mm: use vma_init() to initialize VMAs on stack and data segments
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
3b3b1a29 28#include <linux/overflow.h>
1da177e4
LT
29
30struct mempolicy;
31struct anon_vma;
bf181b9f 32struct anon_vma_chain;
4e950f6f 33struct file_ra_state;
e8edc6e0 34struct user_struct;
4e950f6f 35struct writeback_control;
682aa8e1 36struct bdi_writeback;
1da177e4 37
597b7305
MH
38void init_mm_internals(void);
39
fccc9987 40#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 41extern unsigned long max_mapnr;
fccc9987
JL
42
43static inline void set_max_mapnr(unsigned long limit)
44{
45 max_mapnr = limit;
46}
47#else
48static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
49#endif
50
4481374c 51extern unsigned long totalram_pages;
1da177e4 52extern void * high_memory;
1da177e4
LT
53extern int page_cluster;
54
55#ifdef CONFIG_SYSCTL
56extern int sysctl_legacy_va_layout;
57#else
58#define sysctl_legacy_va_layout 0
59#endif
60
d07e2259
DC
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62extern const int mmap_rnd_bits_min;
63extern const int mmap_rnd_bits_max;
64extern int mmap_rnd_bits __read_mostly;
65#endif
66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67extern const int mmap_rnd_compat_bits_min;
68extern const int mmap_rnd_compat_bits_max;
69extern int mmap_rnd_compat_bits __read_mostly;
70#endif
71
1da177e4
LT
72#include <asm/page.h>
73#include <asm/pgtable.h>
74#include <asm/processor.h>
1da177e4 75
79442ed1
TC
76#ifndef __pa_symbol
77#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
78#endif
79
1dff8083
AB
80#ifndef page_to_virt
81#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
82#endif
83
568c5fe5
LA
84#ifndef lm_alias
85#define lm_alias(x) __va(__pa_symbol(x))
86#endif
87
593befa6
DD
88/*
89 * To prevent common memory management code establishing
90 * a zero page mapping on a read fault.
91 * This macro should be defined within <asm/pgtable.h>.
92 * s390 does this to prevent multiplexing of hardware bits
93 * related to the physical page in case of virtualization.
94 */
95#ifndef mm_forbids_zeropage
96#define mm_forbids_zeropage(X) (0)
97#endif
98
a4a3ede2
PT
99/*
100 * On some architectures it is expensive to call memset() for small sizes.
101 * Those architectures should provide their own implementation of "struct page"
102 * zeroing by defining this macro in <asm/pgtable.h>.
103 */
104#ifndef mm_zero_struct_page
105#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
106#endif
107
ea606cf5
AR
108/*
109 * Default maximum number of active map areas, this limits the number of vmas
110 * per mm struct. Users can overwrite this number by sysctl but there is a
111 * problem.
112 *
113 * When a program's coredump is generated as ELF format, a section is created
114 * per a vma. In ELF, the number of sections is represented in unsigned short.
115 * This means the number of sections should be smaller than 65535 at coredump.
116 * Because the kernel adds some informative sections to a image of program at
117 * generating coredump, we need some margin. The number of extra sections is
118 * 1-3 now and depends on arch. We use "5" as safe margin, here.
119 *
120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
121 * not a hard limit any more. Although some userspace tools can be surprised by
122 * that.
123 */
124#define MAPCOUNT_ELF_CORE_MARGIN (5)
125#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
126
127extern int sysctl_max_map_count;
128
c9b1d098 129extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 130extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 131
49f0ce5f
JM
132extern int sysctl_overcommit_memory;
133extern int sysctl_overcommit_ratio;
134extern unsigned long sysctl_overcommit_kbytes;
135
136extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
137 size_t *, loff_t *);
138extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
139 size_t *, loff_t *);
140
1da177e4
LT
141#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
142
27ac792c
AR
143/* to align the pointer to the (next) page boundary */
144#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
145
0fa73b86 146/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 147#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 148
1da177e4
LT
149/*
150 * Linux kernel virtual memory manager primitives.
151 * The idea being to have a "virtual" mm in the same way
152 * we have a virtual fs - giving a cleaner interface to the
153 * mm details, and allowing different kinds of memory mappings
154 * (from shared memory to executable loading to arbitrary
155 * mmap() functions).
156 */
157
490fc053 158struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
159struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
160void vm_area_free(struct vm_area_struct *);
c43692e8 161
1da177e4 162#ifndef CONFIG_MMU
8feae131
DH
163extern struct rb_root nommu_region_tree;
164extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
165
166extern unsigned int kobjsize(const void *objp);
167#endif
168
169/*
605d9288 170 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 171 * When changing, update also include/trace/events/mmflags.h
1da177e4 172 */
cc2383ec
KK
173#define VM_NONE 0x00000000
174
1da177e4
LT
175#define VM_READ 0x00000001 /* currently active flags */
176#define VM_WRITE 0x00000002
177#define VM_EXEC 0x00000004
178#define VM_SHARED 0x00000008
179
7e2cff42 180/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
181#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
182#define VM_MAYWRITE 0x00000020
183#define VM_MAYEXEC 0x00000040
184#define VM_MAYSHARE 0x00000080
185
186#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 187#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 188#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 189#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 190#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 191
1da177e4
LT
192#define VM_LOCKED 0x00002000
193#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
194
195 /* Used by sys_madvise() */
196#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
197#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
198
199#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
200#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 201#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 202#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 203#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 204#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 205#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 206#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 207#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 208#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 209
d9104d1c
CG
210#ifdef CONFIG_MEM_SOFT_DIRTY
211# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
212#else
213# define VM_SOFTDIRTY 0
214#endif
215
b379d790 216#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
217#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
218#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 219#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 220
63c17fb8
DH
221#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
222#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
223#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
224#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
225#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 226#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
227#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
228#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
229#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
230#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 231#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
232#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
233
5212213a 234#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
235# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
236# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 237# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
238# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
239# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
240#ifdef CONFIG_PPC
241# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
242#else
243# define VM_PKEY_BIT4 0
8f62c883 244#endif
5212213a
RP
245#endif /* CONFIG_ARCH_HAS_PKEYS */
246
247#if defined(CONFIG_X86)
248# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
249#elif defined(CONFIG_PPC)
250# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
251#elif defined(CONFIG_PARISC)
252# define VM_GROWSUP VM_ARCH_1
253#elif defined(CONFIG_IA64)
254# define VM_GROWSUP VM_ARCH_1
74a04967
KA
255#elif defined(CONFIG_SPARC64)
256# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
257# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
258#elif !defined(CONFIG_MMU)
259# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
260#endif
261
df3735c5 262#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 263/* MPX specific bounds table or bounds directory */
fa87b91c 264# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
265#else
266# define VM_MPX VM_NONE
4aae7e43
QR
267#endif
268
cc2383ec
KK
269#ifndef VM_GROWSUP
270# define VM_GROWSUP VM_NONE
271#endif
272
a8bef8ff
MG
273/* Bits set in the VMA until the stack is in its final location */
274#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
275
1da177e4
LT
276#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
277#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
278#endif
279
280#ifdef CONFIG_STACK_GROWSUP
30bdbb78 281#define VM_STACK VM_GROWSUP
1da177e4 282#else
30bdbb78 283#define VM_STACK VM_GROWSDOWN
1da177e4
LT
284#endif
285
30bdbb78
KK
286#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
287
b291f000 288/*
78f11a25
AA
289 * Special vmas that are non-mergable, non-mlock()able.
290 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 291 */
9050d7eb 292#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 293
a0715cc2
AT
294/* This mask defines which mm->def_flags a process can inherit its parent */
295#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
296
de60f5f1
EM
297/* This mask is used to clear all the VMA flags used by mlock */
298#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
299
2c2d57b5
KA
300/* Arch-specific flags to clear when updating VM flags on protection change */
301#ifndef VM_ARCH_CLEAR
302# define VM_ARCH_CLEAR VM_NONE
303#endif
304#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
305
1da177e4
LT
306/*
307 * mapping from the currently active vm_flags protection bits (the
308 * low four bits) to a page protection mask..
309 */
310extern pgprot_t protection_map[16];
311
d0217ac0 312#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
313#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
314#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
315#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
316#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
317#define FAULT_FLAG_TRIED 0x20 /* Second try */
318#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 319#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 320#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 321
282a8e03
RZ
322#define FAULT_FLAG_TRACE \
323 { FAULT_FLAG_WRITE, "WRITE" }, \
324 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
325 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
326 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
327 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
328 { FAULT_FLAG_TRIED, "TRIED" }, \
329 { FAULT_FLAG_USER, "USER" }, \
330 { FAULT_FLAG_REMOTE, "REMOTE" }, \
331 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
332
54cb8821 333/*
d0217ac0 334 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
335 * ->fault function. The vma's ->fault is responsible for returning a bitmask
336 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 337 *
c20cd45e
MH
338 * MM layer fills up gfp_mask for page allocations but fault handler might
339 * alter it if its implementation requires a different allocation context.
340 *
9b4bdd2f 341 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 342 */
d0217ac0 343struct vm_fault {
82b0f8c3 344 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 345 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 346 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 347 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 348 unsigned long address; /* Faulting virtual address */
82b0f8c3 349 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 350 * the 'address' */
a2d58167
DJ
351 pud_t *pud; /* Pointer to pud entry matching
352 * the 'address'
353 */
2994302b 354 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 355
3917048d
JK
356 struct page *cow_page; /* Page handler may use for COW fault */
357 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 358 struct page *page; /* ->fault handlers should return a
83c54070 359 * page here, unless VM_FAULT_NOPAGE
d0217ac0 360 * is set (which is also implied by
83c54070 361 * VM_FAULT_ERROR).
d0217ac0 362 */
82b0f8c3 363 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
364 pte_t *pte; /* Pointer to pte entry matching
365 * the 'address'. NULL if the page
366 * table hasn't been allocated.
367 */
368 spinlock_t *ptl; /* Page table lock.
369 * Protects pte page table if 'pte'
370 * is not NULL, otherwise pmd.
371 */
7267ec00
KS
372 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
373 * vm_ops->map_pages() calls
374 * alloc_set_pte() from atomic context.
375 * do_fault_around() pre-allocates
376 * page table to avoid allocation from
377 * atomic context.
