memcg: simplify charging kmem pages
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
072bb0aa
MG
171/*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175static bool pfmemalloc_active __read_mostly;
176
1da177e4
LT
177/*
178 * struct array_cache
179 *
1da177e4
LT
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
bda5b655 194 void *entry[]; /*
a737b3e2
AM
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
072bb0aa
MG
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 202 */
1da177e4
LT
203};
204
c8522a3a
JK
205struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208};
209
072bb0aa
MG
210#define SLAB_OBJ_PFMEMALLOC 1
211static inline bool is_obj_pfmemalloc(void *objp)
212{
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214}
215
216static inline void set_obj_pfmemalloc(void **objp)
217{
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220}
221
222static inline void clear_obj_pfmemalloc(void **objp)
223{
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225}
226
a737b3e2
AM
227/*
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
1da177e4
LT
230 */
231#define BOOT_CPUCACHE_ENTRIES 1
232struct arraycache_init {
233 struct array_cache cache;
b28a02de 234 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
235};
236
e498be7d
CL
237/*
238 * Need this for bootstrapping a per node allocator.
239 */
bf0dea23 240#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 241static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 242#define CACHE_CACHE 0
bf0dea23 243#define SIZE_NODE (MAX_NUMNODES)
e498be7d 244
ed11d9eb 245static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 246 struct kmem_cache_node *n, int tofree);
ed11d9eb 247static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
248 int node, struct list_head *list);
249static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 250static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 251static void cache_reap(struct work_struct *unused);
ed11d9eb 252
e0a42726
IM
253static int slab_early_init = 1;
254
ce8eb6c4 255#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 256
ce8eb6c4 257static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
258{
259 INIT_LIST_HEAD(&parent->slabs_full);
260 INIT_LIST_HEAD(&parent->slabs_partial);
261 INIT_LIST_HEAD(&parent->slabs_free);
262 parent->shared = NULL;
263 parent->alien = NULL;
2e1217cf 264 parent->colour_next = 0;
e498be7d
CL
265 spin_lock_init(&parent->list_lock);
266 parent->free_objects = 0;
267 parent->free_touched = 0;
268}
269
a737b3e2
AM
270#define MAKE_LIST(cachep, listp, slab, nodeid) \
271 do { \
272 INIT_LIST_HEAD(listp); \
18bf8541 273 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
274 } while (0)
275
a737b3e2
AM
276#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
277 do { \
e498be7d
CL
278 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
279 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
281 } while (0)
1da177e4 282
1da177e4
LT
283#define CFLGS_OFF_SLAB (0x80000000UL)
284#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
d4322d88 285#define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
1da177e4
LT
286
287#define BATCHREFILL_LIMIT 16
a737b3e2
AM
288/*
289 * Optimization question: fewer reaps means less probability for unnessary
290 * cpucache drain/refill cycles.
1da177e4 291 *
dc6f3f27 292 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
293 * which could lock up otherwise freeable slabs.
294 */
5f0985bb
JZ
295#define REAPTIMEOUT_AC (2*HZ)
296#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
297
298#if STATS
299#define STATS_INC_ACTIVE(x) ((x)->num_active++)
300#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
301#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
302#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 303#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
304#define STATS_SET_HIGH(x) \
305 do { \
306 if ((x)->num_active > (x)->high_mark) \
307 (x)->high_mark = (x)->num_active; \
308 } while (0)
1da177e4
LT
309#define STATS_INC_ERR(x) ((x)->errors++)
310#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 311#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 312#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
313#define STATS_SET_FREEABLE(x, i) \
314 do { \
315 if ((x)->max_freeable < i) \
316 (x)->max_freeable = i; \
317 } while (0)
1da177e4
LT
318#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
319#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
320#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
321#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
322#else
323#define STATS_INC_ACTIVE(x) do { } while (0)
324#define STATS_DEC_ACTIVE(x) do { } while (0)
325#define STATS_INC_ALLOCED(x) do { } while (0)
326#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 327#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
328#define STATS_SET_HIGH(x) do { } while (0)
329#define STATS_INC_ERR(x) do { } while (0)
330#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 331#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 332#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 333#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
334#define STATS_INC_ALLOCHIT(x) do { } while (0)
335#define STATS_INC_ALLOCMISS(x) do { } while (0)
336#define STATS_INC_FREEHIT(x) do { } while (0)
337#define STATS_INC_FREEMISS(x) do { } while (0)
338#endif
339
340#if DEBUG
1da177e4 341
a737b3e2
AM
342/*
343 * memory layout of objects:
1da177e4 344 * 0 : objp
3dafccf2 345 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
346 * the end of an object is aligned with the end of the real
347 * allocation. Catches writes behind the end of the allocation.
3dafccf2 348 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 349 * redzone word.
3dafccf2 350 * cachep->obj_offset: The real object.
3b0efdfa
CL
351 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
352 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 353 * [BYTES_PER_WORD long]
1da177e4 354 */
343e0d7a 355static int obj_offset(struct kmem_cache *cachep)
1da177e4 356{
3dafccf2 357 return cachep->obj_offset;
1da177e4
LT
358}
359
b46b8f19 360static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
361{
362 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
363 return (unsigned long long*) (objp + obj_offset(cachep) -
364 sizeof(unsigned long long));
1da177e4
LT
365}
366
b46b8f19 367static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
368{
369 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
370 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 371 return (unsigned long long *)(objp + cachep->size -
b46b8f19 372 sizeof(unsigned long long) -
87a927c7 373 REDZONE_ALIGN);
3b0efdfa 374 return (unsigned long long *) (objp + cachep->size -
b46b8f19 375 sizeof(unsigned long long));
1da177e4
LT
376}
377
343e0d7a 378static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
379{
380 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 381 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
382}
383
384#else
385
3dafccf2 386#define obj_offset(x) 0
b46b8f19
DW
387#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
388#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
389#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
390
391#endif
392
03787301
JK
393#define OBJECT_FREE (0)
394#define OBJECT_ACTIVE (1)
395
396#ifdef CONFIG_DEBUG_SLAB_LEAK
397
398static void set_obj_status(struct page *page, int idx, int val)
399{
400 int freelist_size;
401 char *status;
402 struct kmem_cache *cachep = page->slab_cache;
403
404 freelist_size = cachep->num * sizeof(freelist_idx_t);
405 status = (char *)page->freelist + freelist_size;
406 status[idx] = val;
407}
408
409static inline unsigned int get_obj_status(struct page *page, int idx)
410{
411 int freelist_size;
412 char *status;
413 struct kmem_cache *cachep = page->slab_cache;
414
415 freelist_size = cachep->num * sizeof(freelist_idx_t);
416 status = (char *)page->freelist + freelist_size;
417
418 return status[idx];
419}
420
421#else
422static inline void set_obj_status(struct page *page, int idx, int val) {}
423
424#endif
425
1da177e4 426/*
3df1cccd
DR
427 * Do not go above this order unless 0 objects fit into the slab or
428 * overridden on the command line.
1da177e4 429 */
543585cc
DR
430#define SLAB_MAX_ORDER_HI 1
431#define SLAB_MAX_ORDER_LO 0
432static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 433static bool slab_max_order_set __initdata;
1da177e4 434
6ed5eb22
PE
435static inline struct kmem_cache *virt_to_cache(const void *obj)
436{
b49af68f 437 struct page *page = virt_to_head_page(obj);
35026088 438 return page->slab_cache;
6ed5eb22
PE
439}
440
8456a648 441static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
442 unsigned int idx)
443{
8456a648 444 return page->s_mem + cache->size * idx;
8fea4e96
PE
445}
446
6a2d7a95 447/*
3b0efdfa
CL
448 * We want to avoid an expensive divide : (offset / cache->size)
449 * Using the fact that size is a constant for a particular cache,
450 * we can replace (offset / cache->size) by
6a2d7a95
ED
451 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
452 */
453static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 454 const struct page *page, void *obj)
8fea4e96 455{
8456a648 456 u32 offset = (obj - page->s_mem);
6a2d7a95 457 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
458}
459
1da177e4 460/* internal cache of cache description objs */
9b030cb8 461static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
462 .batchcount = 1,
463 .limit = BOOT_CPUCACHE_ENTRIES,
464 .shared = 1,
3b0efdfa 465 .size = sizeof(struct kmem_cache),
b28a02de 466 .name = "kmem_cache",
1da177e4
LT
467};
468
edcad250
JK
469#define BAD_ALIEN_MAGIC 0x01020304ul
470
1871e52c 471static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 472
343e0d7a 473static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 474{
bf0dea23 475 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
476}
477
03787301
JK
478static size_t calculate_freelist_size(int nr_objs, size_t align)
479{
480 size_t freelist_size;
481
482 freelist_size = nr_objs * sizeof(freelist_idx_t);
483 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
484 freelist_size += nr_objs * sizeof(char);
485
486 if (align)
487 freelist_size = ALIGN(freelist_size, align);
488
489 return freelist_size;
490}
491
9cef2e2b
JK
492static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
493 size_t idx_size, size_t align)
1da177e4 494{
9cef2e2b 495 int nr_objs;
03787301 496 size_t remained_size;
9cef2e2b 497 size_t freelist_size;
03787301 498 int extra_space = 0;
9cef2e2b 499
03787301
JK
500 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
501 extra_space = sizeof(char);
9cef2e2b
JK
502 /*
503 * Ignore padding for the initial guess. The padding
504 * is at most @align-1 bytes, and @buffer_size is at
505 * least @align. In the worst case, this result will
506 * be one greater than the number of objects that fit
507 * into the memory allocation when taking the padding
508 * into account.
509 */
03787301 510 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
9cef2e2b
JK
511
512 /*
513 * This calculated number will be either the right
514 * amount, or one greater than what we want.
515 */
03787301
JK
516 remained_size = slab_size - nr_objs * buffer_size;
517 freelist_size = calculate_freelist_size(nr_objs, align);
518 if (remained_size < freelist_size)
9cef2e2b
JK
519 nr_objs--;
520
521 return nr_objs;
fbaccacf 522}
1da177e4 523
a737b3e2
AM
524/*
525 * Calculate the number of objects and left-over bytes for a given buffer size.
526 */
fbaccacf
SR
527static void cache_estimate(unsigned long gfporder, size_t buffer_size,
528 size_t align, int flags, size_t *left_over,
529 unsigned int *num)
530{
531 int nr_objs;
532 size_t mgmt_size;
533 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 534
fbaccacf
SR
535 /*
536 * The slab management structure can be either off the slab or
537 * on it. For the latter case, the memory allocated for a
538 * slab is used for:
539 *
16025177 540 * - One unsigned int for each object
fbaccacf
SR
541 * - Padding to respect alignment of @align
542 * - @buffer_size bytes for each object
543 *
544 * If the slab management structure is off the slab, then the
545 * alignment will already be calculated into the size. Because
546 * the slabs are all pages aligned, the objects will be at the
547 * correct alignment when allocated.
548 */
549 if (flags & CFLGS_OFF_SLAB) {
550 mgmt_size = 0;
551 nr_objs = slab_size / buffer_size;
552
fbaccacf 553 } else {
9cef2e2b 554 nr_objs = calculate_nr_objs(slab_size, buffer_size,
a41adfaa 555 sizeof(freelist_idx_t), align);
03787301 556 mgmt_size = calculate_freelist_size(nr_objs, align);
fbaccacf
SR
557 }
558 *num = nr_objs;
559 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
560}
561
f28510d3 562#if DEBUG
d40cee24 563#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 564
a737b3e2
AM
565static void __slab_error(const char *function, struct kmem_cache *cachep,
566 char *msg)
1da177e4
LT
567{
568 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 569 function, cachep->name, msg);
1da177e4 570 dump_stack();
373d4d09 571 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 572}
f28510d3 573#endif
1da177e4 574
3395ee05
PM
575/*
576 * By default on NUMA we use alien caches to stage the freeing of
577 * objects allocated from other nodes. This causes massive memory
578 * inefficiencies when using fake NUMA setup to split memory into a
579 * large number of small nodes, so it can be disabled on the command
580 * line
581 */
582
583static int use_alien_caches __read_mostly = 1;
584static int __init noaliencache_setup(char *s)
585{
586 use_alien_caches = 0;
587 return 1;
588}
589__setup("noaliencache", noaliencache_setup);
590
3df1cccd
DR
591static int __init slab_max_order_setup(char *str)
592{
593 get_option(&str, &slab_max_order);
594 slab_max_order = slab_max_order < 0 ? 0 :
595 min(slab_max_order, MAX_ORDER - 1);
596 slab_max_order_set = true;
597
598 return 1;
599}
600__setup("slab_max_order=", slab_max_order_setup);
601
8fce4d8e
CL
602#ifdef CONFIG_NUMA
603/*
604 * Special reaping functions for NUMA systems called from cache_reap().
605 * These take care of doing round robin flushing of alien caches (containing
606 * objects freed on different nodes from which they were allocated) and the
607 * flushing of remote pcps by calling drain_node_pages.
608 */
1871e52c 609static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
610
611static void init_reap_node(int cpu)
612{
613 int node;
614
7d6e6d09 615 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 616 if (node == MAX_NUMNODES)
442295c9 617 node = first_node(node_online_map);
8fce4d8e 618
1871e52c 619 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
620}
621
622static void next_reap_node(void)
623{
909ea964 624 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 625
8fce4d8e
CL
626 node = next_node(node, node_online_map);
627 if (unlikely(node >= MAX_NUMNODES))
628 node = first_node(node_online_map);
909ea964 629 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
630}
631
632#else
633#define init_reap_node(cpu) do { } while (0)
634#define next_reap_node(void) do { } while (0)
635#endif
636
1da177e4
LT
637/*
638 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
639 * via the workqueue/eventd.
640 * Add the CPU number into the expiration time to minimize the possibility of
641 * the CPUs getting into lockstep and contending for the global cache chain
642 * lock.
643 */
0db0628d 644static void start_cpu_timer(int cpu)
1da177e4 645{
1871e52c 646 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
647
648 /*
649 * When this gets called from do_initcalls via cpucache_init(),
650 * init_workqueues() has already run, so keventd will be setup
651 * at that time.
652 */
52bad64d 653 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 654 init_reap_node(cpu);
203b42f7 655 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
656 schedule_delayed_work_on(cpu, reap_work,
657 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
658 }
659}
660
1fe00d50 661static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 662{
d5cff635
CM
663 /*
664 * The array_cache structures contain pointers to free object.
25985edc 665 * However, when such objects are allocated or transferred to another
d5cff635
CM
666 * cache the pointers are not cleared and they could be counted as
667 * valid references during a kmemleak scan. Therefore, kmemleak must
668 * not scan such objects.
669 */
1fe00d50
JK
670 kmemleak_no_scan(ac);
671 if (ac) {
672 ac->avail = 0;
673 ac->limit = limit;
674 ac->batchcount = batch;
675 ac->touched = 0;
1da177e4 676 }
1fe00d50
JK
677}
678
679static struct array_cache *alloc_arraycache(int node, int entries,
680 int batchcount, gfp_t gfp)
681{
5e804789 682 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
683 struct array_cache *ac = NULL;
684
685 ac = kmalloc_node(memsize, gfp, node);
686 init_arraycache(ac, entries, batchcount);
687 return ac;
1da177e4
LT
688}
689
8456a648 690static inline bool is_slab_pfmemalloc(struct page *page)
072bb0aa 691{
072bb0aa
MG
692 return PageSlabPfmemalloc(page);
693}
694
695/* Clears pfmemalloc_active if no slabs have pfmalloc set */
696static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
697 struct array_cache *ac)
698{
18bf8541 699 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
8456a648 700 struct page *page;
072bb0aa
MG
701 unsigned long flags;
702
703 if (!pfmemalloc_active)
704 return;
705
ce8eb6c4 706 spin_lock_irqsave(&n->list_lock, flags);
8456a648
JK
707 list_for_each_entry(page, &n->slabs_full, lru)
708 if (is_slab_pfmemalloc(page))
072bb0aa
MG
709 goto out;
710
8456a648
JK
711 list_for_each_entry(page, &n->slabs_partial, lru)
712 if (is_slab_pfmemalloc(page))
072bb0aa
MG
713 goto out;
714
8456a648
JK
715 list_for_each_entry(page, &n->slabs_free, lru)
716 if (is_slab_pfmemalloc(page))
072bb0aa
MG
717 goto out;
718
719 pfmemalloc_active = false;
720out:
ce8eb6c4 721 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
722}
723
381760ea 724static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
725 gfp_t flags, bool force_refill)
726{
727 int i;
728 void *objp = ac->entry[--ac->avail];
729
730 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
731 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 732 struct kmem_cache_node *n;
072bb0aa
MG
733
734 if (gfp_pfmemalloc_allowed(flags)) {
735 clear_obj_pfmemalloc(&objp);
736 return objp;
737 }
738
739 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 740 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
741 /* If a !PFMEMALLOC object is found, swap them */
742 if (!is_obj_pfmemalloc(ac->entry[i])) {
743 objp = ac->entry[i];
744 ac->entry[i] = ac->entry[ac->avail];
745 ac->entry[ac->avail] = objp;
746 return objp;
747 }
748 }
749
750 /*
751 * If there are empty slabs on the slabs_free list and we are
752 * being forced to refill the cache, mark this one !pfmemalloc.
