mm: fix exports that inadvertently make put_page() EXPORT_SYMBOL_GPL
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
3b3b1a29 28#include <linux/overflow.h>
1da177e4
LT
29
30struct mempolicy;
31struct anon_vma;
bf181b9f 32struct anon_vma_chain;
4e950f6f 33struct file_ra_state;
e8edc6e0 34struct user_struct;
4e950f6f 35struct writeback_control;
682aa8e1 36struct bdi_writeback;
1da177e4 37
597b7305
MH
38void init_mm_internals(void);
39
fccc9987 40#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 41extern unsigned long max_mapnr;
fccc9987
JL
42
43static inline void set_max_mapnr(unsigned long limit)
44{
45 max_mapnr = limit;
46}
47#else
48static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
49#endif
50
4481374c 51extern unsigned long totalram_pages;
1da177e4 52extern void * high_memory;
1da177e4
LT
53extern int page_cluster;
54
55#ifdef CONFIG_SYSCTL
56extern int sysctl_legacy_va_layout;
57#else
58#define sysctl_legacy_va_layout 0
59#endif
60
d07e2259
DC
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62extern const int mmap_rnd_bits_min;
63extern const int mmap_rnd_bits_max;
64extern int mmap_rnd_bits __read_mostly;
65#endif
66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67extern const int mmap_rnd_compat_bits_min;
68extern const int mmap_rnd_compat_bits_max;
69extern int mmap_rnd_compat_bits __read_mostly;
70#endif
71
1da177e4
LT
72#include <asm/page.h>
73#include <asm/pgtable.h>
74#include <asm/processor.h>
1da177e4 75
79442ed1
TC
76#ifndef __pa_symbol
77#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
78#endif
79
1dff8083
AB
80#ifndef page_to_virt
81#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
82#endif
83
568c5fe5
LA
84#ifndef lm_alias
85#define lm_alias(x) __va(__pa_symbol(x))
86#endif
87
593befa6
DD
88/*
89 * To prevent common memory management code establishing
90 * a zero page mapping on a read fault.
91 * This macro should be defined within <asm/pgtable.h>.
92 * s390 does this to prevent multiplexing of hardware bits
93 * related to the physical page in case of virtualization.
94 */
95#ifndef mm_forbids_zeropage
96#define mm_forbids_zeropage(X) (0)
97#endif
98
a4a3ede2
PT
99/*
100 * On some architectures it is expensive to call memset() for small sizes.
101 * Those architectures should provide their own implementation of "struct page"
102 * zeroing by defining this macro in <asm/pgtable.h>.
103 */
104#ifndef mm_zero_struct_page
105#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
106#endif
107
ea606cf5
AR
108/*
109 * Default maximum number of active map areas, this limits the number of vmas
110 * per mm struct. Users can overwrite this number by sysctl but there is a
111 * problem.
112 *
113 * When a program's coredump is generated as ELF format, a section is created
114 * per a vma. In ELF, the number of sections is represented in unsigned short.
115 * This means the number of sections should be smaller than 65535 at coredump.
116 * Because the kernel adds some informative sections to a image of program at
117 * generating coredump, we need some margin. The number of extra sections is
118 * 1-3 now and depends on arch. We use "5" as safe margin, here.
119 *
120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
121 * not a hard limit any more. Although some userspace tools can be surprised by
122 * that.
123 */
124#define MAPCOUNT_ELF_CORE_MARGIN (5)
125#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
126
127extern int sysctl_max_map_count;
128
c9b1d098 129extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 130extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 131
49f0ce5f
JM
132extern int sysctl_overcommit_memory;
133extern int sysctl_overcommit_ratio;
134extern unsigned long sysctl_overcommit_kbytes;
135
136extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
137 size_t *, loff_t *);
138extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
139 size_t *, loff_t *);
140
1da177e4
LT
141#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
142
27ac792c
AR
143/* to align the pointer to the (next) page boundary */
144#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
145
0fa73b86 146/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 147#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 148
1da177e4
LT
149/*
150 * Linux kernel virtual memory manager primitives.
151 * The idea being to have a "virtual" mm in the same way
152 * we have a virtual fs - giving a cleaner interface to the
153 * mm details, and allowing different kinds of memory mappings
154 * (from shared memory to executable loading to arbitrary
155 * mmap() functions).
156 */
157
490fc053 158struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
159struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
160void vm_area_free(struct vm_area_struct *);
c43692e8 161
1da177e4 162#ifndef CONFIG_MMU
8feae131
DH
163extern struct rb_root nommu_region_tree;
164extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
165
166extern unsigned int kobjsize(const void *objp);
167#endif
168
169/*
605d9288 170 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 171 * When changing, update also include/trace/events/mmflags.h
1da177e4 172 */
cc2383ec
KK
173#define VM_NONE 0x00000000
174
1da177e4
LT
175#define VM_READ 0x00000001 /* currently active flags */
176#define VM_WRITE 0x00000002
177#define VM_EXEC 0x00000004
178#define VM_SHARED 0x00000008
179
7e2cff42 180/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
181#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
182#define VM_MAYWRITE 0x00000020
183#define VM_MAYEXEC 0x00000040
184#define VM_MAYSHARE 0x00000080
185
186#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 187#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 188#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 189#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 190#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 191
1da177e4
LT
192#define VM_LOCKED 0x00002000
193#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
194
195 /* Used by sys_madvise() */
196#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
197#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
198
199#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
200#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 201#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 202#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 203#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 204#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 205#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 206#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 207#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 208#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 209
d9104d1c
CG
210#ifdef CONFIG_MEM_SOFT_DIRTY
211# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
212#else
213# define VM_SOFTDIRTY 0
214#endif
215
b379d790 216#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
217#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
218#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 219#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 220
63c17fb8
DH
221#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
222#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
223#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
224#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
225#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 226#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
227#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
228#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
229#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
230#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 231#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
232#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
233
5212213a 234#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
235# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
236# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 237# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
238# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
239# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
240#ifdef CONFIG_PPC
241# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
242#else
243# define VM_PKEY_BIT4 0
8f62c883 244#endif
5212213a
RP
245#endif /* CONFIG_ARCH_HAS_PKEYS */
246
247#if defined(CONFIG_X86)
248# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
249#elif defined(CONFIG_PPC)
250# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
251#elif defined(CONFIG_PARISC)
252# define VM_GROWSUP VM_ARCH_1
253#elif defined(CONFIG_IA64)
254# define VM_GROWSUP VM_ARCH_1
74a04967
KA
255#elif defined(CONFIG_SPARC64)
256# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
257# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
258#elif !defined(CONFIG_MMU)
259# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
260#endif
261
df3735c5 262#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 263/* MPX specific bounds table or bounds directory */
fa87b91c 264# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
265#else
266# define VM_MPX VM_NONE
4aae7e43
QR
267#endif
268
cc2383ec
KK
269#ifndef VM_GROWSUP
270# define VM_GROWSUP VM_NONE
271#endif
272
a8bef8ff
MG
273/* Bits set in the VMA until the stack is in its final location */
274#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
275
1da177e4
LT
276#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
277#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
278#endif
279
280#ifdef CONFIG_STACK_GROWSUP
30bdbb78 281#define VM_STACK VM_GROWSUP
1da177e4 282#else
30bdbb78 283#define VM_STACK VM_GROWSDOWN
1da177e4
LT
284#endif
285
30bdbb78
KK
286#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
287
b291f000 288/*
78f11a25
AA
289 * Special vmas that are non-mergable, non-mlock()able.
290 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 291 */
9050d7eb 292#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 293
a0715cc2
AT
294/* This mask defines which mm->def_flags a process can inherit its parent */
295#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
296
de60f5f1
EM
297/* This mask is used to clear all the VMA flags used by mlock */
298#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
299
2c2d57b5
KA
300/* Arch-specific flags to clear when updating VM flags on protection change */
301#ifndef VM_ARCH_CLEAR
302# define VM_ARCH_CLEAR VM_NONE
303#endif
304#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
305
1da177e4
LT
306/*
307 * mapping from the currently active vm_flags protection bits (the
308 * low four bits) to a page protection mask..
309 */
310extern pgprot_t protection_map[16];
311
d0217ac0 312#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
313#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
314#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
315#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
316#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
317#define FAULT_FLAG_TRIED 0x20 /* Second try */
318#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 319#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 320#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 321
282a8e03
RZ
322#define FAULT_FLAG_TRACE \
323 { FAULT_FLAG_WRITE, "WRITE" }, \
324 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
325 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
326 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
327 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
328 { FAULT_FLAG_TRIED, "TRIED" }, \
329 { FAULT_FLAG_USER, "USER" }, \
330 { FAULT_FLAG_REMOTE, "REMOTE" }, \
331 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
332
54cb8821 333/*
d0217ac0 334 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
335 * ->fault function. The vma's ->fault is responsible for returning a bitmask
336 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 337 *
c20cd45e
MH
338 * MM layer fills up gfp_mask for page allocations but fault handler might
339 * alter it if its implementation requires a different allocation context.
340 *
9b4bdd2f 341 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 342 */
d0217ac0 343struct vm_fault {
82b0f8c3 344 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 345 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 346 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 347 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 348 unsigned long address; /* Faulting virtual address */
82b0f8c3 349 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 350 * the 'address' */
a2d58167
DJ
351 pud_t *pud; /* Pointer to pud entry matching
352 * the 'address'
353 */
2994302b 354 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 355
3917048d
JK
356 struct page *cow_page; /* Page handler may use for COW fault */
357 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 358 struct page *page; /* ->fault handlers should return a
83c54070 359 * page here, unless VM_FAULT_NOPAGE
d0217ac0 360 * is set (which is also implied by
83c54070 361 * VM_FAULT_ERROR).
d0217ac0 362 */
82b0f8c3 363 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
364 pte_t *pte; /* Pointer to pte entry matching
365 * the 'address'. NULL if the page
366 * table hasn't been allocated.
367 */
368 spinlock_t *ptl; /* Page table lock.
369 * Protects pte page table if 'pte'
370 * is not NULL, otherwise pmd.
371 */
7267ec00
KS
372 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
373 * vm_ops->map_pages() calls
374 * alloc_set_pte() from atomic context.
375 * do_fault_around() pre-allocates
376 * page table to avoid allocation from
377 * atomic context.