378 */
54cb8821 379};
1da177e4 380
c791ace1
DJ
381/* page entry size for vm->huge_fault() */
382enum page_entry_size {
383 PE_SIZE_PTE = 0,
384 PE_SIZE_PMD,
385 PE_SIZE_PUD,
386};
387
1da177e4
LT
388/*
389 * These are the virtual MM functions - opening of an area, closing and
390 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 391 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
392 */
393struct vm_operations_struct {
394 void (*open)(struct vm_area_struct * area);
395 void (*close)(struct vm_area_struct * area);
31383c68 396 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 397 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
398 vm_fault_t (*fault)(struct vm_fault *vmf);
399 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
400 enum page_entry_size pe_size);
82b0f8c3 401 void (*map_pages)(struct vm_fault *vmf,
bae473a4 402 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 403 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
404
405 /* notification that a previously read-only page is about to become
406 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 407 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 408
dd906184 409 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 410 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 411
28b2ee20
RR
412 /* called by access_process_vm when get_user_pages() fails, typically
413 * for use by special VMAs that can switch between memory and hardware
414 */
415 int (*access)(struct vm_area_struct *vma, unsigned long addr,
416 void *buf, int len, int write);
78d683e8
AL
417
418 /* Called by the /proc/PID/maps code to ask the vma whether it
419 * has a special name. Returning non-NULL will also cause this
420 * vma to be dumped unconditionally. */
421 const char *(*name)(struct vm_area_struct *vma);
422
1da177e4 423#ifdef CONFIG_NUMA
a6020ed7
LS
424 /*
425 * set_policy() op must add a reference to any non-NULL @new mempolicy
426 * to hold the policy upon return. Caller should pass NULL @new to
427 * remove a policy and fall back to surrounding context--i.e. do not
428 * install a MPOL_DEFAULT policy, nor the task or system default
429 * mempolicy.
430 */
1da177e4 431 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
432
433 /*
434 * get_policy() op must add reference [mpol_get()] to any policy at
435 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
436 * in mm/mempolicy.c will do this automatically.
437 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
438 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
439 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
440 * must return NULL--i.e., do not "fallback" to task or system default
441 * policy.
442 */
1da177e4
LT
443 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
444 unsigned long addr);
445#endif
667a0a06
DV
446 /*
447 * Called by vm_normal_page() for special PTEs to find the
448 * page for @addr. This is useful if the default behavior
449 * (using pte_page()) would not find the correct page.
450 */
451 struct page *(*find_special_page)(struct vm_area_struct *vma,
452 unsigned long addr);
1da177e4
LT
453};
454
027232da
KS
455static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
456{
457 vma->vm_mm = mm;
458 INIT_LIST_HEAD(&vma->anon_vma_chain);
459}
460
1da177e4
LT
461struct mmu_gather;
462struct inode;
463
349aef0b
AM
464#define page_private(page) ((page)->private)
465#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 466
5c7fb56e
DW
467#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
468static inline int pmd_devmap(pmd_t pmd)
469{
470 return 0;
471}
a00cc7d9
MW
472static inline int pud_devmap(pud_t pud)
473{
474 return 0;
475}
b59f65fa
KS
476static inline int pgd_devmap(pgd_t pgd)
477{
478 return 0;
479}
5c7fb56e
DW
480#endif
481
1da177e4
LT
482/*
483 * FIXME: take this include out, include page-flags.h in
484 * files which need it (119 of them)
485 */
486#include <linux/page-flags.h>
71e3aac0 487#include <linux/huge_mm.h>
1da177e4
LT
488
489/*
490 * Methods to modify the page usage count.
491 *
492 * What counts for a page usage:
493 * - cache mapping (page->mapping)
494 * - private data (page->private)
495 * - page mapped in a task's page tables, each mapping
496 * is counted separately
497 *
498 * Also, many kernel routines increase the page count before a critical
499 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
500 */
501
502/*
da6052f7 503 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 504 */
7c8ee9a8
NP
505static inline int put_page_testzero(struct page *page)
506{
fe896d18
JK
507 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
508 return page_ref_dec_and_test(page);
7c8ee9a8 509}
1da177e4
LT
510
511/*
7c8ee9a8
NP
512 * Try to grab a ref unless the page has a refcount of zero, return false if
513 * that is the case.
8e0861fa
AK
514 * This can be called when MMU is off so it must not access
515 * any of the virtual mappings.
1da177e4 516 */
7c8ee9a8
NP
517static inline int get_page_unless_zero(struct page *page)
518{
fe896d18 519 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 520}
1da177e4 521
53df8fdc 522extern int page_is_ram(unsigned long pfn);
124fe20d
DW
523
524enum {
525 REGION_INTERSECTS,
526 REGION_DISJOINT,
527 REGION_MIXED,
528};
529
1c29f25b
TK
530int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
531 unsigned long desc);
53df8fdc 532
48667e7a 533/* Support for virtually mapped pages */
b3bdda02
CL
534struct page *vmalloc_to_page(const void *addr);
535unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 536
0738c4bb
PM
537/*
538 * Determine if an address is within the vmalloc range
539 *
540 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
541 * is no special casing required.
542 */
bb00a789 543static inline bool is_vmalloc_addr(const void *x)
9e2779fa 544{
0738c4bb 545#ifdef CONFIG_MMU
9e2779fa
CL
546 unsigned long addr = (unsigned long)x;
547
548 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 549#else
bb00a789 550 return false;
8ca3ed87 551#endif
0738c4bb 552}
81ac3ad9
KH
553#ifdef CONFIG_MMU
554extern int is_vmalloc_or_module_addr(const void *x);
555#else
934831d0 556static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
557{
558 return 0;
559}
560#endif
9e2779fa 561
a7c3e901
MH
562extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
563static inline void *kvmalloc(size_t size, gfp_t flags)
564{
565 return kvmalloc_node(size, flags, NUMA_NO_NODE);
566}
567static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
568{
569 return kvmalloc_node(size, flags | __GFP_ZERO, node);
570}
571static inline void *kvzalloc(size_t size, gfp_t flags)
572{
573 return kvmalloc(size, flags | __GFP_ZERO);
574}
575
752ade68
MH
576static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
577{
3b3b1a29
KC
578 size_t bytes;
579
580 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
581 return NULL;
582
3b3b1a29 583 return kvmalloc(bytes, flags);
752ade68
MH
584}
585
1c542f38
KC
586static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
587{
588 return kvmalloc_array(n, size, flags | __GFP_ZERO);
589}
590
39f1f78d
AV
591extern void kvfree(const void *addr);
592
53f9263b
KS
593static inline atomic_t *compound_mapcount_ptr(struct page *page)
594{
595 return &page[1].compound_mapcount;
596}
597
598static inline int compound_mapcount(struct page *page)
599{
5f527c2b 600 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
601 page = compound_head(page);
602 return atomic_read(compound_mapcount_ptr(page)) + 1;
603}
604
70b50f94
AA
605/*
606 * The atomic page->_mapcount, starts from -1: so that transitions
607 * both from it and to it can be tracked, using atomic_inc_and_test
608 * and atomic_add_negative(-1).
609 */
22b751c3 610static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
611{
612 atomic_set(&(page)->_mapcount, -1);
613}
614
b20ce5e0
KS
615int __page_mapcount(struct page *page);
616
70b50f94
AA
617static inline int page_mapcount(struct page *page)
618{
1d148e21 619 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 620
b20ce5e0
KS
621 if (unlikely(PageCompound(page)))
622 return __page_mapcount(page);
623 return atomic_read(&page->_mapcount) + 1;
624}
625
626#ifdef CONFIG_TRANSPARENT_HUGEPAGE
627int total_mapcount(struct page *page);
6d0a07ed 628int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
629#else
630static inline int total_mapcount(struct page *page)
631{
632 return page_mapcount(page);
70b50f94 633}
6d0a07ed
AA
634static inline int page_trans_huge_mapcount(struct page *page,
635 int *total_mapcount)
636{
637 int mapcount = page_mapcount(page);
638 if (total_mapcount)
639 *total_mapcount = mapcount;
640 return mapcount;
641}
b20ce5e0 642#endif
70b50f94 643
b49af68f
CL
644static inline struct page *virt_to_head_page(const void *x)
645{
646 struct page *page = virt_to_page(x);
ccaafd7f 647
1d798ca3 648 return compound_head(page);
b49af68f
CL
649}
650
ddc58f27
KS
651void __put_page(struct page *page);
652
1d7ea732 653void put_pages_list(struct list_head *pages);
1da177e4 654
8dfcc9ba 655void split_page(struct page *page, unsigned int order);
8dfcc9ba 656
33f2ef89
AW
657/*
658 * Compound pages have a destructor function. Provide a
659 * prototype for that function and accessor functions.
f1e61557 660 * These are _only_ valid on the head of a compound page.
33f2ef89 661 */
f1e61557
KS
662typedef void compound_page_dtor(struct page *);
663
664/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
665enum compound_dtor_id {
666 NULL_COMPOUND_DTOR,
667 COMPOUND_PAGE_DTOR,
668#ifdef CONFIG_HUGETLB_PAGE
669 HUGETLB_PAGE_DTOR,
9a982250
KS
670#endif
671#ifdef CONFIG_TRANSPARENT_HUGEPAGE
672 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
673#endif
674 NR_COMPOUND_DTORS,
675};
676extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
677
678static inline void set_compound_page_dtor(struct page *page,
f1e61557 679 enum compound_dtor_id compound_dtor)
33f2ef89 680{
f1e61557
KS
681 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
682 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
683}
684
685static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
686{
f1e61557
KS
687 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
688 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
689}
690
d00181b9 691static inline unsigned int compound_order(struct page *page)
d85f3385 692{
6d777953 693 if (!PageHead(page))
d85f3385 694 return 0;
e4b294c2 695 return page[1].compound_order;
d85f3385
CL
696}
697
f1e61557 698static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 699{
e4b294c2 700 page[1].compound_order = order;
d85f3385
CL
701}
702
9a982250
KS
703void free_compound_page(struct page *page);
704
3dece370 705#ifdef CONFIG_MMU
14fd403f
AA
706/*
707 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
708 * servicing faults for write access. In the normal case, do always want
709 * pte_mkwrite. But get_user_pages can cause write faults for mappings
710 * that do not have writing enabled, when used by access_process_vm.
