifdef CONFIG_MMU
af5b0f6a 1766static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1767{
af5b0f6a 1768 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1769}
1770
af5b0f6a 1771static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1772{
af5b0f6a 1773 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1774}
1775
1776static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1777{
af5b0f6a 1778 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1779}
1780
1781static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1782{
af5b0f6a 1783 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1784}
1785#else
c4812909 1786
af5b0f6a
KS
1787static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1788static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1789{
1790 return 0;
1791}
1792
1793static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1794static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1795#endif
1796
3ed3a4f0 1797int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1798int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1799
1da177e4
LT
1800/*
1801 * The following ifdef needed to get the 4level-fixup.h header to work.
1802 * Remove it when 4level-fixup.h has been removed.
1803 */
1bb3630e 1804#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1805
1806#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1807static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1808 unsigned long address)
1809{
1810 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1811 NULL : p4d_offset(pgd, address);
1812}
1813
1814static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1815 unsigned long address)
1da177e4 1816{
c2febafc
KS
1817 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1818 NULL : pud_offset(p4d, address);
1da177e4 1819}
505a60e2 1820#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1821
1822static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1823{
1bb3630e
HD
1824 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1825 NULL: pmd_offset(pud, address);
1da177e4 1826}
1bb3630e
HD
1827#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1828
57c1ffce 1829#if USE_SPLIT_PTE_PTLOCKS
597d795a 1830#if ALLOC_SPLIT_PTLOCKS
b35f1819 1831void __init ptlock_cache_init(void);
539edb58
PZ
1832extern bool ptlock_alloc(struct page *page);
1833extern void ptlock_free(struct page *page);
1834
1835static inline spinlock_t *ptlock_ptr(struct page *page)
1836{
1837 return page->ptl;
1838}
597d795a 1839#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1840static inline void ptlock_cache_init(void)
1841{
1842}
1843
49076ec2
KS
1844static inline bool ptlock_alloc(struct page *page)
1845{
49076ec2
KS
1846 return true;
1847}
539edb58 1848
49076ec2
KS
1849static inline void ptlock_free(struct page *page)
1850{
49076ec2
KS
1851}
1852
1853static inline spinlock_t *ptlock_ptr(struct page *page)
1854{
539edb58 1855 return &page->ptl;
49076ec2 1856}
597d795a 1857#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1858
1859static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1860{
1861 return ptlock_ptr(pmd_page(*pmd));
1862}
1863
1864static inline bool ptlock_init(struct page *page)
1865{
1866 /*
1867 * prep_new_page() initialize page->private (and therefore page->ptl)
1868 * with 0. Make sure nobody took it in use in between.
1869 *
1870 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1871 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1872 */
309381fe 1873 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1874 if (!ptlock_alloc(page))
1875 return false;
1876 spin_lock_init(ptlock_ptr(page));
1877 return true;
1878}
1879
1880/* Reset page->mapping so free_pages_check won't complain. */
1881static inline void pte_lock_deinit(struct page *page)
1882{
1883 page->mapping = NULL;
1884 ptlock_free(page);
1885}
1886
57c1ffce 1887#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1888/*
1889 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1890 */
49076ec2
KS
1891static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1892{
1893 return &mm->page_table_lock;
1894}
b35f1819 1895static inline void ptlock_cache_init(void) {}
49076ec2
KS
1896static inline bool ptlock_init(struct page *page) { return true; }
1897static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1898#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1899
b35f1819
KS
1900static inline void pgtable_init(void)
1901{
1902 ptlock_cache_init();
