mm/slab: remove object status buffer for DEBUG_SLAB_LEAK
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
072bb0aa
MG
171/*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175static bool pfmemalloc_active __read_mostly;
176
1da177e4
LT
177/*
178 * struct array_cache
179 *
1da177e4
LT
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
bda5b655 194 void *entry[]; /*
a737b3e2
AM
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
072bb0aa
MG
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 202 */
1da177e4
LT
203};
204
c8522a3a
JK
205struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208};
209
072bb0aa
MG
210#define SLAB_OBJ_PFMEMALLOC 1
211static inline bool is_obj_pfmemalloc(void *objp)
212{
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214}
215
216static inline void set_obj_pfmemalloc(void **objp)
217{
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220}
221
222static inline void clear_obj_pfmemalloc(void **objp)
223{
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225}
226
e498be7d
CL
227/*
228 * Need this for bootstrapping a per node allocator.
229 */
bf0dea23 230#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 231static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 232#define CACHE_CACHE 0
bf0dea23 233#define SIZE_NODE (MAX_NUMNODES)
e498be7d 234
ed11d9eb 235static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 236 struct kmem_cache_node *n, int tofree);
ed11d9eb 237static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
238 int node, struct list_head *list);
239static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 240static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 241static void cache_reap(struct work_struct *unused);
ed11d9eb 242
e0a42726
IM
243static int slab_early_init = 1;
244
ce8eb6c4 245#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 246
ce8eb6c4 247static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
248{
249 INIT_LIST_HEAD(&parent->slabs_full);
250 INIT_LIST_HEAD(&parent->slabs_partial);
251 INIT_LIST_HEAD(&parent->slabs_free);
252 parent->shared = NULL;
253 parent->alien = NULL;
2e1217cf 254 parent->colour_next = 0;
e498be7d
CL
255 spin_lock_init(&parent->list_lock);
256 parent->free_objects = 0;
257 parent->free_touched = 0;
258}
259
a737b3e2
AM
260#define MAKE_LIST(cachep, listp, slab, nodeid) \
261 do { \
262 INIT_LIST_HEAD(listp); \
18bf8541 263 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
264 } while (0)
265
a737b3e2
AM
266#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
267 do { \
e498be7d
CL
268 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
269 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
270 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
271 } while (0)
1da177e4 272
1da177e4
LT
273#define CFLGS_OFF_SLAB (0x80000000UL)
274#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
d4322d88 275#define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
1da177e4
LT
276
277#define BATCHREFILL_LIMIT 16
a737b3e2
AM
278/*
279 * Optimization question: fewer reaps means less probability for unnessary
280 * cpucache drain/refill cycles.
1da177e4 281 *
dc6f3f27 282 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
283 * which could lock up otherwise freeable slabs.
284 */
5f0985bb
JZ
285#define REAPTIMEOUT_AC (2*HZ)
286#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
287
288#if STATS
289#define STATS_INC_ACTIVE(x) ((x)->num_active++)
290#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
291#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
292#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 293#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
294#define STATS_SET_HIGH(x) \
295 do { \
296 if ((x)->num_active > (x)->high_mark) \
297 (x)->high_mark = (x)->num_active; \
298 } while (0)
1da177e4
LT
299#define STATS_INC_ERR(x) ((x)->errors++)
300#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 301#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 302#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
303#define STATS_SET_FREEABLE(x, i) \
304 do { \
305 if ((x)->max_freeable < i) \
306 (x)->max_freeable = i; \
307 } while (0)
1da177e4
LT
308#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
309#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
310#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
311#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
312#else
313#define STATS_INC_ACTIVE(x) do { } while (0)
314#define STATS_DEC_ACTIVE(x) do { } while (0)
315#define STATS_INC_ALLOCED(x) do { } while (0)
316#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 317#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
318#define STATS_SET_HIGH(x) do { } while (0)
319#define STATS_INC_ERR(x) do { } while (0)
320#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 321#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 322#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 323#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
324#define STATS_INC_ALLOCHIT(x) do { } while (0)
325#define STATS_INC_ALLOCMISS(x) do { } while (0)
326#define STATS_INC_FREEHIT(x) do { } while (0)
327#define STATS_INC_FREEMISS(x) do { } while (0)
328#endif
329
330#if DEBUG
1da177e4 331
a737b3e2
AM
332/*
333 * memory layout of objects:
1da177e4 334 * 0 : objp
3dafccf2 335 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
336 * the end of an object is aligned with the end of the real
337 * allocation. Catches writes behind the end of the allocation.
3dafccf2 338 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 339 * redzone word.
3dafccf2 340 * cachep->obj_offset: The real object.
3b0efdfa
CL
341 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
342 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 343 * [BYTES_PER_WORD long]
1da177e4 344 */
343e0d7a 345static int obj_offset(struct kmem_cache *cachep)
1da177e4 346{
3dafccf2 347 return cachep->obj_offset;
1da177e4
LT
348}
349
b46b8f19 350static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
351{
352 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
353 return (unsigned long long*) (objp + obj_offset(cachep) -
354 sizeof(unsigned long long));
1da177e4
LT
355}
356
b46b8f19 357static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
358{
359 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
360 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 361 return (unsigned long long *)(objp + cachep->size -
b46b8f19 362 sizeof(unsigned long long) -
87a927c7 363 REDZONE_ALIGN);
3b0efdfa 364 return (unsigned long long *) (objp + cachep->size -
b46b8f19 365 sizeof(unsigned long long));
1da177e4
LT
366}
367
343e0d7a 368static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
369{
370 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 371 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
372}
373
374#else
375
3dafccf2 376#define obj_offset(x) 0
b46b8f19
DW
377#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
378#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
379#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
380
381#endif
382
03787301
JK
383#ifdef CONFIG_DEBUG_SLAB_LEAK
384
d31676df 385static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 386{
d31676df
JK
387 return atomic_read(&cachep->store_user_clean) == 1;
388}
03787301 389
d31676df
JK
390static inline void set_store_user_clean(struct kmem_cache *cachep)
391{
392 atomic_set(&cachep->store_user_clean, 1);
393}
03787301 394
d31676df
JK
395static inline void set_store_user_dirty(struct kmem_cache *cachep)
396{
397 if (is_store_user_clean(cachep))
398 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
399}
400
401#else
d31676df 402static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
403
404#endif
405
1da177e4 406/*
3df1cccd
DR
407 * Do not go above this order unless 0 objects fit into the slab or
408 * overridden on the command line.
1da177e4 409 */
543585cc
DR
410#define SLAB_MAX_ORDER_HI 1
411#define SLAB_MAX_ORDER_LO 0
412static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 413static bool slab_max_order_set __initdata;
1da177e4 414
6ed5eb22
PE
415static inline struct kmem_cache *virt_to_cache(const void *obj)
416{
b49af68f 417 struct page *page = virt_to_head_page(obj);
35026088 418 return page->slab_cache;
6ed5eb22
PE
419}
420
8456a648 421static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
422 unsigned int idx)
423{
8456a648 424 return page->s_mem + cache->size * idx;
8fea4e96
PE
425}
426
6a2d7a95 427/*
3b0efdfa
CL
428 * We want to avoid an expensive divide : (offset / cache->size)
429 * Using the fact that size is a constant for a particular cache,
430 * we can replace (offset / cache->size) by
6a2d7a95
ED
431 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
432 */
433static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 434 const struct page *page, void *obj)
8fea4e96 435{
8456a648 436 u32 offset = (obj - page->s_mem);
6a2d7a95 437 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
438}
439
6fb92430 440#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 441/* internal cache of cache description objs */
9b030cb8 442static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
443 .batchcount = 1,
444 .limit = BOOT_CPUCACHE_ENTRIES,
445 .shared = 1,
3b0efdfa 446 .size = sizeof(struct kmem_cache),
b28a02de 447 .name = "kmem_cache",
1da177e4
LT
448};
449
edcad250
JK
450#define BAD_ALIEN_MAGIC 0x01020304ul
451
1871e52c 452static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 453
343e0d7a 454static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 455{
bf0dea23 456 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
457}
458
03787301
JK
459static size_t calculate_freelist_size(int nr_objs, size_t align)
460{
461 size_t freelist_size;
462
463 freelist_size = nr_objs * sizeof(freelist_idx_t);
03787301
JK
464 if (align)
465 freelist_size = ALIGN(freelist_size, align);
466
467 return freelist_size;
468}
469
9cef2e2b
JK
470static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
471 size_t idx_size, size_t align)
1da177e4 472{
9cef2e2b 473 int nr_objs;
03787301 474 size_t remained_size;
9cef2e2b
JK
475 size_t freelist_size;
476
477 /*
478 * Ignore padding for the initial guess. The padding
479 * is at most @align-1 bytes, and @buffer_size is at
480 * least @align. In the worst case, this result will
481 * be one greater than the number of objects that fit
482 * into the memory allocation when taking the padding
483 * into account.
484 */
249247b6 485 nr_objs = slab_size / (buffer_size + idx_size);
9cef2e2b
JK
486
487 /*
488 * This calculated number will be either the right
489 * amount, or one greater than what we want.
490 */
03787301
JK
491 remained_size = slab_size - nr_objs * buffer_size;
492 freelist_size = calculate_freelist_size(nr_objs, align);
493 if (remained_size < freelist_size)
9cef2e2b
JK
494 nr_objs--;
495
496 return nr_objs;
fbaccacf 497}
1da177e4 498
a737b3e2
AM
499/*
500 * Calculate the number of objects and left-over bytes for a given buffer size.
501 */
fbaccacf
SR
502static void cache_estimate(unsigned long gfporder, size_t buffer_size,
503 size_t align, int flags, size_t *left_over,
504 unsigned int *num)
505{
506 int nr_objs;
507 size_t mgmt_size;
508 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 509
fbaccacf
SR
510 /*
511 * The slab management structure can be either off the slab or
512 * on it. For the latter case, the memory allocated for a
513 * slab is used for:
514 *
12c61fe9 515 * - One freelist_idx_t for each object
fbaccacf
SR
516 * - Padding to respect alignment of @align
517 * - @buffer_size bytes for each object
518 *
519 * If the slab management structure is off the slab, then the
520 * alignment will already be calculated into the size. Because
521 * the slabs are all pages aligned, the objects will be at the
522 * correct alignment when allocated.
523 */
524 if (flags & CFLGS_OFF_SLAB) {
525 mgmt_size = 0;
526 nr_objs = slab_size / buffer_size;
527
fbaccacf 528 } else {
9cef2e2b 529 nr_objs = calculate_nr_objs(slab_size, buffer_size,
a41adfaa 530 sizeof(freelist_idx_t), align);
03787301 531 mgmt_size = calculate_freelist_size(nr_objs, align);
fbaccacf
SR
532 }
533 *num = nr_objs;
534 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
535}
536
f28510d3 537#if DEBUG
d40cee24 538#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 539
a737b3e2
AM
540static void __slab_error(const char *function, struct kmem_cache *cachep,
541 char *msg)
1da177e4
LT
542{
543 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 544 function, cachep->name, msg);
1da177e4 545 dump_stack();
373d4d09 546 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 547}
f28510d3 548#endif
1da177e4 549
3395ee05
PM
550/*
551 * By default on NUMA we use alien caches to stage the freeing of
552 * objects allocated from other nodes. This causes massive memory
553 * inefficiencies when using fake NUMA setup to split memory into a
554 * large number of small nodes, so it can be disabled on the command
555 * line
556 */
557
558static int use_alien_caches __read_mostly = 1;
559static int __init noaliencache_setup(char *s)
560{
561 use_alien_caches = 0;
562 return 1;
563}
564__setup("noaliencache", noaliencache_setup);
565
3df1cccd
DR
566static int __init slab_max_order_setup(char *str)
567{
568 get_option(&str, &slab_max_order);
569 slab_max_order = slab_max_order < 0 ? 0 :
570 min(slab_max_order, MAX_ORDER - 1);
571 slab_max_order_set = true;
572
573 return 1;
574}
575__setup("slab_max_order=", slab_max_order_setup);
576
8fce4d8e
CL
577#ifdef CONFIG_NUMA
578/*
579 * Special reaping functions for NUMA systems called from cache_reap().
580 * These take care of doing round robin flushing of alien caches (containing
581 * objects freed on different nodes from which they were allocated) and the
582 * flushing of remote pcps by calling drain_node_pages.
583 */
1871e52c 584static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
585
586static void init_reap_node(int cpu)
587{
588 int node;
589
7d6e6d09 590 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 591 if (node == MAX_NUMNODES)
442295c9 592 node = first_node(node_online_map);
8fce4d8e 593
1871e52c 594 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
595}
596
597static void next_reap_node(void)
598{
909ea964 599 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 600
8fce4d8e
CL
601 node = next_node(node, node_online_map);
602 if (unlikely(node >= MAX_NUMNODES))
603 node = first_node(node_online_map);
909ea964 604 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
605}
606
607#else
608#define init_reap_node(cpu) do { } while (0)
609#define next_reap_node(void) do { } while (0)
610#endif
611
1da177e4
LT
612/*
613 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
614 * via the workqueue/eventd.
615 * Add the CPU number into the expiration time to minimize the possibility of
616 * the CPUs getting into lockstep and contending for the global cache chain
617 * lock.
618 */
0db0628d 619static void start_cpu_timer(int cpu)
1da177e4 620{
1871e52c 621 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
622
623 /*
624 * When this gets called from do_initcalls via cpucache_init(),
625 * init_workqueues() has already run, so keventd will be setup
626 * at that time.
627 */
52bad64d 628 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 629 init_reap_node(cpu);
203b42f7 630 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
631 schedule_delayed_work_on(cpu, reap_work,
632 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
633 }
634}
635
1fe00d50 636static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 637{
d5cff635
CM
638 /*
639 * The array_cache structures contain pointers to free object.
25985edc 640 * However, when such objects are allocated or transferred to another
d5cff635
CM
641 * cache the pointers are not cleared and they could be counted as
642 * valid references during a kmemleak scan. Therefore, kmemleak must
643 * not scan such objects.
644 */
1fe00d50
JK
645 kmemleak_no_scan(ac);
646 if (ac) {
647 ac->avail = 0;
648 ac->limit = limit;
649 ac->batchcount = batch;
650 ac->touched = 0;
1da177e4 651 }
1fe00d50
JK
652}
653
654static struct array_cache *alloc_arraycache(int node, int entries,
655 int batchcount, gfp_t gfp)
656{
5e804789 657 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
658 struct array_cache *ac = NULL;
659
660 ac = kmalloc_node(memsize, gfp, node);
661 init_arraycache(ac, entries, batchcount);
662 return ac;
1da177e4
LT
663}
664
8456a648 665static inline bool is_slab_pfmemalloc(struct page *page)
072bb0aa 666{
072bb0aa
MG
667 return PageSlabPfmemalloc(page);
668}
669
670/* Clears pfmemalloc_active if no slabs have pfmalloc set */
671static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
672 struct array_cache *ac)
673{
18bf8541 674 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
8456a648 675 struct page *page;
072bb0aa
MG
676 unsigned long flags;
677
678 if (!pfmemalloc_active)
679 return;
680
ce8eb6c4 681 spin_lock_irqsave(&n->list_lock, flags);
8456a648
JK
682 list_for_each_entry(page, &n->slabs_full, lru)
683 if (is_slab_pfmemalloc(page))
072bb0aa
MG
684 goto out;
685
8456a648
JK
686 list_for_each_entry(page, &n->slabs_partial, lru)
687 if (is_slab_pfmemalloc(page))
072bb0aa
MG
688 goto out;
689
8456a648
JK
690 list_for_each_entry(page, &n->slabs_free, lru)
691 if (is_slab_pfmemalloc(page))
072bb0aa
MG
692 goto out;
693
694 pfmemalloc_active = false;
695out:
ce8eb6c4 696 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
697}
698
381760ea 699static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
700 gfp_t flags, bool force_refill)
701{
702 int i;
703 void *objp = ac->entry[--ac->avail];
704
705 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
706 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 707 struct kmem_cache_node *n;
072bb0aa
MG
708
709 if (gfp_pfmemalloc_allowed(flags)) {
710 clear_obj_pfmemalloc(&objp);
711 return objp;
712 }
713
714 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 715 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
716 /* If a !PFMEMALLOC object is found, swap them */
717 if (!is_obj_pfmemalloc(ac->entry[i])) {
718 objp = ac->entry[i];
719 ac->entry[i] = ac->entry[ac->avail];
720 ac->entry[ac->avail] = objp;
721 return objp;
722 }
723 }
724
725 /*
726 * If there are empty slabs on the slabs_free list and we are
727 * being forced to refill the cache, mark this one !pfmemalloc.