378 */
54cb8821 379};
1da177e4 380
c791ace1
DJ
381/* page entry size for vm->huge_fault() */
382enum page_entry_size {
383 PE_SIZE_PTE = 0,
384 PE_SIZE_PMD,
385 PE_SIZE_PUD,
386};
387
1da177e4
LT
388/*
389 * These are the virtual MM functions - opening of an area, closing and
390 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 391 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
392 */
393struct vm_operations_struct {
394 void (*open)(struct vm_area_struct * area);
395 void (*close)(struct vm_area_struct * area);
31383c68 396 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 397 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
398 vm_fault_t (*fault)(struct vm_fault *vmf);
399 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
400 enum page_entry_size pe_size);
82b0f8c3 401 void (*map_pages)(struct vm_fault *vmf,
bae473a4 402 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 403 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
404
405 /* notification that a previously read-only page is about to become
406 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 407 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 408
dd906184 409 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 410 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 411
28b2ee20
RR
412 /* called by access_process_vm when get_user_pages() fails, typically
413 * for use by special VMAs that can switch between memory and hardware
414 */
415 int (*access)(struct vm_area_struct *vma, unsigned long addr,
416 void *buf, int len, int write);
78d683e8
AL
417
418 /* Called by the /proc/PID/maps code to ask the vma whether it
419 * has a special name. Returning non-NULL will also cause this
420 * vma to be dumped unconditionally. */
421 const char *(*name)(struct vm_area_struct *vma);
422
1da177e4 423#ifdef CONFIG_NUMA
a6020ed7
LS
424 /*
425 * set_policy() op must add a reference to any non-NULL @new mempolicy
426 * to hold the policy upon return. Caller should pass NULL @new to
427 * remove a policy and fall back to surrounding context--i.e. do not
428 * install a MPOL_DEFAULT policy, nor the task or system default
429 * mempolicy.
430 */
1da177e4 431 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
432
433 /*
434 * get_policy() op must add reference [mpol_get()] to any policy at
435 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
436 * in mm/mempolicy.c will do this automatically.
437 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
438 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
439 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
440 * must return NULL--i.e., do not "fallback" to task or system default
441 * policy.
442 */
1da177e4
LT
443 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
444 unsigned long addr);
445#endif
667a0a06
DV
446 /*
447 * Called by vm_normal_page() for special PTEs to find the
448 * page for @addr. This is useful if the default behavior
449 * (using pte_page()) would not find the correct page.
450 */
451 struct page *(*find_special_page)(struct vm_area_struct *vma,
452 unsigned long addr);
1da177e4
LT
453};
454
455struct mmu_gather;
456struct inode;
457
349aef0b
AM
458#define page_private(page) ((page)->private)
459#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 460
5c7fb56e
DW
461#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
462static inline int pmd_devmap(pmd_t pmd)
463{
464 return 0;
465}
a00cc7d9
MW
466static inline int pud_devmap(pud_t pud)
467{
468 return 0;
469}
b59f65fa
KS
470static inline int pgd_devmap(pgd_t pgd)
471{
472 return 0;
473}
5c7fb56e
DW
474#endif
475
1da177e4
LT
476/*
477 * FIXME: take this include out, include page-flags.h in
478 * files which need it (119 of them)
479 */
480#include <linux/page-flags.h>
71e3aac0 481#include <linux/huge_mm.h>
1da177e4
LT
482
483/*
484 * Methods to modify the page usage count.
485 *
486 * What counts for a page usage:
487 * - cache mapping (page->mapping)
488 * - private data (page->private)
489 * - page mapped in a task's page tables, each mapping
490 * is counted separately
491 *
492 * Also, many kernel routines increase the page count before a critical
493 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
494 */
495
496/*
da6052f7 497 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 498 */
7c8ee9a8
NP
499static inline int put_page_testzero(struct page *page)
500{
fe896d18
JK
501 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
502 return page_ref_dec_and_test(page);
7c8ee9a8 503}
1da177e4
LT
504
505/*
7c8ee9a8
NP
506 * Try to grab a ref unless the page has a refcount of zero, return false if
507 * that is the case.
8e0861fa
AK
508 * This can be called when MMU is off so it must not access
509 * any of the virtual mappings.
1da177e4 510 */
7c8ee9a8
NP
511static inline int get_page_unless_zero(struct page *page)
512{
fe896d18 513 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 514}
1da177e4 515
53df8fdc 516extern int page_is_ram(unsigned long pfn);
124fe20d
DW
517
518enum {
519 REGION_INTERSECTS,
520 REGION_DISJOINT,
521 REGION_MIXED,
522};
523
1c29f25b
TK
524int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
525 unsigned long desc);
53df8fdc 526
48667e7a 527/* Support for virtually mapped pages */
b3bdda02
CL
528struct page *vmalloc_to_page(const void *addr);
529unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 530
0738c4bb
PM
531/*
532 * Determine if an address is within the vmalloc range
533 *
534 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
535 * is no special casing required.
536 */
bb00a789 537static inline bool is_vmalloc_addr(const void *x)
9e2779fa 538{
0738c4bb 539#ifdef CONFIG_MMU
9e2779fa
CL
540 unsigned long addr = (unsigned long)x;
541
542 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 543#else
bb00a789 544 return false;
8ca3ed87 545#endif
0738c4bb 546}
81ac3ad9
KH
547#ifdef CONFIG_MMU
548extern int is_vmalloc_or_module_addr(const void *x);
549#else
934831d0 550static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
551{
552 return 0;
553}
554#endif
9e2779fa 555
a7c3e901
MH
556extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
557static inline void *kvmalloc(size_t size, gfp_t flags)
558{
559 return kvmalloc_node(size, flags, NUMA_NO_NODE);
560}
561static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
562{
563 return kvmalloc_node(size, flags | __GFP_ZERO, node);
564}
565static inline void *kvzalloc(size_t size, gfp_t flags)
566{
567 return kvmalloc(size, flags | __GFP_ZERO);
568}
569
752ade68
MH
570static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
571{
3b3b1a29
KC
572 size_t bytes;
573
574 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
575 return NULL;
576
3b3b1a29 577 return kvmalloc(bytes, flags);
752ade68
MH
578}
579
1c542f38
KC
580static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
581{
582 return kvmalloc_array(n, size, flags | __GFP_ZERO);
583}
584
39f1f78d
AV
585extern void kvfree(const void *addr);
586
53f9263b
KS
587static inline atomic_t *compound_mapcount_ptr(struct page *page)
588{
589 return &page[1].compound_mapcount;
590}
591
592static inline int compound_mapcount(struct page *page)
593{
5f527c2b 594 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
595 page = compound_head(page);
596 return atomic_read(compound_mapcount_ptr(page)) + 1;
597}
598
70b50f94
AA
599/*
600 * The atomic page->_mapcount, starts from -1: so that transitions
601 * both from it and to it can be tracked, using atomic_inc_and_test
602 * and atomic_add_negative(-1).
603 */
22b751c3 604static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
605{
606 atomic_set(&(page)->_mapcount, -1);
607}
608
b20ce5e0
KS
609int __page_mapcount(struct page *page);
610
70b50f94
AA
611static inline int page_mapcount(struct page *page)
612{
1d148e21 613 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 614
b20ce5e0
KS
615 if (unlikely(PageCompound(page)))
616 return __page_mapcount(page);
617 return atomic_read(&page->_mapcount) + 1;
618}
619
620#ifdef CONFIG_TRANSPARENT_HUGEPAGE
621int total_mapcount(struct page *page);
6d0a07ed 622int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
623#else
624static inline int total_mapcount(struct page *page)
625{
626 return page_mapcount(page);
70b50f94 627}
6d0a07ed
AA
628static inline int page_trans_huge_mapcount(struct page *page,
629 int *total_mapcount)
630{
631 int mapcount = page_mapcount(page);
632 if (total_mapcount)
633 *total_mapcount = mapcount;
634 return mapcount;
635}
b20ce5e0 636#endif
70b50f94 637
b49af68f
CL
638static inline struct page *virt_to_head_page(const void *x)
639{
640 struct page *page = virt_to_page(x);
ccaafd7f 641
1d798ca3 642 return compound_head(page);
b49af68f
CL
643}
644
ddc58f27
KS
645void __put_page(struct page *page);
646
1d7ea732 647void put_pages_list(struct list_head *pages);
1da177e4 648
8dfcc9ba 649void split_page(struct page *page, unsigned int order);
8dfcc9ba 650
33f2ef89
AW
651/*
652 * Compound pages have a destructor function. Provide a
653 * prototype for that function and accessor functions.
f1e61557 654 * These are _only_ valid on the head of a compound page.
33f2ef89 655 */
f1e61557
KS
656typedef void compound_page_dtor(struct page *);
657
658/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
659enum compound_dtor_id {
660 NULL_COMPOUND_DTOR,
661 COMPOUND_PAGE_DTOR,
662#ifdef CONFIG_HUGETLB_PAGE
663 HUGETLB_PAGE_DTOR,
9a982250
KS
664#endif
665#ifdef CONFIG_TRANSPARENT_HUGEPAGE
666 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
667#endif
668 NR_COMPOUND_DTORS,
669};
670extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
671
672static inline void set_compound_page_dtor(struct page *page,
f1e61557 673 enum compound_dtor_id compound_dtor)
33f2ef89 674{
f1e61557
KS
675 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
676 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
677}
678
679static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
680{
f1e61557
KS
681 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
682 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
683}
684
d00181b9 685static inline unsigned int compound_order(struct page *page)
d85f3385 686{
6d777953 687 if (!PageHead(page))
d85f3385 688 return 0;
e4b294c2 689 return page[1].compound_order;
d85f3385
CL
690}
691
f1e61557 692static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 693{
e4b294c2 694 page[1].compound_order = order;
d85f3385
CL
695}
696
9a982250
KS
697void free_compound_page(struct page *page);
698
3dece370 699#ifdef CONFIG_MMU
14fd403f
AA
700/*
701 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
702 * servicing faults for write access. In the normal case, do always want
703 * pte_mkwrite. But get_user_pages can cause write faults for mappings
704 * that do not have writing enabled, when used by access_process_vm.
