Input: usbtouchscreen - avoid unresponsive TSC-30 touch screen
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
072bb0aa
MG
171/*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175static bool pfmemalloc_active __read_mostly;
176
1da177e4
LT
177/*
178 * struct array_cache
179 *
1da177e4
LT
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
bda5b655 194 void *entry[]; /*
a737b3e2
AM
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
072bb0aa
MG
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 202 */
1da177e4
LT
203};
204
c8522a3a
JK
205struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208};
209
072bb0aa
MG
210#define SLAB_OBJ_PFMEMALLOC 1
211static inline bool is_obj_pfmemalloc(void *objp)
212{
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214}
215
216static inline void set_obj_pfmemalloc(void **objp)
217{
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220}
221
222static inline void clear_obj_pfmemalloc(void **objp)
223{
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225}
226
a737b3e2
AM
227/*
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
1da177e4
LT
230 */
231#define BOOT_CPUCACHE_ENTRIES 1
232struct arraycache_init {
233 struct array_cache cache;
b28a02de 234 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
235};
236
e498be7d
CL
237/*
238 * Need this for bootstrapping a per node allocator.
239 */
bf0dea23 240#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 241static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 242#define CACHE_CACHE 0
bf0dea23 243#define SIZE_NODE (MAX_NUMNODES)
e498be7d 244
ed11d9eb 245static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 246 struct kmem_cache_node *n, int tofree);
ed11d9eb 247static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
248 int node, struct list_head *list);
249static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 250static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 251static void cache_reap(struct work_struct *unused);
ed11d9eb 252
e0a42726
IM
253static int slab_early_init = 1;
254
ce8eb6c4 255#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 256
ce8eb6c4 257static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
258{
259 INIT_LIST_HEAD(&parent->slabs_full);
260 INIT_LIST_HEAD(&parent->slabs_partial);
261 INIT_LIST_HEAD(&parent->slabs_free);
262 parent->shared = NULL;
263 parent->alien = NULL;
2e1217cf 264 parent->colour_next = 0;
e498be7d
CL
265 spin_lock_init(&parent->list_lock);
266 parent->free_objects = 0;
267 parent->free_touched = 0;
268}
269
a737b3e2
AM
270#define MAKE_LIST(cachep, listp, slab, nodeid) \
271 do { \
272 INIT_LIST_HEAD(listp); \
18bf8541 273 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
274 } while (0)
275
a737b3e2
AM
276#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
277 do { \
e498be7d
CL
278 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
279 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
281 } while (0)
1da177e4 282
1da177e4
LT
283#define CFLGS_OFF_SLAB (0x80000000UL)
284#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
285
286#define BATCHREFILL_LIMIT 16
a737b3e2
AM
287/*
288 * Optimization question: fewer reaps means less probability for unnessary
289 * cpucache drain/refill cycles.
1da177e4 290 *
dc6f3f27 291 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
292 * which could lock up otherwise freeable slabs.
293 */
5f0985bb
JZ
294#define REAPTIMEOUT_AC (2*HZ)
295#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
296
297#if STATS
298#define STATS_INC_ACTIVE(x) ((x)->num_active++)
299#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
300#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
301#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 302#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
303#define STATS_SET_HIGH(x) \
304 do { \
305 if ((x)->num_active > (x)->high_mark) \
306 (x)->high_mark = (x)->num_active; \
307 } while (0)
1da177e4
LT
308#define STATS_INC_ERR(x) ((x)->errors++)
309#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 310#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 311#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
312#define STATS_SET_FREEABLE(x, i) \
313 do { \
314 if ((x)->max_freeable < i) \
315 (x)->max_freeable = i; \
316 } while (0)
1da177e4
LT
317#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
318#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
319#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
320#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
321#else
322#define STATS_INC_ACTIVE(x) do { } while (0)
323#define STATS_DEC_ACTIVE(x) do { } while (0)
324#define STATS_INC_ALLOCED(x) do { } while (0)
325#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 326#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
327#define STATS_SET_HIGH(x) do { } while (0)
328#define STATS_INC_ERR(x) do { } while (0)
329#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 330#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 331#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 332#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
333#define STATS_INC_ALLOCHIT(x) do { } while (0)
334#define STATS_INC_ALLOCMISS(x) do { } while (0)
335#define STATS_INC_FREEHIT(x) do { } while (0)
336#define STATS_INC_FREEMISS(x) do { } while (0)
337#endif
338
339#if DEBUG
1da177e4 340
a737b3e2
AM
341/*
342 * memory layout of objects:
1da177e4 343 * 0 : objp
3dafccf2 344 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
345 * the end of an object is aligned with the end of the real
346 * allocation. Catches writes behind the end of the allocation.
3dafccf2 347 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 348 * redzone word.
3dafccf2 349 * cachep->obj_offset: The real object.
3b0efdfa
CL
350 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
351 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 352 * [BYTES_PER_WORD long]
1da177e4 353 */
343e0d7a 354static int obj_offset(struct kmem_cache *cachep)
1da177e4 355{
3dafccf2 356 return cachep->obj_offset;
1da177e4
LT
357}
358
b46b8f19 359static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
360{
361 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
362 return (unsigned long long*) (objp + obj_offset(cachep) -
363 sizeof(unsigned long long));
1da177e4
LT
364}
365
b46b8f19 366static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
367{
368 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
369 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 370 return (unsigned long long *)(objp + cachep->size -
b46b8f19 371 sizeof(unsigned long long) -
87a927c7 372 REDZONE_ALIGN);
3b0efdfa 373 return (unsigned long long *) (objp + cachep->size -
b46b8f19 374 sizeof(unsigned long long));
1da177e4
LT
375}
376
343e0d7a 377static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
378{
379 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 380 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
381}
382
383#else
384
3dafccf2 385#define obj_offset(x) 0
b46b8f19
DW
386#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
387#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
388#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
389
390#endif
391
03787301
JK
392#define OBJECT_FREE (0)
393#define OBJECT_ACTIVE (1)
394
395#ifdef CONFIG_DEBUG_SLAB_LEAK
396
397static void set_obj_status(struct page *page, int idx, int val)
398{
399 int freelist_size;
400 char *status;
401 struct kmem_cache *cachep = page->slab_cache;
402
403 freelist_size = cachep->num * sizeof(freelist_idx_t);
404 status = (char *)page->freelist + freelist_size;
405 status[idx] = val;
406}
407
408static inline unsigned int get_obj_status(struct page *page, int idx)
409{
410 int freelist_size;
411 char *status;
412 struct kmem_cache *cachep = page->slab_cache;
413
414 freelist_size = cachep->num * sizeof(freelist_idx_t);
415 status = (char *)page->freelist + freelist_size;
416
417 return status[idx];
418}
419
420#else
421static inline void set_obj_status(struct page *page, int idx, int val) {}
422
423#endif
424
1da177e4 425/*
3df1cccd
DR
426 * Do not go above this order unless 0 objects fit into the slab or
427 * overridden on the command line.
1da177e4 428 */
543585cc
DR
429#define SLAB_MAX_ORDER_HI 1
430#define SLAB_MAX_ORDER_LO 0
431static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 432static bool slab_max_order_set __initdata;
1da177e4 433
6ed5eb22
PE
434static inline struct kmem_cache *virt_to_cache(const void *obj)
435{
b49af68f 436 struct page *page = virt_to_head_page(obj);
35026088 437 return page->slab_cache;
6ed5eb22
PE
438}
439
8456a648 440static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
441 unsigned int idx)
442{
8456a648 443 return page->s_mem + cache->size * idx;
8fea4e96
PE
444}
445
6a2d7a95 446/*
3b0efdfa
CL
447 * We want to avoid an expensive divide : (offset / cache->size)
448 * Using the fact that size is a constant for a particular cache,
449 * we can replace (offset / cache->size) by
6a2d7a95
ED
450 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
451 */
452static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 453 const struct page *page, void *obj)
8fea4e96 454{
8456a648 455 u32 offset = (obj - page->s_mem);
6a2d7a95 456 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
457}
458
1da177e4 459/* internal cache of cache description objs */
9b030cb8 460static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
461 .batchcount = 1,
462 .limit = BOOT_CPUCACHE_ENTRIES,
463 .shared = 1,
3b0efdfa 464 .size = sizeof(struct kmem_cache),
b28a02de 465 .name = "kmem_cache",
1da177e4
LT
466};
467
edcad250
JK
468#define BAD_ALIEN_MAGIC 0x01020304ul
469
1871e52c 470static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 471
343e0d7a 472static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 473{
bf0dea23 474 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
475}
476
03787301
JK
477static size_t calculate_freelist_size(int nr_objs, size_t align)
478{
479 size_t freelist_size;
480
481 freelist_size = nr_objs * sizeof(freelist_idx_t);
482 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
483 freelist_size += nr_objs * sizeof(char);
484
485 if (align)
486 freelist_size = ALIGN(freelist_size, align);
487
488 return freelist_size;
489}
490
9cef2e2b
JK
491static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
492 size_t idx_size, size_t align)
1da177e4 493{
9cef2e2b 494 int nr_objs;
03787301 495 size_t remained_size;
9cef2e2b 496 size_t freelist_size;
03787301 497 int extra_space = 0;
9cef2e2b 498
03787301
JK
499 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
500 extra_space = sizeof(char);
9cef2e2b
JK
501 /*
502 * Ignore padding for the initial guess. The padding
503 * is at most @align-1 bytes, and @buffer_size is at
504 * least @align. In the worst case, this result will
505 * be one greater than the number of objects that fit
506 * into the memory allocation when taking the padding
507 * into account.
508 */
03787301 509 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
9cef2e2b
JK
510
511 /*
512 * This calculated number will be either the right
513 * amount, or one greater than what we want.
514 */
03787301
JK
515 remained_size = slab_size - nr_objs * buffer_size;
516 freelist_size = calculate_freelist_size(nr_objs, align);
517 if (remained_size < freelist_size)
9cef2e2b
JK
518 nr_objs--;
519
520 return nr_objs;
fbaccacf 521}
1da177e4 522
a737b3e2
AM
523/*
524 * Calculate the number of objects and left-over bytes for a given buffer size.
525 */
fbaccacf
SR
526static void cache_estimate(unsigned long gfporder, size_t buffer_size,
527 size_t align, int flags, size_t *left_over,
528 unsigned int *num)
529{
530 int nr_objs;
531 size_t mgmt_size;
532 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 533
fbaccacf
SR
534 /*
535 * The slab management structure can be either off the slab or
536 * on it. For the latter case, the memory allocated for a
537 * slab is used for:
538 *
16025177 539 * - One unsigned int for each object
fbaccacf
SR
540 * - Padding to respect alignment of @align
541 * - @buffer_size bytes for each object
542 *
543 * If the slab management structure is off the slab, then the
544 * alignment will already be calculated into the size. Because
545 * the slabs are all pages aligned, the objects will be at the
546 * correct alignment when allocated.
547 */
548 if (flags & CFLGS_OFF_SLAB) {
549 mgmt_size = 0;
550 nr_objs = slab_size / buffer_size;
551
fbaccacf 552 } else {
9cef2e2b 553 nr_objs = calculate_nr_objs(slab_size, buffer_size,
a41adfaa 554 sizeof(freelist_idx_t), align);
03787301 555 mgmt_size = calculate_freelist_size(nr_objs, align);
fbaccacf
SR
556 }
557 *num = nr_objs;
558 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
559}
560
f28510d3 561#if DEBUG
d40cee24 562#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 563
a737b3e2
AM
564static void __slab_error(const char *function, struct kmem_cache *cachep,
565 char *msg)
1da177e4
LT
566{
567 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 568 function, cachep->name, msg);
1da177e4 569 dump_stack();
373d4d09 570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 571}
f28510d3 572#endif
1da177e4 573
3395ee05
PM
574/*
575 * By default on NUMA we use alien caches to stage the freeing of
576 * objects allocated from other nodes. This causes massive memory
577 * inefficiencies when using fake NUMA setup to split memory into a
578 * large number of small nodes, so it can be disabled on the command
579 * line
580 */
581
582static int use_alien_caches __read_mostly = 1;
583static int __init noaliencache_setup(char *s)
584{
585 use_alien_caches = 0;
586 return 1;
587}
588__setup("noaliencache", noaliencache_setup);
589
3df1cccd
DR
590static int __init slab_max_order_setup(char *str)
591{
592 get_option(&str, &slab_max_order);
593 slab_max_order = slab_max_order < 0 ? 0 :
594 min(slab_max_order, MAX_ORDER - 1);
595 slab_max_order_set = true;
596
597 return 1;
598}
599__setup("slab_max_order=", slab_max_order_setup);
600
8fce4d8e
CL
601#ifdef CONFIG_NUMA
602/*
603 * Special reaping functions for NUMA systems called from cache_reap().
604 * These take care of doing round robin flushing of alien caches (containing
605 * objects freed on different nodes from which they were allocated) and the
606 * flushing of remote pcps by calling drain_node_pages.
607 */
1871e52c 608static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
609
610static void init_reap_node(int cpu)
611{
612 int node;
613
7d6e6d09 614 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 615 if (node == MAX_NUMNODES)
442295c9 616 node = first_node(node_online_map);
8fce4d8e 617
1871e52c 618 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
619}
620
621static void next_reap_node(void)
622{
909ea964 623 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 624
8fce4d8e
CL
625 node = next_node(node, node_online_map);
626 if (unlikely(node >= MAX_NUMNODES))
627 node = first_node(node_online_map);
909ea964 628 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
629}
630
631#else
632#define init_reap_node(cpu) do { } while (0)
633#define next_reap_node(void) do { } while (0)
634#endif
635
1da177e4
LT
636/*
637 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
638 * via the workqueue/eventd.
639 * Add the CPU number into the expiration time to minimize the possibility of
640 * the CPUs getting into lockstep and contending for the global cache chain
641 * lock.
642 */
0db0628d 643static void start_cpu_timer(int cpu)
1da177e4 644{
1871e52c 645 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
646
647 /*
648 * When this gets called from do_initcalls via cpucache_init(),
649 * init_workqueues() has already run, so keventd will be setup
650 * at that time.
651 */
52bad64d 652 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 653 init_reap_node(cpu);
203b42f7 654 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
655 schedule_delayed_work_on(cpu, reap_work,
656 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
657 }
658}
659
1fe00d50 660static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 661{
d5cff635
CM
662 /*
663 * The array_cache structures contain pointers to free object.
25985edc 664 * However, when such objects are allocated or transferred to another
d5cff635
CM
665 * cache the pointers are not cleared and they could be counted as
666 * valid references during a kmemleak scan. Therefore, kmemleak must
667 * not scan such objects.
668 */
1fe00d50
JK
669 kmemleak_no_scan(ac);
670 if (ac) {
671 ac->avail = 0;
672 ac->limit = limit;
673 ac->batchcount = batch;
674 ac->touched = 0;
1da177e4 675 }
1fe00d50
JK
676}
677
678static struct array_cache *alloc_arraycache(int node, int entries,
679 int batchcount, gfp_t gfp)
680{
5e804789 681 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
682 struct array_cache *ac = NULL;
683
684 ac = kmalloc_node(memsize, gfp, node);
685 init_arraycache(ac, entries, batchcount);
686 return ac;
1da177e4
LT
687}
688
8456a648 689static inline bool is_slab_pfmemalloc(struct page *page)
072bb0aa 690{
072bb0aa
MG
691 return PageSlabPfmemalloc(page);
692}
693
694/* Clears pfmemalloc_active if no slabs have pfmalloc set */
695static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
696 struct array_cache *ac)
697{
18bf8541 698 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
8456a648 699 struct page *page;
072bb0aa
MG
700 unsigned long flags;
701
702 if (!pfmemalloc_active)
703 return;
704
ce8eb6c4 705 spin_lock_irqsave(&n->list_lock, flags);
8456a648
JK
706 list_for_each_entry(page, &n->slabs_full, lru)
707 if (is_slab_pfmemalloc(page))
072bb0aa
MG
708 goto out;
709
8456a648
JK
710 list_for_each_entry(page, &n->slabs_partial, lru)
711 if (is_slab_pfmemalloc(page))
072bb0aa
MG
712 goto out;
713
8456a648
JK
714 list_for_each_entry(page, &n->slabs_free, lru)
715 if (is_slab_pfmemalloc(page))
072bb0aa
MG
716 goto out;
717
718 pfmemalloc_active = false;
719out:
ce8eb6c4 720 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
721}
722
381760ea 723static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
724 gfp_t flags, bool force_refill)
725{
726 int i;
727 void *objp = ac->entry[--ac->avail];
728
729 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
730 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 731 struct kmem_cache_node *n;
072bb0aa
MG
732
733 if (gfp_pfmemalloc_allowed(flags)) {
734 clear_obj_pfmemalloc(&objp);
735 return objp;
736 }
737
738 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 739 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
740 /* If a !PFMEMALLOC object is found, swap them */
741 if (!is_obj_pfmemalloc(ac->entry[i])) {
742 objp = ac->entry[i];
743 ac->entry[i] = ac->entry[ac->avail];
744 ac->entry[ac->avail] = objp;
745 return objp;
746 }
747 }
748
749 /*
750 * If there are empty slabs on the slabs_free list and we are
751 * being forced to refill the cache, mark this one !pfmemalloc.