728 */
18bf8541 729 n = get_node(cachep, numa_mem_id());
ce8eb6c4 730 if (!list_empty(&n->slabs_free) && force_refill) {
8456a648 731 struct page *page = virt_to_head_page(objp);
7ecccf9d 732 ClearPageSlabPfmemalloc(page);
072bb0aa
MG
733 clear_obj_pfmemalloc(&objp);
734 recheck_pfmemalloc_active(cachep, ac);
735 return objp;
736 }
737
738 /* No !PFMEMALLOC objects available */
739 ac->avail++;
740 objp = NULL;
741 }
742
743 return objp;
744}
745
381760ea
MG
746static inline void *ac_get_obj(struct kmem_cache *cachep,
747 struct array_cache *ac, gfp_t flags, bool force_refill)
748{
749 void *objp;
750
751 if (unlikely(sk_memalloc_socks()))
752 objp = __ac_get_obj(cachep, ac, flags, force_refill);
753 else
754 objp = ac->entry[--ac->avail];
755
756 return objp;
757}
758
d3aec344
JK
759static noinline void *__ac_put_obj(struct kmem_cache *cachep,
760 struct array_cache *ac, void *objp)
072bb0aa
MG
761{
762 if (unlikely(pfmemalloc_active)) {
763 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 764 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
765 if (PageSlabPfmemalloc(page))
766 set_obj_pfmemalloc(&objp);
767 }
768
381760ea
MG
769 return objp;
770}
771
772static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
773 void *objp)
774{
775 if (unlikely(sk_memalloc_socks()))
776 objp = __ac_put_obj(cachep, ac, objp);
777
072bb0aa
MG
778 ac->entry[ac->avail++] = objp;
779}
780
3ded175a
CL
781/*
782 * Transfer objects in one arraycache to another.
783 * Locking must be handled by the caller.
784 *
785 * Return the number of entries transferred.
786 */
787static int transfer_objects(struct array_cache *to,
788 struct array_cache *from, unsigned int max)
789{
790 /* Figure out how many entries to transfer */
732eacc0 791 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
792
793 if (!nr)
794 return 0;
795
796 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
797 sizeof(void *) *nr);
798
799 from->avail -= nr;
800 to->avail += nr;
3ded175a
CL
801 return nr;
802}
803
765c4507
CL
804#ifndef CONFIG_NUMA
805
806#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 807#define reap_alien(cachep, n) do { } while (0)
765c4507 808
c8522a3a
JK
809static inline struct alien_cache **alloc_alien_cache(int node,
810 int limit, gfp_t gfp)
765c4507 811{
edcad250 812 return (struct alien_cache **)BAD_ALIEN_MAGIC;
765c4507
CL
813}
814
c8522a3a 815static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
816{
817}
818
819static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
820{
821 return 0;
822}
823
824static inline void *alternate_node_alloc(struct kmem_cache *cachep,
825 gfp_t flags)
826{
827 return NULL;
828}
829
8b98c169 830static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
831 gfp_t flags, int nodeid)
832{
833 return NULL;
834}
835
4167e9b2
DR
836static inline gfp_t gfp_exact_node(gfp_t flags)
837{
838 return flags;
839}
840
765c4507
CL
841#else /* CONFIG_NUMA */
842
8b98c169 843static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 844static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 845
c8522a3a
JK
846static struct alien_cache *__alloc_alien_cache(int node, int entries,
847 int batch, gfp_t gfp)
848{
5e804789 849 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
850 struct alien_cache *alc = NULL;
851
852 alc = kmalloc_node(memsize, gfp, node);
853 init_arraycache(&alc->ac, entries, batch);
49dfc304 854 spin_lock_init(&alc->lock);
c8522a3a
JK
855 return alc;
856}
857
858static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 859{
c8522a3a 860 struct alien_cache **alc_ptr;
5e804789 861 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
862 int i;
863
864 if (limit > 1)
865 limit = 12;
c8522a3a
JK
866 alc_ptr = kzalloc_node(memsize, gfp, node);
867 if (!alc_ptr)
868 return NULL;
869
870 for_each_node(i) {
871 if (i == node || !node_online(i))
872 continue;
873 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
874 if (!alc_ptr[i]) {
875 for (i--; i >= 0; i--)
876 kfree(alc_ptr[i]);
877 kfree(alc_ptr);
878 return NULL;
e498be7d
CL
879 }
880 }
c8522a3a 881 return alc_ptr;
e498be7d
CL
882}
883
c8522a3a 884static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
885{
886 int i;
887
c8522a3a 888 if (!alc_ptr)
e498be7d 889 return;
e498be7d 890 for_each_node(i)
c8522a3a
JK
891 kfree(alc_ptr[i]);
892 kfree(alc_ptr);
e498be7d
CL
893}
894
343e0d7a 895static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
896 struct array_cache *ac, int node,
897 struct list_head *list)
e498be7d 898{
18bf8541 899 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
900
901 if (ac->avail) {
ce8eb6c4 902 spin_lock(&n->list_lock);
e00946fe
CL
903 /*
904 * Stuff objects into the remote nodes shared array first.
905 * That way we could avoid the overhead of putting the objects
906 * into the free lists and getting them back later.
907 */
ce8eb6c4
CL
908 if (n->shared)
909 transfer_objects(n->shared, ac, ac->limit);
e00946fe 910
833b706c 911 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 912 ac->avail = 0;
ce8eb6c4 913 spin_unlock(&n->list_lock);
e498be7d
CL
914 }
915}
916
8fce4d8e
CL
917/*
918 * Called from cache_reap() to regularly drain alien caches round robin.
919 */
ce8eb6c4 920static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 921{
909ea964 922 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 923
ce8eb6c4 924 if (n->alien) {
c8522a3a
JK
925 struct alien_cache *alc = n->alien[node];
926 struct array_cache *ac;
927
928 if (alc) {
929 ac = &alc->ac;
49dfc304 930 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
931 LIST_HEAD(list);
932
933 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 934 spin_unlock_irq(&alc->lock);
833b706c 935 slabs_destroy(cachep, &list);
c8522a3a 936 }
8fce4d8e
CL
937 }
938 }
939}
940
a737b3e2 941static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 942 struct alien_cache **alien)
e498be7d 943{
b28a02de 944 int i = 0;
c8522a3a 945 struct alien_cache *alc;
e498be7d
CL
946 struct array_cache *ac;
947 unsigned long flags;
948
949 for_each_online_node(i) {
c8522a3a
JK
950 alc = alien[i];
951 if (alc) {
833b706c
JK
952 LIST_HEAD(list);
953
c8522a3a 954 ac = &alc->ac;
49dfc304 955 spin_lock_irqsave(&alc->lock, flags);
833b706c 956 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 957 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 958 slabs_destroy(cachep, &list);
e498be7d
CL
959 }
960 }
961}
729bd0b7 962
25c4f304
JK
963static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
964 int node, int page_node)
729bd0b7 965{
ce8eb6c4 966 struct kmem_cache_node *n;
c8522a3a
JK
967 struct alien_cache *alien = NULL;
968 struct array_cache *ac;
97654dfa 969 LIST_HEAD(list);
1ca4cb24 970
18bf8541 971 n = get_node(cachep, node);
729bd0b7 972 STATS_INC_NODEFREES(cachep);
25c4f304
JK
973 if (n->alien && n->alien[page_node]) {
974 alien = n->alien[page_node];
c8522a3a 975 ac = &alien->ac;
49dfc304 976 spin_lock(&alien->lock);
c8522a3a 977 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 978 STATS_INC_ACOVERFLOW(cachep);
25c4f304 979 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 980 }
c8522a3a 981 ac_put_obj(cachep, ac, objp);
49dfc304 982 spin_unlock(&alien->lock);
833b706c 983 slabs_destroy(cachep, &list);
729bd0b7 984 } else {
25c4f304 985 n = get_node(cachep, page_node);
18bf8541 986 spin_lock(&n->list_lock);
25c4f304 987 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 988 spin_unlock(&n->list_lock);
97654dfa 989 slabs_destroy(cachep, &list);
729bd0b7
PE
990 }
991 return 1;
992}
25c4f304
JK
993
994static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
995{
996 int page_node = page_to_nid(virt_to_page(objp));
997 int node = numa_mem_id();
998 /*
999 * Make sure we are not freeing a object from another node to the array
1000 * cache on this cpu.
1001 */
1002 if (likely(node == page_node))
1003 return 0;
1004
1005 return __cache_free_alien(cachep, objp, node, page_node);
1006}
4167e9b2
DR
1007
1008/*
d0164adc
MG
1009 * Construct gfp mask to allocate from a specific node but do not direct reclaim
1010 * or warn about failures. kswapd may still wake to reclaim in the background.
4167e9b2
DR
1011 */
1012static inline gfp_t gfp_exact_node(gfp_t flags)
1013{
d0164adc 1014 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
4167e9b2 1015}
e498be7d
CL
1016#endif
1017
8f9f8d9e 1018/*
6a67368c 1019 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1020 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1021 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1022 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1023 * already in use.
1024 *
18004c5d 1025 * Must hold slab_mutex.
8f9f8d9e 1026 */
6a67368c 1027static int init_cache_node_node(int node)
8f9f8d9e
DR
1028{
1029 struct kmem_cache *cachep;
ce8eb6c4 1030 struct kmem_cache_node *n;
5e804789 1031 const size_t memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1032
18004c5d 1033 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e 1034 /*
5f0985bb 1035 * Set up the kmem_cache_node for cpu before we can
8f9f8d9e
DR
1036 * begin anything. Make sure some other cpu on this
1037 * node has not already allocated this
1038 */
18bf8541
CL
1039 n = get_node(cachep, node);
1040 if (!n) {
ce8eb6c4
CL
1041 n = kmalloc_node(memsize, GFP_KERNEL, node);
1042 if (!n)
8f9f8d9e 1043 return -ENOMEM;
ce8eb6c4 1044 kmem_cache_node_init(n);
5f0985bb
JZ
1045 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1046 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
8f9f8d9e
DR
1047
1048 /*
5f0985bb
JZ
1049 * The kmem_cache_nodes don't come and go as CPUs
1050 * come and go. slab_mutex is sufficient
8f9f8d9e
DR
1051 * protection here.
1052 */
ce8eb6c4 1053 cachep->node[node] = n;
8f9f8d9e
DR
1054 }
1055
18bf8541
CL
1056 spin_lock_irq(&n->list_lock);
1057 n->free_limit =
8f9f8d9e
DR
1058 (1 + nr_cpus_node(node)) *
1059 cachep->batchcount + cachep->num;
18bf8541 1060 spin_unlock_irq(&n->list_lock);
8f9f8d9e
DR
1061 }
1062 return 0;
1063}
1064
0fa8103b
WL
1065static inline int slabs_tofree(struct kmem_cache *cachep,
1066 struct kmem_cache_node *n)
1067{
1068 return (n->free_objects + cachep->num - 1) / cachep->num;
1069}
1070
0db0628d 1071static void cpuup_canceled(long cpu)
fbf1e473
AM
1072{
1073 struct kmem_cache *cachep;
ce8eb6c4 1074 struct kmem_cache_node *n = NULL;
7d6e6d09 1075 int node = cpu_to_mem(cpu);
a70f7302 1076 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1077
18004c5d 1078 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1079 struct array_cache *nc;
1080 struct array_cache *shared;
c8522a3a 1081 struct alien_cache **alien;
97654dfa 1082 LIST_HEAD(list);
fbf1e473 1083
18bf8541 1084 n = get_node(cachep, node);
ce8eb6c4 1085 if (!n)
bf0dea23 1086 continue;
fbf1e473 1087
ce8eb6c4 1088 spin_lock_irq(&n->list_lock);
fbf1e473 1089
ce8eb6c4
CL
1090 /* Free limit for this kmem_cache_node */
1091 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1092
1093 /* cpu is dead; no one can alloc from it. */
1094 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1095 if (nc) {
97654dfa 1096 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1097 nc->avail = 0;
1098 }
fbf1e473 1099
58463c1f 1100 if (!cpumask_empty(mask)) {
ce8eb6c4 1101 spin_unlock_irq(&n->list_lock);
bf0dea23 1102 goto free_slab;
fbf1e473
AM
1103 }
1104
ce8eb6c4 1105 shared = n->shared;
fbf1e473
AM
1106 if (shared) {
1107 free_block(cachep, shared->entry,
97654dfa 1108 shared->avail, node, &list);
ce8eb6c4 1109 n->shared = NULL;
fbf1e473
AM
1110 }
1111
ce8eb6c4
CL
1112 alien = n->alien;
1113 n->alien = NULL;
fbf1e473 1114
ce8eb6c4 1115 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1116
1117 kfree(shared);
1118 if (alien) {
1119 drain_alien_cache(cachep, alien);
1120 free_alien_cache(alien);
1121 }
bf0dea23
JK
1122
1123free_slab:
97654dfa 1124 slabs_destroy(cachep, &list);
fbf1e473
AM
1125 }
1126 /*
1127 * In the previous loop, all the objects were freed to
1128 * the respective cache's slabs, now we can go ahead and
1129 * shrink each nodelist to its limit.
1130 */
18004c5d 1131 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1132 n = get_node(cachep, node);
ce8eb6c4 1133 if (!n)
fbf1e473 1134 continue;
0fa8103b 1135 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1136 }
1137}
1138
0db0628d 1139static int cpuup_prepare(long cpu)
1da177e4 1140{
343e0d7a 1141 struct kmem_cache *cachep;
ce8eb6c4 1142 struct kmem_cache_node *n = NULL;
7d6e6d09 1143 int node = cpu_to_mem(cpu);
8f9f8d9e 1144 int err;
1da177e4 1145
fbf1e473
AM
1146 /*
1147 * We need to do this right in the beginning since
1148 * alloc_arraycache's are going to use this list.
1149 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1150 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1151 */
6a67368c 1152 err = init_cache_node_node(node);
8f9f8d9e
DR
1153 if (err < 0)
1154 goto bad;
fbf1e473
AM
1155
1156 /*
1157 * Now we can go ahead with allocating the shared arrays and
1158 * array caches
1159 */
18004c5d 1160 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473 1161 struct array_cache *shared = NULL;
c8522a3a 1162 struct alien_cache **alien = NULL;
fbf1e473 1163
fbf1e473
AM
1164 if (cachep->shared) {
1165 shared = alloc_arraycache(node,
1166 cachep->shared * cachep->batchcount,
83b519e8 1167 0xbaadf00d, GFP_KERNEL);
bf0dea23 1168 if (!shared)
1da177e4 1169 goto bad;
fbf1e473
AM
1170 }
1171 if (use_alien_caches) {
83b519e8 1172 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1173 if (!alien) {
1174 kfree(shared);
fbf1e473 1175 goto bad;
12d00f6a 1176 }
fbf1e473 1177 }
18bf8541 1178 n = get_node(cachep, node);
ce8eb6c4 1179 BUG_ON(!n);
fbf1e473 1180
ce8eb6c4
CL
1181 spin_lock_irq(&n->list_lock);
1182 if (!n->shared) {
fbf1e473
AM
1183 /*
1184 * We are serialised from CPU_DEAD or
1185 * CPU_UP_CANCELLED by the cpucontrol lock
1186 */
ce8eb6c4 1187 n->shared = shared;
fbf1e473
AM
1188 shared = NULL;
1189 }
4484ebf1 1190#ifdef CONFIG_NUMA
ce8eb6c4
CL
1191 if (!n->alien) {
1192 n->alien = alien;
fbf1e473 1193 alien = NULL;
1da177e4 1194 }
fbf1e473 1195#endif
ce8eb6c4 1196 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1197 kfree(shared);
1198 free_alien_cache(alien);
1199 }
ce79ddc8 1200
fbf1e473
AM
1201 return 0;
1202bad:
12d00f6a 1203 cpuup_canceled(cpu);
fbf1e473
AM
1204 return -ENOMEM;
1205}
1206
0db0628d 1207static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1208 unsigned long action, void *hcpu)
1209{
1210 long cpu = (long)hcpu;
1211 int err = 0;
1212
1213 switch (action) {
fbf1e473
AM
1214 case CPU_UP_PREPARE:
1215 case CPU_UP_PREPARE_FROZEN:
18004c5d 1216 mutex_lock(&slab_mutex);
fbf1e473 1217 err = cpuup_prepare(cpu);
18004c5d 1218 mutex_unlock(&slab_mutex);
1da177e4
LT
1219 break;
1220 case CPU_ONLINE:
8bb78442 1221 case CPU_ONLINE_FROZEN:
1da177e4
LT
1222 start_cpu_timer(cpu);
1223 break;
1224#ifdef CONFIG_HOTPLUG_CPU
5830c590 1225 case CPU_DOWN_PREPARE:
8bb78442 1226 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1227 /*
18004c5d 1228 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1229 * held so that if cache_reap() is invoked it cannot do
1230 * anything expensive but will only modify reap_work
1231 * and reschedule the timer.
1232 */
afe2c511 1233 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1234 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1235 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1236 break;
1237 case CPU_DOWN_FAILED:
8bb78442 1238 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1239 start_cpu_timer(cpu);
1240 break;
1da177e4 1241 case CPU_DEAD:
8bb78442 1242 case CPU_DEAD_FROZEN:
4484ebf1
RT
1243 /*
1244 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1245 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1246 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1247 * memory from the node of the cpu going down. The node
4484ebf1
RT
1248 * structure is usually allocated from kmem_cache_create() and
1249 * gets destroyed at kmem_cache_destroy().