705 */
706static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
707{
708 if (likely(vma->vm_flags & VM_WRITE))
709 pte = pte_mkwrite(pte);
710 return pte;
711}
8c6e50b0 712
82b0f8c3 713int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 714 struct page *page);
9118c0cb 715int finish_fault(struct vm_fault *vmf);
66a6197c 716int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 717#endif
14fd403f 718
1da177e4
LT
719/*
720 * Multiple processes may "see" the same page. E.g. for untouched
721 * mappings of /dev/null, all processes see the same page full of
722 * zeroes, and text pages of executables and shared libraries have
723 * only one copy in memory, at most, normally.
724 *
725 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
726 * page_count() == 0 means the page is free. page->lru is then used for
727 * freelist management in the buddy allocator.
da6052f7 728 * page_count() > 0 means the page has been allocated.
1da177e4 729 *
da6052f7
NP
730 * Pages are allocated by the slab allocator in order to provide memory
731 * to kmalloc and kmem_cache_alloc. In this case, the management of the
732 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
733 * unless a particular usage is carefully commented. (the responsibility of
734 * freeing the kmalloc memory is the caller's, of course).
1da177e4 735 *
da6052f7
NP
736 * A page may be used by anyone else who does a __get_free_page().
737 * In this case, page_count still tracks the references, and should only
738 * be used through the normal accessor functions. The top bits of page->flags
739 * and page->virtual store page management information, but all other fields
740 * are unused and could be used privately, carefully. The management of this
741 * page is the responsibility of the one who allocated it, and those who have
742 * subsequently been given references to it.
743 *
744 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
745 * managed by the Linux memory manager: I/O, buffers, swapping etc.
746 * The following discussion applies only to them.
747 *
da6052f7
NP
748 * A pagecache page contains an opaque `private' member, which belongs to the
749 * page's address_space. Usually, this is the address of a circular list of
750 * the page's disk buffers. PG_private must be set to tell the VM to call
751 * into the filesystem to release these pages.
1da177e4 752 *
da6052f7
NP
753 * A page may belong to an inode's memory mapping. In this case, page->mapping
754 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 755 * in units of PAGE_SIZE.
1da177e4 756 *
da6052f7
NP
757 * If pagecache pages are not associated with an inode, they are said to be
758 * anonymous pages. These may become associated with the swapcache, and in that
759 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 760 *
da6052f7
NP
761 * In either case (swapcache or inode backed), the pagecache itself holds one
762 * reference to the page. Setting PG_private should also increment the
763 * refcount. The each user mapping also has a reference to the page.
1da177e4 764 *
da6052f7 765 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 766 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
767 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
768 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 769 *
da6052f7 770 * All pagecache pages may be subject to I/O:
1da177e4
LT
771 * - inode pages may need to be read from disk,
772 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
773 * to be written back to the inode on disk,
774 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
775 * modified may need to be swapped out to swap space and (later) to be read
776 * back into memory.
1da177e4
LT
777 */
778
779/*
780 * The zone field is never updated after free_area_init_core()
781 * sets it, so none of the operations on it need to be atomic.
1da177e4 782 */
348f8b6c 783
90572890 784/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 785#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
786#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
787#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 788#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 789
348f8b6c 790/*
25985edc 791 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
792 * sections we define the shift as 0; that plus a 0 mask ensures
793 * the compiler will optimise away reference to them.
794 */
d41dee36
AW
795#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
796#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
797#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 798#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 799
bce54bbf
WD
800/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
801#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 802#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
803#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
804 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 805#else
89689ae7 806#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
807#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
808 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
809#endif
810
bd8029b6 811#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 812
9223b419
CL
813#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
814#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
815#endif
816
d41dee36
AW
817#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
818#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
819#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 820#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 821#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 822
33dd4e0e 823static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 824{
348f8b6c 825 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 826}
1da177e4 827
260ae3f7
DW
828#ifdef CONFIG_ZONE_DEVICE
829static inline bool is_zone_device_page(const struct page *page)
830{
831 return page_zonenum(page) == ZONE_DEVICE;
832}
833#else
834static inline bool is_zone_device_page(const struct page *page)
835{
836 return false;
837}
7b2d55d2 838#endif
5042db43 839
e7638488
DW
840#ifdef CONFIG_DEV_PAGEMAP_OPS
841void dev_pagemap_get_ops(void);
842void dev_pagemap_put_ops(void);
843void __put_devmap_managed_page(struct page *page);
844DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
845static inline bool put_devmap_managed_page(struct page *page)
846{
847 if (!static_branch_unlikely(&devmap_managed_key))
848 return false;
849 if (!is_zone_device_page(page))
850 return false;
851 switch (page->pgmap->type) {
852 case MEMORY_DEVICE_PRIVATE:
853 case MEMORY_DEVICE_PUBLIC:
854 case MEMORY_DEVICE_FS_DAX:
855 __put_devmap_managed_page(page);
856 return true;
857 default:
858 break;
859 }
860 return false;
861}
862
863static inline bool is_device_private_page(const struct page *page)
864{
865 return is_zone_device_page(page) &&
866 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
867}
868
869static inline bool is_device_public_page(const struct page *page)
870{
871 return is_zone_device_page(page) &&
872 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
873}
874
875#else /* CONFIG_DEV_PAGEMAP_OPS */
876static inline void dev_pagemap_get_ops(void)
5042db43 877{
5042db43 878}
e7638488
DW
879
880static inline void dev_pagemap_put_ops(void)
881{
882}
883
884static inline bool put_devmap_managed_page(struct page *page)
885{
886 return false;
887}
888
6b368cd4
JG
889static inline bool is_device_private_page(const struct page *page)
890{
891 return false;
892}
e7638488 893
6b368cd4
JG
894static inline bool is_device_public_page(const struct page *page)
895{
896 return false;
897}
e7638488 898#endif /* CONFIG_DEV_PAGEMAP_OPS */
7b2d55d2 899
3565fce3
DW
900static inline void get_page(struct page *page)
901{
902 page = compound_head(page);
903 /*
904 * Getting a normal page or the head of a compound page
0139aa7b 905 * requires to already have an elevated page->_refcount.
3565fce3 906 */
fe896d18
JK
907 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
908 page_ref_inc(page);
3565fce3
DW
909}
910
911static inline void put_page(struct page *page)
912{
913 page = compound_head(page);
914
7b2d55d2 915 /*
e7638488
DW
916 * For devmap managed pages we need to catch refcount transition from
917 * 2 to 1, when refcount reach one it means the page is free and we
918 * need to inform the device driver through callback. See
7b2d55d2
JG
919 * include/linux/memremap.h and HMM for details.
920 */
e7638488 921 if (put_devmap_managed_page(page))
7b2d55d2 922 return;
7b2d55d2 923
3565fce3
DW
924 if (put_page_testzero(page))
925 __put_page(page);
3565fce3
DW
926}
927
9127ab4f
CS
928#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
929#define SECTION_IN_PAGE_FLAGS
930#endif
931
89689ae7 932/*
7a8010cd
VB
933 * The identification function is mainly used by the buddy allocator for
934 * determining if two pages could be buddies. We are not really identifying
935 * the zone since we could be using the section number id if we do not have
936 * node id available in page flags.
937 * We only guarantee that it will return the same value for two combinable
938 * pages in a zone.
89689ae7 939 */
cb2b95e1
AW
940static inline int page_zone_id(struct page *page)
941{
89689ae7 942 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
943}
944
25ba77c1 945static inline int zone_to_nid(struct zone *zone)
89fa3024 946{
d5f541ed
CL
947#ifdef CONFIG_NUMA
948 return zone->node;
949#else
950 return 0;
951#endif
89fa3024
CL
952}
953
89689ae7 954#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 955extern int page_to_nid(const struct page *page);
89689ae7 956#else
33dd4e0e 957static inline int page_to_nid(const struct page *page)
d41dee36 958{
f165b378
PT
959 struct page *p = (struct page *)page;
960
961 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 962}
89689ae7
CL
963#endif
964
57e0a030 965#ifdef CONFIG_NUMA_BALANCING
90572890 966static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 967{
90572890 968 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
969}
970
90572890 971static inline int cpupid_to_pid(int cpupid)
57e0a030 972{
90572890 973 return cpupid & LAST__PID_MASK;
57e0a030 974}
b795854b 975
90572890 976static inline int cpupid_to_cpu(int cpupid)
b795854b 977{
90572890 978 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
979}
980
90572890 981static inline int cpupid_to_nid(int cpupid)
b795854b 982{
90572890 983 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
984}
985
90572890 986static inline bool cpupid_pid_unset(int cpupid)
57e0a030 987{
90572890 988 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
989}
990
90572890 991static inline bool cpupid_cpu_unset(int cpupid)
b795854b 992{
90572890 993 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
994}
995
8c8a743c
PZ
996static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
997{
998 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
999}
1000
1001#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1002#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1003static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1004{
1ae71d03 1005 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1006}
90572890
PZ
1007
1008static inline int page_cpupid_last(struct page *page)
1009{
1010 return page->_last_cpupid;
1011}
1012static inline void page_cpupid_reset_last(struct page *page)
b795854b 1013{
1ae71d03 1014 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1015}