711 */
712static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
713{
714 if (likely(vma->vm_flags & VM_WRITE))
715 pte = pte_mkwrite(pte);
716 return pte;
717}
8c6e50b0 718
82b0f8c3 719int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 720 struct page *page);
9118c0cb 721int finish_fault(struct vm_fault *vmf);
66a6197c 722int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 723#endif
14fd403f 724
1da177e4
LT
725/*
726 * Multiple processes may "see" the same page. E.g. for untouched
727 * mappings of /dev/null, all processes see the same page full of
728 * zeroes, and text pages of executables and shared libraries have
729 * only one copy in memory, at most, normally.
730 *
731 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
732 * page_count() == 0 means the page is free. page->lru is then used for
733 * freelist management in the buddy allocator.
da6052f7 734 * page_count() > 0 means the page has been allocated.
1da177e4 735 *
da6052f7
NP
736 * Pages are allocated by the slab allocator in order to provide memory
737 * to kmalloc and kmem_cache_alloc. In this case, the management of the
738 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
739 * unless a particular usage is carefully commented. (the responsibility of
740 * freeing the kmalloc memory is the caller's, of course).
1da177e4 741 *
da6052f7
NP
742 * A page may be used by anyone else who does a __get_free_page().
743 * In this case, page_count still tracks the references, and should only
744 * be used through the normal accessor functions. The top bits of page->flags
745 * and page->virtual store page management information, but all other fields
746 * are unused and could be used privately, carefully. The management of this
747 * page is the responsibility of the one who allocated it, and those who have
748 * subsequently been given references to it.
749 *
750 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
751 * managed by the Linux memory manager: I/O, buffers, swapping etc.
752 * The following discussion applies only to them.
753 *
da6052f7
NP
754 * A pagecache page contains an opaque `private' member, which belongs to the
755 * page's address_space. Usually, this is the address of a circular list of
756 * the page's disk buffers. PG_private must be set to tell the VM to call
757 * into the filesystem to release these pages.
1da177e4 758 *
da6052f7
NP
759 * A page may belong to an inode's memory mapping. In this case, page->mapping
760 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 761 * in units of PAGE_SIZE.
1da177e4 762 *
da6052f7
NP
763 * If pagecache pages are not associated with an inode, they are said to be
764 * anonymous pages. These may become associated with the swapcache, and in that
765 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 766 *
da6052f7
NP
767 * In either case (swapcache or inode backed), the pagecache itself holds one
768 * reference to the page. Setting PG_private should also increment the
769 * refcount. The each user mapping also has a reference to the page.
1da177e4 770 *
da6052f7 771 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 772 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
773 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
774 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 775 *
da6052f7 776 * All pagecache pages may be subject to I/O:
1da177e4
LT
777 * - inode pages may need to be read from disk,
778 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
779 * to be written back to the inode on disk,
780 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
781 * modified may need to be swapped out to swap space and (later) to be read
782 * back into memory.
1da177e4
LT
783 */
784
785/*
786 * The zone field is never updated after free_area_init_core()
787 * sets it, so none of the operations on it need to be atomic.
1da177e4 788 */
348f8b6c 789
90572890 790/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 791#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
792#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
793#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 794#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 795
348f8b6c 796/*
25985edc 797 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
798 * sections we define the shift as 0; that plus a 0 mask ensures
799 * the compiler will optimise away reference to them.
800 */
d41dee36
AW
801#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
802#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
803#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 804#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 805
bce54bbf
WD
806/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
807#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 808#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
809#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
810 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 811#else
89689ae7 812#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
813#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
814 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
815#endif
816
bd8029b6 817#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 818
9223b419
CL
819#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
820#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
821#endif
822
d41dee36
AW
823#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
824#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
825#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 826#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 827#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 828
33dd4e0e 829static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 830{
348f8b6c 831 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 832}
1da177e4 833
260ae3f7
DW
834#ifdef CONFIG_ZONE_DEVICE
835static inline bool is_zone_device_page(const struct page *page)
836{
837 return page_zonenum(page) == ZONE_DEVICE;
838}
839#else
840static inline bool is_zone_device_page(const struct page *page)
841{
842 return false;
843}
7b2d55d2 844#endif
5042db43 845
e7638488
DW
846#ifdef CONFIG_DEV_PAGEMAP_OPS
847void dev_pagemap_get_ops(void);
848void dev_pagemap_put_ops(void);
849void __put_devmap_managed_page(struct page *page);
850DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
851static inline bool put_devmap_managed_page(struct page *page)
852{
853 if (!static_branch_unlikely(&devmap_managed_key))
854 return false;
855 if (!is_zone_device_page(page))
856 return false;
857 switch (page->pgmap->type) {
858 case MEMORY_DEVICE_PRIVATE:
859 case MEMORY_DEVICE_PUBLIC:
860 case MEMORY_DEVICE_FS_DAX:
861 __put_devmap_managed_page(page);
862 return true;
863 default:
864 break;
865 }
866 return false;
867}
868
869static inline bool is_device_private_page(const struct page *page)
870{
871 return is_zone_device_page(page) &&
872 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
873}
874
875static inline bool is_device_public_page(const struct page *page)
876{
877 return is_zone_device_page(page) &&
878 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
879}
880
881#else /* CONFIG_DEV_PAGEMAP_OPS */
882static inline void dev_pagemap_get_ops(void)
5042db43 883{
5042db43 884}
e7638488
DW
885
886static inline void dev_pagemap_put_ops(void)
887{
888}
889
890static inline bool put_devmap_managed_page(struct page *page)
891{
892 return false;
893}
894
6b368cd4
JG
895static inline bool is_device_private_page(const struct page *page)
896{
897 return false;
898}
e7638488 899
6b368cd4
JG
900static inline bool is_device_public_page(const struct page *page)
901{
902 return false;
903}
e7638488 904#endif /* CONFIG_DEV_PAGEMAP_OPS */
7b2d55d2 905
3565fce3
DW
906static inline void get_page(struct page *page)
907{
908 page = compound_head(page);
909 /*
910 * Getting a normal page or the head of a compound page
0139aa7b 911 * requires to already have an elevated page->_refcount.
3565fce3 912 */
fe896d18
JK
913 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
914 page_ref_inc(page);
3565fce3
DW
915}
916
917static inline void put_page(struct page *page)
918{
919 page = compound_head(page);
920
7b2d55d2 921 /*
e7638488
DW
922 * For devmap managed pages we need to catch refcount transition from
923 * 2 to 1, when refcount reach one it means the page is free and we
924 * need to inform the device driver through callback. See
7b2d55d2
JG
925 * include/linux/memremap.h and HMM for details.
926 */
e7638488 927 if (put_devmap_managed_page(page))
7b2d55d2 928 return;
7b2d55d2 929
3565fce3
DW
930 if (put_page_testzero(page))
931 __put_page(page);
3565fce3
DW
932}
933
9127ab4f
CS
934#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
935#define SECTION_IN_PAGE_FLAGS
936#endif
937
89689ae7 938/*
7a8010cd
VB
939 * The identification function is mainly used by the buddy allocator for
940 * determining if two pages could be buddies. We are not really identifying
941 * the zone since we could be using the section number id if we do not have
942 * node id available in page flags.
943 * We only guarantee that it will return the same value for two combinable
944 * pages in a zone.
89689ae7 945 */
cb2b95e1
AW
946static inline int page_zone_id(struct page *page)
947{
89689ae7 948 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
949}
950
25ba77c1 951static inline int zone_to_nid(struct zone *zone)
89fa3024 952{
d5f541ed
CL
953#ifdef CONFIG_NUMA
954 return zone->node;
955#else
956 return 0;
957#endif
89fa3024
CL
958}
959
89689ae7 960#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 961extern int page_to_nid(const struct page *page);
89689ae7 962#else
33dd4e0e 963static inline int page_to_nid(const struct page *page)
d41dee36 964{
f165b378
PT
965 struct page *p = (struct page *)page;
966
967 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 968}
89689ae7
CL
969#endif
970
57e0a030 971#ifdef CONFIG_NUMA_BALANCING
90572890 972static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 973{
90572890 974 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
975}
976
90572890 977static inline int cpupid_to_pid(int cpupid)
57e0a030 978{
90572890 979 return cpupid & LAST__PID_MASK;
57e0a030 980}
b795854b 981
90572890 982static inline int cpupid_to_cpu(int cpupid)
b795854b 983{
90572890 984 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
985}
986
90572890 987static inline int cpupid_to_nid(int cpupid)
b795854b 988{
90572890 989 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
990}
991
90572890 992static inline bool cpupid_pid_unset(int cpupid)
57e0a030 993{
90572890 994 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
995}
996
90572890 997static inline bool cpupid_cpu_unset(int cpupid)
b795854b 998{
90572890 999 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1000}
1001
8c8a743c
PZ
1002static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1003{
1004 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1005}
1006
1007#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1008#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1009static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1010{
1ae71d03 1011 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1012}
90572890
PZ
1013
1014static inline int page_cpupid_last(struct page *page)
1015{
1016 return page->_last_cpupid;
1017}
1018static inline void page_cpupid_reset_last(struct page *page)
b795854b 1019{
1ae71d03 1020 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1021}