1250 */
183ff22b 1251 /* fall through */
8f5be20b 1252#endif
1da177e4 1253 case CPU_UP_CANCELED:
8bb78442 1254 case CPU_UP_CANCELED_FROZEN:
18004c5d 1255 mutex_lock(&slab_mutex);
fbf1e473 1256 cpuup_canceled(cpu);
18004c5d 1257 mutex_unlock(&slab_mutex);
1da177e4 1258 break;
1da177e4 1259 }
eac40680 1260 return notifier_from_errno(err);
1da177e4
LT
1261}
1262
0db0628d 1263static struct notifier_block cpucache_notifier = {
74b85f37
CS
1264 &cpuup_callback, NULL, 0
1265};
1da177e4 1266
8f9f8d9e
DR
1267#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1268/*
1269 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1270 * Returns -EBUSY if all objects cannot be drained so that the node is not
1271 * removed.
1272 *
18004c5d 1273 * Must hold slab_mutex.
8f9f8d9e 1274 */
6a67368c 1275static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1276{
1277 struct kmem_cache *cachep;
1278 int ret = 0;
1279
18004c5d 1280 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1281 struct kmem_cache_node *n;
8f9f8d9e 1282
18bf8541 1283 n = get_node(cachep, node);
ce8eb6c4 1284 if (!n)
8f9f8d9e
DR
1285 continue;
1286
0fa8103b 1287 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1288
ce8eb6c4
CL
1289 if (!list_empty(&n->slabs_full) ||
1290 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1291 ret = -EBUSY;
1292 break;
1293 }
1294 }
1295 return ret;
1296}
1297
1298static int __meminit slab_memory_callback(struct notifier_block *self,
1299 unsigned long action, void *arg)
1300{
1301 struct memory_notify *mnb = arg;
1302 int ret = 0;
1303 int nid;
1304
1305 nid = mnb->status_change_nid;
1306 if (nid < 0)
1307 goto out;
1308
1309 switch (action) {
1310 case MEM_GOING_ONLINE:
18004c5d 1311 mutex_lock(&slab_mutex);
6a67368c 1312 ret = init_cache_node_node(nid);
18004c5d 1313 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1314 break;
1315 case MEM_GOING_OFFLINE:
18004c5d 1316 mutex_lock(&slab_mutex);
6a67368c 1317 ret = drain_cache_node_node(nid);
18004c5d 1318 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1319 break;
1320 case MEM_ONLINE:
1321 case MEM_OFFLINE:
1322 case MEM_CANCEL_ONLINE:
1323 case MEM_CANCEL_OFFLINE:
1324 break;
1325 }
1326out:
5fda1bd5 1327 return notifier_from_errno(ret);
8f9f8d9e
DR
1328}
1329#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1330
e498be7d 1331/*
ce8eb6c4 1332 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1333 */
6744f087 1334static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1335 int nodeid)
e498be7d 1336{
6744f087 1337 struct kmem_cache_node *ptr;
e498be7d 1338
6744f087 1339 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1340 BUG_ON(!ptr);
1341
6744f087 1342 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1343 /*
1344 * Do not assume that spinlocks can be initialized via memcpy:
1345 */
1346 spin_lock_init(&ptr->list_lock);
1347
e498be7d 1348 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1349 cachep->node[nodeid] = ptr;
e498be7d
CL
1350}
1351
556a169d 1352/*
ce8eb6c4
CL
1353 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1354 * size of kmem_cache_node.
556a169d 1355 */
ce8eb6c4 1356static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1357{
1358 int node;
1359
1360 for_each_online_node(node) {
ce8eb6c4 1361 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1362 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1363 REAPTIMEOUT_NODE +
1364 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1365 }
1366}
1367
a737b3e2
AM
1368/*
1369 * Initialisation. Called after the page allocator have been initialised and
1370 * before smp_init().
1da177e4
LT
1371 */
1372void __init kmem_cache_init(void)
1373{
e498be7d
CL
1374 int i;
1375
68126702
JK
1376 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1377 sizeof(struct rcu_head));
9b030cb8
CL
1378 kmem_cache = &kmem_cache_boot;
1379
b6e68bc1 1380 if (num_possible_nodes() == 1)
62918a03
SS
1381 use_alien_caches = 0;
1382
3c583465 1383 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1384 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1385
1da177e4
LT
1386 /*
1387 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1388 * page orders on machines with more than 32MB of memory if
1389 * not overridden on the command line.
1da177e4 1390 */
3df1cccd 1391 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1392 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1393
1da177e4
LT
1394 /* Bootstrap is tricky, because several objects are allocated
1395 * from caches that do not exist yet:
9b030cb8
CL
1396 * 1) initialize the kmem_cache cache: it contains the struct
1397 * kmem_cache structures of all caches, except kmem_cache itself:
1398 * kmem_cache is statically allocated.
e498be7d 1399 * Initially an __init data area is used for the head array and the
ce8eb6c4 1400 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1401 * array at the end of the bootstrap.
1da177e4 1402 * 2) Create the first kmalloc cache.
343e0d7a 1403 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1404 * An __init data area is used for the head array.
1405 * 3) Create the remaining kmalloc caches, with minimally sized
1406 * head arrays.
9b030cb8 1407 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1408 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1409 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1410 * the other cache's with kmalloc allocated memory.
1411 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1412 */
1413
9b030cb8 1414 /* 1) create the kmem_cache */
1da177e4 1415
8da3430d 1416 /*
b56efcf0 1417 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1418 */
2f9baa9f 1419 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1420 offsetof(struct kmem_cache, node) +
6744f087 1421 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1422 SLAB_HWCACHE_ALIGN);
1423 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1424 slab_state = PARTIAL;
1da177e4 1425
a737b3e2 1426 /*
bf0dea23
JK
1427 * Initialize the caches that provide memory for the kmem_cache_node
1428 * structures first. Without this, further allocations will bug.
e498be7d 1429 */
bf0dea23 1430 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1431 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1432 slab_state = PARTIAL_NODE;
34cc6990 1433 setup_kmalloc_cache_index_table();
e498be7d 1434
e0a42726
IM
1435 slab_early_init = 0;
1436
ce8eb6c4 1437 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1438 {
1ca4cb24
PE
1439 int nid;
1440
9c09a95c 1441 for_each_online_node(nid) {
ce8eb6c4 1442 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1443
bf0dea23 1444 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1445 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1446 }
1447 }
1da177e4 1448
f97d5f63 1449 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1450}
1451
1452void __init kmem_cache_init_late(void)
1453{
1454 struct kmem_cache *cachep;
1455
97d06609 1456 slab_state = UP;
52cef189 1457
8429db5c 1458 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1459 mutex_lock(&slab_mutex);
1460 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1461 if (enable_cpucache(cachep, GFP_NOWAIT))
1462 BUG();
18004c5d 1463 mutex_unlock(&slab_mutex);
056c6241 1464
97d06609
CL
1465 /* Done! */
1466 slab_state = FULL;
1467
a737b3e2
AM
1468 /*
1469 * Register a cpu startup notifier callback that initializes
1470 * cpu_cache_get for all new cpus
1da177e4
LT
1471 */
1472 register_cpu_notifier(&cpucache_notifier);
1da177e4 1473
8f9f8d9e
DR
1474#ifdef CONFIG_NUMA
1475 /*
1476 * Register a memory hotplug callback that initializes and frees
6a67368c 1477 * node.
8f9f8d9e
DR
1478 */
1479 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1480#endif
1481
a737b3e2
AM
1482 /*
1483 * The reap timers are started later, with a module init call: That part
1484 * of the kernel is not yet operational.
1da177e4
LT
1485 */
1486}
1487
1488static int __init cpucache_init(void)
1489{
1490 int cpu;
1491
a737b3e2
AM
1492 /*
1493 * Register the timers that return unneeded pages to the page allocator
1da177e4 1494 */
e498be7d 1495 for_each_online_cpu(cpu)
a737b3e2 1496 start_cpu_timer(cpu);
a164f896
GC
1497
1498 /* Done! */
97d06609 1499 slab_state = FULL;
1da177e4
LT
1500 return 0;
1501}
1da177e4
LT
1502__initcall(cpucache_init);
1503
8bdec192
RA
1504static noinline void
1505slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1506{
9a02d699 1507#if DEBUG
ce8eb6c4 1508 struct kmem_cache_node *n;
8456a648 1509 struct page *page;
8bdec192
RA
1510 unsigned long flags;
1511 int node;
9a02d699
DR
1512 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1513 DEFAULT_RATELIMIT_BURST);
1514
1515 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1516 return;
8bdec192
RA
1517
1518 printk(KERN_WARNING
1519 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1520 nodeid, gfpflags);
1521 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1522 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1523
18bf8541 1524 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1525 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1526 unsigned long active_slabs = 0, num_slabs = 0;
1527
ce8eb6c4 1528 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1529 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1530 active_objs += cachep->num;
1531 active_slabs++;
1532 }
8456a648
JK
1533 list_for_each_entry(page, &n->slabs_partial, lru) {
1534 active_objs += page->active;
8bdec192
RA
1535 active_slabs++;
1536 }
8456a648 1537 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1538 num_slabs++;
1539
ce8eb6c4
CL
1540 free_objects += n->free_objects;
1541 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1542
1543 num_slabs += active_slabs;
1544 num_objs = num_slabs * cachep->num;
1545 printk(KERN_WARNING
1546 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1547 node, active_slabs, num_slabs, active_objs, num_objs,
1548 free_objects);
1549 }
9a02d699 1550#endif
8bdec192
RA
1551}
1552
1da177e4 1553/*
8a7d9b43
WSH
1554 * Interface to system's page allocator. No need to hold the
1555 * kmem_cache_node ->list_lock.
1da177e4
LT
1556 *
1557 * If we requested dmaable memory, we will get it. Even if we
1558 * did not request dmaable memory, we might get it, but that
1559 * would be relatively rare and ignorable.
1560 */
0c3aa83e
JK
1561static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1562 int nodeid)
1da177e4
LT
1563{
1564 struct page *page;
e1b6aa6f 1565 int nr_pages;
765c4507 1566
a618e89f 1567 flags |= cachep->allocflags;
e12ba74d
MG
1568 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1569 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1570
96db800f 1571 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1572 if (!page) {
9a02d699 1573 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1574 return NULL;
8bdec192 1575 }
1da177e4 1576
f3ccb2c4
VD
1577 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1578 __free_pages(page, cachep->gfporder);
1579 return NULL;
1580 }
1581
b37f1dd0 1582 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
2f064f34 1583 if (page_is_pfmemalloc(page))
072bb0aa
MG
1584 pfmemalloc_active = true;
1585
e1b6aa6f 1586 nr_pages = (1 << cachep->gfporder);
1da177e4 1587 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1588 add_zone_page_state(page_zone(page),
1589 NR_SLAB_RECLAIMABLE, nr_pages);
1590 else
1591 add_zone_page_state(page_zone(page),
1592 NR_SLAB_UNRECLAIMABLE, nr_pages);
a57a4988 1593 __SetPageSlab(page);
2f064f34 1594 if (page_is_pfmemalloc(page))
a57a4988 1595 SetPageSlabPfmemalloc(page);
072bb0aa 1596
b1eeab67
VN
1597 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1598 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1599
1600 if (cachep->ctor)
1601 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1602 else
1603 kmemcheck_mark_unallocated_pages(page, nr_pages);
1604 }
c175eea4 1605
0c3aa83e 1606 return page;
1da177e4
LT
1607}
1608
1609/*
1610 * Interface to system's page release.
1611 */
0c3aa83e 1612static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1613{
a57a4988 1614 const unsigned long nr_freed = (1 << cachep->gfporder);
1da177e4 1615
b1eeab67 1616 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1617
972d1a7b
CL
1618 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1619 sub_zone_page_state(page_zone(page),
1620 NR_SLAB_RECLAIMABLE, nr_freed);
1621 else
1622 sub_zone_page_state(page_zone(page),
1623 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1624
a57a4988 1625 BUG_ON(!PageSlab(page));
73293c2f 1626 __ClearPageSlabPfmemalloc(page);
a57a4988 1627 __ClearPageSlab(page);
8456a648
JK
1628 page_mapcount_reset(page);
1629 page->mapping = NULL;
1f458cbf 1630
1da177e4
LT
1631 if (current->reclaim_state)
1632 current->reclaim_state->reclaimed_slab += nr_freed;
f3ccb2c4 1633 __free_kmem_pages(page, cachep->gfporder);
1da177e4
LT
1634}
1635
1636static void kmem_rcu_free(struct rcu_head *head)
1637{
68126702
JK
1638 struct kmem_cache *cachep;
1639 struct page *page;
1da177e4 1640
68126702
JK
1641 page = container_of(head, struct page, rcu_head);
1642 cachep = page->slab_cache;
1643
1644 kmem_freepages(cachep, page);
1da177e4
LT
1645}
1646
1647#if DEBUG
40b44137
JK
1648static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1649{
1650 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1651 (cachep->size % PAGE_SIZE) == 0)
1652 return true;
1653
1654 return false;
1655}
1da177e4
LT
1656
1657#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1658static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1659 unsigned long caller)
1da177e4 1660{
8c138bc0 1661 int size = cachep->object_size;
1da177e4 1662
3dafccf2 1663 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1664
b28a02de 1665 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1666 return;
1667
b28a02de
PE
1668 *addr++ = 0x12345678;
1669 *addr++ = caller;
1670 *addr++ = smp_processor_id();
1671 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1672 {
1673 unsigned long *sptr = &caller;
1674 unsigned long svalue;
1675
1676 while (!kstack_end(sptr)) {
1677 svalue = *sptr++;
1678 if (kernel_text_address(svalue)) {
b28a02de 1679 *addr++ = svalue;
1da177e4
LT
1680 size -= sizeof(unsigned long);
1681 if (size <= sizeof(unsigned long))
1682 break;
1683 }
1684 }
1685
1686 }
b28a02de 1687 *addr++ = 0x87654321;
1da177e4 1688}
40b44137
JK
1689
1690static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1691 int map, unsigned long caller)
1692{
1693 if (!is_debug_pagealloc_cache(cachep))
1694 return;
1695
1696 if (caller)
1697 store_stackinfo(cachep, objp, caller);
1698
1699 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1700}
1701
1702#else
1703static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1704 int map, unsigned long caller) {}
1705
1da177e4
LT
1706#endif
1707
343e0d7a 1708static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1709{
8c138bc0 1710 int size = cachep->object_size;
3dafccf2 1711 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1712
1713 memset(addr, val, size);
b28a02de 1714 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1715}
1716
1717static void dump_line(char *data, int offset, int limit)
1718{
1719 int i;
aa83aa40
DJ
1720 unsigned char error = 0;
1721 int bad_count = 0;
1722
fdde6abb 1723 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1724 for (i = 0; i < limit; i++) {
1725 if (data[offset + i] != POISON_FREE) {
1726 error = data[offset + i];
1727 bad_count++;
1728 }
aa83aa40 1729 }
fdde6abb
SAS
1730 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1731 &data[offset], limit, 1);
aa83aa40
DJ
1732
1733 if (bad_count == 1) {
1734 error ^= POISON_FREE;
1735 if (!(error & (error - 1))) {
1736 printk(KERN_ERR "Single bit error detected. Probably "
1737 "bad RAM.\n");
1738#ifdef CONFIG_X86
1739 printk(KERN_ERR "Run memtest86+ or a similar memory "
1740 "test tool.\n");
1741#else
1742 printk(KERN_ERR "Run a memory test tool.\n");
1743#endif
1744 }
1745 }
1da177e4
LT
1746}
1747#endif
1748
1749#if DEBUG
1750
343e0d7a 1751static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1752{
1753 int i, size;
1754 char *realobj;
1755
1756 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1757 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1758 *dbg_redzone1(cachep, objp),
1759 *dbg_redzone2(cachep, objp));
1da177e4
LT
1760 }
1761
1762 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1763 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1764 *dbg_userword(cachep, objp),
1765 *dbg_userword(cachep, objp));
1da177e4 1766 }
3dafccf2 1767 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1768 size = cachep->object_size;
b28a02de 1769 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1770 int limit;
1771 limit = 16;
b28a02de
PE
1772 if (i + limit > size)
1773 limit = size - i;
1da177e4
LT
1774 dump_line(realobj, i, limit);
1775 }
1776}
1777
343e0d7a 1778static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1779{
1780 char *realobj;
1781 int size, i;
1782 int lines = 0;
1783
40b44137
JK
1784 if (is_debug_pagealloc_cache(cachep))
1785 return;
1786
3dafccf2 1787 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1788 size = cachep->object_size;
1da177e4 1789
b28a02de 1790 for (i = 0; i < size; i++) {
1da177e4 1791 char exp = POISON_FREE;
b28a02de 1792 if (i == size - 1)
1da177e4
LT
1793 exp = POISON_END;
1794 if (realobj[i] != exp) {
1795 int limit;
1796 /* Mismatch ! */
1797 /* Print header */
1798 if (lines == 0) {
b28a02de 1799 printk(KERN_ERR
face37f5
DJ
1800 "Slab corruption (%s): %s start=%p, len=%d\n",
1801 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1802 print_objinfo(cachep, objp, 0);
1803 }
1804 /* Hexdump the affected line */
b28a02de 1805 i = (i / 16) * 16;
1da177e4 1806 limit = 16;
b28a02de
PE
1807 if (i + limit > size)
1808 limit = size - i;
1da177e4
LT
1809 dump_line(realobj, i, limit);
1810 i += 16;
1811 lines++;
1812 /* Limit to 5 lines */
1813 if (lines > 5)
1814 break;
1815 }
1816 }
1817 if (lines != 0) {
1818 /* Print some data about the neighboring objects, if they
1819 * exist:
1820 */
8456a648 1821 struct page *page = virt_to_head_page(objp);
8fea4e96 1822 unsigned int objnr;
1da177e4 1823
8456a648 1824 objnr = obj_to_index(cachep, page, objp);
1da177e4 1825 if (objnr) {
8456a648 1826 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1827 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1828 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1829 realobj, size);
1da177e4
LT
1830 print_objinfo(cachep, objp, 2);
1831 }
b28a02de 1832 if (objnr + 1 < cachep->num) {
8456a648 1833 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1834 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1835 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1836 realobj, size);
1da177e4
LT
1837 print_objinfo(cachep, objp, 2);
1838 }
1839 }
1840}
1841#endif
1842
12dd36fa 1843#if DEBUG
8456a648
JK
1844static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1845 struct page *page)
1da177e4 1846{
1da177e4
LT
1847 int i;
1848 for (i = 0; i < cachep->num; i++) {
8456a648 1849 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1850
1851 if (cachep->flags & SLAB_POISON) {
1da177e4 1852 check_poison_obj(cachep, objp);
40b44137 1853 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1854 }
1855 if (cachep->flags & SLAB_RED_ZONE) {
1856 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1857 slab_error(cachep, "start of a freed object "
b28a02de 1858 "was overwritten");
1da177e4
LT
1859 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1860 slab_error(cachep, "end of a freed object "
b28a02de 1861 "was overwritten");
1da177e4 1862 }
1da177e4 1863 }
12dd36fa 1864}
1da177e4 1865#else
8456a648
JK
1866static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1867 struct page *page)
12dd36fa 1868{
12dd36fa 1869}
1da177e4
LT
1870#endif
1871
911851e6
RD
1872/**
1873 * slab_destroy - destroy and release all objects in a slab
1874 * @cachep: cache pointer being destroyed
cb8ee1a3 1875 * @page: page pointer being destroyed
911851e6 1876 *
8a7d9b43
WSH
1877 * Destroy all the objs in a slab page, and release the mem back to the system.