752 */
18bf8541 753 n = get_node(cachep, numa_mem_id());
ce8eb6c4 754 if (!list_empty(&n->slabs_free) && force_refill) {
8456a648 755 struct page *page = virt_to_head_page(objp);
7ecccf9d 756 ClearPageSlabPfmemalloc(page);
072bb0aa
MG
757 clear_obj_pfmemalloc(&objp);
758 recheck_pfmemalloc_active(cachep, ac);
759 return objp;
760 }
761
762 /* No !PFMEMALLOC objects available */
763 ac->avail++;
764 objp = NULL;
765 }
766
767 return objp;
768}
769
381760ea
MG
770static inline void *ac_get_obj(struct kmem_cache *cachep,
771 struct array_cache *ac, gfp_t flags, bool force_refill)
772{
773 void *objp;
774
775 if (unlikely(sk_memalloc_socks()))
776 objp = __ac_get_obj(cachep, ac, flags, force_refill);
777 else
778 objp = ac->entry[--ac->avail];
779
780 return objp;
781}
782
d3aec344
JK
783static noinline void *__ac_put_obj(struct kmem_cache *cachep,
784 struct array_cache *ac, void *objp)
072bb0aa
MG
785{
786 if (unlikely(pfmemalloc_active)) {
787 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 788 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
789 if (PageSlabPfmemalloc(page))
790 set_obj_pfmemalloc(&objp);
791 }
792
381760ea
MG
793 return objp;
794}
795
796static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
797 void *objp)
798{
799 if (unlikely(sk_memalloc_socks()))
800 objp = __ac_put_obj(cachep, ac, objp);
801
072bb0aa
MG
802 ac->entry[ac->avail++] = objp;
803}
804
3ded175a
CL
805/*
806 * Transfer objects in one arraycache to another.
807 * Locking must be handled by the caller.
808 *
809 * Return the number of entries transferred.
810 */
811static int transfer_objects(struct array_cache *to,
812 struct array_cache *from, unsigned int max)
813{
814 /* Figure out how many entries to transfer */
732eacc0 815 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
816
817 if (!nr)
818 return 0;
819
820 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
821 sizeof(void *) *nr);
822
823 from->avail -= nr;
824 to->avail += nr;
3ded175a
CL
825 return nr;
826}
827
765c4507
CL
828#ifndef CONFIG_NUMA
829
830#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 831#define reap_alien(cachep, n) do { } while (0)
765c4507 832
c8522a3a
JK
833static inline struct alien_cache **alloc_alien_cache(int node,
834 int limit, gfp_t gfp)
765c4507 835{
edcad250 836 return (struct alien_cache **)BAD_ALIEN_MAGIC;
765c4507
CL
837}
838
c8522a3a 839static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
840{
841}
842
843static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
844{
845 return 0;
846}
847
848static inline void *alternate_node_alloc(struct kmem_cache *cachep,
849 gfp_t flags)
850{
851 return NULL;
852}
853
8b98c169 854static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
855 gfp_t flags, int nodeid)
856{
857 return NULL;
858}
859
860#else /* CONFIG_NUMA */
861
8b98c169 862static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 863static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 864
c8522a3a
JK
865static struct alien_cache *__alloc_alien_cache(int node, int entries,
866 int batch, gfp_t gfp)
867{
5e804789 868 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
869 struct alien_cache *alc = NULL;
870
871 alc = kmalloc_node(memsize, gfp, node);
872 init_arraycache(&alc->ac, entries, batch);
49dfc304 873 spin_lock_init(&alc->lock);
c8522a3a
JK
874 return alc;
875}
876
877static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 878{
c8522a3a 879 struct alien_cache **alc_ptr;
5e804789 880 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
881 int i;
882
883 if (limit > 1)
884 limit = 12;
c8522a3a
JK
885 alc_ptr = kzalloc_node(memsize, gfp, node);
886 if (!alc_ptr)
887 return NULL;
888
889 for_each_node(i) {
890 if (i == node || !node_online(i))
891 continue;
892 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
893 if (!alc_ptr[i]) {
894 for (i--; i >= 0; i--)
895 kfree(alc_ptr[i]);
896 kfree(alc_ptr);
897 return NULL;
e498be7d
CL
898 }
899 }
c8522a3a 900 return alc_ptr;
e498be7d
CL
901}
902
c8522a3a 903static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
904{
905 int i;
906
c8522a3a 907 if (!alc_ptr)
e498be7d 908 return;
e498be7d 909 for_each_node(i)
c8522a3a
JK
910 kfree(alc_ptr[i]);
911 kfree(alc_ptr);
e498be7d
CL
912}
913
343e0d7a 914static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
915 struct array_cache *ac, int node,
916 struct list_head *list)
e498be7d 917{
18bf8541 918 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
919
920 if (ac->avail) {
ce8eb6c4 921 spin_lock(&n->list_lock);
e00946fe
CL
922 /*
923 * Stuff objects into the remote nodes shared array first.
924 * That way we could avoid the overhead of putting the objects
925 * into the free lists and getting them back later.
926 */
ce8eb6c4
CL
927 if (n->shared)
928 transfer_objects(n->shared, ac, ac->limit);
e00946fe 929
833b706c 930 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 931 ac->avail = 0;
ce8eb6c4 932 spin_unlock(&n->list_lock);
e498be7d
CL
933 }
934}
935
8fce4d8e
CL
936/*
937 * Called from cache_reap() to regularly drain alien caches round robin.
938 */
ce8eb6c4 939static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 940{
909ea964 941 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 942
ce8eb6c4 943 if (n->alien) {
c8522a3a
JK
944 struct alien_cache *alc = n->alien[node];
945 struct array_cache *ac;
946
947 if (alc) {
948 ac = &alc->ac;
49dfc304 949 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
950 LIST_HEAD(list);
951
952 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 953 spin_unlock_irq(&alc->lock);
833b706c 954 slabs_destroy(cachep, &list);
c8522a3a 955 }
8fce4d8e
CL
956 }
957 }
958}
959
a737b3e2 960static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 961 struct alien_cache **alien)
e498be7d 962{
b28a02de 963 int i = 0;
c8522a3a 964 struct alien_cache *alc;
e498be7d
CL
965 struct array_cache *ac;
966 unsigned long flags;
967
968 for_each_online_node(i) {
c8522a3a
JK
969 alc = alien[i];
970 if (alc) {
833b706c
JK
971 LIST_HEAD(list);
972
c8522a3a 973 ac = &alc->ac;
49dfc304 974 spin_lock_irqsave(&alc->lock, flags);
833b706c 975 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 976 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 977 slabs_destroy(cachep, &list);
e498be7d
CL
978 }
979 }
980}
729bd0b7 981
25c4f304
JK
982static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
983 int node, int page_node)
729bd0b7 984{
ce8eb6c4 985 struct kmem_cache_node *n;
c8522a3a
JK
986 struct alien_cache *alien = NULL;
987 struct array_cache *ac;
97654dfa 988 LIST_HEAD(list);
1ca4cb24 989
18bf8541 990 n = get_node(cachep, node);
729bd0b7 991 STATS_INC_NODEFREES(cachep);
25c4f304
JK
992 if (n->alien && n->alien[page_node]) {
993 alien = n->alien[page_node];
c8522a3a 994 ac = &alien->ac;
49dfc304 995 spin_lock(&alien->lock);
c8522a3a 996 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 997 STATS_INC_ACOVERFLOW(cachep);
25c4f304 998 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 999 }
c8522a3a 1000 ac_put_obj(cachep, ac, objp);
49dfc304 1001 spin_unlock(&alien->lock);
833b706c 1002 slabs_destroy(cachep, &list);
729bd0b7 1003 } else {
25c4f304 1004 n = get_node(cachep, page_node);
18bf8541 1005 spin_lock(&n->list_lock);
25c4f304 1006 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 1007 spin_unlock(&n->list_lock);
97654dfa 1008 slabs_destroy(cachep, &list);
729bd0b7
PE
1009 }
1010 return 1;
1011}
25c4f304
JK
1012
1013static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1014{
1015 int page_node = page_to_nid(virt_to_page(objp));
1016 int node = numa_mem_id();
1017 /*
1018 * Make sure we are not freeing a object from another node to the array
1019 * cache on this cpu.
1020 */
1021 if (likely(node == page_node))
1022 return 0;
1023
1024 return __cache_free_alien(cachep, objp, node, page_node);
1025}
e498be7d
CL
1026#endif
1027
8f9f8d9e 1028/*
6a67368c 1029 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1030 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1031 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1032 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1033 * already in use.
1034 *
18004c5d 1035 * Must hold slab_mutex.
8f9f8d9e 1036 */
6a67368c 1037static int init_cache_node_node(int node)
8f9f8d9e
DR
1038{
1039 struct kmem_cache *cachep;
ce8eb6c4 1040 struct kmem_cache_node *n;
5e804789 1041 const size_t memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1042
18004c5d 1043 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e 1044 /*
5f0985bb 1045 * Set up the kmem_cache_node for cpu before we can
8f9f8d9e
DR
1046 * begin anything. Make sure some other cpu on this
1047 * node has not already allocated this
1048 */
18bf8541
CL
1049 n = get_node(cachep, node);
1050 if (!n) {
ce8eb6c4
CL
1051 n = kmalloc_node(memsize, GFP_KERNEL, node);
1052 if (!n)
8f9f8d9e 1053 return -ENOMEM;
ce8eb6c4 1054 kmem_cache_node_init(n);
5f0985bb
JZ
1055 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1056 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
8f9f8d9e
DR
1057
1058 /*
5f0985bb
JZ
1059 * The kmem_cache_nodes don't come and go as CPUs
1060 * come and go. slab_mutex is sufficient
8f9f8d9e
DR
1061 * protection here.
1062 */
ce8eb6c4 1063 cachep->node[node] = n;
8f9f8d9e
DR
1064 }
1065
18bf8541
CL
1066 spin_lock_irq(&n->list_lock);
1067 n->free_limit =
8f9f8d9e
DR
1068 (1 + nr_cpus_node(node)) *
1069 cachep->batchcount + cachep->num;
18bf8541 1070 spin_unlock_irq(&n->list_lock);
8f9f8d9e
DR
1071 }
1072 return 0;
1073}
1074
0fa8103b
WL
1075static inline int slabs_tofree(struct kmem_cache *cachep,
1076 struct kmem_cache_node *n)
1077{
1078 return (n->free_objects + cachep->num - 1) / cachep->num;
1079}
1080
0db0628d 1081static void cpuup_canceled(long cpu)
fbf1e473
AM
1082{
1083 struct kmem_cache *cachep;
ce8eb6c4 1084 struct kmem_cache_node *n = NULL;
7d6e6d09 1085 int node = cpu_to_mem(cpu);
a70f7302 1086 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1087
18004c5d 1088 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1089 struct array_cache *nc;
1090 struct array_cache *shared;
c8522a3a 1091 struct alien_cache **alien;
97654dfa 1092 LIST_HEAD(list);
fbf1e473 1093
18bf8541 1094 n = get_node(cachep, node);
ce8eb6c4 1095 if (!n)
bf0dea23 1096 continue;
fbf1e473 1097
ce8eb6c4 1098 spin_lock_irq(&n->list_lock);
fbf1e473 1099
ce8eb6c4
CL
1100 /* Free limit for this kmem_cache_node */
1101 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1102
1103 /* cpu is dead; no one can alloc from it. */
1104 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1105 if (nc) {
97654dfa 1106 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1107 nc->avail = 0;
1108 }
fbf1e473 1109
58463c1f 1110 if (!cpumask_empty(mask)) {
ce8eb6c4 1111 spin_unlock_irq(&n->list_lock);
bf0dea23 1112 goto free_slab;
fbf1e473
AM
1113 }
1114
ce8eb6c4 1115 shared = n->shared;
fbf1e473
AM
1116 if (shared) {
1117 free_block(cachep, shared->entry,
97654dfa 1118 shared->avail, node, &list);
ce8eb6c4 1119 n->shared = NULL;
fbf1e473
AM
1120 }
1121
ce8eb6c4
CL
1122 alien = n->alien;
1123 n->alien = NULL;
fbf1e473 1124
ce8eb6c4 1125 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1126
1127 kfree(shared);
1128 if (alien) {
1129 drain_alien_cache(cachep, alien);
1130 free_alien_cache(alien);
1131 }
bf0dea23
JK
1132
1133free_slab:
97654dfa 1134 slabs_destroy(cachep, &list);
fbf1e473
AM
1135 }
1136 /*
1137 * In the previous loop, all the objects were freed to
1138 * the respective cache's slabs, now we can go ahead and
1139 * shrink each nodelist to its limit.
1140 */
18004c5d 1141 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1142 n = get_node(cachep, node);
ce8eb6c4 1143 if (!n)
fbf1e473 1144 continue;
0fa8103b 1145 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1146 }
1147}
1148
0db0628d 1149static int cpuup_prepare(long cpu)
1da177e4 1150{
343e0d7a 1151 struct kmem_cache *cachep;
ce8eb6c4 1152 struct kmem_cache_node *n = NULL;
7d6e6d09 1153 int node = cpu_to_mem(cpu);
8f9f8d9e 1154 int err;
1da177e4 1155
fbf1e473
AM
1156 /*
1157 * We need to do this right in the beginning since
1158 * alloc_arraycache's are going to use this list.
1159 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1160 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1161 */
6a67368c 1162 err = init_cache_node_node(node);
8f9f8d9e
DR
1163 if (err < 0)
1164 goto bad;
fbf1e473
AM
1165
1166 /*
1167 * Now we can go ahead with allocating the shared arrays and
1168 * array caches
1169 */
18004c5d 1170 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473 1171 struct array_cache *shared = NULL;
c8522a3a 1172 struct alien_cache **alien = NULL;
fbf1e473 1173
fbf1e473
AM
1174 if (cachep->shared) {
1175 shared = alloc_arraycache(node,
1176 cachep->shared * cachep->batchcount,
83b519e8 1177 0xbaadf00d, GFP_KERNEL);
bf0dea23 1178 if (!shared)
1da177e4 1179 goto bad;
fbf1e473
AM
1180 }
1181 if (use_alien_caches) {
83b519e8 1182 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1183 if (!alien) {
1184 kfree(shared);
fbf1e473 1185 goto bad;
12d00f6a 1186 }
fbf1e473 1187 }
18bf8541 1188 n = get_node(cachep, node);
ce8eb6c4 1189 BUG_ON(!n);
fbf1e473 1190
ce8eb6c4
CL
1191 spin_lock_irq(&n->list_lock);
1192 if (!n->shared) {
fbf1e473
AM
1193 /*
1194 * We are serialised from CPU_DEAD or
1195 * CPU_UP_CANCELLED by the cpucontrol lock
1196 */
ce8eb6c4 1197 n->shared = shared;
fbf1e473
AM
1198 shared = NULL;
1199 }
4484ebf1 1200#ifdef CONFIG_NUMA
ce8eb6c4
CL
1201 if (!n->alien) {
1202 n->alien = alien;
fbf1e473 1203 alien = NULL;
1da177e4 1204 }
fbf1e473 1205#endif
ce8eb6c4 1206 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1207 kfree(shared);
1208 free_alien_cache(alien);
1209 }
ce79ddc8 1210
fbf1e473
AM
1211 return 0;
1212bad:
12d00f6a 1213 cpuup_canceled(cpu);
fbf1e473
AM
1214 return -ENOMEM;
1215}
1216
0db0628d 1217static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1218 unsigned long action, void *hcpu)
1219{
1220 long cpu = (long)hcpu;
1221 int err = 0;
1222
1223 switch (action) {
fbf1e473
AM
1224 case CPU_UP_PREPARE:
1225 case CPU_UP_PREPARE_FROZEN:
18004c5d 1226 mutex_lock(&slab_mutex);
fbf1e473 1227 err = cpuup_prepare(cpu);
18004c5d 1228 mutex_unlock(&slab_mutex);
1da177e4
LT
1229 break;
1230 case CPU_ONLINE:
8bb78442 1231 case CPU_ONLINE_FROZEN:
1da177e4
LT
1232 start_cpu_timer(cpu);
1233 break;
1234#ifdef CONFIG_HOTPLUG_CPU
5830c590 1235 case CPU_DOWN_PREPARE:
8bb78442 1236 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1237 /*
18004c5d 1238 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1239 * held so that if cache_reap() is invoked it cannot do
1240 * anything expensive but will only modify reap_work
1241 * and reschedule the timer.