1022#else
90572890 1023static inline int page_cpupid_last(struct page *page)
75980e97 1024{
90572890 1025 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1026}
1027
90572890 1028extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1029
90572890 1030static inline void page_cpupid_reset_last(struct page *page)
75980e97 1031{
09940a4f 1032 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1033}
90572890
PZ
1034#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1035#else /* !CONFIG_NUMA_BALANCING */
1036static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1037{
90572890 1038 return page_to_nid(page); /* XXX */
57e0a030
MG
1039}
1040
90572890 1041static inline int page_cpupid_last(struct page *page)
57e0a030 1042{
90572890 1043 return page_to_nid(page); /* XXX */
57e0a030
MG
1044}
1045
90572890 1046static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1047{
1048 return -1;
1049}
1050
90572890 1051static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1052{
1053 return -1;
1054}
1055
90572890 1056static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1057{
1058 return -1;
1059}
1060
90572890
PZ
1061static inline int cpu_pid_to_cpupid(int nid, int pid)
1062{
1063 return -1;
1064}
1065
1066static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1067{
1068 return 1;
1069}
1070
90572890 1071static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1072{
1073}
8c8a743c
PZ
1074
1075static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1076{
1077 return false;
1078}
90572890 1079#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1080
33dd4e0e 1081static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1082{
1083 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1084}
1085
75ef7184
MG
1086static inline pg_data_t *page_pgdat(const struct page *page)
1087{
1088 return NODE_DATA(page_to_nid(page));
1089}
1090
9127ab4f 1091#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1092static inline void set_page_section(struct page *page, unsigned long section)
1093{
1094 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1095 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1096}
1097
aa462abe 1098static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1099{
1100 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1101}
308c05e3 1102#endif
d41dee36 1103
2f1b6248 1104static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1105{
1106 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1107 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1108}
2f1b6248 1109
348f8b6c
DH
1110static inline void set_page_node(struct page *page, unsigned long node)
1111{
1112 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1113 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1114}
89689ae7 1115
2f1b6248 1116static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1117 unsigned long node, unsigned long pfn)
1da177e4 1118{
348f8b6c
DH
1119 set_page_zone(page, zone);
1120 set_page_node(page, node);
9127ab4f 1121#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1122 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1123#endif
1da177e4
LT
1124}
1125
0610c25d
GT
1126#ifdef CONFIG_MEMCG
1127static inline struct mem_cgroup *page_memcg(struct page *page)
1128{
1129 return page->mem_cgroup;
1130}
55779ec7
JW
1131static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1132{
1133 WARN_ON_ONCE(!rcu_read_lock_held());
1134 return READ_ONCE(page->mem_cgroup);
1135}
0610c25d
GT
1136#else
1137static inline struct mem_cgroup *page_memcg(struct page *page)
1138{
1139 return NULL;
1140}
55779ec7
JW
1141static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1142{
1143 WARN_ON_ONCE(!rcu_read_lock_held());
1144 return NULL;
1145}
0610c25d
GT
1146#endif
1147
f6ac2354
CL
1148/*
1149 * Some inline functions in vmstat.h depend on page_zone()
1150 */
1151#include <linux/vmstat.h>
1152
33dd4e0e 1153static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1154{
1dff8083 1155 return page_to_virt(page);
1da177e4
LT
1156}
1157
1158#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1159#define HASHED_PAGE_VIRTUAL
1160#endif
1161
1162#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1163static inline void *page_address(const struct page *page)
1164{
1165 return page->virtual;
1166}
1167static inline void set_page_address(struct page *page, void *address)
1168{
1169 page->virtual = address;
1170}
1da177e4
LT
1171#define page_address_init() do { } while(0)
1172#endif
1173
1174#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1175void *page_address(const struct page *page);
1da177e4
LT
1176void set_page_address(struct page *page, void *virtual);
1177void page_address_init(void);
1178#endif
1179
1180#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1181#define page_address(page) lowmem_page_address(page)
1182#define set_page_address(page, address) do { } while(0)
1183#define page_address_init() do { } while(0)
1184#endif
1185
e39155ea
KS
1186extern void *page_rmapping(struct page *page);
1187extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1188extern struct address_space *page_mapping(struct page *page);
1da177e4 1189
f981c595
MG
1190extern struct address_space *__page_file_mapping(struct page *);
1191
1192static inline
1193struct address_space *page_file_mapping(struct page *page)
1194{
1195 if (unlikely(PageSwapCache(page)))
1196 return __page_file_mapping(page);
1197
1198 return page->mapping;
1199}
1200
f6ab1f7f
HY
1201extern pgoff_t __page_file_index(struct page *page);
1202
1da177e4
LT
1203/*
1204 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1205 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1206 */
1207static inline pgoff_t page_index(struct page *page)
1208{
1209 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1210 return __page_file_index(page);
1da177e4
LT
1211 return page->index;
1212}
1213
1aa8aea5 1214bool page_mapped(struct page *page);
bda807d4 1215struct address_space *page_mapping(struct page *page);
cb9f753a 1216struct address_space *page_mapping_file(struct page *page);
1da177e4 1217
2f064f34
MH
1218/*
1219 * Return true only if the page has been allocated with
1220 * ALLOC_NO_WATERMARKS and the low watermark was not
1221 * met implying that the system is under some pressure.
1222 */
1223static inline bool page_is_pfmemalloc(struct page *page)
1224{
1225 /*
1226 * Page index cannot be this large so this must be
1227 * a pfmemalloc page.
1228 */
1229 return page->index == -1UL;
1230}
1231
1232/*
1233 * Only to be called by the page allocator on a freshly allocated
1234 * page.
1235 */
1236static inline void set_page_pfmemalloc(struct page *page)
1237{
1238 page->index = -1UL;
1239}
1240
1241static inline void clear_page_pfmemalloc(struct page *page)
1242{
1243 page->index = 0;
1244}
1245
1da177e4
LT
1246/*
1247 * Different kinds of faults, as returned by handle_mm_fault().
1248 * Used to decide whether a process gets delivered SIGBUS or
1249 * just gets major/minor fault counters bumped up.
1250 */
d0217ac0 1251
83c54070
NP
1252#define VM_FAULT_OOM 0x0001
1253#define VM_FAULT_SIGBUS 0x0002
1254#define VM_FAULT_MAJOR 0x0004
1255#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1256#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1257#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1258#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1259
83c54070
NP
1260#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1261#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1262#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1263#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1264#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
caa51d26
JK
1265#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1266 * and needs fsync() to complete (for
1267 * synchronous page faults in DAX) */
aa50d3a7 1268
33692f27
LT
1269#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1270 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1271 VM_FAULT_FALLBACK)
aa50d3a7 1272
282a8e03
RZ
1273#define VM_FAULT_RESULT_TRACE \
1274 { VM_FAULT_OOM, "OOM" }, \
1275 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1276 { VM_FAULT_MAJOR, "MAJOR" }, \
1277 { VM_FAULT_WRITE, "WRITE" }, \
1278 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1279 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1280 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1281 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1282 { VM_FAULT_LOCKED, "LOCKED" }, \
1283 { VM_FAULT_RETRY, "RETRY" }, \
1284 { VM_FAULT_FALLBACK, "FALLBACK" }, \
caa51d26
JK
1285 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1286 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
282a8e03 1287
aa50d3a7
AK
1288/* Encode hstate index for a hwpoisoned large page */
1289#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1290#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1291
1c0fe6e3
NP
1292/*
1293 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1294 */
1295extern void pagefault_out_of_memory(void);
1296
1da177e4
LT
1297#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1298
ddd588b5 1299/*
7bf02ea2 1300 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1301 * various contexts.
1302 */
4b59e6c4 1303#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1304
9af744d7 1305extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1306
7f43add4 1307extern bool can_do_mlock(void);
1da177e4
LT
1308extern int user_shm_lock(size_t, struct user_struct *);
1309extern void user_shm_unlock(size_t, struct user_struct *);
1310
1311/*
1312 * Parameter block passed down to zap_pte_range in exceptional cases.
1313 */
1314struct zap_details {
1da177e4
LT
1315 struct address_space *check_mapping; /* Check page->mapping if set */
1316 pgoff_t first_index; /* Lowest page->index to unmap */
1317 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1318};
1319
df6ad698
JG
1320struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1321 pte_t pte, bool with_public_device);
1322#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1323
28093f9f
GS
1324struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1325 pmd_t pmd);
7e675137 1326
27d036e3
LR
1327void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1328 unsigned long size);
14f5ff5d 1329void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1330 unsigned long size);
4f74d2c8
LT
1331void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1332 unsigned long start, unsigned long end);
e6473092
MM
1333
1334/**
1335 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1336 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1337 * this handler should only handle pud_trans_huge() puds.
1338 * the pmd_entry or pte_entry callbacks will be used for
1339 * regular PUDs.
e6473092 1340 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1341 * this handler is required to be able to handle
1342 * pmd_trans_huge() pmds. They may simply choose to
1343 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1344 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1345 * @pte_hole: if set, called for each hole at all levels
5dc37642 1346 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1347 * @test_walk: caller specific callback function to determine whether
f7e2355f 1348 * we walk over the current vma or not. Returning 0
fafaa426
NH
1349 * value means "do page table walk over the current vma,"
1350 * and a negative one means "abort current page table walk
f7e2355f 1351 * right now." 1 means "skip the current vma."