1878 * Before calling the slab page must have been unlinked from the cache. The
1879 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1880 */
8456a648 1881static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1882{
7e007355 1883 void *freelist;
12dd36fa 1884
8456a648
JK
1885 freelist = page->freelist;
1886 slab_destroy_debugcheck(cachep, page);
bc4f610d
KS
1887 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1888 call_rcu(&page->rcu_head, kmem_rcu_free);
1889 else
0c3aa83e 1890 kmem_freepages(cachep, page);
68126702
JK
1891
1892 /*
8456a648 1893 * From now on, we don't use freelist
68126702
JK
1894 * although actual page can be freed in rcu context
1895 */
1896 if (OFF_SLAB(cachep))
8456a648 1897 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1898}
1899
97654dfa
JK
1900static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1901{
1902 struct page *page, *n;
1903
1904 list_for_each_entry_safe(page, n, list, lru) {
1905 list_del(&page->lru);
1906 slab_destroy(cachep, page);
1907 }
1908}
1909
4d268eba 1910/**
a70773dd
RD
1911 * calculate_slab_order - calculate size (page order) of slabs
1912 * @cachep: pointer to the cache that is being created
1913 * @size: size of objects to be created in this cache.
1914 * @align: required alignment for the objects.
1915 * @flags: slab allocation flags
1916 *
1917 * Also calculates the number of objects per slab.
4d268eba
PE
1918 *
1919 * This could be made much more intelligent. For now, try to avoid using
1920 * high order pages for slabs. When the gfp() functions are more friendly
1921 * towards high-order requests, this should be changed.
1922 */
a737b3e2 1923static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1924 size_t size, size_t align, unsigned long flags)
4d268eba 1925{
b1ab41c4 1926 unsigned long offslab_limit;
4d268eba 1927 size_t left_over = 0;
9888e6fa 1928 int gfporder;
4d268eba 1929
0aa817f0 1930 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1931 unsigned int num;
1932 size_t remainder;
1933
9888e6fa 1934 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1935 if (!num)
1936 continue;
9888e6fa 1937
f315e3fa
JK
1938 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1939 if (num > SLAB_OBJ_MAX_NUM)
1940 break;
1941
b1ab41c4
IM
1942 if (flags & CFLGS_OFF_SLAB) {
1943 /*
1944 * Max number of objs-per-slab for caches which
1945 * use off-slab slabs. Needed to avoid a possible
1946 * looping condition in cache_grow().
1947 */
8456a648 1948 offslab_limit = size;
249247b6 1949 offslab_limit /= sizeof(freelist_idx_t);
b1ab41c4
IM
1950
1951 if (num > offslab_limit)
1952 break;
1953 }
4d268eba 1954
9888e6fa 1955 /* Found something acceptable - save it away */
4d268eba 1956 cachep->num = num;
9888e6fa 1957 cachep->gfporder = gfporder;
4d268eba
PE
1958 left_over = remainder;
1959
f78bb8ad
LT
1960 /*
1961 * A VFS-reclaimable slab tends to have most allocations
1962 * as GFP_NOFS and we really don't want to have to be allocating
1963 * higher-order pages when we are unable to shrink dcache.
1964 */
1965 if (flags & SLAB_RECLAIM_ACCOUNT)
1966 break;
1967
4d268eba
PE
1968 /*
1969 * Large number of objects is good, but very large slabs are
1970 * currently bad for the gfp()s.
1971 */
543585cc 1972 if (gfporder >= slab_max_order)
4d268eba
PE
1973 break;
1974
9888e6fa
LT
1975 /*
1976 * Acceptable internal fragmentation?
1977 */
a737b3e2 1978 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1979 break;
1980 }
1981 return left_over;
1982}
1983
bf0dea23
JK
1984static struct array_cache __percpu *alloc_kmem_cache_cpus(
1985 struct kmem_cache *cachep, int entries, int batchcount)
1986{
1987 int cpu;
1988 size_t size;
1989 struct array_cache __percpu *cpu_cache;
1990
1991 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1992 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1993
1994 if (!cpu_cache)
1995 return NULL;
1996
1997 for_each_possible_cpu(cpu) {
1998 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1999 entries, batchcount);
2000 }
2001
2002 return cpu_cache;
2003}
2004
83b519e8 2005static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2006{
97d06609 2007 if (slab_state >= FULL)
83b519e8 2008 return enable_cpucache(cachep, gfp);
2ed3a4ef 2009
bf0dea23
JK
2010 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2011 if (!cachep->cpu_cache)
2012 return 1;
2013
97d06609 2014 if (slab_state == DOWN) {
bf0dea23
JK
2015 /* Creation of first cache (kmem_cache). */
2016 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 2017 } else if (slab_state == PARTIAL) {
bf0dea23
JK
2018 /* For kmem_cache_node */
2019 set_up_node(cachep, SIZE_NODE);
f30cf7d1 2020 } else {
bf0dea23 2021 int node;
f30cf7d1 2022
bf0dea23
JK
2023 for_each_online_node(node) {
2024 cachep->node[node] = kmalloc_node(
2025 sizeof(struct kmem_cache_node), gfp, node);
2026 BUG_ON(!cachep->node[node]);
2027 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2028 }
2029 }
bf0dea23 2030
6a67368c 2031 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
2032 jiffies + REAPTIMEOUT_NODE +
2033 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
2034
2035 cpu_cache_get(cachep)->avail = 0;
2036 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2037 cpu_cache_get(cachep)->batchcount = 1;
2038 cpu_cache_get(cachep)->touched = 0;
2039 cachep->batchcount = 1;
2040 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2041 return 0;
f30cf7d1
PE
2042}
2043
12220dea
JK
2044unsigned long kmem_cache_flags(unsigned long object_size,
2045 unsigned long flags, const char *name,
2046 void (*ctor)(void *))
2047{
2048 return flags;
2049}
2050
2051struct kmem_cache *
2052__kmem_cache_alias(const char *name, size_t size, size_t align,
2053 unsigned long flags, void (*ctor)(void *))
2054{
2055 struct kmem_cache *cachep;
2056
2057 cachep = find_mergeable(size, align, flags, name, ctor);
2058 if (cachep) {
2059 cachep->refcount++;
2060
2061 /*
2062 * Adjust the object sizes so that we clear
2063 * the complete object on kzalloc.
2064 */
2065 cachep->object_size = max_t(int, cachep->object_size, size);
2066 }
2067 return cachep;
2068}
2069
1da177e4 2070/**
039363f3 2071 * __kmem_cache_create - Create a cache.
a755b76a 2072 * @cachep: cache management descriptor
1da177e4 2073 * @flags: SLAB flags
1da177e4
LT
2074 *
2075 * Returns a ptr to the cache on success, NULL on failure.
2076 * Cannot be called within a int, but can be interrupted.
20c2df83 2077 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2078 *
1da177e4
LT
2079 * The flags are
2080 *
2081 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2082 * to catch references to uninitialised memory.
2083 *
2084 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2085 * for buffer overruns.
2086 *
1da177e4
LT
2087 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2088 * cacheline. This can be beneficial if you're counting cycles as closely
2089 * as davem.
2090 */
278b1bb1 2091int
8a13a4cc 2092__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2093{
d4a5fca5
DR
2094 size_t left_over, freelist_size;
2095 size_t ralign = BYTES_PER_WORD;
83b519e8 2096 gfp_t gfp;
278b1bb1 2097 int err;
8a13a4cc 2098 size_t size = cachep->size;
1da177e4 2099
1da177e4 2100#if DEBUG
1da177e4
LT
2101#if FORCED_DEBUG
2102 /*
2103 * Enable redzoning and last user accounting, except for caches with
2104 * large objects, if the increased size would increase the object size
2105 * above the next power of two: caches with object sizes just above a
2106 * power of two have a significant amount of internal fragmentation.
2107 */
87a927c7
DW
2108 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2109 2 * sizeof(unsigned long long)))
b28a02de 2110 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2111 if (!(flags & SLAB_DESTROY_BY_RCU))
2112 flags |= SLAB_POISON;
2113#endif
1da177e4 2114#endif
1da177e4 2115
a737b3e2
AM
2116 /*
2117 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2118 * unaligned accesses for some archs when redzoning is used, and makes
2119 * sure any on-slab bufctl's are also correctly aligned.
2120 */
b28a02de
PE
2121 if (size & (BYTES_PER_WORD - 1)) {
2122 size += (BYTES_PER_WORD - 1);
2123 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2124 }
2125
87a927c7
DW
2126 if (flags & SLAB_RED_ZONE) {
2127 ralign = REDZONE_ALIGN;
2128 /* If redzoning, ensure that the second redzone is suitably
2129 * aligned, by adjusting the object size accordingly. */
2130 size += REDZONE_ALIGN - 1;
2131 size &= ~(REDZONE_ALIGN - 1);
2132 }
ca5f9703 2133
a44b56d3 2134 /* 3) caller mandated alignment */
8a13a4cc
CL
2135 if (ralign < cachep->align) {
2136 ralign = cachep->align;
1da177e4 2137 }
3ff84a7f
PE
2138 /* disable debug if necessary */
2139 if (ralign > __alignof__(unsigned long long))
a44b56d3 2140 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2141 /*
ca5f9703 2142 * 4) Store it.
1da177e4 2143 */
8a13a4cc 2144 cachep->align = ralign;
1da177e4 2145
83b519e8
PE
2146 if (slab_is_available())
2147 gfp = GFP_KERNEL;
2148 else
2149 gfp = GFP_NOWAIT;
2150
1da177e4 2151#if DEBUG
1da177e4 2152
ca5f9703
PE
2153 /*
2154 * Both debugging options require word-alignment which is calculated
2155 * into align above.
2156 */
1da177e4 2157 if (flags & SLAB_RED_ZONE) {
1da177e4 2158 /* add space for red zone words */
3ff84a7f
PE
2159 cachep->obj_offset += sizeof(unsigned long long);
2160 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2161 }
2162 if (flags & SLAB_STORE_USER) {
ca5f9703 2163 /* user store requires one word storage behind the end of
87a927c7
DW
2164 * the real object. But if the second red zone needs to be
2165 * aligned to 64 bits, we must allow that much space.
1da177e4 2166 */
87a927c7
DW
2167 if (flags & SLAB_RED_ZONE)
2168 size += REDZONE_ALIGN;
2169 else
2170 size += BYTES_PER_WORD;
1da177e4 2171 }
03a2d2a3
JK
2172 /*
2173 * To activate debug pagealloc, off-slab management is necessary
2174 * requirement. In early phase of initialization, small sized slab
2175 * doesn't get initialized so it would not be possible. So, we need
2176 * to check size >= 256. It guarantees that all necessary small
2177 * sized slab is initialized in current slab initialization sequence.
2178 */
40323278 2179 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
a307ebd4 2180 !slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
03a2d2a3
JK
2181 size >= 256 && cachep->object_size > cache_line_size() &&
2182 ALIGN(size, cachep->align) < PAGE_SIZE) {
608da7e3 2183 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2184 size = PAGE_SIZE;
2185 }
1da177e4
LT
2186#endif
2187
e0a42726
IM
2188 /*
2189 * Determine if the slab management is 'on' or 'off' slab.
2190 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2191 * it too early on. Always use on-slab management when
2192 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2193 */
d4322d88 2194 if (size >= OFF_SLAB_MIN_SIZE && !slab_early_init &&
e7cb55b9 2195 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2196 /*
2197 * Size is large, assume best to place the slab management obj
2198 * off-slab (should allow better packing of objs).
2199 */
2200 flags |= CFLGS_OFF_SLAB;
2201
8a13a4cc 2202 size = ALIGN(size, cachep->align);
f315e3fa
JK
2203 /*
2204 * We should restrict the number of objects in a slab to implement
2205 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2206 */
2207 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2208 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
1da177e4 2209
8a13a4cc 2210 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2211
8a13a4cc 2212 if (!cachep->num)
278b1bb1 2213 return -E2BIG;
1da177e4 2214
03787301 2215 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
1da177e4
LT
2216
2217 /*
2218 * If the slab has been placed off-slab, and we have enough space then
2219 * move it on-slab. This is at the expense of any extra colouring.
2220 */
8456a648 2221 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
1da177e4 2222 flags &= ~CFLGS_OFF_SLAB;
8456a648 2223 left_over -= freelist_size;
1da177e4
LT
2224 }
2225
2226 if (flags & CFLGS_OFF_SLAB) {
2227 /* really off slab. No need for manual alignment */
03787301 2228 freelist_size = calculate_freelist_size(cachep->num, 0);
1da177e4
LT
2229 }
2230
2231 cachep->colour_off = cache_line_size();
2232 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2233 if (cachep->colour_off < cachep->align)
2234 cachep->colour_off = cachep->align;
b28a02de 2235 cachep->colour = left_over / cachep->colour_off;
8456a648 2236 cachep->freelist_size = freelist_size;
1da177e4 2237 cachep->flags = flags;
a57a4988 2238 cachep->allocflags = __GFP_COMP;
4b51d669 2239 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2240 cachep->allocflags |= GFP_DMA;
3b0efdfa 2241 cachep->size = size;
6a2d7a95 2242 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2243
40b44137
JK
2244#if DEBUG
2245 /*
2246 * If we're going to use the generic kernel_map_pages()
2247 * poisoning, then it's going to smash the contents of
2248 * the redzone and userword anyhow, so switch them off.
2249 */
2250 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2251 (cachep->flags & SLAB_POISON) &&
2252 is_debug_pagealloc_cache(cachep))
2253 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2254#endif
2255
2256 if (OFF_SLAB(cachep)) {
8456a648 2257 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
e5ac9c5a 2258 /*
5f0985bb 2259 * This is a possibility for one of the kmalloc_{dma,}_caches.
e5ac9c5a 2260 * But since we go off slab only for object size greater than
d4322d88 2261 * OFF_SLAB_MIN_SIZE, and kmalloc_{dma,}_caches get created
5f0985bb 2262 * in ascending order,this should not happen at all.
e5ac9c5a
RT
2263 * But leave a BUG_ON for some lucky dude.