1903 pgtable_cache_init();
1904}
1905
390f44e2 1906static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1907{
706874e9
VD
1908 if (!ptlock_init(page))
1909 return false;
1d40a5ea 1910 __SetPageTable(page);
2f569afd 1911 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1912 return true;
2f569afd
MS
1913}
1914
1915static inline void pgtable_page_dtor(struct page *page)
1916{
1917 pte_lock_deinit(page);
1d40a5ea 1918 __ClearPageTable(page);
2f569afd
MS
1919 dec_zone_page_state(page, NR_PAGETABLE);
1920}
1921
c74df32c
HD
1922#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1923({ \
4c21e2f2 1924 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1925 pte_t *__pte = pte_offset_map(pmd, address); \
1926 *(ptlp) = __ptl; \
1927 spin_lock(__ptl); \
1928 __pte; \
1929})
1930
1931#define pte_unmap_unlock(pte, ptl) do { \
1932 spin_unlock(ptl); \
1933 pte_unmap(pte); \
1934} while (0)
1935
3ed3a4f0
KS
1936#define pte_alloc(mm, pmd, address) \
1937 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1938
1939#define pte_alloc_map(mm, pmd, address) \
1940 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1941
c74df32c 1942#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1943 (pte_alloc(mm, pmd, address) ? \
1944 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1945
1bb3630e 1946#define pte_alloc_kernel(pmd, address) \
8ac1f832 1947 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1948 NULL: pte_offset_kernel(pmd, address))
1da177e4 1949
e009bb30
KS
1950#if USE_SPLIT_PMD_PTLOCKS
1951
634391ac
MS
1952static struct page *pmd_to_page(pmd_t *pmd)
1953{
1954 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1955 return virt_to_page((void *)((unsigned long) pmd & mask));
1956}
1957
e009bb30
KS
1958static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1959{
634391ac 1960 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1961}
1962
1963static inline bool pgtable_pmd_page_ctor(struct page *page)
1964{
e009bb30
KS
1965#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1966 page->pmd_huge_pte = NULL;
1967#endif
49076ec2 1968 return ptlock_init(page);
e009bb30
KS
1969}
1970
1971static inline void pgtable_pmd_page_dtor(struct page *page)
1972{
1973#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1974 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1975#endif
49076ec2 1976 ptlock_free(page);
e009bb30
KS
1977}
1978
634391ac 1979#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1980
1981#else
1982
9a86cb7b
KS
1983static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1984{
1985 return &mm->page_table_lock;
1986}
1987
e009bb30
KS
1988static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1989static inline void pgtable_pmd_page_dtor(struct page *page) {}
1990
c389a250 1991#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1992
e009bb30
KS
1993#endif
1994
9a86cb7b
KS
1995static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1996{
1997 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1998 spin_lock(ptl);
1999 return ptl;
2000}
2001
a00cc7d9
MW
2002/*
2003 * No scalability reason to split PUD locks yet, but follow the same pattern
2004 * as the PMD locks to make it easier if we decide to. The VM should not be
2005 * considered ready to switch to split PUD locks yet; there may be places
2006 * which need to be converted from page_table_lock.
2007 */
2008static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2009{
2010 return &mm->page_table_lock;
2011}
2012
2013static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2014{
2015 spinlock_t *ptl = pud_lockptr(mm, pud);
2016
2017 spin_lock(ptl);
2018 return ptl;
2019}
62906027 2020
a00cc7d9 2021extern void __init pagecache_init(void);
1da177e4 2022extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
2023extern void free_area_init_node(int nid, unsigned long * zones_size,
2024 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
2025extern void free_initmem(void);
2026
69afade7
JL
2027/*
2028 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2029 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2030 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2031 * Return pages freed into the buddy system.
2032 */
11199692 2033extern unsigned long free_reserved_area(void *start, void *end,
69afade7 2034 int poison, char *s);
c3d5f5f0 2035
cfa11e08
JL
2036#ifdef CONFIG_HIGHMEM
2037/*
2038 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2039 * and totalram_pages.