753 */
18bf8541 754 n = get_node(cachep, numa_mem_id());
ce8eb6c4 755 if (!list_empty(&n->slabs_free) && force_refill) {
8456a648 756 struct page *page = virt_to_head_page(objp);
7ecccf9d 757 ClearPageSlabPfmemalloc(page);
072bb0aa
MG
758 clear_obj_pfmemalloc(&objp);
759 recheck_pfmemalloc_active(cachep, ac);
760 return objp;
761 }
762
763 /* No !PFMEMALLOC objects available */
764 ac->avail++;
765 objp = NULL;
766 }
767
768 return objp;
769}
770
381760ea
MG
771static inline void *ac_get_obj(struct kmem_cache *cachep,
772 struct array_cache *ac, gfp_t flags, bool force_refill)
773{
774 void *objp;
775
776 if (unlikely(sk_memalloc_socks()))
777 objp = __ac_get_obj(cachep, ac, flags, force_refill);
778 else
779 objp = ac->entry[--ac->avail];
780
781 return objp;
782}
783
d3aec344
JK
784static noinline void *__ac_put_obj(struct kmem_cache *cachep,
785 struct array_cache *ac, void *objp)
072bb0aa
MG
786{
787 if (unlikely(pfmemalloc_active)) {
788 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 789 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
790 if (PageSlabPfmemalloc(page))
791 set_obj_pfmemalloc(&objp);
792 }
793
381760ea
MG
794 return objp;
795}
796
797static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
798 void *objp)
799{
800 if (unlikely(sk_memalloc_socks()))
801 objp = __ac_put_obj(cachep, ac, objp);
802
072bb0aa
MG
803 ac->entry[ac->avail++] = objp;
804}
805
3ded175a
CL
806/*
807 * Transfer objects in one arraycache to another.
808 * Locking must be handled by the caller.
809 *
810 * Return the number of entries transferred.
811 */
812static int transfer_objects(struct array_cache *to,
813 struct array_cache *from, unsigned int max)
814{
815 /* Figure out how many entries to transfer */
732eacc0 816 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
817
818 if (!nr)
819 return 0;
820
821 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
822 sizeof(void *) *nr);
823
824 from->avail -= nr;
825 to->avail += nr;
3ded175a
CL
826 return nr;
827}
828
765c4507
CL
829#ifndef CONFIG_NUMA
830
831#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 832#define reap_alien(cachep, n) do { } while (0)
765c4507 833
c8522a3a
JK
834static inline struct alien_cache **alloc_alien_cache(int node,
835 int limit, gfp_t gfp)
765c4507 836{
edcad250 837 return (struct alien_cache **)BAD_ALIEN_MAGIC;
765c4507
CL
838}
839
c8522a3a 840static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
841{
842}
843
844static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
845{
846 return 0;
847}
848
849static inline void *alternate_node_alloc(struct kmem_cache *cachep,
850 gfp_t flags)
851{
852 return NULL;
853}
854
8b98c169 855static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
856 gfp_t flags, int nodeid)
857{
858 return NULL;
859}
860
4167e9b2
DR
861static inline gfp_t gfp_exact_node(gfp_t flags)
862{
863 return flags;
864}
865
765c4507
CL
866#else /* CONFIG_NUMA */
867
8b98c169 868static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 869static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 870
c8522a3a
JK
871static struct alien_cache *__alloc_alien_cache(int node, int entries,
872 int batch, gfp_t gfp)
873{
5e804789 874 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
875 struct alien_cache *alc = NULL;
876
877 alc = kmalloc_node(memsize, gfp, node);
878 init_arraycache(&alc->ac, entries, batch);
49dfc304 879 spin_lock_init(&alc->lock);
c8522a3a
JK
880 return alc;
881}
882
883static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 884{
c8522a3a 885 struct alien_cache **alc_ptr;
5e804789 886 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
887 int i;
888
889 if (limit > 1)
890 limit = 12;
c8522a3a
JK
891 alc_ptr = kzalloc_node(memsize, gfp, node);
892 if (!alc_ptr)
893 return NULL;
894
895 for_each_node(i) {
896 if (i == node || !node_online(i))
897 continue;
898 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
899 if (!alc_ptr[i]) {
900 for (i--; i >= 0; i--)
901 kfree(alc_ptr[i]);
902 kfree(alc_ptr);
903 return NULL;
e498be7d
CL
904 }
905 }
c8522a3a 906 return alc_ptr;
e498be7d
CL
907}
908
c8522a3a 909static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
910{
911 int i;
912
c8522a3a 913 if (!alc_ptr)
e498be7d 914 return;
e498be7d 915 for_each_node(i)
c8522a3a
JK
916 kfree(alc_ptr[i]);
917 kfree(alc_ptr);
e498be7d
CL
918}
919
343e0d7a 920static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
921 struct array_cache *ac, int node,
922 struct list_head *list)
e498be7d 923{
18bf8541 924 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
925
926 if (ac->avail) {
ce8eb6c4 927 spin_lock(&n->list_lock);
e00946fe
CL
928 /*
929 * Stuff objects into the remote nodes shared array first.
930 * That way we could avoid the overhead of putting the objects
931 * into the free lists and getting them back later.
932 */
ce8eb6c4
CL
933 if (n->shared)
934 transfer_objects(n->shared, ac, ac->limit);
e00946fe 935
833b706c 936 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 937 ac->avail = 0;
ce8eb6c4 938 spin_unlock(&n->list_lock);
e498be7d
CL
939 }
940}
941
8fce4d8e
CL
942/*
943 * Called from cache_reap() to regularly drain alien caches round robin.
944 */
ce8eb6c4 945static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 946{
909ea964 947 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 948
ce8eb6c4 949 if (n->alien) {
c8522a3a
JK
950 struct alien_cache *alc = n->alien[node];
951 struct array_cache *ac;
952
953 if (alc) {
954 ac = &alc->ac;
49dfc304 955 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
956 LIST_HEAD(list);
957
958 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 959 spin_unlock_irq(&alc->lock);
833b706c 960 slabs_destroy(cachep, &list);
c8522a3a 961 }
8fce4d8e
CL
962 }
963 }
964}
965
a737b3e2 966static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 967 struct alien_cache **alien)
e498be7d 968{
b28a02de 969 int i = 0;
c8522a3a 970 struct alien_cache *alc;
e498be7d
CL
971 struct array_cache *ac;
972 unsigned long flags;
973
974 for_each_online_node(i) {
c8522a3a
JK
975 alc = alien[i];
976 if (alc) {
833b706c
JK
977 LIST_HEAD(list);
978
c8522a3a 979 ac = &alc->ac;
49dfc304 980 spin_lock_irqsave(&alc->lock, flags);
833b706c 981 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 982 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 983 slabs_destroy(cachep, &list);
e498be7d
CL
984 }
985 }
986}
729bd0b7 987
25c4f304
JK
988static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
989 int node, int page_node)
729bd0b7 990{
ce8eb6c4 991 struct kmem_cache_node *n;
c8522a3a
JK
992 struct alien_cache *alien = NULL;
993 struct array_cache *ac;
97654dfa 994 LIST_HEAD(list);
1ca4cb24 995
18bf8541 996 n = get_node(cachep, node);
729bd0b7 997 STATS_INC_NODEFREES(cachep);
25c4f304
JK
998 if (n->alien && n->alien[page_node]) {
999 alien = n->alien[page_node];
c8522a3a 1000 ac = &alien->ac;
49dfc304 1001 spin_lock(&alien->lock);
c8522a3a 1002 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 1003 STATS_INC_ACOVERFLOW(cachep);
25c4f304 1004 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 1005 }
c8522a3a 1006 ac_put_obj(cachep, ac, objp);
49dfc304 1007 spin_unlock(&alien->lock);
833b706c 1008 slabs_destroy(cachep, &list);
729bd0b7 1009 } else {
25c4f304 1010 n = get_node(cachep, page_node);
18bf8541 1011 spin_lock(&n->list_lock);
25c4f304 1012 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 1013 spin_unlock(&n->list_lock);
97654dfa 1014 slabs_destroy(cachep, &list);
729bd0b7
PE
1015 }
1016 return 1;
1017}
25c4f304
JK
1018
1019static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1020{
1021 int page_node = page_to_nid(virt_to_page(objp));
1022 int node = numa_mem_id();
1023 /*
1024 * Make sure we are not freeing a object from another node to the array
1025 * cache on this cpu.
1026 */
1027 if (likely(node == page_node))
1028 return 0;
1029
1030 return __cache_free_alien(cachep, objp, node, page_node);
1031}
4167e9b2
DR
1032
1033/*
1034 * Construct gfp mask to allocate from a specific node but do not invoke reclaim
1035 * or warn about failures.
1036 */
1037static inline gfp_t gfp_exact_node(gfp_t flags)
1038{
1039 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_WAIT;
1040}
e498be7d
CL
1041#endif
1042
8f9f8d9e 1043/*
6a67368c 1044 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1045 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1046 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1047 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1048 * already in use.
1049 *
18004c5d 1050 * Must hold slab_mutex.
8f9f8d9e 1051 */
6a67368c 1052static int init_cache_node_node(int node)
8f9f8d9e
DR
1053{
1054 struct kmem_cache *cachep;
ce8eb6c4 1055 struct kmem_cache_node *n;
5e804789 1056 const size_t memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1057
18004c5d 1058 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e 1059 /*
5f0985bb 1060 * Set up the kmem_cache_node for cpu before we can
8f9f8d9e
DR
1061 * begin anything. Make sure some other cpu on this
1062 * node has not already allocated this
1063 */
18bf8541
CL
1064 n = get_node(cachep, node);
1065 if (!n) {
ce8eb6c4
CL
1066 n = kmalloc_node(memsize, GFP_KERNEL, node);
1067 if (!n)
8f9f8d9e 1068 return -ENOMEM;
ce8eb6c4 1069 kmem_cache_node_init(n);
5f0985bb
JZ
1070 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1071 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
8f9f8d9e
DR
1072
1073 /*
5f0985bb
JZ
1074 * The kmem_cache_nodes don't come and go as CPUs
1075 * come and go. slab_mutex is sufficient
8f9f8d9e
DR
1076 * protection here.
1077 */
ce8eb6c4 1078 cachep->node[node] = n;
8f9f8d9e
DR
1079 }
1080
18bf8541
CL
1081 spin_lock_irq(&n->list_lock);
1082 n->free_limit =
8f9f8d9e
DR
1083 (1 + nr_cpus_node(node)) *
1084 cachep->batchcount + cachep->num;
18bf8541 1085 spin_unlock_irq(&n->list_lock);
8f9f8d9e
DR
1086 }
1087 return 0;
1088}
1089
0fa8103b
WL
1090static inline int slabs_tofree(struct kmem_cache *cachep,
1091 struct kmem_cache_node *n)
1092{
1093 return (n->free_objects + cachep->num - 1) / cachep->num;
1094}
1095
0db0628d 1096static void cpuup_canceled(long cpu)
fbf1e473
AM
1097{
1098 struct kmem_cache *cachep;
ce8eb6c4 1099 struct kmem_cache_node *n = NULL;
7d6e6d09 1100 int node = cpu_to_mem(cpu);
a70f7302 1101 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1102
18004c5d 1103 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1104 struct array_cache *nc;
1105 struct array_cache *shared;
c8522a3a 1106 struct alien_cache **alien;
97654dfa 1107 LIST_HEAD(list);
fbf1e473 1108
18bf8541 1109 n = get_node(cachep, node);
ce8eb6c4 1110 if (!n)
bf0dea23 1111 continue;
fbf1e473 1112
ce8eb6c4 1113 spin_lock_irq(&n->list_lock);
fbf1e473 1114
ce8eb6c4
CL
1115 /* Free limit for this kmem_cache_node */
1116 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1117
1118 /* cpu is dead; no one can alloc from it. */
1119 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1120 if (nc) {
97654dfa 1121 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1122 nc->avail = 0;
1123 }
fbf1e473 1124
58463c1f 1125 if (!cpumask_empty(mask)) {
ce8eb6c4 1126 spin_unlock_irq(&n->list_lock);
bf0dea23 1127 goto free_slab;
fbf1e473
AM
1128 }
1129
ce8eb6c4 1130 shared = n->shared;
fbf1e473
AM
1131 if (shared) {
1132 free_block(cachep, shared->entry,
97654dfa 1133 shared->avail, node, &list);
ce8eb6c4 1134 n->shared = NULL;
fbf1e473
AM
1135 }
1136
ce8eb6c4
CL
1137 alien = n->alien;
1138 n->alien = NULL;
fbf1e473 1139
ce8eb6c4 1140 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1141
1142 kfree(shared);
1143 if (alien) {
1144 drain_alien_cache(cachep, alien);
1145 free_alien_cache(alien);
1146 }
bf0dea23
JK
1147
1148free_slab:
97654dfa 1149 slabs_destroy(cachep, &list);
fbf1e473
AM
1150 }
1151 /*
1152 * In the previous loop, all the objects were freed to
1153 * the respective cache's slabs, now we can go ahead and
1154 * shrink each nodelist to its limit.
1155 */
18004c5d 1156 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1157 n = get_node(cachep, node);
ce8eb6c4 1158 if (!n)
fbf1e473 1159 continue;
0fa8103b 1160 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1161 }
1162}
1163
0db0628d 1164static int cpuup_prepare(long cpu)
1da177e4 1165{
343e0d7a 1166 struct kmem_cache *cachep;
ce8eb6c4 1167 struct kmem_cache_node *n = NULL;
7d6e6d09 1168 int node = cpu_to_mem(cpu);
8f9f8d9e 1169 int err;
1da177e4 1170
fbf1e473
AM
1171 /*
1172 * We need to do this right in the beginning since
1173 * alloc_arraycache's are going to use this list.
1174 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1175 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1176 */
6a67368c 1177 err = init_cache_node_node(node);
8f9f8d9e
DR
1178 if (err < 0)
1179 goto bad;
fbf1e473
AM
1180
1181 /*
1182 * Now we can go ahead with allocating the shared arrays and
1183 * array caches
1184 */
18004c5d 1185 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473 1186 struct array_cache *shared = NULL;
c8522a3a 1187 struct alien_cache **alien = NULL;
fbf1e473 1188
fbf1e473
AM
1189 if (cachep->shared) {
1190 shared = alloc_arraycache(node,
1191 cachep->shared * cachep->batchcount,
83b519e8 1192 0xbaadf00d, GFP_KERNEL);
bf0dea23 1193 if (!shared)
1da177e4 1194 goto bad;
fbf1e473
AM
1195 }
1196 if (use_alien_caches) {
83b519e8 1197 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1198 if (!alien) {
1199 kfree(shared);
fbf1e473 1200 goto bad;
12d00f6a 1201 }
fbf1e473 1202 }
18bf8541 1203 n = get_node(cachep, node);
ce8eb6c4 1204 BUG_ON(!n);
fbf1e473 1205
ce8eb6c4
CL
1206 spin_lock_irq(&n->list_lock);
1207 if (!n->shared) {
fbf1e473
AM
1208 /*
1209 * We are serialised from CPU_DEAD or
1210 * CPU_UP_CANCELLED by the cpucontrol lock
1211 */
ce8eb6c4 1212 n->shared = shared;
fbf1e473
AM
1213 shared = NULL;
1214 }
4484ebf1 1215#ifdef CONFIG_NUMA
ce8eb6c4
CL
1216 if (!n->alien) {
1217 n->alien = alien;
fbf1e473 1218 alien = NULL;
1da177e4 1219 }
fbf1e473 1220#endif
ce8eb6c4 1221 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1222 kfree(shared);
1223 free_alien_cache(alien);
1224 }
ce79ddc8 1225
fbf1e473
AM
1226 return 0;
1227bad:
12d00f6a 1228 cpuup_canceled(cpu);
fbf1e473
AM
1229 return -ENOMEM;
1230}
1231
0db0628d 1232static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1233 unsigned long action, void *hcpu)
1234{
1235 long cpu = (long)hcpu;
1236 int err = 0;
1237
1238 switch (action) {
fbf1e473
AM
1239 case CPU_UP_PREPARE:
1240 case CPU_UP_PREPARE_FROZEN:
18004c5d 1241 mutex_lock(&slab_mutex);
fbf1e473 1242 err = cpuup_prepare(cpu);
18004c5d 1243 mutex_unlock(&slab_mutex);
1da177e4
LT
1244 break;
1245 case CPU_ONLINE:
8bb78442 1246 case CPU_ONLINE_FROZEN:
1da177e4
LT
1247 start_cpu_timer(cpu);
1248 break;
1249#ifdef CONFIG_HOTPLUG_CPU
5830c590 1250 case CPU_DOWN_PREPARE:
8bb78442 1251 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1252 /*
18004c5d 1253 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1254 * held so that if cache_reap() is invoked it cannot do
1255 * anything expensive but will only modify reap_work
1256 * and reschedule the timer.