2264 */
8456a648 2265 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
e5ac9c5a 2266 }
1da177e4 2267
278b1bb1
CL
2268 err = setup_cpu_cache(cachep, gfp);
2269 if (err) {
52b4b950 2270 __kmem_cache_release(cachep);
278b1bb1 2271 return err;
2ed3a4ef 2272 }
1da177e4 2273
278b1bb1 2274 return 0;
1da177e4 2275}
1da177e4
LT
2276
2277#if DEBUG
2278static void check_irq_off(void)
2279{
2280 BUG_ON(!irqs_disabled());
2281}
2282
2283static void check_irq_on(void)
2284{
2285 BUG_ON(irqs_disabled());
2286}
2287
343e0d7a 2288static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2289{
2290#ifdef CONFIG_SMP
2291 check_irq_off();
18bf8541 2292 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2293#endif
2294}
e498be7d 2295
343e0d7a 2296static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2297{
2298#ifdef CONFIG_SMP
2299 check_irq_off();
18bf8541 2300 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2301#endif
2302}
2303
1da177e4
LT
2304#else
2305#define check_irq_off() do { } while(0)
2306#define check_irq_on() do { } while(0)
2307#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2308#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2309#endif
2310
ce8eb6c4 2311static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2312 struct array_cache *ac,
2313 int force, int node);
2314
1da177e4
LT
2315static void do_drain(void *arg)
2316{
a737b3e2 2317 struct kmem_cache *cachep = arg;
1da177e4 2318 struct array_cache *ac;
7d6e6d09 2319 int node = numa_mem_id();
18bf8541 2320 struct kmem_cache_node *n;
97654dfa 2321 LIST_HEAD(list);
1da177e4
LT
2322
2323 check_irq_off();
9a2dba4b 2324 ac = cpu_cache_get(cachep);
18bf8541
CL
2325 n = get_node(cachep, node);
2326 spin_lock(&n->list_lock);
97654dfa 2327 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2328 spin_unlock(&n->list_lock);
97654dfa 2329 slabs_destroy(cachep, &list);
1da177e4
LT
2330 ac->avail = 0;
2331}
2332
343e0d7a 2333static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2334{
ce8eb6c4 2335 struct kmem_cache_node *n;
e498be7d
CL
2336 int node;
2337
15c8b6c1 2338 on_each_cpu(do_drain, cachep, 1);
1da177e4 2339 check_irq_on();
18bf8541
CL
2340 for_each_kmem_cache_node(cachep, node, n)
2341 if (n->alien)
ce8eb6c4 2342 drain_alien_cache(cachep, n->alien);
a4523a8b 2343
18bf8541
CL
2344 for_each_kmem_cache_node(cachep, node, n)
2345 drain_array(cachep, n, n->shared, 1, node);
1da177e4
LT
2346}
2347
ed11d9eb
CL
2348/*
2349 * Remove slabs from the list of free slabs.
2350 * Specify the number of slabs to drain in tofree.
2351 *
2352 * Returns the actual number of slabs released.
2353 */
2354static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2355 struct kmem_cache_node *n, int tofree)
1da177e4 2356{
ed11d9eb
CL
2357 struct list_head *p;
2358 int nr_freed;
8456a648 2359 struct page *page;
1da177e4 2360
ed11d9eb 2361 nr_freed = 0;
ce8eb6c4 2362 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2363
ce8eb6c4
CL
2364 spin_lock_irq(&n->list_lock);
2365 p = n->slabs_free.prev;
2366 if (p == &n->slabs_free) {
2367 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2368 goto out;
2369 }
1da177e4 2370
8456a648 2371 page = list_entry(p, struct page, lru);
8456a648 2372 list_del(&page->lru);
ed11d9eb
CL
2373 /*
2374 * Safe to drop the lock. The slab is no longer linked
2375 * to the cache.
2376 */
ce8eb6c4
CL
2377 n->free_objects -= cache->num;
2378 spin_unlock_irq(&n->list_lock);
8456a648 2379 slab_destroy(cache, page);
ed11d9eb 2380 nr_freed++;
1da177e4 2381 }
ed11d9eb
CL
2382out:
2383 return nr_freed;
1da177e4
LT
2384}
2385
d6e0b7fa 2386int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
e498be7d 2387{
18bf8541
CL
2388 int ret = 0;
2389 int node;
ce8eb6c4 2390 struct kmem_cache_node *n;
e498be7d
CL
2391
2392 drain_cpu_caches(cachep);
2393
2394 check_irq_on();
18bf8541 2395 for_each_kmem_cache_node(cachep, node, n) {
0fa8103b 2396 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2397
ce8eb6c4
CL
2398 ret += !list_empty(&n->slabs_full) ||
2399 !list_empty(&n->slabs_partial);
e498be7d
CL
2400 }
2401 return (ret ? 1 : 0);
2402}
2403
945cf2b6 2404int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950
DS
2405{
2406 return __kmem_cache_shrink(cachep, false);
2407}
2408
2409void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2410{
12c3667f 2411 int i;
ce8eb6c4 2412 struct kmem_cache_node *n;
1da177e4 2413
bf0dea23 2414 free_percpu(cachep->cpu_cache);
1da177e4 2415
ce8eb6c4 2416 /* NUMA: free the node structures */
18bf8541
CL
2417 for_each_kmem_cache_node(cachep, i, n) {
2418 kfree(n->shared);
2419 free_alien_cache(n->alien);
2420 kfree(n);
2421 cachep->node[i] = NULL;
12c3667f 2422 }
1da177e4 2423}
1da177e4 2424
e5ac9c5a
RT
2425/*
2426 * Get the memory for a slab management obj.
5f0985bb
JZ
2427 *
2428 * For a slab cache when the slab descriptor is off-slab, the
2429 * slab descriptor can't come from the same cache which is being created,
2430 * Because if it is the case, that means we defer the creation of
2431 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2432 * And we eventually call down to __kmem_cache_create(), which
2433 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2434 * This is a "chicken-and-egg" problem.
2435 *
2436 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2437 * which are all initialized during kmem_cache_init().
e5ac9c5a 2438 */
7e007355 2439static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2440 struct page *page, int colour_off,
2441 gfp_t local_flags, int nodeid)
1da177e4 2442{
7e007355 2443 void *freelist;
0c3aa83e 2444 void *addr = page_address(page);
b28a02de 2445
1da177e4
LT
2446 if (OFF_SLAB(cachep)) {
2447 /* Slab management obj is off-slab. */
8456a648 2448 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2449 local_flags, nodeid);
8456a648 2450 if (!freelist)
1da177e4
LT
2451 return NULL;
2452 } else {
8456a648
JK
2453 freelist = addr + colour_off;
2454 colour_off += cachep->freelist_size;
1da177e4 2455 }
8456a648
JK
2456 page->active = 0;
2457 page->s_mem = addr + colour_off;
2458 return freelist;
1da177e4
LT
2459}
2460
7cc68973 2461static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2462{
a41adfaa 2463 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2464}
2465
2466static inline void set_free_obj(struct page *page,
7cc68973 2467 unsigned int idx, freelist_idx_t val)
e5c58dfd 2468{
a41adfaa 2469 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2470}
2471
343e0d7a 2472static void cache_init_objs(struct kmem_cache *cachep,
8456a648 2473 struct page *page)
1da177e4
LT
2474{
2475 int i;
2476
2477 for (i = 0; i < cachep->num; i++) {
8456a648 2478 void *objp = index_to_obj(cachep, page, i);
1da177e4 2479#if DEBUG
1da177e4
LT
2480 if (cachep->flags & SLAB_STORE_USER)
2481 *dbg_userword(cachep, objp) = NULL;
2482
2483 if (cachep->flags & SLAB_RED_ZONE) {
2484 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2485 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2486 }
2487 /*
a737b3e2
AM
2488 * Constructors are not allowed to allocate memory from the same
2489 * cache which they are a constructor for. Otherwise, deadlock.
2490 * They must also be threaded.
1da177e4
LT
2491 */
2492 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2493 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2494
2495 if (cachep->flags & SLAB_RED_ZONE) {
2496 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2497 slab_error(cachep, "constructor overwrote the"
b28a02de 2498 " end of an object");
1da177e4
LT
2499 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2500 slab_error(cachep, "constructor overwrote the"
b28a02de 2501 " start of an object");
1da177e4 2502 }
40b44137
JK
2503 /* need to poison the objs? */
2504 if (cachep->flags & SLAB_POISON) {
2505 poison_obj(cachep, objp, POISON_FREE);
2506 slab_kernel_map(cachep, objp, 0, 0);
2507 }
1da177e4
LT
2508#else
2509 if (cachep->ctor)
51cc5068 2510 cachep->ctor(objp);
1da177e4 2511#endif
e5c58dfd 2512 set_free_obj(page, i, i);
1da177e4 2513 }
1da177e4
LT
2514}
2515
343e0d7a 2516static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2517{
4b51d669
CL
2518 if (CONFIG_ZONE_DMA_FLAG) {
2519 if (flags & GFP_DMA)
a618e89f 2520 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2521 else
a618e89f 2522 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2523 }
1da177e4
LT
2524}
2525
260b61dd 2526static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2527{
b1cb0982 2528 void *objp;
78d382d7 2529
e5c58dfd 2530 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2531 page->active++;
78d382d7 2532
d31676df
JK
2533#if DEBUG
2534 if (cachep->flags & SLAB_STORE_USER)
2535 set_store_user_dirty(cachep);
2536#endif
2537
78d382d7
MD
2538 return objp;
2539}
2540
260b61dd
JK
2541static void slab_put_obj(struct kmem_cache *cachep,
2542 struct page *page, void *objp)
78d382d7 2543{
8456a648 2544 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2545#if DEBUG
16025177 2546 unsigned int i;
b1cb0982 2547
b1cb0982 2548 /* Verify double free bug */
8456a648 2549 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2550 if (get_free_obj(page, i) == objnr) {
b1cb0982
JK
2551 printk(KERN_ERR "slab: double free detected in cache "
2552 "'%s', objp %p\n", cachep->name, objp);
2553 BUG();
2554 }
78d382d7
MD
2555 }
2556#endif
8456a648 2557 page->active--;
e5c58dfd 2558 set_free_obj(page, page->active, objnr);
78d382d7
MD
2559}
2560
4776874f
PE
2561/*
2562 * Map pages beginning at addr to the given cache and slab. This is required
2563 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2564 * virtual address for kfree, ksize, and slab debugging.
4776874f 2565 */
8456a648 2566static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2567 void *freelist)
1da177e4 2568{
a57a4988 2569 page->slab_cache = cache;
8456a648 2570 page->freelist = freelist;
1da177e4
LT
2571}
2572
2573/*
2574 * Grow (by 1) the number of slabs within a cache. This is called by
2575 * kmem_cache_alloc() when there are no active objs left in a cache.
2576 */
3c517a61 2577static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2578 gfp_t flags, int nodeid, struct page *page)
1da177e4 2579{
7e007355 2580 void *freelist;
b28a02de
PE
2581 size_t offset;
2582 gfp_t local_flags;
ce8eb6c4 2583 struct kmem_cache_node *n;
1da177e4 2584
a737b3e2
AM
2585 /*
2586 * Be lazy and only check for valid flags here, keeping it out of the
2587 * critical path in kmem_cache_alloc().
1da177e4 2588 */
c871ac4e
AM
2589 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2590 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2591 BUG();
2592 }
6cb06229 2593 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2594
ce8eb6c4 2595 /* Take the node list lock to change the colour_next on this node */
1da177e4 2596 check_irq_off();
18bf8541 2597 n = get_node(cachep, nodeid);
ce8eb6c4 2598 spin_lock(&n->list_lock);
1da177e4
LT
2599
2600 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2601 offset = n->colour_next;
2602 n->colour_next++;
2603 if (n->colour_next >= cachep->colour)
2604 n->colour_next = 0;
2605 spin_unlock(&n->list_lock);
1da177e4 2606
2e1217cf 2607 offset *= cachep->colour_off;
1da177e4 2608
d0164adc 2609 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2610 local_irq_enable();
2611
2612 /*
2613 * The test for missing atomic flag is performed here, rather than
2614 * the more obvious place, simply to reduce the critical path length
2615 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2616 * will eventually be caught here (where it matters).
2617 */
2618 kmem_flagcheck(cachep, flags);
2619
a737b3e2
AM
2620 /*
2621 * Get mem for the objs. Attempt to allocate a physical page from
2622 * 'nodeid'.
e498be7d 2623 */
0c3aa83e
JK
2624 if (!page)
2625 page = kmem_getpages(cachep, local_flags, nodeid);
2626 if (!page)
1da177e4
LT
2627 goto failed;
2628
2629 /* Get slab management. */
8456a648 2630 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2631 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
8456a648 2632 if (!freelist)
1da177e4
LT
2633 goto opps1;
2634
8456a648 2635 slab_map_pages(cachep, page, freelist);
1da177e4 2636
8456a648 2637 cache_init_objs(cachep, page);
1da177e4 2638
d0164adc 2639 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2640 local_irq_disable();
2641 check_irq_off();
ce8eb6c4 2642 spin_lock(&n->list_lock);
1da177e4
LT
2643
2644 /* Make slab active. */
8456a648 2645 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2646 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2647 n->free_objects += cachep->num;
2648 spin_unlock(&n->list_lock);
1da177e4 2649 return 1;
a737b3e2 2650opps1:
0c3aa83e 2651 kmem_freepages(cachep, page);
a737b3e2 2652failed:
d0164adc 2653 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2654 local_irq_disable();
2655 return 0;
2656}
2657
2658#if DEBUG
2659
2660/*
2661 * Perform extra freeing checks:
2662 * - detect bad pointers.
2663 * - POISON/RED_ZONE checking
1da177e4
LT
2664 */
2665static void kfree_debugcheck(const void *objp)
2666{
1da177e4
LT
2667 if (!virt_addr_valid(objp)) {
2668 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2669 (unsigned long)objp);
2670 BUG();
1da177e4 2671 }
1da177e4
LT
2672}
2673
58ce1fd5
PE
2674static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2675{
b46b8f19 2676 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2677
2678 redzone1 = *dbg_redzone1(cache, obj);
2679 redzone2 = *dbg_redzone2(cache, obj);
2680
2681 /*
2682 * Redzone is ok.
2683 */
2684 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2685 return;
2686
2687 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2688 slab_error(cache, "double free detected");
2689 else
2690 slab_error(cache, "memory outside object was overwritten");
2691
b46b8f19 2692 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2693 obj, redzone1, redzone2);
2694}
2695
343e0d7a 2696static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2697 unsigned long caller)
1da177e4 2698{
1da177e4 2699 unsigned int objnr;
8456a648 2700 struct page *page;
1da177e4 2701
80cbd911
MW
2702 BUG_ON(virt_to_cache(objp) != cachep);
2703
3dafccf2 2704 objp -= obj_offset(cachep);
1da177e4 2705 kfree_debugcheck(objp);
b49af68f 2706 page = virt_to_head_page(objp);
1da177e4 2707
1da177e4 2708 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2709 verify_redzone_free(cachep, objp);
1da177e4
LT
2710 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2711 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2712 }
d31676df
JK
2713 if (cachep->flags & SLAB_STORE_USER) {
2714 set_store_user_dirty(cachep);
7c0cb9c6 2715 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2716 }
1da177e4 2717
8456a648 2718 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2719
2720 BUG_ON(objnr >= cachep->num);
8456a648 2721 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2722
1da177e4 2723 if (cachep->flags & SLAB_POISON) {
1da177e4 2724 poison_obj(cachep, objp, POISON_FREE);
40b44137 2725 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2726 }
2727 return objp;
2728}
2729
1da177e4
LT
2730#else
2731#define kfree_debugcheck(x) do { } while(0)
2732#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2733#endif
2734
7aa0d227
GT
2735static struct page *get_first_slab(struct kmem_cache_node *n)
2736{
2737 struct page *page;
2738
2739 page = list_first_entry_or_null(&n->slabs_partial,
2740 struct page, lru);
2741 if (!page) {
2742 n->free_touched = 1;
2743 page = list_first_entry_or_null(&n->slabs_free,
2744 struct page, lru);
2745 }
2746
2747 return page;
2748}
2749
072bb0aa
MG
2750static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2751 bool force_refill)
1da177e4
LT
2752{
2753 int batchcount;
ce8eb6c4 2754 struct kmem_cache_node *n;
1da177e4 2755 struct array_cache *ac;
1ca4cb24
PE
2756 int node;
2757
1da177e4 2758 check_irq_off();
7d6e6d09 2759 node = numa_mem_id();
072bb0aa
MG
2760 if (unlikely(force_refill))
2761 goto force_grow;
2762retry:
9a2dba4b 2763 ac = cpu_cache_get(cachep);
1da177e4
LT
2764 batchcount = ac->batchcount;
2765 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2766 /*
2767 * If there was little recent activity on this cache, then
2768 * perform only a partial refill. Otherwise we could generate
2769 * refill bouncing.