2040 */
2041extern void free_highmem_page(struct page *page);
2042#endif
69afade7 2043
c3d5f5f0 2044extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2045extern void mem_init_print_info(const char *str);
69afade7 2046
4b50bcc7 2047extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2048
69afade7
JL
2049/* Free the reserved page into the buddy system, so it gets managed. */
2050static inline void __free_reserved_page(struct page *page)
2051{
2052 ClearPageReserved(page);
2053 init_page_count(page);
2054 __free_page(page);
2055}
2056
2057static inline void free_reserved_page(struct page *page)
2058{
2059 __free_reserved_page(page);
2060 adjust_managed_page_count(page, 1);
2061}
2062
2063static inline void mark_page_reserved(struct page *page)
2064{
2065 SetPageReserved(page);
2066 adjust_managed_page_count(page, -1);
2067}
2068
2069/*
2070 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2071 * The freed pages will be poisoned with pattern "poison" if it's within
2072 * range [0, UCHAR_MAX].
2073 * Return pages freed into the buddy system.
69afade7
JL
2074 */
2075static inline unsigned long free_initmem_default(int poison)
2076{
2077 extern char __init_begin[], __init_end[];
2078
11199692 2079 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2080 poison, "unused kernel");
2081}
2082
7ee3d4e8
JL
2083static inline unsigned long get_num_physpages(void)
2084{
2085 int nid;
2086 unsigned long phys_pages = 0;
2087
2088 for_each_online_node(nid)
2089 phys_pages += node_present_pages(nid);
2090
2091 return phys_pages;
2092}
2093
0ee332c1 2094#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2095/*
0ee332c1 2096 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2097 * zones, allocate the backing mem_map and account for memory holes in a more
2098 * architecture independent manner. This is a substitute for creating the
2099 * zone_sizes[] and zholes_size[] arrays and passing them to
2100 * free_area_init_node()
2101 *
2102 * An architecture is expected to register range of page frames backed by
0ee332c1 2103 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2104 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2105 * usage, an architecture is expected to do something like
2106 *
2107 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2108 * max_highmem_pfn};
2109 * for_each_valid_physical_page_range()
0ee332c1 2110 * memblock_add_node(base, size, nid)
c713216d
MG
2111 * free_area_init_nodes(max_zone_pfns);
2112 *
0ee332c1
TH
2113 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2114 * registered physical page range. Similarly
2115 * sparse_memory_present_with_active_regions() calls memory_present() for
2116 * each range when SPARSEMEM is enabled.
c713216d
MG
2117 *
2118 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2119 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2120 */
2121extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2122unsigned long node_map_pfn_alignment(void);
32996250
YL
2123unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2124 unsigned long end_pfn);
c713216d
MG
2125extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2126 unsigned long end_pfn);
2127extern void get_pfn_range_for_nid(unsigned int nid,
2128 unsigned long *start_pfn, unsigned long *end_pfn);
2129extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2130extern void free_bootmem_with_active_regions(int nid,
2131 unsigned long max_low_pfn);
2132extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2133
0ee332c1 2134#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2135
0ee332c1 2136#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2137 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2138static inline int __early_pfn_to_nid(unsigned long pfn,
2139 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2140{
2141 return 0;
2142}
2143#else
2144/* please see mm/page_alloc.c */
2145extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2146/* there is a per-arch backend function. */
8a942fde
MG
2147extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2148 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2149#endif
2150
d1b47a7c 2151#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
2152void zero_resv_unavail(void);
2153#else
2154static inline void zero_resv_unavail(void) {}
2155#endif
2156
0e0b864e 2157extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2158extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2159 enum memmap_context, struct vmem_altmap *);
bc75d33f 2160extern void setup_per_zone_wmarks(void);
1b79acc9 2161extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2162extern void mem_init(void);
8feae131 2163extern void __init mmap_init(void);
9af744d7 2164extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2165extern long si_mem_available(void);
1da177e4
LT
2166extern void si_meminfo(struct sysinfo * val);
2167extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2168#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2169extern unsigned long arch_reserved_kernel_pages(void);
2170#endif
1da177e4 2171
a8e99259
MH
2172extern __printf(3, 4)