fafaa426
NH
1352 * @mm: mm_struct representing the target process of page table walk
1353 * @vma: vma currently walked (NULL if walking outside vmas)
1354 * @private: private data for callbacks' usage
e6473092 1355 *
fafaa426 1356 * (see the comment on walk_page_range() for more details)
e6473092
MM
1357 */
1358struct mm_walk {
a00cc7d9
MW
1359 int (*pud_entry)(pud_t *pud, unsigned long addr,
1360 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1361 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1362 unsigned long next, struct mm_walk *walk);
1363 int (*pte_entry)(pte_t *pte, unsigned long addr,
1364 unsigned long next, struct mm_walk *walk);
1365 int (*pte_hole)(unsigned long addr, unsigned long next,
1366 struct mm_walk *walk);
1367 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1368 unsigned long addr, unsigned long next,
1369 struct mm_walk *walk);
fafaa426
NH
1370 int (*test_walk)(unsigned long addr, unsigned long next,
1371 struct mm_walk *walk);
2165009b 1372 struct mm_struct *mm;
fafaa426 1373 struct vm_area_struct *vma;
2165009b 1374 void *private;
e6473092
MM
1375};
1376
2165009b
DH
1377int walk_page_range(unsigned long addr, unsigned long end,
1378 struct mm_walk *walk);
900fc5f1 1379int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1380void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1381 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1382int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1383 struct vm_area_struct *vma);
09796395 1384int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 1385 unsigned long *start, unsigned long *end,
09796395 1386 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1387int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1388 unsigned long *pfn);
d87fe660 1389int follow_phys(struct vm_area_struct *vma, unsigned long address,
1390 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1391int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1392 void *buf, int len, int write);
1da177e4 1393
7caef267 1394extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1395extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1396void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1397void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1398int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1399int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1400int invalidate_inode_page(struct page *page);
1401
7ee1dd3f 1402#ifdef CONFIG_MMU
dcddffd4
KS
1403extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1404 unsigned int flags);
5c723ba5 1405extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1406 unsigned long address, unsigned int fault_flags,
1407 bool *unlocked);
977fbdcd
MW
1408void unmap_mapping_pages(struct address_space *mapping,
1409 pgoff_t start, pgoff_t nr, bool even_cows);
1410void unmap_mapping_range(struct address_space *mapping,
1411 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1412#else
dcddffd4
KS
1413static inline int handle_mm_fault(struct vm_area_struct *vma,
1414 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1415{
1416 /* should never happen if there's no MMU */
1417 BUG();
1418 return VM_FAULT_SIGBUS;
1419}
5c723ba5
PZ
1420static inline int fixup_user_fault(struct task_struct *tsk,
1421 struct mm_struct *mm, unsigned long address,
4a9e1cda 1422 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1423{
1424 /* should never happen if there's no MMU */
1425 BUG();
1426 return -EFAULT;
1427}
977fbdcd
MW
1428static inline void unmap_mapping_pages(struct address_space *mapping,
1429 pgoff_t start, pgoff_t nr, bool even_cows) { }
1430static inline void unmap_mapping_range(struct address_space *mapping,
1431 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1432#endif
f33ea7f4 1433
977fbdcd
MW
1434static inline void unmap_shared_mapping_range(struct address_space *mapping,
1435 loff_t const holebegin, loff_t const holelen)
1436{
1437 unmap_mapping_range(mapping, holebegin, holelen, 0);
1438}
1439
1440extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1441 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1442extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1443 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1444extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1445 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1446
1e987790
DH
1447long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1448 unsigned long start, unsigned long nr_pages,
9beae1ea 1449 unsigned int gup_flags, struct page **pages,
5b56d49f 1450 struct vm_area_struct **vmas, int *locked);
c12d2da5 1451long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1452 unsigned int gup_flags, struct page **pages,
cde70140 1453 struct vm_area_struct **vmas);
c12d2da5 1454long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1455 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1456long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1457 struct page **pages, unsigned int gup_flags);
2bb6d283
DW
1458#ifdef CONFIG_FS_DAX
1459long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1460 unsigned int gup_flags, struct page **pages,
1461 struct vm_area_struct **vmas);
1462#else
1463static inline long get_user_pages_longterm(unsigned long start,
1464 unsigned long nr_pages, unsigned int gup_flags,
1465 struct page **pages, struct vm_area_struct **vmas)
1466{
1467 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1468}
1469#endif /* CONFIG_FS_DAX */
1470
d2bf6be8
NP
1471int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1472 struct page **pages);
8025e5dd
JK
1473
1474/* Container for pinned pfns / pages */
1475struct frame_vector {
1476 unsigned int nr_allocated; /* Number of frames we have space for */
1477 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1478 bool got_ref; /* Did we pin pages by getting page ref? */
1479 bool is_pfns; /* Does array contain pages or pfns? */
1480 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1481 * pfns_vector_pages() or pfns_vector_pfns()
1482 * for access */
1483};
1484
1485struct frame_vector *frame_vector_create(unsigned int nr_frames);
1486void frame_vector_destroy(struct frame_vector *vec);
1487int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1488 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1489void put_vaddr_frames(struct frame_vector *vec);
1490int frame_vector_to_pages(struct frame_vector *vec);
1491void frame_vector_to_pfns(struct frame_vector *vec);
1492
1493static inline unsigned int frame_vector_count(struct frame_vector *vec)
1494{
1495 return vec->nr_frames;
1496}
1497
1498static inline struct page **frame_vector_pages(struct frame_vector *vec)
1499{
1500 if (vec->is_pfns) {
1501 int err = frame_vector_to_pages(vec);
1502
1503 if (err)
1504 return ERR_PTR(err);
1505 }
1506 return (struct page **)(vec->ptrs);
1507}
1508
1509static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1510{
1511 if (!vec->is_pfns)
1512 frame_vector_to_pfns(vec);
1513 return (unsigned long *)(vec->ptrs);
1514}
1515
18022c5d
MG
1516struct kvec;
1517int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1518 struct page **pages);
1519int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1520struct page *get_dump_page(unsigned long addr);
1da177e4 1521
cf9a2ae8 1522extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1523extern void do_invalidatepage(struct page *page, unsigned int offset,
1524 unsigned int length);
cf9a2ae8 1525
f82b3764 1526void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1527int __set_page_dirty_nobuffers(struct page *page);
76719325 1528int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1529int redirty_page_for_writepage(struct writeback_control *wbc,
1530 struct page *page);
62cccb8c 1531void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1532void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1533 struct bdi_writeback *wb);
b3c97528 1534int set_page_dirty(struct page *page);
1da177e4 1535int set_page_dirty_lock(struct page *page);
736304f3
JK
1536void __cancel_dirty_page(struct page *page);
1537static inline void cancel_dirty_page(struct page *page)
1538{
1539 /* Avoid atomic ops, locking, etc. when not actually needed. */
1540 if (PageDirty(page))
1541 __cancel_dirty_page(page);
1542}
1da177e4 1543int clear_page_dirty_for_io(struct page *page);
b9ea2515 1544
a9090253 1545int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1546
b5330628
ON
1547static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1548{
1549 return !vma->vm_ops;
1550}
1551
b0506e48
MR
1552#ifdef CONFIG_SHMEM
1553/*
1554 * The vma_is_shmem is not inline because it is used only by slow
1555 * paths in userfault.
1556 */
1557bool vma_is_shmem(struct vm_area_struct *vma);
1558#else
1559static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1560#endif
1561
d17af505 1562int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1563
b6a2fea3
OW
1564extern unsigned long move_page_tables(struct vm_area_struct *vma,
1565 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1566 unsigned long new_addr, unsigned long len,
1567 bool need_rmap_locks);
7da4d641
PZ
1568extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1569 unsigned long end, pgprot_t newprot,
4b10e7d5 1570 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1571extern int mprotect_fixup(struct vm_area_struct *vma,
1572 struct vm_area_struct **pprev, unsigned long start,
1573 unsigned long end, unsigned long newflags);
1da177e4 1574
465a454f
PZ
1575/*
1576 * doesn't attempt to fault and will return short.
1577 */
1578int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1579 struct page **pages);
d559db08
KH
1580/*
1581 * per-process(per-mm_struct) statistics.
1582 */
d559db08
KH
1583static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1584{
69c97823
KK
1585 long val = atomic_long_read(&mm->rss_stat.count[member]);
1586
1587#ifdef SPLIT_RSS_COUNTING
1588 /*
1589 * counter is updated in asynchronous manner and may go to minus.
1590 * But it's never be expected number for users.
1591 */
1592 if (val < 0)
1593 val = 0;
172703b0 1594#endif
69c97823
KK
1595 return (unsigned long)val;
1596}
d559db08
KH
1597
1598static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1599{
172703b0 1600 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1601}
1602
1603static inline void inc_mm_counter(struct mm_struct *mm, int member)
1604{
172703b0 1605 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1606}
1607
1608static inline void dec_mm_counter(struct mm_struct *mm, int member)
1609{
172703b0 1610 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1611}
1612
eca56ff9
JM
1613/* Optimized variant when page is already known not to be PageAnon */
1614static inline int mm_counter_file(struct page *page)
1615{
1616 if (PageSwapBacked(page))
1617 return MM_SHMEMPAGES;
1618 return MM_FILEPAGES;
1619}
1620
1621static inline int mm_counter(struct page *page)
1622{
1623 if (PageAnon(page))
1624 return MM_ANONPAGES;
1625 return mm_counter_file(page);
1626}
1627
d559db08
KH
1628static inline unsigned long get_mm_rss(struct mm_struct *mm)
1629{
1630 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1631 get_mm_counter(mm, MM_ANONPAGES) +
1632 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1633}
1634
1635static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1636{
1637 return max(mm->hiwater_rss, get_mm_rss(mm));
1638}
1639
1640static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1641{
1642 return max(mm->hiwater_vm, mm->total_vm);
1643}
1644
1645static inline void update_hiwater_rss(struct mm_struct *mm)
1646{
1647 unsigned long _rss = get_mm_rss(mm);
1648
1649 if ((mm)->hiwater_rss < _rss)
1650 (mm)->hiwater_rss = _rss;
1651}
1652
1653static inline void update_hiwater_vm(struct mm_struct *mm)
1654{
1655 if (mm->hiwater_vm < mm->total_vm)
1656 mm->hiwater_vm = mm->total_vm;
1657}
1658
695f0559
PC
1659static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1660{
1661 mm->hiwater_rss = get_mm_rss(mm);
1662}
1663
d559db08
KH
1664static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1665 struct mm_struct *mm)
1666{
1667 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1668
1669 if (*maxrss < hiwater_rss)
1670 *maxrss = hiwater_rss;
1671}
1672
53bddb4e 1673#if defined(SPLIT_RSS_COUNTING)
05af2e10 1674void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1675#else
05af2e10 1676static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1677{
1678}
1679#endif
465a454f 1680
3565fce3
DW
1681#ifndef __HAVE_ARCH_PTE_DEVMAP
1682static inline int pte_devmap(pte_t pte)
1683{
1684 return 0;
1685}
1686#endif
1687
6d2329f8 1688int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1689
25ca1d6c
NK
1690extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1691 spinlock_t **ptl);
1692static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1693 spinlock_t **ptl)
1694{
1695 pte_t *ptep;
1696 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1697 return ptep;
1698}
c9cfcddf 1699
c2febafc
KS
1700#ifdef __PAGETABLE_P4D_FOLDED
1701static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1702 unsigned long address)
1703{
1704 return 0;
1705}
1706#else
1707int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1708#endif
1709
b4e98d9a 1710#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1711static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1712 unsigned long address)
1713{
1714 return 0;
1715}
b4e98d9a
KS
1716static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1717static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1718
5f22df00 1719#else
c2febafc 1720int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1721
b4e98d9a
KS
1722static inline void mm_inc_nr_puds(struct mm_struct *mm)
1723{
af5b0f6a 1724 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1725}
1726
1727static inline void mm_dec_nr_puds(struct mm_struct *mm)
1728{
af5b0f6a 1729 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1730}
5f22df00
NP
1731#endif
1732
2d2f5119 1733#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1734static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1735 unsigned long address)
1736{
1737 return 0;
1738}
dc6c9a35 1739
dc6c9a35
KS
1740static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1741static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1742
5f22df00 1743#else
1bb3630e 1744int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1745
dc6c9a35
KS
1746static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1747{
af5b0f6a 1748 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1749}
1750
1751static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1752{
af5b0f6a 1753 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1754}
5f22df00
NP
1755#endif
1756
c4812909 1757#ifdef CONFIG_MMU
af5b0f6a 1758static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1759{
af5b0f6a 1760 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1761}
1762
af5b0f6a 1763static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1764{
af5b0f6a 1765 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1766}
1767
1768static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1769{
af5b0f6a 1770 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1771}
1772
1773static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1774{
af5b0f6a 1775 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1776}
1777#else
c4812909 1778
af5b0f6a
KS
1779static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1780static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1781{
1782 return 0;
1783}
1784
1785static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1786static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1787#endif
1788
3ed3a4f0 1789int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1790int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1791
1da177e4
LT
1792/*
1793 * The following ifdef needed to get the 4level-fixup.h header to work.