1242 */
afe2c511 1243 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1244 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1245 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1246 break;
1247 case CPU_DOWN_FAILED:
8bb78442 1248 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1249 start_cpu_timer(cpu);
1250 break;
1da177e4 1251 case CPU_DEAD:
8bb78442 1252 case CPU_DEAD_FROZEN:
4484ebf1
RT
1253 /*
1254 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1255 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1256 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1257 * memory from the node of the cpu going down. The node
4484ebf1
RT
1258 * structure is usually allocated from kmem_cache_create() and
1259 * gets destroyed at kmem_cache_destroy().
1260 */
183ff22b 1261 /* fall through */
8f5be20b 1262#endif
1da177e4 1263 case CPU_UP_CANCELED:
8bb78442 1264 case CPU_UP_CANCELED_FROZEN:
18004c5d 1265 mutex_lock(&slab_mutex);
fbf1e473 1266 cpuup_canceled(cpu);
18004c5d 1267 mutex_unlock(&slab_mutex);
1da177e4 1268 break;
1da177e4 1269 }
eac40680 1270 return notifier_from_errno(err);
1da177e4
LT
1271}
1272
0db0628d 1273static struct notifier_block cpucache_notifier = {
74b85f37
CS
1274 &cpuup_callback, NULL, 0
1275};
1da177e4 1276
8f9f8d9e
DR
1277#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1278/*
1279 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1280 * Returns -EBUSY if all objects cannot be drained so that the node is not
1281 * removed.
1282 *
18004c5d 1283 * Must hold slab_mutex.
8f9f8d9e 1284 */
6a67368c 1285static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1286{
1287 struct kmem_cache *cachep;
1288 int ret = 0;
1289
18004c5d 1290 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1291 struct kmem_cache_node *n;
8f9f8d9e 1292
18bf8541 1293 n = get_node(cachep, node);
ce8eb6c4 1294 if (!n)
8f9f8d9e
DR
1295 continue;
1296
0fa8103b 1297 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1298
ce8eb6c4
CL
1299 if (!list_empty(&n->slabs_full) ||
1300 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1301 ret = -EBUSY;
1302 break;
1303 }
1304 }
1305 return ret;
1306}
1307
1308static int __meminit slab_memory_callback(struct notifier_block *self,
1309 unsigned long action, void *arg)
1310{
1311 struct memory_notify *mnb = arg;
1312 int ret = 0;
1313 int nid;
1314
1315 nid = mnb->status_change_nid;
1316 if (nid < 0)
1317 goto out;
1318
1319 switch (action) {
1320 case MEM_GOING_ONLINE:
18004c5d 1321 mutex_lock(&slab_mutex);
6a67368c 1322 ret = init_cache_node_node(nid);
18004c5d 1323 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1324 break;
1325 case MEM_GOING_OFFLINE:
18004c5d 1326 mutex_lock(&slab_mutex);
6a67368c 1327 ret = drain_cache_node_node(nid);
18004c5d 1328 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1329 break;
1330 case MEM_ONLINE:
1331 case MEM_OFFLINE:
1332 case MEM_CANCEL_ONLINE:
1333 case MEM_CANCEL_OFFLINE:
1334 break;
1335 }
1336out:
5fda1bd5 1337 return notifier_from_errno(ret);
8f9f8d9e
DR
1338}
1339#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1340
e498be7d 1341/*
ce8eb6c4 1342 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1343 */
6744f087 1344static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1345 int nodeid)
e498be7d 1346{
6744f087 1347 struct kmem_cache_node *ptr;
e498be7d 1348
6744f087 1349 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1350 BUG_ON(!ptr);
1351
6744f087 1352 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1353 /*
1354 * Do not assume that spinlocks can be initialized via memcpy:
1355 */
1356 spin_lock_init(&ptr->list_lock);
1357
e498be7d 1358 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1359 cachep->node[nodeid] = ptr;
e498be7d
CL
1360}
1361
556a169d 1362/*
ce8eb6c4
CL
1363 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1364 * size of kmem_cache_node.
556a169d 1365 */
ce8eb6c4 1366static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1367{
1368 int node;
1369
1370 for_each_online_node(node) {
ce8eb6c4 1371 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1372 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1373 REAPTIMEOUT_NODE +
1374 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1375 }
1376}
1377
a737b3e2
AM
1378/*
1379 * Initialisation. Called after the page allocator have been initialised and
1380 * before smp_init().
1da177e4
LT
1381 */
1382void __init kmem_cache_init(void)
1383{
e498be7d
CL
1384 int i;
1385
68126702
JK
1386 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1387 sizeof(struct rcu_head));
9b030cb8
CL
1388 kmem_cache = &kmem_cache_boot;
1389
b6e68bc1 1390 if (num_possible_nodes() == 1)
62918a03
SS
1391 use_alien_caches = 0;
1392
3c583465 1393 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1394 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1395
1da177e4
LT
1396 /*
1397 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1398 * page orders on machines with more than 32MB of memory if
1399 * not overridden on the command line.
1da177e4 1400 */
3df1cccd 1401 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1402 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1403
1da177e4
LT
1404 /* Bootstrap is tricky, because several objects are allocated
1405 * from caches that do not exist yet:
9b030cb8
CL
1406 * 1) initialize the kmem_cache cache: it contains the struct
1407 * kmem_cache structures of all caches, except kmem_cache itself:
1408 * kmem_cache is statically allocated.
e498be7d 1409 * Initially an __init data area is used for the head array and the
ce8eb6c4 1410 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1411 * array at the end of the bootstrap.
1da177e4 1412 * 2) Create the first kmalloc cache.
343e0d7a 1413 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1414 * An __init data area is used for the head array.
1415 * 3) Create the remaining kmalloc caches, with minimally sized
1416 * head arrays.
9b030cb8 1417 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1418 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1419 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1420 * the other cache's with kmalloc allocated memory.
1421 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1422 */
1423
9b030cb8 1424 /* 1) create the kmem_cache */
1da177e4 1425
8da3430d 1426 /*
b56efcf0 1427 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1428 */
2f9baa9f 1429 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1430 offsetof(struct kmem_cache, node) +
6744f087 1431 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1432 SLAB_HWCACHE_ALIGN);
1433 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1434 slab_state = PARTIAL;
1da177e4 1435
a737b3e2 1436 /*
bf0dea23
JK
1437 * Initialize the caches that provide memory for the kmem_cache_node
1438 * structures first. Without this, further allocations will bug.
e498be7d 1439 */
bf0dea23 1440 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1441 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1442 slab_state = PARTIAL_NODE;
e498be7d 1443
e0a42726
IM
1444 slab_early_init = 0;
1445
ce8eb6c4 1446 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1447 {
1ca4cb24
PE
1448 int nid;
1449
9c09a95c 1450 for_each_online_node(nid) {
ce8eb6c4 1451 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1452
bf0dea23 1453 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1454 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1455 }
1456 }
1da177e4 1457
f97d5f63 1458 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1459}
1460
1461void __init kmem_cache_init_late(void)
1462{
1463 struct kmem_cache *cachep;
1464
97d06609 1465 slab_state = UP;
52cef189 1466
8429db5c 1467 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1468 mutex_lock(&slab_mutex);
1469 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1470 if (enable_cpucache(cachep, GFP_NOWAIT))
1471 BUG();
18004c5d 1472 mutex_unlock(&slab_mutex);
056c6241 1473
97d06609
CL
1474 /* Done! */
1475 slab_state = FULL;
1476
a737b3e2
AM
1477 /*
1478 * Register a cpu startup notifier callback that initializes
1479 * cpu_cache_get for all new cpus
1da177e4
LT
1480 */
1481 register_cpu_notifier(&cpucache_notifier);
1da177e4 1482
8f9f8d9e
DR
1483#ifdef CONFIG_NUMA
1484 /*
1485 * Register a memory hotplug callback that initializes and frees
6a67368c 1486 * node.
8f9f8d9e
DR
1487 */
1488 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1489#endif
1490
a737b3e2
AM
1491 /*
1492 * The reap timers are started later, with a module init call: That part
1493 * of the kernel is not yet operational.
1da177e4
LT
1494 */
1495}
1496
1497static int __init cpucache_init(void)
1498{
1499 int cpu;
1500
a737b3e2
AM
1501 /*
1502 * Register the timers that return unneeded pages to the page allocator
1da177e4 1503 */
e498be7d 1504 for_each_online_cpu(cpu)
a737b3e2 1505 start_cpu_timer(cpu);
a164f896
GC
1506
1507 /* Done! */
97d06609 1508 slab_state = FULL;
1da177e4
LT
1509 return 0;
1510}
1da177e4
LT
1511__initcall(cpucache_init);
1512
8bdec192
RA
1513static noinline void
1514slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1515{
9a02d699 1516#if DEBUG
ce8eb6c4 1517 struct kmem_cache_node *n;
8456a648 1518 struct page *page;
8bdec192
RA
1519 unsigned long flags;
1520 int node;
9a02d699
DR
1521 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1522 DEFAULT_RATELIMIT_BURST);
1523
1524 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1525 return;
8bdec192
RA
1526
1527 printk(KERN_WARNING
1528 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1529 nodeid, gfpflags);
1530 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1531 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1532
18bf8541 1533 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1534 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1535 unsigned long active_slabs = 0, num_slabs = 0;
1536
ce8eb6c4 1537 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1538 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1539 active_objs += cachep->num;
1540 active_slabs++;
1541 }
8456a648
JK
1542 list_for_each_entry(page, &n->slabs_partial, lru) {
1543 active_objs += page->active;
8bdec192
RA
1544 active_slabs++;
1545 }
8456a648 1546 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1547 num_slabs++;
1548
ce8eb6c4
CL
1549 free_objects += n->free_objects;
1550 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1551
1552 num_slabs += active_slabs;
1553 num_objs = num_slabs * cachep->num;
1554 printk(KERN_WARNING
1555 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1556 node, active_slabs, num_slabs, active_objs, num_objs,
1557 free_objects);
1558 }
9a02d699 1559#endif
8bdec192
RA
1560}
1561
1da177e4 1562/*
8a7d9b43
WSH
1563 * Interface to system's page allocator. No need to hold the
1564 * kmem_cache_node ->list_lock.
1da177e4
LT
1565 *
1566 * If we requested dmaable memory, we will get it. Even if we
1567 * did not request dmaable memory, we might get it, but that
1568 * would be relatively rare and ignorable.
1569 */
0c3aa83e
JK
1570static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1571 int nodeid)
1da177e4
LT
1572{
1573 struct page *page;
e1b6aa6f 1574 int nr_pages;
765c4507 1575
a618e89f 1576 flags |= cachep->allocflags;
e12ba74d
MG
1577 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1578 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1579
5dfb4175
VD
1580 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1581 return NULL;
1582
517d0869 1583 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1584 if (!page) {
5dfb4175 1585 memcg_uncharge_slab(cachep, cachep->gfporder);
9a02d699 1586 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1587 return NULL;
8bdec192 1588 }
1da177e4 1589
b37f1dd0 1590 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1591 if (unlikely(page->pfmemalloc))
1592 pfmemalloc_active = true;
1593
e1b6aa6f 1594 nr_pages = (1 << cachep->gfporder);
1da177e4 1595 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1596 add_zone_page_state(page_zone(page),
1597 NR_SLAB_RECLAIMABLE, nr_pages);
1598 else
1599 add_zone_page_state(page_zone(page),
1600 NR_SLAB_UNRECLAIMABLE, nr_pages);
a57a4988
JK
1601 __SetPageSlab(page);
1602 if (page->pfmemalloc)
1603 SetPageSlabPfmemalloc(page);
072bb0aa 1604
b1eeab67
VN
1605 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1606 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1607
1608 if (cachep->ctor)
1609 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1610 else
1611 kmemcheck_mark_unallocated_pages(page, nr_pages);
1612 }
c175eea4 1613
0c3aa83e 1614 return page;
1da177e4
LT
1615}
1616
1617/*
1618 * Interface to system's page release.
1619 */
0c3aa83e 1620static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1621{
a57a4988 1622 const unsigned long nr_freed = (1 << cachep->gfporder);
1da177e4 1623
b1eeab67 1624 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1625
972d1a7b
CL
1626 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1627 sub_zone_page_state(page_zone(page),
1628 NR_SLAB_RECLAIMABLE, nr_freed);
1629 else
1630 sub_zone_page_state(page_zone(page),
1631 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1632
a57a4988 1633 BUG_ON(!PageSlab(page));
73293c2f 1634 __ClearPageSlabPfmemalloc(page);
a57a4988 1635 __ClearPageSlab(page);
8456a648
JK
1636 page_mapcount_reset(page);
1637 page->mapping = NULL;
1f458cbf 1638
1da177e4
LT
1639 if (current->reclaim_state)
1640 current->reclaim_state->reclaimed_slab += nr_freed;
5dfb4175
VD
1641 __free_pages(page, cachep->gfporder);
1642 memcg_uncharge_slab(cachep, cachep->gfporder);
1da177e4
LT
1643}
1644
1645static void kmem_rcu_free(struct rcu_head *head)
1646{
68126702
JK
1647 struct kmem_cache *cachep;
1648 struct page *page;
1da177e4 1649
68126702
JK
1650 page = container_of(head, struct page, rcu_head);
1651 cachep = page->slab_cache;
1652
1653 kmem_freepages(cachep, page);
1da177e4
LT
1654}
1655
1656#if DEBUG
1657
1658#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1659static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1660 unsigned long caller)
1da177e4 1661{
8c138bc0 1662 int size = cachep->object_size;
1da177e4 1663
3dafccf2 1664 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1665
b28a02de 1666 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1667 return;
1668
b28a02de
PE
1669 *addr++ = 0x12345678;
1670 *addr++ = caller;
1671 *addr++ = smp_processor_id();
1672 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1673 {
1674 unsigned long *sptr = &caller;
1675 unsigned long svalue;
1676
1677 while (!kstack_end(sptr)) {
1678 svalue = *sptr++;
1679 if (kernel_text_address(svalue)) {
b28a02de 1680 *addr++ = svalue;
1da177e4
LT
1681 size -= sizeof(unsigned long);
1682 if (size <= sizeof(unsigned long))
1683 break;
1684 }
1685 }
1686
1687 }
b28a02de 1688 *addr++ = 0x87654321;
1da177e4
LT
1689}
1690#endif
1691
343e0d7a 1692static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1693{
8c138bc0 1694 int size = cachep->object_size;
3dafccf2 1695 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1696
1697 memset(addr, val, size);
b28a02de 1698 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1699}
1700
1701static void dump_line(char *data, int offset, int limit)
1702{
1703 int i;
aa83aa40
DJ
1704 unsigned char error = 0;
1705 int bad_count = 0;
1706
fdde6abb 1707 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1708 for (i = 0; i < limit; i++) {
1709 if (data[offset + i] != POISON_FREE) {
1710 error = data[offset + i];
1711 bad_count++;
1712 }
aa83aa40 1713 }
fdde6abb
SAS
1714 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1715 &data[offset], limit, 1);
aa83aa40
DJ
1716
1717 if (bad_count == 1) {
1718 error ^= POISON_FREE;
1719 if (!(error & (error - 1))) {
1720 printk(KERN_ERR "Single bit error detected. Probably "
1721 "bad RAM.\n");
1722#ifdef CONFIG_X86
1723 printk(KERN_ERR "Run memtest86+ or a similar memory "
1724 "test tool.\n");
1725#else
1726 printk(KERN_ERR "Run a memory test tool.\n");
1727#endif
1728 }
1729 }
1da177e4
LT
1730}
1731#endif
1732
1733#if DEBUG
1734
343e0d7a 1735static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1736{
1737 int i, size;
1738 char *realobj;
1739
1740 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1741 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1742 *dbg_redzone1(cachep, objp),
1743 *dbg_redzone2(cachep, objp));
1da177e4
LT
1744 }
1745
1746 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1747 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1748 *dbg_userword(cachep, objp),
1749 *dbg_userword(cachep, objp));
1da177e4 1750 }
3dafccf2 1751 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1752 size = cachep->object_size;
b28a02de 1753 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1754 int limit;
1755 limit = 16;
b28a02de
PE
1756 if (i + limit > size)
1757 limit = size - i;
1da177e4
LT
1758 dump_line(realobj, i, limit);
1759 }
1760}
1761
343e0d7a 1762static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1763{
1764 char *realobj;
1765 int size, i;
1766 int lines = 0;
1767
3dafccf2 1768 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1769 size = cachep->object_size;
1da177e4 1770
b28a02de 1771 for (i = 0; i < size; i++) {
1da177e4 1772 char exp = POISON_FREE;
b28a02de 1773 if (i == size - 1)
1da177e4
LT
1774 exp = POISON_END;
1775 if (realobj[i] != exp) {
1776 int limit;
1777 /* Mismatch ! */
1778 /* Print header */
1779 if (lines == 0) {
b28a02de 1780 printk(KERN_ERR
face37f5
DJ
1781 "Slab corruption (%s): %s start=%p, len=%d\n",
1782 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1783 print_objinfo(cachep, objp, 0);
1784 }
1785 /* Hexdump the affected line */
b28a02de 1786 i = (i / 16) * 16;
1da177e4 1787 limit = 16;
b28a02de
PE
1788 if (i + limit > size)
1789 limit = size - i;
1da177e4
LT
1790 dump_line(realobj, i, limit);
1791 i += 16;
1792 lines++;
1793 /* Limit to 5 lines */
1794 if (lines > 5)
1795 break;
1796 }
1797 }
1798 if (lines != 0) {
1799 /* Print some data about the neighboring objects, if they
1800 * exist:
1801 */
8456a648 1802 struct page *page = virt_to_head_page(objp);
8fea4e96 1803 unsigned int objnr;
1da177e4 1804
8456a648 1805 objnr = obj_to_index(cachep, page, objp);
1da177e4 1806 if (objnr) {
8456a648 1807 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1808 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1809 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1810 realobj, size);
1da177e4
LT
1811 print_objinfo(cachep, objp, 2);
1812 }
b28a02de 1813 if (objnr + 1 < cachep->num) {
8456a648 1814 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1815 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1816 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1817 realobj, size);
1da177e4
LT
1818 print_objinfo(cachep, objp, 2);
1819 }
1820 }
1821}
1822#endif
1823
12dd36fa 1824#if DEBUG
8456a648
JK
1825static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1826 struct page *page)
1da177e4 1827{
1da177e4
LT
1828 int i;
1829 for (i = 0; i < cachep->num; i++) {
8456a648 1830 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1831
1832 if (cachep->flags & SLAB_POISON) {
1833#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 1834 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 1835 OFF_SLAB(cachep))
b28a02de 1836 kernel_map_pages(virt_to_page(objp),
3b0efdfa 1837 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
1838 else
1839 check_poison_obj(cachep, objp);
1840#else
1841 check_poison_obj(cachep, objp);
1842#endif
1843 }
1844 if (cachep->flags & SLAB_RED_ZONE) {
1845 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1846 slab_error(cachep, "start of a freed object "
b28a02de 1847 "was overwritten");
1da177e4
LT
1848 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1849 slab_error(cachep, "end of a freed object "
b28a02de 1850 "was overwritten");
1da177e4 1851 }
1da177e4 1852 }
12dd36fa 1853}
1da177e4 1854#else
8456a648
JK
1855static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1856 struct page *page)
12dd36fa 1857{
12dd36fa 1858}
1da177e4
LT
1859#endif
1860
911851e6
RD
1861/**
1862 * slab_destroy - destroy and release all objects in a slab
1863 * @cachep: cache pointer being destroyed
cb8ee1a3 1864 * @page: page pointer being destroyed
911851e6 1865 *
8a7d9b43
WSH
1866 * Destroy all the objs in a slab page, and release the mem back to the system.