2173void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2174
e7c8d5c9 2175extern void setup_per_cpu_pageset(void);
e7c8d5c9 2176
112067f0 2177extern void zone_pcp_update(struct zone *zone);
340175b7 2178extern void zone_pcp_reset(struct zone *zone);
112067f0 2179
75f7ad8e
PS
2180/* page_alloc.c */
2181extern int min_free_kbytes;
795ae7a0 2182extern int watermark_scale_factor;
75f7ad8e 2183
8feae131 2184/* nommu.c */
33e5d769 2185extern atomic_long_t mmap_pages_allocated;
7e660872 2186extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2187
6b2dbba8 2188/* interval_tree.c */
6b2dbba8 2189void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2190 struct rb_root_cached *root);
9826a516
ML
2191void vma_interval_tree_insert_after(struct vm_area_struct *node,
2192 struct vm_area_struct *prev,
f808c13f 2193 struct rb_root_cached *root);
6b2dbba8 2194void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2195 struct rb_root_cached *root);
2196struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2197 unsigned long start, unsigned long last);
2198struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2199 unsigned long start, unsigned long last);
2200
2201#define vma_interval_tree_foreach(vma, root, start, last) \
2202 for (vma = vma_interval_tree_iter_first(root, start, last); \
2203 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2204
bf181b9f 2205void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2206 struct rb_root_cached *root);
bf181b9f 2207void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2208 struct rb_root_cached *root);
2209struct anon_vma_chain *
2210anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2211 unsigned long start, unsigned long last);
bf181b9f
ML
2212struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2213 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2214#ifdef CONFIG_DEBUG_VM_RB
2215void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2216#endif
bf181b9f
ML
2217
2218#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2219 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2220 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2221
1da177e4 2222/* mmap.c */
34b4e4aa 2223extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2224extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2225 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2226 struct vm_area_struct *expand);
2227static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2228 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2229{
2230 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2231}
1da177e4
LT
2232extern struct vm_area_struct *vma_merge(struct mm_struct *,
2233 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2234 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2235 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2236extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2237extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2238 unsigned long addr, int new_below);
2239extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2240 unsigned long addr, int new_below);
1da177e4
LT
2241extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2242extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2243 struct rb_node **, struct rb_node *);
a8fb5618 2244extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2245extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2246 unsigned long addr, unsigned long len, pgoff_t pgoff,
2247 bool *need_rmap_locks);
1da177e4 2248extern void exit_mmap(struct mm_struct *);
925d1c40 2249
9c599024
CG
2250static inline int check_data_rlimit(unsigned long rlim,
2251 unsigned long new,
2252 unsigned long start,
2253 unsigned long end_data,
2254 unsigned long start_data)
2255{
2256 if (rlim < RLIM_INFINITY) {
2257 if (((new - start) + (end_data - start_data)) > rlim)
2258 return -ENOSPC;
2259 }
2260
2261 return 0;
2262}
2263
7906d00c
AA
2264extern int mm_take_all_locks(struct mm_struct *mm);
2265extern void mm_drop_all_locks(struct mm_struct *mm);
2266
38646013
JS
2267extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2268extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2269extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2270
84638335
KK
2271extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2272extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2273
2eefd878
DS
2274extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2275 const struct vm_special_mapping *sm);
3935ed6a
SS
2276extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2277 unsigned long addr, unsigned long len,
a62c34bd
AL
2278 unsigned long flags,
2279 const struct vm_special_mapping *spec);
2280/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2281extern int install_special_mapping(struct mm_struct *mm,
2282 unsigned long addr, unsigned long len,
2283 unsigned long flags, struct page **pages);
1da177e4
LT
2284
2285extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2286
0165ab44 2287extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2288 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2289 struct list_head *uf);