1794 * Remove it when 4level-fixup.h has been removed.
1795 */
1bb3630e 1796#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1797
1798#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1799static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1800 unsigned long address)
1801{
1802 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1803 NULL : p4d_offset(pgd, address);
1804}
1805
1806static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1807 unsigned long address)
1da177e4 1808{
c2febafc
KS
1809 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1810 NULL : pud_offset(p4d, address);
1da177e4 1811}
505a60e2 1812#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1813
1814static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1815{
1bb3630e
HD
1816 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1817 NULL: pmd_offset(pud, address);
1da177e4 1818}
1bb3630e
HD
1819#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1820
57c1ffce 1821#if USE_SPLIT_PTE_PTLOCKS
597d795a 1822#if ALLOC_SPLIT_PTLOCKS
b35f1819 1823void __init ptlock_cache_init(void);
539edb58
PZ
1824extern bool ptlock_alloc(struct page *page);
1825extern void ptlock_free(struct page *page);
1826
1827static inline spinlock_t *ptlock_ptr(struct page *page)
1828{
1829 return page->ptl;
1830}
597d795a 1831#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1832static inline void ptlock_cache_init(void)
1833{
1834}
1835
49076ec2
KS
1836static inline bool ptlock_alloc(struct page *page)
1837{
49076ec2
KS
1838 return true;
1839}
539edb58 1840
49076ec2
KS
1841static inline void ptlock_free(struct page *page)
1842{
49076ec2
KS
1843}
1844
1845static inline spinlock_t *ptlock_ptr(struct page *page)
1846{
539edb58 1847 return &page->ptl;
49076ec2 1848}
597d795a 1849#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1850
1851static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1852{
1853 return ptlock_ptr(pmd_page(*pmd));
1854}
1855
1856static inline bool ptlock_init(struct page *page)
1857{
1858 /*
1859 * prep_new_page() initialize page->private (and therefore page->ptl)
1860 * with 0. Make sure nobody took it in use in between.
1861 *
1862 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1863 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1864 */
309381fe 1865 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1866 if (!ptlock_alloc(page))
1867 return false;
1868 spin_lock_init(ptlock_ptr(page));
1869 return true;
1870}
1871
1872/* Reset page->mapping so free_pages_check won't complain. */
1873static inline void pte_lock_deinit(struct page *page)
1874{
1875 page->mapping = NULL;
1876 ptlock_free(page);
1877}
1878
57c1ffce 1879#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1880/*
1881 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1882 */
49076ec2
KS
1883static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1884{
1885 return &mm->page_table_lock;
1886}
b35f1819 1887static inline void ptlock_cache_init(void) {}
49076ec2
KS
1888static inline bool ptlock_init(struct page *page) { return true; }
1889static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1890#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1891
b35f1819
KS
1892static inline void pgtable_init(void)
1893{
1894 ptlock_cache_init();
1895 pgtable_cache_init();
1896}
1897
390f44e2 1898static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1899{
706874e9
VD
1900 if (!ptlock_init(page))
1901 return false;
1d40a5ea 1902 __SetPageTable(page);
2f569afd 1903 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1904 return true;
2f569afd
MS
1905}
1906
1907static inline void pgtable_page_dtor(struct page *page)
1908{
1909 pte_lock_deinit(page);
1d40a5ea 1910 __ClearPageTable(page);
2f569afd
MS
1911 dec_zone_page_state(page, NR_PAGETABLE);
1912}
1913
c74df32c
HD
1914#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1915({ \
4c21e2f2 1916 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1917 pte_t *__pte = pte_offset_map(pmd, address); \
1918 *(ptlp) = __ptl; \
1919 spin_lock(__ptl); \
1920 __pte; \
1921})
1922
1923#define pte_unmap_unlock(pte, ptl) do { \
1924 spin_unlock(ptl); \
1925 pte_unmap(pte); \
1926} while (0)
1927
3ed3a4f0
KS
1928#define pte_alloc(mm, pmd, address) \
1929 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1930
1931#define pte_alloc_map(mm, pmd, address) \
1932 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1933
c74df32c 1934#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1935 (pte_alloc(mm, pmd, address) ? \
1936 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1937
1bb3630e 1938#define pte_alloc_kernel(pmd, address) \
8ac1f832 1939 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1940 NULL: pte_offset_kernel(pmd, address))
1da177e4 1941
e009bb30
KS
1942#if USE_SPLIT_PMD_PTLOCKS
1943
634391ac
MS
1944static struct page *pmd_to_page(pmd_t *pmd)
1945{
1946 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1947 return virt_to_page((void *)((unsigned long) pmd & mask));
1948}
1949
e009bb30
KS
1950static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1951{
634391ac 1952 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1953}
1954
1955static inline bool pgtable_pmd_page_ctor(struct page *page)
1956{
e009bb30
KS
1957#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1958 page->pmd_huge_pte = NULL;
1959#endif
49076ec2 1960 return ptlock_init(page);
e009bb30
KS
1961}
1962
1963static inline void pgtable_pmd_page_dtor(struct page *page)
1964{
1965#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1966 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1967#endif
49076ec2 1968 ptlock_free(page);
e009bb30
KS
1969}
1970
634391ac 1971#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1972
1973#else
1974
9a86cb7b
KS
1975static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1976{
1977 return &mm->page_table_lock;
1978}
1979
e009bb30
KS
1980static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1981static inline void pgtable_pmd_page_dtor(struct page *page) {}
1982
c389a250 1983#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1984
e009bb30
KS
1985#endif
1986
9a86cb7b
KS
1987static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1988{
1989 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1990 spin_lock(ptl);
1991 return ptl;
1992}
1993
a00cc7d9
MW
1994/*
1995 * No scalability reason to split PUD locks yet, but follow the same pattern
1996 * as the PMD locks to make it easier if we decide to. The VM should not be
1997 * considered ready to switch to split PUD locks yet; there may be places
1998 * which need to be converted from page_table_lock.
1999 */
2000static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2001{
2002 return &mm->page_table_lock;
2003}
2004
2005static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2006{
2007 spinlock_t *ptl = pud_lockptr(mm, pud);
2008
2009 spin_lock(ptl);
2010 return ptl;
2011}
62906027 2012
a00cc7d9 2013extern void __init pagecache_init(void);
1da177e4 2014extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
2015extern void free_area_init_node(int nid, unsigned long * zones_size,
2016 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
2017extern void free_initmem(void);
2018
69afade7
JL
2019/*
2020 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2021 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2022 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2023 * Return pages freed into the buddy system.
2024 */
11199692 2025extern unsigned long free_reserved_area(void *start, void *end,
69afade7 2026 int poison, char *s);
c3d5f5f0 2027
cfa11e08
JL
2028#ifdef CONFIG_HIGHMEM
2029/*
2030 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2031 * and totalram_pages.
2032 */
2033extern void free_highmem_page(struct page *page);
2034#endif
69afade7 2035
c3d5f5f0 2036extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2037extern void mem_init_print_info(const char *str);
69afade7 2038
4b50bcc7 2039extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2040
69afade7
JL
2041/* Free the reserved page into the buddy system, so it gets managed. */
2042static inline void __free_reserved_page(struct page *page)
2043{
2044 ClearPageReserved(page);
2045 init_page_count(page);
2046 __free_page(page);
2047}
2048
2049static inline void free_reserved_page(struct page *page)
2050{
2051 __free_reserved_page(page);
2052 adjust_managed_page_count(page, 1);
2053}
2054
2055static inline void mark_page_reserved(struct page *page)
2056{
2057 SetPageReserved(page);
2058 adjust_managed_page_count(page, -1);
2059}
2060
2061/*
2062 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2063 * The freed pages will be poisoned with pattern "poison" if it's within
2064 * range [0, UCHAR_MAX].
2065 * Return pages freed into the buddy system.
69afade7
JL
2066 */
2067static inline unsigned long free_initmem_default(int poison)
2068{
2069 extern char __init_begin[], __init_end[];
2070
11199692 2071 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2072 poison, "unused kernel");
2073}
2074
7ee3d4e8
JL
2075static inline unsigned long get_num_physpages(void)
2076{
2077 int nid;
2078 unsigned long phys_pages = 0;
2079
2080 for_each_online_node(nid)
2081 phys_pages += node_present_pages(nid);
2082
2083 return phys_pages;
2084}
2085
0ee332c1 2086#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2087/*
0ee332c1 2088 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2089 * zones, allocate the backing mem_map and account for memory holes in a more
2090 * architecture independent manner. This is a substitute for creating the
2091 * zone_sizes[] and zholes_size[] arrays and passing them to
2092 * free_area_init_node()
2093 *
2094 * An architecture is expected to register range of page frames backed by
0ee332c1 2095 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2096 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2097 * usage, an architecture is expected to do something like
2098 *
2099 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2100 * max_highmem_pfn};
2101 * for_each_valid_physical_page_range()
0ee332c1 2102 * memblock_add_node(base, size, nid)
c713216d
MG
2103 * free_area_init_nodes(max_zone_pfns);
2104 *
0ee332c1
TH
2105 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2106 * registered physical page range. Similarly
2107 * sparse_memory_present_with_active_regions() calls memory_present() for
2108 * each range when SPARSEMEM is enabled.