1257 */
afe2c511 1258 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1259 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1260 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1261 break;
1262 case CPU_DOWN_FAILED:
8bb78442 1263 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1264 start_cpu_timer(cpu);
1265 break;
1da177e4 1266 case CPU_DEAD:
8bb78442 1267 case CPU_DEAD_FROZEN:
4484ebf1
RT
1268 /*
1269 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1270 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1271 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1272 * memory from the node of the cpu going down. The node
4484ebf1
RT
1273 * structure is usually allocated from kmem_cache_create() and
1274 * gets destroyed at kmem_cache_destroy().
1275 */
183ff22b 1276 /* fall through */
8f5be20b 1277#endif
1da177e4 1278 case CPU_UP_CANCELED:
8bb78442 1279 case CPU_UP_CANCELED_FROZEN:
18004c5d 1280 mutex_lock(&slab_mutex);
fbf1e473 1281 cpuup_canceled(cpu);
18004c5d 1282 mutex_unlock(&slab_mutex);
1da177e4 1283 break;
1da177e4 1284 }
eac40680 1285 return notifier_from_errno(err);
1da177e4
LT
1286}
1287
0db0628d 1288static struct notifier_block cpucache_notifier = {
74b85f37
CS
1289 &cpuup_callback, NULL, 0
1290};
1da177e4 1291
8f9f8d9e
DR
1292#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1293/*
1294 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1295 * Returns -EBUSY if all objects cannot be drained so that the node is not
1296 * removed.
1297 *
18004c5d 1298 * Must hold slab_mutex.
8f9f8d9e 1299 */
6a67368c 1300static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1301{
1302 struct kmem_cache *cachep;
1303 int ret = 0;
1304
18004c5d 1305 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1306 struct kmem_cache_node *n;
8f9f8d9e 1307
18bf8541 1308 n = get_node(cachep, node);
ce8eb6c4 1309 if (!n)
8f9f8d9e
DR
1310 continue;
1311
0fa8103b 1312 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1313
ce8eb6c4
CL
1314 if (!list_empty(&n->slabs_full) ||
1315 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1316 ret = -EBUSY;
1317 break;
1318 }
1319 }
1320 return ret;
1321}
1322
1323static int __meminit slab_memory_callback(struct notifier_block *self,
1324 unsigned long action, void *arg)
1325{
1326 struct memory_notify *mnb = arg;
1327 int ret = 0;
1328 int nid;
1329
1330 nid = mnb->status_change_nid;
1331 if (nid < 0)
1332 goto out;
1333
1334 switch (action) {
1335 case MEM_GOING_ONLINE:
18004c5d 1336 mutex_lock(&slab_mutex);
6a67368c 1337 ret = init_cache_node_node(nid);
18004c5d 1338 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1339 break;
1340 case MEM_GOING_OFFLINE:
18004c5d 1341 mutex_lock(&slab_mutex);
6a67368c 1342 ret = drain_cache_node_node(nid);
18004c5d 1343 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1344 break;
1345 case MEM_ONLINE:
1346 case MEM_OFFLINE:
1347 case MEM_CANCEL_ONLINE:
1348 case MEM_CANCEL_OFFLINE:
1349 break;
1350 }
1351out:
5fda1bd5 1352 return notifier_from_errno(ret);
8f9f8d9e
DR
1353}
1354#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1355
e498be7d 1356/*
ce8eb6c4 1357 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1358 */
6744f087 1359static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1360 int nodeid)
e498be7d 1361{
6744f087 1362 struct kmem_cache_node *ptr;
e498be7d 1363
6744f087 1364 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1365 BUG_ON(!ptr);
1366
6744f087 1367 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1368 /*
1369 * Do not assume that spinlocks can be initialized via memcpy:
1370 */
1371 spin_lock_init(&ptr->list_lock);
1372
e498be7d 1373 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1374 cachep->node[nodeid] = ptr;
e498be7d
CL
1375}
1376
556a169d 1377/*
ce8eb6c4
CL
1378 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1379 * size of kmem_cache_node.
556a169d 1380 */
ce8eb6c4 1381static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1382{
1383 int node;
1384
1385 for_each_online_node(node) {
ce8eb6c4 1386 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1387 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1388 REAPTIMEOUT_NODE +
1389 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1390 }
1391}
1392
a737b3e2
AM
1393/*
1394 * Initialisation. Called after the page allocator have been initialised and
1395 * before smp_init().
1da177e4
LT
1396 */
1397void __init kmem_cache_init(void)
1398{
e498be7d
CL
1399 int i;
1400
68126702
JK
1401 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1402 sizeof(struct rcu_head));
9b030cb8
CL
1403 kmem_cache = &kmem_cache_boot;
1404
b6e68bc1 1405 if (num_possible_nodes() == 1)
62918a03
SS
1406 use_alien_caches = 0;
1407
3c583465 1408 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1409 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1410
1da177e4
LT
1411 /*
1412 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1413 * page orders on machines with more than 32MB of memory if
1414 * not overridden on the command line.
1da177e4 1415 */
3df1cccd 1416 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1417 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1418
1da177e4
LT
1419 /* Bootstrap is tricky, because several objects are allocated
1420 * from caches that do not exist yet:
9b030cb8
CL
1421 * 1) initialize the kmem_cache cache: it contains the struct
1422 * kmem_cache structures of all caches, except kmem_cache itself:
1423 * kmem_cache is statically allocated.
e498be7d 1424 * Initially an __init data area is used for the head array and the
ce8eb6c4 1425 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1426 * array at the end of the bootstrap.
1da177e4 1427 * 2) Create the first kmalloc cache.
343e0d7a 1428 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1429 * An __init data area is used for the head array.
1430 * 3) Create the remaining kmalloc caches, with minimally sized
1431 * head arrays.
9b030cb8 1432 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1433 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1434 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1435 * the other cache's with kmalloc allocated memory.
1436 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1437 */
1438
9b030cb8 1439 /* 1) create the kmem_cache */
1da177e4 1440
8da3430d 1441 /*
b56efcf0 1442 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1443 */
2f9baa9f 1444 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1445 offsetof(struct kmem_cache, node) +
6744f087 1446 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1447 SLAB_HWCACHE_ALIGN);
1448 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1449 slab_state = PARTIAL;
1da177e4 1450
a737b3e2 1451 /*
bf0dea23
JK
1452 * Initialize the caches that provide memory for the kmem_cache_node
1453 * structures first. Without this, further allocations will bug.
e498be7d 1454 */
bf0dea23 1455 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1456 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1457 slab_state = PARTIAL_NODE;
34cc6990 1458 setup_kmalloc_cache_index_table();
e498be7d 1459
e0a42726
IM
1460 slab_early_init = 0;
1461
ce8eb6c4 1462 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1463 {
1ca4cb24
PE
1464 int nid;
1465
9c09a95c 1466 for_each_online_node(nid) {
ce8eb6c4 1467 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1468
bf0dea23 1469 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1470 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1471 }
1472 }
1da177e4 1473
f97d5f63 1474 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1475}
1476
1477void __init kmem_cache_init_late(void)
1478{
1479 struct kmem_cache *cachep;
1480
97d06609 1481 slab_state = UP;
52cef189 1482
8429db5c 1483 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1484 mutex_lock(&slab_mutex);
1485 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1486 if (enable_cpucache(cachep, GFP_NOWAIT))
1487 BUG();
18004c5d 1488 mutex_unlock(&slab_mutex);
056c6241 1489
97d06609
CL
1490 /* Done! */
1491 slab_state = FULL;
1492
a737b3e2
AM
1493 /*
1494 * Register a cpu startup notifier callback that initializes
1495 * cpu_cache_get for all new cpus
1da177e4
LT
1496 */
1497 register_cpu_notifier(&cpucache_notifier);
1da177e4 1498
8f9f8d9e
DR
1499#ifdef CONFIG_NUMA
1500 /*
1501 * Register a memory hotplug callback that initializes and frees
6a67368c 1502 * node.
8f9f8d9e
DR
1503 */
1504 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1505#endif
1506
a737b3e2
AM
1507 /*
1508 * The reap timers are started later, with a module init call: That part
1509 * of the kernel is not yet operational.
1da177e4
LT
1510 */
1511}
1512
1513static int __init cpucache_init(void)
1514{
1515 int cpu;
1516
a737b3e2
AM
1517 /*
1518 * Register the timers that return unneeded pages to the page allocator
1da177e4 1519 */
e498be7d 1520 for_each_online_cpu(cpu)
a737b3e2 1521 start_cpu_timer(cpu);
a164f896
GC
1522
1523 /* Done! */
97d06609 1524 slab_state = FULL;
1da177e4
LT
1525 return 0;
1526}
1da177e4
LT
1527__initcall(cpucache_init);
1528
8bdec192
RA
1529static noinline void
1530slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1531{
9a02d699 1532#if DEBUG
ce8eb6c4 1533 struct kmem_cache_node *n;
8456a648 1534 struct page *page;
8bdec192
RA
1535 unsigned long flags;
1536 int node;
9a02d699
DR
1537 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1538 DEFAULT_RATELIMIT_BURST);
1539
1540 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1541 return;
8bdec192
RA
1542
1543 printk(KERN_WARNING
1544 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1545 nodeid, gfpflags);
1546 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1547 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1548
18bf8541 1549 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1550 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1551 unsigned long active_slabs = 0, num_slabs = 0;
1552
ce8eb6c4 1553 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1554 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1555 active_objs += cachep->num;
1556 active_slabs++;
1557 }
8456a648
JK
1558 list_for_each_entry(page, &n->slabs_partial, lru) {
1559 active_objs += page->active;
8bdec192
RA
1560 active_slabs++;
1561 }
8456a648 1562 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1563 num_slabs++;
1564
ce8eb6c4
CL
1565 free_objects += n->free_objects;
1566 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1567
1568 num_slabs += active_slabs;
1569 num_objs = num_slabs * cachep->num;
1570 printk(KERN_WARNING
1571 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1572 node, active_slabs, num_slabs, active_objs, num_objs,
1573 free_objects);
1574 }
9a02d699 1575#endif
8bdec192
RA
1576}
1577
1da177e4 1578/*
8a7d9b43
WSH
1579 * Interface to system's page allocator. No need to hold the
1580 * kmem_cache_node ->list_lock.
1da177e4
LT
1581 *
1582 * If we requested dmaable memory, we will get it. Even if we
1583 * did not request dmaable memory, we might get it, but that
1584 * would be relatively rare and ignorable.
1585 */
0c3aa83e
JK
1586static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1587 int nodeid)
1da177e4
LT
1588{
1589 struct page *page;
e1b6aa6f 1590 int nr_pages;
765c4507 1591
a618e89f 1592 flags |= cachep->allocflags;
e12ba74d
MG
1593 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1594 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1595
5dfb4175
VD
1596 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1597 return NULL;
1598
96db800f 1599 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1600 if (!page) {
5dfb4175 1601 memcg_uncharge_slab(cachep, cachep->gfporder);
9a02d699 1602 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1603 return NULL;
8bdec192 1604 }
1da177e4 1605
b37f1dd0 1606 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
2f064f34 1607 if (page_is_pfmemalloc(page))
072bb0aa
MG
1608 pfmemalloc_active = true;
1609
e1b6aa6f 1610 nr_pages = (1 << cachep->gfporder);
1da177e4 1611 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1612 add_zone_page_state(page_zone(page),
1613 NR_SLAB_RECLAIMABLE, nr_pages);
1614 else
1615 add_zone_page_state(page_zone(page),
1616 NR_SLAB_UNRECLAIMABLE, nr_pages);
a57a4988 1617 __SetPageSlab(page);
2f064f34 1618 if (page_is_pfmemalloc(page))
a57a4988 1619 SetPageSlabPfmemalloc(page);
072bb0aa 1620
b1eeab67
VN
1621 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1622 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1623
1624 if (cachep->ctor)
1625 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1626 else
1627 kmemcheck_mark_unallocated_pages(page, nr_pages);
1628 }
c175eea4 1629
0c3aa83e 1630 return page;
1da177e4
LT
1631}
1632
1633/*
1634 * Interface to system's page release.
1635 */
0c3aa83e 1636static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1637{
a57a4988 1638 const unsigned long nr_freed = (1 << cachep->gfporder);
1da177e4 1639
b1eeab67 1640 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1641
972d1a7b
CL
1642 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1643 sub_zone_page_state(page_zone(page),
1644 NR_SLAB_RECLAIMABLE, nr_freed);
1645 else
1646 sub_zone_page_state(page_zone(page),
1647 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1648
a57a4988 1649 BUG_ON(!PageSlab(page));
73293c2f 1650 __ClearPageSlabPfmemalloc(page);
a57a4988 1651 __ClearPageSlab(page);
8456a648
JK
1652 page_mapcount_reset(page);
1653 page->mapping = NULL;
1f458cbf 1654
1da177e4
LT
1655 if (current->reclaim_state)
1656 current->reclaim_state->reclaimed_slab += nr_freed;
5dfb4175
VD
1657 __free_pages(page, cachep->gfporder);
1658 memcg_uncharge_slab(cachep, cachep->gfporder);
1da177e4
LT
1659}
1660
1661static void kmem_rcu_free(struct rcu_head *head)
1662{
68126702
JK
1663 struct kmem_cache *cachep;
1664 struct page *page;
1da177e4 1665
68126702
JK
1666 page = container_of(head, struct page, rcu_head);
1667 cachep = page->slab_cache;
1668
1669 kmem_freepages(cachep, page);
1da177e4
LT
1670}
1671
1672#if DEBUG
1673
1674#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1675static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1676 unsigned long caller)
1da177e4 1677{
8c138bc0 1678 int size = cachep->object_size;
1da177e4 1679
3dafccf2 1680 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1681
b28a02de 1682 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1683 return;
1684
b28a02de
PE
1685 *addr++ = 0x12345678;
1686 *addr++ = caller;
1687 *addr++ = smp_processor_id();
1688 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1689 {
1690 unsigned long *sptr = &caller;
1691 unsigned long svalue;
1692
1693 while (!kstack_end(sptr)) {
1694 svalue = *sptr++;
1695 if (kernel_text_address(svalue)) {
b28a02de 1696 *addr++ = svalue;
1da177e4
LT
1697 size -= sizeof(unsigned long);
1698 if (size <= sizeof(unsigned long))
1699 break;
1700 }
1701 }
1702
1703 }
b28a02de 1704 *addr++ = 0x87654321;
1da177e4
LT
1705}
1706#endif
1707
343e0d7a 1708static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1709{
8c138bc0 1710 int size = cachep->object_size;
3dafccf2 1711 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1712
1713 memset(addr, val, size);
b28a02de 1714 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1715}
1716
1717static void dump_line(char *data, int offset, int limit)
1718{
1719 int i;
aa83aa40
DJ
1720 unsigned char error = 0;
1721 int bad_count = 0;
1722
fdde6abb 1723 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1724 for (i = 0; i < limit; i++) {
1725 if (data[offset + i] != POISON_FREE) {
1726 error = data[offset + i];
1727 bad_count++;
1728 }
aa83aa40 1729 }
fdde6abb
SAS
1730 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1731 &data[offset], limit, 1);
aa83aa40
DJ
1732
1733 if (bad_count == 1) {
1734 error ^= POISON_FREE;
1735 if (!(error & (error - 1))) {
1736 printk(KERN_ERR "Single bit error detected. Probably "
1737 "bad RAM.\n");
1738#ifdef CONFIG_X86
1739 printk(KERN_ERR "Run memtest86+ or a similar memory "
1740 "test tool.\n");
1741#else
1742 printk(KERN_ERR "Run a memory test tool.\n");
1743#endif
1744 }
1745 }
1da177e4
LT
1746}
1747#endif
1748
1749#if DEBUG
1750
343e0d7a 1751static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1752{
1753 int i, size;
1754 char *realobj;
1755
1756 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1757 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1758 *dbg_redzone1(cachep, objp),
1759 *dbg_redzone2(cachep, objp));
1da177e4
LT
1760 }
1761
1762 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1763 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1764 *dbg_userword(cachep, objp),
1765 *dbg_userword(cachep, objp));
1da177e4 1766 }
3dafccf2 1767 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1768 size = cachep->object_size;
b28a02de 1769 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1770 int limit;
1771 limit = 16;
b28a02de
PE
1772 if (i + limit > size)
1773 limit = size - i;
1da177e4
LT
1774 dump_line(realobj, i, limit);
1775 }
1776}
1777
343e0d7a 1778static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1779{
1780 char *realobj;
1781 int size, i;
1782 int lines = 0;
1783
3dafccf2 1784 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1785 size = cachep->object_size;
1da177e4 1786
b28a02de 1787 for (i = 0; i < size; i++) {
1da177e4 1788 char exp = POISON_FREE;
b28a02de 1789 if (i == size - 1)
1da177e4
LT
1790 exp = POISON_END;
1791 if (realobj[i] != exp) {
1792 int limit;
1793 /* Mismatch ! */
1794 /* Print header */
1795 if (lines == 0) {
b28a02de 1796 printk(KERN_ERR
face37f5
DJ
1797 "Slab corruption (%s): %s start=%p, len=%d\n",
1798 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1799 print_objinfo(cachep, objp, 0);
1800 }
1801 /* Hexdump the affected line */
b28a02de 1802 i = (i / 16) * 16;
1da177e4 1803 limit = 16;
b28a02de
PE
1804 if (i + limit > size)
1805 limit = size - i;
1da177e4
LT
1806 dump_line(realobj, i, limit);
1807 i += 16;
1808 lines++;
1809 /* Limit to 5 lines */
1810 if (lines > 5)
1811 break;
1812 }
1813 }
1814 if (lines != 0) {
1815 /* Print some data about the neighboring objects, if they
1816 * exist:
1817 */
8456a648 1818 struct page *page = virt_to_head_page(objp);
8fea4e96 1819 unsigned int objnr;
1da177e4 1820
8456a648 1821 objnr = obj_to_index(cachep, page, objp);
1da177e4 1822 if (objnr) {
8456a648 1823 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1824 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1825 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1826 realobj, size);
1da177e4
LT
1827 print_objinfo(cachep, objp, 2);
1828 }
b28a02de 1829 if (objnr + 1 < cachep->num) {
8456a648 1830 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1831 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1832 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1833 realobj, size);
1da177e4
LT
1834 print_objinfo(cachep, objp, 2);
1835 }
1836 }
1837}
1838#endif
1839
12dd36fa 1840#if DEBUG
8456a648
JK
1841static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1842 struct page *page)
1da177e4 1843{
1da177e4
LT
1844 int i;
1845 for (i = 0; i < cachep->num; i++) {
8456a648 1846 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1847
1848 if (cachep->flags & SLAB_POISON) {
1849#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 1850 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 1851 OFF_SLAB(cachep))
b28a02de 1852 kernel_map_pages(virt_to_page(objp),
3b0efdfa 1853 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
1854 else
1855 check_poison_obj(cachep, objp);
1856#else
1857 check_poison_obj(cachep, objp);
1858#endif
1859 }
1860 if (cachep->flags & SLAB_RED_ZONE) {
1861 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1862 slab_error(cachep, "start of a freed object "
b28a02de 1863 "was overwritten");
1da177e4
LT
1864 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1865 slab_error(cachep, "end of a freed object "
b28a02de 1866 "was overwritten");
1da177e4 1867 }
1da177e4 1868 }
12dd36fa 1869}
1da177e4 1870#else
8456a648
JK
1871static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1872 struct page *page)
12dd36fa 1873{
12dd36fa 1874}
1da177e4
LT
1875#endif
1876
911851e6
RD
1877/**
1878 * slab_destroy - destroy and release all objects in a slab
1879 * @cachep: cache pointer being destroyed
cb8ee1a3 1880 * @page: page pointer being destroyed
911851e6 1881 *
8a7d9b43
WSH
1882 * Destroy all the objs in a slab page, and release the mem back to the system.