1fcfd8db 2290extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2291 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2292 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2293 struct list_head *uf);
2294extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2295 struct list_head *uf);
1da177e4 2296
1fcfd8db
ON
2297static inline unsigned long
2298do_mmap_pgoff(struct file *file, unsigned long addr,
2299 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2300 unsigned long pgoff, unsigned long *populate,
2301 struct list_head *uf)
1fcfd8db 2302{
897ab3e0 2303 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2304}
2305
bebeb3d6
ML
2306#ifdef CONFIG_MMU
2307extern int __mm_populate(unsigned long addr, unsigned long len,
2308 int ignore_errors);
2309static inline void mm_populate(unsigned long addr, unsigned long len)
2310{
2311 /* Ignore errors */
2312 (void) __mm_populate(addr, len, 1);
2313}
2314#else
2315static inline void mm_populate(unsigned long addr, unsigned long len) {}
2316#endif
2317
e4eb1ff6 2318/* These take the mm semaphore themselves */
5d22fc25 2319extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2320extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2321extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2322extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2323 unsigned long, unsigned long,
2324 unsigned long, unsigned long);
1da177e4 2325
db4fbfb9
ML
2326struct vm_unmapped_area_info {
2327#define VM_UNMAPPED_AREA_TOPDOWN 1
2328 unsigned long flags;
2329 unsigned long length;
2330 unsigned long low_limit;
2331 unsigned long high_limit;
2332 unsigned long align_mask;
2333 unsigned long align_offset;
2334};
2335
2336extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2337extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2338
2339/*
2340 * Search for an unmapped address range.
2341 *
2342 * We are looking for a range that:
2343 * - does not intersect with any VMA;
2344 * - is contained within the [low_limit, high_limit) interval;
2345 * - is at least the desired size.
2346 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2347 */
2348static inline unsigned long
2349vm_unmapped_area(struct vm_unmapped_area_info *info)
2350{
cdd7875e 2351 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2352 return unmapped_area_topdown(info);
cdd7875e
BP
2353 else
2354 return unmapped_area(info);
db4fbfb9
ML
2355}
2356
85821aab 2357/* truncate.c */
1da177e4 2358extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2359extern void truncate_inode_pages_range(struct address_space *,
2360 loff_t lstart, loff_t lend);
91b0abe3 2361extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2362
2363/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2364extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2365extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2366 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2367extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2368
2369/* mm/page-writeback.c */
2b69c828 2370int __must_check write_one_page(struct page *page);
1cf6e7d8 2371void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2372
2373/* readahead.c */
2374#define VM_MAX_READAHEAD 128 /* kbytes */
2375#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2376
1da177e4 2377int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2378 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2379
2380void page_cache_sync_readahead(struct address_space *mapping,
2381 struct file_ra_state *ra,
2382 struct file *filp,
2383 pgoff_t offset,
2384 unsigned long size);
2385
2386void page_cache_async_readahead(struct address_space *mapping,
2387 struct file_ra_state *ra,
2388 struct file *filp,
2389 struct page *pg,
2390 pgoff_t offset,
2391 unsigned long size);
2392
1be7107f 2393extern unsigned long stack_guard_gap;
d05f3169 2394/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2395extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2396
2397/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2398extern int expand_downwards(struct vm_area_struct *vma,
2399 unsigned long address);
8ca3eb08 2400#if VM_GROWSUP
46dea3d0 2401extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2402#else
fee7e49d 2403 #define expand_upwards(vma, address) (0)
9ab88515 2404#endif
1da177e4
LT
2405
2406/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2407extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2408extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2409 struct vm_area_struct **pprev);
2410
2411/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2412 NULL if none. Assume start_addr < end_addr. */
2413static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2414{
2415 struct vm_area_struct * vma = find_vma(mm,start_addr);
2416
2417 if (vma && end_addr <= vma->vm_start)
2418 vma = NULL;
2419 return vma;
2420}
2421
1be7107f
HD
2422static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2423{
2424 unsigned long vm_start = vma->vm_start;
2425
2426 if (vma->vm_flags & VM_GROWSDOWN) {
2427 vm_start -= stack_guard_gap;
2428 if (vm_start > vma->vm_start)
2429 vm_start = 0;
2430 }
2431 return vm_start;
2432}
2433