1867 * Before calling the slab page must have been unlinked from the cache. The
1868 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1869 */
8456a648 1870static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1871{
7e007355 1872 void *freelist;
12dd36fa 1873
8456a648
JK
1874 freelist = page->freelist;
1875 slab_destroy_debugcheck(cachep, page);
1da177e4 1876 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
68126702
JK
1877 struct rcu_head *head;
1878
1879 /*
1880 * RCU free overloads the RCU head over the LRU.
1881 * slab_page has been overloeaded over the LRU,
1882 * however it is not used from now on so that
1883 * we can use it safely.
1884 */
1885 head = (void *)&page->rcu_head;
1886 call_rcu(head, kmem_rcu_free);
1da177e4 1887
1da177e4 1888 } else {
0c3aa83e 1889 kmem_freepages(cachep, page);
1da177e4 1890 }
68126702
JK
1891
1892 /*
8456a648 1893 * From now on, we don't use freelist
68126702
JK
1894 * although actual page can be freed in rcu context
1895 */
1896 if (OFF_SLAB(cachep))
8456a648 1897 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1898}
1899
97654dfa
JK
1900static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1901{
1902 struct page *page, *n;
1903
1904 list_for_each_entry_safe(page, n, list, lru) {
1905 list_del(&page->lru);
1906 slab_destroy(cachep, page);
1907 }
1908}
1909
4d268eba 1910/**
a70773dd
RD
1911 * calculate_slab_order - calculate size (page order) of slabs
1912 * @cachep: pointer to the cache that is being created
1913 * @size: size of objects to be created in this cache.
1914 * @align: required alignment for the objects.
1915 * @flags: slab allocation flags
1916 *
1917 * Also calculates the number of objects per slab.
4d268eba
PE
1918 *
1919 * This could be made much more intelligent. For now, try to avoid using
1920 * high order pages for slabs. When the gfp() functions are more friendly
1921 * towards high-order requests, this should be changed.
1922 */
a737b3e2 1923static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1924 size_t size, size_t align, unsigned long flags)
4d268eba 1925{
b1ab41c4 1926 unsigned long offslab_limit;
4d268eba 1927 size_t left_over = 0;
9888e6fa 1928 int gfporder;
4d268eba 1929
0aa817f0 1930 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1931 unsigned int num;
1932 size_t remainder;
1933
9888e6fa 1934 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1935 if (!num)
1936 continue;
9888e6fa 1937
f315e3fa
JK
1938 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1939 if (num > SLAB_OBJ_MAX_NUM)
1940 break;
1941
b1ab41c4 1942 if (flags & CFLGS_OFF_SLAB) {
03787301 1943 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
b1ab41c4
IM
1944 /*
1945 * Max number of objs-per-slab for caches which
1946 * use off-slab slabs. Needed to avoid a possible
1947 * looping condition in cache_grow().
1948 */
03787301
JK
1949 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1950 freelist_size_per_obj += sizeof(char);
8456a648 1951 offslab_limit = size;
03787301 1952 offslab_limit /= freelist_size_per_obj;
b1ab41c4
IM
1953
1954 if (num > offslab_limit)
1955 break;
1956 }
4d268eba 1957
9888e6fa 1958 /* Found something acceptable - save it away */
4d268eba 1959 cachep->num = num;
9888e6fa 1960 cachep->gfporder = gfporder;
4d268eba
PE
1961 left_over = remainder;
1962
f78bb8ad
LT
1963 /*
1964 * A VFS-reclaimable slab tends to have most allocations
1965 * as GFP_NOFS and we really don't want to have to be allocating
1966 * higher-order pages when we are unable to shrink dcache.
1967 */
1968 if (flags & SLAB_RECLAIM_ACCOUNT)
1969 break;
1970
4d268eba
PE
1971 /*
1972 * Large number of objects is good, but very large slabs are
1973 * currently bad for the gfp()s.
1974 */
543585cc 1975 if (gfporder >= slab_max_order)
4d268eba
PE
1976 break;
1977
9888e6fa
LT
1978 /*
1979 * Acceptable internal fragmentation?
1980 */
a737b3e2 1981 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1982 break;
1983 }
1984 return left_over;
1985}
1986
bf0dea23
JK
1987static struct array_cache __percpu *alloc_kmem_cache_cpus(
1988 struct kmem_cache *cachep, int entries, int batchcount)
1989{
1990 int cpu;
1991 size_t size;
1992 struct array_cache __percpu *cpu_cache;
1993
1994 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1995 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1996
1997 if (!cpu_cache)
1998 return NULL;
1999
2000 for_each_possible_cpu(cpu) {
2001 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2002 entries, batchcount);
2003 }
2004
2005 return cpu_cache;
2006}
2007
83b519e8 2008static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2009{
97d06609 2010 if (slab_state >= FULL)
83b519e8 2011 return enable_cpucache(cachep, gfp);
2ed3a4ef 2012
bf0dea23
JK
2013 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2014 if (!cachep->cpu_cache)
2015 return 1;
2016
97d06609 2017 if (slab_state == DOWN) {
bf0dea23
JK
2018 /* Creation of first cache (kmem_cache). */
2019 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 2020 } else if (slab_state == PARTIAL) {
bf0dea23
JK
2021 /* For kmem_cache_node */
2022 set_up_node(cachep, SIZE_NODE);
f30cf7d1 2023 } else {
bf0dea23 2024 int node;
f30cf7d1 2025
bf0dea23
JK
2026 for_each_online_node(node) {
2027 cachep->node[node] = kmalloc_node(
2028 sizeof(struct kmem_cache_node), gfp, node);
2029 BUG_ON(!cachep->node[node]);
2030 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2031 }
2032 }
bf0dea23 2033
6a67368c 2034 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
2035 jiffies + REAPTIMEOUT_NODE +
2036 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
2037
2038 cpu_cache_get(cachep)->avail = 0;
2039 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2040 cpu_cache_get(cachep)->batchcount = 1;
2041 cpu_cache_get(cachep)->touched = 0;
2042 cachep->batchcount = 1;
2043 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2044 return 0;
f30cf7d1
PE
2045}
2046
12220dea
JK
2047unsigned long kmem_cache_flags(unsigned long object_size,
2048 unsigned long flags, const char *name,
2049 void (*ctor)(void *))
2050{
2051 return flags;
2052}
2053
2054struct kmem_cache *
2055__kmem_cache_alias(const char *name, size_t size, size_t align,
2056 unsigned long flags, void (*ctor)(void *))
2057{
2058 struct kmem_cache *cachep;
2059
2060 cachep = find_mergeable(size, align, flags, name, ctor);
2061 if (cachep) {
2062 cachep->refcount++;
2063
2064 /*
2065 * Adjust the object sizes so that we clear
2066 * the complete object on kzalloc.
2067 */
2068 cachep->object_size = max_t(int, cachep->object_size, size);
2069 }
2070 return cachep;
2071}
2072
1da177e4 2073/**
039363f3 2074 * __kmem_cache_create - Create a cache.
a755b76a 2075 * @cachep: cache management descriptor
1da177e4 2076 * @flags: SLAB flags
1da177e4
LT
2077 *
2078 * Returns a ptr to the cache on success, NULL on failure.
2079 * Cannot be called within a int, but can be interrupted.
20c2df83 2080 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2081 *
1da177e4
LT
2082 * The flags are
2083 *
2084 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2085 * to catch references to uninitialised memory.
2086 *
2087 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2088 * for buffer overruns.
2089 *
1da177e4
LT
2090 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2091 * cacheline. This can be beneficial if you're counting cycles as closely
2092 * as davem.
2093 */
278b1bb1 2094int
8a13a4cc 2095__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2096{
d4a5fca5
DR
2097 size_t left_over, freelist_size;
2098 size_t ralign = BYTES_PER_WORD;
83b519e8 2099 gfp_t gfp;
278b1bb1 2100 int err;
8a13a4cc 2101 size_t size = cachep->size;
1da177e4 2102
1da177e4 2103#if DEBUG
1da177e4
LT
2104#if FORCED_DEBUG
2105 /*
2106 * Enable redzoning and last user accounting, except for caches with
2107 * large objects, if the increased size would increase the object size
2108 * above the next power of two: caches with object sizes just above a
2109 * power of two have a significant amount of internal fragmentation.
2110 */
87a927c7
DW
2111 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2112 2 * sizeof(unsigned long long)))
b28a02de 2113 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2114 if (!(flags & SLAB_DESTROY_BY_RCU))
2115 flags |= SLAB_POISON;
2116#endif
2117 if (flags & SLAB_DESTROY_BY_RCU)
2118 BUG_ON(flags & SLAB_POISON);
2119#endif
1da177e4 2120
a737b3e2
AM
2121 /*
2122 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2123 * unaligned accesses for some archs when redzoning is used, and makes
2124 * sure any on-slab bufctl's are also correctly aligned.
2125 */
b28a02de
PE
2126 if (size & (BYTES_PER_WORD - 1)) {
2127 size += (BYTES_PER_WORD - 1);
2128 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2129 }
2130
87a927c7
DW
2131 if (flags & SLAB_RED_ZONE) {
2132 ralign = REDZONE_ALIGN;
2133 /* If redzoning, ensure that the second redzone is suitably
2134 * aligned, by adjusting the object size accordingly. */
2135 size += REDZONE_ALIGN - 1;
2136 size &= ~(REDZONE_ALIGN - 1);
2137 }
ca5f9703 2138
a44b56d3 2139 /* 3) caller mandated alignment */
8a13a4cc
CL
2140 if (ralign < cachep->align) {
2141 ralign = cachep->align;
1da177e4 2142 }
3ff84a7f
PE
2143 /* disable debug if necessary */
2144 if (ralign > __alignof__(unsigned long long))
a44b56d3 2145 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2146 /*
ca5f9703 2147 * 4) Store it.
1da177e4 2148 */
8a13a4cc 2149 cachep->align = ralign;
1da177e4 2150
83b519e8
PE
2151 if (slab_is_available())
2152 gfp = GFP_KERNEL;
2153 else
2154 gfp = GFP_NOWAIT;
2155
1da177e4 2156#if DEBUG
1da177e4 2157
ca5f9703
PE
2158 /*
2159 * Both debugging options require word-alignment which is calculated
2160 * into align above.
2161 */
1da177e4 2162 if (flags & SLAB_RED_ZONE) {
1da177e4 2163 /* add space for red zone words */
3ff84a7f
PE
2164 cachep->obj_offset += sizeof(unsigned long long);
2165 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2166 }
2167 if (flags & SLAB_STORE_USER) {
ca5f9703 2168 /* user store requires one word storage behind the end of
87a927c7
DW
2169 * the real object. But if the second red zone needs to be
2170 * aligned to 64 bits, we must allow that much space.
1da177e4 2171 */
87a927c7
DW
2172 if (flags & SLAB_RED_ZONE)
2173 size += REDZONE_ALIGN;
2174 else
2175 size += BYTES_PER_WORD;
1da177e4
LT
2176 }
2177#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
ce8eb6c4 2178 if (size >= kmalloc_size(INDEX_NODE + 1)
608da7e3
TH
2179 && cachep->object_size > cache_line_size()
2180 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2181 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2182 size = PAGE_SIZE;
2183 }
2184#endif
2185#endif
2186
e0a42726
IM
2187 /*
2188 * Determine if the slab management is 'on' or 'off' slab.
2189 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2190 * it too early on. Always use on-slab management when
2191 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2192 */
8fc9cf42 2193 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
e7cb55b9 2194 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2195 /*
2196 * Size is large, assume best to place the slab management obj
2197 * off-slab (should allow better packing of objs).
2198 */
2199 flags |= CFLGS_OFF_SLAB;
2200
8a13a4cc 2201 size = ALIGN(size, cachep->align);
f315e3fa
JK
2202 /*
2203 * We should restrict the number of objects in a slab to implement
2204 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2205 */
2206 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2207 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
1da177e4 2208
8a13a4cc 2209 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2210
8a13a4cc 2211 if (!cachep->num)
278b1bb1 2212 return -E2BIG;
1da177e4 2213
03787301 2214 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
1da177e4
LT
2215
2216 /*
2217 * If the slab has been placed off-slab, and we have enough space then
2218 * move it on-slab. This is at the expense of any extra colouring.
2219 */
8456a648 2220 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
1da177e4 2221 flags &= ~CFLGS_OFF_SLAB;
8456a648 2222 left_over -= freelist_size;
1da177e4
LT
2223 }
2224
2225 if (flags & CFLGS_OFF_SLAB) {
2226 /* really off slab. No need for manual alignment */
03787301 2227 freelist_size = calculate_freelist_size(cachep->num, 0);
67461365
RL
2228
2229#ifdef CONFIG_PAGE_POISONING
2230 /* If we're going to use the generic kernel_map_pages()
2231 * poisoning, then it's going to smash the contents of
2232 * the redzone and userword anyhow, so switch them off.
2233 */
2234 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2235 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2236#endif
1da177e4
LT
2237 }
2238
2239 cachep->colour_off = cache_line_size();
2240 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2241 if (cachep->colour_off < cachep->align)
2242 cachep->colour_off = cachep->align;
b28a02de 2243 cachep->colour = left_over / cachep->colour_off;
8456a648 2244 cachep->freelist_size = freelist_size;
1da177e4 2245 cachep->flags = flags;
a57a4988 2246 cachep->allocflags = __GFP_COMP;
4b51d669 2247 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2248 cachep->allocflags |= GFP_DMA;
3b0efdfa 2249 cachep->size = size;
6a2d7a95 2250 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2251
e5ac9c5a 2252 if (flags & CFLGS_OFF_SLAB) {
8456a648 2253 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
e5ac9c5a 2254 /*
5f0985bb 2255 * This is a possibility for one of the kmalloc_{dma,}_caches.
e5ac9c5a 2256 * But since we go off slab only for object size greater than
5f0985bb
JZ
2257 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2258 * in ascending order,this should not happen at all.
e5ac9c5a
RT
2259 * But leave a BUG_ON for some lucky dude.