1016#else
90572890 1017static inline int page_cpupid_last(struct page *page)
75980e97 1018{
90572890 1019 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1020}
1021
90572890 1022extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1023
90572890 1024static inline void page_cpupid_reset_last(struct page *page)
75980e97 1025{
09940a4f 1026 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1027}
90572890
PZ
1028#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1029#else /* !CONFIG_NUMA_BALANCING */
1030static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1031{
90572890 1032 return page_to_nid(page); /* XXX */
57e0a030
MG
1033}
1034
90572890 1035static inline int page_cpupid_last(struct page *page)
57e0a030 1036{
90572890 1037 return page_to_nid(page); /* XXX */
57e0a030
MG
1038}
1039
90572890 1040static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1041{
1042 return -1;
1043}
1044
90572890 1045static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1046{
1047 return -1;
1048}
1049
90572890 1050static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1051{
1052 return -1;
1053}
1054
90572890
PZ
1055static inline int cpu_pid_to_cpupid(int nid, int pid)
1056{
1057 return -1;
1058}
1059
1060static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1061{
1062 return 1;
1063}
1064
90572890 1065static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1066{
1067}
8c8a743c
PZ
1068
1069static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1070{
1071 return false;
1072}
90572890 1073#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1074
33dd4e0e 1075static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1076{
1077 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1078}
1079
75ef7184
MG
1080static inline pg_data_t *page_pgdat(const struct page *page)
1081{
1082 return NODE_DATA(page_to_nid(page));
1083}
1084
9127ab4f 1085#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1086static inline void set_page_section(struct page *page, unsigned long section)
1087{
1088 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1089 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1090}
1091
aa462abe 1092static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1093{
1094 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1095}
308c05e3 1096#endif
d41dee36 1097
2f1b6248 1098static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1099{
1100 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1101 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1102}
2f1b6248 1103
348f8b6c
DH
1104static inline void set_page_node(struct page *page, unsigned long node)
1105{
1106 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1107 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1108}
89689ae7 1109
2f1b6248 1110static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1111 unsigned long node, unsigned long pfn)
1da177e4 1112{
348f8b6c
DH
1113 set_page_zone(page, zone);
1114 set_page_node(page, node);
9127ab4f 1115#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1116 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1117#endif
1da177e4
LT
1118}
1119
0610c25d
GT
1120#ifdef CONFIG_MEMCG
1121static inline struct mem_cgroup *page_memcg(struct page *page)
1122{
1123 return page->mem_cgroup;
1124}
55779ec7
JW
1125static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1126{
1127 WARN_ON_ONCE(!rcu_read_lock_held());
1128 return READ_ONCE(page->mem_cgroup);
1129}
0610c25d
GT
1130#else
1131static inline struct mem_cgroup *page_memcg(struct page *page)
1132{
1133 return NULL;
1134}
55779ec7
JW
1135static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1136{
1137 WARN_ON_ONCE(!rcu_read_lock_held());
1138 return NULL;
1139}
0610c25d
GT
1140#endif
1141
f6ac2354
CL
1142/*
1143 * Some inline functions in vmstat.h depend on page_zone()
1144 */
1145#include <linux/vmstat.h>
1146
33dd4e0e 1147static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1148{
1dff8083 1149 return page_to_virt(page);
1da177e4
LT
1150}
1151
1152#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1153#define HASHED_PAGE_VIRTUAL
1154#endif
1155
1156#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1157static inline void *page_address(const struct page *page)
1158{
1159 return page->virtual;
1160}
1161static inline void set_page_address(struct page *page, void *address)
1162{
1163 page->virtual = address;
1164}
1da177e4
LT
1165#define page_address_init() do { } while(0)
1166#endif
1167
1168#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1169void *page_address(const struct page *page);
1da177e4
LT
1170void set_page_address(struct page *page, void *virtual);
1171void page_address_init(void);
1172#endif
1173
1174#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1175#define page_address(page) lowmem_page_address(page)
1176#define set_page_address(page, address) do { } while(0)
1177#define page_address_init() do { } while(0)
1178#endif
1179
e39155ea
KS
1180extern void *page_rmapping(struct page *page);
1181extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1182extern struct address_space *page_mapping(struct page *page);
1da177e4 1183
f981c595
MG
1184extern struct address_space *__page_file_mapping(struct page *);
1185
1186static inline
1187struct address_space *page_file_mapping(struct page *page)
1188{
1189 if (unlikely(PageSwapCache(page)))
1190 return __page_file_mapping(page);
1191
1192 return page->mapping;
1193}
1194
f6ab1f7f
HY
1195extern pgoff_t __page_file_index(struct page *page);
1196
1da177e4
LT
1197/*
1198 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1199 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1200 */
1201static inline pgoff_t page_index(struct page *page)
1202{
1203 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1204 return __page_file_index(page);
1da177e4
LT
1205 return page->index;
1206}
1207
1aa8aea5 1208bool page_mapped(struct page *page);
bda807d4 1209struct address_space *page_mapping(struct page *page);
cb9f753a 1210struct address_space *page_mapping_file(struct page *page);
1da177e4 1211
2f064f34
MH
1212/*
1213 * Return true only if the page has been allocated with
1214 * ALLOC_NO_WATERMARKS and the low watermark was not
1215 * met implying that the system is under some pressure.
1216 */
1217static inline bool page_is_pfmemalloc(struct page *page)
1218{
1219 /*
1220 * Page index cannot be this large so this must be
1221 * a pfmemalloc page.
1222 */
1223 return page->index == -1UL;
1224}
1225
1226/*
1227 * Only to be called by the page allocator on a freshly allocated
1228 * page.
1229 */
1230static inline void set_page_pfmemalloc(struct page *page)
1231{
1232 page->index = -1UL;
1233}
1234
1235static inline void clear_page_pfmemalloc(struct page *page)
1236{
1237 page->index = 0;
1238}
1239
1da177e4
LT
1240/*
1241 * Different kinds of faults, as returned by handle_mm_fault().
1242 * Used to decide whether a process gets delivered SIGBUS or
1243 * just gets major/minor fault counters bumped up.
1244 */
d0217ac0 1245
83c54070
NP
1246#define VM_FAULT_OOM 0x0001
1247#define VM_FAULT_SIGBUS 0x0002
1248#define VM_FAULT_MAJOR 0x0004
1249#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1250#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1251#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1252#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1253
83c54070
NP
1254#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1255#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1256#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1257#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1258#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
caa51d26
JK
1259#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1260 * and needs fsync() to complete (for
1261 * synchronous page faults in DAX) */
aa50d3a7 1262
33692f27
LT
1263#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1264 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1265 VM_FAULT_FALLBACK)
aa50d3a7 1266
282a8e03
RZ
1267#define VM_FAULT_RESULT_TRACE \
1268 { VM_FAULT_OOM, "OOM" }, \
1269 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1270 { VM_FAULT_MAJOR, "MAJOR" }, \
1271 { VM_FAULT_WRITE, "WRITE" }, \
1272 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1273 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1274 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1275 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1276 { VM_FAULT_LOCKED, "LOCKED" }, \
1277 { VM_FAULT_RETRY, "RETRY" }, \
1278 { VM_FAULT_FALLBACK, "FALLBACK" }, \
caa51d26
JK
1279 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1280 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
282a8e03 1281
aa50d3a7
AK
1282/* Encode hstate index for a hwpoisoned large page */
1283#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1284#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1285
1c0fe6e3
NP
1286/*
1287 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1288 */
1289extern void pagefault_out_of_memory(void);
1290
1da177e4
LT
1291#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1292
ddd588b5 1293/*
7bf02ea2 1294 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1295 * various contexts.
1296 */
4b59e6c4 1297#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1298
9af744d7 1299extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1300
7f43add4 1301extern bool can_do_mlock(void);
1da177e4
LT
1302extern int user_shm_lock(size_t, struct user_struct *);
1303extern void user_shm_unlock(size_t, struct user_struct *);
1304
1305/*
1306 * Parameter block passed down to zap_pte_range in exceptional cases.
1307 */
1308struct zap_details {
1da177e4
LT
1309 struct address_space *check_mapping; /* Check page->mapping if set */
1310 pgoff_t first_index; /* Lowest page->index to unmap */
1311 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1312};
1313
df6ad698
JG
1314struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1315 pte_t pte, bool with_public_device);
1316#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1317
28093f9f
GS
1318struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1319 pmd_t pmd);
7e675137 1320
27d036e3
LR
1321void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1322 unsigned long size);
14f5ff5d 1323void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1324 unsigned long size);
4f74d2c8
LT
1325void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1326 unsigned long start, unsigned long end);
e6473092
MM
1327
1328/**
1329 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1330 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1331 * this handler should only handle pud_trans_huge() puds.
1332 * the pmd_entry or pte_entry callbacks will be used for
1333 * regular PUDs.
e6473092 1334 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1335 * this handler is required to be able to handle
1336 * pmd_trans_huge() pmds. They may simply choose to
1337 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1338 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1339 * @pte_hole: if set, called for each hole at all levels
5dc37642 1340 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1341 * @test_walk: caller specific callback function to determine whether
f7e2355f 1342 * we walk over the current vma or not. Returning 0
fafaa426
NH
1343 * value means "do page table walk over the current vma,"
1344 * and a negative one means "abort current page table walk
f7e2355f 1345 * right now." 1 means "skip the current vma."