2434static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2435{
2436 unsigned long vm_end = vma->vm_end;
2437
2438 if (vma->vm_flags & VM_GROWSUP) {
2439 vm_end += stack_guard_gap;
2440 if (vm_end < vma->vm_end)
2441 vm_end = -PAGE_SIZE;
2442 }
2443 return vm_end;
2444}
2445
1da177e4
LT
2446static inline unsigned long vma_pages(struct vm_area_struct *vma)
2447{
2448 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2449}
2450
640708a2
PE
2451/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2452static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2453 unsigned long vm_start, unsigned long vm_end)
2454{
2455 struct vm_area_struct *vma = find_vma(mm, vm_start);
2456
2457 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2458 vma = NULL;
2459
2460 return vma;
2461}
2462
bad849b3 2463#ifdef CONFIG_MMU
804af2cf 2464pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2465void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2466#else
2467static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2468{
2469 return __pgprot(0);
2470}
64e45507
PF
2471static inline void vma_set_page_prot(struct vm_area_struct *vma)
2472{
2473 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2474}
bad849b3
DH
2475#endif
2476
5877231f 2477#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2478unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2479 unsigned long start, unsigned long end);
2480#endif
2481
deceb6cd 2482struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2483int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2484 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2485int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2486int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2487 unsigned long pfn);
1745cbc5
AL
2488int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2489 unsigned long pfn, pgprot_t pgprot);
423bad60 2490int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2491 pfn_t pfn);
ab77dab4
SJ
2492vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2493 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2494int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2495
1c8f4220
SJ
2496static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2497 unsigned long addr, struct page *page)
2498{
2499 int err = vm_insert_page(vma, addr, page);
2500
2501 if (err == -ENOMEM)
2502 return VM_FAULT_OOM;
2503 if (err < 0 && err != -EBUSY)
2504 return VM_FAULT_SIGBUS;
2505
2506 return VM_FAULT_NOPAGE;
2507}
2508
2509static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
2510 unsigned long addr, pfn_t pfn)
2511{
2512 int err = vm_insert_mixed(vma, addr, pfn);
2513
2514 if (err == -ENOMEM)
2515 return VM_FAULT_OOM;
2516 if (err < 0 && err != -EBUSY)
2517 return VM_FAULT_SIGBUS;
2518
2519 return VM_FAULT_NOPAGE;
2520}
2521
2522static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
2523 unsigned long addr, unsigned long pfn)
2524{
2525 int err = vm_insert_pfn(vma, addr, pfn);
2526
2527 if (err == -ENOMEM)
2528 return VM_FAULT_OOM;
2529 if (err < 0 && err != -EBUSY)
2530 return VM_FAULT_SIGBUS;
2531
2532 return VM_FAULT_NOPAGE;
2533}
deceb6cd 2534
d97baf94
SJ
2535static inline vm_fault_t vmf_error(int err)
2536{
2537 if (err == -ENOMEM)
2538 return VM_FAULT_OOM;
2539 return VM_FAULT_SIGBUS;
2540}
2541
240aadee
ML
2542struct page *follow_page_mask(struct vm_area_struct *vma,
2543 unsigned long address, unsigned int foll_flags,
2544 unsigned int *page_mask);
2545
2546static inline struct page *follow_page(struct vm_area_struct *vma,
2547 unsigned long address, unsigned int foll_flags)
2548{
2549 unsigned int unused_page_mask;
2550 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2551}
2552
deceb6cd
HD
2553#define FOLL_WRITE 0x01 /* check pte is writable */
2554#define FOLL_TOUCH 0x02 /* mark page accessed */
2555#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2556#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2557#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2558#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2559 * and return without waiting upon it */
84d33df2 2560#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2561#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2562#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2563#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2564#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2565#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2566#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2567#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2568#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2569#define FOLL_ANON 0x8000 /* don't do file mappings */
1da177e4 2570
9a291a7c
JM
2571static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2572{
2573 if (vm_fault & VM_FAULT_OOM)
2574 return -ENOMEM;
2575 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2576 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2577 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2578 return -EFAULT;
2579 return 0;
2580}
2581
2f569afd 2582typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2583 void *data);