1da177e4
LT
2770 */
2771 batchcount = BATCHREFILL_LIMIT;
2772 }
18bf8541 2773 n = get_node(cachep, node);
e498be7d 2774
ce8eb6c4
CL
2775 BUG_ON(ac->avail > 0 || !n);
2776 spin_lock(&n->list_lock);
1da177e4 2777
3ded175a 2778 /* See if we can refill from the shared array */
ce8eb6c4
CL
2779 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2780 n->shared->touched = 1;
3ded175a 2781 goto alloc_done;
44b57f1c 2782 }
3ded175a 2783
1da177e4 2784 while (batchcount > 0) {
8456a648 2785 struct page *page;
1da177e4 2786 /* Get slab alloc is to come from. */
7aa0d227
GT
2787 page = get_first_slab(n);
2788 if (!page)
2789 goto must_grow;
1da177e4 2790
1da177e4 2791 check_spinlock_acquired(cachep);
714b8171
PE
2792
2793 /*
2794 * The slab was either on partial or free list so
2795 * there must be at least one object available for
2796 * allocation.
2797 */
8456a648 2798 BUG_ON(page->active >= cachep->num);
714b8171 2799
8456a648 2800 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2801 STATS_INC_ALLOCED(cachep);
2802 STATS_INC_ACTIVE(cachep);
2803 STATS_SET_HIGH(cachep);
2804
260b61dd 2805 ac_put_obj(cachep, ac, slab_get_obj(cachep, page));
1da177e4 2806 }
1da177e4
LT
2807
2808 /* move slabp to correct slabp list: */
8456a648
JK
2809 list_del(&page->lru);
2810 if (page->active == cachep->num)
34bf6ef9 2811 list_add(&page->lru, &n->slabs_full);
1da177e4 2812 else
34bf6ef9 2813 list_add(&page->lru, &n->slabs_partial);
1da177e4
LT
2814 }
2815
a737b3e2 2816must_grow:
ce8eb6c4 2817 n->free_objects -= ac->avail;
a737b3e2 2818alloc_done:
ce8eb6c4 2819 spin_unlock(&n->list_lock);
1da177e4
LT
2820
2821 if (unlikely(!ac->avail)) {
2822 int x;
072bb0aa 2823force_grow:
4167e9b2 2824 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
e498be7d 2825
a737b3e2 2826 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2827 ac = cpu_cache_get(cachep);
51cd8e6f 2828 node = numa_mem_id();
072bb0aa
MG
2829
2830 /* no objects in sight? abort */
2831 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
2832 return NULL;
2833
a737b3e2 2834 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2835 goto retry;
2836 }
2837 ac->touched = 1;
072bb0aa
MG
2838
2839 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
2840}
2841
a737b3e2
AM
2842static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2843 gfp_t flags)
1da177e4 2844{
d0164adc 2845 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
2846#if DEBUG
2847 kmem_flagcheck(cachep, flags);
2848#endif
2849}
2850
2851#if DEBUG
a737b3e2 2852static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2853 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2854{
b28a02de 2855 if (!objp)
1da177e4 2856 return objp;
b28a02de 2857 if (cachep->flags & SLAB_POISON) {
1da177e4 2858 check_poison_obj(cachep, objp);
40b44137 2859 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
2860 poison_obj(cachep, objp, POISON_INUSE);
2861 }
2862 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2863 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2864
2865 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2866 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2867 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2868 slab_error(cachep, "double free, or memory outside"
2869 " object was overwritten");
b28a02de 2870 printk(KERN_ERR
b46b8f19 2871 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
2872 objp, *dbg_redzone1(cachep, objp),
2873 *dbg_redzone2(cachep, objp));
1da177e4
LT
2874 }
2875 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2876 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2877 }
03787301 2878
3dafccf2 2879 objp += obj_offset(cachep);
4f104934 2880 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2881 cachep->ctor(objp);
7ea466f2
TH
2882 if (ARCH_SLAB_MINALIGN &&
2883 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 2884 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2885 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2886 }
1da177e4
LT
2887 return objp;
2888}
2889#else
2890#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2891#endif
2892
343e0d7a 2893static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2894{
b28a02de 2895 void *objp;
1da177e4 2896 struct array_cache *ac;
072bb0aa 2897 bool force_refill = false;
1da177e4 2898
5c382300 2899 check_irq_off();
8a8b6502 2900
9a2dba4b 2901 ac = cpu_cache_get(cachep);
1da177e4 2902 if (likely(ac->avail)) {
1da177e4 2903 ac->touched = 1;
072bb0aa
MG
2904 objp = ac_get_obj(cachep, ac, flags, false);
2905
ddbf2e83 2906 /*
072bb0aa
MG
2907 * Allow for the possibility all avail objects are not allowed
2908 * by the current flags
ddbf2e83 2909 */
072bb0aa
MG
2910 if (objp) {
2911 STATS_INC_ALLOCHIT(cachep);
2912 goto out;
2913 }
2914 force_refill = true;
1da177e4 2915 }
072bb0aa
MG
2916
2917 STATS_INC_ALLOCMISS(cachep);
2918 objp = cache_alloc_refill(cachep, flags, force_refill);
2919 /*
2920 * the 'ac' may be updated by cache_alloc_refill(),
2921 * and kmemleak_erase() requires its correct value.
2922 */
2923 ac = cpu_cache_get(cachep);
2924
2925out:
d5cff635
CM
2926 /*
2927 * To avoid a false negative, if an object that is in one of the
2928 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2929 * treat the array pointers as a reference to the object.
2930 */
f3d8b53a
O
2931 if (objp)
2932 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
2933 return objp;
2934}
2935
e498be7d 2936#ifdef CONFIG_NUMA
c61afb18 2937/*
2ad654bc 2938 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
2939 *
2940 * If we are in_interrupt, then process context, including cpusets and
2941 * mempolicy, may not apply and should not be used for allocation policy.
2942 */
2943static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2944{
2945 int nid_alloc, nid_here;
2946
765c4507 2947 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 2948 return NULL;
7d6e6d09 2949 nid_alloc = nid_here = numa_mem_id();
c61afb18 2950 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 2951 nid_alloc = cpuset_slab_spread_node();
c61afb18 2952 else if (current->mempolicy)
2a389610 2953 nid_alloc = mempolicy_slab_node();
c61afb18 2954 if (nid_alloc != nid_here)
8b98c169 2955 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
2956 return NULL;
2957}
2958
765c4507
CL
2959/*
2960 * Fallback function if there was no memory available and no objects on a
3c517a61 2961 * certain node and fall back is permitted. First we scan all the
6a67368c 2962 * available node for available objects. If that fails then we
3c517a61
CL
2963 * perform an allocation without specifying a node. This allows the page
2964 * allocator to do its reclaim / fallback magic. We then insert the
2965 * slab into the proper nodelist and then allocate from it.
765c4507 2966 */
8c8cc2c1 2967static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 2968{
8c8cc2c1
PE
2969 struct zonelist *zonelist;
2970 gfp_t local_flags;
dd1a239f 2971 struct zoneref *z;
54a6eb5c
MG
2972 struct zone *zone;
2973 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 2974 void *obj = NULL;
3c517a61 2975 int nid;
cc9a6c87 2976 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
2977
2978 if (flags & __GFP_THISNODE)
2979 return NULL;
2980
6cb06229 2981 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 2982
cc9a6c87 2983retry_cpuset:
d26914d1 2984 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2985 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 2986
3c517a61
CL
2987retry:
2988 /*
2989 * Look through allowed nodes for objects available
2990 * from existing per node queues.
2991 */
54a6eb5c
MG
2992 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2993 nid = zone_to_nid(zone);
aedb0eb1 2994
061d7074 2995 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
2996 get_node(cache, nid) &&
2997 get_node(cache, nid)->free_objects) {
3c517a61 2998 obj = ____cache_alloc_node(cache,
4167e9b2 2999 gfp_exact_node(flags), nid);
481c5346
CL
3000 if (obj)
3001 break;
3002 }
3c517a61
CL
3003 }
3004
cfce6604 3005 if (!obj) {
3c517a61
CL
3006 /*
3007 * This allocation will be performed within the constraints
3008 * of the current cpuset / memory policy requirements.
3009 * We may trigger various forms of reclaim on the allowed
3010 * set and go into memory reserves if necessary.
3011 */
0c3aa83e
JK
3012 struct page *page;
3013
d0164adc 3014 if (gfpflags_allow_blocking(local_flags))
dd47ea75
CL
3015 local_irq_enable();
3016 kmem_flagcheck(cache, flags);
0c3aa83e 3017 page = kmem_getpages(cache, local_flags, numa_mem_id());
d0164adc 3018 if (gfpflags_allow_blocking(local_flags))
dd47ea75 3019 local_irq_disable();
0c3aa83e 3020 if (page) {
3c517a61
CL
3021 /*
3022 * Insert into the appropriate per node queues
3023 */
0c3aa83e
JK
3024 nid = page_to_nid(page);
3025 if (cache_grow(cache, flags, nid, page)) {
3c517a61 3026 obj = ____cache_alloc_node(cache,
4167e9b2 3027 gfp_exact_node(flags), nid);
3c517a61
CL
3028 if (!obj)
3029 /*
3030 * Another processor may allocate the
3031 * objects in the slab since we are
3032 * not holding any locks.
3033 */
3034 goto retry;
3035 } else {
b6a60451 3036 /* cache_grow already freed obj */
3c517a61
CL
3037 obj = NULL;
3038 }
3039 }
aedb0eb1 3040 }
cc9a6c87 3041
d26914d1 3042 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3043 goto retry_cpuset;
765c4507
CL
3044 return obj;
3045}
3046
e498be7d
CL
3047/*
3048 * A interface to enable slab creation on nodeid
1da177e4 3049 */
8b98c169 3050static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3051 int nodeid)
e498be7d 3052{
8456a648 3053 struct page *page;
ce8eb6c4 3054 struct kmem_cache_node *n;
b28a02de 3055 void *obj;
b28a02de
PE
3056 int x;
3057
7c3fbbdd 3058 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3059 n = get_node(cachep, nodeid);
ce8eb6c4 3060 BUG_ON(!n);
b28a02de 3061
a737b3e2 3062retry:
ca3b9b91 3063 check_irq_off();
ce8eb6c4 3064 spin_lock(&n->list_lock);
7aa0d227
GT
3065 page = get_first_slab(n);
3066 if (!page)
3067 goto must_grow;
b28a02de 3068
b28a02de 3069 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3070
3071 STATS_INC_NODEALLOCS(cachep);
3072 STATS_INC_ACTIVE(cachep);
3073 STATS_SET_HIGH(cachep);
3074
8456a648 3075 BUG_ON(page->active == cachep->num);
b28a02de 3076
260b61dd 3077 obj = slab_get_obj(cachep, page);
ce8eb6c4 3078 n->free_objects--;
b28a02de 3079 /* move slabp to correct slabp list: */
8456a648 3080 list_del(&page->lru);
b28a02de 3081
8456a648
JK
3082 if (page->active == cachep->num)
3083 list_add(&page->lru, &n->slabs_full);
a737b3e2 3084 else
8456a648 3085 list_add(&page->lru, &n->slabs_partial);
e498be7d 3086
ce8eb6c4 3087 spin_unlock(&n->list_lock);
b28a02de 3088 goto done;
e498be7d 3089
a737b3e2 3090must_grow:
ce8eb6c4 3091 spin_unlock(&n->list_lock);
4167e9b2 3092 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
765c4507
CL
3093 if (x)
3094 goto retry;
1da177e4 3095
8c8cc2c1 3096 return fallback_alloc(cachep, flags);
e498be7d 3097
a737b3e2 3098done:
b28a02de 3099 return obj;
e498be7d 3100}
8c8cc2c1 3101
8c8cc2c1 3102static __always_inline void *
48356303 3103slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3104 unsigned long caller)
8c8cc2c1
PE
3105{
3106 unsigned long save_flags;
3107 void *ptr;
7d6e6d09 3108 int slab_node = numa_mem_id();
8c8cc2c1 3109
dcce284a 3110 flags &= gfp_allowed_mask;
011eceaf
JDB
3111 cachep = slab_pre_alloc_hook(cachep, flags);
3112 if (unlikely(!cachep))
824ebef1
AM
3113 return NULL;
3114
8c8cc2c1
PE
3115 cache_alloc_debugcheck_before(cachep, flags);
3116 local_irq_save(save_flags);
3117
eacbbae3 3118 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3119 nodeid = slab_node;
8c8cc2c1 3120
18bf8541 3121 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3122 /* Node not bootstrapped yet */
3123 ptr = fallback_alloc(cachep, flags);
3124 goto out;
3125 }
3126
7d6e6d09 3127 if (nodeid == slab_node) {
8c8cc2c1
PE
3128 /*
3129 * Use the locally cached objects if possible.
3130 * However ____cache_alloc does not allow fallback
3131 * to other nodes. It may fail while we still have
3132 * objects on other nodes available.
3133 */
3134 ptr = ____cache_alloc(cachep, flags);
3135 if (ptr)
3136 goto out;
3137 }
3138 /* ___cache_alloc_node can fall back to other nodes */
3139 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3140 out:
3141 local_irq_restore(save_flags);
3142 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3143
d5e3ed66
JDB
3144 if (unlikely(flags & __GFP_ZERO) && ptr)
3145 memset(ptr, 0, cachep->object_size);
d07dbea4 3146
d5e3ed66 3147 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3148 return ptr;
3149}
3150
3151static __always_inline void *
3152__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3153{
3154 void *objp;
3155
2ad654bc 3156 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3157 objp = alternate_node_alloc(cache, flags);
3158 if (objp)
3159 goto out;
3160 }
3161 objp = ____cache_alloc(cache, flags);
3162
3163 /*
3164 * We may just have run out of memory on the local node.
3165 * ____cache_alloc_node() knows how to locate memory on other nodes
3166 */
7d6e6d09
LS
3167 if (!objp)
3168 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3169
3170 out:
3171 return objp;
3172}
3173#else
3174
3175static __always_inline void *
3176__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3177{
3178 return ____cache_alloc(cachep, flags);
3179}
3180
3181#endif /* CONFIG_NUMA */
3182
3183static __always_inline void *
48356303 3184slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3185{
3186 unsigned long save_flags;
3187 void *objp;
3188
dcce284a 3189 flags &= gfp_allowed_mask;
011eceaf
JDB
3190 cachep = slab_pre_alloc_hook(cachep, flags);
3191 if (unlikely(!cachep))
824ebef1
AM
3192 return NULL;
3193
8c8cc2c1
PE
3194 cache_alloc_debugcheck_before(cachep, flags);
3195 local_irq_save(save_flags);
3196 objp = __do_cache_alloc(cachep, flags);
3197 local_irq_restore(save_flags);
3198 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3199 prefetchw(objp);
3200
d5e3ed66
JDB
3201 if (unlikely(flags & __GFP_ZERO) && objp)
3202 memset(objp, 0, cachep->object_size);
d07dbea4 3203
d5e3ed66 3204 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3205 return objp;
3206}
e498be7d
CL
3207
3208/*
5f0985bb 3209 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3210 * @list: List of detached free slabs should be freed by caller
e498be7d 3211 */
97654dfa
JK
3212static void free_block(struct kmem_cache *cachep, void **objpp,
3213 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3214{
3215 int i;
25c063fb 3216 struct kmem_cache_node *n = get_node(cachep, node);
1da177e4
LT
3217
3218 for (i = 0; i < nr_objects; i++) {
072bb0aa 3219 void *objp;
8456a648 3220 struct page *page;
1da177e4 3221
072bb0aa
MG
3222 clear_obj_pfmemalloc(&objpp[i]);
3223 objp = objpp[i];
3224
8456a648 3225 page = virt_to_head_page(objp);
8456a648 3226 list_del(&page->lru);
ff69416e 3227 check_spinlock_acquired_node(cachep, node);
260b61dd 3228 slab_put_obj(cachep, page, objp);
1da177e4 3229 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3230 n->free_objects++;
1da177e4
LT
3231
3232 /* fixup slab chains */
8456a648 3233 if (page->active == 0) {
ce8eb6c4
CL
3234 if (n->free_objects > n->free_limit) {
3235 n->free_objects -= cachep->num;
97654dfa 3236 list_add_tail(&page->lru, list);
1da177e4 3237 } else {
8456a648 3238 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3239 }
3240 } else {
3241 /* Unconditionally move a slab to the end of the
3242 * partial list on free - maximum time for the
3243 * other objects to be freed, too.