fafaa426
NH
1346 * @mm: mm_struct representing the target process of page table walk
1347 * @vma: vma currently walked (NULL if walking outside vmas)
1348 * @private: private data for callbacks' usage
e6473092 1349 *
fafaa426 1350 * (see the comment on walk_page_range() for more details)
e6473092
MM
1351 */
1352struct mm_walk {
a00cc7d9
MW
1353 int (*pud_entry)(pud_t *pud, unsigned long addr,
1354 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1355 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1356 unsigned long next, struct mm_walk *walk);
1357 int (*pte_entry)(pte_t *pte, unsigned long addr,
1358 unsigned long next, struct mm_walk *walk);
1359 int (*pte_hole)(unsigned long addr, unsigned long next,
1360 struct mm_walk *walk);
1361 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1362 unsigned long addr, unsigned long next,
1363 struct mm_walk *walk);
fafaa426
NH
1364 int (*test_walk)(unsigned long addr, unsigned long next,
1365 struct mm_walk *walk);
2165009b 1366 struct mm_struct *mm;
fafaa426 1367 struct vm_area_struct *vma;
2165009b 1368 void *private;
e6473092
MM
1369};
1370
2165009b
DH
1371int walk_page_range(unsigned long addr, unsigned long end,
1372 struct mm_walk *walk);
900fc5f1 1373int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1374void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1375 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1376int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1377 struct vm_area_struct *vma);
09796395 1378int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 1379 unsigned long *start, unsigned long *end,
09796395 1380 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1381int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1382 unsigned long *pfn);
d87fe660 1383int follow_phys(struct vm_area_struct *vma, unsigned long address,
1384 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1385int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1386 void *buf, int len, int write);
1da177e4 1387
7caef267 1388extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1389extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1390void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1391void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1392int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1393int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1394int invalidate_inode_page(struct page *page);
1395
7ee1dd3f 1396#ifdef CONFIG_MMU
dcddffd4
KS
1397extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1398 unsigned int flags);
5c723ba5 1399extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1400 unsigned long address, unsigned int fault_flags,
1401 bool *unlocked);
977fbdcd
MW
1402void unmap_mapping_pages(struct address_space *mapping,
1403 pgoff_t start, pgoff_t nr, bool even_cows);
1404void unmap_mapping_range(struct address_space *mapping,
1405 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1406#else
dcddffd4
KS
1407static inline int handle_mm_fault(struct vm_area_struct *vma,
1408 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1409{
1410 /* should never happen if there's no MMU */
1411 BUG();
1412 return VM_FAULT_SIGBUS;
1413}
5c723ba5
PZ
1414static inline int fixup_user_fault(struct task_struct *tsk,
1415 struct mm_struct *mm, unsigned long address,
4a9e1cda 1416 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1417{
1418 /* should never happen if there's no MMU */
1419 BUG();
1420 return -EFAULT;
1421}
977fbdcd
MW
1422static inline void unmap_mapping_pages(struct address_space *mapping,
1423 pgoff_t start, pgoff_t nr, bool even_cows) { }
1424static inline void unmap_mapping_range(struct address_space *mapping,
1425 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1426#endif
f33ea7f4 1427
977fbdcd
MW
1428static inline void unmap_shared_mapping_range(struct address_space *mapping,
1429 loff_t const holebegin, loff_t const holelen)
1430{
1431 unmap_mapping_range(mapping, holebegin, holelen, 0);
1432}
1433
1434extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1435 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1436extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1437 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1438extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1439 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1440
1e987790
DH
1441long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1442 unsigned long start, unsigned long nr_pages,
9beae1ea 1443 unsigned int gup_flags, struct page **pages,
5b56d49f 1444 struct vm_area_struct **vmas, int *locked);
c12d2da5 1445long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1446 unsigned int gup_flags, struct page **pages,
cde70140 1447 struct vm_area_struct **vmas);
c12d2da5 1448long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1449 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1450long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1451 struct page **pages, unsigned int gup_flags);
2bb6d283
DW
1452#ifdef CONFIG_FS_DAX
1453long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1454 unsigned int gup_flags, struct page **pages,
1455 struct vm_area_struct **vmas);
1456#else
1457static inline long get_user_pages_longterm(unsigned long start,
1458 unsigned long nr_pages, unsigned int gup_flags,
1459 struct page **pages, struct vm_area_struct **vmas)
1460{
1461 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1462}
1463#endif /* CONFIG_FS_DAX */
1464
d2bf6be8
NP
1465int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1466 struct page **pages);
8025e5dd
JK
1467
1468/* Container for pinned pfns / pages */
1469struct frame_vector {
1470 unsigned int nr_allocated; /* Number of frames we have space for */
1471 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1472 bool got_ref; /* Did we pin pages by getting page ref? */
1473 bool is_pfns; /* Does array contain pages or pfns? */
1474 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1475 * pfns_vector_pages() or pfns_vector_pfns()
1476 * for access */
1477};
1478
1479struct frame_vector *frame_vector_create(unsigned int nr_frames);
1480void frame_vector_destroy(struct frame_vector *vec);
1481int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1482 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1483void put_vaddr_frames(struct frame_vector *vec);
1484int frame_vector_to_pages(struct frame_vector *vec);
1485void frame_vector_to_pfns(struct frame_vector *vec);
1486
1487static inline unsigned int frame_vector_count(struct frame_vector *vec)
1488{
1489 return vec->nr_frames;
1490}
1491
1492static inline struct page **frame_vector_pages(struct frame_vector *vec)
1493{
1494 if (vec->is_pfns) {
1495 int err = frame_vector_to_pages(vec);
1496
1497 if (err)
1498 return ERR_PTR(err);
1499 }
1500 return (struct page **)(vec->ptrs);
1501}
1502
1503static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1504{
1505 if (!vec->is_pfns)
1506 frame_vector_to_pfns(vec);
1507 return (unsigned long *)(vec->ptrs);
1508}
1509
18022c5d
MG
1510struct kvec;
1511int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1512 struct page **pages);
1513int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1514struct page *get_dump_page(unsigned long addr);
1da177e4 1515
cf9a2ae8 1516extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1517extern void do_invalidatepage(struct page *page, unsigned int offset,
1518 unsigned int length);
cf9a2ae8 1519
f82b3764 1520void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1521int __set_page_dirty_nobuffers(struct page *page);
76719325 1522int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1523int redirty_page_for_writepage(struct writeback_control *wbc,
1524 struct page *page);
62cccb8c 1525void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1526void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1527 struct bdi_writeback *wb);
b3c97528 1528int set_page_dirty(struct page *page);
1da177e4 1529int set_page_dirty_lock(struct page *page);
736304f3
JK
1530void __cancel_dirty_page(struct page *page);
1531static inline void cancel_dirty_page(struct page *page)
1532{
1533 /* Avoid atomic ops, locking, etc. when not actually needed. */
1534 if (PageDirty(page))
1535 __cancel_dirty_page(page);
1536}
1da177e4 1537int clear_page_dirty_for_io(struct page *page);
b9ea2515 1538
a9090253 1539int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1540
b5330628
ON
1541static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1542{
1543 return !vma->vm_ops;
1544}
1545
b0506e48
MR
1546#ifdef CONFIG_SHMEM
1547/*
1548 * The vma_is_shmem is not inline because it is used only by slow
1549 * paths in userfault.
1550 */
1551bool vma_is_shmem(struct vm_area_struct *vma);
1552#else
1553static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1554#endif
1555
d17af505 1556int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1557
b6a2fea3
OW
1558extern unsigned long move_page_tables(struct vm_area_struct *vma,
1559 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1560 unsigned long new_addr, unsigned long len,
1561 bool need_rmap_locks);
7da4d641
PZ
1562extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1563 unsigned long end, pgprot_t newprot,
4b10e7d5 1564 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1565extern int mprotect_fixup(struct vm_area_struct *vma,
1566 struct vm_area_struct **pprev, unsigned long start,
1567 unsigned long end, unsigned long newflags);
1da177e4 1568
465a454f
PZ
1569/*
1570 * doesn't attempt to fault and will return short.
1571 */
1572int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1573 struct page **pages);
d559db08
KH
1574/*
1575 * per-process(per-mm_struct) statistics.
1576 */
d559db08
KH
1577static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1578{
69c97823
KK
1579 long val = atomic_long_read(&mm->rss_stat.count[member]);
1580
1581#ifdef SPLIT_RSS_COUNTING
1582 /*
1583 * counter is updated in asynchronous manner and may go to minus.
1584 * But it's never be expected number for users.
1585 */
1586 if (val < 0)
1587 val = 0;
172703b0 1588#endif
69c97823
KK
1589 return (unsigned long)val;
1590}
d559db08
KH
1591
1592static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1593{
172703b0 1594 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1595}
1596
1597static inline void inc_mm_counter(struct mm_struct *mm, int member)
1598{
172703b0 1599 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1600}
1601
1602static inline void dec_mm_counter(struct mm_struct *mm, int member)
1603{
172703b0 1604 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1605}
1606
eca56ff9
JM
1607/* Optimized variant when page is already known not to be PageAnon */
1608static inline int mm_counter_file(struct page *page)
1609{
1610 if (PageSwapBacked(page))
1611 return MM_SHMEMPAGES;
1612 return MM_FILEPAGES;
1613}
1614
1615static inline int mm_counter(struct page *page)
1616{
1617 if (PageAnon(page))
1618 return MM_ANONPAGES;
1619 return mm_counter_file(page);
1620}
1621
d559db08
KH
1622static inline unsigned long get_mm_rss(struct mm_struct *mm)
1623{
1624 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1625 get_mm_counter(mm, MM_ANONPAGES) +
1626 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1627}
1628
1629static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1630{
1631 return max(mm->hiwater_rss, get_mm_rss(mm));
1632}
1633
1634static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1635{
1636 return max(mm->hiwater_vm, mm->total_vm);
1637}
1638
1639static inline void update_hiwater_rss(struct mm_struct *mm)
1640{
1641 unsigned long _rss = get_mm_rss(mm);
1642
1643 if ((mm)->hiwater_rss < _rss)
1644 (mm)->hiwater_rss = _rss;
1645}
1646
1647static inline void update_hiwater_vm(struct mm_struct *mm)
1648{
1649 if (mm->hiwater_vm < mm->total_vm)
1650 mm->hiwater_vm = mm->total_vm;
1651}
1652
695f0559
PC
1653static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1654{
1655 mm->hiwater_rss = get_mm_rss(mm);
1656}
1657
d559db08
KH
1658static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1659 struct mm_struct *mm)
1660{
1661 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1662
1663 if (*maxrss < hiwater_rss)
1664 *maxrss = hiwater_rss;
1665}
1666
53bddb4e 1667#if defined(SPLIT_RSS_COUNTING)
05af2e10 1668void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1669#else
05af2e10 1670static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1671{
1672}
1673#endif
465a454f 1674
3565fce3
DW
1675#ifndef __HAVE_ARCH_PTE_DEVMAP
1676static inline int pte_devmap(pte_t pte)
1677{
1678 return 0;
1679}
1680#endif
1681
6d2329f8 1682int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1683
25ca1d6c
NK
1684extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1685 spinlock_t **ptl);
1686static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1687 spinlock_t **ptl)
1688{
1689 pte_t *ptep;
1690 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1691 return ptep;
1692}
c9cfcddf 1693
c2febafc
KS
1694#ifdef __PAGETABLE_P4D_FOLDED
1695static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1696 unsigned long address)
1697{
1698 return 0;
1699}
1700#else
1701int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1702#endif
1703
b4e98d9a 1704#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1705static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1706 unsigned long address)
1707{
1708 return 0;
1709}
b4e98d9a
KS
1710static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1711static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1712
5f22df00 1713#else
c2febafc 1714int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1715
b4e98d9a
KS
1716static inline void mm_inc_nr_puds(struct mm_struct *mm)
1717{
af5b0f6a 1718 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1719}
1720
1721static inline void mm_dec_nr_puds(struct mm_struct *mm)
1722{
af5b0f6a 1723 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1724}
5f22df00
NP
1725#endif
1726
2d2f5119 1727#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1728static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1729 unsigned long address)
1730{
1731 return 0;
1732}
dc6c9a35 1733
dc6c9a35
KS
1734static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1735static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1736
5f22df00 1737#else
1bb3630e 1738int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1739
dc6c9a35
KS
1740static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1741{
af5b0f6a 1742 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1743}
1744
1745static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1746{
af5b0f6a 1747 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1748}
5f22df00
NP
1749#endif
1750
c4812909 1751#ifdef CONFIG_MMU
af5b0f6a 1752static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1753{
af5b0f6a 1754 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1755}
1756
af5b0f6a 1757static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1758{
af5b0f6a 1759 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1760}
1761
1762static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1763{
af5b0f6a 1764 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1765}
1766
1767static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1768{
af5b0f6a 1769 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1770}
1771#else
c4812909 1772
af5b0f6a
KS
1773static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1774static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1775{
1776 return 0;
1777}
1778
1779static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1780static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1781#endif
1782
3ed3a4f0 1783int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1784int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1785
1da177e4
LT
1786/*
1787 * The following ifdef needed to get the 4level-fixup.h header to work.