1883 * Before calling the slab page must have been unlinked from the cache. The
1884 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1885 */
8456a648 1886static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1887{
7e007355 1888 void *freelist;
12dd36fa 1889
8456a648
JK
1890 freelist = page->freelist;
1891 slab_destroy_debugcheck(cachep, page);
1da177e4 1892 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
68126702
JK
1893 struct rcu_head *head;
1894
1895 /*
1896 * RCU free overloads the RCU head over the LRU.
1897 * slab_page has been overloeaded over the LRU,
1898 * however it is not used from now on so that
1899 * we can use it safely.
1900 */
1901 head = (void *)&page->rcu_head;
1902 call_rcu(head, kmem_rcu_free);
1da177e4 1903
1da177e4 1904 } else {
0c3aa83e 1905 kmem_freepages(cachep, page);
1da177e4 1906 }
68126702
JK
1907
1908 /*
8456a648 1909 * From now on, we don't use freelist
68126702
JK
1910 * although actual page can be freed in rcu context
1911 */
1912 if (OFF_SLAB(cachep))
8456a648 1913 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1914}
1915
97654dfa
JK
1916static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1917{
1918 struct page *page, *n;
1919
1920 list_for_each_entry_safe(page, n, list, lru) {
1921 list_del(&page->lru);
1922 slab_destroy(cachep, page);
1923 }
1924}
1925
4d268eba 1926/**
a70773dd
RD
1927 * calculate_slab_order - calculate size (page order) of slabs
1928 * @cachep: pointer to the cache that is being created
1929 * @size: size of objects to be created in this cache.
1930 * @align: required alignment for the objects.
1931 * @flags: slab allocation flags
1932 *
1933 * Also calculates the number of objects per slab.
4d268eba
PE
1934 *
1935 * This could be made much more intelligent. For now, try to avoid using
1936 * high order pages for slabs. When the gfp() functions are more friendly
1937 * towards high-order requests, this should be changed.
1938 */
a737b3e2 1939static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1940 size_t size, size_t align, unsigned long flags)
4d268eba 1941{
b1ab41c4 1942 unsigned long offslab_limit;
4d268eba 1943 size_t left_over = 0;
9888e6fa 1944 int gfporder;
4d268eba 1945
0aa817f0 1946 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1947 unsigned int num;
1948 size_t remainder;
1949
9888e6fa 1950 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1951 if (!num)
1952 continue;
9888e6fa 1953
f315e3fa
JK
1954 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1955 if (num > SLAB_OBJ_MAX_NUM)
1956 break;
1957
b1ab41c4 1958 if (flags & CFLGS_OFF_SLAB) {
03787301 1959 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
b1ab41c4
IM
1960 /*
1961 * Max number of objs-per-slab for caches which
1962 * use off-slab slabs. Needed to avoid a possible
1963 * looping condition in cache_grow().
1964 */
03787301
JK
1965 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1966 freelist_size_per_obj += sizeof(char);
8456a648 1967 offslab_limit = size;
03787301 1968 offslab_limit /= freelist_size_per_obj;
b1ab41c4
IM
1969
1970 if (num > offslab_limit)
1971 break;
1972 }
4d268eba 1973
9888e6fa 1974 /* Found something acceptable - save it away */
4d268eba 1975 cachep->num = num;
9888e6fa 1976 cachep->gfporder = gfporder;
4d268eba
PE
1977 left_over = remainder;
1978
f78bb8ad
LT
1979 /*
1980 * A VFS-reclaimable slab tends to have most allocations
1981 * as GFP_NOFS and we really don't want to have to be allocating
1982 * higher-order pages when we are unable to shrink dcache.
1983 */
1984 if (flags & SLAB_RECLAIM_ACCOUNT)
1985 break;
1986
4d268eba
PE
1987 /*
1988 * Large number of objects is good, but very large slabs are
1989 * currently bad for the gfp()s.
1990 */
543585cc 1991 if (gfporder >= slab_max_order)
4d268eba
PE
1992 break;
1993
9888e6fa
LT
1994 /*
1995 * Acceptable internal fragmentation?
1996 */
a737b3e2 1997 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1998 break;
1999 }
2000 return left_over;
2001}
2002
bf0dea23
JK
2003static struct array_cache __percpu *alloc_kmem_cache_cpus(
2004 struct kmem_cache *cachep, int entries, int batchcount)
2005{
2006 int cpu;
2007 size_t size;
2008 struct array_cache __percpu *cpu_cache;
2009
2010 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 2011 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
2012
2013 if (!cpu_cache)
2014 return NULL;
2015
2016 for_each_possible_cpu(cpu) {
2017 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2018 entries, batchcount);
2019 }
2020
2021 return cpu_cache;
2022}
2023
83b519e8 2024static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2025{
97d06609 2026 if (slab_state >= FULL)
83b519e8 2027 return enable_cpucache(cachep, gfp);
2ed3a4ef 2028
bf0dea23
JK
2029 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2030 if (!cachep->cpu_cache)
2031 return 1;
2032
97d06609 2033 if (slab_state == DOWN) {
bf0dea23
JK
2034 /* Creation of first cache (kmem_cache). */
2035 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 2036 } else if (slab_state == PARTIAL) {
bf0dea23
JK
2037 /* For kmem_cache_node */
2038 set_up_node(cachep, SIZE_NODE);
f30cf7d1 2039 } else {
bf0dea23 2040 int node;
f30cf7d1 2041
bf0dea23
JK
2042 for_each_online_node(node) {
2043 cachep->node[node] = kmalloc_node(
2044 sizeof(struct kmem_cache_node), gfp, node);
2045 BUG_ON(!cachep->node[node]);
2046 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2047 }
2048 }
bf0dea23 2049
6a67368c 2050 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
2051 jiffies + REAPTIMEOUT_NODE +
2052 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
2053
2054 cpu_cache_get(cachep)->avail = 0;
2055 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2056 cpu_cache_get(cachep)->batchcount = 1;
2057 cpu_cache_get(cachep)->touched = 0;
2058 cachep->batchcount = 1;
2059 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2060 return 0;
f30cf7d1
PE
2061}
2062
12220dea
JK
2063unsigned long kmem_cache_flags(unsigned long object_size,
2064 unsigned long flags, const char *name,
2065 void (*ctor)(void *))
2066{
2067 return flags;
2068}
2069
2070struct kmem_cache *
2071__kmem_cache_alias(const char *name, size_t size, size_t align,
2072 unsigned long flags, void (*ctor)(void *))
2073{
2074 struct kmem_cache *cachep;
2075
2076 cachep = find_mergeable(size, align, flags, name, ctor);
2077 if (cachep) {
2078 cachep->refcount++;
2079
2080 /*
2081 * Adjust the object sizes so that we clear
2082 * the complete object on kzalloc.
2083 */
2084 cachep->object_size = max_t(int, cachep->object_size, size);
2085 }
2086 return cachep;
2087}
2088
1da177e4 2089/**
039363f3 2090 * __kmem_cache_create - Create a cache.
a755b76a 2091 * @cachep: cache management descriptor
1da177e4 2092 * @flags: SLAB flags
1da177e4
LT
2093 *
2094 * Returns a ptr to the cache on success, NULL on failure.
2095 * Cannot be called within a int, but can be interrupted.
20c2df83 2096 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2097 *
1da177e4
LT
2098 * The flags are
2099 *
2100 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2101 * to catch references to uninitialised memory.
2102 *
2103 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2104 * for buffer overruns.
2105 *
1da177e4
LT
2106 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2107 * cacheline. This can be beneficial if you're counting cycles as closely
2108 * as davem.
2109 */
278b1bb1 2110int
8a13a4cc 2111__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2112{
d4a5fca5
DR
2113 size_t left_over, freelist_size;
2114 size_t ralign = BYTES_PER_WORD;
83b519e8 2115 gfp_t gfp;
278b1bb1 2116 int err;
8a13a4cc 2117 size_t size = cachep->size;
1da177e4 2118
1da177e4 2119#if DEBUG
1da177e4
LT
2120#if FORCED_DEBUG
2121 /*
2122 * Enable redzoning and last user accounting, except for caches with
2123 * large objects, if the increased size would increase the object size
2124 * above the next power of two: caches with object sizes just above a
2125 * power of two have a significant amount of internal fragmentation.
2126 */
87a927c7
DW
2127 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2128 2 * sizeof(unsigned long long)))
b28a02de 2129 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2130 if (!(flags & SLAB_DESTROY_BY_RCU))
2131 flags |= SLAB_POISON;
2132#endif
2133 if (flags & SLAB_DESTROY_BY_RCU)
2134 BUG_ON(flags & SLAB_POISON);
2135#endif
1da177e4 2136
a737b3e2
AM
2137 /*
2138 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2139 * unaligned accesses for some archs when redzoning is used, and makes
2140 * sure any on-slab bufctl's are also correctly aligned.
2141 */
b28a02de
PE
2142 if (size & (BYTES_PER_WORD - 1)) {
2143 size += (BYTES_PER_WORD - 1);
2144 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2145 }
2146
87a927c7
DW
2147 if (flags & SLAB_RED_ZONE) {
2148 ralign = REDZONE_ALIGN;
2149 /* If redzoning, ensure that the second redzone is suitably
2150 * aligned, by adjusting the object size accordingly. */
2151 size += REDZONE_ALIGN - 1;
2152 size &= ~(REDZONE_ALIGN - 1);
2153 }
ca5f9703 2154
a44b56d3 2155 /* 3) caller mandated alignment */
8a13a4cc
CL
2156 if (ralign < cachep->align) {
2157 ralign = cachep->align;
1da177e4 2158 }
3ff84a7f
PE
2159 /* disable debug if necessary */
2160 if (ralign > __alignof__(unsigned long long))
a44b56d3 2161 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2162 /*
ca5f9703 2163 * 4) Store it.
1da177e4 2164 */
8a13a4cc 2165 cachep->align = ralign;
1da177e4 2166
83b519e8
PE
2167 if (slab_is_available())
2168 gfp = GFP_KERNEL;
2169 else
2170 gfp = GFP_NOWAIT;
2171
1da177e4 2172#if DEBUG
1da177e4 2173
ca5f9703
PE
2174 /*
2175 * Both debugging options require word-alignment which is calculated
2176 * into align above.
2177 */
1da177e4 2178 if (flags & SLAB_RED_ZONE) {
1da177e4 2179 /* add space for red zone words */
3ff84a7f
PE
2180 cachep->obj_offset += sizeof(unsigned long long);
2181 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2182 }
2183 if (flags & SLAB_STORE_USER) {
ca5f9703 2184 /* user store requires one word storage behind the end of
87a927c7
DW
2185 * the real object. But if the second red zone needs to be
2186 * aligned to 64 bits, we must allow that much space.
1da177e4 2187 */
87a927c7
DW
2188 if (flags & SLAB_RED_ZONE)
2189 size += REDZONE_ALIGN;
2190 else
2191 size += BYTES_PER_WORD;
1da177e4
LT
2192 }
2193#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
03a2d2a3
JK
2194 /*
2195 * To activate debug pagealloc, off-slab management is necessary
2196 * requirement. In early phase of initialization, small sized slab
2197 * doesn't get initialized so it would not be possible. So, we need
2198 * to check size >= 256. It guarantees that all necessary small
2199 * sized slab is initialized in current slab initialization sequence.
2200 */
2201 if (!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2202 size >= 256 && cachep->object_size > cache_line_size() &&
2203 ALIGN(size, cachep->align) < PAGE_SIZE) {
608da7e3 2204 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2205 size = PAGE_SIZE;
2206 }
2207#endif
2208#endif
2209
e0a42726
IM
2210 /*
2211 * Determine if the slab management is 'on' or 'off' slab.
2212 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2213 * it too early on. Always use on-slab management when
2214 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2215 */
d4322d88 2216 if (size >= OFF_SLAB_MIN_SIZE && !slab_early_init &&
e7cb55b9 2217 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2218 /*
2219 * Size is large, assume best to place the slab management obj
2220 * off-slab (should allow better packing of objs).
2221 */
2222 flags |= CFLGS_OFF_SLAB;
2223
8a13a4cc 2224 size = ALIGN(size, cachep->align);
f315e3fa
JK
2225 /*
2226 * We should restrict the number of objects in a slab to implement
2227 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2228 */
2229 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2230 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
1da177e4 2231
8a13a4cc 2232 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2233
8a13a4cc 2234 if (!cachep->num)
278b1bb1 2235 return -E2BIG;
1da177e4 2236
03787301 2237 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
1da177e4
LT
2238
2239 /*
2240 * If the slab has been placed off-slab, and we have enough space then
2241 * move it on-slab. This is at the expense of any extra colouring.
2242 */
8456a648 2243 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
1da177e4 2244 flags &= ~CFLGS_OFF_SLAB;
8456a648 2245 left_over -= freelist_size;
1da177e4
LT
2246 }
2247
2248 if (flags & CFLGS_OFF_SLAB) {
2249 /* really off slab. No need for manual alignment */
03787301 2250 freelist_size = calculate_freelist_size(cachep->num, 0);
67461365
RL
2251
2252#ifdef CONFIG_PAGE_POISONING
2253 /* If we're going to use the generic kernel_map_pages()
2254 * poisoning, then it's going to smash the contents of
2255 * the redzone and userword anyhow, so switch them off.