3244 */
8456a648 3245 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3246 }
3247 }
3248}
3249
343e0d7a 3250static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3251{
3252 int batchcount;
ce8eb6c4 3253 struct kmem_cache_node *n;
7d6e6d09 3254 int node = numa_mem_id();
97654dfa 3255 LIST_HEAD(list);
1da177e4
LT
3256
3257 batchcount = ac->batchcount;
260b61dd 3258
1da177e4 3259 check_irq_off();
18bf8541 3260 n = get_node(cachep, node);
ce8eb6c4
CL
3261 spin_lock(&n->list_lock);
3262 if (n->shared) {
3263 struct array_cache *shared_array = n->shared;
b28a02de 3264 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3265 if (max) {
3266 if (batchcount > max)
3267 batchcount = max;
e498be7d 3268 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3269 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3270 shared_array->avail += batchcount;
3271 goto free_done;
3272 }
3273 }
3274
97654dfa 3275 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3276free_done:
1da177e4
LT
3277#if STATS
3278 {
3279 int i = 0;
73c0219d 3280 struct page *page;
1da177e4 3281
73c0219d 3282 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3283 BUG_ON(page->active);
1da177e4
LT
3284
3285 i++;
1da177e4
LT
3286 }
3287 STATS_SET_FREEABLE(cachep, i);
3288 }
3289#endif
ce8eb6c4 3290 spin_unlock(&n->list_lock);
97654dfa 3291 slabs_destroy(cachep, &list);
1da177e4 3292 ac->avail -= batchcount;
a737b3e2 3293 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3294}
3295
3296/*
a737b3e2
AM
3297 * Release an obj back to its cache. If the obj has a constructed state, it must
3298 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3299 */
a947eb95 3300static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3301 unsigned long caller)
1da177e4 3302{
9a2dba4b 3303 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3304
3305 check_irq_off();
d5cff635 3306 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3307 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3308
8c138bc0 3309 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3310
1807a1aa
SS
3311 /*
3312 * Skip calling cache_free_alien() when the platform is not numa.
3313 * This will avoid cache misses that happen while accessing slabp (which
3314 * is per page memory reference) to get nodeid. Instead use a global
3315 * variable to skip the call, which is mostly likely to be present in
3316 * the cache.
3317 */
b6e68bc1 3318 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3319 return;
3320
3d880194 3321 if (ac->avail < ac->limit) {
1da177e4 3322 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3323 } else {
3324 STATS_INC_FREEMISS(cachep);
3325 cache_flusharray(cachep, ac);
1da177e4 3326 }
42c8c99c 3327
072bb0aa 3328 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3329}
3330
3331/**
3332 * kmem_cache_alloc - Allocate an object
3333 * @cachep: The cache to allocate from.
3334 * @flags: See kmalloc().
3335 *
3336 * Allocate an object from this cache. The flags are only relevant
3337 * if the cache has no available objects.
3338 */
343e0d7a 3339void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3340{
48356303 3341 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3342
ca2b84cb 3343 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3344 cachep->object_size, cachep->size, flags);
36555751
EGM
3345
3346 return ret;
1da177e4
LT
3347}
3348EXPORT_SYMBOL(kmem_cache_alloc);
3349
7b0501dd
JDB
3350static __always_inline void
3351cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3352 size_t size, void **p, unsigned long caller)
3353{
3354 size_t i;
3355
3356 for (i = 0; i < size; i++)
3357 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3358}
3359
865762a8 3360int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3361 void **p)
484748f0 3362{
2a777eac
JDB
3363 size_t i;
3364
3365 s = slab_pre_alloc_hook(s, flags);
3366 if (!s)
3367 return 0;
3368
3369 cache_alloc_debugcheck_before(s, flags);
3370
3371 local_irq_disable();
3372 for (i = 0; i < size; i++) {
3373 void *objp = __do_cache_alloc(s, flags);
3374
2a777eac
JDB
3375 if (unlikely(!objp))
3376 goto error;
3377 p[i] = objp;
3378 }
3379 local_irq_enable();
3380
7b0501dd
JDB
3381 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3382
2a777eac
JDB
3383 /* Clear memory outside IRQ disabled section */
3384 if (unlikely(flags & __GFP_ZERO))
3385 for (i = 0; i < size; i++)
3386 memset(p[i], 0, s->object_size);
3387
3388 slab_post_alloc_hook(s, flags, size, p);
3389 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3390 return size;
3391error:
3392 local_irq_enable();
7b0501dd 3393 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3394 slab_post_alloc_hook(s, flags, i, p);
3395 __kmem_cache_free_bulk(s, i, p);
3396 return 0;
484748f0
CL
3397}
3398EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3399
0f24f128 3400#ifdef CONFIG_TRACING
85beb586 3401void *
4052147c 3402kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3403{
85beb586
SR
3404 void *ret;
3405
48356303 3406 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3407
3408 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3409 size, cachep->size, flags);
85beb586 3410 return ret;
36555751 3411}
85beb586 3412EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3413#endif
3414
1da177e4 3415#ifdef CONFIG_NUMA
d0d04b78
ZL
3416/**
3417 * kmem_cache_alloc_node - Allocate an object on the specified node
3418 * @cachep: The cache to allocate from.
3419 * @flags: See kmalloc().
3420 * @nodeid: node number of the target node.
3421 *
3422 * Identical to kmem_cache_alloc but it will allocate memory on the given
3423 * node, which can improve the performance for cpu bound structures.
3424 *
3425 * Fallback to other node is possible if __GFP_THISNODE is not set.
3426 */
8b98c169
CH
3427void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3428{
48356303 3429 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3430
ca2b84cb 3431 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3432 cachep->object_size, cachep->size,
ca2b84cb 3433 flags, nodeid);
36555751
EGM
3434
3435 return ret;
8b98c169 3436}
1da177e4
LT
3437EXPORT_SYMBOL(kmem_cache_alloc_node);
3438
0f24f128 3439#ifdef CONFIG_TRACING
4052147c 3440void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3441 gfp_t flags,
4052147c
EG
3442 int nodeid,
3443 size_t size)
36555751 3444{
85beb586
SR
3445 void *ret;
3446
592f4145 3447 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3448
85beb586 3449 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3450 size, cachep->size,
85beb586
SR
3451 flags, nodeid);
3452 return ret;
36555751 3453}
85beb586 3454EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3455#endif
3456
8b98c169 3457static __always_inline void *
7c0cb9c6 3458__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3459{
343e0d7a 3460 struct kmem_cache *cachep;
97e2bde4 3461
2c59dd65 3462 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3463 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3464 return cachep;
4052147c 3465 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3466}
8b98c169 3467
8b98c169
CH
3468void *__kmalloc_node(size_t size, gfp_t flags, int node)
3469{
7c0cb9c6 3470 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3471}
dbe5e69d 3472EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3473
3474void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3475 int node, unsigned long caller)
8b98c169 3476{
7c0cb9c6 3477 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3478}
3479EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3480#endif /* CONFIG_NUMA */
1da177e4
LT
3481
3482/**
800590f5 3483 * __do_kmalloc - allocate memory
1da177e4 3484 * @size: how many bytes of memory are required.
800590f5 3485 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3486 * @caller: function caller for debug tracking of the caller
1da177e4 3487 */
7fd6b141 3488static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3489 unsigned long caller)
1da177e4 3490{
343e0d7a 3491 struct kmem_cache *cachep;
36555751 3492 void *ret;
1da177e4 3493
2c59dd65 3494 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3495 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3496 return cachep;
48356303 3497 ret = slab_alloc(cachep, flags, caller);
36555751 3498
7c0cb9c6 3499 trace_kmalloc(caller, ret,
3b0efdfa 3500 size, cachep->size, flags);
36555751
EGM
3501
3502 return ret;
7fd6b141
PE
3503}
3504
7fd6b141
PE
3505void *__kmalloc(size_t size, gfp_t flags)
3506{
7c0cb9c6 3507 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3508}
3509EXPORT_SYMBOL(__kmalloc);
3510
ce71e27c 3511void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3512{
7c0cb9c6 3513 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3514}
3515EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3516
1da177e4
LT
3517/**
3518 * kmem_cache_free - Deallocate an object
3519 * @cachep: The cache the allocation was from.
3520 * @objp: The previously allocated object.
3521 *
3522 * Free an object which was previously allocated from this
3523 * cache.
3524 */
343e0d7a 3525void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3526{
3527 unsigned long flags;
b9ce5ef4
GC
3528 cachep = cache_from_obj(cachep, objp);
3529 if (!cachep)
3530 return;
1da177e4
LT
3531
3532 local_irq_save(flags);
d97d476b 3533 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3534 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3535 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3536 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3537 local_irq_restore(flags);
36555751 3538
ca2b84cb 3539 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3540}
3541EXPORT_SYMBOL(kmem_cache_free);
3542
e6cdb58d
JDB
3543void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3544{
3545 struct kmem_cache *s;
3546 size_t i;
3547
3548 local_irq_disable();
3549 for (i = 0; i < size; i++) {
3550 void *objp = p[i];
3551
ca257195
JDB
3552 if (!orig_s) /* called via kfree_bulk */
3553 s = virt_to_cache(objp);
3554 else
3555 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3556
3557 debug_check_no_locks_freed(objp, s->object_size);
3558 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3559 debug_check_no_obj_freed(objp, s->object_size);
3560
3561 __cache_free(s, objp, _RET_IP_);
3562 }
3563 local_irq_enable();
3564
3565 /* FIXME: add tracing */
3566}
3567EXPORT_SYMBOL(kmem_cache_free_bulk);
3568
1da177e4
LT
3569/**
3570 * kfree - free previously allocated memory
3571 * @objp: pointer returned by kmalloc.
3572 *
80e93eff
PE
3573 * If @objp is NULL, no operation is performed.
3574 *
1da177e4
LT
3575 * Don't free memory not originally allocated by kmalloc()
3576 * or you will run into trouble.
3577 */
3578void kfree(const void *objp)
3579{
343e0d7a 3580 struct kmem_cache *c;
1da177e4
LT
3581 unsigned long flags;
3582
2121db74
PE
3583 trace_kfree(_RET_IP_, objp);
3584
6cb8f913 3585 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3586 return;
3587 local_irq_save(flags);
3588 kfree_debugcheck(objp);
6ed5eb22 3589 c = virt_to_cache(objp);
8c138bc0
CL
3590 debug_check_no_locks_freed(objp, c->object_size);
3591
3592 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3593 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3594 local_irq_restore(flags);
3595}
3596EXPORT_SYMBOL(kfree);
3597
e498be7d 3598/*
ce8eb6c4 3599 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3600 */
5f0985bb 3601static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3602{
3603 int node;
ce8eb6c4 3604 struct kmem_cache_node *n;
cafeb02e 3605 struct array_cache *new_shared;
c8522a3a 3606 struct alien_cache **new_alien = NULL;
e498be7d 3607
9c09a95c 3608 for_each_online_node(node) {
cafeb02e 3609
b455def2
L
3610 if (use_alien_caches) {
3611 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3612 if (!new_alien)
3613 goto fail;
3614 }
cafeb02e 3615
63109846
ED
3616 new_shared = NULL;
3617 if (cachep->shared) {
3618 new_shared = alloc_arraycache(node,
0718dc2a 3619 cachep->shared*cachep->batchcount,
83b519e8 3620 0xbaadf00d, gfp);
63109846
ED
3621 if (!new_shared) {
3622 free_alien_cache(new_alien);
3623 goto fail;
3624 }
0718dc2a 3625 }
cafeb02e 3626
18bf8541 3627 n = get_node(cachep, node);
ce8eb6c4
CL
3628 if (n) {
3629 struct array_cache *shared = n->shared;
97654dfa 3630 LIST_HEAD(list);
cafeb02e 3631
ce8eb6c4 3632 spin_lock_irq(&n->list_lock);
e498be7d 3633
cafeb02e 3634 if (shared)
0718dc2a 3635 free_block(cachep, shared->entry,
97654dfa 3636 shared->avail, node, &list);
e498be7d 3637
ce8eb6c4
CL
3638 n->shared = new_shared;
3639 if (!n->alien) {
3640 n->alien = new_alien;
e498be7d
CL
3641 new_alien = NULL;
3642 }
ce8eb6c4 3643 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3644 cachep->batchcount + cachep->num;
ce8eb6c4 3645 spin_unlock_irq(&n->list_lock);
97654dfa 3646 slabs_destroy(cachep, &list);
cafeb02e 3647 kfree(shared);
e498be7d
CL
3648 free_alien_cache(new_alien);
3649 continue;
3650 }
ce8eb6c4
CL
3651 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3652 if (!n) {
0718dc2a
CL
3653 free_alien_cache(new_alien);
3654 kfree(new_shared);
e498be7d 3655 goto fail;
0718dc2a 3656 }
e498be7d 3657
ce8eb6c4 3658 kmem_cache_node_init(n);
5f0985bb
JZ
3659 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3660 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
ce8eb6c4
CL
3661 n->shared = new_shared;
3662 n->alien = new_alien;
3663 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3664 cachep->batchcount + cachep->num;
ce8eb6c4 3665 cachep->node[node] = n;
e498be7d 3666 }
cafeb02e 3667 return 0;
0718dc2a 3668
a737b3e2 3669fail:
3b0efdfa 3670 if (!cachep->list.next) {
0718dc2a
CL
3671 /* Cache is not active yet. Roll back what we did */
3672 node--;
3673 while (node >= 0) {
18bf8541
CL
3674 n = get_node(cachep, node);
3675 if (n) {
ce8eb6c4
CL
3676 kfree(n->shared);
3677 free_alien_cache(n->alien);
3678 kfree(n);
6a67368c 3679 cachep->node[node] = NULL;
0718dc2a
CL
3680 }
3681 node--;
3682 }
3683 }
cafeb02e 3684 return -ENOMEM;
e498be7d
CL
3685}
3686
18004c5d 3687/* Always called with the slab_mutex held */
943a451a 3688static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3689 int batchcount, int shared, gfp_t gfp)
1da177e4 3690{
bf0dea23
JK
3691 struct array_cache __percpu *cpu_cache, *prev;
3692 int cpu;
1da177e4 3693
bf0dea23
JK
3694 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3695 if (!cpu_cache)
d2e7b7d0
SS
3696 return -ENOMEM;
3697
bf0dea23
JK
3698 prev = cachep->cpu_cache;
3699 cachep->cpu_cache = cpu_cache;
3700 kick_all_cpus_sync();
e498be7d 3701
1da177e4 3702 check_irq_on();
1da177e4
LT
3703 cachep->batchcount = batchcount;
3704 cachep->limit = limit;
e498be7d 3705 cachep->shared = shared;
1da177e4 3706
bf0dea23
JK
3707 if (!prev)
3708 goto alloc_node;
3709
3710 for_each_online_cpu(cpu) {
97654dfa 3711 LIST_HEAD(list);
18bf8541
CL
3712 int node;
3713 struct kmem_cache_node *n;
bf0dea23 3714 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3715
bf0dea23 3716 node = cpu_to_mem(cpu);
18bf8541
CL
3717 n = get_node(cachep, node);
3718 spin_lock_irq(&n->list_lock);
bf0dea23 3719 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3720 spin_unlock_irq(&n->list_lock);
97654dfa 3721 slabs_destroy(cachep, &list);
1da177e4 3722 }
bf0dea23
JK
3723 free_percpu(prev);
3724
3725alloc_node:
5f0985bb 3726 return alloc_kmem_cache_node(cachep, gfp);
1da177e4
LT
3727}
3728
943a451a
GC
3729static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3730 int batchcount, int shared, gfp_t gfp)
3731{
3732 int ret;
426589f5 3733 struct kmem_cache *c;
943a451a
GC
3734
3735 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3736
3737 if (slab_state < FULL)
3738 return ret;
3739
3740 if ((ret < 0) || !is_root_cache(cachep))
3741 return ret;
3742
426589f5
VD
3743 lockdep_assert_held(&slab_mutex);
3744 for_each_memcg_cache(c, cachep) {
3745 /* return value determined by the root cache only */
3746 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3747 }
3748
3749 return ret;
3750}
3751
18004c5d 3752/* Called with slab_mutex held always */
83b519e8 3753static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3754{
3755 int err;
943a451a
GC
3756 int limit = 0;
3757 int shared = 0;
3758 int batchcount = 0;
3759
3760 if (!is_root_cache(cachep)) {
3761 struct kmem_cache *root = memcg_root_cache(cachep);
3762 limit = root->limit;
3763 shared = root->shared;
3764 batchcount = root->batchcount;
3765 }
1da177e4 3766
943a451a
GC
3767 if (limit && shared && batchcount)
3768 goto skip_setup;
a737b3e2
AM
3769 /*
3770 * The head array serves three purposes:
1da177e4
LT
3771 * - create a LIFO ordering, i.e. return objects that are cache-warm
3772 * - reduce the number of spinlock operations.
a737b3e2 3773 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3774 * bufctl chains: array operations are cheaper.
3775 * The numbers are guessed, we should auto-tune as described by
3776 * Bonwick.
3777 */
3b0efdfa 3778 if (cachep->size > 131072)
1da177e4 3779 limit = 1;
3b0efdfa 3780 else if (cachep->size > PAGE_SIZE)
1da177e4 3781 limit = 8;
3b0efdfa 3782 else if (cachep->size > 1024)
1da177e4 3783 limit = 24;
3b0efdfa 3784 else if (cachep->size > 256)
1da177e4
LT
3785 limit = 54;
3786 else
3787 limit = 120;
3788
a737b3e2
AM
3789 /*
3790 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3791 * allocation behaviour: Most allocs on one cpu, most free operations
3792 * on another cpu. For these cases, an efficient object passing between
3793 * cpus is necessary. This is provided by a shared array. The array
3794 * replaces Bonwick's magazine layer.