1788 * Remove it when 4level-fixup.h has been removed.
1789 */
1bb3630e 1790#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1791
1792#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1793static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1794 unsigned long address)
1795{
1796 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1797 NULL : p4d_offset(pgd, address);
1798}
1799
1800static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1801 unsigned long address)
1da177e4 1802{
c2febafc
KS
1803 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1804 NULL : pud_offset(p4d, address);
1da177e4 1805}
505a60e2 1806#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1807
1808static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1809{
1bb3630e
HD
1810 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1811 NULL: pmd_offset(pud, address);
1da177e4 1812}
1bb3630e
HD
1813#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1814
57c1ffce 1815#if USE_SPLIT_PTE_PTLOCKS
597d795a 1816#if ALLOC_SPLIT_PTLOCKS
b35f1819 1817void __init ptlock_cache_init(void);
539edb58
PZ
1818extern bool ptlock_alloc(struct page *page);
1819extern void ptlock_free(struct page *page);
1820
1821static inline spinlock_t *ptlock_ptr(struct page *page)
1822{
1823 return page->ptl;
1824}
597d795a 1825#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1826static inline void ptlock_cache_init(void)
1827{
1828}
1829
49076ec2
KS
1830static inline bool ptlock_alloc(struct page *page)
1831{
49076ec2
KS
1832 return true;
1833}
539edb58 1834
49076ec2
KS
1835static inline void ptlock_free(struct page *page)
1836{
49076ec2
KS
1837}
1838
1839static inline spinlock_t *ptlock_ptr(struct page *page)
1840{
539edb58 1841 return &page->ptl;
49076ec2 1842}
597d795a 1843#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1844
1845static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1846{
1847 return ptlock_ptr(pmd_page(*pmd));
1848}
1849
1850static inline bool ptlock_init(struct page *page)
1851{
1852 /*
1853 * prep_new_page() initialize page->private (and therefore page->ptl)
1854 * with 0. Make sure nobody took it in use in between.
1855 *
1856 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1857 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1858 */
309381fe 1859 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1860 if (!ptlock_alloc(page))
1861 return false;
1862 spin_lock_init(ptlock_ptr(page));
1863 return true;
1864}
1865
1866/* Reset page->mapping so free_pages_check won't complain. */
1867static inline void pte_lock_deinit(struct page *page)
1868{
1869 page->mapping = NULL;
1870 ptlock_free(page);
1871}
1872
57c1ffce 1873#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1874/*
1875 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1876 */
49076ec2
KS
1877static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1878{
1879 return &mm->page_table_lock;
1880}
b35f1819 1881static inline void ptlock_cache_init(void) {}
49076ec2
KS
1882static inline bool ptlock_init(struct page *page) { return true; }
1883static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1884#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1885
b35f1819
KS
1886static inline void pgtable_init(void)
1887{
1888 ptlock_cache_init();
1889 pgtable_cache_init();
1890}
1891
390f44e2 1892static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1893{
706874e9
VD
1894 if (!ptlock_init(page))
1895 return false;
1d40a5ea 1896 __SetPageTable(page);
2f569afd 1897 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1898 return true;
2f569afd
MS
1899}
1900
1901static inline void pgtable_page_dtor(struct page *page)
1902{
1903 pte_lock_deinit(page);
1d40a5ea 1904 __ClearPageTable(page);
2f569afd
MS
1905 dec_zone_page_state(page, NR_PAGETABLE);
1906}
1907
c74df32c
HD
1908#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1909({ \
4c21e2f2 1910 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1911 pte_t *__pte = pte_offset_map(pmd, address); \
1912 *(ptlp) = __ptl; \
1913 spin_lock(__ptl); \
1914 __pte; \
1915})
1916
1917#define pte_unmap_unlock(pte, ptl) do { \
1918 spin_unlock(ptl); \
1919 pte_unmap(pte); \
1920} while (0)
1921
3ed3a4f0
KS
1922#define pte_alloc(mm, pmd, address) \
1923 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1924
1925#define pte_alloc_map(mm, pmd, address) \
1926 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1927
c74df32c 1928#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1929 (pte_alloc(mm, pmd, address) ? \
1930 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1931
1bb3630e 1932#define pte_alloc_kernel(pmd, address) \
8ac1f832 1933 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1934 NULL: pte_offset_kernel(pmd, address))
1da177e4 1935
e009bb30
KS
1936#if USE_SPLIT_PMD_PTLOCKS
1937
634391ac
MS
1938static struct page *pmd_to_page(pmd_t *pmd)
1939{
1940 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1941 return virt_to_page((void *)((unsigned long) pmd & mask));
1942}
1943
e009bb30
KS
1944static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1945{
634391ac 1946 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1947}
1948
1949static inline bool pgtable_pmd_page_ctor(struct page *page)
1950{
e009bb30
KS
1951#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1952 page->pmd_huge_pte = NULL;
1953#endif
49076ec2 1954 return ptlock_init(page);
e009bb30
KS
1955}
1956
1957static inline void pgtable_pmd_page_dtor(struct page *page)
1958{
1959#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1960 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1961#endif
49076ec2 1962 ptlock_free(page);
e009bb30
KS
1963}
1964
634391ac 1965#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1966
1967#else
1968
9a86cb7b
KS
1969static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1970{
1971 return &mm->page_table_lock;
1972}
1973
e009bb30
KS
1974static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1975static inline void pgtable_pmd_page_dtor(struct page *page) {}
1976
c389a250 1977#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1978
e009bb30
KS
1979#endif
1980
9a86cb7b
KS
1981static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1982{
1983 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1984 spin_lock(ptl);
1985 return ptl;
1986}
1987
a00cc7d9
MW
1988/*
1989 * No scalability reason to split PUD locks yet, but follow the same pattern
1990 * as the PMD locks to make it easier if we decide to. The VM should not be
1991 * considered ready to switch to split PUD locks yet; there may be places
1992 * which need to be converted from page_table_lock.
1993 */
1994static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1995{
1996 return &mm->page_table_lock;
1997}
1998
1999static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2000{
2001 spinlock_t *ptl = pud_lockptr(mm, pud);
2002
2003 spin_lock(ptl);
2004 return ptl;
2005}
62906027 2006
a00cc7d9 2007extern void __init pagecache_init(void);
1da177e4 2008extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
2009extern void free_area_init_node(int nid, unsigned long * zones_size,
2010 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
2011extern void free_initmem(void);
2012
69afade7
JL
2013/*
2014 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2015 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2016 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2017 * Return pages freed into the buddy system.
2018 */
11199692 2019extern unsigned long free_reserved_area(void *start, void *end,
69afade7 2020 int poison, char *s);
c3d5f5f0 2021
cfa11e08
JL
2022#ifdef CONFIG_HIGHMEM
2023/*
2024 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2025 * and totalram_pages.
2026 */
2027extern void free_highmem_page(struct page *page);
2028#endif
69afade7 2029
c3d5f5f0 2030extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2031extern void mem_init_print_info(const char *str);
69afade7 2032
4b50bcc7 2033extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2034
69afade7
JL
2035/* Free the reserved page into the buddy system, so it gets managed. */
2036static inline void __free_reserved_page(struct page *page)
2037{
2038 ClearPageReserved(page);
2039 init_page_count(page);
2040 __free_page(page);
2041}
2042
2043static inline void free_reserved_page(struct page *page)
2044{
2045 __free_reserved_page(page);
2046 adjust_managed_page_count(page, 1);
2047}
2048
2049static inline void mark_page_reserved(struct page *page)
2050{
2051 SetPageReserved(page);
2052 adjust_managed_page_count(page, -1);
2053}
2054
2055/*
2056 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2057 * The freed pages will be poisoned with pattern "poison" if it's within
2058 * range [0, UCHAR_MAX].
2059 * Return pages freed into the buddy system.
69afade7
JL
2060 */
2061static inline unsigned long free_initmem_default(int poison)
2062{
2063 extern char __init_begin[], __init_end[];
2064
11199692 2065 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2066 poison, "unused kernel");
2067}
2068
7ee3d4e8
JL
2069static inline unsigned long get_num_physpages(void)
2070{
2071 int nid;
2072 unsigned long phys_pages = 0;
2073
2074 for_each_online_node(nid)
2075 phys_pages += node_present_pages(nid);
2076
2077 return phys_pages;
2078}
2079
0ee332c1 2080#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2081/*
0ee332c1 2082 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2083 * zones, allocate the backing mem_map and account for memory holes in a more
2084 * architecture independent manner. This is a substitute for creating the
2085 * zone_sizes[] and zholes_size[] arrays and passing them to
2086 * free_area_init_node()
2087 *
2088 * An architecture is expected to register range of page frames backed by
0ee332c1 2089 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2090 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2091 * usage, an architecture is expected to do something like
2092 *
2093 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2094 * max_highmem_pfn};
2095 * for_each_valid_physical_page_range()
0ee332c1 2096 * memblock_add_node(base, size, nid)
c713216d
MG
2097 * free_area_init_nodes(max_zone_pfns);
2098 *
0ee332c1
TH
2099 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2100 * registered physical page range. Similarly
2101 * sparse_memory_present_with_active_regions() calls memory_present() for
2102 * each range when SPARSEMEM is enabled.