2256 */
2257 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2258 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2259#endif
1da177e4
LT
2260 }
2261
2262 cachep->colour_off = cache_line_size();
2263 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2264 if (cachep->colour_off < cachep->align)
2265 cachep->colour_off = cachep->align;
b28a02de 2266 cachep->colour = left_over / cachep->colour_off;
8456a648 2267 cachep->freelist_size = freelist_size;
1da177e4 2268 cachep->flags = flags;
a57a4988 2269 cachep->allocflags = __GFP_COMP;
4b51d669 2270 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2271 cachep->allocflags |= GFP_DMA;
3b0efdfa 2272 cachep->size = size;
6a2d7a95 2273 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2274
e5ac9c5a 2275 if (flags & CFLGS_OFF_SLAB) {
8456a648 2276 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
e5ac9c5a 2277 /*
5f0985bb 2278 * This is a possibility for one of the kmalloc_{dma,}_caches.
e5ac9c5a 2279 * But since we go off slab only for object size greater than
d4322d88 2280 * OFF_SLAB_MIN_SIZE, and kmalloc_{dma,}_caches get created
5f0985bb 2281 * in ascending order,this should not happen at all.
e5ac9c5a
RT
2282 * But leave a BUG_ON for some lucky dude.
2283 */
8456a648 2284 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
e5ac9c5a 2285 }
1da177e4 2286
278b1bb1
CL
2287 err = setup_cpu_cache(cachep, gfp);
2288 if (err) {
12c3667f 2289 __kmem_cache_shutdown(cachep);
278b1bb1 2290 return err;
2ed3a4ef 2291 }
1da177e4 2292
278b1bb1 2293 return 0;
1da177e4 2294}
1da177e4
LT
2295
2296#if DEBUG
2297static void check_irq_off(void)
2298{
2299 BUG_ON(!irqs_disabled());
2300}
2301
2302static void check_irq_on(void)
2303{
2304 BUG_ON(irqs_disabled());
2305}
2306
343e0d7a 2307static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2308{
2309#ifdef CONFIG_SMP
2310 check_irq_off();
18bf8541 2311 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2312#endif
2313}
e498be7d 2314
343e0d7a 2315static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2316{
2317#ifdef CONFIG_SMP
2318 check_irq_off();
18bf8541 2319 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2320#endif
2321}
2322
1da177e4
LT
2323#else
2324#define check_irq_off() do { } while(0)
2325#define check_irq_on() do { } while(0)
2326#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2327#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2328#endif
2329
ce8eb6c4 2330static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2331 struct array_cache *ac,
2332 int force, int node);
2333
1da177e4
LT
2334static void do_drain(void *arg)
2335{
a737b3e2 2336 struct kmem_cache *cachep = arg;
1da177e4 2337 struct array_cache *ac;
7d6e6d09 2338 int node = numa_mem_id();
18bf8541 2339 struct kmem_cache_node *n;
97654dfa 2340 LIST_HEAD(list);
1da177e4
LT
2341
2342 check_irq_off();
9a2dba4b 2343 ac = cpu_cache_get(cachep);
18bf8541
CL
2344 n = get_node(cachep, node);
2345 spin_lock(&n->list_lock);
97654dfa 2346 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2347 spin_unlock(&n->list_lock);
97654dfa 2348 slabs_destroy(cachep, &list);
1da177e4
LT
2349 ac->avail = 0;
2350}
2351
343e0d7a 2352static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2353{
ce8eb6c4 2354 struct kmem_cache_node *n;
e498be7d
CL
2355 int node;
2356
15c8b6c1 2357 on_each_cpu(do_drain, cachep, 1);
1da177e4 2358 check_irq_on();
18bf8541
CL
2359 for_each_kmem_cache_node(cachep, node, n)
2360 if (n->alien)
ce8eb6c4 2361 drain_alien_cache(cachep, n->alien);
a4523a8b 2362
18bf8541
CL
2363 for_each_kmem_cache_node(cachep, node, n)
2364 drain_array(cachep, n, n->shared, 1, node);
1da177e4
LT
2365}
2366
ed11d9eb
CL
2367/*
2368 * Remove slabs from the list of free slabs.
2369 * Specify the number of slabs to drain in tofree.
2370 *
2371 * Returns the actual number of slabs released.
2372 */
2373static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2374 struct kmem_cache_node *n, int tofree)
1da177e4 2375{
ed11d9eb
CL
2376 struct list_head *p;
2377 int nr_freed;
8456a648 2378 struct page *page;
1da177e4 2379
ed11d9eb 2380 nr_freed = 0;
ce8eb6c4 2381 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2382
ce8eb6c4
CL
2383 spin_lock_irq(&n->list_lock);
2384 p = n->slabs_free.prev;
2385 if (p == &n->slabs_free) {
2386 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2387 goto out;
2388 }
1da177e4 2389
8456a648 2390 page = list_entry(p, struct page, lru);
1da177e4 2391#if DEBUG
8456a648 2392 BUG_ON(page->active);
1da177e4 2393#endif
8456a648 2394 list_del(&page->lru);
ed11d9eb
CL
2395 /*
2396 * Safe to drop the lock. The slab is no longer linked
2397 * to the cache.
2398 */
ce8eb6c4
CL
2399 n->free_objects -= cache->num;
2400 spin_unlock_irq(&n->list_lock);
8456a648 2401 slab_destroy(cache, page);
ed11d9eb 2402 nr_freed++;
1da177e4 2403 }
ed11d9eb
CL
2404out:
2405 return nr_freed;
1da177e4
LT
2406}
2407
d6e0b7fa 2408int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
e498be7d 2409{
18bf8541
CL
2410 int ret = 0;
2411 int node;
ce8eb6c4 2412 struct kmem_cache_node *n;
e498be7d
CL
2413
2414 drain_cpu_caches(cachep);
2415
2416 check_irq_on();
18bf8541 2417 for_each_kmem_cache_node(cachep, node, n) {
0fa8103b 2418 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2419
ce8eb6c4
CL
2420 ret += !list_empty(&n->slabs_full) ||
2421 !list_empty(&n->slabs_partial);
e498be7d
CL
2422 }
2423 return (ret ? 1 : 0);
2424}
2425
945cf2b6 2426int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2427{
12c3667f 2428 int i;
ce8eb6c4 2429 struct kmem_cache_node *n;
d6e0b7fa 2430 int rc = __kmem_cache_shrink(cachep, false);
1da177e4 2431
12c3667f
CL
2432 if (rc)
2433 return rc;
1da177e4 2434
bf0dea23 2435 free_percpu(cachep->cpu_cache);
1da177e4 2436
ce8eb6c4 2437 /* NUMA: free the node structures */
18bf8541
CL
2438 for_each_kmem_cache_node(cachep, i, n) {
2439 kfree(n->shared);
2440 free_alien_cache(n->alien);
2441 kfree(n);
2442 cachep->node[i] = NULL;
12c3667f
CL
2443 }
2444 return 0;
1da177e4 2445}
1da177e4 2446
e5ac9c5a
RT
2447/*
2448 * Get the memory for a slab management obj.
5f0985bb
JZ
2449 *
2450 * For a slab cache when the slab descriptor is off-slab, the
2451 * slab descriptor can't come from the same cache which is being created,
2452 * Because if it is the case, that means we defer the creation of
2453 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2454 * And we eventually call down to __kmem_cache_create(), which
2455 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2456 * This is a "chicken-and-egg" problem.
2457 *
2458 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2459 * which are all initialized during kmem_cache_init().
e5ac9c5a 2460 */
7e007355 2461static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2462 struct page *page, int colour_off,
2463 gfp_t local_flags, int nodeid)
1da177e4 2464{
7e007355 2465 void *freelist;
0c3aa83e 2466 void *addr = page_address(page);
b28a02de 2467
1da177e4
LT
2468 if (OFF_SLAB(cachep)) {
2469 /* Slab management obj is off-slab. */
8456a648 2470 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2471 local_flags, nodeid);
8456a648 2472 if (!freelist)
1da177e4
LT
2473 return NULL;
2474 } else {
8456a648
JK
2475 freelist = addr + colour_off;
2476 colour_off += cachep->freelist_size;
1da177e4 2477 }
8456a648
JK
2478 page->active = 0;
2479 page->s_mem = addr + colour_off;
2480 return freelist;
1da177e4
LT
2481}
2482
7cc68973 2483static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2484{
a41adfaa 2485 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2486}
2487
2488static inline void set_free_obj(struct page *page,
7cc68973 2489 unsigned int idx, freelist_idx_t val)
e5c58dfd 2490{
a41adfaa 2491 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2492}
2493
343e0d7a 2494static void cache_init_objs(struct kmem_cache *cachep,
8456a648 2495 struct page *page)
1da177e4
LT
2496{
2497 int i;
2498
2499 for (i = 0; i < cachep->num; i++) {
8456a648 2500 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
2501#if DEBUG
2502 /* need to poison the objs? */
2503 if (cachep->flags & SLAB_POISON)
2504 poison_obj(cachep, objp, POISON_FREE);
2505 if (cachep->flags & SLAB_STORE_USER)
2506 *dbg_userword(cachep, objp) = NULL;
2507
2508 if (cachep->flags & SLAB_RED_ZONE) {
2509 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2510 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2511 }
2512 /*
a737b3e2
AM
2513 * Constructors are not allowed to allocate memory from the same
2514 * cache which they are a constructor for. Otherwise, deadlock.
2515 * They must also be threaded.
1da177e4
LT
2516 */
2517 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2518 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2519
2520 if (cachep->flags & SLAB_RED_ZONE) {
2521 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2522 slab_error(cachep, "constructor overwrote the"
b28a02de 2523 " end of an object");
1da177e4
LT
2524 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2525 slab_error(cachep, "constructor overwrote the"
b28a02de 2526 " start of an object");
1da177e4 2527 }
3b0efdfa 2528 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2529 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2530 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2531 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2532#else
2533 if (cachep->ctor)
51cc5068 2534 cachep->ctor(objp);
1da177e4 2535#endif
03787301 2536 set_obj_status(page, i, OBJECT_FREE);
e5c58dfd 2537 set_free_obj(page, i, i);
1da177e4 2538 }
1da177e4
LT
2539}
2540
343e0d7a 2541static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2542{
4b51d669
CL
2543 if (CONFIG_ZONE_DMA_FLAG) {
2544 if (flags & GFP_DMA)
a618e89f 2545 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2546 else
a618e89f 2547 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2548 }
1da177e4
LT
2549}
2550
8456a648 2551static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2552 int nodeid)
78d382d7 2553{
b1cb0982 2554 void *objp;
78d382d7 2555
e5c58dfd 2556 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2557 page->active++;
78d382d7 2558#if DEBUG
1ea991b0 2559 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2560#endif
78d382d7
MD
2561
2562 return objp;
2563}
2564
8456a648 2565static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2566 void *objp, int nodeid)
78d382d7 2567{
8456a648 2568 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2569#if DEBUG
16025177 2570 unsigned int i;
b1cb0982 2571
78d382d7 2572 /* Verify that the slab belongs to the intended node */
1ea991b0 2573 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2574
b1cb0982 2575 /* Verify double free bug */
8456a648 2576 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2577 if (get_free_obj(page, i) == objnr) {
b1cb0982
JK
2578 printk(KERN_ERR "slab: double free detected in cache "
2579 "'%s', objp %p\n", cachep->name, objp);
2580 BUG();
2581 }
78d382d7
MD
2582 }
2583#endif
8456a648 2584 page->active--;
e5c58dfd 2585 set_free_obj(page, page->active, objnr);
78d382d7
MD
2586}
2587
4776874f
PE
2588/*
2589 * Map pages beginning at addr to the given cache and slab. This is required
2590 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2591 * virtual address for kfree, ksize, and slab debugging.
4776874f 2592 */
8456a648 2593static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2594 void *freelist)
1da177e4 2595{
a57a4988 2596 page->slab_cache = cache;
8456a648 2597 page->freelist = freelist;
1da177e4
LT
2598}
2599
2600/*
2601 * Grow (by 1) the number of slabs within a cache. This is called by
2602 * kmem_cache_alloc() when there are no active objs left in a cache.
2603 */
3c517a61 2604static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2605 gfp_t flags, int nodeid, struct page *page)
1da177e4 2606{
7e007355 2607 void *freelist;
b28a02de
PE
2608 size_t offset;
2609 gfp_t local_flags;
ce8eb6c4 2610 struct kmem_cache_node *n;
1da177e4 2611
a737b3e2
AM
2612 /*
2613 * Be lazy and only check for valid flags here, keeping it out of the
2614 * critical path in kmem_cache_alloc().
1da177e4 2615 */
c871ac4e
AM
2616 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2617 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2618 BUG();
2619 }
6cb06229 2620 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2621
ce8eb6c4 2622 /* Take the node list lock to change the colour_next on this node */
1da177e4 2623 check_irq_off();
18bf8541 2624 n = get_node(cachep, nodeid);
ce8eb6c4 2625 spin_lock(&n->list_lock);
1da177e4
LT
2626
2627 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2628 offset = n->colour_next;
2629 n->colour_next++;
2630 if (n->colour_next >= cachep->colour)
2631 n->colour_next = 0;
2632 spin_unlock(&n->list_lock);
1da177e4 2633
2e1217cf 2634 offset *= cachep->colour_off;
1da177e4
LT
2635
2636 if (local_flags & __GFP_WAIT)
2637 local_irq_enable();
2638
2639 /*
2640 * The test for missing atomic flag is performed here, rather than
2641 * the more obvious place, simply to reduce the critical path length
2642 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2643 * will eventually be caught here (where it matters).
2644 */
2645 kmem_flagcheck(cachep, flags);
2646
a737b3e2
AM
2647 /*
2648 * Get mem for the objs. Attempt to allocate a physical page from
2649 * 'nodeid'.
e498be7d 2650 */
0c3aa83e
JK
2651 if (!page)
2652 page = kmem_getpages(cachep, local_flags, nodeid);
2653 if (!page)
1da177e4
LT
2654 goto failed;
2655
2656 /* Get slab management. */
8456a648 2657 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2658 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
8456a648 2659 if (!freelist)
1da177e4
LT
2660 goto opps1;
2661
8456a648 2662 slab_map_pages(cachep, page, freelist);
1da177e4 2663
8456a648 2664 cache_init_objs(cachep, page);
1da177e4
LT
2665
2666 if (local_flags & __GFP_WAIT)
2667 local_irq_disable();
2668 check_irq_off();
ce8eb6c4 2669 spin_lock(&n->list_lock);
1da177e4
LT
2670
2671 /* Make slab active. */
8456a648 2672 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2673 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2674 n->free_objects += cachep->num;
2675 spin_unlock(&n->list_lock);
1da177e4 2676 return 1;
a737b3e2 2677opps1:
0c3aa83e 2678 kmem_freepages(cachep, page);
a737b3e2 2679failed:
1da177e4
LT
2680 if (local_flags & __GFP_WAIT)
2681 local_irq_disable();
2682 return 0;
2683}
2684
2685#if DEBUG
2686
2687/*
2688 * Perform extra freeing checks:
2689 * - detect bad pointers.
2690 * - POISON/RED_ZONE checking
1da177e4
LT
2691 */
2692static void kfree_debugcheck(const void *objp)
2693{
1da177e4
LT
2694 if (!virt_addr_valid(objp)) {
2695 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2696 (unsigned long)objp);
2697 BUG();
1da177e4 2698 }
1da177e4
LT
2699}
2700
58ce1fd5
PE
2701static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2702{
b46b8f19 2703 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2704
2705 redzone1 = *dbg_redzone1(cache, obj);
2706 redzone2 = *dbg_redzone2(cache, obj);
2707
2708 /*
2709 * Redzone is ok.
2710 */
2711 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2712 return;
2713
2714 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2715 slab_error(cache, "double free detected");
2716 else
2717 slab_error(cache, "memory outside object was overwritten");
2718
b46b8f19 2719 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2720 obj, redzone1, redzone2);
2721}
2722
343e0d7a 2723static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2724 unsigned long caller)
1da177e4 2725{
1da177e4 2726 unsigned int objnr;
8456a648 2727 struct page *page;
1da177e4 2728
80cbd911
MW
2729 BUG_ON(virt_to_cache(objp) != cachep);
2730
3dafccf2 2731 objp -= obj_offset(cachep);
1da177e4 2732 kfree_debugcheck(objp);
b49af68f 2733 page = virt_to_head_page(objp);
1da177e4 2734
1da177e4 2735 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2736 verify_redzone_free(cachep, objp);
1da177e4
LT
2737 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2738 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2739 }
2740 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2741 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2742
8456a648 2743 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2744
2745 BUG_ON(objnr >= cachep->num);
8456a648 2746 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2747
03787301 2748 set_obj_status(page, objnr, OBJECT_FREE);
1da177e4
LT
2749 if (cachep->flags & SLAB_POISON) {
2750#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2751 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2752 store_stackinfo(cachep, objp, caller);
b28a02de 2753 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2754 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2755 } else {
2756 poison_obj(cachep, objp, POISON_FREE);
2757 }
2758#else
2759 poison_obj(cachep, objp, POISON_FREE);
2760#endif
2761 }
2762 return objp;
2763}
2764
1da177e4
LT
2765#else
2766#define kfree_debugcheck(x) do { } while(0)
2767#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2768#endif
2769
072bb0aa
MG
2770static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2771 bool force_refill)
1da177e4
LT
2772{
2773 int batchcount;
ce8eb6c4 2774 struct kmem_cache_node *n;
1da177e4 2775 struct array_cache *ac;
1ca4cb24
PE
2776 int node;
2777
1da177e4 2778 check_irq_off();
7d6e6d09 2779 node = numa_mem_id();
072bb0aa
MG
2780 if (unlikely(force_refill))
2781 goto force_grow;
2782retry:
9a2dba4b 2783 ac = cpu_cache_get(cachep);
1da177e4
LT
2784 batchcount = ac->batchcount;
2785 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2786 /*
2787 * If there was little recent activity on this cache, then
2788 * perform only a partial refill. Otherwise we could generate
2789 * refill bouncing.