3795 * On uniprocessor, it's functionally equivalent (but less efficient)
3796 * to a larger limit. Thus disabled by default.
3797 */
3798 shared = 0;
3b0efdfa 3799 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3800 shared = 8;
1da177e4
LT
3801
3802#if DEBUG
a737b3e2
AM
3803 /*
3804 * With debugging enabled, large batchcount lead to excessively long
3805 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3806 */
3807 if (limit > 32)
3808 limit = 32;
3809#endif
943a451a
GC
3810 batchcount = (limit + 1) / 2;
3811skip_setup:
3812 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
3813 if (err)
3814 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3815 cachep->name, -err);
2ed3a4ef 3816 return err;
1da177e4
LT
3817}
3818
1b55253a 3819/*
ce8eb6c4
CL
3820 * Drain an array if it contains any elements taking the node lock only if
3821 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3822 * if drain_array() is used on the shared array.
1b55253a 3823 */
ce8eb6c4 3824static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 3825 struct array_cache *ac, int force, int node)
1da177e4 3826{
97654dfa 3827 LIST_HEAD(list);
1da177e4
LT
3828 int tofree;
3829
1b55253a
CL
3830 if (!ac || !ac->avail)
3831 return;
1da177e4
LT
3832 if (ac->touched && !force) {
3833 ac->touched = 0;
b18e7e65 3834 } else {
ce8eb6c4 3835 spin_lock_irq(&n->list_lock);
b18e7e65
CL
3836 if (ac->avail) {
3837 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3838 if (tofree > ac->avail)
3839 tofree = (ac->avail + 1) / 2;
97654dfa 3840 free_block(cachep, ac->entry, tofree, node, &list);
b18e7e65
CL
3841 ac->avail -= tofree;
3842 memmove(ac->entry, &(ac->entry[tofree]),
3843 sizeof(void *) * ac->avail);
3844 }
ce8eb6c4 3845 spin_unlock_irq(&n->list_lock);
97654dfa 3846 slabs_destroy(cachep, &list);
1da177e4
LT
3847 }
3848}
3849
3850/**
3851 * cache_reap - Reclaim memory from caches.
05fb6bf0 3852 * @w: work descriptor
1da177e4
LT
3853 *
3854 * Called from workqueue/eventd every few seconds.
3855 * Purpose:
3856 * - clear the per-cpu caches for this CPU.
3857 * - return freeable pages to the main free memory pool.
3858 *
a737b3e2
AM
3859 * If we cannot acquire the cache chain mutex then just give up - we'll try
3860 * again on the next iteration.
1da177e4 3861 */
7c5cae36 3862static void cache_reap(struct work_struct *w)
1da177e4 3863{
7a7c381d 3864 struct kmem_cache *searchp;
ce8eb6c4 3865 struct kmem_cache_node *n;
7d6e6d09 3866 int node = numa_mem_id();
bf6aede7 3867 struct delayed_work *work = to_delayed_work(w);
1da177e4 3868
18004c5d 3869 if (!mutex_trylock(&slab_mutex))
1da177e4 3870 /* Give up. Setup the next iteration. */
7c5cae36 3871 goto out;
1da177e4 3872
18004c5d 3873 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3874 check_irq_on();
3875
35386e3b 3876 /*
ce8eb6c4 3877 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3878 * have established with reasonable certainty that
3879 * we can do some work if the lock was obtained.
3880 */
18bf8541 3881 n = get_node(searchp, node);
35386e3b 3882
ce8eb6c4 3883 reap_alien(searchp, n);
1da177e4 3884
ce8eb6c4 3885 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 3886
35386e3b
CL
3887 /*
3888 * These are racy checks but it does not matter
3889 * if we skip one check or scan twice.
3890 */
ce8eb6c4 3891 if (time_after(n->next_reap, jiffies))
35386e3b 3892 goto next;
1da177e4 3893
5f0985bb 3894 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 3895
ce8eb6c4 3896 drain_array(searchp, n, n->shared, 0, node);
1da177e4 3897
ce8eb6c4
CL
3898 if (n->free_touched)
3899 n->free_touched = 0;
ed11d9eb
CL
3900 else {
3901 int freed;
1da177e4 3902
ce8eb6c4 3903 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
3904 5 * searchp->num - 1) / (5 * searchp->num));
3905 STATS_ADD_REAPED(searchp, freed);
3906 }
35386e3b 3907next:
1da177e4
LT
3908 cond_resched();
3909 }
3910 check_irq_on();
18004c5d 3911 mutex_unlock(&slab_mutex);
8fce4d8e 3912 next_reap_node();
7c5cae36 3913out:
a737b3e2 3914 /* Set up the next iteration */
5f0985bb 3915 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
3916}
3917
158a9624 3918#ifdef CONFIG_SLABINFO
0d7561c6 3919void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 3920{
8456a648 3921 struct page *page;
b28a02de
PE
3922 unsigned long active_objs;
3923 unsigned long num_objs;
3924 unsigned long active_slabs = 0;
3925 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3926 const char *name;
1da177e4 3927 char *error = NULL;
e498be7d 3928 int node;
ce8eb6c4 3929 struct kmem_cache_node *n;
1da177e4 3930
1da177e4
LT
3931 active_objs = 0;
3932 num_slabs = 0;
18bf8541 3933 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 3934
ca3b9b91 3935 check_irq_on();
ce8eb6c4 3936 spin_lock_irq(&n->list_lock);
e498be7d 3937
8456a648
JK
3938 list_for_each_entry(page, &n->slabs_full, lru) {
3939 if (page->active != cachep->num && !error)
e498be7d
CL
3940 error = "slabs_full accounting error";
3941 active_objs += cachep->num;
3942 active_slabs++;
3943 }
8456a648
JK
3944 list_for_each_entry(page, &n->slabs_partial, lru) {
3945 if (page->active == cachep->num && !error)
106a74e1 3946 error = "slabs_partial accounting error";
8456a648 3947 if (!page->active && !error)
106a74e1 3948 error = "slabs_partial accounting error";
8456a648 3949 active_objs += page->active;
e498be7d
CL
3950 active_slabs++;
3951 }
8456a648
JK
3952 list_for_each_entry(page, &n->slabs_free, lru) {
3953 if (page->active && !error)
106a74e1 3954 error = "slabs_free accounting error";
e498be7d
CL
3955 num_slabs++;
3956 }
ce8eb6c4
CL
3957 free_objects += n->free_objects;
3958 if (n->shared)
3959 shared_avail += n->shared->avail;
e498be7d 3960
ce8eb6c4 3961 spin_unlock_irq(&n->list_lock);
1da177e4 3962 }
b28a02de
PE
3963 num_slabs += active_slabs;
3964 num_objs = num_slabs * cachep->num;
e498be7d 3965 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3966 error = "free_objects accounting error";
3967
b28a02de 3968 name = cachep->name;
1da177e4
LT
3969 if (error)
3970 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3971
0d7561c6
GC
3972 sinfo->active_objs = active_objs;
3973 sinfo->num_objs = num_objs;
3974 sinfo->active_slabs = active_slabs;
3975 sinfo->num_slabs = num_slabs;
3976 sinfo->shared_avail = shared_avail;
3977 sinfo->limit = cachep->limit;
3978 sinfo->batchcount = cachep->batchcount;
3979 sinfo->shared = cachep->shared;
3980 sinfo->objects_per_slab = cachep->num;
3981 sinfo->cache_order = cachep->gfporder;
3982}
3983
3984void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3985{
1da177e4 3986#if STATS
ce8eb6c4 3987 { /* node stats */
1da177e4
LT
3988 unsigned long high = cachep->high_mark;
3989 unsigned long allocs = cachep->num_allocations;
3990 unsigned long grown = cachep->grown;
3991 unsigned long reaped = cachep->reaped;
3992 unsigned long errors = cachep->errors;
3993 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3994 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3995 unsigned long node_frees = cachep->node_frees;
fb7faf33 3996 unsigned long overflows = cachep->node_overflow;
1da177e4 3997
e92dd4fd
JP
3998 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
3999 "%4lu %4lu %4lu %4lu %4lu",
4000 allocs, high, grown,
4001 reaped, errors, max_freeable, node_allocs,
4002 node_frees, overflows);
1da177e4
LT
4003 }
4004 /* cpu stats */
4005 {
4006 unsigned long allochit = atomic_read(&cachep->allochit);
4007 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4008 unsigned long freehit = atomic_read(&cachep->freehit);
4009 unsigned long freemiss = atomic_read(&cachep->freemiss);
4010
4011 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4012 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4013 }
4014#endif
1da177e4
LT
4015}
4016
1da177e4
LT
4017#define MAX_SLABINFO_WRITE 128
4018/**
4019 * slabinfo_write - Tuning for the slab allocator
4020 * @file: unused
4021 * @buffer: user buffer
4022 * @count: data length
4023 * @ppos: unused
4024 */
b7454ad3 4025ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4026 size_t count, loff_t *ppos)
1da177e4 4027{
b28a02de 4028 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4029 int limit, batchcount, shared, res;
7a7c381d 4030 struct kmem_cache *cachep;
b28a02de 4031
1da177e4
LT
4032 if (count > MAX_SLABINFO_WRITE)
4033 return -EINVAL;
4034 if (copy_from_user(&kbuf, buffer, count))
4035 return -EFAULT;
b28a02de 4036 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4037
4038 tmp = strchr(kbuf, ' ');
4039 if (!tmp)
4040 return -EINVAL;
4041 *tmp = '\0';
4042 tmp++;
4043 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4044 return -EINVAL;
4045
4046 /* Find the cache in the chain of caches. */
18004c5d 4047 mutex_lock(&slab_mutex);
1da177e4 4048 res = -EINVAL;
18004c5d 4049 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4050 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4051 if (limit < 1 || batchcount < 1 ||
4052 batchcount > limit || shared < 0) {
e498be7d 4053 res = 0;
1da177e4 4054 } else {
e498be7d 4055 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4056 batchcount, shared,
4057 GFP_KERNEL);
1da177e4
LT
4058 }
4059 break;
4060 }
4061 }
18004c5d 4062 mutex_unlock(&slab_mutex);
1da177e4
LT
4063 if (res >= 0)
4064 res = count;
4065 return res;
4066}
871751e2
AV
4067
4068#ifdef CONFIG_DEBUG_SLAB_LEAK
4069
871751e2
AV
4070static inline int add_caller(unsigned long *n, unsigned long v)
4071{
4072 unsigned long *p;
4073 int l;
4074 if (!v)
4075 return 1;
4076 l = n[1];
4077 p = n + 2;
4078 while (l) {
4079 int i = l/2;
4080 unsigned long *q = p + 2 * i;
4081 if (*q == v) {
4082 q[1]++;
4083 return 1;
4084 }
4085 if (*q > v) {
4086 l = i;
4087 } else {
4088 p = q + 2;
4089 l -= i + 1;
4090 }
4091 }
4092 if (++n[1] == n[0])
4093 return 0;
4094 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4095 p[0] = v;
4096 p[1] = 1;
4097 return 1;
4098}
4099
8456a648
JK
4100static void handle_slab(unsigned long *n, struct kmem_cache *c,
4101 struct page *page)
871751e2
AV
4102{
4103 void *p;
d31676df
JK
4104 int i, j;
4105 unsigned long v;
b1cb0982 4106
871751e2
AV
4107 if (n[0] == n[1])
4108 return;
8456a648 4109 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4110 bool active = true;
4111
4112 for (j = page->active; j < c->num; j++) {
4113 if (get_free_obj(page, j) == i) {
4114 active = false;
4115 break;
4116 }
4117 }
4118
4119 if (!active)
871751e2 4120 continue;
b1cb0982 4121
d31676df
JK
4122 /*
4123 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4124 * mapping is established when actual object allocation and
4125 * we could mistakenly access the unmapped object in the cpu
4126 * cache.
4127 */
4128 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4129 continue;
4130
4131 if (!add_caller(n, v))
871751e2
AV
4132 return;
4133 }
4134}
4135
4136static void show_symbol(struct seq_file *m, unsigned long address)
4137{
4138#ifdef CONFIG_KALLSYMS
871751e2 4139 unsigned long offset, size;
9281acea 4140 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4141
a5c43dae 4142 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4143 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4144 if (modname[0])
871751e2
AV
4145 seq_printf(m, " [%s]", modname);
4146 return;
4147 }
4148#endif
4149 seq_printf(m, "%p", (void *)address);
4150}
4151
4152static int leaks_show(struct seq_file *m, void *p)
4153{
0672aa7c 4154 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4155 struct page *page;
ce8eb6c4 4156 struct kmem_cache_node *n;
871751e2 4157 const char *name;
db845067 4158 unsigned long *x = m->private;
871751e2
AV
4159 int node;
4160 int i;
4161
4162 if (!(cachep->flags & SLAB_STORE_USER))
4163 return 0;
4164 if (!(cachep->flags & SLAB_RED_ZONE))
4165 return 0;
4166
d31676df
JK
4167 /*
4168 * Set store_user_clean and start to grab stored user information
4169 * for all objects on this cache. If some alloc/free requests comes
4170 * during the processing, information would be wrong so restart
4171 * whole processing.
4172 */
4173 do {
4174 set_store_user_clean(cachep);
4175 drain_cpu_caches(cachep);
4176
4177 x[1] = 0;
871751e2 4178
d31676df 4179 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4180
d31676df
JK
4181 check_irq_on();
4182 spin_lock_irq(&n->list_lock);
871751e2 4183
d31676df
JK
4184 list_for_each_entry(page, &n->slabs_full, lru)
4185 handle_slab(x, cachep, page);
4186 list_for_each_entry(page, &n->slabs_partial, lru)
4187 handle_slab(x, cachep, page);
4188 spin_unlock_irq(&n->list_lock);
4189 }
4190 } while (!is_store_user_clean(cachep));
871751e2 4191
871751e2 4192 name = cachep->name;
db845067 4193 if (x[0] == x[1]) {
871751e2 4194 /* Increase the buffer size */
18004c5d 4195 mutex_unlock(&slab_mutex);
db845067 4196 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4197 if (!m->private) {
4198 /* Too bad, we are really out */
db845067 4199 m->private = x;
18004c5d 4200 mutex_lock(&slab_mutex);
871751e2
AV
4201 return -ENOMEM;
4202 }
db845067
CL
4203 *(unsigned long *)m->private = x[0] * 2;
4204 kfree(x);
18004c5d 4205 mutex_lock(&slab_mutex);
871751e2
AV
4206 /* Now make sure this entry will be retried */
4207 m->count = m->size;
4208 return 0;
4209 }
db845067
CL
4210 for (i = 0; i < x[1]; i++) {
4211 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4212 show_symbol(m, x[2*i+2]);
871751e2
AV
4213 seq_putc(m, '\n');
4214 }
d2e7b7d0 4215
871751e2
AV
4216 return 0;
4217}
4218
a0ec95a8 4219static const struct seq_operations slabstats_op = {
1df3b26f 4220 .start = slab_start,
276a2439
WL
4221 .next = slab_next,
4222 .stop = slab_stop,
871751e2
AV
4223 .show = leaks_show,
4224};
a0ec95a8
AD
4225
4226static int slabstats_open(struct inode *inode, struct file *file)
4227{
b208ce32
RJ
4228 unsigned long *n;
4229
4230 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4231 if (!n)
4232 return -ENOMEM;
4233
4234 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4235
4236 return 0;
a0ec95a8
AD
4237}
4238
4239static const struct file_operations proc_slabstats_operations = {
4240 .open = slabstats_open,
4241 .read = seq_read,
4242 .llseek = seq_lseek,
4243 .release = seq_release_private,
4244};
4245#endif
4246
4247static int __init slab_proc_init(void)
4248{
4249#ifdef CONFIG_DEBUG_SLAB_LEAK
4250 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4251#endif
a0ec95a8
AD
4252 return 0;
4253}
4254module_init(slab_proc_init);
1da177e4
LT
4255#endif
4256
00e145b6
MS
4257/**
4258 * ksize - get the actual amount of memory allocated for a given object
4259 * @objp: Pointer to the object
4260 *
4261 * kmalloc may internally round up allocations and return more memory
4262 * than requested. ksize() can be used to determine the actual amount of
4263 * memory allocated. The caller may use this additional memory, even though
4264 * a smaller amount of memory was initially specified with the kmalloc call.
4265 * The caller must guarantee that objp points to a valid object previously
4266 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4267 * must not be freed during the duration of the call.
4268 */
fd76bab2 4269size_t ksize(const void *objp)
1da177e4 4270{
ef8b4520
CL
4271 BUG_ON(!objp);
4272 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4273 return 0;
1da177e4 4274
8c138bc0 4275 return virt_to_cache(objp)->object_size;
1da177e4 4276}
b1aabecd 4277EXPORT_SYMBOL(ksize);