c713216d
MG
2103 *
2104 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2105 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2106 */
2107extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2108unsigned long node_map_pfn_alignment(void);
32996250
YL
2109unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2110 unsigned long end_pfn);
c713216d
MG
2111extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2112 unsigned long end_pfn);
2113extern void get_pfn_range_for_nid(unsigned int nid,
2114 unsigned long *start_pfn, unsigned long *end_pfn);
2115extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2116extern void free_bootmem_with_active_regions(int nid,
2117 unsigned long max_low_pfn);
2118extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2119
0ee332c1 2120#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2121
0ee332c1 2122#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2123 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2124static inline int __early_pfn_to_nid(unsigned long pfn,
2125 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2126{
2127 return 0;
2128}
2129#else
2130/* please see mm/page_alloc.c */
2131extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2132/* there is a per-arch backend function. */
8a942fde
MG
2133extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2134 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2135#endif
2136
d1b47a7c 2137#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
2138void zero_resv_unavail(void);
2139#else
2140static inline void zero_resv_unavail(void) {}
2141#endif
2142
0e0b864e 2143extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2144extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2145 enum memmap_context, struct vmem_altmap *);
bc75d33f 2146extern void setup_per_zone_wmarks(void);
1b79acc9 2147extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2148extern void mem_init(void);
8feae131 2149extern void __init mmap_init(void);
9af744d7 2150extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2151extern long si_mem_available(void);
1da177e4
LT
2152extern void si_meminfo(struct sysinfo * val);
2153extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2154#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2155extern unsigned long arch_reserved_kernel_pages(void);
2156#endif
1da177e4 2157
a8e99259
MH
2158extern __printf(3, 4)
2159void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2160
e7c8d5c9 2161extern void setup_per_cpu_pageset(void);
e7c8d5c9 2162
112067f0 2163extern void zone_pcp_update(struct zone *zone);
340175b7 2164extern void zone_pcp_reset(struct zone *zone);
112067f0 2165
75f7ad8e
PS
2166/* page_alloc.c */
2167extern int min_free_kbytes;
795ae7a0 2168extern int watermark_scale_factor;
75f7ad8e 2169
8feae131 2170/* nommu.c */
33e5d769 2171extern atomic_long_t mmap_pages_allocated;
7e660872 2172extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2173
6b2dbba8 2174/* interval_tree.c */
6b2dbba8 2175void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2176 struct rb_root_cached *root);
9826a516
ML
2177void vma_interval_tree_insert_after(struct vm_area_struct *node,
2178 struct vm_area_struct *prev,
f808c13f 2179 struct rb_root_cached *root);
6b2dbba8 2180void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2181 struct rb_root_cached *root);
2182struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2183 unsigned long start, unsigned long last);
2184struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2185 unsigned long start, unsigned long last);
2186
2187#define vma_interval_tree_foreach(vma, root, start, last) \
2188 for (vma = vma_interval_tree_iter_first(root, start, last); \
2189 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2190
bf181b9f 2191void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2192 struct rb_root_cached *root);
bf181b9f 2193void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2194 struct rb_root_cached *root);
2195struct anon_vma_chain *
2196anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2197 unsigned long start, unsigned long last);
bf181b9f
ML
2198struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2199 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2200#ifdef CONFIG_DEBUG_VM_RB
2201void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2202#endif
bf181b9f
ML
2203
2204#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2205 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2206 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2207
1da177e4 2208/* mmap.c */
34b4e4aa 2209extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2210extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2211 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2212 struct vm_area_struct *expand);
2213static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2214 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2215{
2216 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2217}
1da177e4
LT
2218extern struct vm_area_struct *vma_merge(struct mm_struct *,
2219 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2220 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2221 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2222extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2223extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2224 unsigned long addr, int new_below);
2225extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2226 unsigned long addr, int new_below);
1da177e4
LT
2227extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2228extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2229 struct rb_node **, struct rb_node *);
a8fb5618 2230extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2231extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2232 unsigned long addr, unsigned long len, pgoff_t pgoff,
2233 bool *need_rmap_locks);
1da177e4 2234extern void exit_mmap(struct mm_struct *);
925d1c40 2235
9c599024
CG
2236static inline int check_data_rlimit(unsigned long rlim,
2237 unsigned long new,
2238 unsigned long start,
2239 unsigned long end_data,
2240 unsigned long start_data)
2241{
2242 if (rlim < RLIM_INFINITY) {
2243 if (((new - start) + (end_data - start_data)) > rlim)
2244 return -ENOSPC;
2245 }
2246
2247 return 0;
2248}
2249
7906d00c
AA
2250extern int mm_take_all_locks(struct mm_struct *mm);
2251extern void mm_drop_all_locks(struct mm_struct *mm);
2252
38646013
JS
2253extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2254extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2255extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2256
84638335
KK
2257extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2258extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2259
2eefd878
DS
2260extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2261 const struct vm_special_mapping *sm);
3935ed6a
SS
2262extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2263 unsigned long addr, unsigned long len,
a62c34bd
AL
2264 unsigned long flags,
2265 const struct vm_special_mapping *spec);
2266/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2267extern int install_special_mapping(struct mm_struct *mm,
2268 unsigned long addr, unsigned long len,
2269 unsigned long flags, struct page **pages);
1da177e4
LT
2270
2271extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2272
0165ab44 2273extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2274 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2275 struct list_head *uf);
1fcfd8db 2276extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2277 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2278 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2279 struct list_head *uf);
2280extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2281 struct list_head *uf);
1da177e4 2282
1fcfd8db
ON
2283static inline unsigned long
2284do_mmap_pgoff(struct file *file, unsigned long addr,
2285 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2286 unsigned long pgoff, unsigned long *populate,
2287 struct list_head *uf)
1fcfd8db 2288{
897ab3e0 2289 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2290}
2291
bebeb3d6
ML
2292#ifdef CONFIG_MMU
2293extern int __mm_populate(unsigned long addr, unsigned long len,
2294 int ignore_errors);
2295static inline void mm_populate(unsigned long addr, unsigned long len)
2296{
2297 /* Ignore errors */
2298 (void) __mm_populate(addr, len, 1);
2299}
2300#else
2301static inline void mm_populate(unsigned long addr, unsigned long len) {}
2302#endif
2303
e4eb1ff6 2304/* These take the mm semaphore themselves */
5d22fc25 2305extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2306extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2307extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2308extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2309 unsigned long, unsigned long,
2310 unsigned long, unsigned long);
1da177e4 2311
db4fbfb9
ML
2312struct vm_unmapped_area_info {
2313#define VM_UNMAPPED_AREA_TOPDOWN 1
2314 unsigned long flags;
2315 unsigned long length;
2316 unsigned long low_limit;
2317 unsigned long high_limit;
2318 unsigned long align_mask;
2319 unsigned long align_offset;
2320};
2321
2322extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2323extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2324
2325/*
2326 * Search for an unmapped address range.
2327 *
2328 * We are looking for a range that:
2329 * - does not intersect with any VMA;
2330 * - is contained within the [low_limit, high_limit) interval;
2331 * - is at least the desired size.
2332 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2333 */
2334static inline unsigned long
2335vm_unmapped_area(struct vm_unmapped_area_info *info)
2336{
cdd7875e 2337 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2338 return unmapped_area_topdown(info);
cdd7875e
BP
2339 else
2340 return unmapped_area(info);
db4fbfb9
ML
2341}
2342
85821aab 2343/* truncate.c */
1da177e4 2344extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2345extern void truncate_inode_pages_range(struct address_space *,
2346 loff_t lstart, loff_t lend);
91b0abe3 2347extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2348
2349/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2350extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2351extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2352 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2353extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2354
2355/* mm/page-writeback.c */
2b69c828 2356int __must_check write_one_page(struct page *page);
1cf6e7d8 2357void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2358
2359/* readahead.c */
2360#define VM_MAX_READAHEAD 128 /* kbytes */
2361#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2362
1da177e4 2363int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2364 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2365
2366void page_cache_sync_readahead(struct address_space *mapping,
2367 struct file_ra_state *ra,
2368 struct file *filp,
2369 pgoff_t offset,
2370 unsigned long size);
2371
2372void page_cache_async_readahead(struct address_space *mapping,
2373 struct file_ra_state *ra,
2374 struct file *filp,
2375 struct page *pg,
2376 pgoff_t offset,
2377 unsigned long size);
2378
1be7107f 2379extern unsigned long stack_guard_gap;
d05f3169 2380/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2381extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2382
2383/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2384extern int expand_downwards(struct vm_area_struct *vma,
2385 unsigned long address);
8ca3eb08 2386#if VM_GROWSUP
46dea3d0 2387extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2388#else
fee7e49d 2389 #define expand_upwards(vma, address) (0)
9ab88515 2390#endif
1da177e4
LT
2391
2392/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2393extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2394extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2395 struct vm_area_struct **pprev);
2396
2397/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2398 NULL if none. Assume start_addr < end_addr. */
2399static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2400{
2401 struct vm_area_struct * vma = find_vma(mm,start_addr);
2402
2403 if (vma && end_addr <= vma->vm_start)
2404 vma = NULL;
2405 return vma;
2406}
2407
1be7107f
HD
2408static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2409{
2410 unsigned long vm_start = vma->vm_start;
2411
2412 if (vma->vm_flags & VM_GROWSDOWN) {
2413 vm_start -= stack_guard_gap;
2414 if (vm_start > vma->vm_start)
2415 vm_start = 0;
2416 }
2417 return vm_start;
2418}
2419
2420static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2421{
2422 unsigned long vm_end = vma->vm_end;
2423
2424 if (vma->vm_flags & VM_GROWSUP) {
2425 vm_end += stack_guard_gap;
2426 if (vm_end < vma->vm_end)
2427 vm_end = -PAGE_SIZE;
2428 }