c713216d
MG
2109 *
2110 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2111 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2112 */
2113extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2114unsigned long node_map_pfn_alignment(void);
32996250
YL
2115unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2116 unsigned long end_pfn);
c713216d
MG
2117extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2118 unsigned long end_pfn);
2119extern void get_pfn_range_for_nid(unsigned int nid,
2120 unsigned long *start_pfn, unsigned long *end_pfn);
2121extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2122extern void free_bootmem_with_active_regions(int nid,
2123 unsigned long max_low_pfn);
2124extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2125
0ee332c1 2126#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2127
0ee332c1 2128#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2129 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2130static inline int __early_pfn_to_nid(unsigned long pfn,
2131 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2132{
2133 return 0;
2134}
2135#else
2136/* please see mm/page_alloc.c */
2137extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2138/* there is a per-arch backend function. */
8a942fde
MG
2139extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2140 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2141#endif
2142
d1b47a7c 2143#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
2144void zero_resv_unavail(void);
2145#else
2146static inline void zero_resv_unavail(void) {}
2147#endif
2148
0e0b864e 2149extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2150extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2151 enum memmap_context, struct vmem_altmap *);
bc75d33f 2152extern void setup_per_zone_wmarks(void);
1b79acc9 2153extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2154extern void mem_init(void);
8feae131 2155extern void __init mmap_init(void);
9af744d7 2156extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2157extern long si_mem_available(void);
1da177e4
LT
2158extern void si_meminfo(struct sysinfo * val);
2159extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2160#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2161extern unsigned long arch_reserved_kernel_pages(void);
2162#endif
1da177e4 2163
a8e99259
MH
2164extern __printf(3, 4)
2165void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2166
e7c8d5c9 2167extern void setup_per_cpu_pageset(void);
e7c8d5c9 2168
112067f0 2169extern void zone_pcp_update(struct zone *zone);
340175b7 2170extern void zone_pcp_reset(struct zone *zone);
112067f0 2171
75f7ad8e
PS
2172/* page_alloc.c */
2173extern int min_free_kbytes;
795ae7a0 2174extern int watermark_scale_factor;
75f7ad8e 2175
8feae131 2176/* nommu.c */
33e5d769 2177extern atomic_long_t mmap_pages_allocated;
7e660872 2178extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2179
6b2dbba8 2180/* interval_tree.c */
6b2dbba8 2181void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2182 struct rb_root_cached *root);
9826a516
ML
2183void vma_interval_tree_insert_after(struct vm_area_struct *node,
2184 struct vm_area_struct *prev,
f808c13f 2185 struct rb_root_cached *root);
6b2dbba8 2186void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2187 struct rb_root_cached *root);
2188struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2189 unsigned long start, unsigned long last);
2190struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2191 unsigned long start, unsigned long last);
2192
2193#define vma_interval_tree_foreach(vma, root, start, last) \
2194 for (vma = vma_interval_tree_iter_first(root, start, last); \
2195 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2196
bf181b9f 2197void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2198 struct rb_root_cached *root);
bf181b9f 2199void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2200 struct rb_root_cached *root);
2201struct anon_vma_chain *
2202anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2203 unsigned long start, unsigned long last);
bf181b9f
ML
2204struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2205 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2206#ifdef CONFIG_DEBUG_VM_RB
2207void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2208#endif
bf181b9f
ML
2209
2210#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2211 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2212 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2213
1da177e4 2214/* mmap.c */
34b4e4aa 2215extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2216extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2217 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2218 struct vm_area_struct *expand);
2219static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2220 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2221{
2222 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2223}
1da177e4
LT
2224extern struct vm_area_struct *vma_merge(struct mm_struct *,
2225 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2226 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2227 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2228extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2229extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2230 unsigned long addr, int new_below);
2231extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2232 unsigned long addr, int new_below);
1da177e4
LT
2233extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2234extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2235 struct rb_node **, struct rb_node *);
a8fb5618 2236extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2237extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2238 unsigned long addr, unsigned long len, pgoff_t pgoff,
2239 bool *need_rmap_locks);
1da177e4 2240extern void exit_mmap(struct mm_struct *);
925d1c40 2241
9c599024
CG
2242static inline int check_data_rlimit(unsigned long rlim,
2243 unsigned long new,
2244 unsigned long start,
2245 unsigned long end_data,
2246 unsigned long start_data)
2247{
2248 if (rlim < RLIM_INFINITY) {
2249 if (((new - start) + (end_data - start_data)) > rlim)
2250 return -ENOSPC;
2251 }
2252
2253 return 0;
2254}
2255
7906d00c
AA
2256extern int mm_take_all_locks(struct mm_struct *mm);
2257extern void mm_drop_all_locks(struct mm_struct *mm);
2258
38646013
JS
2259extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2260extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2261extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2262
84638335
KK
2263extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2264extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2265
2eefd878
DS
2266extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2267 const struct vm_special_mapping *sm);
3935ed6a
SS
2268extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2269 unsigned long addr, unsigned long len,
a62c34bd
AL
2270 unsigned long flags,
2271 const struct vm_special_mapping *spec);
2272/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2273extern int install_special_mapping(struct mm_struct *mm,
2274 unsigned long addr, unsigned long len,
2275 unsigned long flags, struct page **pages);
1da177e4
LT
2276
2277extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2278
0165ab44 2279extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2280 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2281 struct list_head *uf);
1fcfd8db 2282extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2283 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2284 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2285 struct list_head *uf);
2286extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2287 struct list_head *uf);
1da177e4 2288
1fcfd8db
ON
2289static inline unsigned long
2290do_mmap_pgoff(struct file *file, unsigned long addr,
2291 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2292 unsigned long pgoff, unsigned long *populate,
2293 struct list_head *uf)
1fcfd8db 2294{
897ab3e0 2295 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2296}
2297
bebeb3d6
ML
2298#ifdef CONFIG_MMU
2299extern int __mm_populate(unsigned long addr, unsigned long len,
2300 int ignore_errors);
2301static inline void mm_populate(unsigned long addr, unsigned long len)
2302{
2303 /* Ignore errors */
2304 (void) __mm_populate(addr, len, 1);
2305}
2306#else
2307static inline void mm_populate(unsigned long addr, unsigned long len) {}
2308#endif
2309
e4eb1ff6 2310/* These take the mm semaphore themselves */
5d22fc25 2311extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2312extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2313extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2314extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2315 unsigned long, unsigned long,
2316 unsigned long, unsigned long);
1da177e4 2317
db4fbfb9
ML
2318struct vm_unmapped_area_info {
2319#define VM_UNMAPPED_AREA_TOPDOWN 1
2320 unsigned long flags;
2321 unsigned long length;
2322 unsigned long low_limit;
2323 unsigned long high_limit;
2324 unsigned long align_mask;
2325 unsigned long align_offset;
2326};
2327
2328extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2329extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2330
2331/*
2332 * Search for an unmapped address range.
2333 *
2334 * We are looking for a range that:
2335 * - does not intersect with any VMA;
2336 * - is contained within the [low_limit, high_limit) interval;
2337 * - is at least the desired size.
2338 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2339 */
2340static inline unsigned long
2341vm_unmapped_area(struct vm_unmapped_area_info *info)
2342{
cdd7875e 2343 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2344 return unmapped_area_topdown(info);
cdd7875e
BP
2345 else
2346 return unmapped_area(info);
db4fbfb9
ML
2347}
2348
85821aab 2349/* truncate.c */
1da177e4 2350extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2351extern void truncate_inode_pages_range(struct address_space *,
2352 loff_t lstart, loff_t lend);
91b0abe3 2353extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2354
2355/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2356extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2357extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2358 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2359extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2360
2361/* mm/page-writeback.c */
2b69c828 2362int __must_check write_one_page(struct page *page);
1cf6e7d8 2363void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2364
2365/* readahead.c */
2366#define VM_MAX_READAHEAD 128 /* kbytes */
2367#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2368
1da177e4 2369int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2370 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2371
2372void page_cache_sync_readahead(struct address_space *mapping,
2373 struct file_ra_state *ra,
2374 struct file *filp,
2375 pgoff_t offset,
2376 unsigned long size);
2377
2378void page_cache_async_readahead(struct address_space *mapping,
2379 struct file_ra_state *ra,
2380 struct file *filp,
2381 struct page *pg,
2382 pgoff_t offset,
2383 unsigned long size);
2384
1be7107f 2385extern unsigned long stack_guard_gap;
d05f3169 2386/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2387extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2388
2389/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2390extern int expand_downwards(struct vm_area_struct *vma,
2391 unsigned long address);
8ca3eb08 2392#if VM_GROWSUP
46dea3d0 2393extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2394#else
fee7e49d 2395 #define expand_upwards(vma, address) (0)
9ab88515 2396#endif
1da177e4
LT
2397
2398/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2399extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2400extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2401 struct vm_area_struct **pprev);
2402
2403/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2404 NULL if none. Assume start_addr < end_addr. */
2405static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2406{
2407 struct vm_area_struct * vma = find_vma(mm,start_addr);
2408
2409 if (vma && end_addr <= vma->vm_start)
2410 vma = NULL;
2411 return vma;
2412}
2413
1be7107f
HD
2414static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2415{
2416 unsigned long vm_start = vma->vm_start;
2417
2418 if (vma->vm_flags & VM_GROWSDOWN) {
2419 vm_start -= stack_guard_gap;
2420 if (vm_start > vma->vm_start)
2421 vm_start = 0;
2422 }
2423 return vm_start;
2424}
2425
2426static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2427{
2428 unsigned long vm_end = vma->vm_end;
2429
2430 if (vma->vm_flags & VM_GROWSUP) {
2431 vm_end += stack_guard_gap;
2432 if (vm_end < vma->vm_end)
2433 vm_end = -PAGE_SIZE;
2434 }