2584extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2585 unsigned long size, pte_fn_t fn, void *data);
2586
1da177e4 2587
8823b1db
LA
2588#ifdef CONFIG_PAGE_POISONING
2589extern bool page_poisoning_enabled(void);
2590extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2591#else
2592static inline bool page_poisoning_enabled(void) { return false; }
2593static inline void kernel_poison_pages(struct page *page, int numpages,
2594 int enable) { }
2595#endif
2596
12d6f21e 2597#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2598extern bool _debug_pagealloc_enabled;
2599extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2600
2601static inline bool debug_pagealloc_enabled(void)
2602{
2603 return _debug_pagealloc_enabled;
2604}
2605
2606static inline void
2607kernel_map_pages(struct page *page, int numpages, int enable)
2608{
2609 if (!debug_pagealloc_enabled())
2610 return;
2611
2612 __kernel_map_pages(page, numpages, enable);
2613}
8a235efa
RW
2614#ifdef CONFIG_HIBERNATION
2615extern bool kernel_page_present(struct page *page);
40b44137
JK
2616#endif /* CONFIG_HIBERNATION */
2617#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2618static inline void
9858db50 2619kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2620#ifdef CONFIG_HIBERNATION
2621static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2622#endif /* CONFIG_HIBERNATION */
2623static inline bool debug_pagealloc_enabled(void)
2624{
2625 return false;
2626}
2627#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2628
a6c19dfe 2629#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2630extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2631extern int in_gate_area_no_mm(unsigned long addr);
2632extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2633#else
a6c19dfe
AL
2634static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2635{
2636 return NULL;
2637}
2638static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2639static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2640{
2641 return 0;
2642}
1da177e4
LT
2643#endif /* __HAVE_ARCH_GATE_AREA */
2644
44a70ade
MH
2645extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2646
146732ce
JT
2647#ifdef CONFIG_SYSCTL
2648extern int sysctl_drop_caches;
8d65af78 2649int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2650 void __user *, size_t *, loff_t *);
146732ce
JT
2651#endif
2652
cb731d6c
VD
2653void drop_slab(void);
2654void drop_slab_node(int nid);
9d0243bc 2655
7a9166e3
LY
2656#ifndef CONFIG_MMU
2657#define randomize_va_space 0
2658#else
a62eaf15 2659extern int randomize_va_space;
7a9166e3 2660#endif
a62eaf15 2661
045e72ac 2662const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2663void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2664
9bdac914
YL
2665void sparse_mem_maps_populate_node(struct page **map_map,
2666 unsigned long pnum_begin,
2667 unsigned long pnum_end,
2668 unsigned long map_count,
2669 int nodeid);
2670
7b73d978
CH
2671struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2672 struct vmem_altmap *altmap);
29c71111 2673pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2674p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2675pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2676pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2677pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2678void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2679struct vmem_altmap;
a8fc357b
CH
2680void *vmemmap_alloc_block_buf(unsigned long size, int node);
2681void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2682void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2683int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2684 int node);
7b73d978
CH
2685int vmemmap_populate(unsigned long start, unsigned long end, int node,
2686 struct vmem_altmap *altmap);
c2b91e2e 2687void vmemmap_populate_print_last(void);
0197518c 2688#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2689void vmemmap_free(unsigned long start, unsigned long end,
2690 struct vmem_altmap *altmap);
0197518c 2691#endif
46723bfa 2692void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2693 unsigned long nr_pages);
6a46079c 2694
82ba011b
AK
2695enum mf_flags {
2696 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2697 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2698 MF_MUST_KILL = 1 << 2,
cf870c70 2699 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2700};
83b57531
EB
2701extern int memory_failure(unsigned long pfn, int flags);
2702extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 2703extern int unpoison_memory(unsigned long pfn);
ead07f6a 2704extern int get_hwpoison_page(struct page *page);
4e41a30c 2705#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2706extern int sysctl_memory_failure_early_kill;
2707extern int sysctl_memory_failure_recovery;
facb6011 2708extern void shake_page(struct page *p, int access);
5844a486 2709extern atomic_long_t num_poisoned_pages __read_mostly;
facb6011 2710extern int soft_offline_page(struct page *page, int flags);
6a46079c 2711
cc637b17
XX
2712
2713/*
2714 * Error handlers for various types of pages.