2260 */
8456a648 2261 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
e5ac9c5a 2262 }
1da177e4 2263
278b1bb1
CL
2264 err = setup_cpu_cache(cachep, gfp);
2265 if (err) {
12c3667f 2266 __kmem_cache_shutdown(cachep);
278b1bb1 2267 return err;
2ed3a4ef 2268 }
1da177e4 2269
278b1bb1 2270 return 0;
1da177e4 2271}
1da177e4
LT
2272
2273#if DEBUG
2274static void check_irq_off(void)
2275{
2276 BUG_ON(!irqs_disabled());
2277}
2278
2279static void check_irq_on(void)
2280{
2281 BUG_ON(irqs_disabled());
2282}
2283
343e0d7a 2284static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2285{
2286#ifdef CONFIG_SMP
2287 check_irq_off();
18bf8541 2288 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2289#endif
2290}
e498be7d 2291
343e0d7a 2292static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2293{
2294#ifdef CONFIG_SMP
2295 check_irq_off();
18bf8541 2296 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2297#endif
2298}
2299
1da177e4
LT
2300#else
2301#define check_irq_off() do { } while(0)
2302#define check_irq_on() do { } while(0)
2303#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2304#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2305#endif
2306
ce8eb6c4 2307static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2308 struct array_cache *ac,
2309 int force, int node);
2310
1da177e4
LT
2311static void do_drain(void *arg)
2312{
a737b3e2 2313 struct kmem_cache *cachep = arg;
1da177e4 2314 struct array_cache *ac;
7d6e6d09 2315 int node = numa_mem_id();
18bf8541 2316 struct kmem_cache_node *n;
97654dfa 2317 LIST_HEAD(list);
1da177e4
LT
2318
2319 check_irq_off();
9a2dba4b 2320 ac = cpu_cache_get(cachep);
18bf8541
CL
2321 n = get_node(cachep, node);
2322 spin_lock(&n->list_lock);
97654dfa 2323 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2324 spin_unlock(&n->list_lock);
97654dfa 2325 slabs_destroy(cachep, &list);
1da177e4
LT
2326 ac->avail = 0;
2327}
2328
343e0d7a 2329static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2330{
ce8eb6c4 2331 struct kmem_cache_node *n;
e498be7d
CL
2332 int node;
2333
15c8b6c1 2334 on_each_cpu(do_drain, cachep, 1);
1da177e4 2335 check_irq_on();
18bf8541
CL
2336 for_each_kmem_cache_node(cachep, node, n)
2337 if (n->alien)
ce8eb6c4 2338 drain_alien_cache(cachep, n->alien);
a4523a8b 2339
18bf8541
CL
2340 for_each_kmem_cache_node(cachep, node, n)
2341 drain_array(cachep, n, n->shared, 1, node);
1da177e4
LT
2342}
2343
ed11d9eb
CL
2344/*
2345 * Remove slabs from the list of free slabs.
2346 * Specify the number of slabs to drain in tofree.
2347 *
2348 * Returns the actual number of slabs released.
2349 */
2350static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2351 struct kmem_cache_node *n, int tofree)
1da177e4 2352{
ed11d9eb
CL
2353 struct list_head *p;
2354 int nr_freed;
8456a648 2355 struct page *page;
1da177e4 2356
ed11d9eb 2357 nr_freed = 0;
ce8eb6c4 2358 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2359
ce8eb6c4
CL
2360 spin_lock_irq(&n->list_lock);
2361 p = n->slabs_free.prev;
2362 if (p == &n->slabs_free) {
2363 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2364 goto out;
2365 }
1da177e4 2366
8456a648 2367 page = list_entry(p, struct page, lru);
1da177e4 2368#if DEBUG
8456a648 2369 BUG_ON(page->active);
1da177e4 2370#endif
8456a648 2371 list_del(&page->lru);
ed11d9eb
CL
2372 /*
2373 * Safe to drop the lock. The slab is no longer linked
2374 * to the cache.
2375 */
ce8eb6c4
CL
2376 n->free_objects -= cache->num;
2377 spin_unlock_irq(&n->list_lock);
8456a648 2378 slab_destroy(cache, page);
ed11d9eb 2379 nr_freed++;
1da177e4 2380 }
ed11d9eb
CL
2381out:
2382 return nr_freed;
1da177e4
LT
2383}
2384
d6e0b7fa 2385int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
e498be7d 2386{
18bf8541
CL
2387 int ret = 0;
2388 int node;
ce8eb6c4 2389 struct kmem_cache_node *n;
e498be7d
CL
2390
2391 drain_cpu_caches(cachep);
2392
2393 check_irq_on();
18bf8541 2394 for_each_kmem_cache_node(cachep, node, n) {
0fa8103b 2395 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2396
ce8eb6c4
CL
2397 ret += !list_empty(&n->slabs_full) ||
2398 !list_empty(&n->slabs_partial);
e498be7d
CL
2399 }
2400 return (ret ? 1 : 0);
2401}
2402
945cf2b6 2403int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2404{
12c3667f 2405 int i;
ce8eb6c4 2406 struct kmem_cache_node *n;
d6e0b7fa 2407 int rc = __kmem_cache_shrink(cachep, false);
1da177e4 2408
12c3667f
CL
2409 if (rc)
2410 return rc;
1da177e4 2411
bf0dea23 2412 free_percpu(cachep->cpu_cache);
1da177e4 2413
ce8eb6c4 2414 /* NUMA: free the node structures */
18bf8541
CL
2415 for_each_kmem_cache_node(cachep, i, n) {
2416 kfree(n->shared);
2417 free_alien_cache(n->alien);
2418 kfree(n);
2419 cachep->node[i] = NULL;
12c3667f
CL
2420 }
2421 return 0;
1da177e4 2422}
1da177e4 2423
e5ac9c5a
RT
2424/*
2425 * Get the memory for a slab management obj.
5f0985bb
JZ
2426 *
2427 * For a slab cache when the slab descriptor is off-slab, the
2428 * slab descriptor can't come from the same cache which is being created,
2429 * Because if it is the case, that means we defer the creation of
2430 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2431 * And we eventually call down to __kmem_cache_create(), which
2432 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2433 * This is a "chicken-and-egg" problem.
2434 *
2435 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2436 * which are all initialized during kmem_cache_init().
e5ac9c5a 2437 */
7e007355 2438static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2439 struct page *page, int colour_off,
2440 gfp_t local_flags, int nodeid)
1da177e4 2441{
7e007355 2442 void *freelist;
0c3aa83e 2443 void *addr = page_address(page);
b28a02de 2444
1da177e4
LT
2445 if (OFF_SLAB(cachep)) {
2446 /* Slab management obj is off-slab. */
8456a648 2447 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2448 local_flags, nodeid);
8456a648 2449 if (!freelist)
1da177e4
LT
2450 return NULL;
2451 } else {
8456a648
JK
2452 freelist = addr + colour_off;
2453 colour_off += cachep->freelist_size;
1da177e4 2454 }
8456a648
JK
2455 page->active = 0;
2456 page->s_mem = addr + colour_off;
2457 return freelist;
1da177e4
LT
2458}
2459
7cc68973 2460static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2461{
a41adfaa 2462 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2463}
2464
2465static inline void set_free_obj(struct page *page,
7cc68973 2466 unsigned int idx, freelist_idx_t val)
e5c58dfd 2467{
a41adfaa 2468 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2469}
2470
343e0d7a 2471static void cache_init_objs(struct kmem_cache *cachep,
8456a648 2472 struct page *page)
1da177e4
LT
2473{
2474 int i;
2475
2476 for (i = 0; i < cachep->num; i++) {
8456a648 2477 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
2478#if DEBUG
2479 /* need to poison the objs? */
2480 if (cachep->flags & SLAB_POISON)
2481 poison_obj(cachep, objp, POISON_FREE);
2482 if (cachep->flags & SLAB_STORE_USER)
2483 *dbg_userword(cachep, objp) = NULL;
2484
2485 if (cachep->flags & SLAB_RED_ZONE) {
2486 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2487 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2488 }
2489 /*
a737b3e2
AM
2490 * Constructors are not allowed to allocate memory from the same
2491 * cache which they are a constructor for. Otherwise, deadlock.
2492 * They must also be threaded.
1da177e4
LT
2493 */
2494 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2495 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2496
2497 if (cachep->flags & SLAB_RED_ZONE) {
2498 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2499 slab_error(cachep, "constructor overwrote the"
b28a02de 2500 " end of an object");
1da177e4
LT
2501 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2502 slab_error(cachep, "constructor overwrote the"
b28a02de 2503 " start of an object");
1da177e4 2504 }
3b0efdfa 2505 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2506 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2507 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2508 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2509#else
2510 if (cachep->ctor)
51cc5068 2511 cachep->ctor(objp);
1da177e4 2512#endif
03787301 2513 set_obj_status(page, i, OBJECT_FREE);
e5c58dfd 2514 set_free_obj(page, i, i);
1da177e4 2515 }
1da177e4
LT
2516}
2517
343e0d7a 2518static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2519{
4b51d669
CL
2520 if (CONFIG_ZONE_DMA_FLAG) {
2521 if (flags & GFP_DMA)
a618e89f 2522 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2523 else
a618e89f 2524 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2525 }
1da177e4
LT
2526}
2527
8456a648 2528static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2529 int nodeid)
78d382d7 2530{
b1cb0982 2531 void *objp;
78d382d7 2532
e5c58dfd 2533 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2534 page->active++;
78d382d7 2535#if DEBUG
1ea991b0 2536 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2537#endif
78d382d7
MD
2538
2539 return objp;
2540}
2541
8456a648 2542static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2543 void *objp, int nodeid)
78d382d7 2544{
8456a648 2545 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2546#if DEBUG
16025177 2547 unsigned int i;
b1cb0982 2548
78d382d7 2549 /* Verify that the slab belongs to the intended node */
1ea991b0 2550 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2551
b1cb0982 2552 /* Verify double free bug */
8456a648 2553 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2554 if (get_free_obj(page, i) == objnr) {
b1cb0982
JK
2555 printk(KERN_ERR "slab: double free detected in cache "
2556 "'%s', objp %p\n", cachep->name, objp);
2557 BUG();
2558 }
78d382d7
MD
2559 }
2560#endif
8456a648 2561 page->active--;
e5c58dfd 2562 set_free_obj(page, page->active, objnr);
78d382d7
MD
2563}
2564
4776874f
PE
2565/*
2566 * Map pages beginning at addr to the given cache and slab. This is required
2567 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2568 * virtual address for kfree, ksize, and slab debugging.
4776874f 2569 */
8456a648 2570static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2571 void *freelist)
1da177e4 2572{
a57a4988 2573 page->slab_cache = cache;
8456a648 2574 page->freelist = freelist;
1da177e4
LT
2575}
2576
2577/*
2578 * Grow (by 1) the number of slabs within a cache. This is called by
2579 * kmem_cache_alloc() when there are no active objs left in a cache.
2580 */
3c517a61 2581static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2582 gfp_t flags, int nodeid, struct page *page)
1da177e4 2583{
7e007355 2584 void *freelist;
b28a02de
PE
2585 size_t offset;
2586 gfp_t local_flags;
ce8eb6c4 2587 struct kmem_cache_node *n;
1da177e4 2588
a737b3e2
AM
2589 /*
2590 * Be lazy and only check for valid flags here, keeping it out of the
2591 * critical path in kmem_cache_alloc().
1da177e4 2592 */
c871ac4e
AM
2593 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2594 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2595 BUG();
2596 }
6cb06229 2597 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2598
ce8eb6c4 2599 /* Take the node list lock to change the colour_next on this node */
1da177e4 2600 check_irq_off();
18bf8541 2601 n = get_node(cachep, nodeid);
ce8eb6c4 2602 spin_lock(&n->list_lock);
1da177e4
LT
2603
2604 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2605 offset = n->colour_next;
2606 n->colour_next++;
2607 if (n->colour_next >= cachep->colour)
2608 n->colour_next = 0;
2609 spin_unlock(&n->list_lock);
1da177e4 2610
2e1217cf 2611 offset *= cachep->colour_off;
1da177e4
LT
2612
2613 if (local_flags & __GFP_WAIT)
2614 local_irq_enable();
2615
2616 /*
2617 * The test for missing atomic flag is performed here, rather than
2618 * the more obvious place, simply to reduce the critical path length
2619 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2620 * will eventually be caught here (where it matters).
2621 */
2622 kmem_flagcheck(cachep, flags);
2623
a737b3e2
AM
2624 /*
2625 * Get mem for the objs. Attempt to allocate a physical page from
2626 * 'nodeid'.
e498be7d 2627 */
0c3aa83e
JK
2628 if (!page)
2629 page = kmem_getpages(cachep, local_flags, nodeid);
2630 if (!page)
1da177e4
LT
2631 goto failed;
2632
2633 /* Get slab management. */
8456a648 2634 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2635 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
8456a648 2636 if (!freelist)
1da177e4
LT
2637 goto opps1;
2638
8456a648 2639 slab_map_pages(cachep, page, freelist);
1da177e4 2640
8456a648 2641 cache_init_objs(cachep, page);
1da177e4
LT
2642
2643 if (local_flags & __GFP_WAIT)
2644 local_irq_disable();
2645 check_irq_off();
ce8eb6c4 2646 spin_lock(&n->list_lock);
1da177e4
LT
2647
2648 /* Make slab active. */
8456a648 2649 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2650 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2651 n->free_objects += cachep->num;
2652 spin_unlock(&n->list_lock);
1da177e4 2653 return 1;
a737b3e2 2654opps1:
0c3aa83e 2655 kmem_freepages(cachep, page);
a737b3e2 2656failed:
1da177e4
LT
2657 if (local_flags & __GFP_WAIT)
2658 local_irq_disable();
2659 return 0;
2660}
2661
2662#if DEBUG
2663
2664/*
2665 * Perform extra freeing checks:
2666 * - detect bad pointers.
2667 * - POISON/RED_ZONE checking
1da177e4
LT
2668 */
2669static void kfree_debugcheck(const void *objp)
2670{
1da177e4
LT
2671 if (!virt_addr_valid(objp)) {
2672 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2673 (unsigned long)objp);
2674 BUG();
1da177e4 2675 }
1da177e4
LT
2676}
2677
58ce1fd5
PE
2678static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2679{
b46b8f19 2680 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2681
2682 redzone1 = *dbg_redzone1(cache, obj);
2683 redzone2 = *dbg_redzone2(cache, obj);
2684
2685 /*
2686 * Redzone is ok.
2687 */
2688 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2689 return;
2690
2691 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2692 slab_error(cache, "double free detected");
2693 else
2694 slab_error(cache, "memory outside object was overwritten");
2695
b46b8f19 2696 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2697 obj, redzone1, redzone2);
2698}
2699
343e0d7a 2700static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2701 unsigned long caller)
1da177e4 2702{
1da177e4 2703 unsigned int objnr;
8456a648 2704 struct page *page;
1da177e4 2705
80cbd911
MW
2706 BUG_ON(virt_to_cache(objp) != cachep);
2707
3dafccf2 2708 objp -= obj_offset(cachep);
1da177e4 2709 kfree_debugcheck(objp);
b49af68f 2710 page = virt_to_head_page(objp);
1da177e4 2711
1da177e4 2712 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2713 verify_redzone_free(cachep, objp);
1da177e4
LT
2714 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2715 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2716 }
2717 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2718 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2719
8456a648 2720 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2721
2722 BUG_ON(objnr >= cachep->num);
8456a648 2723 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2724
03787301 2725 set_obj_status(page, objnr, OBJECT_FREE);
1da177e4
LT
2726 if (cachep->flags & SLAB_POISON) {
2727#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2728 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2729 store_stackinfo(cachep, objp, caller);
b28a02de 2730 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2731 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2732 } else {
2733 poison_obj(cachep, objp, POISON_FREE);
2734 }
2735#else
2736 poison_obj(cachep, objp, POISON_FREE);
2737#endif
2738 }
2739 return objp;
2740}
2741
1da177e4
LT
2742#else
2743#define kfree_debugcheck(x) do { } while(0)
2744#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2745#endif
2746
072bb0aa
MG
2747static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2748 bool force_refill)
1da177e4
LT
2749{
2750 int batchcount;
ce8eb6c4 2751 struct kmem_cache_node *n;
1da177e4 2752 struct array_cache *ac;
1ca4cb24
PE
2753 int node;
2754
1da177e4 2755 check_irq_off();
7d6e6d09 2756 node = numa_mem_id();
072bb0aa
MG
2757 if (unlikely(force_refill))
2758 goto force_grow;
2759retry:
9a2dba4b 2760 ac = cpu_cache_get(cachep);
1da177e4
LT
2761 batchcount = ac->batchcount;
2762 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2763 /*
2764 * If there was little recent activity on this cache, then
2765 * perform only a partial refill. Otherwise we could generate
2766 * refill bouncing.