1da177e4
LT
2790 */
2791 batchcount = BATCHREFILL_LIMIT;
2792 }
18bf8541 2793 n = get_node(cachep, node);
e498be7d 2794
ce8eb6c4
CL
2795 BUG_ON(ac->avail > 0 || !n);
2796 spin_lock(&n->list_lock);
1da177e4 2797
3ded175a 2798 /* See if we can refill from the shared array */
ce8eb6c4
CL
2799 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2800 n->shared->touched = 1;
3ded175a 2801 goto alloc_done;
44b57f1c 2802 }
3ded175a 2803
1da177e4
LT
2804 while (batchcount > 0) {
2805 struct list_head *entry;
8456a648 2806 struct page *page;
1da177e4 2807 /* Get slab alloc is to come from. */
ce8eb6c4
CL
2808 entry = n->slabs_partial.next;
2809 if (entry == &n->slabs_partial) {
2810 n->free_touched = 1;
2811 entry = n->slabs_free.next;
2812 if (entry == &n->slabs_free)
1da177e4
LT
2813 goto must_grow;
2814 }
2815
8456a648 2816 page = list_entry(entry, struct page, lru);
1da177e4 2817 check_spinlock_acquired(cachep);
714b8171
PE
2818
2819 /*
2820 * The slab was either on partial or free list so
2821 * there must be at least one object available for
2822 * allocation.
2823 */
8456a648 2824 BUG_ON(page->active >= cachep->num);
714b8171 2825
8456a648 2826 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2827 STATS_INC_ALLOCED(cachep);
2828 STATS_INC_ACTIVE(cachep);
2829 STATS_SET_HIGH(cachep);
2830
8456a648 2831 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
072bb0aa 2832 node));
1da177e4 2833 }
1da177e4
LT
2834
2835 /* move slabp to correct slabp list: */
8456a648
JK
2836 list_del(&page->lru);
2837 if (page->active == cachep->num)
34bf6ef9 2838 list_add(&page->lru, &n->slabs_full);
1da177e4 2839 else
34bf6ef9 2840 list_add(&page->lru, &n->slabs_partial);
1da177e4
LT
2841 }
2842
a737b3e2 2843must_grow:
ce8eb6c4 2844 n->free_objects -= ac->avail;
a737b3e2 2845alloc_done:
ce8eb6c4 2846 spin_unlock(&n->list_lock);
1da177e4
LT
2847
2848 if (unlikely(!ac->avail)) {
2849 int x;
072bb0aa 2850force_grow:
4167e9b2 2851 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
e498be7d 2852
a737b3e2 2853 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2854 ac = cpu_cache_get(cachep);
51cd8e6f 2855 node = numa_mem_id();
072bb0aa
MG
2856
2857 /* no objects in sight? abort */
2858 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
2859 return NULL;
2860
a737b3e2 2861 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2862 goto retry;
2863 }
2864 ac->touched = 1;
072bb0aa
MG
2865
2866 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
2867}
2868
a737b3e2
AM
2869static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2870 gfp_t flags)
1da177e4
LT
2871{
2872 might_sleep_if(flags & __GFP_WAIT);
2873#if DEBUG
2874 kmem_flagcheck(cachep, flags);
2875#endif
2876}
2877
2878#if DEBUG
a737b3e2 2879static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2880 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2881{
03787301
JK
2882 struct page *page;
2883
b28a02de 2884 if (!objp)
1da177e4 2885 return objp;
b28a02de 2886 if (cachep->flags & SLAB_POISON) {
1da177e4 2887#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2888 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2889 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2890 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2891 else
2892 check_poison_obj(cachep, objp);
2893#else
2894 check_poison_obj(cachep, objp);
2895#endif
2896 poison_obj(cachep, objp, POISON_INUSE);
2897 }
2898 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2899 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2900
2901 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2902 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2903 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2904 slab_error(cachep, "double free, or memory outside"
2905 " object was overwritten");
b28a02de 2906 printk(KERN_ERR
b46b8f19 2907 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
2908 objp, *dbg_redzone1(cachep, objp),
2909 *dbg_redzone2(cachep, objp));
1da177e4
LT
2910 }
2911 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2912 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2913 }
03787301
JK
2914
2915 page = virt_to_head_page(objp);
2916 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
3dafccf2 2917 objp += obj_offset(cachep);
4f104934 2918 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2919 cachep->ctor(objp);
7ea466f2
TH
2920 if (ARCH_SLAB_MINALIGN &&
2921 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 2922 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2923 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2924 }
1da177e4
LT
2925 return objp;
2926}
2927#else
2928#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2929#endif
2930
773ff60e 2931static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 2932{
8a9c61d4 2933 if (unlikely(cachep == kmem_cache))
773ff60e 2934 return false;
8a8b6502 2935
8c138bc0 2936 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
2937}
2938
343e0d7a 2939static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2940{
b28a02de 2941 void *objp;
1da177e4 2942 struct array_cache *ac;
072bb0aa 2943 bool force_refill = false;
1da177e4 2944
5c382300 2945 check_irq_off();
8a8b6502 2946
9a2dba4b 2947 ac = cpu_cache_get(cachep);
1da177e4 2948 if (likely(ac->avail)) {
1da177e4 2949 ac->touched = 1;
072bb0aa
MG
2950 objp = ac_get_obj(cachep, ac, flags, false);
2951
ddbf2e83 2952 /*
072bb0aa
MG
2953 * Allow for the possibility all avail objects are not allowed
2954 * by the current flags
ddbf2e83 2955 */
072bb0aa
MG
2956 if (objp) {
2957 STATS_INC_ALLOCHIT(cachep);
2958 goto out;
2959 }
2960 force_refill = true;
1da177e4 2961 }
072bb0aa
MG
2962
2963 STATS_INC_ALLOCMISS(cachep);
2964 objp = cache_alloc_refill(cachep, flags, force_refill);
2965 /*
2966 * the 'ac' may be updated by cache_alloc_refill(),
2967 * and kmemleak_erase() requires its correct value.
2968 */
2969 ac = cpu_cache_get(cachep);
2970
2971out:
d5cff635
CM
2972 /*
2973 * To avoid a false negative, if an object that is in one of the
2974 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2975 * treat the array pointers as a reference to the object.
2976 */
f3d8b53a
O
2977 if (objp)
2978 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
2979 return objp;
2980}
2981
e498be7d 2982#ifdef CONFIG_NUMA
c61afb18 2983/*
2ad654bc 2984 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
2985 *
2986 * If we are in_interrupt, then process context, including cpusets and
2987 * mempolicy, may not apply and should not be used for allocation policy.
2988 */
2989static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2990{
2991 int nid_alloc, nid_here;
2992
765c4507 2993 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 2994 return NULL;
7d6e6d09 2995 nid_alloc = nid_here = numa_mem_id();
c61afb18 2996 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 2997 nid_alloc = cpuset_slab_spread_node();
c61afb18 2998 else if (current->mempolicy)
2a389610 2999 nid_alloc = mempolicy_slab_node();
c61afb18 3000 if (nid_alloc != nid_here)
8b98c169 3001 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3002 return NULL;
3003}
3004
765c4507
CL
3005/*
3006 * Fallback function if there was no memory available and no objects on a
3c517a61 3007 * certain node and fall back is permitted. First we scan all the
6a67368c 3008 * available node for available objects. If that fails then we
3c517a61
CL
3009 * perform an allocation without specifying a node. This allows the page
3010 * allocator to do its reclaim / fallback magic. We then insert the
3011 * slab into the proper nodelist and then allocate from it.
765c4507 3012 */
8c8cc2c1 3013static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3014{
8c8cc2c1
PE
3015 struct zonelist *zonelist;
3016 gfp_t local_flags;
dd1a239f 3017 struct zoneref *z;
54a6eb5c
MG
3018 struct zone *zone;
3019 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3020 void *obj = NULL;
3c517a61 3021 int nid;
cc9a6c87 3022 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3023
3024 if (flags & __GFP_THISNODE)
3025 return NULL;
3026
6cb06229 3027 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3028
cc9a6c87 3029retry_cpuset:
d26914d1 3030 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3031 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3032
3c517a61
CL
3033retry:
3034 /*
3035 * Look through allowed nodes for objects available
3036 * from existing per node queues.
3037 */
54a6eb5c
MG
3038 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3039 nid = zone_to_nid(zone);
aedb0eb1 3040
061d7074 3041 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3042 get_node(cache, nid) &&
3043 get_node(cache, nid)->free_objects) {
3c517a61 3044 obj = ____cache_alloc_node(cache,
4167e9b2 3045 gfp_exact_node(flags), nid);
481c5346
CL
3046 if (obj)
3047 break;
3048 }
3c517a61
CL
3049 }
3050
cfce6604 3051 if (!obj) {
3c517a61
CL
3052 /*
3053 * This allocation will be performed within the constraints
3054 * of the current cpuset / memory policy requirements.
3055 * We may trigger various forms of reclaim on the allowed
3056 * set and go into memory reserves if necessary.
3057 */
0c3aa83e
JK
3058 struct page *page;
3059
dd47ea75
CL
3060 if (local_flags & __GFP_WAIT)
3061 local_irq_enable();
3062 kmem_flagcheck(cache, flags);
0c3aa83e 3063 page = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3064 if (local_flags & __GFP_WAIT)
3065 local_irq_disable();
0c3aa83e 3066 if (page) {
3c517a61
CL
3067 /*
3068 * Insert into the appropriate per node queues
3069 */
0c3aa83e
JK
3070 nid = page_to_nid(page);
3071 if (cache_grow(cache, flags, nid, page)) {
3c517a61 3072 obj = ____cache_alloc_node(cache,
4167e9b2 3073 gfp_exact_node(flags), nid);
3c517a61
CL
3074 if (!obj)
3075 /*
3076 * Another processor may allocate the
3077 * objects in the slab since we are
3078 * not holding any locks.
3079 */
3080 goto retry;
3081 } else {
b6a60451 3082 /* cache_grow already freed obj */
3c517a61
CL
3083 obj = NULL;
3084 }
3085 }
aedb0eb1 3086 }
cc9a6c87 3087
d26914d1 3088 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3089 goto retry_cpuset;
765c4507
CL
3090 return obj;
3091}
3092
e498be7d
CL
3093/*
3094 * A interface to enable slab creation on nodeid
1da177e4 3095 */
8b98c169 3096static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3097 int nodeid)
e498be7d
CL
3098{
3099 struct list_head *entry;
8456a648 3100 struct page *page;
ce8eb6c4 3101 struct kmem_cache_node *n;
b28a02de 3102 void *obj;
b28a02de
PE
3103 int x;
3104
7c3fbbdd 3105 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3106 n = get_node(cachep, nodeid);
ce8eb6c4 3107 BUG_ON(!n);
b28a02de 3108
a737b3e2 3109retry:
ca3b9b91 3110 check_irq_off();
ce8eb6c4
CL
3111 spin_lock(&n->list_lock);
3112 entry = n->slabs_partial.next;
3113 if (entry == &n->slabs_partial) {
3114 n->free_touched = 1;
3115 entry = n->slabs_free.next;
3116 if (entry == &n->slabs_free)
b28a02de
PE
3117 goto must_grow;
3118 }
3119
8456a648 3120 page = list_entry(entry, struct page, lru);
b28a02de 3121 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3122
3123 STATS_INC_NODEALLOCS(cachep);
3124 STATS_INC_ACTIVE(cachep);
3125 STATS_SET_HIGH(cachep);
3126
8456a648 3127 BUG_ON(page->active == cachep->num);
b28a02de 3128
8456a648 3129 obj = slab_get_obj(cachep, page, nodeid);
ce8eb6c4 3130 n->free_objects--;
b28a02de 3131 /* move slabp to correct slabp list: */
8456a648 3132 list_del(&page->lru);
b28a02de 3133
8456a648
JK
3134 if (page->active == cachep->num)
3135 list_add(&page->lru, &n->slabs_full);
a737b3e2 3136 else
8456a648 3137 list_add(&page->lru, &n->slabs_partial);
e498be7d 3138
ce8eb6c4 3139 spin_unlock(&n->list_lock);
b28a02de 3140 goto done;
e498be7d 3141
a737b3e2 3142must_grow:
ce8eb6c4 3143 spin_unlock(&n->list_lock);
4167e9b2 3144 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
765c4507
CL
3145 if (x)
3146 goto retry;
1da177e4 3147
8c8cc2c1 3148 return fallback_alloc(cachep, flags);
e498be7d 3149
a737b3e2 3150done:
b28a02de 3151 return obj;
e498be7d 3152}
8c8cc2c1 3153
8c8cc2c1 3154static __always_inline void *
48356303 3155slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3156 unsigned long caller)
8c8cc2c1
PE
3157{
3158 unsigned long save_flags;
3159 void *ptr;
7d6e6d09 3160 int slab_node = numa_mem_id();
8c8cc2c1 3161
dcce284a 3162 flags &= gfp_allowed_mask;
7e85ee0c 3163
cf40bd16
NP
3164 lockdep_trace_alloc(flags);
3165
773ff60e 3166 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3167 return NULL;
3168
d79923fa
GC
3169 cachep = memcg_kmem_get_cache(cachep, flags);
3170
8c8cc2c1
PE
3171 cache_alloc_debugcheck_before(cachep, flags);
3172 local_irq_save(save_flags);
3173
eacbbae3 3174 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3175 nodeid = slab_node;
8c8cc2c1 3176
18bf8541 3177 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3178 /* Node not bootstrapped yet */
3179 ptr = fallback_alloc(cachep, flags);
3180 goto out;
3181 }
3182
7d6e6d09 3183 if (nodeid == slab_node) {
8c8cc2c1
PE
3184 /*
3185 * Use the locally cached objects if possible.
3186 * However ____cache_alloc does not allow fallback
3187 * to other nodes. It may fail while we still have
3188 * objects on other nodes available.
3189 */
3190 ptr = ____cache_alloc(cachep, flags);
3191 if (ptr)
3192 goto out;
3193 }
3194 /* ___cache_alloc_node can fall back to other nodes */
3195 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3196 out:
3197 local_irq_restore(save_flags);
3198 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3199 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3200 flags);
8c8cc2c1 3201
5087c822 3202 if (likely(ptr)) {
8c138bc0 3203 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
5087c822
JP
3204 if (unlikely(flags & __GFP_ZERO))
3205 memset(ptr, 0, cachep->object_size);
3206 }
d07dbea4 3207
8135be5a 3208 memcg_kmem_put_cache(cachep);
8c8cc2c1
PE
3209 return ptr;
3210}
3211
3212static __always_inline void *
3213__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3214{
3215 void *objp;
3216
2ad654bc 3217 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3218 objp = alternate_node_alloc(cache, flags);
3219 if (objp)
3220 goto out;
3221 }
3222 objp = ____cache_alloc(cache, flags);
3223
3224 /*
3225 * We may just have run out of memory on the local node.