2435 return vm_end;
2436}
2437
1da177e4
LT
2438static inline unsigned long vma_pages(struct vm_area_struct *vma)
2439{
2440 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2441}
2442
640708a2
PE
2443/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2444static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2445 unsigned long vm_start, unsigned long vm_end)
2446{
2447 struct vm_area_struct *vma = find_vma(mm, vm_start);
2448
2449 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2450 vma = NULL;
2451
2452 return vma;
2453}
2454
bad849b3 2455#ifdef CONFIG_MMU
804af2cf 2456pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2457void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2458#else
2459static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2460{
2461 return __pgprot(0);
2462}
64e45507
PF
2463static inline void vma_set_page_prot(struct vm_area_struct *vma)
2464{
2465 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2466}
bad849b3
DH
2467#endif
2468
5877231f 2469#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2470unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2471 unsigned long start, unsigned long end);
2472#endif
2473
deceb6cd 2474struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2475int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2476 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2477int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2478int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2479 unsigned long pfn);
1745cbc5
AL
2480int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2481 unsigned long pfn, pgprot_t pgprot);
423bad60 2482int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2483 pfn_t pfn);
ab77dab4
SJ
2484vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2485 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2486int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2487
1c8f4220
SJ
2488static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2489 unsigned long addr, struct page *page)
2490{
2491 int err = vm_insert_page(vma, addr, page);
2492
2493 if (err == -ENOMEM)
2494 return VM_FAULT_OOM;
2495 if (err < 0 && err != -EBUSY)
2496 return VM_FAULT_SIGBUS;
2497
2498 return VM_FAULT_NOPAGE;
2499}
2500
2501static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
2502 unsigned long addr, pfn_t pfn)
2503{
2504 int err = vm_insert_mixed(vma, addr, pfn);
2505
2506 if (err == -ENOMEM)
2507 return VM_FAULT_OOM;
2508 if (err < 0 && err != -EBUSY)
2509 return VM_FAULT_SIGBUS;
2510
2511 return VM_FAULT_NOPAGE;
2512}
2513
2514static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
2515 unsigned long addr, unsigned long pfn)
2516{
2517 int err = vm_insert_pfn(vma, addr, pfn);
2518
2519 if (err == -ENOMEM)
2520 return VM_FAULT_OOM;
2521 if (err < 0 && err != -EBUSY)
2522 return VM_FAULT_SIGBUS;
2523
2524 return VM_FAULT_NOPAGE;
2525}
deceb6cd 2526
d97baf94
SJ
2527static inline vm_fault_t vmf_error(int err)
2528{
2529 if (err == -ENOMEM)
2530 return VM_FAULT_OOM;
2531 return VM_FAULT_SIGBUS;
2532}
2533
240aadee
ML
2534struct page *follow_page_mask(struct vm_area_struct *vma,
2535 unsigned long address, unsigned int foll_flags,
2536 unsigned int *page_mask);
2537
2538static inline struct page *follow_page(struct vm_area_struct *vma,
2539 unsigned long address, unsigned int foll_flags)
2540{
2541 unsigned int unused_page_mask;
2542 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2543}
2544
deceb6cd
HD
2545#define FOLL_WRITE 0x01 /* check pte is writable */
2546#define FOLL_TOUCH 0x02 /* mark page accessed */
2547#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2548#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2549#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2550#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2551 * and return without waiting upon it */
84d33df2 2552#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2553#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2554#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2555#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2556#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2557#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2558#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2559#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2560#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2561#define FOLL_ANON 0x8000 /* don't do file mappings */
1da177e4 2562
9a291a7c
JM
2563static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2564{
2565 if (vm_fault & VM_FAULT_OOM)
2566 return -ENOMEM;
2567 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2568 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2569 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2570 return -EFAULT;
2571 return 0;
2572}
2573
2f569afd 2574typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2575 void *data);
2576extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2577 unsigned long size, pte_fn_t fn, void *data);
2578
1da177e4 2579
8823b1db
LA
2580#ifdef CONFIG_PAGE_POISONING
2581extern bool page_poisoning_enabled(void);
2582extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2583#else
2584static inline bool page_poisoning_enabled(void) { return false; }
2585static inline void kernel_poison_pages(struct page *page, int numpages,
2586 int enable) { }
2587#endif
2588
12d6f21e 2589#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2590extern bool _debug_pagealloc_enabled;
2591extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2592
2593static inline bool debug_pagealloc_enabled(void)
2594{
2595 return _debug_pagealloc_enabled;
2596}
2597
2598static inline void
2599kernel_map_pages(struct page *page, int numpages, int enable)
2600{
2601 if (!debug_pagealloc_enabled())
2602 return;
2603
2604 __kernel_map_pages(page, numpages, enable);
2605}
8a235efa
RW
2606#ifdef CONFIG_HIBERNATION
2607extern bool kernel_page_present(struct page *page);
40b44137
JK
2608#endif /* CONFIG_HIBERNATION */
2609#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2610static inline void
9858db50 2611kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2612#ifdef CONFIG_HIBERNATION
2613static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2614#endif /* CONFIG_HIBERNATION */
2615static inline bool debug_pagealloc_enabled(void)
2616{
2617 return false;
2618}
2619#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2620
a6c19dfe 2621#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2622extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2623extern int in_gate_area_no_mm(unsigned long addr);
2624extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2625#else
a6c19dfe
AL
2626static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2627{
2628 return NULL;
2629}
2630static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2631static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2632{
2633 return 0;
2634}
1da177e4
LT
2635#endif /* __HAVE_ARCH_GATE_AREA */
2636
44a70ade
MH
2637extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2638
146732ce
JT
2639#ifdef CONFIG_SYSCTL
2640extern int sysctl_drop_caches;
8d65af78 2641int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2642 void __user *, size_t *, loff_t *);
146732ce
JT
2643#endif
2644
cb731d6c
VD
2645void drop_slab(void);
2646void drop_slab_node(int nid);
9d0243bc 2647
7a9166e3
LY
2648#ifndef CONFIG_MMU
2649#define randomize_va_space 0
2650#else
a62eaf15 2651extern int randomize_va_space;
7a9166e3 2652#endif
a62eaf15 2653
045e72ac 2654const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2655void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2656
9bdac914
YL
2657void sparse_mem_maps_populate_node(struct page **map_map,
2658 unsigned long pnum_begin,
2659 unsigned long pnum_end,
2660 unsigned long map_count,
2661 int nodeid);
2662
7b73d978
CH
2663struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2664 struct vmem_altmap *altmap);
29c71111 2665pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2666p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2667pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2668pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2669pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2670void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2671struct vmem_altmap;
a8fc357b
CH
2672void *vmemmap_alloc_block_buf(unsigned long size, int node);
2673void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2674void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2675int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2676 int node);
7b73d978
CH
2677int vmemmap_populate(unsigned long start, unsigned long end, int node,
2678 struct vmem_altmap *altmap);
c2b91e2e 2679void vmemmap_populate_print_last(void);
0197518c 2680#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2681void vmemmap_free(unsigned long start, unsigned long end,
2682 struct vmem_altmap *altmap);
0197518c 2683#endif
46723bfa 2684void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2685 unsigned long nr_pages);
6a46079c 2686
82ba011b
AK
2687enum mf_flags {
2688 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2689 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2690 MF_MUST_KILL = 1 << 2,
cf870c70 2691 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2692};
83b57531
EB
2693extern int memory_failure(unsigned long pfn, int flags);
2694extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 2695extern int unpoison_memory(unsigned long pfn);
ead07f6a 2696extern int get_hwpoison_page(struct page *page);
4e41a30c 2697#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2698extern int sysctl_memory_failure_early_kill;
2699extern int sysctl_memory_failure_recovery;
facb6011 2700extern void shake_page(struct page *p, int access);
5844a486 2701extern atomic_long_t num_poisoned_pages __read_mostly;
facb6011 2702extern int soft_offline_page(struct page *page, int flags);
6a46079c 2703
cc637b17
XX
2704
2705/*
2706 * Error handlers for various types of pages.
2707 */
cc3e2af4 2708enum mf_result {
cc637b17
XX
2709 MF_IGNORED, /* Error: cannot be handled */
2710 MF_FAILED, /* Error: handling failed */
2711 MF_DELAYED, /* Will be handled later */
2712 MF_RECOVERED, /* Successfully recovered */
2713};
2714
2715enum mf_action_page_type {
2716 MF_MSG_KERNEL,
2717 MF_MSG_KERNEL_HIGH_ORDER,
2718 MF_MSG_SLAB,
2719 MF_MSG_DIFFERENT_COMPOUND,
2720 MF_MSG_POISONED_HUGE,
2721 MF_MSG_HUGE,
2722 MF_MSG_FREE_HUGE,
31286a84 2723 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2724 MF_MSG_UNMAP_FAILED,
2725 MF_MSG_DIRTY_SWAPCACHE,
2726 MF_MSG_CLEAN_SWAPCACHE,
2727 MF_MSG_DIRTY_MLOCKED_LRU,
2728 MF_MSG_CLEAN_MLOCKED_LRU,
2729 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2730 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2731 MF_MSG_DIRTY_LRU,
2732 MF_MSG_CLEAN_LRU,
2733 MF_MSG_TRUNCATED_LRU,
2734 MF_MSG_BUDDY,
2735 MF_MSG_BUDDY_2ND,
2736 MF_MSG_UNKNOWN,
2737};
2738
47ad8475
AA
2739#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2740extern void clear_huge_page(struct page *page,
c79b57e4 2741 unsigned long addr_hint,
47ad8475
AA
2742 unsigned int pages_per_huge_page);
2743extern void copy_user_huge_page(struct page *dst, struct page *src,
2744 unsigned long addr, struct vm_area_struct *vma,
2745 unsigned int pages_per_huge_page);
fa4d75c1
MK
2746extern long copy_huge_page_from_user(struct page *dst_page,
2747 const void __user *usr_src,
810a56b9
MK
2748 unsigned int pages_per_huge_page,
2749 bool allow_pagefault);
47ad8475
AA
2750#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2751
e30825f1 2752extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2753
c0a32fc5
SG
2754#ifdef CONFIG_DEBUG_PAGEALLOC
2755extern unsigned int _debug_guardpage_minorder;
e30825f1 2756extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2757
2758static inline unsigned int debug_guardpage_minorder(void)
2759{
2760 return _debug_guardpage_minorder;
2761}
2762
e30825f1
JK
2763static inline bool debug_guardpage_enabled(void)
2764{
2765 return _debug_guardpage_enabled;
2766}
2767
c0a32fc5
SG
2768static inline bool page_is_guard(struct page *page)
2769{
e30825f1
JK
2770 struct page_ext *page_ext;
2771
2772 if (!debug_guardpage_enabled())
2773 return false;
2774
2775 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2776 if (unlikely(!page_ext))
2777 return false;
2778
e30825f1 2779 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2780}
2781#else
2782static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2783static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2784static inline bool page_is_guard(struct page *page) { return false; }
2785#endif /* CONFIG_DEBUG_PAGEALLOC */
2786
f9872caf
CS
2787#if MAX_NUMNODES > 1
2788void __init setup_nr_node_ids(void);
2789#else
2790static inline void setup_nr_node_ids(void) {}
2791#endif
2792
1da177e4
LT
2793#endif /* __KERNEL__ */
2794#endif /* _LINUX_MM_H */