1da177e4
LT
2767 */
2768 batchcount = BATCHREFILL_LIMIT;
2769 }
18bf8541 2770 n = get_node(cachep, node);
e498be7d 2771
ce8eb6c4
CL
2772 BUG_ON(ac->avail > 0 || !n);
2773 spin_lock(&n->list_lock);
1da177e4 2774
3ded175a 2775 /* See if we can refill from the shared array */
ce8eb6c4
CL
2776 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2777 n->shared->touched = 1;
3ded175a 2778 goto alloc_done;
44b57f1c 2779 }
3ded175a 2780
1da177e4
LT
2781 while (batchcount > 0) {
2782 struct list_head *entry;
8456a648 2783 struct page *page;
1da177e4 2784 /* Get slab alloc is to come from. */
ce8eb6c4
CL
2785 entry = n->slabs_partial.next;
2786 if (entry == &n->slabs_partial) {
2787 n->free_touched = 1;
2788 entry = n->slabs_free.next;
2789 if (entry == &n->slabs_free)
1da177e4
LT
2790 goto must_grow;
2791 }
2792
8456a648 2793 page = list_entry(entry, struct page, lru);
1da177e4 2794 check_spinlock_acquired(cachep);
714b8171
PE
2795
2796 /*
2797 * The slab was either on partial or free list so
2798 * there must be at least one object available for
2799 * allocation.
2800 */
8456a648 2801 BUG_ON(page->active >= cachep->num);
714b8171 2802
8456a648 2803 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2804 STATS_INC_ALLOCED(cachep);
2805 STATS_INC_ACTIVE(cachep);
2806 STATS_SET_HIGH(cachep);
2807
8456a648 2808 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
072bb0aa 2809 node));
1da177e4 2810 }
1da177e4
LT
2811
2812 /* move slabp to correct slabp list: */
8456a648
JK
2813 list_del(&page->lru);
2814 if (page->active == cachep->num)
34bf6ef9 2815 list_add(&page->lru, &n->slabs_full);
1da177e4 2816 else
34bf6ef9 2817 list_add(&page->lru, &n->slabs_partial);
1da177e4
LT
2818 }
2819
a737b3e2 2820must_grow:
ce8eb6c4 2821 n->free_objects -= ac->avail;
a737b3e2 2822alloc_done:
ce8eb6c4 2823 spin_unlock(&n->list_lock);
1da177e4
LT
2824
2825 if (unlikely(!ac->avail)) {
2826 int x;
072bb0aa 2827force_grow:
3c517a61 2828 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 2829
a737b3e2 2830 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2831 ac = cpu_cache_get(cachep);
51cd8e6f 2832 node = numa_mem_id();
072bb0aa
MG
2833
2834 /* no objects in sight? abort */
2835 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
2836 return NULL;
2837
a737b3e2 2838 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2839 goto retry;
2840 }
2841 ac->touched = 1;
072bb0aa
MG
2842
2843 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
2844}
2845
a737b3e2
AM
2846static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2847 gfp_t flags)
1da177e4
LT
2848{
2849 might_sleep_if(flags & __GFP_WAIT);
2850#if DEBUG
2851 kmem_flagcheck(cachep, flags);
2852#endif
2853}
2854
2855#if DEBUG
a737b3e2 2856static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2857 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2858{
03787301
JK
2859 struct page *page;
2860
b28a02de 2861 if (!objp)
1da177e4 2862 return objp;
b28a02de 2863 if (cachep->flags & SLAB_POISON) {
1da177e4 2864#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2865 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2866 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2867 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2868 else
2869 check_poison_obj(cachep, objp);
2870#else
2871 check_poison_obj(cachep, objp);
2872#endif
2873 poison_obj(cachep, objp, POISON_INUSE);
2874 }
2875 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2876 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2877
2878 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2879 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2880 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2881 slab_error(cachep, "double free, or memory outside"
2882 " object was overwritten");
b28a02de 2883 printk(KERN_ERR
b46b8f19 2884 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
2885 objp, *dbg_redzone1(cachep, objp),
2886 *dbg_redzone2(cachep, objp));
1da177e4
LT
2887 }
2888 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2889 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2890 }
03787301
JK
2891
2892 page = virt_to_head_page(objp);
2893 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
3dafccf2 2894 objp += obj_offset(cachep);
4f104934 2895 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2896 cachep->ctor(objp);
7ea466f2
TH
2897 if (ARCH_SLAB_MINALIGN &&
2898 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 2899 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2900 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2901 }
1da177e4
LT
2902 return objp;
2903}
2904#else
2905#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2906#endif
2907
773ff60e 2908static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 2909{
8a9c61d4 2910 if (unlikely(cachep == kmem_cache))
773ff60e 2911 return false;
8a8b6502 2912
8c138bc0 2913 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
2914}
2915
343e0d7a 2916static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2917{
b28a02de 2918 void *objp;
1da177e4 2919 struct array_cache *ac;
072bb0aa 2920 bool force_refill = false;
1da177e4 2921
5c382300 2922 check_irq_off();
8a8b6502 2923
9a2dba4b 2924 ac = cpu_cache_get(cachep);
1da177e4 2925 if (likely(ac->avail)) {
1da177e4 2926 ac->touched = 1;
072bb0aa
MG
2927 objp = ac_get_obj(cachep, ac, flags, false);
2928
ddbf2e83 2929 /*
072bb0aa
MG
2930 * Allow for the possibility all avail objects are not allowed
2931 * by the current flags
ddbf2e83 2932 */
072bb0aa
MG
2933 if (objp) {
2934 STATS_INC_ALLOCHIT(cachep);
2935 goto out;
2936 }
2937 force_refill = true;
1da177e4 2938 }
072bb0aa
MG
2939
2940 STATS_INC_ALLOCMISS(cachep);
2941 objp = cache_alloc_refill(cachep, flags, force_refill);
2942 /*
2943 * the 'ac' may be updated by cache_alloc_refill(),
2944 * and kmemleak_erase() requires its correct value.
2945 */
2946 ac = cpu_cache_get(cachep);
2947
2948out:
d5cff635
CM
2949 /*
2950 * To avoid a false negative, if an object that is in one of the
2951 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2952 * treat the array pointers as a reference to the object.
2953 */
f3d8b53a
O
2954 if (objp)
2955 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
2956 return objp;
2957}
2958
e498be7d 2959#ifdef CONFIG_NUMA
c61afb18 2960/*
2ad654bc 2961 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
2962 *
2963 * If we are in_interrupt, then process context, including cpusets and
2964 * mempolicy, may not apply and should not be used for allocation policy.
2965 */
2966static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2967{
2968 int nid_alloc, nid_here;
2969
765c4507 2970 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 2971 return NULL;
7d6e6d09 2972 nid_alloc = nid_here = numa_mem_id();
c61afb18 2973 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 2974 nid_alloc = cpuset_slab_spread_node();
c61afb18 2975 else if (current->mempolicy)
2a389610 2976 nid_alloc = mempolicy_slab_node();
c61afb18 2977 if (nid_alloc != nid_here)
8b98c169 2978 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
2979 return NULL;
2980}
2981
765c4507
CL
2982/*
2983 * Fallback function if there was no memory available and no objects on a
3c517a61 2984 * certain node and fall back is permitted. First we scan all the
6a67368c 2985 * available node for available objects. If that fails then we
3c517a61
CL
2986 * perform an allocation without specifying a node. This allows the page
2987 * allocator to do its reclaim / fallback magic. We then insert the
2988 * slab into the proper nodelist and then allocate from it.
765c4507 2989 */
8c8cc2c1 2990static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 2991{
8c8cc2c1
PE
2992 struct zonelist *zonelist;
2993 gfp_t local_flags;
dd1a239f 2994 struct zoneref *z;
54a6eb5c
MG
2995 struct zone *zone;
2996 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 2997 void *obj = NULL;
3c517a61 2998 int nid;
cc9a6c87 2999 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3000
3001 if (flags & __GFP_THISNODE)
3002 return NULL;
3003
6cb06229 3004 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3005
cc9a6c87 3006retry_cpuset:
d26914d1 3007 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3008 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3009
3c517a61
CL
3010retry:
3011 /*
3012 * Look through allowed nodes for objects available
3013 * from existing per node queues.
3014 */
54a6eb5c
MG
3015 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3016 nid = zone_to_nid(zone);
aedb0eb1 3017
061d7074 3018 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3019 get_node(cache, nid) &&
3020 get_node(cache, nid)->free_objects) {
3c517a61
CL
3021 obj = ____cache_alloc_node(cache,
3022 flags | GFP_THISNODE, nid);
481c5346
CL
3023 if (obj)
3024 break;
3025 }
3c517a61
CL
3026 }
3027
cfce6604 3028 if (!obj) {
3c517a61
CL
3029 /*
3030 * This allocation will be performed within the constraints
3031 * of the current cpuset / memory policy requirements.
3032 * We may trigger various forms of reclaim on the allowed
3033 * set and go into memory reserves if necessary.
3034 */
0c3aa83e
JK
3035 struct page *page;
3036
dd47ea75
CL
3037 if (local_flags & __GFP_WAIT)
3038 local_irq_enable();
3039 kmem_flagcheck(cache, flags);
0c3aa83e 3040 page = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3041 if (local_flags & __GFP_WAIT)
3042 local_irq_disable();
0c3aa83e 3043 if (page) {
3c517a61
CL
3044 /*
3045 * Insert into the appropriate per node queues
3046 */
0c3aa83e
JK
3047 nid = page_to_nid(page);
3048 if (cache_grow(cache, flags, nid, page)) {
3c517a61
CL
3049 obj = ____cache_alloc_node(cache,
3050 flags | GFP_THISNODE, nid);
3051 if (!obj)
3052 /*
3053 * Another processor may allocate the
3054 * objects in the slab since we are
3055 * not holding any locks.
3056 */
3057 goto retry;
3058 } else {
b6a60451 3059 /* cache_grow already freed obj */
3c517a61
CL
3060 obj = NULL;
3061 }
3062 }
aedb0eb1 3063 }
cc9a6c87 3064
d26914d1 3065 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3066 goto retry_cpuset;
765c4507
CL
3067 return obj;
3068}
3069
e498be7d
CL
3070/*
3071 * A interface to enable slab creation on nodeid
1da177e4 3072 */
8b98c169 3073static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3074 int nodeid)
e498be7d
CL
3075{
3076 struct list_head *entry;
8456a648 3077 struct page *page;
ce8eb6c4 3078 struct kmem_cache_node *n;
b28a02de 3079 void *obj;
b28a02de
PE
3080 int x;
3081
7c3fbbdd 3082 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3083 n = get_node(cachep, nodeid);
ce8eb6c4 3084 BUG_ON(!n);
b28a02de 3085
a737b3e2 3086retry:
ca3b9b91 3087 check_irq_off();
ce8eb6c4
CL
3088 spin_lock(&n->list_lock);
3089 entry = n->slabs_partial.next;
3090 if (entry == &n->slabs_partial) {
3091 n->free_touched = 1;
3092 entry = n->slabs_free.next;
3093 if (entry == &n->slabs_free)
b28a02de
PE
3094 goto must_grow;
3095 }
3096
8456a648 3097 page = list_entry(entry, struct page, lru);
b28a02de 3098 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3099
3100 STATS_INC_NODEALLOCS(cachep);
3101 STATS_INC_ACTIVE(cachep);
3102 STATS_SET_HIGH(cachep);
3103
8456a648 3104 BUG_ON(page->active == cachep->num);
b28a02de 3105
8456a648 3106 obj = slab_get_obj(cachep, page, nodeid);
ce8eb6c4 3107 n->free_objects--;
b28a02de 3108 /* move slabp to correct slabp list: */
8456a648 3109 list_del(&page->lru);
b28a02de 3110
8456a648
JK
3111 if (page->active == cachep->num)
3112 list_add(&page->lru, &n->slabs_full);
a737b3e2 3113 else
8456a648 3114 list_add(&page->lru, &n->slabs_partial);
e498be7d 3115
ce8eb6c4 3116 spin_unlock(&n->list_lock);
b28a02de 3117 goto done;
e498be7d 3118
a737b3e2 3119must_grow:
ce8eb6c4 3120 spin_unlock(&n->list_lock);
3c517a61 3121 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3122 if (x)
3123 goto retry;
1da177e4 3124
8c8cc2c1 3125 return fallback_alloc(cachep, flags);
e498be7d 3126
a737b3e2 3127done:
b28a02de 3128 return obj;
e498be7d 3129}
8c8cc2c1 3130
8c8cc2c1 3131static __always_inline void *
48356303 3132slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3133 unsigned long caller)
8c8cc2c1
PE
3134{
3135 unsigned long save_flags;
3136 void *ptr;
7d6e6d09 3137 int slab_node = numa_mem_id();
8c8cc2c1 3138
dcce284a 3139 flags &= gfp_allowed_mask;
7e85ee0c 3140
cf40bd16
NP
3141 lockdep_trace_alloc(flags);
3142
773ff60e 3143 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3144 return NULL;
3145
d79923fa
GC
3146 cachep = memcg_kmem_get_cache(cachep, flags);
3147
8c8cc2c1
PE
3148 cache_alloc_debugcheck_before(cachep, flags);
3149 local_irq_save(save_flags);
3150
eacbbae3 3151 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3152 nodeid = slab_node;
8c8cc2c1 3153
18bf8541 3154 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3155 /* Node not bootstrapped yet */
3156 ptr = fallback_alloc(cachep, flags);
3157 goto out;
3158 }
3159
7d6e6d09 3160 if (nodeid == slab_node) {
8c8cc2c1
PE
3161 /*
3162 * Use the locally cached objects if possible.
3163 * However ____cache_alloc does not allow fallback
3164 * to other nodes. It may fail while we still have
3165 * objects on other nodes available.
3166 */
3167 ptr = ____cache_alloc(cachep, flags);
3168 if (ptr)
3169 goto out;
3170 }
3171 /* ___cache_alloc_node can fall back to other nodes */
3172 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3173 out:
3174 local_irq_restore(save_flags);
3175 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3176 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3177 flags);
8c8cc2c1 3178
5087c822 3179 if (likely(ptr)) {
8c138bc0 3180 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
5087c822
JP
3181 if (unlikely(flags & __GFP_ZERO))
3182 memset(ptr, 0, cachep->object_size);
3183 }
d07dbea4 3184
8135be5a 3185 memcg_kmem_put_cache(cachep);
8c8cc2c1
PE
3186 return ptr;
3187}
3188
3189static __always_inline void *
3190__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3191{
3192 void *objp;
3193
2ad654bc 3194 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3195 objp = alternate_node_alloc(cache, flags);
3196 if (objp)
3197 goto out;
3198 }
3199 objp = ____cache_alloc(cache, flags);
3200
3201 /*
3202 * We may just have run out of memory on the local node.