2429 return vm_end;
2430}
2431
1da177e4
LT
2432static inline unsigned long vma_pages(struct vm_area_struct *vma)
2433{
2434 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2435}
2436
640708a2
PE
2437/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2438static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2439 unsigned long vm_start, unsigned long vm_end)
2440{
2441 struct vm_area_struct *vma = find_vma(mm, vm_start);
2442
2443 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2444 vma = NULL;
2445
2446 return vma;
2447}
2448
bad849b3 2449#ifdef CONFIG_MMU
804af2cf 2450pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2451void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2452#else
2453static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2454{
2455 return __pgprot(0);
2456}
64e45507
PF
2457static inline void vma_set_page_prot(struct vm_area_struct *vma)
2458{
2459 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2460}
bad849b3
DH
2461#endif
2462
5877231f 2463#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2464unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2465 unsigned long start, unsigned long end);
2466#endif
2467
deceb6cd 2468struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2469int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2470 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2471int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2472int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2473 unsigned long pfn);
1745cbc5
AL
2474int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2475 unsigned long pfn, pgprot_t pgprot);
423bad60 2476int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2477 pfn_t pfn);
ab77dab4
SJ
2478vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2479 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2480int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2481
1c8f4220
SJ
2482static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2483 unsigned long addr, struct page *page)
2484{
2485 int err = vm_insert_page(vma, addr, page);
2486
2487 if (err == -ENOMEM)
2488 return VM_FAULT_OOM;
2489 if (err < 0 && err != -EBUSY)
2490 return VM_FAULT_SIGBUS;
2491
2492 return VM_FAULT_NOPAGE;
2493}
2494
2495static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
2496 unsigned long addr, pfn_t pfn)
2497{
2498 int err = vm_insert_mixed(vma, addr, pfn);
2499
2500 if (err == -ENOMEM)
2501 return VM_FAULT_OOM;
2502 if (err < 0 && err != -EBUSY)
2503 return VM_FAULT_SIGBUS;
2504
2505 return VM_FAULT_NOPAGE;
2506}
2507
2508static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
2509 unsigned long addr, unsigned long pfn)
2510{
2511 int err = vm_insert_pfn(vma, addr, pfn);
2512
2513 if (err == -ENOMEM)
2514 return VM_FAULT_OOM;
2515 if (err < 0 && err != -EBUSY)
2516 return VM_FAULT_SIGBUS;
2517
2518 return VM_FAULT_NOPAGE;
2519}
deceb6cd 2520
d97baf94
SJ
2521static inline vm_fault_t vmf_error(int err)
2522{
2523 if (err == -ENOMEM)
2524 return VM_FAULT_OOM;
2525 return VM_FAULT_SIGBUS;
2526}
2527
240aadee
ML
2528struct page *follow_page_mask(struct vm_area_struct *vma,
2529 unsigned long address, unsigned int foll_flags,
2530 unsigned int *page_mask);
2531
2532static inline struct page *follow_page(struct vm_area_struct *vma,
2533 unsigned long address, unsigned int foll_flags)
2534{
2535 unsigned int unused_page_mask;
2536 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2537}
2538
deceb6cd
HD
2539#define FOLL_WRITE 0x01 /* check pte is writable */
2540#define FOLL_TOUCH 0x02 /* mark page accessed */
2541#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2542#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2543#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2544#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2545 * and return without waiting upon it */
84d33df2 2546#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2547#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2548#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2549#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2550#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2551#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2552#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2553#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2554#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2555#define FOLL_ANON 0x8000 /* don't do file mappings */
1da177e4 2556
9a291a7c
JM
2557static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2558{
2559 if (vm_fault & VM_FAULT_OOM)
2560 return -ENOMEM;
2561 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2562 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2563 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2564 return -EFAULT;
2565 return 0;
2566}
2567
2f569afd 2568typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2569 void *data);
2570extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2571 unsigned long size, pte_fn_t fn, void *data);
2572
1da177e4 2573
8823b1db
LA
2574#ifdef CONFIG_PAGE_POISONING
2575extern bool page_poisoning_enabled(void);
2576extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2577#else
2578static inline bool page_poisoning_enabled(void) { return false; }
2579static inline void kernel_poison_pages(struct page *page, int numpages,
2580 int enable) { }
2581#endif
2582
12d6f21e 2583#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2584extern bool _debug_pagealloc_enabled;
2585extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2586
2587static inline bool debug_pagealloc_enabled(void)
2588{
2589 return _debug_pagealloc_enabled;
2590}
2591
2592static inline void
2593kernel_map_pages(struct page *page, int numpages, int enable)
2594{
2595 if (!debug_pagealloc_enabled())
2596 return;
2597
2598 __kernel_map_pages(page, numpages, enable);
2599}
8a235efa
RW
2600#ifdef CONFIG_HIBERNATION
2601extern bool kernel_page_present(struct page *page);
40b44137
JK
2602#endif /* CONFIG_HIBERNATION */
2603#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2604static inline void
9858db50 2605kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2606#ifdef CONFIG_HIBERNATION
2607static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2608#endif /* CONFIG_HIBERNATION */
2609static inline bool debug_pagealloc_enabled(void)
2610{
2611 return false;
2612}
2613#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2614
a6c19dfe 2615#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2616extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2617extern int in_gate_area_no_mm(unsigned long addr);
2618extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2619#else
a6c19dfe
AL
2620static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2621{
2622 return NULL;
2623}
2624static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2625static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2626{
2627 return 0;
2628}
1da177e4
LT
2629#endif /* __HAVE_ARCH_GATE_AREA */
2630
44a70ade
MH
2631extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2632
146732ce
JT
2633#ifdef CONFIG_SYSCTL
2634extern int sysctl_drop_caches;
8d65af78 2635int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2636 void __user *, size_t *, loff_t *);
146732ce
JT
2637#endif
2638
cb731d6c
VD
2639void drop_slab(void);
2640void drop_slab_node(int nid);
9d0243bc 2641
7a9166e3
LY
2642#ifndef CONFIG_MMU
2643#define randomize_va_space 0
2644#else
a62eaf15 2645extern int randomize_va_space;
7a9166e3 2646#endif
a62eaf15 2647
045e72ac 2648const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2649void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2650
9bdac914
YL
2651void sparse_mem_maps_populate_node(struct page **map_map,
2652 unsigned long pnum_begin,
2653 unsigned long pnum_end,
2654 unsigned long map_count,
2655 int nodeid);
2656
7b73d978
CH
2657struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2658 struct vmem_altmap *altmap);
29c71111 2659pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2660p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2661pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2662pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2663pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2664void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2665struct vmem_altmap;
a8fc357b
CH
2666void *vmemmap_alloc_block_buf(unsigned long size, int node);
2667void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2668void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2669int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2670 int node);
7b73d978
CH
2671int vmemmap_populate(unsigned long start, unsigned long end, int node,
2672 struct vmem_altmap *altmap);
c2b91e2e 2673void vmemmap_populate_print_last(void);
0197518c 2674#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2675void vmemmap_free(unsigned long start, unsigned long end,
2676 struct vmem_altmap *altmap);
0197518c 2677#endif
46723bfa 2678void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2679 unsigned long nr_pages);
6a46079c 2680
82ba011b
AK
2681enum mf_flags {
2682 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2683 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2684 MF_MUST_KILL = 1 << 2,
cf870c70 2685 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2686};
83b57531
EB
2687extern int memory_failure(unsigned long pfn, int flags);
2688extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 2689extern int unpoison_memory(unsigned long pfn);
ead07f6a 2690extern int get_hwpoison_page(struct page *page);
4e41a30c 2691#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2692extern int sysctl_memory_failure_early_kill;
2693extern int sysctl_memory_failure_recovery;
facb6011 2694extern void shake_page(struct page *p, int access);
5844a486 2695extern atomic_long_t num_poisoned_pages __read_mostly;
facb6011 2696extern int soft_offline_page(struct page *page, int flags);
6a46079c 2697
cc637b17
XX
2698
2699/*
2700 * Error handlers for various types of pages.
2701 */
cc3e2af4 2702enum mf_result {
cc637b17
XX
2703 MF_IGNORED, /* Error: cannot be handled */
2704 MF_FAILED, /* Error: handling failed */
2705 MF_DELAYED, /* Will be handled later */
2706 MF_RECOVERED, /* Successfully recovered */
2707};
2708
2709enum mf_action_page_type {
2710 MF_MSG_KERNEL,
2711 MF_MSG_KERNEL_HIGH_ORDER,
2712 MF_MSG_SLAB,
2713 MF_MSG_DIFFERENT_COMPOUND,
2714 MF_MSG_POISONED_HUGE,
2715 MF_MSG_HUGE,
2716 MF_MSG_FREE_HUGE,
31286a84 2717 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2718 MF_MSG_UNMAP_FAILED,
2719 MF_MSG_DIRTY_SWAPCACHE,
2720 MF_MSG_CLEAN_SWAPCACHE,
2721 MF_MSG_DIRTY_MLOCKED_LRU,
2722 MF_MSG_CLEAN_MLOCKED_LRU,
2723 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2724 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2725 MF_MSG_DIRTY_LRU,
2726 MF_MSG_CLEAN_LRU,
2727 MF_MSG_TRUNCATED_LRU,
2728 MF_MSG_BUDDY,
2729 MF_MSG_BUDDY_2ND,
2730 MF_MSG_UNKNOWN,
2731};
2732
47ad8475
AA
2733#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2734extern void clear_huge_page(struct page *page,
c79b57e4 2735 unsigned long addr_hint,
47ad8475
AA
2736 unsigned int pages_per_huge_page);
2737extern void copy_user_huge_page(struct page *dst, struct page *src,
2738 unsigned long addr, struct vm_area_struct *vma,
2739 unsigned int pages_per_huge_page);
fa4d75c1
MK
2740extern long copy_huge_page_from_user(struct page *dst_page,
2741 const void __user *usr_src,
810a56b9
MK
2742 unsigned int pages_per_huge_page,
2743 bool allow_pagefault);
47ad8475
AA
2744#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2745
e30825f1 2746extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2747
c0a32fc5
SG
2748#ifdef CONFIG_DEBUG_PAGEALLOC
2749extern unsigned int _debug_guardpage_minorder;
e30825f1 2750extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2751
2752static inline unsigned int debug_guardpage_minorder(void)
2753{
2754 return _debug_guardpage_minorder;
2755}
2756
e30825f1
JK
2757static inline bool debug_guardpage_enabled(void)
2758{
2759 return _debug_guardpage_enabled;
2760}
2761
c0a32fc5
SG
2762static inline bool page_is_guard(struct page *page)
2763{
e30825f1
JK
2764 struct page_ext *page_ext;
2765
2766 if (!debug_guardpage_enabled())
2767 return false;
2768
2769 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2770 if (unlikely(!page_ext))
2771 return false;
2772
e30825f1 2773 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2774}
2775#else
2776static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2777static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2778static inline bool page_is_guard(struct page *page) { return false; }
2779#endif /* CONFIG_DEBUG_PAGEALLOC */
2780
f9872caf
CS
2781#if MAX_NUMNODES > 1
2782void __init setup_nr_node_ids(void);
2783#else
2784static inline void setup_nr_node_ids(void) {}
2785#endif
2786
1da177e4
LT
2787#endif /* __KERNEL__ */
2788#endif /* _LINUX_MM_H */