3226 * ____cache_alloc_node() knows how to locate memory on other nodes
3227 */
7d6e6d09
LS
3228 if (!objp)
3229 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3230
3231 out:
3232 return objp;
3233}
3234#else
3235
3236static __always_inline void *
3237__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3238{
3239 return ____cache_alloc(cachep, flags);
3240}
3241
3242#endif /* CONFIG_NUMA */
3243
3244static __always_inline void *
48356303 3245slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3246{
3247 unsigned long save_flags;
3248 void *objp;
3249
dcce284a 3250 flags &= gfp_allowed_mask;
7e85ee0c 3251
cf40bd16
NP
3252 lockdep_trace_alloc(flags);
3253
773ff60e 3254 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3255 return NULL;
3256
d79923fa
GC
3257 cachep = memcg_kmem_get_cache(cachep, flags);
3258
8c8cc2c1
PE
3259 cache_alloc_debugcheck_before(cachep, flags);
3260 local_irq_save(save_flags);
3261 objp = __do_cache_alloc(cachep, flags);
3262 local_irq_restore(save_flags);
3263 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3264 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3265 flags);
8c8cc2c1
PE
3266 prefetchw(objp);
3267
5087c822 3268 if (likely(objp)) {
8c138bc0 3269 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
5087c822
JP
3270 if (unlikely(flags & __GFP_ZERO))
3271 memset(objp, 0, cachep->object_size);
3272 }
d07dbea4 3273
8135be5a 3274 memcg_kmem_put_cache(cachep);
8c8cc2c1
PE
3275 return objp;
3276}
e498be7d
CL
3277
3278/*
5f0985bb 3279 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3280 * @list: List of detached free slabs should be freed by caller
e498be7d 3281 */
97654dfa
JK
3282static void free_block(struct kmem_cache *cachep, void **objpp,
3283 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3284{
3285 int i;
25c063fb 3286 struct kmem_cache_node *n = get_node(cachep, node);
1da177e4
LT
3287
3288 for (i = 0; i < nr_objects; i++) {
072bb0aa 3289 void *objp;
8456a648 3290 struct page *page;
1da177e4 3291
072bb0aa
MG
3292 clear_obj_pfmemalloc(&objpp[i]);
3293 objp = objpp[i];
3294
8456a648 3295 page = virt_to_head_page(objp);
8456a648 3296 list_del(&page->lru);
ff69416e 3297 check_spinlock_acquired_node(cachep, node);
8456a648 3298 slab_put_obj(cachep, page, objp, node);
1da177e4 3299 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3300 n->free_objects++;
1da177e4
LT
3301
3302 /* fixup slab chains */
8456a648 3303 if (page->active == 0) {
ce8eb6c4
CL
3304 if (n->free_objects > n->free_limit) {
3305 n->free_objects -= cachep->num;
97654dfa 3306 list_add_tail(&page->lru, list);
1da177e4 3307 } else {
8456a648 3308 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3309 }
3310 } else {
3311 /* Unconditionally move a slab to the end of the
3312 * partial list on free - maximum time for the
3313 * other objects to be freed, too.
3314 */
8456a648 3315 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3316 }
3317 }
3318}
3319
343e0d7a 3320static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3321{
3322 int batchcount;
ce8eb6c4 3323 struct kmem_cache_node *n;
7d6e6d09 3324 int node = numa_mem_id();
97654dfa 3325 LIST_HEAD(list);
1da177e4
LT
3326
3327 batchcount = ac->batchcount;
3328#if DEBUG
3329 BUG_ON(!batchcount || batchcount > ac->avail);
3330#endif
3331 check_irq_off();
18bf8541 3332 n = get_node(cachep, node);
ce8eb6c4
CL
3333 spin_lock(&n->list_lock);
3334 if (n->shared) {
3335 struct array_cache *shared_array = n->shared;
b28a02de 3336 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3337 if (max) {
3338 if (batchcount > max)
3339 batchcount = max;
e498be7d 3340 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3341 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3342 shared_array->avail += batchcount;
3343 goto free_done;
3344 }
3345 }
3346
97654dfa 3347 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3348free_done:
1da177e4
LT
3349#if STATS
3350 {
3351 int i = 0;
3352 struct list_head *p;
3353
ce8eb6c4
CL
3354 p = n->slabs_free.next;
3355 while (p != &(n->slabs_free)) {
8456a648 3356 struct page *page;
1da177e4 3357
8456a648
JK
3358 page = list_entry(p, struct page, lru);
3359 BUG_ON(page->active);
1da177e4
LT
3360
3361 i++;
3362 p = p->next;
3363 }
3364 STATS_SET_FREEABLE(cachep, i);
3365 }
3366#endif
ce8eb6c4 3367 spin_unlock(&n->list_lock);
97654dfa 3368 slabs_destroy(cachep, &list);
1da177e4 3369 ac->avail -= batchcount;
a737b3e2 3370 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3371}
3372
3373/*
a737b3e2
AM
3374 * Release an obj back to its cache. If the obj has a constructed state, it must
3375 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3376 */
a947eb95 3377static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3378 unsigned long caller)
1da177e4 3379{
9a2dba4b 3380 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3381
3382 check_irq_off();
d5cff635 3383 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3384 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3385
8c138bc0 3386 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3387
1807a1aa
SS
3388 /*
3389 * Skip calling cache_free_alien() when the platform is not numa.
3390 * This will avoid cache misses that happen while accessing slabp (which
3391 * is per page memory reference) to get nodeid. Instead use a global
3392 * variable to skip the call, which is mostly likely to be present in
3393 * the cache.
3394 */
b6e68bc1 3395 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3396 return;
3397
3d880194 3398 if (ac->avail < ac->limit) {
1da177e4 3399 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3400 } else {
3401 STATS_INC_FREEMISS(cachep);
3402 cache_flusharray(cachep, ac);
1da177e4 3403 }
42c8c99c 3404
072bb0aa 3405 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3406}
3407
3408/**
3409 * kmem_cache_alloc - Allocate an object
3410 * @cachep: The cache to allocate from.
3411 * @flags: See kmalloc().
3412 *
3413 * Allocate an object from this cache. The flags are only relevant
3414 * if the cache has no available objects.
3415 */
343e0d7a 3416void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3417{
48356303 3418 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3419
ca2b84cb 3420 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3421 cachep->object_size, cachep->size, flags);
36555751
EGM
3422
3423 return ret;
1da177e4
LT
3424}
3425EXPORT_SYMBOL(kmem_cache_alloc);
3426
484748f0
CL
3427void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3428{
3429 __kmem_cache_free_bulk(s, size, p);
3430}
3431EXPORT_SYMBOL(kmem_cache_free_bulk);
3432
3433bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3434 void **p)
3435{
3436 return __kmem_cache_alloc_bulk(s, flags, size, p);
3437}
3438EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3439
0f24f128 3440#ifdef CONFIG_TRACING
85beb586 3441void *
4052147c 3442kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3443{
85beb586
SR
3444 void *ret;
3445
48356303 3446 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3447
3448 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3449 size, cachep->size, flags);
85beb586 3450 return ret;
36555751 3451}
85beb586 3452EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3453#endif
3454
1da177e4 3455#ifdef CONFIG_NUMA
d0d04b78
ZL
3456/**
3457 * kmem_cache_alloc_node - Allocate an object on the specified node
3458 * @cachep: The cache to allocate from.
3459 * @flags: See kmalloc().
3460 * @nodeid: node number of the target node.
3461 *
3462 * Identical to kmem_cache_alloc but it will allocate memory on the given
3463 * node, which can improve the performance for cpu bound structures.
3464 *
3465 * Fallback to other node is possible if __GFP_THISNODE is not set.
3466 */
8b98c169
CH
3467void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3468{
48356303 3469 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3470
ca2b84cb 3471 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3472 cachep->object_size, cachep->size,
ca2b84cb 3473 flags, nodeid);
36555751
EGM
3474
3475 return ret;
8b98c169 3476}
1da177e4
LT
3477EXPORT_SYMBOL(kmem_cache_alloc_node);
3478
0f24f128 3479#ifdef CONFIG_TRACING
4052147c 3480void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3481 gfp_t flags,
4052147c
EG
3482 int nodeid,
3483 size_t size)
36555751 3484{
85beb586
SR
3485 void *ret;
3486
592f4145 3487 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3488
85beb586 3489 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3490 size, cachep->size,
85beb586
SR
3491 flags, nodeid);
3492 return ret;
36555751 3493}
85beb586 3494EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3495#endif
3496
8b98c169 3497static __always_inline void *
7c0cb9c6 3498__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3499{
343e0d7a 3500 struct kmem_cache *cachep;
97e2bde4 3501
2c59dd65 3502 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3503 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3504 return cachep;
4052147c 3505 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3506}
8b98c169 3507
8b98c169
CH
3508void *__kmalloc_node(size_t size, gfp_t flags, int node)
3509{
7c0cb9c6 3510 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3511}
dbe5e69d 3512EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3513
3514void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3515 int node, unsigned long caller)
8b98c169 3516{
7c0cb9c6 3517 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3518}
3519EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3520#endif /* CONFIG_NUMA */
1da177e4
LT
3521
3522/**
800590f5 3523 * __do_kmalloc - allocate memory
1da177e4 3524 * @size: how many bytes of memory are required.
800590f5 3525 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3526 * @caller: function caller for debug tracking of the caller
1da177e4 3527 */
7fd6b141 3528static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3529 unsigned long caller)
1da177e4 3530{
343e0d7a 3531 struct kmem_cache *cachep;
36555751 3532 void *ret;
1da177e4 3533
2c59dd65 3534 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3535 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3536 return cachep;
48356303 3537 ret = slab_alloc(cachep, flags, caller);
36555751 3538
7c0cb9c6 3539 trace_kmalloc(caller, ret,
3b0efdfa 3540 size, cachep->size, flags);
36555751
EGM
3541
3542 return ret;
7fd6b141
PE
3543}
3544
7fd6b141
PE
3545void *__kmalloc(size_t size, gfp_t flags)
3546{
7c0cb9c6 3547 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3548}
3549EXPORT_SYMBOL(__kmalloc);
3550
ce71e27c 3551void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3552{
7c0cb9c6 3553 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3554}
3555EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3556
1da177e4
LT
3557/**
3558 * kmem_cache_free - Deallocate an object
3559 * @cachep: The cache the allocation was from.
3560 * @objp: The previously allocated object.
3561 *
3562 * Free an object which was previously allocated from this
3563 * cache.
3564 */
343e0d7a 3565void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3566{
3567 unsigned long flags;
b9ce5ef4
GC
3568 cachep = cache_from_obj(cachep, objp);
3569 if (!cachep)
3570 return;
1da177e4
LT
3571
3572 local_irq_save(flags);
d97d476b 3573 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3574 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3575 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3576 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3577 local_irq_restore(flags);
36555751 3578
ca2b84cb 3579 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3580}
3581EXPORT_SYMBOL(kmem_cache_free);
3582
1da177e4
LT
3583/**
3584 * kfree - free previously allocated memory
3585 * @objp: pointer returned by kmalloc.
3586 *
80e93eff
PE
3587 * If @objp is NULL, no operation is performed.
3588 *
1da177e4
LT
3589 * Don't free memory not originally allocated by kmalloc()
3590 * or you will run into trouble.
3591 */
3592void kfree(const void *objp)
3593{
343e0d7a 3594 struct kmem_cache *c;
1da177e4
LT
3595 unsigned long flags;
3596
2121db74
PE
3597 trace_kfree(_RET_IP_, objp);
3598
6cb8f913 3599 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3600 return;
3601 local_irq_save(flags);
3602 kfree_debugcheck(objp);
6ed5eb22 3603 c = virt_to_cache(objp);
8c138bc0
CL
3604 debug_check_no_locks_freed(objp, c->object_size);
3605
3606 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3607 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3608 local_irq_restore(flags);
3609}
3610EXPORT_SYMBOL(kfree);
3611
e498be7d 3612/*
ce8eb6c4 3613 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3614 */
5f0985bb 3615static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3616{
3617 int node;
ce8eb6c4 3618 struct kmem_cache_node *n;
cafeb02e 3619 struct array_cache *new_shared;
c8522a3a 3620 struct alien_cache **new_alien = NULL;
e498be7d 3621
9c09a95c 3622 for_each_online_node(node) {
cafeb02e 3623
b455def2
L
3624 if (use_alien_caches) {
3625 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3626 if (!new_alien)
3627 goto fail;
3628 }
cafeb02e 3629
63109846
ED
3630 new_shared = NULL;
3631 if (cachep->shared) {
3632 new_shared = alloc_arraycache(node,
0718dc2a 3633 cachep->shared*cachep->batchcount,
83b519e8 3634 0xbaadf00d, gfp);
63109846
ED
3635 if (!new_shared) {
3636 free_alien_cache(new_alien);
3637 goto fail;
3638 }
0718dc2a 3639 }
cafeb02e 3640
18bf8541 3641 n = get_node(cachep, node);
ce8eb6c4
CL
3642 if (n) {
3643 struct array_cache *shared = n->shared;
97654dfa 3644 LIST_HEAD(list);
cafeb02e 3645
ce8eb6c4 3646 spin_lock_irq(&n->list_lock);
e498be7d 3647
cafeb02e 3648 if (shared)
0718dc2a 3649 free_block(cachep, shared->entry,
97654dfa 3650 shared->avail, node, &list);
e498be7d 3651
ce8eb6c4
CL
3652 n->shared = new_shared;
3653 if (!n->alien) {
3654 n->alien = new_alien;
e498be7d
CL
3655 new_alien = NULL;
3656 }
ce8eb6c4 3657 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3658 cachep->batchcount + cachep->num;
ce8eb6c4 3659 spin_unlock_irq(&n->list_lock);
97654dfa 3660 slabs_destroy(cachep, &list);
cafeb02e 3661 kfree(shared);
e498be7d
CL
3662 free_alien_cache(new_alien);
3663 continue;
3664 }
ce8eb6c4
CL
3665 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3666 if (!n) {
0718dc2a
CL
3667 free_alien_cache(new_alien);
3668 kfree(new_shared);
e498be7d 3669 goto fail;
0718dc2a 3670 }
e498be7d 3671
ce8eb6c4 3672 kmem_cache_node_init(n);
5f0985bb
JZ
3673 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3674 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
ce8eb6c4
CL
3675 n->shared = new_shared;
3676 n->alien = new_alien;
3677 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3678 cachep->batchcount + cachep->num;
ce8eb6c4 3679 cachep->node[node] = n;
e498be7d 3680 }
cafeb02e 3681 return 0;
0718dc2a 3682
a737b3e2 3683fail:
3b0efdfa 3684 if (!cachep->list.next) {
0718dc2a
CL
3685 /* Cache is not active yet. Roll back what we did */
3686 node--;
3687 while (node >= 0) {
18bf8541
CL
3688 n = get_node(cachep, node);
3689 if (n) {
ce8eb6c4
CL
3690 kfree(n->shared);
3691 free_alien_cache(n->alien);
3692 kfree(n);
6a67368c 3693 cachep->node[node] = NULL;
0718dc2a
CL
3694 }
3695 node--;
3696 }
3697 }
cafeb02e 3698 return -ENOMEM;
e498be7d
CL
3699}
3700
18004c5d 3701/* Always called with the slab_mutex held */
943a451a 3702static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3703 int batchcount, int shared, gfp_t gfp)
1da177e4 3704{
bf0dea23
JK
3705 struct array_cache __percpu *cpu_cache, *prev;
3706 int cpu;
1da177e4 3707
bf0dea23
JK
3708 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3709 if (!cpu_cache)
d2e7b7d0
SS
3710 return -ENOMEM;
3711
bf0dea23
JK
3712 prev = cachep->cpu_cache;
3713 cachep->cpu_cache = cpu_cache;
3714 kick_all_cpus_sync();
e498be7d 3715
1da177e4 3716 check_irq_on();
1da177e4
LT
3717 cachep->batchcount = batchcount;
3718 cachep->limit = limit;
e498be7d 3719 cachep->shared = shared;
1da177e4 3720
bf0dea23
JK
3721 if (!prev)
3722 goto alloc_node;
3723
3724 for_each_online_cpu(cpu) {
97654dfa 3725 LIST_HEAD(list);
18bf8541
CL
3726 int node;
3727 struct kmem_cache_node *n;
bf0dea23 3728 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3729
bf0dea23 3730 node = cpu_to_mem(cpu);
18bf8541
CL
3731 n = get_node(cachep, node);
3732 spin_lock_irq(&n->list_lock);
bf0dea23 3733 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3734 spin_unlock_irq(&n->list_lock);
97654dfa 3735 slabs_destroy(cachep, &list);
1da177e4 3736 }
bf0dea23
JK
3737 free_percpu(prev);
3738
3739alloc_node:
5f0985bb 3740 return alloc_kmem_cache_node(cachep, gfp);
1da177e4
LT
3741}
3742
943a451a
GC
3743static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3744 int batchcount, int shared, gfp_t gfp)
3745{
3746 int ret;
426589f5 3747 struct kmem_cache *c;
943a451a
GC
3748
3749 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3750
3751 if (slab_state < FULL)
3752 return ret;
3753
3754 if ((ret < 0) || !is_root_cache(cachep))
3755 return ret;
3756
426589f5
VD
3757 lockdep_assert_held(&slab_mutex);
3758 for_each_memcg_cache(c, cachep) {
3759 /* return value determined by the root cache only */
3760 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3761 }
3762
3763 return ret;
3764}
3765
18004c5d 3766/* Called with slab_mutex held always */
83b519e8 3767static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3768{
3769 int err;
943a451a
GC
3770 int limit = 0;
3771 int shared = 0;
3772 int batchcount = 0;
3773
3774 if (!is_root_cache(cachep)) {
3775 struct kmem_cache *root = memcg_root_cache(cachep);
3776 limit = root->limit;
3777 shared = root->shared;
3778 batchcount = root->batchcount;
3779 }
1da177e4 3780
943a451a
GC
3781 if (limit && shared && batchcount)
3782 goto skip_setup;
a737b3e2
AM
3783 /*
3784 * The head array serves three purposes:
1da177e4
LT
3785 * - create a LIFO ordering, i.e. return objects that are cache-warm
3786 * - reduce the number of spinlock operations.
a737b3e2 3787 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3788 * bufctl chains: array operations are cheaper.