3203 * ____cache_alloc_node() knows how to locate memory on other nodes
3204 */
7d6e6d09
LS
3205 if (!objp)
3206 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3207
3208 out:
3209 return objp;
3210}
3211#else
3212
3213static __always_inline void *
3214__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3215{
3216 return ____cache_alloc(cachep, flags);
3217}
3218
3219#endif /* CONFIG_NUMA */
3220
3221static __always_inline void *
48356303 3222slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3223{
3224 unsigned long save_flags;
3225 void *objp;
3226
dcce284a 3227 flags &= gfp_allowed_mask;
7e85ee0c 3228
cf40bd16
NP
3229 lockdep_trace_alloc(flags);
3230
773ff60e 3231 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3232 return NULL;
3233
d79923fa
GC
3234 cachep = memcg_kmem_get_cache(cachep, flags);
3235
8c8cc2c1
PE
3236 cache_alloc_debugcheck_before(cachep, flags);
3237 local_irq_save(save_flags);
3238 objp = __do_cache_alloc(cachep, flags);
3239 local_irq_restore(save_flags);
3240 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3241 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3242 flags);
8c8cc2c1
PE
3243 prefetchw(objp);
3244
5087c822 3245 if (likely(objp)) {
8c138bc0 3246 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
5087c822
JP
3247 if (unlikely(flags & __GFP_ZERO))
3248 memset(objp, 0, cachep->object_size);
3249 }
d07dbea4 3250
8135be5a 3251 memcg_kmem_put_cache(cachep);
8c8cc2c1
PE
3252 return objp;
3253}
e498be7d
CL
3254
3255/*
5f0985bb 3256 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3257 * @list: List of detached free slabs should be freed by caller
e498be7d 3258 */
97654dfa
JK
3259static void free_block(struct kmem_cache *cachep, void **objpp,
3260 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3261{
3262 int i;
25c063fb 3263 struct kmem_cache_node *n = get_node(cachep, node);
1da177e4
LT
3264
3265 for (i = 0; i < nr_objects; i++) {
072bb0aa 3266 void *objp;
8456a648 3267 struct page *page;
1da177e4 3268
072bb0aa
MG
3269 clear_obj_pfmemalloc(&objpp[i]);
3270 objp = objpp[i];
3271
8456a648 3272 page = virt_to_head_page(objp);
8456a648 3273 list_del(&page->lru);
ff69416e 3274 check_spinlock_acquired_node(cachep, node);
8456a648 3275 slab_put_obj(cachep, page, objp, node);
1da177e4 3276 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3277 n->free_objects++;
1da177e4
LT
3278
3279 /* fixup slab chains */
8456a648 3280 if (page->active == 0) {
ce8eb6c4
CL
3281 if (n->free_objects > n->free_limit) {
3282 n->free_objects -= cachep->num;
97654dfa 3283 list_add_tail(&page->lru, list);
1da177e4 3284 } else {
8456a648 3285 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3286 }
3287 } else {
3288 /* Unconditionally move a slab to the end of the
3289 * partial list on free - maximum time for the
3290 * other objects to be freed, too.
3291 */
8456a648 3292 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3293 }
3294 }
3295}
3296
343e0d7a 3297static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3298{
3299 int batchcount;
ce8eb6c4 3300 struct kmem_cache_node *n;
7d6e6d09 3301 int node = numa_mem_id();
97654dfa 3302 LIST_HEAD(list);
1da177e4
LT
3303
3304 batchcount = ac->batchcount;
3305#if DEBUG
3306 BUG_ON(!batchcount || batchcount > ac->avail);
3307#endif
3308 check_irq_off();
18bf8541 3309 n = get_node(cachep, node);
ce8eb6c4
CL
3310 spin_lock(&n->list_lock);
3311 if (n->shared) {
3312 struct array_cache *shared_array = n->shared;
b28a02de 3313 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3314 if (max) {
3315 if (batchcount > max)
3316 batchcount = max;
e498be7d 3317 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3318 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3319 shared_array->avail += batchcount;
3320 goto free_done;
3321 }
3322 }
3323
97654dfa 3324 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3325free_done:
1da177e4
LT
3326#if STATS
3327 {
3328 int i = 0;
3329 struct list_head *p;
3330
ce8eb6c4
CL
3331 p = n->slabs_free.next;
3332 while (p != &(n->slabs_free)) {
8456a648 3333 struct page *page;
1da177e4 3334
8456a648
JK
3335 page = list_entry(p, struct page, lru);
3336 BUG_ON(page->active);
1da177e4
LT
3337
3338 i++;
3339 p = p->next;
3340 }
3341 STATS_SET_FREEABLE(cachep, i);
3342 }
3343#endif
ce8eb6c4 3344 spin_unlock(&n->list_lock);
97654dfa 3345 slabs_destroy(cachep, &list);
1da177e4 3346 ac->avail -= batchcount;
a737b3e2 3347 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3348}
3349
3350/*
a737b3e2
AM
3351 * Release an obj back to its cache. If the obj has a constructed state, it must
3352 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3353 */
a947eb95 3354static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3355 unsigned long caller)
1da177e4 3356{
9a2dba4b 3357 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3358
3359 check_irq_off();
d5cff635 3360 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3361 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3362
8c138bc0 3363 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3364
1807a1aa
SS
3365 /*
3366 * Skip calling cache_free_alien() when the platform is not numa.
3367 * This will avoid cache misses that happen while accessing slabp (which
3368 * is per page memory reference) to get nodeid. Instead use a global
3369 * variable to skip the call, which is mostly likely to be present in
3370 * the cache.
3371 */
b6e68bc1 3372 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3373 return;
3374
3d880194 3375 if (ac->avail < ac->limit) {
1da177e4 3376 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3377 } else {
3378 STATS_INC_FREEMISS(cachep);
3379 cache_flusharray(cachep, ac);
1da177e4 3380 }
42c8c99c 3381
072bb0aa 3382 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3383}
3384
3385/**
3386 * kmem_cache_alloc - Allocate an object
3387 * @cachep: The cache to allocate from.
3388 * @flags: See kmalloc().
3389 *
3390 * Allocate an object from this cache. The flags are only relevant
3391 * if the cache has no available objects.
3392 */
343e0d7a 3393void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3394{
48356303 3395 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3396
ca2b84cb 3397 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3398 cachep->object_size, cachep->size, flags);
36555751
EGM
3399
3400 return ret;
1da177e4
LT
3401}
3402EXPORT_SYMBOL(kmem_cache_alloc);
3403
0f24f128 3404#ifdef CONFIG_TRACING
85beb586 3405void *
4052147c 3406kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3407{
85beb586
SR
3408 void *ret;
3409
48356303 3410 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3411
3412 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3413 size, cachep->size, flags);
85beb586 3414 return ret;
36555751 3415}
85beb586 3416EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3417#endif
3418
1da177e4 3419#ifdef CONFIG_NUMA
d0d04b78
ZL
3420/**
3421 * kmem_cache_alloc_node - Allocate an object on the specified node
3422 * @cachep: The cache to allocate from.
3423 * @flags: See kmalloc().
3424 * @nodeid: node number of the target node.
3425 *
3426 * Identical to kmem_cache_alloc but it will allocate memory on the given
3427 * node, which can improve the performance for cpu bound structures.
3428 *
3429 * Fallback to other node is possible if __GFP_THISNODE is not set.
3430 */
8b98c169
CH
3431void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3432{
48356303 3433 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3434
ca2b84cb 3435 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3436 cachep->object_size, cachep->size,
ca2b84cb 3437 flags, nodeid);
36555751
EGM
3438
3439 return ret;
8b98c169 3440}
1da177e4
LT
3441EXPORT_SYMBOL(kmem_cache_alloc_node);
3442
0f24f128 3443#ifdef CONFIG_TRACING
4052147c 3444void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3445 gfp_t flags,
4052147c
EG
3446 int nodeid,
3447 size_t size)
36555751 3448{
85beb586
SR
3449 void *ret;
3450
592f4145 3451 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3452
85beb586 3453 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3454 size, cachep->size,
85beb586
SR
3455 flags, nodeid);
3456 return ret;
36555751 3457}
85beb586 3458EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3459#endif
3460
8b98c169 3461static __always_inline void *
7c0cb9c6 3462__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3463{
343e0d7a 3464 struct kmem_cache *cachep;
97e2bde4 3465
2c59dd65 3466 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3467 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3468 return cachep;
4052147c 3469 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3470}
8b98c169 3471
8b98c169
CH
3472void *__kmalloc_node(size_t size, gfp_t flags, int node)
3473{
7c0cb9c6 3474 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3475}
dbe5e69d 3476EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3477
3478void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3479 int node, unsigned long caller)
8b98c169 3480{
7c0cb9c6 3481 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3482}
3483EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3484#endif /* CONFIG_NUMA */
1da177e4
LT
3485
3486/**
800590f5 3487 * __do_kmalloc - allocate memory
1da177e4 3488 * @size: how many bytes of memory are required.
800590f5 3489 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3490 * @caller: function caller for debug tracking of the caller
1da177e4 3491 */
7fd6b141 3492static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3493 unsigned long caller)
1da177e4 3494{
343e0d7a 3495 struct kmem_cache *cachep;
36555751 3496 void *ret;
1da177e4 3497
2c59dd65 3498 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3499 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3500 return cachep;
48356303 3501 ret = slab_alloc(cachep, flags, caller);
36555751 3502
7c0cb9c6 3503 trace_kmalloc(caller, ret,
3b0efdfa 3504 size, cachep->size, flags);
36555751
EGM
3505
3506 return ret;
7fd6b141
PE
3507}
3508
7fd6b141
PE
3509void *__kmalloc(size_t size, gfp_t flags)
3510{
7c0cb9c6 3511 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3512}
3513EXPORT_SYMBOL(__kmalloc);
3514
ce71e27c 3515void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3516{
7c0cb9c6 3517 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3518}
3519EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3520
1da177e4
LT
3521/**
3522 * kmem_cache_free - Deallocate an object
3523 * @cachep: The cache the allocation was from.
3524 * @objp: The previously allocated object.
3525 *
3526 * Free an object which was previously allocated from this
3527 * cache.
3528 */
343e0d7a 3529void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3530{
3531 unsigned long flags;
b9ce5ef4
GC
3532 cachep = cache_from_obj(cachep, objp);
3533 if (!cachep)
3534 return;
1da177e4
LT
3535
3536 local_irq_save(flags);
d97d476b 3537 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3538 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3539 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3540 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3541 local_irq_restore(flags);
36555751 3542
ca2b84cb 3543 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3544}
3545EXPORT_SYMBOL(kmem_cache_free);
3546
1da177e4
LT
3547/**
3548 * kfree - free previously allocated memory
3549 * @objp: pointer returned by kmalloc.
3550 *
80e93eff
PE
3551 * If @objp is NULL, no operation is performed.
3552 *
1da177e4
LT
3553 * Don't free memory not originally allocated by kmalloc()
3554 * or you will run into trouble.
3555 */
3556void kfree(const void *objp)
3557{
343e0d7a 3558 struct kmem_cache *c;
1da177e4
LT
3559 unsigned long flags;
3560
2121db74
PE
3561 trace_kfree(_RET_IP_, objp);
3562
6cb8f913 3563 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3564 return;
3565 local_irq_save(flags);
3566 kfree_debugcheck(objp);
6ed5eb22 3567 c = virt_to_cache(objp);
8c138bc0
CL
3568 debug_check_no_locks_freed(objp, c->object_size);
3569
3570 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3571 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3572 local_irq_restore(flags);
3573}
3574EXPORT_SYMBOL(kfree);
3575
e498be7d 3576/*
ce8eb6c4 3577 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3578 */
5f0985bb 3579static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3580{
3581 int node;
ce8eb6c4 3582 struct kmem_cache_node *n;
cafeb02e 3583 struct array_cache *new_shared;
c8522a3a 3584 struct alien_cache **new_alien = NULL;
e498be7d 3585
9c09a95c 3586 for_each_online_node(node) {
cafeb02e 3587
b455def2
L
3588 if (use_alien_caches) {
3589 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3590 if (!new_alien)
3591 goto fail;
3592 }
cafeb02e 3593
63109846
ED
3594 new_shared = NULL;
3595 if (cachep->shared) {
3596 new_shared = alloc_arraycache(node,
0718dc2a 3597 cachep->shared*cachep->batchcount,
83b519e8 3598 0xbaadf00d, gfp);
63109846
ED
3599 if (!new_shared) {
3600 free_alien_cache(new_alien);
3601 goto fail;
3602 }
0718dc2a 3603 }
cafeb02e 3604
18bf8541 3605 n = get_node(cachep, node);
ce8eb6c4
CL
3606 if (n) {
3607 struct array_cache *shared = n->shared;
97654dfa 3608 LIST_HEAD(list);
cafeb02e 3609
ce8eb6c4 3610 spin_lock_irq(&n->list_lock);
e498be7d 3611
cafeb02e 3612 if (shared)
0718dc2a 3613 free_block(cachep, shared->entry,
97654dfa 3614 shared->avail, node, &list);
e498be7d 3615
ce8eb6c4
CL
3616 n->shared = new_shared;
3617 if (!n->alien) {
3618 n->alien = new_alien;
e498be7d
CL
3619 new_alien = NULL;
3620 }
ce8eb6c4 3621 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3622 cachep->batchcount + cachep->num;
ce8eb6c4 3623 spin_unlock_irq(&n->list_lock);
97654dfa 3624 slabs_destroy(cachep, &list);
cafeb02e 3625 kfree(shared);
e498be7d
CL
3626 free_alien_cache(new_alien);
3627 continue;
3628 }
ce8eb6c4
CL
3629 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3630 if (!n) {
0718dc2a
CL
3631 free_alien_cache(new_alien);
3632 kfree(new_shared);
e498be7d 3633 goto fail;
0718dc2a 3634 }
e498be7d 3635
ce8eb6c4 3636 kmem_cache_node_init(n);
5f0985bb
JZ
3637 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3638 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
ce8eb6c4
CL
3639 n->shared = new_shared;
3640 n->alien = new_alien;
3641 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3642 cachep->batchcount + cachep->num;
ce8eb6c4 3643 cachep->node[node] = n;
e498be7d 3644 }
cafeb02e 3645 return 0;
0718dc2a 3646
a737b3e2 3647fail:
3b0efdfa 3648 if (!cachep->list.next) {
0718dc2a
CL
3649 /* Cache is not active yet. Roll back what we did */
3650 node--;
3651 while (node >= 0) {
18bf8541
CL
3652 n = get_node(cachep, node);
3653 if (n) {
ce8eb6c4
CL
3654 kfree(n->shared);
3655 free_alien_cache(n->alien);
3656 kfree(n);
6a67368c 3657 cachep->node[node] = NULL;
0718dc2a
CL
3658 }
3659 node--;
3660 }
3661 }
cafeb02e 3662 return -ENOMEM;
e498be7d
CL
3663}
3664
18004c5d 3665/* Always called with the slab_mutex held */
943a451a 3666static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3667 int batchcount, int shared, gfp_t gfp)
1da177e4 3668{
bf0dea23
JK
3669 struct array_cache __percpu *cpu_cache, *prev;
3670 int cpu;
1da177e4 3671
bf0dea23
JK
3672 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3673 if (!cpu_cache)
d2e7b7d0
SS
3674 return -ENOMEM;
3675
bf0dea23
JK
3676 prev = cachep->cpu_cache;
3677 cachep->cpu_cache = cpu_cache;
3678 kick_all_cpus_sync();
e498be7d 3679
1da177e4 3680 check_irq_on();
1da177e4
LT
3681 cachep->batchcount = batchcount;
3682 cachep->limit = limit;
e498be7d 3683 cachep->shared = shared;
1da177e4 3684
bf0dea23
JK
3685 if (!prev)
3686 goto alloc_node;
3687
3688 for_each_online_cpu(cpu) {
97654dfa 3689 LIST_HEAD(list);
18bf8541
CL
3690 int node;
3691 struct kmem_cache_node *n;
bf0dea23 3692 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3693
bf0dea23 3694 node = cpu_to_mem(cpu);
18bf8541
CL
3695 n = get_node(cachep, node);
3696 spin_lock_irq(&n->list_lock);
bf0dea23 3697 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3698 spin_unlock_irq(&n->list_lock);
97654dfa 3699 slabs_destroy(cachep, &list);
1da177e4 3700 }
bf0dea23
JK
3701 free_percpu(prev);
3702
3703alloc_node:
5f0985bb 3704 return alloc_kmem_cache_node(cachep, gfp);
1da177e4
LT
3705}
3706
943a451a
GC
3707static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3708 int batchcount, int shared, gfp_t gfp)
3709{
3710 int ret;
426589f5 3711 struct kmem_cache *c;
943a451a
GC
3712
3713 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3714
3715 if (slab_state < FULL)
3716 return ret;
3717
3718 if ((ret < 0) || !is_root_cache(cachep))
3719 return ret;
3720
426589f5
VD
3721 lockdep_assert_held(&slab_mutex);
3722 for_each_memcg_cache(c, cachep) {
3723 /* return value determined by the root cache only */
3724 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3725 }
3726
3727 return ret;
3728}
3729
18004c5d 3730/* Called with slab_mutex held always */
83b519e8 3731static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3732{
3733 int err;
943a451a
GC
3734 int limit = 0;
3735 int shared = 0;
3736 int batchcount = 0;
3737
3738 if (!is_root_cache(cachep)) {
3739 struct kmem_cache *root = memcg_root_cache(cachep);
3740 limit = root->limit;
3741 shared = root->shared;
3742 batchcount = root->batchcount;
3743 }
1da177e4 3744
943a451a
GC
3745 if (limit && shared && batchcount)
3746 goto skip_setup;
a737b3e2
AM
3747 /*
3748 * The head array serves three purposes:
1da177e4
LT
3749 * - create a LIFO ordering, i.e. return objects that are cache-warm
3750 * - reduce the number of spinlock operations.
a737b3e2 3751 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3752 * bufctl chains: array operations are cheaper.
3753 * The numbers are guessed, we should auto-tune as described by
3754 * Bonwick.