2715 */
cc3e2af4 2716enum mf_result {
cc637b17
XX
2717 MF_IGNORED, /* Error: cannot be handled */
2718 MF_FAILED, /* Error: handling failed */
2719 MF_DELAYED, /* Will be handled later */
2720 MF_RECOVERED, /* Successfully recovered */
2721};
2722
2723enum mf_action_page_type {
2724 MF_MSG_KERNEL,
2725 MF_MSG_KERNEL_HIGH_ORDER,
2726 MF_MSG_SLAB,
2727 MF_MSG_DIFFERENT_COMPOUND,
2728 MF_MSG_POISONED_HUGE,
2729 MF_MSG_HUGE,
2730 MF_MSG_FREE_HUGE,
31286a84 2731 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2732 MF_MSG_UNMAP_FAILED,
2733 MF_MSG_DIRTY_SWAPCACHE,
2734 MF_MSG_CLEAN_SWAPCACHE,
2735 MF_MSG_DIRTY_MLOCKED_LRU,
2736 MF_MSG_CLEAN_MLOCKED_LRU,
2737 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2738 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2739 MF_MSG_DIRTY_LRU,
2740 MF_MSG_CLEAN_LRU,
2741 MF_MSG_TRUNCATED_LRU,
2742 MF_MSG_BUDDY,
2743 MF_MSG_BUDDY_2ND,
2744 MF_MSG_UNKNOWN,
2745};
2746
47ad8475
AA
2747#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2748extern void clear_huge_page(struct page *page,
c79b57e4 2749 unsigned long addr_hint,
47ad8475
AA
2750 unsigned int pages_per_huge_page);
2751extern void copy_user_huge_page(struct page *dst, struct page *src,
2752 unsigned long addr, struct vm_area_struct *vma,
2753 unsigned int pages_per_huge_page);
fa4d75c1
MK
2754extern long copy_huge_page_from_user(struct page *dst_page,
2755 const void __user *usr_src,
810a56b9
MK
2756 unsigned int pages_per_huge_page,
2757 bool allow_pagefault);
47ad8475
AA
2758#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2759
e30825f1 2760extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2761
c0a32fc5
SG
2762#ifdef CONFIG_DEBUG_PAGEALLOC
2763extern unsigned int _debug_guardpage_minorder;
e30825f1 2764extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2765
2766static inline unsigned int debug_guardpage_minorder(void)
2767{
2768 return _debug_guardpage_minorder;
2769}
2770
e30825f1
JK
2771static inline bool debug_guardpage_enabled(void)
2772{
2773 return _debug_guardpage_enabled;
2774}
2775
c0a32fc5
SG
2776static inline bool page_is_guard(struct page *page)
2777{
e30825f1
JK
2778 struct page_ext *page_ext;
2779
2780 if (!debug_guardpage_enabled())
2781 return false;
2782
2783 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2784 if (unlikely(!page_ext))
2785 return false;
2786
e30825f1 2787 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2788}
2789#else
2790static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2791static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2792static inline bool page_is_guard(struct page *page) { return false; }
2793#endif /* CONFIG_DEBUG_PAGEALLOC */
2794
f9872caf
CS
2795#if MAX_NUMNODES > 1
2796void __init setup_nr_node_ids(void);
2797#else
2798static inline void setup_nr_node_ids(void) {}
2799#endif
2800
1da177e4
LT
2801#endif /* __KERNEL__ */
2802#endif /* _LINUX_MM_H */