3789 * The numbers are guessed, we should auto-tune as described by
3790 * Bonwick.
3791 */
3b0efdfa 3792 if (cachep->size > 131072)
1da177e4 3793 limit = 1;
3b0efdfa 3794 else if (cachep->size > PAGE_SIZE)
1da177e4 3795 limit = 8;
3b0efdfa 3796 else if (cachep->size > 1024)
1da177e4 3797 limit = 24;
3b0efdfa 3798 else if (cachep->size > 256)
1da177e4
LT
3799 limit = 54;
3800 else
3801 limit = 120;
3802
a737b3e2
AM
3803 /*
3804 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3805 * allocation behaviour: Most allocs on one cpu, most free operations
3806 * on another cpu. For these cases, an efficient object passing between
3807 * cpus is necessary. This is provided by a shared array. The array
3808 * replaces Bonwick's magazine layer.
3809 * On uniprocessor, it's functionally equivalent (but less efficient)
3810 * to a larger limit. Thus disabled by default.
3811 */
3812 shared = 0;
3b0efdfa 3813 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3814 shared = 8;
1da177e4
LT
3815
3816#if DEBUG
a737b3e2
AM
3817 /*
3818 * With debugging enabled, large batchcount lead to excessively long
3819 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3820 */
3821 if (limit > 32)
3822 limit = 32;
3823#endif
943a451a
GC
3824 batchcount = (limit + 1) / 2;
3825skip_setup:
3826 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
3827 if (err)
3828 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3829 cachep->name, -err);
2ed3a4ef 3830 return err;
1da177e4
LT
3831}
3832
1b55253a 3833/*
ce8eb6c4
CL
3834 * Drain an array if it contains any elements taking the node lock only if
3835 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3836 * if drain_array() is used on the shared array.
1b55253a 3837 */
ce8eb6c4 3838static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 3839 struct array_cache *ac, int force, int node)
1da177e4 3840{
97654dfa 3841 LIST_HEAD(list);
1da177e4
LT
3842 int tofree;
3843
1b55253a
CL
3844 if (!ac || !ac->avail)
3845 return;
1da177e4
LT
3846 if (ac->touched && !force) {
3847 ac->touched = 0;
b18e7e65 3848 } else {
ce8eb6c4 3849 spin_lock_irq(&n->list_lock);
b18e7e65
CL
3850 if (ac->avail) {
3851 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3852 if (tofree > ac->avail)
3853 tofree = (ac->avail + 1) / 2;
97654dfa 3854 free_block(cachep, ac->entry, tofree, node, &list);
b18e7e65
CL
3855 ac->avail -= tofree;
3856 memmove(ac->entry, &(ac->entry[tofree]),
3857 sizeof(void *) * ac->avail);
3858 }
ce8eb6c4 3859 spin_unlock_irq(&n->list_lock);
97654dfa 3860 slabs_destroy(cachep, &list);
1da177e4
LT
3861 }
3862}
3863
3864/**
3865 * cache_reap - Reclaim memory from caches.
05fb6bf0 3866 * @w: work descriptor
1da177e4
LT
3867 *
3868 * Called from workqueue/eventd every few seconds.
3869 * Purpose:
3870 * - clear the per-cpu caches for this CPU.
3871 * - return freeable pages to the main free memory pool.
3872 *
a737b3e2
AM
3873 * If we cannot acquire the cache chain mutex then just give up - we'll try
3874 * again on the next iteration.
1da177e4 3875 */
7c5cae36 3876static void cache_reap(struct work_struct *w)
1da177e4 3877{
7a7c381d 3878 struct kmem_cache *searchp;
ce8eb6c4 3879 struct kmem_cache_node *n;
7d6e6d09 3880 int node = numa_mem_id();
bf6aede7 3881 struct delayed_work *work = to_delayed_work(w);
1da177e4 3882
18004c5d 3883 if (!mutex_trylock(&slab_mutex))
1da177e4 3884 /* Give up. Setup the next iteration. */
7c5cae36 3885 goto out;
1da177e4 3886
18004c5d 3887 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3888 check_irq_on();
3889
35386e3b 3890 /*
ce8eb6c4 3891 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3892 * have established with reasonable certainty that
3893 * we can do some work if the lock was obtained.
3894 */
18bf8541 3895 n = get_node(searchp, node);
35386e3b 3896
ce8eb6c4 3897 reap_alien(searchp, n);
1da177e4 3898
ce8eb6c4 3899 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 3900
35386e3b
CL
3901 /*
3902 * These are racy checks but it does not matter
3903 * if we skip one check or scan twice.
3904 */
ce8eb6c4 3905 if (time_after(n->next_reap, jiffies))
35386e3b 3906 goto next;
1da177e4 3907
5f0985bb 3908 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 3909
ce8eb6c4 3910 drain_array(searchp, n, n->shared, 0, node);
1da177e4 3911
ce8eb6c4
CL
3912 if (n->free_touched)
3913 n->free_touched = 0;
ed11d9eb
CL
3914 else {
3915 int freed;
1da177e4 3916
ce8eb6c4 3917 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
3918 5 * searchp->num - 1) / (5 * searchp->num));
3919 STATS_ADD_REAPED(searchp, freed);
3920 }
35386e3b 3921next:
1da177e4
LT
3922 cond_resched();
3923 }
3924 check_irq_on();
18004c5d 3925 mutex_unlock(&slab_mutex);
8fce4d8e 3926 next_reap_node();
7c5cae36 3927out:
a737b3e2 3928 /* Set up the next iteration */
5f0985bb 3929 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
3930}
3931
158a9624 3932#ifdef CONFIG_SLABINFO
0d7561c6 3933void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 3934{
8456a648 3935 struct page *page;
b28a02de
PE
3936 unsigned long active_objs;
3937 unsigned long num_objs;
3938 unsigned long active_slabs = 0;
3939 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3940 const char *name;
1da177e4 3941 char *error = NULL;
e498be7d 3942 int node;
ce8eb6c4 3943 struct kmem_cache_node *n;
1da177e4 3944
1da177e4
LT
3945 active_objs = 0;
3946 num_slabs = 0;
18bf8541 3947 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 3948
ca3b9b91 3949 check_irq_on();
ce8eb6c4 3950 spin_lock_irq(&n->list_lock);
e498be7d 3951
8456a648
JK
3952 list_for_each_entry(page, &n->slabs_full, lru) {
3953 if (page->active != cachep->num && !error)
e498be7d
CL
3954 error = "slabs_full accounting error";
3955 active_objs += cachep->num;
3956 active_slabs++;
3957 }
8456a648
JK
3958 list_for_each_entry(page, &n->slabs_partial, lru) {
3959 if (page->active == cachep->num && !error)
106a74e1 3960 error = "slabs_partial accounting error";
8456a648 3961 if (!page->active && !error)
106a74e1 3962 error = "slabs_partial accounting error";
8456a648 3963 active_objs += page->active;
e498be7d
CL
3964 active_slabs++;
3965 }
8456a648
JK
3966 list_for_each_entry(page, &n->slabs_free, lru) {
3967 if (page->active && !error)
106a74e1 3968 error = "slabs_free accounting error";
e498be7d
CL
3969 num_slabs++;
3970 }
ce8eb6c4
CL
3971 free_objects += n->free_objects;
3972 if (n->shared)
3973 shared_avail += n->shared->avail;
e498be7d 3974
ce8eb6c4 3975 spin_unlock_irq(&n->list_lock);
1da177e4 3976 }
b28a02de
PE
3977 num_slabs += active_slabs;
3978 num_objs = num_slabs * cachep->num;
e498be7d 3979 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3980 error = "free_objects accounting error";
3981
b28a02de 3982 name = cachep->name;
1da177e4
LT
3983 if (error)
3984 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3985
0d7561c6
GC
3986 sinfo->active_objs = active_objs;
3987 sinfo->num_objs = num_objs;
3988 sinfo->active_slabs = active_slabs;
3989 sinfo->num_slabs = num_slabs;
3990 sinfo->shared_avail = shared_avail;
3991 sinfo->limit = cachep->limit;
3992 sinfo->batchcount = cachep->batchcount;
3993 sinfo->shared = cachep->shared;
3994 sinfo->objects_per_slab = cachep->num;
3995 sinfo->cache_order = cachep->gfporder;
3996}
3997
3998void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3999{
1da177e4 4000#if STATS
ce8eb6c4 4001 { /* node stats */
1da177e4
LT
4002 unsigned long high = cachep->high_mark;
4003 unsigned long allocs = cachep->num_allocations;
4004 unsigned long grown = cachep->grown;
4005 unsigned long reaped = cachep->reaped;
4006 unsigned long errors = cachep->errors;
4007 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4008 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4009 unsigned long node_frees = cachep->node_frees;
fb7faf33 4010 unsigned long overflows = cachep->node_overflow;
1da177e4 4011
e92dd4fd
JP
4012 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4013 "%4lu %4lu %4lu %4lu %4lu",
4014 allocs, high, grown,
4015 reaped, errors, max_freeable, node_allocs,
4016 node_frees, overflows);
1da177e4
LT
4017 }
4018 /* cpu stats */
4019 {
4020 unsigned long allochit = atomic_read(&cachep->allochit);
4021 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4022 unsigned long freehit = atomic_read(&cachep->freehit);
4023 unsigned long freemiss = atomic_read(&cachep->freemiss);
4024
4025 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4026 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4027 }
4028#endif
1da177e4
LT
4029}
4030
1da177e4
LT
4031#define MAX_SLABINFO_WRITE 128
4032/**
4033 * slabinfo_write - Tuning for the slab allocator
4034 * @file: unused
4035 * @buffer: user buffer
4036 * @count: data length
4037 * @ppos: unused
4038 */
b7454ad3 4039ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4040 size_t count, loff_t *ppos)
1da177e4 4041{
b28a02de 4042 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4043 int limit, batchcount, shared, res;
7a7c381d 4044 struct kmem_cache *cachep;
b28a02de 4045
1da177e4
LT
4046 if (count > MAX_SLABINFO_WRITE)
4047 return -EINVAL;
4048 if (copy_from_user(&kbuf, buffer, count))
4049 return -EFAULT;
b28a02de 4050 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4051
4052 tmp = strchr(kbuf, ' ');
4053 if (!tmp)
4054 return -EINVAL;
4055 *tmp = '\0';
4056 tmp++;
4057 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4058 return -EINVAL;
4059
4060 /* Find the cache in the chain of caches. */
18004c5d 4061 mutex_lock(&slab_mutex);
1da177e4 4062 res = -EINVAL;
18004c5d 4063 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4064 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4065 if (limit < 1 || batchcount < 1 ||
4066 batchcount > limit || shared < 0) {
e498be7d 4067 res = 0;
1da177e4 4068 } else {
e498be7d 4069 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4070 batchcount, shared,
4071 GFP_KERNEL);
1da177e4
LT
4072 }
4073 break;
4074 }
4075 }
18004c5d 4076 mutex_unlock(&slab_mutex);
1da177e4
LT
4077 if (res >= 0)
4078 res = count;
4079 return res;
4080}
871751e2
AV
4081
4082#ifdef CONFIG_DEBUG_SLAB_LEAK
4083
871751e2
AV
4084static inline int add_caller(unsigned long *n, unsigned long v)
4085{
4086 unsigned long *p;
4087 int l;
4088 if (!v)
4089 return 1;
4090 l = n[1];
4091 p = n + 2;
4092 while (l) {
4093 int i = l/2;
4094 unsigned long *q = p + 2 * i;
4095 if (*q == v) {
4096 q[1]++;
4097 return 1;
4098 }
4099 if (*q > v) {
4100 l = i;
4101 } else {
4102 p = q + 2;
4103 l -= i + 1;
4104 }
4105 }
4106 if (++n[1] == n[0])
4107 return 0;
4108 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4109 p[0] = v;
4110 p[1] = 1;
4111 return 1;
4112}
4113
8456a648
JK
4114static void handle_slab(unsigned long *n, struct kmem_cache *c,
4115 struct page *page)
871751e2
AV
4116{
4117 void *p;
03787301 4118 int i;
b1cb0982 4119
871751e2
AV
4120 if (n[0] == n[1])
4121 return;
8456a648 4122 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
03787301 4123 if (get_obj_status(page, i) != OBJECT_ACTIVE)
871751e2 4124 continue;
b1cb0982 4125
871751e2
AV
4126 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4127 return;
4128 }
4129}
4130
4131static void show_symbol(struct seq_file *m, unsigned long address)
4132{
4133#ifdef CONFIG_KALLSYMS
871751e2 4134 unsigned long offset, size;
9281acea 4135 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4136
a5c43dae 4137 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4138 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4139 if (modname[0])
871751e2
AV
4140 seq_printf(m, " [%s]", modname);
4141 return;
4142 }
4143#endif
4144 seq_printf(m, "%p", (void *)address);
4145}
4146
4147static int leaks_show(struct seq_file *m, void *p)
4148{
0672aa7c 4149 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4150 struct page *page;
ce8eb6c4 4151 struct kmem_cache_node *n;
871751e2 4152 const char *name;
db845067 4153 unsigned long *x = m->private;
871751e2
AV
4154 int node;
4155 int i;
4156
4157 if (!(cachep->flags & SLAB_STORE_USER))
4158 return 0;
4159 if (!(cachep->flags & SLAB_RED_ZONE))
4160 return 0;
4161
4162 /* OK, we can do it */
4163
db845067 4164 x[1] = 0;
871751e2 4165
18bf8541 4166 for_each_kmem_cache_node(cachep, node, n) {
871751e2
AV
4167
4168 check_irq_on();
ce8eb6c4 4169 spin_lock_irq(&n->list_lock);
871751e2 4170
8456a648
JK
4171 list_for_each_entry(page, &n->slabs_full, lru)
4172 handle_slab(x, cachep, page);
4173 list_for_each_entry(page, &n->slabs_partial, lru)
4174 handle_slab(x, cachep, page);
ce8eb6c4 4175 spin_unlock_irq(&n->list_lock);
871751e2
AV
4176 }
4177 name = cachep->name;
db845067 4178 if (x[0] == x[1]) {
871751e2 4179 /* Increase the buffer size */
18004c5d 4180 mutex_unlock(&slab_mutex);
db845067 4181 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4182 if (!m->private) {
4183 /* Too bad, we are really out */
db845067 4184 m->private = x;
18004c5d 4185 mutex_lock(&slab_mutex);
871751e2
AV
4186 return -ENOMEM;
4187 }
db845067
CL
4188 *(unsigned long *)m->private = x[0] * 2;
4189 kfree(x);
18004c5d 4190 mutex_lock(&slab_mutex);
871751e2
AV
4191 /* Now make sure this entry will be retried */
4192 m->count = m->size;
4193 return 0;
4194 }
db845067
CL
4195 for (i = 0; i < x[1]; i++) {
4196 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4197 show_symbol(m, x[2*i+2]);
871751e2
AV
4198 seq_putc(m, '\n');
4199 }
d2e7b7d0 4200
871751e2
AV
4201 return 0;
4202}
4203
a0ec95a8 4204static const struct seq_operations slabstats_op = {
1df3b26f 4205 .start = slab_start,
276a2439
WL
4206 .next = slab_next,
4207 .stop = slab_stop,
871751e2
AV
4208 .show = leaks_show,
4209};
a0ec95a8
AD
4210
4211static int slabstats_open(struct inode *inode, struct file *file)
4212{
b208ce32
RJ
4213 unsigned long *n;
4214
4215 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4216 if (!n)
4217 return -ENOMEM;
4218
4219 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4220
4221 return 0;
a0ec95a8
AD
4222}
4223
4224static const struct file_operations proc_slabstats_operations = {
4225 .open = slabstats_open,
4226 .read = seq_read,
4227 .llseek = seq_lseek,
4228 .release = seq_release_private,
4229};
4230#endif
4231
4232static int __init slab_proc_init(void)
4233{
4234#ifdef CONFIG_DEBUG_SLAB_LEAK
4235 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4236#endif
a0ec95a8
AD
4237 return 0;
4238}
4239module_init(slab_proc_init);
1da177e4
LT
4240#endif
4241
00e145b6
MS
4242/**
4243 * ksize - get the actual amount of memory allocated for a given object
4244 * @objp: Pointer to the object
4245 *
4246 * kmalloc may internally round up allocations and return more memory
4247 * than requested. ksize() can be used to determine the actual amount of
4248 * memory allocated. The caller may use this additional memory, even though
4249 * a smaller amount of memory was initially specified with the kmalloc call.
4250 * The caller must guarantee that objp points to a valid object previously
4251 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4252 * must not be freed during the duration of the call.
4253 */
fd76bab2 4254size_t ksize(const void *objp)
1da177e4 4255{
ef8b4520
CL
4256 BUG_ON(!objp);
4257 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4258 return 0;
1da177e4 4259
8c138bc0 4260 return virt_to_cache(objp)->object_size;
1da177e4 4261}
b1aabecd 4262EXPORT_SYMBOL(ksize);