3755 */
3b0efdfa 3756 if (cachep->size > 131072)
1da177e4 3757 limit = 1;
3b0efdfa 3758 else if (cachep->size > PAGE_SIZE)
1da177e4 3759 limit = 8;
3b0efdfa 3760 else if (cachep->size > 1024)
1da177e4 3761 limit = 24;
3b0efdfa 3762 else if (cachep->size > 256)
1da177e4
LT
3763 limit = 54;
3764 else
3765 limit = 120;
3766
a737b3e2
AM
3767 /*
3768 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3769 * allocation behaviour: Most allocs on one cpu, most free operations
3770 * on another cpu. For these cases, an efficient object passing between
3771 * cpus is necessary. This is provided by a shared array. The array
3772 * replaces Bonwick's magazine layer.
3773 * On uniprocessor, it's functionally equivalent (but less efficient)
3774 * to a larger limit. Thus disabled by default.
3775 */
3776 shared = 0;
3b0efdfa 3777 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3778 shared = 8;
1da177e4
LT
3779
3780#if DEBUG
a737b3e2
AM
3781 /*
3782 * With debugging enabled, large batchcount lead to excessively long
3783 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3784 */
3785 if (limit > 32)
3786 limit = 32;
3787#endif
943a451a
GC
3788 batchcount = (limit + 1) / 2;
3789skip_setup:
3790 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
3791 if (err)
3792 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3793 cachep->name, -err);
2ed3a4ef 3794 return err;
1da177e4
LT
3795}
3796
1b55253a 3797/*
ce8eb6c4
CL
3798 * Drain an array if it contains any elements taking the node lock only if
3799 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3800 * if drain_array() is used on the shared array.
1b55253a 3801 */
ce8eb6c4 3802static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 3803 struct array_cache *ac, int force, int node)
1da177e4 3804{
97654dfa 3805 LIST_HEAD(list);
1da177e4
LT
3806 int tofree;
3807
1b55253a
CL
3808 if (!ac || !ac->avail)
3809 return;
1da177e4
LT
3810 if (ac->touched && !force) {
3811 ac->touched = 0;
b18e7e65 3812 } else {
ce8eb6c4 3813 spin_lock_irq(&n->list_lock);
b18e7e65
CL
3814 if (ac->avail) {
3815 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3816 if (tofree > ac->avail)
3817 tofree = (ac->avail + 1) / 2;
97654dfa 3818 free_block(cachep, ac->entry, tofree, node, &list);
b18e7e65
CL
3819 ac->avail -= tofree;
3820 memmove(ac->entry, &(ac->entry[tofree]),
3821 sizeof(void *) * ac->avail);
3822 }
ce8eb6c4 3823 spin_unlock_irq(&n->list_lock);
97654dfa 3824 slabs_destroy(cachep, &list);
1da177e4
LT
3825 }
3826}
3827
3828/**
3829 * cache_reap - Reclaim memory from caches.
05fb6bf0 3830 * @w: work descriptor
1da177e4
LT
3831 *
3832 * Called from workqueue/eventd every few seconds.
3833 * Purpose:
3834 * - clear the per-cpu caches for this CPU.
3835 * - return freeable pages to the main free memory pool.
3836 *
a737b3e2
AM
3837 * If we cannot acquire the cache chain mutex then just give up - we'll try
3838 * again on the next iteration.
1da177e4 3839 */
7c5cae36 3840static void cache_reap(struct work_struct *w)
1da177e4 3841{
7a7c381d 3842 struct kmem_cache *searchp;
ce8eb6c4 3843 struct kmem_cache_node *n;
7d6e6d09 3844 int node = numa_mem_id();
bf6aede7 3845 struct delayed_work *work = to_delayed_work(w);
1da177e4 3846
18004c5d 3847 if (!mutex_trylock(&slab_mutex))
1da177e4 3848 /* Give up. Setup the next iteration. */
7c5cae36 3849 goto out;
1da177e4 3850
18004c5d 3851 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3852 check_irq_on();
3853
35386e3b 3854 /*
ce8eb6c4 3855 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3856 * have established with reasonable certainty that
3857 * we can do some work if the lock was obtained.
3858 */
18bf8541 3859 n = get_node(searchp, node);
35386e3b 3860
ce8eb6c4 3861 reap_alien(searchp, n);
1da177e4 3862
ce8eb6c4 3863 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 3864
35386e3b
CL
3865 /*
3866 * These are racy checks but it does not matter
3867 * if we skip one check or scan twice.
3868 */
ce8eb6c4 3869 if (time_after(n->next_reap, jiffies))
35386e3b 3870 goto next;
1da177e4 3871
5f0985bb 3872 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 3873
ce8eb6c4 3874 drain_array(searchp, n, n->shared, 0, node);
1da177e4 3875
ce8eb6c4
CL
3876 if (n->free_touched)
3877 n->free_touched = 0;
ed11d9eb
CL
3878 else {
3879 int freed;
1da177e4 3880
ce8eb6c4 3881 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
3882 5 * searchp->num - 1) / (5 * searchp->num));
3883 STATS_ADD_REAPED(searchp, freed);
3884 }
35386e3b 3885next:
1da177e4
LT
3886 cond_resched();
3887 }
3888 check_irq_on();
18004c5d 3889 mutex_unlock(&slab_mutex);
8fce4d8e 3890 next_reap_node();
7c5cae36 3891out:
a737b3e2 3892 /* Set up the next iteration */
5f0985bb 3893 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
3894}
3895
158a9624 3896#ifdef CONFIG_SLABINFO
0d7561c6 3897void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 3898{
8456a648 3899 struct page *page;
b28a02de
PE
3900 unsigned long active_objs;
3901 unsigned long num_objs;
3902 unsigned long active_slabs = 0;
3903 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3904 const char *name;
1da177e4 3905 char *error = NULL;
e498be7d 3906 int node;
ce8eb6c4 3907 struct kmem_cache_node *n;
1da177e4 3908
1da177e4
LT
3909 active_objs = 0;
3910 num_slabs = 0;
18bf8541 3911 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 3912
ca3b9b91 3913 check_irq_on();
ce8eb6c4 3914 spin_lock_irq(&n->list_lock);
e498be7d 3915
8456a648
JK
3916 list_for_each_entry(page, &n->slabs_full, lru) {
3917 if (page->active != cachep->num && !error)
e498be7d
CL
3918 error = "slabs_full accounting error";
3919 active_objs += cachep->num;
3920 active_slabs++;
3921 }
8456a648
JK
3922 list_for_each_entry(page, &n->slabs_partial, lru) {
3923 if (page->active == cachep->num && !error)
106a74e1 3924 error = "slabs_partial accounting error";
8456a648 3925 if (!page->active && !error)
106a74e1 3926 error = "slabs_partial accounting error";
8456a648 3927 active_objs += page->active;
e498be7d
CL
3928 active_slabs++;
3929 }
8456a648
JK
3930 list_for_each_entry(page, &n->slabs_free, lru) {
3931 if (page->active && !error)
106a74e1 3932 error = "slabs_free accounting error";
e498be7d
CL
3933 num_slabs++;
3934 }
ce8eb6c4
CL
3935 free_objects += n->free_objects;
3936 if (n->shared)
3937 shared_avail += n->shared->avail;
e498be7d 3938
ce8eb6c4 3939 spin_unlock_irq(&n->list_lock);
1da177e4 3940 }
b28a02de
PE
3941 num_slabs += active_slabs;
3942 num_objs = num_slabs * cachep->num;
e498be7d 3943 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3944 error = "free_objects accounting error";
3945
b28a02de 3946 name = cachep->name;
1da177e4
LT
3947 if (error)
3948 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3949
0d7561c6
GC
3950 sinfo->active_objs = active_objs;
3951 sinfo->num_objs = num_objs;
3952 sinfo->active_slabs = active_slabs;
3953 sinfo->num_slabs = num_slabs;
3954 sinfo->shared_avail = shared_avail;
3955 sinfo->limit = cachep->limit;
3956 sinfo->batchcount = cachep->batchcount;
3957 sinfo->shared = cachep->shared;
3958 sinfo->objects_per_slab = cachep->num;
3959 sinfo->cache_order = cachep->gfporder;
3960}
3961
3962void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3963{
1da177e4 3964#if STATS
ce8eb6c4 3965 { /* node stats */
1da177e4
LT
3966 unsigned long high = cachep->high_mark;
3967 unsigned long allocs = cachep->num_allocations;
3968 unsigned long grown = cachep->grown;
3969 unsigned long reaped = cachep->reaped;
3970 unsigned long errors = cachep->errors;
3971 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3972 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3973 unsigned long node_frees = cachep->node_frees;
fb7faf33 3974 unsigned long overflows = cachep->node_overflow;
1da177e4 3975
e92dd4fd
JP
3976 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
3977 "%4lu %4lu %4lu %4lu %4lu",
3978 allocs, high, grown,
3979 reaped, errors, max_freeable, node_allocs,
3980 node_frees, overflows);
1da177e4
LT
3981 }
3982 /* cpu stats */
3983 {
3984 unsigned long allochit = atomic_read(&cachep->allochit);
3985 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3986 unsigned long freehit = atomic_read(&cachep->freehit);
3987 unsigned long freemiss = atomic_read(&cachep->freemiss);
3988
3989 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3990 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3991 }
3992#endif
1da177e4
LT
3993}
3994
1da177e4
LT
3995#define MAX_SLABINFO_WRITE 128
3996/**
3997 * slabinfo_write - Tuning for the slab allocator
3998 * @file: unused
3999 * @buffer: user buffer
4000 * @count: data length
4001 * @ppos: unused
4002 */
b7454ad3 4003ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4004 size_t count, loff_t *ppos)
1da177e4 4005{
b28a02de 4006 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4007 int limit, batchcount, shared, res;
7a7c381d 4008 struct kmem_cache *cachep;
b28a02de 4009
1da177e4
LT
4010 if (count > MAX_SLABINFO_WRITE)
4011 return -EINVAL;
4012 if (copy_from_user(&kbuf, buffer, count))
4013 return -EFAULT;
b28a02de 4014 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4015
4016 tmp = strchr(kbuf, ' ');
4017 if (!tmp)
4018 return -EINVAL;
4019 *tmp = '\0';
4020 tmp++;
4021 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4022 return -EINVAL;
4023
4024 /* Find the cache in the chain of caches. */
18004c5d 4025 mutex_lock(&slab_mutex);
1da177e4 4026 res = -EINVAL;
18004c5d 4027 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4028 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4029 if (limit < 1 || batchcount < 1 ||
4030 batchcount > limit || shared < 0) {
e498be7d 4031 res = 0;
1da177e4 4032 } else {
e498be7d 4033 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4034 batchcount, shared,
4035 GFP_KERNEL);
1da177e4
LT
4036 }
4037 break;
4038 }
4039 }
18004c5d 4040 mutex_unlock(&slab_mutex);
1da177e4
LT
4041 if (res >= 0)
4042 res = count;
4043 return res;
4044}
871751e2
AV
4045
4046#ifdef CONFIG_DEBUG_SLAB_LEAK
4047
871751e2
AV
4048static inline int add_caller(unsigned long *n, unsigned long v)
4049{
4050 unsigned long *p;
4051 int l;
4052 if (!v)
4053 return 1;
4054 l = n[1];
4055 p = n + 2;
4056 while (l) {
4057 int i = l/2;
4058 unsigned long *q = p + 2 * i;
4059 if (*q == v) {
4060 q[1]++;
4061 return 1;
4062 }
4063 if (*q > v) {
4064 l = i;
4065 } else {
4066 p = q + 2;
4067 l -= i + 1;
4068 }
4069 }
4070 if (++n[1] == n[0])
4071 return 0;
4072 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4073 p[0] = v;
4074 p[1] = 1;
4075 return 1;
4076}
4077
8456a648
JK
4078static void handle_slab(unsigned long *n, struct kmem_cache *c,
4079 struct page *page)
871751e2
AV
4080{
4081 void *p;
03787301 4082 int i;
b1cb0982 4083
871751e2
AV
4084 if (n[0] == n[1])
4085 return;
8456a648 4086 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
03787301 4087 if (get_obj_status(page, i) != OBJECT_ACTIVE)
871751e2 4088 continue;
b1cb0982 4089
871751e2
AV
4090 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4091 return;
4092 }
4093}
4094
4095static void show_symbol(struct seq_file *m, unsigned long address)
4096{
4097#ifdef CONFIG_KALLSYMS
871751e2 4098 unsigned long offset, size;
9281acea 4099 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4100
a5c43dae 4101 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4102 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4103 if (modname[0])
871751e2
AV
4104 seq_printf(m, " [%s]", modname);
4105 return;
4106 }
4107#endif
4108 seq_printf(m, "%p", (void *)address);
4109}
4110
4111static int leaks_show(struct seq_file *m, void *p)
4112{
0672aa7c 4113 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4114 struct page *page;
ce8eb6c4 4115 struct kmem_cache_node *n;
871751e2 4116 const char *name;
db845067 4117 unsigned long *x = m->private;
871751e2
AV
4118 int node;
4119 int i;
4120
4121 if (!(cachep->flags & SLAB_STORE_USER))
4122 return 0;
4123 if (!(cachep->flags & SLAB_RED_ZONE))
4124 return 0;
4125
4126 /* OK, we can do it */
4127
db845067 4128 x[1] = 0;
871751e2 4129
18bf8541 4130 for_each_kmem_cache_node(cachep, node, n) {
871751e2
AV
4131
4132 check_irq_on();
ce8eb6c4 4133 spin_lock_irq(&n->list_lock);
871751e2 4134
8456a648
JK
4135 list_for_each_entry(page, &n->slabs_full, lru)
4136 handle_slab(x, cachep, page);
4137 list_for_each_entry(page, &n->slabs_partial, lru)
4138 handle_slab(x, cachep, page);
ce8eb6c4 4139 spin_unlock_irq(&n->list_lock);
871751e2
AV
4140 }
4141 name = cachep->name;
db845067 4142 if (x[0] == x[1]) {
871751e2 4143 /* Increase the buffer size */
18004c5d 4144 mutex_unlock(&slab_mutex);
db845067 4145 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4146 if (!m->private) {
4147 /* Too bad, we are really out */
db845067 4148 m->private = x;
18004c5d 4149 mutex_lock(&slab_mutex);
871751e2
AV
4150 return -ENOMEM;
4151 }
db845067
CL
4152 *(unsigned long *)m->private = x[0] * 2;
4153 kfree(x);
18004c5d 4154 mutex_lock(&slab_mutex);
871751e2
AV
4155 /* Now make sure this entry will be retried */
4156 m->count = m->size;
4157 return 0;
4158 }
db845067
CL
4159 for (i = 0; i < x[1]; i++) {
4160 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4161 show_symbol(m, x[2*i+2]);
871751e2
AV
4162 seq_putc(m, '\n');
4163 }
d2e7b7d0 4164
871751e2
AV
4165 return 0;
4166}
4167
a0ec95a8 4168static const struct seq_operations slabstats_op = {
1df3b26f 4169 .start = slab_start,
276a2439
WL
4170 .next = slab_next,
4171 .stop = slab_stop,
871751e2
AV
4172 .show = leaks_show,
4173};
a0ec95a8
AD
4174
4175static int slabstats_open(struct inode *inode, struct file *file)
4176{
b208ce32
RJ
4177 unsigned long *n;
4178
4179 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4180 if (!n)
4181 return -ENOMEM;
4182
4183 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4184
4185 return 0;
a0ec95a8
AD
4186}
4187
4188static const struct file_operations proc_slabstats_operations = {
4189 .open = slabstats_open,
4190 .read = seq_read,
4191 .llseek = seq_lseek,
4192 .release = seq_release_private,
4193};
4194#endif
4195
4196static int __init slab_proc_init(void)
4197{
4198#ifdef CONFIG_DEBUG_SLAB_LEAK
4199 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4200#endif
a0ec95a8
AD
4201 return 0;
4202}
4203module_init(slab_proc_init);
1da177e4
LT
4204#endif
4205
00e145b6
MS
4206/**
4207 * ksize - get the actual amount of memory allocated for a given object
4208 * @objp: Pointer to the object
4209 *
4210 * kmalloc may internally round up allocations and return more memory
4211 * than requested. ksize() can be used to determine the actual amount of
4212 * memory allocated. The caller may use this additional memory, even though
4213 * a smaller amount of memory was initially specified with the kmalloc call.
4214 * The caller must guarantee that objp points to a valid object previously
4215 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4216 * must not be freed during the duration of the call.
4217 */
fd76bab2 4218size_t ksize(const void *objp)
1da177e4 4219{
ef8b4520
CL
4220 BUG_ON(!objp);
4221 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4222 return 0;
1da177e4 4223
8c138bc0 4224 return virt_to_cache(objp)->object_size;
1da177e4 4225}
b1aabecd 4226EXPORT_SYMBOL(ksize);